• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #include <generated/utsrelease.h>
14 
15 #define CREATE_TRACE_POINTS
16 #include "trace.h"
17 
18 #include "nvmet.h"
19 #include "debugfs.h"
20 
21 struct kmem_cache *nvmet_bvec_cache;
22 struct workqueue_struct *buffered_io_wq;
23 struct workqueue_struct *zbd_wq;
24 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
25 static DEFINE_IDA(cntlid_ida);
26 
27 struct workqueue_struct *nvmet_wq;
28 EXPORT_SYMBOL_GPL(nvmet_wq);
29 
30 /*
31  * This read/write semaphore is used to synchronize access to configuration
32  * information on a target system that will result in discovery log page
33  * information change for at least one host.
34  * The full list of resources to protected by this semaphore is:
35  *
36  *  - subsystems list
37  *  - per-subsystem allowed hosts list
38  *  - allow_any_host subsystem attribute
39  *  - nvmet_genctr
40  *  - the nvmet_transports array
41  *
42  * When updating any of those lists/structures write lock should be obtained,
43  * while when reading (popolating discovery log page or checking host-subsystem
44  * link) read lock is obtained to allow concurrent reads.
45  */
46 DECLARE_RWSEM(nvmet_config_sem);
47 
48 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
49 u64 nvmet_ana_chgcnt;
50 DECLARE_RWSEM(nvmet_ana_sem);
51 
errno_to_nvme_status(struct nvmet_req * req,int errno)52 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
53 {
54 	switch (errno) {
55 	case 0:
56 		return NVME_SC_SUCCESS;
57 	case -ENOSPC:
58 		req->error_loc = offsetof(struct nvme_rw_command, length);
59 		return NVME_SC_CAP_EXCEEDED | NVME_STATUS_DNR;
60 	case -EREMOTEIO:
61 		req->error_loc = offsetof(struct nvme_rw_command, slba);
62 		return  NVME_SC_LBA_RANGE | NVME_STATUS_DNR;
63 	case -EOPNOTSUPP:
64 		req->error_loc = offsetof(struct nvme_common_command, opcode);
65 		return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
66 	case -ENODATA:
67 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
68 		return NVME_SC_ACCESS_DENIED;
69 	case -EIO:
70 		fallthrough;
71 	default:
72 		req->error_loc = offsetof(struct nvme_common_command, opcode);
73 		return NVME_SC_INTERNAL | NVME_STATUS_DNR;
74 	}
75 }
76 
nvmet_report_invalid_opcode(struct nvmet_req * req)77 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
78 {
79 	pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
80 		 req->sq->qid);
81 
82 	req->error_loc = offsetof(struct nvme_common_command, opcode);
83 	return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
84 }
85 
86 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
87 		const char *subsysnqn);
88 
nvmet_copy_to_sgl(struct nvmet_req * req,off_t off,const void * buf,size_t len)89 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
90 		size_t len)
91 {
92 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
93 		req->error_loc = offsetof(struct nvme_common_command, dptr);
94 		return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
95 	}
96 	return 0;
97 }
98 
nvmet_copy_from_sgl(struct nvmet_req * req,off_t off,void * buf,size_t len)99 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
100 {
101 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
102 		req->error_loc = offsetof(struct nvme_common_command, dptr);
103 		return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
104 	}
105 	return 0;
106 }
107 
nvmet_zero_sgl(struct nvmet_req * req,off_t off,size_t len)108 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
109 {
110 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
111 		req->error_loc = offsetof(struct nvme_common_command, dptr);
112 		return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
113 	}
114 	return 0;
115 }
116 
nvmet_max_nsid(struct nvmet_subsys * subsys)117 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
118 {
119 	struct nvmet_ns *cur;
120 	unsigned long idx;
121 	u32 nsid = 0;
122 
123 	xa_for_each(&subsys->namespaces, idx, cur)
124 		nsid = cur->nsid;
125 
126 	return nsid;
127 }
128 
nvmet_async_event_result(struct nvmet_async_event * aen)129 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
130 {
131 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
132 }
133 
nvmet_async_events_failall(struct nvmet_ctrl * ctrl)134 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
135 {
136 	struct nvmet_req *req;
137 
138 	mutex_lock(&ctrl->lock);
139 	while (ctrl->nr_async_event_cmds) {
140 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
141 		mutex_unlock(&ctrl->lock);
142 		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_STATUS_DNR);
143 		mutex_lock(&ctrl->lock);
144 	}
145 	mutex_unlock(&ctrl->lock);
146 }
147 
nvmet_async_events_process(struct nvmet_ctrl * ctrl)148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
149 {
150 	struct nvmet_async_event *aen;
151 	struct nvmet_req *req;
152 
153 	mutex_lock(&ctrl->lock);
154 	while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
155 		aen = list_first_entry(&ctrl->async_events,
156 				       struct nvmet_async_event, entry);
157 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
158 		nvmet_set_result(req, nvmet_async_event_result(aen));
159 
160 		list_del(&aen->entry);
161 		kfree(aen);
162 
163 		mutex_unlock(&ctrl->lock);
164 		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
165 		nvmet_req_complete(req, 0);
166 		mutex_lock(&ctrl->lock);
167 	}
168 	mutex_unlock(&ctrl->lock);
169 }
170 
nvmet_async_events_free(struct nvmet_ctrl * ctrl)171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
172 {
173 	struct nvmet_async_event *aen, *tmp;
174 
175 	mutex_lock(&ctrl->lock);
176 	list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
177 		list_del(&aen->entry);
178 		kfree(aen);
179 	}
180 	mutex_unlock(&ctrl->lock);
181 }
182 
nvmet_async_event_work(struct work_struct * work)183 static void nvmet_async_event_work(struct work_struct *work)
184 {
185 	struct nvmet_ctrl *ctrl =
186 		container_of(work, struct nvmet_ctrl, async_event_work);
187 
188 	nvmet_async_events_process(ctrl);
189 }
190 
nvmet_add_async_event(struct nvmet_ctrl * ctrl,u8 event_type,u8 event_info,u8 log_page)191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
192 		u8 event_info, u8 log_page)
193 {
194 	struct nvmet_async_event *aen;
195 
196 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
197 	if (!aen)
198 		return;
199 
200 	aen->event_type = event_type;
201 	aen->event_info = event_info;
202 	aen->log_page = log_page;
203 
204 	mutex_lock(&ctrl->lock);
205 	list_add_tail(&aen->entry, &ctrl->async_events);
206 	mutex_unlock(&ctrl->lock);
207 
208 	queue_work(nvmet_wq, &ctrl->async_event_work);
209 }
210 
nvmet_add_to_changed_ns_log(struct nvmet_ctrl * ctrl,__le32 nsid)211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
212 {
213 	u32 i;
214 
215 	mutex_lock(&ctrl->lock);
216 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
217 		goto out_unlock;
218 
219 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
220 		if (ctrl->changed_ns_list[i] == nsid)
221 			goto out_unlock;
222 	}
223 
224 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
225 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
226 		ctrl->nr_changed_ns = U32_MAX;
227 		goto out_unlock;
228 	}
229 
230 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
231 out_unlock:
232 	mutex_unlock(&ctrl->lock);
233 }
234 
nvmet_ns_changed(struct nvmet_subsys * subsys,u32 nsid)235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
236 {
237 	struct nvmet_ctrl *ctrl;
238 
239 	lockdep_assert_held(&subsys->lock);
240 
241 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
242 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
243 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
244 			continue;
245 		nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
246 				NVME_AER_NOTICE_NS_CHANGED,
247 				NVME_LOG_CHANGED_NS);
248 	}
249 }
250 
nvmet_send_ana_event(struct nvmet_subsys * subsys,struct nvmet_port * port)251 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
252 		struct nvmet_port *port)
253 {
254 	struct nvmet_ctrl *ctrl;
255 
256 	mutex_lock(&subsys->lock);
257 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
258 		if (port && ctrl->port != port)
259 			continue;
260 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
261 			continue;
262 		nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
263 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
264 	}
265 	mutex_unlock(&subsys->lock);
266 }
267 
nvmet_port_send_ana_event(struct nvmet_port * port)268 void nvmet_port_send_ana_event(struct nvmet_port *port)
269 {
270 	struct nvmet_subsys_link *p;
271 
272 	down_read(&nvmet_config_sem);
273 	list_for_each_entry(p, &port->subsystems, entry)
274 		nvmet_send_ana_event(p->subsys, port);
275 	up_read(&nvmet_config_sem);
276 }
277 
nvmet_register_transport(const struct nvmet_fabrics_ops * ops)278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
279 {
280 	int ret = 0;
281 
282 	down_write(&nvmet_config_sem);
283 	if (nvmet_transports[ops->type])
284 		ret = -EINVAL;
285 	else
286 		nvmet_transports[ops->type] = ops;
287 	up_write(&nvmet_config_sem);
288 
289 	return ret;
290 }
291 EXPORT_SYMBOL_GPL(nvmet_register_transport);
292 
nvmet_unregister_transport(const struct nvmet_fabrics_ops * ops)293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
294 {
295 	down_write(&nvmet_config_sem);
296 	nvmet_transports[ops->type] = NULL;
297 	up_write(&nvmet_config_sem);
298 }
299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
300 
nvmet_port_del_ctrls(struct nvmet_port * port,struct nvmet_subsys * subsys)301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
302 {
303 	struct nvmet_ctrl *ctrl;
304 
305 	mutex_lock(&subsys->lock);
306 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
307 		if (ctrl->port == port)
308 			ctrl->ops->delete_ctrl(ctrl);
309 	}
310 	mutex_unlock(&subsys->lock);
311 }
312 
nvmet_enable_port(struct nvmet_port * port)313 int nvmet_enable_port(struct nvmet_port *port)
314 {
315 	const struct nvmet_fabrics_ops *ops;
316 	int ret;
317 
318 	lockdep_assert_held(&nvmet_config_sem);
319 
320 	ops = nvmet_transports[port->disc_addr.trtype];
321 	if (!ops) {
322 		up_write(&nvmet_config_sem);
323 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
324 		down_write(&nvmet_config_sem);
325 		ops = nvmet_transports[port->disc_addr.trtype];
326 		if (!ops) {
327 			pr_err("transport type %d not supported\n",
328 				port->disc_addr.trtype);
329 			return -EINVAL;
330 		}
331 	}
332 
333 	if (!try_module_get(ops->owner))
334 		return -EINVAL;
335 
336 	/*
337 	 * If the user requested PI support and the transport isn't pi capable,
338 	 * don't enable the port.
339 	 */
340 	if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
341 		pr_err("T10-PI is not supported by transport type %d\n",
342 		       port->disc_addr.trtype);
343 		ret = -EINVAL;
344 		goto out_put;
345 	}
346 
347 	ret = ops->add_port(port);
348 	if (ret)
349 		goto out_put;
350 
351 	/* If the transport didn't set inline_data_size, then disable it. */
352 	if (port->inline_data_size < 0)
353 		port->inline_data_size = 0;
354 
355 	/*
356 	 * If the transport didn't set the max_queue_size properly, then clamp
357 	 * it to the target limits. Also set default values in case the
358 	 * transport didn't set it at all.
359 	 */
360 	if (port->max_queue_size < 0)
361 		port->max_queue_size = NVMET_MAX_QUEUE_SIZE;
362 	else
363 		port->max_queue_size = clamp_t(int, port->max_queue_size,
364 					       NVMET_MIN_QUEUE_SIZE,
365 					       NVMET_MAX_QUEUE_SIZE);
366 
367 	port->enabled = true;
368 	port->tr_ops = ops;
369 	return 0;
370 
371 out_put:
372 	module_put(ops->owner);
373 	return ret;
374 }
375 
nvmet_disable_port(struct nvmet_port * port)376 void nvmet_disable_port(struct nvmet_port *port)
377 {
378 	const struct nvmet_fabrics_ops *ops;
379 
380 	lockdep_assert_held(&nvmet_config_sem);
381 
382 	port->enabled = false;
383 	port->tr_ops = NULL;
384 
385 	ops = nvmet_transports[port->disc_addr.trtype];
386 	ops->remove_port(port);
387 	module_put(ops->owner);
388 }
389 
nvmet_keep_alive_timer(struct work_struct * work)390 static void nvmet_keep_alive_timer(struct work_struct *work)
391 {
392 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
393 			struct nvmet_ctrl, ka_work);
394 	bool reset_tbkas = ctrl->reset_tbkas;
395 
396 	ctrl->reset_tbkas = false;
397 	if (reset_tbkas) {
398 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
399 			ctrl->cntlid);
400 		queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
401 		return;
402 	}
403 
404 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
405 		ctrl->cntlid, ctrl->kato);
406 
407 	nvmet_ctrl_fatal_error(ctrl);
408 }
409 
nvmet_start_keep_alive_timer(struct nvmet_ctrl * ctrl)410 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
411 {
412 	if (unlikely(ctrl->kato == 0))
413 		return;
414 
415 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
416 		ctrl->cntlid, ctrl->kato);
417 
418 	queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
419 }
420 
nvmet_stop_keep_alive_timer(struct nvmet_ctrl * ctrl)421 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
422 {
423 	if (unlikely(ctrl->kato == 0))
424 		return;
425 
426 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
427 
428 	cancel_delayed_work_sync(&ctrl->ka_work);
429 }
430 
nvmet_req_find_ns(struct nvmet_req * req)431 u16 nvmet_req_find_ns(struct nvmet_req *req)
432 {
433 	u32 nsid = le32_to_cpu(req->cmd->common.nsid);
434 	struct nvmet_subsys *subsys = nvmet_req_subsys(req);
435 
436 	req->ns = xa_load(&subsys->namespaces, nsid);
437 	if (unlikely(!req->ns)) {
438 		req->error_loc = offsetof(struct nvme_common_command, nsid);
439 		if (nvmet_subsys_nsid_exists(subsys, nsid))
440 			return NVME_SC_INTERNAL_PATH_ERROR;
441 		return NVME_SC_INVALID_NS | NVME_STATUS_DNR;
442 	}
443 
444 	percpu_ref_get(&req->ns->ref);
445 	return NVME_SC_SUCCESS;
446 }
447 
nvmet_destroy_namespace(struct percpu_ref * ref)448 static void nvmet_destroy_namespace(struct percpu_ref *ref)
449 {
450 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
451 
452 	complete(&ns->disable_done);
453 }
454 
nvmet_put_namespace(struct nvmet_ns * ns)455 void nvmet_put_namespace(struct nvmet_ns *ns)
456 {
457 	percpu_ref_put(&ns->ref);
458 }
459 
nvmet_ns_dev_disable(struct nvmet_ns * ns)460 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
461 {
462 	nvmet_bdev_ns_disable(ns);
463 	nvmet_file_ns_disable(ns);
464 }
465 
nvmet_p2pmem_ns_enable(struct nvmet_ns * ns)466 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
467 {
468 	int ret;
469 	struct pci_dev *p2p_dev;
470 
471 	if (!ns->use_p2pmem)
472 		return 0;
473 
474 	if (!ns->bdev) {
475 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
476 		return -EINVAL;
477 	}
478 
479 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
480 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
481 		       ns->device_path);
482 		return -EINVAL;
483 	}
484 
485 	if (ns->p2p_dev) {
486 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
487 		if (ret < 0)
488 			return -EINVAL;
489 	} else {
490 		/*
491 		 * Right now we just check that there is p2pmem available so
492 		 * we can report an error to the user right away if there
493 		 * is not. We'll find the actual device to use once we
494 		 * setup the controller when the port's device is available.
495 		 */
496 
497 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
498 		if (!p2p_dev) {
499 			pr_err("no peer-to-peer memory is available for %s\n",
500 			       ns->device_path);
501 			return -EINVAL;
502 		}
503 
504 		pci_dev_put(p2p_dev);
505 	}
506 
507 	return 0;
508 }
509 
510 /*
511  * Note: ctrl->subsys->lock should be held when calling this function
512  */
nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl * ctrl,struct nvmet_ns * ns)513 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
514 				    struct nvmet_ns *ns)
515 {
516 	struct device *clients[2];
517 	struct pci_dev *p2p_dev;
518 	int ret;
519 
520 	if (!ctrl->p2p_client || !ns->use_p2pmem)
521 		return;
522 
523 	if (ns->p2p_dev) {
524 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
525 		if (ret < 0)
526 			return;
527 
528 		p2p_dev = pci_dev_get(ns->p2p_dev);
529 	} else {
530 		clients[0] = ctrl->p2p_client;
531 		clients[1] = nvmet_ns_dev(ns);
532 
533 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
534 		if (!p2p_dev) {
535 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
536 			       dev_name(ctrl->p2p_client), ns->device_path);
537 			return;
538 		}
539 	}
540 
541 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
542 	if (ret < 0)
543 		pci_dev_put(p2p_dev);
544 
545 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
546 		ns->nsid);
547 }
548 
nvmet_ns_revalidate(struct nvmet_ns * ns)549 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
550 {
551 	loff_t oldsize = ns->size;
552 
553 	if (ns->bdev)
554 		nvmet_bdev_ns_revalidate(ns);
555 	else
556 		nvmet_file_ns_revalidate(ns);
557 
558 	return oldsize != ns->size;
559 }
560 
nvmet_ns_enable(struct nvmet_ns * ns)561 int nvmet_ns_enable(struct nvmet_ns *ns)
562 {
563 	struct nvmet_subsys *subsys = ns->subsys;
564 	struct nvmet_ctrl *ctrl;
565 	int ret;
566 
567 	mutex_lock(&subsys->lock);
568 	ret = 0;
569 
570 	if (nvmet_is_passthru_subsys(subsys)) {
571 		pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
572 		goto out_unlock;
573 	}
574 
575 	if (ns->enabled)
576 		goto out_unlock;
577 
578 	ret = -EMFILE;
579 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
580 		goto out_unlock;
581 
582 	ret = nvmet_bdev_ns_enable(ns);
583 	if (ret == -ENOTBLK)
584 		ret = nvmet_file_ns_enable(ns);
585 	if (ret)
586 		goto out_unlock;
587 
588 	ret = nvmet_p2pmem_ns_enable(ns);
589 	if (ret)
590 		goto out_dev_disable;
591 
592 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
593 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
594 
595 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
596 				0, GFP_KERNEL);
597 	if (ret)
598 		goto out_dev_put;
599 
600 	if (ns->nsid > subsys->max_nsid)
601 		subsys->max_nsid = ns->nsid;
602 
603 	ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
604 	if (ret)
605 		goto out_restore_subsys_maxnsid;
606 
607 	subsys->nr_namespaces++;
608 
609 	nvmet_ns_changed(subsys, ns->nsid);
610 	ns->enabled = true;
611 	ret = 0;
612 out_unlock:
613 	mutex_unlock(&subsys->lock);
614 	return ret;
615 
616 out_restore_subsys_maxnsid:
617 	subsys->max_nsid = nvmet_max_nsid(subsys);
618 	percpu_ref_exit(&ns->ref);
619 out_dev_put:
620 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
621 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
622 out_dev_disable:
623 	nvmet_ns_dev_disable(ns);
624 	goto out_unlock;
625 }
626 
nvmet_ns_disable(struct nvmet_ns * ns)627 void nvmet_ns_disable(struct nvmet_ns *ns)
628 {
629 	struct nvmet_subsys *subsys = ns->subsys;
630 	struct nvmet_ctrl *ctrl;
631 
632 	mutex_lock(&subsys->lock);
633 	if (!ns->enabled)
634 		goto out_unlock;
635 
636 	ns->enabled = false;
637 	xa_erase(&ns->subsys->namespaces, ns->nsid);
638 	if (ns->nsid == subsys->max_nsid)
639 		subsys->max_nsid = nvmet_max_nsid(subsys);
640 
641 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
642 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
643 
644 	mutex_unlock(&subsys->lock);
645 
646 	/*
647 	 * Now that we removed the namespaces from the lookup list, we
648 	 * can kill the per_cpu ref and wait for any remaining references
649 	 * to be dropped, as well as a RCU grace period for anyone only
650 	 * using the namepace under rcu_read_lock().  Note that we can't
651 	 * use call_rcu here as we need to ensure the namespaces have
652 	 * been fully destroyed before unloading the module.
653 	 */
654 	percpu_ref_kill(&ns->ref);
655 	synchronize_rcu();
656 	wait_for_completion(&ns->disable_done);
657 	percpu_ref_exit(&ns->ref);
658 
659 	mutex_lock(&subsys->lock);
660 
661 	subsys->nr_namespaces--;
662 	nvmet_ns_changed(subsys, ns->nsid);
663 	nvmet_ns_dev_disable(ns);
664 out_unlock:
665 	mutex_unlock(&subsys->lock);
666 }
667 
nvmet_ns_free(struct nvmet_ns * ns)668 void nvmet_ns_free(struct nvmet_ns *ns)
669 {
670 	nvmet_ns_disable(ns);
671 
672 	down_write(&nvmet_ana_sem);
673 	nvmet_ana_group_enabled[ns->anagrpid]--;
674 	up_write(&nvmet_ana_sem);
675 
676 	kfree(ns->device_path);
677 	kfree(ns);
678 }
679 
nvmet_ns_alloc(struct nvmet_subsys * subsys,u32 nsid)680 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
681 {
682 	struct nvmet_ns *ns;
683 
684 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
685 	if (!ns)
686 		return NULL;
687 
688 	init_completion(&ns->disable_done);
689 
690 	ns->nsid = nsid;
691 	ns->subsys = subsys;
692 
693 	down_write(&nvmet_ana_sem);
694 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
695 	nvmet_ana_group_enabled[ns->anagrpid]++;
696 	up_write(&nvmet_ana_sem);
697 
698 	uuid_gen(&ns->uuid);
699 	ns->buffered_io = false;
700 	ns->csi = NVME_CSI_NVM;
701 
702 	return ns;
703 }
704 
nvmet_update_sq_head(struct nvmet_req * req)705 static void nvmet_update_sq_head(struct nvmet_req *req)
706 {
707 	if (req->sq->size) {
708 		u32 old_sqhd, new_sqhd;
709 
710 		old_sqhd = READ_ONCE(req->sq->sqhd);
711 		do {
712 			new_sqhd = (old_sqhd + 1) % req->sq->size;
713 		} while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd));
714 	}
715 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
716 }
717 
nvmet_set_error(struct nvmet_req * req,u16 status)718 static void nvmet_set_error(struct nvmet_req *req, u16 status)
719 {
720 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
721 	struct nvme_error_slot *new_error_slot;
722 	unsigned long flags;
723 
724 	req->cqe->status = cpu_to_le16(status << 1);
725 
726 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
727 		return;
728 
729 	spin_lock_irqsave(&ctrl->error_lock, flags);
730 	ctrl->err_counter++;
731 	new_error_slot =
732 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
733 
734 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
735 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
736 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
737 	new_error_slot->status_field = cpu_to_le16(status << 1);
738 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
739 	new_error_slot->lba = cpu_to_le64(req->error_slba);
740 	new_error_slot->nsid = req->cmd->common.nsid;
741 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
742 
743 	/* set the more bit for this request */
744 	req->cqe->status |= cpu_to_le16(1 << 14);
745 }
746 
__nvmet_req_complete(struct nvmet_req * req,u16 status)747 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
748 {
749 	struct nvmet_ns *ns = req->ns;
750 
751 	if (!req->sq->sqhd_disabled)
752 		nvmet_update_sq_head(req);
753 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
754 	req->cqe->command_id = req->cmd->common.command_id;
755 
756 	if (unlikely(status))
757 		nvmet_set_error(req, status);
758 
759 	trace_nvmet_req_complete(req);
760 
761 	req->ops->queue_response(req);
762 	if (ns)
763 		nvmet_put_namespace(ns);
764 }
765 
nvmet_req_complete(struct nvmet_req * req,u16 status)766 void nvmet_req_complete(struct nvmet_req *req, u16 status)
767 {
768 	struct nvmet_sq *sq = req->sq;
769 
770 	__nvmet_req_complete(req, status);
771 	percpu_ref_put(&sq->ref);
772 }
773 EXPORT_SYMBOL_GPL(nvmet_req_complete);
774 
nvmet_cq_setup(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)775 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
776 		u16 qid, u16 size)
777 {
778 	cq->qid = qid;
779 	cq->size = size;
780 }
781 
nvmet_sq_setup(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 qid,u16 size)782 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
783 		u16 qid, u16 size)
784 {
785 	sq->sqhd = 0;
786 	sq->qid = qid;
787 	sq->size = size;
788 
789 	ctrl->sqs[qid] = sq;
790 }
791 
nvmet_confirm_sq(struct percpu_ref * ref)792 static void nvmet_confirm_sq(struct percpu_ref *ref)
793 {
794 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
795 
796 	complete(&sq->confirm_done);
797 }
798 
nvmet_sq_destroy(struct nvmet_sq * sq)799 void nvmet_sq_destroy(struct nvmet_sq *sq)
800 {
801 	struct nvmet_ctrl *ctrl = sq->ctrl;
802 
803 	/*
804 	 * If this is the admin queue, complete all AERs so that our
805 	 * queue doesn't have outstanding requests on it.
806 	 */
807 	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
808 		nvmet_async_events_failall(ctrl);
809 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
810 	wait_for_completion(&sq->confirm_done);
811 	wait_for_completion(&sq->free_done);
812 	percpu_ref_exit(&sq->ref);
813 	nvmet_auth_sq_free(sq);
814 
815 	/*
816 	 * we must reference the ctrl again after waiting for inflight IO
817 	 * to complete. Because admin connect may have sneaked in after we
818 	 * store sq->ctrl locally, but before we killed the percpu_ref. the
819 	 * admin connect allocates and assigns sq->ctrl, which now needs a
820 	 * final ref put, as this ctrl is going away.
821 	 */
822 	ctrl = sq->ctrl;
823 
824 	if (ctrl) {
825 		/*
826 		 * The teardown flow may take some time, and the host may not
827 		 * send us keep-alive during this period, hence reset the
828 		 * traffic based keep-alive timer so we don't trigger a
829 		 * controller teardown as a result of a keep-alive expiration.
830 		 */
831 		ctrl->reset_tbkas = true;
832 		sq->ctrl->sqs[sq->qid] = NULL;
833 		nvmet_ctrl_put(ctrl);
834 		sq->ctrl = NULL; /* allows reusing the queue later */
835 	}
836 }
837 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
838 
nvmet_sq_free(struct percpu_ref * ref)839 static void nvmet_sq_free(struct percpu_ref *ref)
840 {
841 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
842 
843 	complete(&sq->free_done);
844 }
845 
nvmet_sq_init(struct nvmet_sq * sq)846 int nvmet_sq_init(struct nvmet_sq *sq)
847 {
848 	int ret;
849 
850 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
851 	if (ret) {
852 		pr_err("percpu_ref init failed!\n");
853 		return ret;
854 	}
855 	init_completion(&sq->free_done);
856 	init_completion(&sq->confirm_done);
857 	nvmet_auth_sq_init(sq);
858 
859 	return 0;
860 }
861 EXPORT_SYMBOL_GPL(nvmet_sq_init);
862 
nvmet_check_ana_state(struct nvmet_port * port,struct nvmet_ns * ns)863 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
864 		struct nvmet_ns *ns)
865 {
866 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
867 
868 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
869 		return NVME_SC_ANA_INACCESSIBLE;
870 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
871 		return NVME_SC_ANA_PERSISTENT_LOSS;
872 	if (unlikely(state == NVME_ANA_CHANGE))
873 		return NVME_SC_ANA_TRANSITION;
874 	return 0;
875 }
876 
nvmet_io_cmd_check_access(struct nvmet_req * req)877 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
878 {
879 	if (unlikely(req->ns->readonly)) {
880 		switch (req->cmd->common.opcode) {
881 		case nvme_cmd_read:
882 		case nvme_cmd_flush:
883 			break;
884 		default:
885 			return NVME_SC_NS_WRITE_PROTECTED;
886 		}
887 	}
888 
889 	return 0;
890 }
891 
nvmet_parse_io_cmd(struct nvmet_req * req)892 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
893 {
894 	struct nvme_command *cmd = req->cmd;
895 	u16 ret;
896 
897 	if (nvme_is_fabrics(cmd))
898 		return nvmet_parse_fabrics_io_cmd(req);
899 
900 	if (unlikely(!nvmet_check_auth_status(req)))
901 		return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
902 
903 	ret = nvmet_check_ctrl_status(req);
904 	if (unlikely(ret))
905 		return ret;
906 
907 	if (nvmet_is_passthru_req(req))
908 		return nvmet_parse_passthru_io_cmd(req);
909 
910 	ret = nvmet_req_find_ns(req);
911 	if (unlikely(ret))
912 		return ret;
913 
914 	ret = nvmet_check_ana_state(req->port, req->ns);
915 	if (unlikely(ret)) {
916 		req->error_loc = offsetof(struct nvme_common_command, nsid);
917 		return ret;
918 	}
919 	ret = nvmet_io_cmd_check_access(req);
920 	if (unlikely(ret)) {
921 		req->error_loc = offsetof(struct nvme_common_command, nsid);
922 		return ret;
923 	}
924 
925 	switch (req->ns->csi) {
926 	case NVME_CSI_NVM:
927 		if (req->ns->file)
928 			return nvmet_file_parse_io_cmd(req);
929 		return nvmet_bdev_parse_io_cmd(req);
930 	case NVME_CSI_ZNS:
931 		if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
932 			return nvmet_bdev_zns_parse_io_cmd(req);
933 		return NVME_SC_INVALID_IO_CMD_SET;
934 	default:
935 		return NVME_SC_INVALID_IO_CMD_SET;
936 	}
937 }
938 
nvmet_req_init(struct nvmet_req * req,struct nvmet_cq * cq,struct nvmet_sq * sq,const struct nvmet_fabrics_ops * ops)939 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
940 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
941 {
942 	u8 flags = req->cmd->common.flags;
943 	u16 status;
944 
945 	req->cq = cq;
946 	req->sq = sq;
947 	req->ops = ops;
948 	req->sg = NULL;
949 	req->metadata_sg = NULL;
950 	req->sg_cnt = 0;
951 	req->metadata_sg_cnt = 0;
952 	req->transfer_len = 0;
953 	req->metadata_len = 0;
954 	req->cqe->result.u64 = 0;
955 	req->cqe->status = 0;
956 	req->cqe->sq_head = 0;
957 	req->ns = NULL;
958 	req->error_loc = NVMET_NO_ERROR_LOC;
959 	req->error_slba = 0;
960 
961 	/* no support for fused commands yet */
962 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
963 		req->error_loc = offsetof(struct nvme_common_command, flags);
964 		status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
965 		goto fail;
966 	}
967 
968 	/*
969 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
970 	 * contains an address of a single contiguous physical buffer that is
971 	 * byte aligned.
972 	 */
973 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
974 		req->error_loc = offsetof(struct nvme_common_command, flags);
975 		status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
976 		goto fail;
977 	}
978 
979 	if (unlikely(!req->sq->ctrl))
980 		/* will return an error for any non-connect command: */
981 		status = nvmet_parse_connect_cmd(req);
982 	else if (likely(req->sq->qid != 0))
983 		status = nvmet_parse_io_cmd(req);
984 	else
985 		status = nvmet_parse_admin_cmd(req);
986 
987 	if (status)
988 		goto fail;
989 
990 	trace_nvmet_req_init(req, req->cmd);
991 
992 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
993 		status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
994 		goto fail;
995 	}
996 
997 	if (sq->ctrl)
998 		sq->ctrl->reset_tbkas = true;
999 
1000 	return true;
1001 
1002 fail:
1003 	__nvmet_req_complete(req, status);
1004 	return false;
1005 }
1006 EXPORT_SYMBOL_GPL(nvmet_req_init);
1007 
nvmet_req_uninit(struct nvmet_req * req)1008 void nvmet_req_uninit(struct nvmet_req *req)
1009 {
1010 	percpu_ref_put(&req->sq->ref);
1011 	if (req->ns)
1012 		nvmet_put_namespace(req->ns);
1013 }
1014 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
1015 
nvmet_check_transfer_len(struct nvmet_req * req,size_t len)1016 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
1017 {
1018 	if (unlikely(len != req->transfer_len)) {
1019 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1020 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR);
1021 		return false;
1022 	}
1023 
1024 	return true;
1025 }
1026 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1027 
nvmet_check_data_len_lte(struct nvmet_req * req,size_t data_len)1028 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1029 {
1030 	if (unlikely(data_len > req->transfer_len)) {
1031 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1032 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR);
1033 		return false;
1034 	}
1035 
1036 	return true;
1037 }
1038 
nvmet_data_transfer_len(struct nvmet_req * req)1039 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1040 {
1041 	return req->transfer_len - req->metadata_len;
1042 }
1043 
nvmet_req_alloc_p2pmem_sgls(struct pci_dev * p2p_dev,struct nvmet_req * req)1044 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1045 		struct nvmet_req *req)
1046 {
1047 	req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1048 			nvmet_data_transfer_len(req));
1049 	if (!req->sg)
1050 		goto out_err;
1051 
1052 	if (req->metadata_len) {
1053 		req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1054 				&req->metadata_sg_cnt, req->metadata_len);
1055 		if (!req->metadata_sg)
1056 			goto out_free_sg;
1057 	}
1058 
1059 	req->p2p_dev = p2p_dev;
1060 
1061 	return 0;
1062 out_free_sg:
1063 	pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1064 out_err:
1065 	return -ENOMEM;
1066 }
1067 
nvmet_req_find_p2p_dev(struct nvmet_req * req)1068 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1069 {
1070 	if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1071 	    !req->sq->ctrl || !req->sq->qid || !req->ns)
1072 		return NULL;
1073 	return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1074 }
1075 
nvmet_req_alloc_sgls(struct nvmet_req * req)1076 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1077 {
1078 	struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1079 
1080 	if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1081 		return 0;
1082 
1083 	req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1084 			    &req->sg_cnt);
1085 	if (unlikely(!req->sg))
1086 		goto out;
1087 
1088 	if (req->metadata_len) {
1089 		req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1090 					     &req->metadata_sg_cnt);
1091 		if (unlikely(!req->metadata_sg))
1092 			goto out_free;
1093 	}
1094 
1095 	return 0;
1096 out_free:
1097 	sgl_free(req->sg);
1098 out:
1099 	return -ENOMEM;
1100 }
1101 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1102 
nvmet_req_free_sgls(struct nvmet_req * req)1103 void nvmet_req_free_sgls(struct nvmet_req *req)
1104 {
1105 	if (req->p2p_dev) {
1106 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1107 		if (req->metadata_sg)
1108 			pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1109 		req->p2p_dev = NULL;
1110 	} else {
1111 		sgl_free(req->sg);
1112 		if (req->metadata_sg)
1113 			sgl_free(req->metadata_sg);
1114 	}
1115 
1116 	req->sg = NULL;
1117 	req->metadata_sg = NULL;
1118 	req->sg_cnt = 0;
1119 	req->metadata_sg_cnt = 0;
1120 }
1121 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1122 
nvmet_cc_en(u32 cc)1123 static inline bool nvmet_cc_en(u32 cc)
1124 {
1125 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1126 }
1127 
nvmet_cc_css(u32 cc)1128 static inline u8 nvmet_cc_css(u32 cc)
1129 {
1130 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1131 }
1132 
nvmet_cc_mps(u32 cc)1133 static inline u8 nvmet_cc_mps(u32 cc)
1134 {
1135 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1136 }
1137 
nvmet_cc_ams(u32 cc)1138 static inline u8 nvmet_cc_ams(u32 cc)
1139 {
1140 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1141 }
1142 
nvmet_cc_shn(u32 cc)1143 static inline u8 nvmet_cc_shn(u32 cc)
1144 {
1145 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1146 }
1147 
nvmet_cc_iosqes(u32 cc)1148 static inline u8 nvmet_cc_iosqes(u32 cc)
1149 {
1150 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1151 }
1152 
nvmet_cc_iocqes(u32 cc)1153 static inline u8 nvmet_cc_iocqes(u32 cc)
1154 {
1155 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1156 }
1157 
nvmet_css_supported(u8 cc_css)1158 static inline bool nvmet_css_supported(u8 cc_css)
1159 {
1160 	switch (cc_css << NVME_CC_CSS_SHIFT) {
1161 	case NVME_CC_CSS_NVM:
1162 	case NVME_CC_CSS_CSI:
1163 		return true;
1164 	default:
1165 		return false;
1166 	}
1167 }
1168 
nvmet_start_ctrl(struct nvmet_ctrl * ctrl)1169 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1170 {
1171 	lockdep_assert_held(&ctrl->lock);
1172 
1173 	/*
1174 	 * Only I/O controllers should verify iosqes,iocqes.
1175 	 * Strictly speaking, the spec says a discovery controller
1176 	 * should verify iosqes,iocqes are zeroed, however that
1177 	 * would break backwards compatibility, so don't enforce it.
1178 	 */
1179 	if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1180 	    (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1181 	     nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1182 		ctrl->csts = NVME_CSTS_CFS;
1183 		return;
1184 	}
1185 
1186 	if (nvmet_cc_mps(ctrl->cc) != 0 ||
1187 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1188 	    !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1189 		ctrl->csts = NVME_CSTS_CFS;
1190 		return;
1191 	}
1192 
1193 	ctrl->csts = NVME_CSTS_RDY;
1194 
1195 	/*
1196 	 * Controllers that are not yet enabled should not really enforce the
1197 	 * keep alive timeout, but we still want to track a timeout and cleanup
1198 	 * in case a host died before it enabled the controller.  Hence, simply
1199 	 * reset the keep alive timer when the controller is enabled.
1200 	 */
1201 	if (ctrl->kato)
1202 		mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1203 }
1204 
nvmet_clear_ctrl(struct nvmet_ctrl * ctrl)1205 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1206 {
1207 	lockdep_assert_held(&ctrl->lock);
1208 
1209 	/* XXX: tear down queues? */
1210 	ctrl->csts &= ~NVME_CSTS_RDY;
1211 	ctrl->cc = 0;
1212 }
1213 
nvmet_update_cc(struct nvmet_ctrl * ctrl,u32 new)1214 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1215 {
1216 	u32 old;
1217 
1218 	mutex_lock(&ctrl->lock);
1219 	old = ctrl->cc;
1220 	ctrl->cc = new;
1221 
1222 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1223 		nvmet_start_ctrl(ctrl);
1224 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1225 		nvmet_clear_ctrl(ctrl);
1226 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1227 		nvmet_clear_ctrl(ctrl);
1228 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1229 	}
1230 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1231 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1232 	mutex_unlock(&ctrl->lock);
1233 }
1234 
nvmet_init_cap(struct nvmet_ctrl * ctrl)1235 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1236 {
1237 	/* command sets supported: NVMe command set: */
1238 	ctrl->cap = (1ULL << 37);
1239 	/* Controller supports one or more I/O Command Sets */
1240 	ctrl->cap |= (1ULL << 43);
1241 	/* CC.EN timeout in 500msec units: */
1242 	ctrl->cap |= (15ULL << 24);
1243 	/* maximum queue entries supported: */
1244 	if (ctrl->ops->get_max_queue_size)
1245 		ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl),
1246 				   ctrl->port->max_queue_size) - 1;
1247 	else
1248 		ctrl->cap |= ctrl->port->max_queue_size - 1;
1249 
1250 	if (nvmet_is_passthru_subsys(ctrl->subsys))
1251 		nvmet_passthrough_override_cap(ctrl);
1252 }
1253 
nvmet_ctrl_find_get(const char * subsysnqn,const char * hostnqn,u16 cntlid,struct nvmet_req * req)1254 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1255 				       const char *hostnqn, u16 cntlid,
1256 				       struct nvmet_req *req)
1257 {
1258 	struct nvmet_ctrl *ctrl = NULL;
1259 	struct nvmet_subsys *subsys;
1260 
1261 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1262 	if (!subsys) {
1263 		pr_warn("connect request for invalid subsystem %s!\n",
1264 			subsysnqn);
1265 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1266 		goto out;
1267 	}
1268 
1269 	mutex_lock(&subsys->lock);
1270 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1271 		if (ctrl->cntlid == cntlid) {
1272 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1273 				pr_warn("hostnqn mismatch.\n");
1274 				continue;
1275 			}
1276 			if (!kref_get_unless_zero(&ctrl->ref))
1277 				continue;
1278 
1279 			/* ctrl found */
1280 			goto found;
1281 		}
1282 	}
1283 
1284 	ctrl = NULL; /* ctrl not found */
1285 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1286 		cntlid, subsysnqn, hostnqn);
1287 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1288 
1289 found:
1290 	mutex_unlock(&subsys->lock);
1291 	nvmet_subsys_put(subsys);
1292 out:
1293 	return ctrl;
1294 }
1295 
nvmet_check_ctrl_status(struct nvmet_req * req)1296 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1297 {
1298 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1299 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1300 		       req->cmd->common.opcode, req->sq->qid);
1301 		return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1302 	}
1303 
1304 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1305 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1306 		       req->cmd->common.opcode, req->sq->qid);
1307 		return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1308 	}
1309 
1310 	if (unlikely(!nvmet_check_auth_status(req))) {
1311 		pr_warn("qid %d not authenticated\n", req->sq->qid);
1312 		return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1313 	}
1314 	return 0;
1315 }
1316 
nvmet_host_allowed(struct nvmet_subsys * subsys,const char * hostnqn)1317 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1318 {
1319 	struct nvmet_host_link *p;
1320 
1321 	lockdep_assert_held(&nvmet_config_sem);
1322 
1323 	if (subsys->allow_any_host)
1324 		return true;
1325 
1326 	if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1327 		return true;
1328 
1329 	list_for_each_entry(p, &subsys->hosts, entry) {
1330 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1331 			return true;
1332 	}
1333 
1334 	return false;
1335 }
1336 
1337 /*
1338  * Note: ctrl->subsys->lock should be held when calling this function
1339  */
nvmet_setup_p2p_ns_map(struct nvmet_ctrl * ctrl,struct nvmet_req * req)1340 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1341 		struct nvmet_req *req)
1342 {
1343 	struct nvmet_ns *ns;
1344 	unsigned long idx;
1345 
1346 	if (!req->p2p_client)
1347 		return;
1348 
1349 	ctrl->p2p_client = get_device(req->p2p_client);
1350 
1351 	xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1352 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1353 }
1354 
1355 /*
1356  * Note: ctrl->subsys->lock should be held when calling this function
1357  */
nvmet_release_p2p_ns_map(struct nvmet_ctrl * ctrl)1358 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1359 {
1360 	struct radix_tree_iter iter;
1361 	void __rcu **slot;
1362 
1363 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1364 		pci_dev_put(radix_tree_deref_slot(slot));
1365 
1366 	put_device(ctrl->p2p_client);
1367 }
1368 
nvmet_fatal_error_handler(struct work_struct * work)1369 static void nvmet_fatal_error_handler(struct work_struct *work)
1370 {
1371 	struct nvmet_ctrl *ctrl =
1372 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1373 
1374 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1375 	ctrl->ops->delete_ctrl(ctrl);
1376 }
1377 
nvmet_alloc_ctrl(const char * subsysnqn,const char * hostnqn,struct nvmet_req * req,u32 kato,struct nvmet_ctrl ** ctrlp)1378 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1379 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1380 {
1381 	struct nvmet_subsys *subsys;
1382 	struct nvmet_ctrl *ctrl;
1383 	int ret;
1384 	u16 status;
1385 
1386 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_STATUS_DNR;
1387 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1388 	if (!subsys) {
1389 		pr_warn("connect request for invalid subsystem %s!\n",
1390 			subsysnqn);
1391 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1392 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1393 		goto out;
1394 	}
1395 
1396 	down_read(&nvmet_config_sem);
1397 	if (!nvmet_host_allowed(subsys, hostnqn)) {
1398 		pr_info("connect by host %s for subsystem %s not allowed\n",
1399 			hostnqn, subsysnqn);
1400 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1401 		up_read(&nvmet_config_sem);
1402 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1403 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1404 		goto out_put_subsystem;
1405 	}
1406 	up_read(&nvmet_config_sem);
1407 
1408 	status = NVME_SC_INTERNAL;
1409 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1410 	if (!ctrl)
1411 		goto out_put_subsystem;
1412 	mutex_init(&ctrl->lock);
1413 
1414 	ctrl->port = req->port;
1415 	ctrl->ops = req->ops;
1416 
1417 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1418 	/* By default, set loop targets to clear IDS by default */
1419 	if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1420 		subsys->clear_ids = 1;
1421 #endif
1422 
1423 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1424 	INIT_LIST_HEAD(&ctrl->async_events);
1425 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1426 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1427 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1428 
1429 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1430 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1431 
1432 	kref_init(&ctrl->ref);
1433 	ctrl->subsys = subsys;
1434 	ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support;
1435 	nvmet_init_cap(ctrl);
1436 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1437 
1438 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1439 			sizeof(__le32), GFP_KERNEL);
1440 	if (!ctrl->changed_ns_list)
1441 		goto out_free_ctrl;
1442 
1443 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1444 			sizeof(struct nvmet_sq *),
1445 			GFP_KERNEL);
1446 	if (!ctrl->sqs)
1447 		goto out_free_changed_ns_list;
1448 
1449 	ret = ida_alloc_range(&cntlid_ida,
1450 			     subsys->cntlid_min, subsys->cntlid_max,
1451 			     GFP_KERNEL);
1452 	if (ret < 0) {
1453 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_STATUS_DNR;
1454 		goto out_free_sqs;
1455 	}
1456 	ctrl->cntlid = ret;
1457 
1458 	/*
1459 	 * Discovery controllers may use some arbitrary high value
1460 	 * in order to cleanup stale discovery sessions
1461 	 */
1462 	if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1463 		kato = NVMET_DISC_KATO_MS;
1464 
1465 	/* keep-alive timeout in seconds */
1466 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1467 
1468 	ctrl->err_counter = 0;
1469 	spin_lock_init(&ctrl->error_lock);
1470 
1471 	nvmet_start_keep_alive_timer(ctrl);
1472 
1473 	mutex_lock(&subsys->lock);
1474 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1475 	nvmet_setup_p2p_ns_map(ctrl, req);
1476 	nvmet_debugfs_ctrl_setup(ctrl);
1477 	mutex_unlock(&subsys->lock);
1478 
1479 	*ctrlp = ctrl;
1480 	return 0;
1481 
1482 out_free_sqs:
1483 	kfree(ctrl->sqs);
1484 out_free_changed_ns_list:
1485 	kfree(ctrl->changed_ns_list);
1486 out_free_ctrl:
1487 	kfree(ctrl);
1488 out_put_subsystem:
1489 	nvmet_subsys_put(subsys);
1490 out:
1491 	return status;
1492 }
1493 
nvmet_ctrl_free(struct kref * ref)1494 static void nvmet_ctrl_free(struct kref *ref)
1495 {
1496 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1497 	struct nvmet_subsys *subsys = ctrl->subsys;
1498 
1499 	mutex_lock(&subsys->lock);
1500 	nvmet_release_p2p_ns_map(ctrl);
1501 	list_del(&ctrl->subsys_entry);
1502 	mutex_unlock(&subsys->lock);
1503 
1504 	nvmet_stop_keep_alive_timer(ctrl);
1505 
1506 	flush_work(&ctrl->async_event_work);
1507 	cancel_work_sync(&ctrl->fatal_err_work);
1508 
1509 	nvmet_destroy_auth(ctrl);
1510 
1511 	nvmet_debugfs_ctrl_free(ctrl);
1512 
1513 	ida_free(&cntlid_ida, ctrl->cntlid);
1514 
1515 	nvmet_async_events_free(ctrl);
1516 	kfree(ctrl->sqs);
1517 	kfree(ctrl->changed_ns_list);
1518 	kfree(ctrl);
1519 
1520 	nvmet_subsys_put(subsys);
1521 }
1522 
nvmet_ctrl_put(struct nvmet_ctrl * ctrl)1523 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1524 {
1525 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1526 }
1527 
nvmet_ctrl_fatal_error(struct nvmet_ctrl * ctrl)1528 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1529 {
1530 	mutex_lock(&ctrl->lock);
1531 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1532 		ctrl->csts |= NVME_CSTS_CFS;
1533 		queue_work(nvmet_wq, &ctrl->fatal_err_work);
1534 	}
1535 	mutex_unlock(&ctrl->lock);
1536 }
1537 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1538 
nvmet_ctrl_host_traddr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_len)1539 ssize_t nvmet_ctrl_host_traddr(struct nvmet_ctrl *ctrl,
1540 		char *traddr, size_t traddr_len)
1541 {
1542 	if (!ctrl->ops->host_traddr)
1543 		return -EOPNOTSUPP;
1544 	return ctrl->ops->host_traddr(ctrl, traddr, traddr_len);
1545 }
1546 
nvmet_find_get_subsys(struct nvmet_port * port,const char * subsysnqn)1547 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1548 		const char *subsysnqn)
1549 {
1550 	struct nvmet_subsys_link *p;
1551 
1552 	if (!port)
1553 		return NULL;
1554 
1555 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1556 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1557 			return NULL;
1558 		return nvmet_disc_subsys;
1559 	}
1560 
1561 	down_read(&nvmet_config_sem);
1562 	if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn,
1563 				NVMF_NQN_SIZE)) {
1564 		if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) {
1565 			up_read(&nvmet_config_sem);
1566 			return nvmet_disc_subsys;
1567 		}
1568 	}
1569 	list_for_each_entry(p, &port->subsystems, entry) {
1570 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1571 				NVMF_NQN_SIZE)) {
1572 			if (!kref_get_unless_zero(&p->subsys->ref))
1573 				break;
1574 			up_read(&nvmet_config_sem);
1575 			return p->subsys;
1576 		}
1577 	}
1578 	up_read(&nvmet_config_sem);
1579 	return NULL;
1580 }
1581 
nvmet_subsys_alloc(const char * subsysnqn,enum nvme_subsys_type type)1582 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1583 		enum nvme_subsys_type type)
1584 {
1585 	struct nvmet_subsys *subsys;
1586 	char serial[NVMET_SN_MAX_SIZE / 2];
1587 	int ret;
1588 
1589 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1590 	if (!subsys)
1591 		return ERR_PTR(-ENOMEM);
1592 
1593 	subsys->ver = NVMET_DEFAULT_VS;
1594 	/* generate a random serial number as our controllers are ephemeral: */
1595 	get_random_bytes(&serial, sizeof(serial));
1596 	bin2hex(subsys->serial, &serial, sizeof(serial));
1597 
1598 	subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1599 	if (!subsys->model_number) {
1600 		ret = -ENOMEM;
1601 		goto free_subsys;
1602 	}
1603 
1604 	subsys->ieee_oui = 0;
1605 
1606 	subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL);
1607 	if (!subsys->firmware_rev) {
1608 		ret = -ENOMEM;
1609 		goto free_mn;
1610 	}
1611 
1612 	switch (type) {
1613 	case NVME_NQN_NVME:
1614 		subsys->max_qid = NVMET_NR_QUEUES;
1615 		break;
1616 	case NVME_NQN_DISC:
1617 	case NVME_NQN_CURR:
1618 		subsys->max_qid = 0;
1619 		break;
1620 	default:
1621 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1622 		ret = -EINVAL;
1623 		goto free_fr;
1624 	}
1625 	subsys->type = type;
1626 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1627 			GFP_KERNEL);
1628 	if (!subsys->subsysnqn) {
1629 		ret = -ENOMEM;
1630 		goto free_fr;
1631 	}
1632 	subsys->cntlid_min = NVME_CNTLID_MIN;
1633 	subsys->cntlid_max = NVME_CNTLID_MAX;
1634 	kref_init(&subsys->ref);
1635 
1636 	mutex_init(&subsys->lock);
1637 	xa_init(&subsys->namespaces);
1638 	INIT_LIST_HEAD(&subsys->ctrls);
1639 	INIT_LIST_HEAD(&subsys->hosts);
1640 
1641 	ret = nvmet_debugfs_subsys_setup(subsys);
1642 	if (ret)
1643 		goto free_subsysnqn;
1644 
1645 	return subsys;
1646 
1647 free_subsysnqn:
1648 	kfree(subsys->subsysnqn);
1649 free_fr:
1650 	kfree(subsys->firmware_rev);
1651 free_mn:
1652 	kfree(subsys->model_number);
1653 free_subsys:
1654 	kfree(subsys);
1655 	return ERR_PTR(ret);
1656 }
1657 
nvmet_subsys_free(struct kref * ref)1658 static void nvmet_subsys_free(struct kref *ref)
1659 {
1660 	struct nvmet_subsys *subsys =
1661 		container_of(ref, struct nvmet_subsys, ref);
1662 
1663 	WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1664 
1665 	nvmet_debugfs_subsys_free(subsys);
1666 
1667 	xa_destroy(&subsys->namespaces);
1668 	nvmet_passthru_subsys_free(subsys);
1669 
1670 	kfree(subsys->subsysnqn);
1671 	kfree(subsys->model_number);
1672 	kfree(subsys->firmware_rev);
1673 	kfree(subsys);
1674 }
1675 
nvmet_subsys_del_ctrls(struct nvmet_subsys * subsys)1676 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1677 {
1678 	struct nvmet_ctrl *ctrl;
1679 
1680 	mutex_lock(&subsys->lock);
1681 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1682 		ctrl->ops->delete_ctrl(ctrl);
1683 	mutex_unlock(&subsys->lock);
1684 }
1685 
nvmet_subsys_put(struct nvmet_subsys * subsys)1686 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1687 {
1688 	kref_put(&subsys->ref, nvmet_subsys_free);
1689 }
1690 
nvmet_init(void)1691 static int __init nvmet_init(void)
1692 {
1693 	int error = -ENOMEM;
1694 
1695 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1696 
1697 	nvmet_bvec_cache = kmem_cache_create("nvmet-bvec",
1698 			NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0,
1699 			SLAB_HWCACHE_ALIGN, NULL);
1700 	if (!nvmet_bvec_cache)
1701 		return -ENOMEM;
1702 
1703 	zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1704 	if (!zbd_wq)
1705 		goto out_destroy_bvec_cache;
1706 
1707 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1708 			WQ_MEM_RECLAIM, 0);
1709 	if (!buffered_io_wq)
1710 		goto out_free_zbd_work_queue;
1711 
1712 	nvmet_wq = alloc_workqueue("nvmet-wq",
1713 			WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1714 	if (!nvmet_wq)
1715 		goto out_free_buffered_work_queue;
1716 
1717 	error = nvmet_init_debugfs();
1718 	if (error)
1719 		goto out_free_nvmet_work_queue;
1720 
1721 	error = nvmet_init_discovery();
1722 	if (error)
1723 		goto out_exit_debugfs;
1724 
1725 	error = nvmet_init_configfs();
1726 	if (error)
1727 		goto out_exit_discovery;
1728 
1729 	return 0;
1730 
1731 out_exit_discovery:
1732 	nvmet_exit_discovery();
1733 out_exit_debugfs:
1734 	nvmet_exit_debugfs();
1735 out_free_nvmet_work_queue:
1736 	destroy_workqueue(nvmet_wq);
1737 out_free_buffered_work_queue:
1738 	destroy_workqueue(buffered_io_wq);
1739 out_free_zbd_work_queue:
1740 	destroy_workqueue(zbd_wq);
1741 out_destroy_bvec_cache:
1742 	kmem_cache_destroy(nvmet_bvec_cache);
1743 	return error;
1744 }
1745 
nvmet_exit(void)1746 static void __exit nvmet_exit(void)
1747 {
1748 	nvmet_exit_configfs();
1749 	nvmet_exit_discovery();
1750 	nvmet_exit_debugfs();
1751 	ida_destroy(&cntlid_ida);
1752 	destroy_workqueue(nvmet_wq);
1753 	destroy_workqueue(buffered_io_wq);
1754 	destroy_workqueue(zbd_wq);
1755 	kmem_cache_destroy(nvmet_bvec_cache);
1756 
1757 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1758 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1759 }
1760 
1761 module_init(nvmet_init);
1762 module_exit(nvmet_exit);
1763 
1764 MODULE_DESCRIPTION("NVMe target core framework");
1765 MODULE_LICENSE("GPL v2");
1766