• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13 
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18 
19 
20 /* *************************** Data Structures/Defines ****************** */
21 
22 
23 #define NVMET_LS_CTX_COUNT		256
24 
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27 
28 struct nvmet_fc_ls_iod {		/* for an LS RQST RCV */
29 	struct nvmefc_ls_rsp		*lsrsp;
30 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
31 
32 	struct list_head		ls_rcv_list; /* tgtport->ls_rcv_list */
33 
34 	struct nvmet_fc_tgtport		*tgtport;
35 	struct nvmet_fc_tgt_assoc	*assoc;
36 	void				*hosthandle;
37 
38 	union nvmefc_ls_requests	*rqstbuf;
39 	union nvmefc_ls_responses	*rspbuf;
40 	u16				rqstdatalen;
41 	dma_addr_t			rspdma;
42 
43 	struct scatterlist		sg[2];
44 
45 	struct work_struct		work;
46 } __aligned(sizeof(unsigned long long));
47 
48 struct nvmet_fc_ls_req_op {		/* for an LS RQST XMT */
49 	struct nvmefc_ls_req		ls_req;
50 
51 	struct nvmet_fc_tgtport		*tgtport;
52 	void				*hosthandle;
53 
54 	int				ls_error;
55 	struct list_head		lsreq_list; /* tgtport->ls_req_list */
56 	bool				req_queued;
57 };
58 
59 
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024)
62 
63 enum nvmet_fcp_datadir {
64 	NVMET_FCP_NODATA,
65 	NVMET_FCP_WRITE,
66 	NVMET_FCP_READ,
67 	NVMET_FCP_ABORTED,
68 };
69 
70 struct nvmet_fc_fcp_iod {
71 	struct nvmefc_tgt_fcp_req	*fcpreq;
72 
73 	struct nvme_fc_cmd_iu		cmdiubuf;
74 	struct nvme_fc_ersp_iu		rspiubuf;
75 	dma_addr_t			rspdma;
76 	struct scatterlist		*next_sg;
77 	struct scatterlist		*data_sg;
78 	int				data_sg_cnt;
79 	u32				offset;
80 	enum nvmet_fcp_datadir		io_dir;
81 	bool				active;
82 	bool				abort;
83 	bool				aborted;
84 	bool				writedataactive;
85 	spinlock_t			flock;
86 
87 	struct nvmet_req		req;
88 	struct work_struct		defer_work;
89 
90 	struct nvmet_fc_tgtport		*tgtport;
91 	struct nvmet_fc_tgt_queue	*queue;
92 
93 	struct list_head		fcp_list;	/* tgtport->fcp_list */
94 };
95 
96 struct nvmet_fc_tgtport {
97 	struct nvmet_fc_target_port	fc_target_port;
98 
99 	struct list_head		tgt_list; /* nvmet_fc_target_list */
100 	struct device			*dev;	/* dev for dma mapping */
101 	struct nvmet_fc_target_template	*ops;
102 
103 	struct nvmet_fc_ls_iod		*iod;
104 	spinlock_t			lock;
105 	struct list_head		ls_rcv_list;
106 	struct list_head		ls_req_list;
107 	struct list_head		ls_busylist;
108 	struct list_head		assoc_list;
109 	struct list_head		host_list;
110 	struct ida			assoc_cnt;
111 	struct nvmet_fc_port_entry	*pe;
112 	struct kref			ref;
113 	u32				max_sg_cnt;
114 
115 	struct work_struct		put_work;
116 };
117 
118 struct nvmet_fc_port_entry {
119 	struct nvmet_fc_tgtport		*tgtport;
120 	struct nvmet_port		*port;
121 	u64				node_name;
122 	u64				port_name;
123 	struct list_head		pe_list;
124 };
125 
126 struct nvmet_fc_defer_fcp_req {
127 	struct list_head		req_list;
128 	struct nvmefc_tgt_fcp_req	*fcp_req;
129 };
130 
131 struct nvmet_fc_tgt_queue {
132 	bool				ninetypercent;
133 	u16				qid;
134 	u16				sqsize;
135 	u16				ersp_ratio;
136 	__le16				sqhd;
137 	atomic_t			connected;
138 	atomic_t			sqtail;
139 	atomic_t			zrspcnt;
140 	atomic_t			rsn;
141 	spinlock_t			qlock;
142 	struct nvmet_cq			nvme_cq;
143 	struct nvmet_sq			nvme_sq;
144 	struct nvmet_fc_tgt_assoc	*assoc;
145 	struct list_head		fod_list;
146 	struct list_head		pending_cmd_list;
147 	struct list_head		avail_defer_list;
148 	struct workqueue_struct		*work_q;
149 	struct kref			ref;
150 	/* array of fcp_iods */
151 	struct nvmet_fc_fcp_iod		fod[] /* __counted_by(sqsize) */;
152 } __aligned(sizeof(unsigned long long));
153 
154 struct nvmet_fc_hostport {
155 	struct nvmet_fc_tgtport		*tgtport;
156 	void				*hosthandle;
157 	struct list_head		host_list;
158 	struct kref			ref;
159 	u8				invalid;
160 };
161 
162 struct nvmet_fc_tgt_assoc {
163 	u64				association_id;
164 	u32				a_id;
165 	atomic_t			terminating;
166 	struct nvmet_fc_tgtport		*tgtport;
167 	struct nvmet_fc_hostport	*hostport;
168 	struct nvmet_fc_ls_iod		*rcv_disconn;
169 	struct list_head		a_list;
170 	struct nvmet_fc_tgt_queue 	*queues[NVMET_NR_QUEUES + 1];
171 	struct kref			ref;
172 	struct work_struct		del_work;
173 };
174 
175 /*
176  * Association and Connection IDs:
177  *
178  * Association ID will have random number in upper 6 bytes and zero
179  *   in lower 2 bytes
180  *
181  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
182  *
183  * note: Association ID = Connection ID for queue 0
184  */
185 #define BYTES_FOR_QID			sizeof(u16)
186 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
187 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
188 
189 static inline u64
nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc * assoc,u16 qid)190 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
191 {
192 	return (assoc->association_id | qid);
193 }
194 
195 static inline u64
nvmet_fc_getassociationid(u64 connectionid)196 nvmet_fc_getassociationid(u64 connectionid)
197 {
198 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
199 }
200 
201 static inline u16
nvmet_fc_getqueueid(u64 connectionid)202 nvmet_fc_getqueueid(u64 connectionid)
203 {
204 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
205 }
206 
207 static inline struct nvmet_fc_tgtport *
targetport_to_tgtport(struct nvmet_fc_target_port * targetport)208 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
209 {
210 	return container_of(targetport, struct nvmet_fc_tgtport,
211 				 fc_target_port);
212 }
213 
214 static inline struct nvmet_fc_fcp_iod *
nvmet_req_to_fod(struct nvmet_req * nvme_req)215 nvmet_req_to_fod(struct nvmet_req *nvme_req)
216 {
217 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
218 }
219 
220 
221 /* *************************** Globals **************************** */
222 
223 
224 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
225 
226 static LIST_HEAD(nvmet_fc_target_list);
227 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
228 static LIST_HEAD(nvmet_fc_portentry_list);
229 
230 
231 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
232 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
233 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
234 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
235 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
236 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
237 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
nvmet_fc_put_tgtport_work(struct work_struct * work)238 static void nvmet_fc_put_tgtport_work(struct work_struct *work)
239 {
240 	struct nvmet_fc_tgtport *tgtport =
241 		container_of(work, struct nvmet_fc_tgtport, put_work);
242 
243 	nvmet_fc_tgtport_put(tgtport);
244 }
245 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
246 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
247 					struct nvmet_fc_fcp_iod *fod);
248 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
249 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
250 				struct nvmet_fc_ls_iod *iod);
251 
252 
253 /* *********************** FC-NVME DMA Handling **************************** */
254 
255 /*
256  * The fcloop device passes in a NULL device pointer. Real LLD's will
257  * pass in a valid device pointer. If NULL is passed to the dma mapping
258  * routines, depending on the platform, it may or may not succeed, and
259  * may crash.
260  *
261  * As such:
262  * Wrapper all the dma routines and check the dev pointer.
263  *
264  * If simple mappings (return just a dma address, we'll noop them,
265  * returning a dma address of 0.
266  *
267  * On more complex mappings (dma_map_sg), a pseudo routine fills
268  * in the scatter list, setting all dma addresses to 0.
269  */
270 
271 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)272 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
273 		enum dma_data_direction dir)
274 {
275 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
276 }
277 
278 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)279 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
280 {
281 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
282 }
283 
284 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)285 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
286 	enum dma_data_direction dir)
287 {
288 	if (dev)
289 		dma_unmap_single(dev, addr, size, dir);
290 }
291 
292 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)293 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
294 		enum dma_data_direction dir)
295 {
296 	if (dev)
297 		dma_sync_single_for_cpu(dev, addr, size, dir);
298 }
299 
300 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)301 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
302 		enum dma_data_direction dir)
303 {
304 	if (dev)
305 		dma_sync_single_for_device(dev, addr, size, dir);
306 }
307 
308 /* pseudo dma_map_sg call */
309 static int
fc_map_sg(struct scatterlist * sg,int nents)310 fc_map_sg(struct scatterlist *sg, int nents)
311 {
312 	struct scatterlist *s;
313 	int i;
314 
315 	WARN_ON(nents == 0 || sg[0].length == 0);
316 
317 	for_each_sg(sg, s, nents, i) {
318 		s->dma_address = 0L;
319 #ifdef CONFIG_NEED_SG_DMA_LENGTH
320 		s->dma_length = s->length;
321 #endif
322 	}
323 	return nents;
324 }
325 
326 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)327 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
328 		enum dma_data_direction dir)
329 {
330 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
331 }
332 
333 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)334 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
335 		enum dma_data_direction dir)
336 {
337 	if (dev)
338 		dma_unmap_sg(dev, sg, nents, dir);
339 }
340 
341 
342 /* ********************** FC-NVME LS XMT Handling ************************* */
343 
344 
345 static void
__nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op * lsop)346 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
347 {
348 	struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
349 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(&tgtport->lock, flags);
353 
354 	if (!lsop->req_queued) {
355 		spin_unlock_irqrestore(&tgtport->lock, flags);
356 		goto out_putwork;
357 	}
358 
359 	list_del(&lsop->lsreq_list);
360 
361 	lsop->req_queued = false;
362 
363 	spin_unlock_irqrestore(&tgtport->lock, flags);
364 
365 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
366 				  (lsreq->rqstlen + lsreq->rsplen),
367 				  DMA_BIDIRECTIONAL);
368 
369 out_putwork:
370 	queue_work(nvmet_wq, &tgtport->put_work);
371 }
372 
373 static int
__nvmet_fc_send_ls_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))374 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
375 		struct nvmet_fc_ls_req_op *lsop,
376 		void (*done)(struct nvmefc_ls_req *req, int status))
377 {
378 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
379 	unsigned long flags;
380 	int ret = 0;
381 
382 	if (!tgtport->ops->ls_req)
383 		return -EOPNOTSUPP;
384 
385 	if (!nvmet_fc_tgtport_get(tgtport))
386 		return -ESHUTDOWN;
387 
388 	lsreq->done = done;
389 	lsop->req_queued = false;
390 	INIT_LIST_HEAD(&lsop->lsreq_list);
391 
392 	lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
393 				  lsreq->rqstlen + lsreq->rsplen,
394 				  DMA_BIDIRECTIONAL);
395 	if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
396 		ret = -EFAULT;
397 		goto out_puttgtport;
398 	}
399 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
400 
401 	spin_lock_irqsave(&tgtport->lock, flags);
402 
403 	list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
404 
405 	lsop->req_queued = true;
406 
407 	spin_unlock_irqrestore(&tgtport->lock, flags);
408 
409 	ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
410 				   lsreq);
411 	if (ret)
412 		goto out_unlink;
413 
414 	return 0;
415 
416 out_unlink:
417 	lsop->ls_error = ret;
418 	spin_lock_irqsave(&tgtport->lock, flags);
419 	lsop->req_queued = false;
420 	list_del(&lsop->lsreq_list);
421 	spin_unlock_irqrestore(&tgtport->lock, flags);
422 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
423 				  (lsreq->rqstlen + lsreq->rsplen),
424 				  DMA_BIDIRECTIONAL);
425 out_puttgtport:
426 	nvmet_fc_tgtport_put(tgtport);
427 
428 	return ret;
429 }
430 
431 static int
nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))432 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
433 		struct nvmet_fc_ls_req_op *lsop,
434 		void (*done)(struct nvmefc_ls_req *req, int status))
435 {
436 	/* don't wait for completion */
437 
438 	return __nvmet_fc_send_ls_req(tgtport, lsop, done);
439 }
440 
441 static void
nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)442 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
443 {
444 	struct nvmet_fc_ls_req_op *lsop =
445 		container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
446 
447 	__nvmet_fc_finish_ls_req(lsop);
448 
449 	/* fc-nvme target doesn't care about success or failure of cmd */
450 
451 	kfree(lsop);
452 }
453 
454 /*
455  * This routine sends a FC-NVME LS to disconnect (aka terminate)
456  * the FC-NVME Association.  Terminating the association also
457  * terminates the FC-NVME connections (per queue, both admin and io
458  * queues) that are part of the association. E.g. things are torn
459  * down, and the related FC-NVME Association ID and Connection IDs
460  * become invalid.
461  *
462  * The behavior of the fc-nvme target is such that it's
463  * understanding of the association and connections will implicitly
464  * be torn down. The action is implicit as it may be due to a loss of
465  * connectivity with the fc-nvme host, so the target may never get a
466  * response even if it tried.  As such, the action of this routine
467  * is to asynchronously send the LS, ignore any results of the LS, and
468  * continue on with terminating the association. If the fc-nvme host
469  * is present and receives the LS, it too can tear down.
470  */
471 static void
nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc * assoc)472 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
473 {
474 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
475 	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
476 	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
477 	struct nvmet_fc_ls_req_op *lsop;
478 	struct nvmefc_ls_req *lsreq;
479 	int ret;
480 
481 	/*
482 	 * If ls_req is NULL or no hosthandle, it's an older lldd and no
483 	 * message is normal. Otherwise, send unless the hostport has
484 	 * already been invalidated by the lldd.
485 	 */
486 	if (!tgtport->ops->ls_req || assoc->hostport->invalid)
487 		return;
488 
489 	lsop = kzalloc((sizeof(*lsop) +
490 			sizeof(*discon_rqst) + sizeof(*discon_acc) +
491 			tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
492 	if (!lsop) {
493 		dev_info(tgtport->dev,
494 			"{%d:%d} send Disconnect Association failed: ENOMEM\n",
495 			tgtport->fc_target_port.port_num, assoc->a_id);
496 		return;
497 	}
498 
499 	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
500 	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
501 	lsreq = &lsop->ls_req;
502 	if (tgtport->ops->lsrqst_priv_sz)
503 		lsreq->private = (void *)&discon_acc[1];
504 	else
505 		lsreq->private = NULL;
506 
507 	lsop->tgtport = tgtport;
508 	lsop->hosthandle = assoc->hostport->hosthandle;
509 
510 	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
511 				assoc->association_id);
512 
513 	ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
514 				nvmet_fc_disconnect_assoc_done);
515 	if (ret) {
516 		dev_info(tgtport->dev,
517 			"{%d:%d} XMT Disconnect Association failed: %d\n",
518 			tgtport->fc_target_port.port_num, assoc->a_id, ret);
519 		kfree(lsop);
520 	}
521 }
522 
523 
524 /* *********************** FC-NVME Port Management ************************ */
525 
526 
527 static int
nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport * tgtport)528 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
529 {
530 	struct nvmet_fc_ls_iod *iod;
531 	int i;
532 
533 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
534 			GFP_KERNEL);
535 	if (!iod)
536 		return -ENOMEM;
537 
538 	tgtport->iod = iod;
539 
540 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
541 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
542 		iod->tgtport = tgtport;
543 		list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
544 
545 		iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
546 				       sizeof(union nvmefc_ls_responses),
547 				       GFP_KERNEL);
548 		if (!iod->rqstbuf)
549 			goto out_fail;
550 
551 		iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
552 
553 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
554 						sizeof(*iod->rspbuf),
555 						DMA_TO_DEVICE);
556 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
557 			goto out_fail;
558 	}
559 
560 	return 0;
561 
562 out_fail:
563 	kfree(iod->rqstbuf);
564 	list_del(&iod->ls_rcv_list);
565 	for (iod--, i--; i >= 0; iod--, i--) {
566 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
567 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
568 		kfree(iod->rqstbuf);
569 		list_del(&iod->ls_rcv_list);
570 	}
571 
572 	kfree(iod);
573 
574 	return -EFAULT;
575 }
576 
577 static void
nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport * tgtport)578 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
579 {
580 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
581 	int i;
582 
583 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
584 		fc_dma_unmap_single(tgtport->dev,
585 				iod->rspdma, sizeof(*iod->rspbuf),
586 				DMA_TO_DEVICE);
587 		kfree(iod->rqstbuf);
588 		list_del(&iod->ls_rcv_list);
589 	}
590 	kfree(tgtport->iod);
591 }
592 
593 static struct nvmet_fc_ls_iod *
nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport * tgtport)594 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
595 {
596 	struct nvmet_fc_ls_iod *iod;
597 	unsigned long flags;
598 
599 	spin_lock_irqsave(&tgtport->lock, flags);
600 	iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
601 					struct nvmet_fc_ls_iod, ls_rcv_list);
602 	if (iod)
603 		list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
604 	spin_unlock_irqrestore(&tgtport->lock, flags);
605 	return iod;
606 }
607 
608 
609 static void
nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)610 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
611 			struct nvmet_fc_ls_iod *iod)
612 {
613 	unsigned long flags;
614 
615 	spin_lock_irqsave(&tgtport->lock, flags);
616 	list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
617 	spin_unlock_irqrestore(&tgtport->lock, flags);
618 }
619 
620 static void
nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)621 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
622 				struct nvmet_fc_tgt_queue *queue)
623 {
624 	struct nvmet_fc_fcp_iod *fod = queue->fod;
625 	int i;
626 
627 	for (i = 0; i < queue->sqsize; fod++, i++) {
628 		INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
629 		fod->tgtport = tgtport;
630 		fod->queue = queue;
631 		fod->active = false;
632 		fod->abort = false;
633 		fod->aborted = false;
634 		fod->fcpreq = NULL;
635 		list_add_tail(&fod->fcp_list, &queue->fod_list);
636 		spin_lock_init(&fod->flock);
637 
638 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
639 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
640 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
641 			list_del(&fod->fcp_list);
642 			for (fod--, i--; i >= 0; fod--, i--) {
643 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
644 						sizeof(fod->rspiubuf),
645 						DMA_TO_DEVICE);
646 				fod->rspdma = 0L;
647 				list_del(&fod->fcp_list);
648 			}
649 
650 			return;
651 		}
652 	}
653 }
654 
655 static void
nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)656 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
657 				struct nvmet_fc_tgt_queue *queue)
658 {
659 	struct nvmet_fc_fcp_iod *fod = queue->fod;
660 	int i;
661 
662 	for (i = 0; i < queue->sqsize; fod++, i++) {
663 		if (fod->rspdma)
664 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
665 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
666 	}
667 }
668 
669 static struct nvmet_fc_fcp_iod *
nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue * queue)670 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
671 {
672 	struct nvmet_fc_fcp_iod *fod;
673 
674 	lockdep_assert_held(&queue->qlock);
675 
676 	fod = list_first_entry_or_null(&queue->fod_list,
677 					struct nvmet_fc_fcp_iod, fcp_list);
678 	if (fod) {
679 		list_del(&fod->fcp_list);
680 		fod->active = true;
681 		/*
682 		 * no queue reference is taken, as it was taken by the
683 		 * queue lookup just prior to the allocation. The iod
684 		 * will "inherit" that reference.
685 		 */
686 	}
687 	return fod;
688 }
689 
690 
691 static void
nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue,struct nvmefc_tgt_fcp_req * fcpreq)692 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
693 		       struct nvmet_fc_tgt_queue *queue,
694 		       struct nvmefc_tgt_fcp_req *fcpreq)
695 {
696 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
697 
698 	/*
699 	 * put all admin cmds on hw queue id 0. All io commands go to
700 	 * the respective hw queue based on a modulo basis
701 	 */
702 	fcpreq->hwqid = queue->qid ?
703 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
704 
705 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
706 }
707 
708 static void
nvmet_fc_fcp_rqst_op_defer_work(struct work_struct * work)709 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
710 {
711 	struct nvmet_fc_fcp_iod *fod =
712 		container_of(work, struct nvmet_fc_fcp_iod, defer_work);
713 
714 	/* Submit deferred IO for processing */
715 	nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
716 
717 }
718 
719 static void
nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue * queue,struct nvmet_fc_fcp_iod * fod)720 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
721 			struct nvmet_fc_fcp_iod *fod)
722 {
723 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
724 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
725 	struct nvmet_fc_defer_fcp_req *deferfcp;
726 	unsigned long flags;
727 
728 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
729 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
730 
731 	fcpreq->nvmet_fc_private = NULL;
732 
733 	fod->active = false;
734 	fod->abort = false;
735 	fod->aborted = false;
736 	fod->writedataactive = false;
737 	fod->fcpreq = NULL;
738 
739 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
740 
741 	/* release the queue lookup reference on the completed IO */
742 	nvmet_fc_tgt_q_put(queue);
743 
744 	spin_lock_irqsave(&queue->qlock, flags);
745 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
746 				struct nvmet_fc_defer_fcp_req, req_list);
747 	if (!deferfcp) {
748 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
749 		spin_unlock_irqrestore(&queue->qlock, flags);
750 		return;
751 	}
752 
753 	/* Re-use the fod for the next pending cmd that was deferred */
754 	list_del(&deferfcp->req_list);
755 
756 	fcpreq = deferfcp->fcp_req;
757 
758 	/* deferfcp can be reused for another IO at a later date */
759 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
760 
761 	spin_unlock_irqrestore(&queue->qlock, flags);
762 
763 	/* Save NVME CMD IO in fod */
764 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
765 
766 	/* Setup new fcpreq to be processed */
767 	fcpreq->rspaddr = NULL;
768 	fcpreq->rsplen  = 0;
769 	fcpreq->nvmet_fc_private = fod;
770 	fod->fcpreq = fcpreq;
771 	fod->active = true;
772 
773 	/* inform LLDD IO is now being processed */
774 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
775 
776 	/*
777 	 * Leave the queue lookup get reference taken when
778 	 * fod was originally allocated.
779 	 */
780 
781 	queue_work(queue->work_q, &fod->defer_work);
782 }
783 
784 static struct nvmet_fc_tgt_queue *
nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc * assoc,u16 qid,u16 sqsize)785 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
786 			u16 qid, u16 sqsize)
787 {
788 	struct nvmet_fc_tgt_queue *queue;
789 	int ret;
790 
791 	if (qid > NVMET_NR_QUEUES)
792 		return NULL;
793 
794 	queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
795 	if (!queue)
796 		return NULL;
797 
798 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
799 				assoc->tgtport->fc_target_port.port_num,
800 				assoc->a_id, qid);
801 	if (!queue->work_q)
802 		goto out_free_queue;
803 
804 	queue->qid = qid;
805 	queue->sqsize = sqsize;
806 	queue->assoc = assoc;
807 	INIT_LIST_HEAD(&queue->fod_list);
808 	INIT_LIST_HEAD(&queue->avail_defer_list);
809 	INIT_LIST_HEAD(&queue->pending_cmd_list);
810 	atomic_set(&queue->connected, 0);
811 	atomic_set(&queue->sqtail, 0);
812 	atomic_set(&queue->rsn, 1);
813 	atomic_set(&queue->zrspcnt, 0);
814 	spin_lock_init(&queue->qlock);
815 	kref_init(&queue->ref);
816 
817 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
818 
819 	ret = nvmet_sq_init(&queue->nvme_sq);
820 	if (ret)
821 		goto out_fail_iodlist;
822 
823 	WARN_ON(assoc->queues[qid]);
824 	assoc->queues[qid] = queue;
825 
826 	return queue;
827 
828 out_fail_iodlist:
829 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
830 	destroy_workqueue(queue->work_q);
831 out_free_queue:
832 	kfree(queue);
833 	return NULL;
834 }
835 
836 
837 static void
nvmet_fc_tgt_queue_free(struct kref * ref)838 nvmet_fc_tgt_queue_free(struct kref *ref)
839 {
840 	struct nvmet_fc_tgt_queue *queue =
841 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
842 
843 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
844 
845 	destroy_workqueue(queue->work_q);
846 
847 	kfree(queue);
848 }
849 
850 static void
nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue * queue)851 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
852 {
853 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
854 }
855 
856 static int
nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue * queue)857 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
858 {
859 	return kref_get_unless_zero(&queue->ref);
860 }
861 
862 
863 static void
nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue * queue)864 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
865 {
866 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
867 	struct nvmet_fc_fcp_iod *fod = queue->fod;
868 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
869 	unsigned long flags;
870 	int i;
871 	bool disconnect;
872 
873 	disconnect = atomic_xchg(&queue->connected, 0);
874 
875 	/* if not connected, nothing to do */
876 	if (!disconnect)
877 		return;
878 
879 	spin_lock_irqsave(&queue->qlock, flags);
880 	/* abort outstanding io's */
881 	for (i = 0; i < queue->sqsize; fod++, i++) {
882 		if (fod->active) {
883 			spin_lock(&fod->flock);
884 			fod->abort = true;
885 			/*
886 			 * only call lldd abort routine if waiting for
887 			 * writedata. other outstanding ops should finish
888 			 * on their own.
889 			 */
890 			if (fod->writedataactive) {
891 				fod->aborted = true;
892 				spin_unlock(&fod->flock);
893 				tgtport->ops->fcp_abort(
894 					&tgtport->fc_target_port, fod->fcpreq);
895 			} else
896 				spin_unlock(&fod->flock);
897 		}
898 	}
899 
900 	/* Cleanup defer'ed IOs in queue */
901 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
902 				req_list) {
903 		list_del(&deferfcp->req_list);
904 		kfree(deferfcp);
905 	}
906 
907 	for (;;) {
908 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
909 				struct nvmet_fc_defer_fcp_req, req_list);
910 		if (!deferfcp)
911 			break;
912 
913 		list_del(&deferfcp->req_list);
914 		spin_unlock_irqrestore(&queue->qlock, flags);
915 
916 		tgtport->ops->defer_rcv(&tgtport->fc_target_port,
917 				deferfcp->fcp_req);
918 
919 		tgtport->ops->fcp_abort(&tgtport->fc_target_port,
920 				deferfcp->fcp_req);
921 
922 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
923 				deferfcp->fcp_req);
924 
925 		/* release the queue lookup reference */
926 		nvmet_fc_tgt_q_put(queue);
927 
928 		kfree(deferfcp);
929 
930 		spin_lock_irqsave(&queue->qlock, flags);
931 	}
932 	spin_unlock_irqrestore(&queue->qlock, flags);
933 
934 	flush_workqueue(queue->work_q);
935 
936 	nvmet_sq_destroy(&queue->nvme_sq);
937 
938 	nvmet_fc_tgt_q_put(queue);
939 }
940 
941 static struct nvmet_fc_tgt_queue *
nvmet_fc_find_target_queue(struct nvmet_fc_tgtport * tgtport,u64 connection_id)942 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
943 				u64 connection_id)
944 {
945 	struct nvmet_fc_tgt_assoc *assoc;
946 	struct nvmet_fc_tgt_queue *queue;
947 	u64 association_id = nvmet_fc_getassociationid(connection_id);
948 	u16 qid = nvmet_fc_getqueueid(connection_id);
949 
950 	if (qid > NVMET_NR_QUEUES)
951 		return NULL;
952 
953 	rcu_read_lock();
954 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
955 		if (association_id == assoc->association_id) {
956 			queue = assoc->queues[qid];
957 			if (queue &&
958 			    (!atomic_read(&queue->connected) ||
959 			     !nvmet_fc_tgt_q_get(queue)))
960 				queue = NULL;
961 			rcu_read_unlock();
962 			return queue;
963 		}
964 	}
965 	rcu_read_unlock();
966 	return NULL;
967 }
968 
969 static void
nvmet_fc_hostport_free(struct kref * ref)970 nvmet_fc_hostport_free(struct kref *ref)
971 {
972 	struct nvmet_fc_hostport *hostport =
973 		container_of(ref, struct nvmet_fc_hostport, ref);
974 	struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
975 	unsigned long flags;
976 
977 	spin_lock_irqsave(&tgtport->lock, flags);
978 	list_del(&hostport->host_list);
979 	spin_unlock_irqrestore(&tgtport->lock, flags);
980 	if (tgtport->ops->host_release && hostport->invalid)
981 		tgtport->ops->host_release(hostport->hosthandle);
982 	kfree(hostport);
983 	nvmet_fc_tgtport_put(tgtport);
984 }
985 
986 static void
nvmet_fc_hostport_put(struct nvmet_fc_hostport * hostport)987 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
988 {
989 	kref_put(&hostport->ref, nvmet_fc_hostport_free);
990 }
991 
992 static int
nvmet_fc_hostport_get(struct nvmet_fc_hostport * hostport)993 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
994 {
995 	return kref_get_unless_zero(&hostport->ref);
996 }
997 
998 static void
nvmet_fc_free_hostport(struct nvmet_fc_hostport * hostport)999 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1000 {
1001 	/* if LLDD not implemented, leave as NULL */
1002 	if (!hostport || !hostport->hosthandle)
1003 		return;
1004 
1005 	nvmet_fc_hostport_put(hostport);
1006 }
1007 
1008 static struct nvmet_fc_hostport *
nvmet_fc_match_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1009 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1010 {
1011 	struct nvmet_fc_hostport *host;
1012 
1013 	lockdep_assert_held(&tgtport->lock);
1014 
1015 	list_for_each_entry(host, &tgtport->host_list, host_list) {
1016 		if (host->hosthandle == hosthandle && !host->invalid) {
1017 			if (nvmet_fc_hostport_get(host))
1018 				return host;
1019 		}
1020 	}
1021 
1022 	return NULL;
1023 }
1024 
1025 static struct nvmet_fc_hostport *
nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1026 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1027 {
1028 	struct nvmet_fc_hostport *newhost, *match = NULL;
1029 	unsigned long flags;
1030 
1031 	/*
1032 	 * Caller holds a reference on tgtport.
1033 	 */
1034 
1035 	/* if LLDD not implemented, leave as NULL */
1036 	if (!hosthandle)
1037 		return NULL;
1038 
1039 	spin_lock_irqsave(&tgtport->lock, flags);
1040 	match = nvmet_fc_match_hostport(tgtport, hosthandle);
1041 	spin_unlock_irqrestore(&tgtport->lock, flags);
1042 
1043 	if (match)
1044 		return match;
1045 
1046 	newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1047 	if (!newhost)
1048 		return ERR_PTR(-ENOMEM);
1049 
1050 	spin_lock_irqsave(&tgtport->lock, flags);
1051 	match = nvmet_fc_match_hostport(tgtport, hosthandle);
1052 	if (match) {
1053 		/* new allocation not needed */
1054 		kfree(newhost);
1055 		newhost = match;
1056 	} else {
1057 		nvmet_fc_tgtport_get(tgtport);
1058 		newhost->tgtport = tgtport;
1059 		newhost->hosthandle = hosthandle;
1060 		INIT_LIST_HEAD(&newhost->host_list);
1061 		kref_init(&newhost->ref);
1062 
1063 		list_add_tail(&newhost->host_list, &tgtport->host_list);
1064 	}
1065 	spin_unlock_irqrestore(&tgtport->lock, flags);
1066 
1067 	return newhost;
1068 }
1069 
1070 static void
nvmet_fc_delete_assoc(struct nvmet_fc_tgt_assoc * assoc)1071 nvmet_fc_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1072 {
1073 	nvmet_fc_delete_target_assoc(assoc);
1074 	nvmet_fc_tgt_a_put(assoc);
1075 }
1076 
1077 static void
nvmet_fc_delete_assoc_work(struct work_struct * work)1078 nvmet_fc_delete_assoc_work(struct work_struct *work)
1079 {
1080 	struct nvmet_fc_tgt_assoc *assoc =
1081 		container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1082 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1083 
1084 	nvmet_fc_delete_assoc(assoc);
1085 	nvmet_fc_tgtport_put(tgtport);
1086 }
1087 
1088 static void
nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc * assoc)1089 nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1090 {
1091 	nvmet_fc_tgtport_get(assoc->tgtport);
1092 	if (!queue_work(nvmet_wq, &assoc->del_work))
1093 		nvmet_fc_tgtport_put(assoc->tgtport);
1094 }
1095 
1096 static bool
nvmet_fc_assoc_exists(struct nvmet_fc_tgtport * tgtport,u64 association_id)1097 nvmet_fc_assoc_exists(struct nvmet_fc_tgtport *tgtport, u64 association_id)
1098 {
1099 	struct nvmet_fc_tgt_assoc *a;
1100 	bool found = false;
1101 
1102 	rcu_read_lock();
1103 	list_for_each_entry_rcu(a, &tgtport->assoc_list, a_list) {
1104 		if (association_id == a->association_id) {
1105 			found = true;
1106 			break;
1107 		}
1108 	}
1109 	rcu_read_unlock();
1110 
1111 	return found;
1112 }
1113 
1114 static struct nvmet_fc_tgt_assoc *
nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1115 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1116 {
1117 	struct nvmet_fc_tgt_assoc *assoc;
1118 	unsigned long flags;
1119 	bool done;
1120 	u64 ran;
1121 	int idx;
1122 
1123 	if (!tgtport->pe)
1124 		return NULL;
1125 
1126 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1127 	if (!assoc)
1128 		return NULL;
1129 
1130 	idx = ida_alloc(&tgtport->assoc_cnt, GFP_KERNEL);
1131 	if (idx < 0)
1132 		goto out_free_assoc;
1133 
1134 	assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1135 	if (IS_ERR(assoc->hostport))
1136 		goto out_ida;
1137 
1138 	assoc->tgtport = tgtport;
1139 	assoc->a_id = idx;
1140 	INIT_LIST_HEAD(&assoc->a_list);
1141 	kref_init(&assoc->ref);
1142 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc_work);
1143 	atomic_set(&assoc->terminating, 0);
1144 
1145 	done = false;
1146 	do {
1147 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1148 		ran = ran << BYTES_FOR_QID_SHIFT;
1149 
1150 		spin_lock_irqsave(&tgtport->lock, flags);
1151 		if (!nvmet_fc_assoc_exists(tgtport, ran)) {
1152 			assoc->association_id = ran;
1153 			list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1154 			done = true;
1155 		}
1156 		spin_unlock_irqrestore(&tgtport->lock, flags);
1157 	} while (!done);
1158 
1159 	return assoc;
1160 
1161 out_ida:
1162 	ida_free(&tgtport->assoc_cnt, idx);
1163 out_free_assoc:
1164 	kfree(assoc);
1165 	return NULL;
1166 }
1167 
1168 static void
nvmet_fc_target_assoc_free(struct kref * ref)1169 nvmet_fc_target_assoc_free(struct kref *ref)
1170 {
1171 	struct nvmet_fc_tgt_assoc *assoc =
1172 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1173 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1174 	struct nvmet_fc_ls_iod	*oldls;
1175 	unsigned long flags;
1176 	int i;
1177 
1178 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1179 		if (assoc->queues[i])
1180 			nvmet_fc_delete_target_queue(assoc->queues[i]);
1181 	}
1182 
1183 	/* Send Disconnect now that all i/o has completed */
1184 	nvmet_fc_xmt_disconnect_assoc(assoc);
1185 
1186 	nvmet_fc_free_hostport(assoc->hostport);
1187 	spin_lock_irqsave(&tgtport->lock, flags);
1188 	oldls = assoc->rcv_disconn;
1189 	spin_unlock_irqrestore(&tgtport->lock, flags);
1190 	/* if pending Rcv Disconnect Association LS, send rsp now */
1191 	if (oldls)
1192 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1193 	ida_free(&tgtport->assoc_cnt, assoc->a_id);
1194 	dev_info(tgtport->dev,
1195 		"{%d:%d} Association freed\n",
1196 		tgtport->fc_target_port.port_num, assoc->a_id);
1197 	kfree(assoc);
1198 }
1199 
1200 static void
nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc * assoc)1201 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1202 {
1203 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1204 }
1205 
1206 static int
nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc * assoc)1207 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1208 {
1209 	return kref_get_unless_zero(&assoc->ref);
1210 }
1211 
1212 static void
nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc * assoc)1213 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1214 {
1215 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1216 	unsigned long flags;
1217 	int i, terminating;
1218 
1219 	terminating = atomic_xchg(&assoc->terminating, 1);
1220 
1221 	/* if already terminating, do nothing */
1222 	if (terminating)
1223 		return;
1224 
1225 	spin_lock_irqsave(&tgtport->lock, flags);
1226 	list_del_rcu(&assoc->a_list);
1227 	spin_unlock_irqrestore(&tgtport->lock, flags);
1228 
1229 	synchronize_rcu();
1230 
1231 	/* ensure all in-flight I/Os have been processed */
1232 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1233 		if (assoc->queues[i])
1234 			flush_workqueue(assoc->queues[i]->work_q);
1235 	}
1236 
1237 	dev_info(tgtport->dev,
1238 		"{%d:%d} Association deleted\n",
1239 		tgtport->fc_target_port.port_num, assoc->a_id);
1240 }
1241 
1242 static struct nvmet_fc_tgt_assoc *
nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport * tgtport,u64 association_id)1243 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1244 				u64 association_id)
1245 {
1246 	struct nvmet_fc_tgt_assoc *assoc;
1247 	struct nvmet_fc_tgt_assoc *ret = NULL;
1248 
1249 	rcu_read_lock();
1250 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1251 		if (association_id == assoc->association_id) {
1252 			ret = assoc;
1253 			if (!nvmet_fc_tgt_a_get(assoc))
1254 				ret = NULL;
1255 			break;
1256 		}
1257 	}
1258 	rcu_read_unlock();
1259 
1260 	return ret;
1261 }
1262 
1263 static void
nvmet_fc_portentry_bind(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_port_entry * pe,struct nvmet_port * port)1264 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1265 			struct nvmet_fc_port_entry *pe,
1266 			struct nvmet_port *port)
1267 {
1268 	lockdep_assert_held(&nvmet_fc_tgtlock);
1269 
1270 	pe->tgtport = tgtport;
1271 	tgtport->pe = pe;
1272 
1273 	pe->port = port;
1274 	port->priv = pe;
1275 
1276 	pe->node_name = tgtport->fc_target_port.node_name;
1277 	pe->port_name = tgtport->fc_target_port.port_name;
1278 	INIT_LIST_HEAD(&pe->pe_list);
1279 
1280 	list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1281 }
1282 
1283 static void
nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry * pe)1284 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1285 {
1286 	unsigned long flags;
1287 
1288 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1289 	if (pe->tgtport)
1290 		pe->tgtport->pe = NULL;
1291 	list_del(&pe->pe_list);
1292 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1293 }
1294 
1295 /*
1296  * called when a targetport deregisters. Breaks the relationship
1297  * with the nvmet port, but leaves the port_entry in place so that
1298  * re-registration can resume operation.
1299  */
1300 static void
nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport * tgtport)1301 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1302 {
1303 	struct nvmet_fc_port_entry *pe;
1304 	unsigned long flags;
1305 
1306 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1307 	pe = tgtport->pe;
1308 	if (pe)
1309 		pe->tgtport = NULL;
1310 	tgtport->pe = NULL;
1311 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1312 }
1313 
1314 /*
1315  * called when a new targetport is registered. Looks in the
1316  * existing nvmet port_entries to see if the nvmet layer is
1317  * configured for the targetport's wwn's. (the targetport existed,
1318  * nvmet configured, the lldd unregistered the tgtport, and is now
1319  * reregistering the same targetport).  If so, set the nvmet port
1320  * port entry on the targetport.
1321  */
1322 static void
nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport * tgtport)1323 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1324 {
1325 	struct nvmet_fc_port_entry *pe;
1326 	unsigned long flags;
1327 
1328 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1329 	list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1330 		if (tgtport->fc_target_port.node_name == pe->node_name &&
1331 		    tgtport->fc_target_port.port_name == pe->port_name) {
1332 			WARN_ON(pe->tgtport);
1333 			tgtport->pe = pe;
1334 			pe->tgtport = tgtport;
1335 			break;
1336 		}
1337 	}
1338 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1339 }
1340 
1341 /**
1342  * nvmet_fc_register_targetport - transport entry point called by an
1343  *                              LLDD to register the existence of a local
1344  *                              NVME subystem FC port.
1345  * @pinfo:     pointer to information about the port to be registered
1346  * @template:  LLDD entrypoints and operational parameters for the port
1347  * @dev:       physical hardware device node port corresponds to. Will be
1348  *             used for DMA mappings
1349  * @portptr:   pointer to a local port pointer. Upon success, the routine
1350  *             will allocate a nvme_fc_local_port structure and place its
1351  *             address in the local port pointer. Upon failure, local port
1352  *             pointer will be set to NULL.
1353  *
1354  * Returns:
1355  * a completion status. Must be 0 upon success; a negative errno
1356  * (ex: -ENXIO) upon failure.
1357  */
1358 int
nvmet_fc_register_targetport(struct nvmet_fc_port_info * pinfo,struct nvmet_fc_target_template * template,struct device * dev,struct nvmet_fc_target_port ** portptr)1359 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1360 			struct nvmet_fc_target_template *template,
1361 			struct device *dev,
1362 			struct nvmet_fc_target_port **portptr)
1363 {
1364 	struct nvmet_fc_tgtport *newrec;
1365 	unsigned long flags;
1366 	int ret, idx;
1367 
1368 	if (!template->xmt_ls_rsp || !template->fcp_op ||
1369 	    !template->fcp_abort ||
1370 	    !template->fcp_req_release || !template->targetport_delete ||
1371 	    !template->max_hw_queues || !template->max_sgl_segments ||
1372 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
1373 		ret = -EINVAL;
1374 		goto out_regtgt_failed;
1375 	}
1376 
1377 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1378 			 GFP_KERNEL);
1379 	if (!newrec) {
1380 		ret = -ENOMEM;
1381 		goto out_regtgt_failed;
1382 	}
1383 
1384 	idx = ida_alloc(&nvmet_fc_tgtport_cnt, GFP_KERNEL);
1385 	if (idx < 0) {
1386 		ret = -ENOSPC;
1387 		goto out_fail_kfree;
1388 	}
1389 
1390 	if (!get_device(dev) && dev) {
1391 		ret = -ENODEV;
1392 		goto out_ida_put;
1393 	}
1394 
1395 	newrec->fc_target_port.node_name = pinfo->node_name;
1396 	newrec->fc_target_port.port_name = pinfo->port_name;
1397 	if (template->target_priv_sz)
1398 		newrec->fc_target_port.private = &newrec[1];
1399 	else
1400 		newrec->fc_target_port.private = NULL;
1401 	newrec->fc_target_port.port_id = pinfo->port_id;
1402 	newrec->fc_target_port.port_num = idx;
1403 	INIT_LIST_HEAD(&newrec->tgt_list);
1404 	newrec->dev = dev;
1405 	newrec->ops = template;
1406 	spin_lock_init(&newrec->lock);
1407 	INIT_LIST_HEAD(&newrec->ls_rcv_list);
1408 	INIT_LIST_HEAD(&newrec->ls_req_list);
1409 	INIT_LIST_HEAD(&newrec->ls_busylist);
1410 	INIT_LIST_HEAD(&newrec->assoc_list);
1411 	INIT_LIST_HEAD(&newrec->host_list);
1412 	kref_init(&newrec->ref);
1413 	ida_init(&newrec->assoc_cnt);
1414 	newrec->max_sg_cnt = template->max_sgl_segments;
1415 	INIT_WORK(&newrec->put_work, nvmet_fc_put_tgtport_work);
1416 
1417 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
1418 	if (ret) {
1419 		ret = -ENOMEM;
1420 		goto out_free_newrec;
1421 	}
1422 
1423 	nvmet_fc_portentry_rebind_tgt(newrec);
1424 
1425 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1426 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1427 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1428 
1429 	*portptr = &newrec->fc_target_port;
1430 	return 0;
1431 
1432 out_free_newrec:
1433 	put_device(dev);
1434 out_ida_put:
1435 	ida_free(&nvmet_fc_tgtport_cnt, idx);
1436 out_fail_kfree:
1437 	kfree(newrec);
1438 out_regtgt_failed:
1439 	*portptr = NULL;
1440 	return ret;
1441 }
1442 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1443 
1444 
1445 static void
nvmet_fc_free_tgtport(struct kref * ref)1446 nvmet_fc_free_tgtport(struct kref *ref)
1447 {
1448 	struct nvmet_fc_tgtport *tgtport =
1449 		container_of(ref, struct nvmet_fc_tgtport, ref);
1450 	struct device *dev = tgtport->dev;
1451 	unsigned long flags;
1452 
1453 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1454 	list_del(&tgtport->tgt_list);
1455 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1456 
1457 	nvmet_fc_free_ls_iodlist(tgtport);
1458 
1459 	/* let the LLDD know we've finished tearing it down */
1460 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1461 
1462 	ida_free(&nvmet_fc_tgtport_cnt,
1463 			tgtport->fc_target_port.port_num);
1464 
1465 	ida_destroy(&tgtport->assoc_cnt);
1466 
1467 	kfree(tgtport);
1468 
1469 	put_device(dev);
1470 }
1471 
1472 static void
nvmet_fc_tgtport_put(struct nvmet_fc_tgtport * tgtport)1473 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1474 {
1475 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1476 }
1477 
1478 static int
nvmet_fc_tgtport_get(struct nvmet_fc_tgtport * tgtport)1479 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1480 {
1481 	return kref_get_unless_zero(&tgtport->ref);
1482 }
1483 
1484 static void
__nvmet_fc_free_assocs(struct nvmet_fc_tgtport * tgtport)1485 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1486 {
1487 	struct nvmet_fc_tgt_assoc *assoc;
1488 
1489 	rcu_read_lock();
1490 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1491 		if (!nvmet_fc_tgt_a_get(assoc))
1492 			continue;
1493 		nvmet_fc_schedule_delete_assoc(assoc);
1494 		nvmet_fc_tgt_a_put(assoc);
1495 	}
1496 	rcu_read_unlock();
1497 }
1498 
1499 /**
1500  * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1501  *                       to remove references to a hosthandle for LS's.
1502  *
1503  * The nvmet-fc layer ensures that any references to the hosthandle
1504  * on the targetport are forgotten (set to NULL).  The LLDD will
1505  * typically call this when a login with a remote host port has been
1506  * lost, thus LS's for the remote host port are no longer possible.
1507  *
1508  * If an LS request is outstanding to the targetport/hosthandle (or
1509  * issued concurrently with the call to invalidate the host), the
1510  * LLDD is responsible for terminating/aborting the LS and completing
1511  * the LS request. It is recommended that these terminations/aborts
1512  * occur after calling to invalidate the host handle to avoid additional
1513  * retries by the nvmet-fc transport. The nvmet-fc transport may
1514  * continue to reference host handle while it cleans up outstanding
1515  * NVME associations. The nvmet-fc transport will call the
1516  * ops->host_release() callback to notify the LLDD that all references
1517  * are complete and the related host handle can be recovered.
1518  * Note: if there are no references, the callback may be called before
1519  * the invalidate host call returns.
1520  *
1521  * @target_port: pointer to the (registered) target port that a prior
1522  *              LS was received on and which supplied the transport the
1523  *              hosthandle.
1524  * @hosthandle: the handle (pointer) that represents the host port
1525  *              that no longer has connectivity and that LS's should
1526  *              no longer be directed to.
1527  */
1528 void
nvmet_fc_invalidate_host(struct nvmet_fc_target_port * target_port,void * hosthandle)1529 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1530 			void *hosthandle)
1531 {
1532 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1533 	struct nvmet_fc_tgt_assoc *assoc, *next;
1534 	unsigned long flags;
1535 	bool noassoc = true;
1536 
1537 	spin_lock_irqsave(&tgtport->lock, flags);
1538 	list_for_each_entry_safe(assoc, next,
1539 				&tgtport->assoc_list, a_list) {
1540 		if (assoc->hostport->hosthandle != hosthandle)
1541 			continue;
1542 		if (!nvmet_fc_tgt_a_get(assoc))
1543 			continue;
1544 		assoc->hostport->invalid = 1;
1545 		noassoc = false;
1546 		nvmet_fc_schedule_delete_assoc(assoc);
1547 		nvmet_fc_tgt_a_put(assoc);
1548 	}
1549 	spin_unlock_irqrestore(&tgtport->lock, flags);
1550 
1551 	/* if there's nothing to wait for - call the callback */
1552 	if (noassoc && tgtport->ops->host_release)
1553 		tgtport->ops->host_release(hosthandle);
1554 }
1555 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1556 
1557 /*
1558  * nvmet layer has called to terminate an association
1559  */
1560 static void
nvmet_fc_delete_ctrl(struct nvmet_ctrl * ctrl)1561 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1562 {
1563 	struct nvmet_fc_tgtport *tgtport, *next;
1564 	struct nvmet_fc_tgt_assoc *assoc;
1565 	struct nvmet_fc_tgt_queue *queue;
1566 	unsigned long flags;
1567 	bool found_ctrl = false;
1568 
1569 	/* this is a bit ugly, but don't want to make locks layered */
1570 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1571 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1572 			tgt_list) {
1573 		if (!nvmet_fc_tgtport_get(tgtport))
1574 			continue;
1575 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1576 
1577 		rcu_read_lock();
1578 		list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1579 			queue = assoc->queues[0];
1580 			if (queue && queue->nvme_sq.ctrl == ctrl) {
1581 				if (nvmet_fc_tgt_a_get(assoc))
1582 					found_ctrl = true;
1583 				break;
1584 			}
1585 		}
1586 		rcu_read_unlock();
1587 
1588 		nvmet_fc_tgtport_put(tgtport);
1589 
1590 		if (found_ctrl) {
1591 			nvmet_fc_schedule_delete_assoc(assoc);
1592 			nvmet_fc_tgt_a_put(assoc);
1593 			return;
1594 		}
1595 
1596 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1597 	}
1598 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1599 }
1600 
1601 /**
1602  * nvmet_fc_unregister_targetport - transport entry point called by an
1603  *                              LLDD to deregister/remove a previously
1604  *                              registered a local NVME subsystem FC port.
1605  * @target_port: pointer to the (registered) target port that is to be
1606  *               deregistered.
1607  *
1608  * Returns:
1609  * a completion status. Must be 0 upon success; a negative errno
1610  * (ex: -ENXIO) upon failure.
1611  */
1612 int
nvmet_fc_unregister_targetport(struct nvmet_fc_target_port * target_port)1613 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1614 {
1615 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1616 
1617 	nvmet_fc_portentry_unbind_tgt(tgtport);
1618 
1619 	/* terminate any outstanding associations */
1620 	__nvmet_fc_free_assocs(tgtport);
1621 
1622 	flush_workqueue(nvmet_wq);
1623 
1624 	/*
1625 	 * should terminate LS's as well. However, LS's will be generated
1626 	 * at the tail end of association termination, so they likely don't
1627 	 * exist yet. And even if they did, it's worthwhile to just let
1628 	 * them finish and targetport ref counting will clean things up.
1629 	 */
1630 
1631 	nvmet_fc_tgtport_put(tgtport);
1632 
1633 	return 0;
1634 }
1635 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1636 
1637 
1638 /* ********************** FC-NVME LS RCV Handling ************************* */
1639 
1640 
1641 static void
nvmet_fc_ls_create_association(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1642 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1643 			struct nvmet_fc_ls_iod *iod)
1644 {
1645 	struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1646 	struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1647 	struct nvmet_fc_tgt_queue *queue;
1648 	int ret = 0;
1649 
1650 	memset(acc, 0, sizeof(*acc));
1651 
1652 	/*
1653 	 * FC-NVME spec changes. There are initiators sending different
1654 	 * lengths as padding sizes for Create Association Cmd descriptor
1655 	 * was incorrect.
1656 	 * Accept anything of "minimum" length. Assume format per 1.15
1657 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1658 	 * trailing pad length is.
1659 	 */
1660 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1661 		ret = VERR_CR_ASSOC_LEN;
1662 	else if (be32_to_cpu(rqst->desc_list_len) <
1663 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1664 		ret = VERR_CR_ASSOC_RQST_LEN;
1665 	else if (rqst->assoc_cmd.desc_tag !=
1666 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1667 		ret = VERR_CR_ASSOC_CMD;
1668 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1669 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1670 		ret = VERR_CR_ASSOC_CMD_LEN;
1671 	else if (!rqst->assoc_cmd.ersp_ratio ||
1672 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1673 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1674 		ret = VERR_ERSP_RATIO;
1675 
1676 	else {
1677 		/* new association w/ admin queue */
1678 		iod->assoc = nvmet_fc_alloc_target_assoc(
1679 						tgtport, iod->hosthandle);
1680 		if (!iod->assoc)
1681 			ret = VERR_ASSOC_ALLOC_FAIL;
1682 		else {
1683 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1684 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1685 			if (!queue) {
1686 				ret = VERR_QUEUE_ALLOC_FAIL;
1687 				nvmet_fc_tgt_a_put(iod->assoc);
1688 			}
1689 		}
1690 	}
1691 
1692 	if (ret) {
1693 		dev_err(tgtport->dev,
1694 			"Create Association LS failed: %s\n",
1695 			validation_errors[ret]);
1696 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1697 				sizeof(*acc), rqst->w0.ls_cmd,
1698 				FCNVME_RJT_RC_LOGIC,
1699 				FCNVME_RJT_EXP_NONE, 0);
1700 		return;
1701 	}
1702 
1703 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1704 	atomic_set(&queue->connected, 1);
1705 	queue->sqhd = 0;	/* best place to init value */
1706 
1707 	dev_info(tgtport->dev,
1708 		"{%d:%d} Association created\n",
1709 		tgtport->fc_target_port.port_num, iod->assoc->a_id);
1710 
1711 	/* format a response */
1712 
1713 	iod->lsrsp->rsplen = sizeof(*acc);
1714 
1715 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1716 			fcnvme_lsdesc_len(
1717 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1718 			FCNVME_LS_CREATE_ASSOCIATION);
1719 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1720 	acc->associd.desc_len =
1721 			fcnvme_lsdesc_len(
1722 				sizeof(struct fcnvme_lsdesc_assoc_id));
1723 	acc->associd.association_id =
1724 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1725 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1726 	acc->connectid.desc_len =
1727 			fcnvme_lsdesc_len(
1728 				sizeof(struct fcnvme_lsdesc_conn_id));
1729 	acc->connectid.connection_id = acc->associd.association_id;
1730 }
1731 
1732 static void
nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1733 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1734 			struct nvmet_fc_ls_iod *iod)
1735 {
1736 	struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1737 	struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1738 	struct nvmet_fc_tgt_queue *queue;
1739 	int ret = 0;
1740 
1741 	memset(acc, 0, sizeof(*acc));
1742 
1743 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1744 		ret = VERR_CR_CONN_LEN;
1745 	else if (rqst->desc_list_len !=
1746 			fcnvme_lsdesc_len(
1747 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1748 		ret = VERR_CR_CONN_RQST_LEN;
1749 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1750 		ret = VERR_ASSOC_ID;
1751 	else if (rqst->associd.desc_len !=
1752 			fcnvme_lsdesc_len(
1753 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1754 		ret = VERR_ASSOC_ID_LEN;
1755 	else if (rqst->connect_cmd.desc_tag !=
1756 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1757 		ret = VERR_CR_CONN_CMD;
1758 	else if (rqst->connect_cmd.desc_len !=
1759 			fcnvme_lsdesc_len(
1760 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1761 		ret = VERR_CR_CONN_CMD_LEN;
1762 	else if (!rqst->connect_cmd.ersp_ratio ||
1763 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1764 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1765 		ret = VERR_ERSP_RATIO;
1766 
1767 	else {
1768 		/* new io queue */
1769 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1770 				be64_to_cpu(rqst->associd.association_id));
1771 		if (!iod->assoc)
1772 			ret = VERR_NO_ASSOC;
1773 		else {
1774 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1775 					be16_to_cpu(rqst->connect_cmd.qid),
1776 					be16_to_cpu(rqst->connect_cmd.sqsize));
1777 			if (!queue)
1778 				ret = VERR_QUEUE_ALLOC_FAIL;
1779 
1780 			/* release get taken in nvmet_fc_find_target_assoc */
1781 			nvmet_fc_tgt_a_put(iod->assoc);
1782 		}
1783 	}
1784 
1785 	if (ret) {
1786 		dev_err(tgtport->dev,
1787 			"Create Connection LS failed: %s\n",
1788 			validation_errors[ret]);
1789 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1790 				sizeof(*acc), rqst->w0.ls_cmd,
1791 				(ret == VERR_NO_ASSOC) ?
1792 					FCNVME_RJT_RC_INV_ASSOC :
1793 					FCNVME_RJT_RC_LOGIC,
1794 				FCNVME_RJT_EXP_NONE, 0);
1795 		return;
1796 	}
1797 
1798 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1799 	atomic_set(&queue->connected, 1);
1800 	queue->sqhd = 0;	/* best place to init value */
1801 
1802 	/* format a response */
1803 
1804 	iod->lsrsp->rsplen = sizeof(*acc);
1805 
1806 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1807 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1808 			FCNVME_LS_CREATE_CONNECTION);
1809 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1810 	acc->connectid.desc_len =
1811 			fcnvme_lsdesc_len(
1812 				sizeof(struct fcnvme_lsdesc_conn_id));
1813 	acc->connectid.connection_id =
1814 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1815 				be16_to_cpu(rqst->connect_cmd.qid)));
1816 }
1817 
1818 /*
1819  * Returns true if the LS response is to be transmit
1820  * Returns false if the LS response is to be delayed
1821  */
1822 static int
nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1823 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1824 			struct nvmet_fc_ls_iod *iod)
1825 {
1826 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1827 						&iod->rqstbuf->rq_dis_assoc;
1828 	struct fcnvme_ls_disconnect_assoc_acc *acc =
1829 						&iod->rspbuf->rsp_dis_assoc;
1830 	struct nvmet_fc_tgt_assoc *assoc = NULL;
1831 	struct nvmet_fc_ls_iod *oldls = NULL;
1832 	unsigned long flags;
1833 	int ret = 0;
1834 
1835 	memset(acc, 0, sizeof(*acc));
1836 
1837 	ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1838 	if (!ret) {
1839 		/* match an active association - takes an assoc ref if !NULL */
1840 		assoc = nvmet_fc_find_target_assoc(tgtport,
1841 				be64_to_cpu(rqst->associd.association_id));
1842 		iod->assoc = assoc;
1843 		if (!assoc)
1844 			ret = VERR_NO_ASSOC;
1845 	}
1846 
1847 	if (ret || !assoc) {
1848 		dev_err(tgtport->dev,
1849 			"Disconnect LS failed: %s\n",
1850 			validation_errors[ret]);
1851 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1852 				sizeof(*acc), rqst->w0.ls_cmd,
1853 				(ret == VERR_NO_ASSOC) ?
1854 					FCNVME_RJT_RC_INV_ASSOC :
1855 					FCNVME_RJT_RC_LOGIC,
1856 				FCNVME_RJT_EXP_NONE, 0);
1857 		return true;
1858 	}
1859 
1860 	/* format a response */
1861 
1862 	iod->lsrsp->rsplen = sizeof(*acc);
1863 
1864 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1865 			fcnvme_lsdesc_len(
1866 				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1867 			FCNVME_LS_DISCONNECT_ASSOC);
1868 
1869 	/*
1870 	 * The rules for LS response says the response cannot
1871 	 * go back until ABTS's have been sent for all outstanding
1872 	 * I/O and a Disconnect Association LS has been sent.
1873 	 * So... save off the Disconnect LS to send the response
1874 	 * later. If there was a prior LS already saved, replace
1875 	 * it with the newer one and send a can't perform reject
1876 	 * on the older one.
1877 	 */
1878 	spin_lock_irqsave(&tgtport->lock, flags);
1879 	oldls = assoc->rcv_disconn;
1880 	assoc->rcv_disconn = iod;
1881 	spin_unlock_irqrestore(&tgtport->lock, flags);
1882 
1883 	if (oldls) {
1884 		dev_info(tgtport->dev,
1885 			"{%d:%d} Multiple Disconnect Association LS's "
1886 			"received\n",
1887 			tgtport->fc_target_port.port_num, assoc->a_id);
1888 		/* overwrite good response with bogus failure */
1889 		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1890 						sizeof(*iod->rspbuf),
1891 						/* ok to use rqst, LS is same */
1892 						rqst->w0.ls_cmd,
1893 						FCNVME_RJT_RC_UNAB,
1894 						FCNVME_RJT_EXP_NONE, 0);
1895 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1896 	}
1897 
1898 	nvmet_fc_schedule_delete_assoc(assoc);
1899 	nvmet_fc_tgt_a_put(assoc);
1900 
1901 	return false;
1902 }
1903 
1904 
1905 /* *********************** NVME Ctrl Routines **************************** */
1906 
1907 
1908 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1909 
1910 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1911 
1912 static void
nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1913 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1914 {
1915 	struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1916 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1917 
1918 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1919 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1920 	nvmet_fc_free_ls_iod(tgtport, iod);
1921 	nvmet_fc_tgtport_put(tgtport);
1922 }
1923 
1924 static void
nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1925 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1926 				struct nvmet_fc_ls_iod *iod)
1927 {
1928 	int ret;
1929 
1930 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1931 				  sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1932 
1933 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1934 	if (ret)
1935 		nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1936 }
1937 
1938 /*
1939  * Actual processing routine for received FC-NVME LS Requests from the LLD
1940  */
1941 static void
nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1942 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1943 			struct nvmet_fc_ls_iod *iod)
1944 {
1945 	struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1946 	bool sendrsp = true;
1947 
1948 	iod->lsrsp->nvme_fc_private = iod;
1949 	iod->lsrsp->rspbuf = iod->rspbuf;
1950 	iod->lsrsp->rspdma = iod->rspdma;
1951 	iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1952 	/* Be preventative. handlers will later set to valid length */
1953 	iod->lsrsp->rsplen = 0;
1954 
1955 	iod->assoc = NULL;
1956 
1957 	/*
1958 	 * handlers:
1959 	 *   parse request input, execute the request, and format the
1960 	 *   LS response
1961 	 */
1962 	switch (w0->ls_cmd) {
1963 	case FCNVME_LS_CREATE_ASSOCIATION:
1964 		/* Creates Association and initial Admin Queue/Connection */
1965 		nvmet_fc_ls_create_association(tgtport, iod);
1966 		break;
1967 	case FCNVME_LS_CREATE_CONNECTION:
1968 		/* Creates an IO Queue/Connection */
1969 		nvmet_fc_ls_create_connection(tgtport, iod);
1970 		break;
1971 	case FCNVME_LS_DISCONNECT_ASSOC:
1972 		/* Terminate a Queue/Connection or the Association */
1973 		sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1974 		break;
1975 	default:
1976 		iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1977 				sizeof(*iod->rspbuf), w0->ls_cmd,
1978 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1979 	}
1980 
1981 	if (sendrsp)
1982 		nvmet_fc_xmt_ls_rsp(tgtport, iod);
1983 }
1984 
1985 /*
1986  * Actual processing routine for received FC-NVME LS Requests from the LLD
1987  */
1988 static void
nvmet_fc_handle_ls_rqst_work(struct work_struct * work)1989 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1990 {
1991 	struct nvmet_fc_ls_iod *iod =
1992 		container_of(work, struct nvmet_fc_ls_iod, work);
1993 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1994 
1995 	nvmet_fc_handle_ls_rqst(tgtport, iod);
1996 }
1997 
1998 
1999 /**
2000  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2001  *                       upon the reception of a NVME LS request.
2002  *
2003  * The nvmet-fc layer will copy payload to an internal structure for
2004  * processing.  As such, upon completion of the routine, the LLDD may
2005  * immediately free/reuse the LS request buffer passed in the call.
2006  *
2007  * If this routine returns error, the LLDD should abort the exchange.
2008  *
2009  * @target_port: pointer to the (registered) target port the LS was
2010  *              received on.
2011  * @hosthandle: pointer to the host specific data, gets stored in iod.
2012  * @lsrsp:      pointer to a lsrsp structure to be used to reference
2013  *              the exchange corresponding to the LS.
2014  * @lsreqbuf:   pointer to the buffer containing the LS Request
2015  * @lsreqbuf_len: length, in bytes, of the received LS request
2016  */
2017 int
nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port * target_port,void * hosthandle,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)2018 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2019 			void *hosthandle,
2020 			struct nvmefc_ls_rsp *lsrsp,
2021 			void *lsreqbuf, u32 lsreqbuf_len)
2022 {
2023 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2024 	struct nvmet_fc_ls_iod *iod;
2025 	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2026 
2027 	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2028 		dev_info(tgtport->dev,
2029 			"RCV %s LS failed: payload too large (%d)\n",
2030 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2031 				nvmefc_ls_names[w0->ls_cmd] : "",
2032 			lsreqbuf_len);
2033 		return -E2BIG;
2034 	}
2035 
2036 	if (!nvmet_fc_tgtport_get(tgtport)) {
2037 		dev_info(tgtport->dev,
2038 			"RCV %s LS failed: target deleting\n",
2039 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2040 				nvmefc_ls_names[w0->ls_cmd] : "");
2041 		return -ESHUTDOWN;
2042 	}
2043 
2044 	iod = nvmet_fc_alloc_ls_iod(tgtport);
2045 	if (!iod) {
2046 		dev_info(tgtport->dev,
2047 			"RCV %s LS failed: context allocation failed\n",
2048 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2049 				nvmefc_ls_names[w0->ls_cmd] : "");
2050 		nvmet_fc_tgtport_put(tgtport);
2051 		return -ENOENT;
2052 	}
2053 
2054 	iod->lsrsp = lsrsp;
2055 	iod->fcpreq = NULL;
2056 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2057 	iod->rqstdatalen = lsreqbuf_len;
2058 	iod->hosthandle = hosthandle;
2059 
2060 	queue_work(nvmet_wq, &iod->work);
2061 
2062 	return 0;
2063 }
2064 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2065 
2066 
2067 /*
2068  * **********************
2069  * Start of FCP handling
2070  * **********************
2071  */
2072 
2073 static int
nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2074 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2075 {
2076 	struct scatterlist *sg;
2077 	unsigned int nent;
2078 
2079 	sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2080 	if (!sg)
2081 		goto out;
2082 
2083 	fod->data_sg = sg;
2084 	fod->data_sg_cnt = nent;
2085 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2086 				((fod->io_dir == NVMET_FCP_WRITE) ?
2087 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2088 				/* note: write from initiator perspective */
2089 	fod->next_sg = fod->data_sg;
2090 
2091 	return 0;
2092 
2093 out:
2094 	return NVME_SC_INTERNAL;
2095 }
2096 
2097 static void
nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2098 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2099 {
2100 	if (!fod->data_sg || !fod->data_sg_cnt)
2101 		return;
2102 
2103 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2104 				((fod->io_dir == NVMET_FCP_WRITE) ?
2105 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2106 	sgl_free(fod->data_sg);
2107 	fod->data_sg = NULL;
2108 	fod->data_sg_cnt = 0;
2109 }
2110 
2111 
2112 static bool
queue_90percent_full(struct nvmet_fc_tgt_queue * q,u32 sqhd)2113 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2114 {
2115 	u32 sqtail, used;
2116 
2117 	/* egad, this is ugly. And sqtail is just a best guess */
2118 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
2119 
2120 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2121 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2122 }
2123 
2124 /*
2125  * Prep RSP payload.
2126  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2127  */
2128 static void
nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2129 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2130 				struct nvmet_fc_fcp_iod *fod)
2131 {
2132 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2133 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2134 	struct nvme_completion *cqe = &ersp->cqe;
2135 	u32 *cqewd = (u32 *)cqe;
2136 	bool send_ersp = false;
2137 	u32 rsn, rspcnt, xfr_length;
2138 
2139 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2140 		xfr_length = fod->req.transfer_len;
2141 	else
2142 		xfr_length = fod->offset;
2143 
2144 	/*
2145 	 * check to see if we can send a 0's rsp.
2146 	 *   Note: to send a 0's response, the NVME-FC host transport will
2147 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
2148 	 *   seen in an ersp), and command_id. Thus it will create a
2149 	 *   zero-filled CQE with those known fields filled in. Transport
2150 	 *   must send an ersp for any condition where the cqe won't match
2151 	 *   this.
2152 	 *
2153 	 * Here are the FC-NVME mandated cases where we must send an ersp:
2154 	 *  every N responses, where N=ersp_ratio
2155 	 *  force fabric commands to send ersp's (not in FC-NVME but good
2156 	 *    practice)
2157 	 *  normal cmds: any time status is non-zero, or status is zero
2158 	 *     but words 0 or 1 are non-zero.
2159 	 *  the SQ is 90% or more full
2160 	 *  the cmd is a fused command
2161 	 *  transferred data length not equal to cmd iu length
2162 	 */
2163 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2164 	if (!(rspcnt % fod->queue->ersp_ratio) ||
2165 	    nvme_is_fabrics((struct nvme_command *) sqe) ||
2166 	    xfr_length != fod->req.transfer_len ||
2167 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2168 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2169 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2170 		send_ersp = true;
2171 
2172 	/* re-set the fields */
2173 	fod->fcpreq->rspaddr = ersp;
2174 	fod->fcpreq->rspdma = fod->rspdma;
2175 
2176 	if (!send_ersp) {
2177 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2178 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2179 	} else {
2180 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2181 		rsn = atomic_inc_return(&fod->queue->rsn);
2182 		ersp->rsn = cpu_to_be32(rsn);
2183 		ersp->xfrd_len = cpu_to_be32(xfr_length);
2184 		fod->fcpreq->rsplen = sizeof(*ersp);
2185 	}
2186 
2187 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2188 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2189 }
2190 
2191 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2192 
2193 static void
nvmet_fc_abort_op(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2194 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2195 				struct nvmet_fc_fcp_iod *fod)
2196 {
2197 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2198 
2199 	/* data no longer needed */
2200 	nvmet_fc_free_tgt_pgs(fod);
2201 
2202 	/*
2203 	 * if an ABTS was received or we issued the fcp_abort early
2204 	 * don't call abort routine again.
2205 	 */
2206 	/* no need to take lock - lock was taken earlier to get here */
2207 	if (!fod->aborted)
2208 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2209 
2210 	nvmet_fc_free_fcp_iod(fod->queue, fod);
2211 }
2212 
2213 static void
nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2214 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2215 				struct nvmet_fc_fcp_iod *fod)
2216 {
2217 	int ret;
2218 
2219 	fod->fcpreq->op = NVMET_FCOP_RSP;
2220 	fod->fcpreq->timeout = 0;
2221 
2222 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
2223 
2224 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2225 	if (ret)
2226 		nvmet_fc_abort_op(tgtport, fod);
2227 }
2228 
2229 static void
nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,u8 op)2230 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2231 				struct nvmet_fc_fcp_iod *fod, u8 op)
2232 {
2233 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2234 	struct scatterlist *sg = fod->next_sg;
2235 	unsigned long flags;
2236 	u32 remaininglen = fod->req.transfer_len - fod->offset;
2237 	u32 tlen = 0;
2238 	int ret;
2239 
2240 	fcpreq->op = op;
2241 	fcpreq->offset = fod->offset;
2242 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2243 
2244 	/*
2245 	 * for next sequence:
2246 	 *  break at a sg element boundary
2247 	 *  attempt to keep sequence length capped at
2248 	 *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2249 	 *    be longer if a single sg element is larger
2250 	 *    than that amount. This is done to avoid creating
2251 	 *    a new sg list to use for the tgtport api.
2252 	 */
2253 	fcpreq->sg = sg;
2254 	fcpreq->sg_cnt = 0;
2255 	while (tlen < remaininglen &&
2256 	       fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2257 	       tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2258 		fcpreq->sg_cnt++;
2259 		tlen += sg_dma_len(sg);
2260 		sg = sg_next(sg);
2261 	}
2262 	if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2263 		fcpreq->sg_cnt++;
2264 		tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2265 		sg = sg_next(sg);
2266 	}
2267 	if (tlen < remaininglen)
2268 		fod->next_sg = sg;
2269 	else
2270 		fod->next_sg = NULL;
2271 
2272 	fcpreq->transfer_length = tlen;
2273 	fcpreq->transferred_length = 0;
2274 	fcpreq->fcp_error = 0;
2275 	fcpreq->rsplen = 0;
2276 
2277 	/*
2278 	 * If the last READDATA request: check if LLDD supports
2279 	 * combined xfr with response.
2280 	 */
2281 	if ((op == NVMET_FCOP_READDATA) &&
2282 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2283 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2284 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
2285 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
2286 	}
2287 
2288 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2289 	if (ret) {
2290 		/*
2291 		 * should be ok to set w/o lock as its in the thread of
2292 		 * execution (not an async timer routine) and doesn't
2293 		 * contend with any clearing action
2294 		 */
2295 		fod->abort = true;
2296 
2297 		if (op == NVMET_FCOP_WRITEDATA) {
2298 			spin_lock_irqsave(&fod->flock, flags);
2299 			fod->writedataactive = false;
2300 			spin_unlock_irqrestore(&fod->flock, flags);
2301 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2302 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2303 			fcpreq->fcp_error = ret;
2304 			fcpreq->transferred_length = 0;
2305 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2306 		}
2307 	}
2308 }
2309 
2310 static inline bool
__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod * fod,bool abort)2311 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2312 {
2313 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2314 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2315 
2316 	/* if in the middle of an io and we need to tear down */
2317 	if (abort) {
2318 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2319 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2320 			return true;
2321 		}
2322 
2323 		nvmet_fc_abort_op(tgtport, fod);
2324 		return true;
2325 	}
2326 
2327 	return false;
2328 }
2329 
2330 /*
2331  * actual done handler for FCP operations when completed by the lldd
2332  */
2333 static void
nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod * fod)2334 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2335 {
2336 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2337 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2338 	unsigned long flags;
2339 	bool abort;
2340 
2341 	spin_lock_irqsave(&fod->flock, flags);
2342 	abort = fod->abort;
2343 	fod->writedataactive = false;
2344 	spin_unlock_irqrestore(&fod->flock, flags);
2345 
2346 	switch (fcpreq->op) {
2347 
2348 	case NVMET_FCOP_WRITEDATA:
2349 		if (__nvmet_fc_fod_op_abort(fod, abort))
2350 			return;
2351 		if (fcpreq->fcp_error ||
2352 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2353 			spin_lock_irqsave(&fod->flock, flags);
2354 			fod->abort = true;
2355 			spin_unlock_irqrestore(&fod->flock, flags);
2356 
2357 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2358 			return;
2359 		}
2360 
2361 		fod->offset += fcpreq->transferred_length;
2362 		if (fod->offset != fod->req.transfer_len) {
2363 			spin_lock_irqsave(&fod->flock, flags);
2364 			fod->writedataactive = true;
2365 			spin_unlock_irqrestore(&fod->flock, flags);
2366 
2367 			/* transfer the next chunk */
2368 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2369 						NVMET_FCOP_WRITEDATA);
2370 			return;
2371 		}
2372 
2373 		/* data transfer complete, resume with nvmet layer */
2374 		fod->req.execute(&fod->req);
2375 		break;
2376 
2377 	case NVMET_FCOP_READDATA:
2378 	case NVMET_FCOP_READDATA_RSP:
2379 		if (__nvmet_fc_fod_op_abort(fod, abort))
2380 			return;
2381 		if (fcpreq->fcp_error ||
2382 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2383 			nvmet_fc_abort_op(tgtport, fod);
2384 			return;
2385 		}
2386 
2387 		/* success */
2388 
2389 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2390 			/* data no longer needed */
2391 			nvmet_fc_free_tgt_pgs(fod);
2392 			nvmet_fc_free_fcp_iod(fod->queue, fod);
2393 			return;
2394 		}
2395 
2396 		fod->offset += fcpreq->transferred_length;
2397 		if (fod->offset != fod->req.transfer_len) {
2398 			/* transfer the next chunk */
2399 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2400 						NVMET_FCOP_READDATA);
2401 			return;
2402 		}
2403 
2404 		/* data transfer complete, send response */
2405 
2406 		/* data no longer needed */
2407 		nvmet_fc_free_tgt_pgs(fod);
2408 
2409 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2410 
2411 		break;
2412 
2413 	case NVMET_FCOP_RSP:
2414 		if (__nvmet_fc_fod_op_abort(fod, abort))
2415 			return;
2416 		nvmet_fc_free_fcp_iod(fod->queue, fod);
2417 		break;
2418 
2419 	default:
2420 		break;
2421 	}
2422 }
2423 
2424 static void
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req * fcpreq)2425 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2426 {
2427 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2428 
2429 	nvmet_fc_fod_op_done(fod);
2430 }
2431 
2432 /*
2433  * actual completion handler after execution by the nvmet layer
2434  */
2435 static void
__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,int status)2436 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2437 			struct nvmet_fc_fcp_iod *fod, int status)
2438 {
2439 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2440 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2441 	unsigned long flags;
2442 	bool abort;
2443 
2444 	spin_lock_irqsave(&fod->flock, flags);
2445 	abort = fod->abort;
2446 	spin_unlock_irqrestore(&fod->flock, flags);
2447 
2448 	/* if we have a CQE, snoop the last sq_head value */
2449 	if (!status)
2450 		fod->queue->sqhd = cqe->sq_head;
2451 
2452 	if (abort) {
2453 		nvmet_fc_abort_op(tgtport, fod);
2454 		return;
2455 	}
2456 
2457 	/* if an error handling the cmd post initial parsing */
2458 	if (status) {
2459 		/* fudge up a failed CQE status for our transport error */
2460 		memset(cqe, 0, sizeof(*cqe));
2461 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
2462 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
2463 		cqe->command_id = sqe->command_id;
2464 		cqe->status = cpu_to_le16(status);
2465 	} else {
2466 
2467 		/*
2468 		 * try to push the data even if the SQE status is non-zero.
2469 		 * There may be a status where data still was intended to
2470 		 * be moved
2471 		 */
2472 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2473 			/* push the data over before sending rsp */
2474 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2475 						NVMET_FCOP_READDATA);
2476 			return;
2477 		}
2478 
2479 		/* writes & no data - fall thru */
2480 	}
2481 
2482 	/* data no longer needed */
2483 	nvmet_fc_free_tgt_pgs(fod);
2484 
2485 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2486 }
2487 
2488 
2489 static void
nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req * nvme_req)2490 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2491 {
2492 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2493 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2494 
2495 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2496 }
2497 
2498 
2499 /*
2500  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2501  */
2502 static void
nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2503 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2504 			struct nvmet_fc_fcp_iod *fod)
2505 {
2506 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2507 	u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2508 	int ret;
2509 
2510 	/*
2511 	 * Fused commands are currently not supported in the linux
2512 	 * implementation.
2513 	 *
2514 	 * As such, the implementation of the FC transport does not
2515 	 * look at the fused commands and order delivery to the upper
2516 	 * layer until we have both based on csn.
2517 	 */
2518 
2519 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2520 
2521 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2522 		fod->io_dir = NVMET_FCP_WRITE;
2523 		if (!nvme_is_write(&cmdiu->sqe))
2524 			goto transport_error;
2525 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2526 		fod->io_dir = NVMET_FCP_READ;
2527 		if (nvme_is_write(&cmdiu->sqe))
2528 			goto transport_error;
2529 	} else {
2530 		fod->io_dir = NVMET_FCP_NODATA;
2531 		if (xfrlen)
2532 			goto transport_error;
2533 	}
2534 
2535 	fod->req.cmd = &fod->cmdiubuf.sqe;
2536 	fod->req.cqe = &fod->rspiubuf.cqe;
2537 	if (!tgtport->pe)
2538 		goto transport_error;
2539 	fod->req.port = tgtport->pe->port;
2540 
2541 	/* clear any response payload */
2542 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2543 
2544 	fod->data_sg = NULL;
2545 	fod->data_sg_cnt = 0;
2546 
2547 	ret = nvmet_req_init(&fod->req,
2548 				&fod->queue->nvme_cq,
2549 				&fod->queue->nvme_sq,
2550 				&nvmet_fc_tgt_fcp_ops);
2551 	if (!ret) {
2552 		/* bad SQE content or invalid ctrl state */
2553 		/* nvmet layer has already called op done to send rsp. */
2554 		return;
2555 	}
2556 
2557 	fod->req.transfer_len = xfrlen;
2558 
2559 	/* keep a running counter of tail position */
2560 	atomic_inc(&fod->queue->sqtail);
2561 
2562 	if (fod->req.transfer_len) {
2563 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2564 		if (ret) {
2565 			nvmet_req_complete(&fod->req, ret);
2566 			return;
2567 		}
2568 	}
2569 	fod->req.sg = fod->data_sg;
2570 	fod->req.sg_cnt = fod->data_sg_cnt;
2571 	fod->offset = 0;
2572 
2573 	if (fod->io_dir == NVMET_FCP_WRITE) {
2574 		/* pull the data over before invoking nvmet layer */
2575 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2576 		return;
2577 	}
2578 
2579 	/*
2580 	 * Reads or no data:
2581 	 *
2582 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2583 	 * push the data
2584 	 */
2585 	fod->req.execute(&fod->req);
2586 	return;
2587 
2588 transport_error:
2589 	nvmet_fc_abort_op(tgtport, fod);
2590 }
2591 
2592 /**
2593  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2594  *                       upon the reception of a NVME FCP CMD IU.
2595  *
2596  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2597  * layer for processing.
2598  *
2599  * The nvmet_fc layer allocates a local job structure (struct
2600  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2601  * CMD IU buffer to the job structure. As such, on a successful
2602  * completion (returns 0), the LLDD may immediately free/reuse
2603  * the CMD IU buffer passed in the call.
2604  *
2605  * However, in some circumstances, due to the packetized nature of FC
2606  * and the api of the FC LLDD which may issue a hw command to send the
2607  * response, but the LLDD may not get the hw completion for that command
2608  * and upcall the nvmet_fc layer before a new command may be
2609  * asynchronously received - its possible for a command to be received
2610  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2611  * the appearance of more commands received than fits in the sq.
2612  * To alleviate this scenario, a temporary queue is maintained in the
2613  * transport for pending LLDD requests waiting for a queue job structure.
2614  * In these "overrun" cases, a temporary queue element is allocated
2615  * the LLDD request and CMD iu buffer information remembered, and the
2616  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2617  * structure is freed, it is immediately reallocated for anything on the
2618  * pending request list. The LLDDs defer_rcv() callback is called,
2619  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2620  * is then started normally with the transport.
2621  *
2622  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2623  * the completion as successful but must not reuse the CMD IU buffer
2624  * until the LLDD's defer_rcv() callback has been called for the
2625  * corresponding struct nvmefc_tgt_fcp_req pointer.
2626  *
2627  * If there is any other condition in which an error occurs, the
2628  * transport will return a non-zero status indicating the error.
2629  * In all cases other than -EOVERFLOW, the transport has not accepted the
2630  * request and the LLDD should abort the exchange.
2631  *
2632  * @target_port: pointer to the (registered) target port the FCP CMD IU
2633  *              was received on.
2634  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2635  *              the exchange corresponding to the FCP Exchange.
2636  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2637  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2638  */
2639 int
nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq,void * cmdiubuf,u32 cmdiubuf_len)2640 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2641 			struct nvmefc_tgt_fcp_req *fcpreq,
2642 			void *cmdiubuf, u32 cmdiubuf_len)
2643 {
2644 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2645 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2646 	struct nvmet_fc_tgt_queue *queue;
2647 	struct nvmet_fc_fcp_iod *fod;
2648 	struct nvmet_fc_defer_fcp_req *deferfcp;
2649 	unsigned long flags;
2650 
2651 	/* validate iu, so the connection id can be used to find the queue */
2652 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2653 			(cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2654 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2655 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2656 		return -EIO;
2657 
2658 	queue = nvmet_fc_find_target_queue(tgtport,
2659 				be64_to_cpu(cmdiu->connection_id));
2660 	if (!queue)
2661 		return -ENOTCONN;
2662 
2663 	/*
2664 	 * note: reference taken by find_target_queue
2665 	 * After successful fod allocation, the fod will inherit the
2666 	 * ownership of that reference and will remove the reference
2667 	 * when the fod is freed.
2668 	 */
2669 
2670 	spin_lock_irqsave(&queue->qlock, flags);
2671 
2672 	fod = nvmet_fc_alloc_fcp_iod(queue);
2673 	if (fod) {
2674 		spin_unlock_irqrestore(&queue->qlock, flags);
2675 
2676 		fcpreq->nvmet_fc_private = fod;
2677 		fod->fcpreq = fcpreq;
2678 
2679 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2680 
2681 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2682 
2683 		return 0;
2684 	}
2685 
2686 	if (!tgtport->ops->defer_rcv) {
2687 		spin_unlock_irqrestore(&queue->qlock, flags);
2688 		/* release the queue lookup reference */
2689 		nvmet_fc_tgt_q_put(queue);
2690 		return -ENOENT;
2691 	}
2692 
2693 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2694 			struct nvmet_fc_defer_fcp_req, req_list);
2695 	if (deferfcp) {
2696 		/* Just re-use one that was previously allocated */
2697 		list_del(&deferfcp->req_list);
2698 	} else {
2699 		spin_unlock_irqrestore(&queue->qlock, flags);
2700 
2701 		/* Now we need to dynamically allocate one */
2702 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2703 		if (!deferfcp) {
2704 			/* release the queue lookup reference */
2705 			nvmet_fc_tgt_q_put(queue);
2706 			return -ENOMEM;
2707 		}
2708 		spin_lock_irqsave(&queue->qlock, flags);
2709 	}
2710 
2711 	/* For now, use rspaddr / rsplen to save payload information */
2712 	fcpreq->rspaddr = cmdiubuf;
2713 	fcpreq->rsplen  = cmdiubuf_len;
2714 	deferfcp->fcp_req = fcpreq;
2715 
2716 	/* defer processing till a fod becomes available */
2717 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2718 
2719 	/* NOTE: the queue lookup reference is still valid */
2720 
2721 	spin_unlock_irqrestore(&queue->qlock, flags);
2722 
2723 	return -EOVERFLOW;
2724 }
2725 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2726 
2727 /**
2728  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2729  *                       upon the reception of an ABTS for a FCP command
2730  *
2731  * Notify the transport that an ABTS has been received for a FCP command
2732  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2733  * LLDD believes the command is still being worked on
2734  * (template_ops->fcp_req_release() has not been called).
2735  *
2736  * The transport will wait for any outstanding work (an op to the LLDD,
2737  * which the lldd should complete with error due to the ABTS; or the
2738  * completion from the nvmet layer of the nvme command), then will
2739  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2740  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2741  * to the ABTS either after return from this function (assuming any
2742  * outstanding op work has been terminated) or upon the callback being
2743  * called.
2744  *
2745  * @target_port: pointer to the (registered) target port the FCP CMD IU
2746  *              was received on.
2747  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2748  *              to the exchange that received the ABTS.
2749  */
2750 void
nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq)2751 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2752 			struct nvmefc_tgt_fcp_req *fcpreq)
2753 {
2754 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2755 	struct nvmet_fc_tgt_queue *queue;
2756 	unsigned long flags;
2757 
2758 	if (!fod || fod->fcpreq != fcpreq)
2759 		/* job appears to have already completed, ignore abort */
2760 		return;
2761 
2762 	queue = fod->queue;
2763 
2764 	spin_lock_irqsave(&queue->qlock, flags);
2765 	if (fod->active) {
2766 		/*
2767 		 * mark as abort. The abort handler, invoked upon completion
2768 		 * of any work, will detect the aborted status and do the
2769 		 * callback.
2770 		 */
2771 		spin_lock(&fod->flock);
2772 		fod->abort = true;
2773 		fod->aborted = true;
2774 		spin_unlock(&fod->flock);
2775 	}
2776 	spin_unlock_irqrestore(&queue->qlock, flags);
2777 }
2778 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2779 
2780 
2781 struct nvmet_fc_traddr {
2782 	u64	nn;
2783 	u64	pn;
2784 };
2785 
2786 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)2787 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2788 {
2789 	u64 token64;
2790 
2791 	if (match_u64(sstr, &token64))
2792 		return -EINVAL;
2793 	*val = token64;
2794 
2795 	return 0;
2796 }
2797 
2798 /*
2799  * This routine validates and extracts the WWN's from the TRADDR string.
2800  * As kernel parsers need the 0x to determine number base, universally
2801  * build string to parse with 0x prefix before parsing name strings.
2802  */
2803 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)2804 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2805 {
2806 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2807 	substring_t wwn = { name, &name[sizeof(name)-1] };
2808 	int nnoffset, pnoffset;
2809 
2810 	/* validate if string is one of the 2 allowed formats */
2811 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2812 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2813 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2814 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2815 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2816 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2817 						NVME_FC_TRADDR_OXNNLEN;
2818 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2819 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2820 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2821 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2822 		nnoffset = NVME_FC_TRADDR_NNLEN;
2823 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2824 	} else
2825 		goto out_einval;
2826 
2827 	name[0] = '0';
2828 	name[1] = 'x';
2829 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2830 
2831 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2832 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2833 		goto out_einval;
2834 
2835 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2836 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2837 		goto out_einval;
2838 
2839 	return 0;
2840 
2841 out_einval:
2842 	pr_warn("%s: bad traddr string\n", __func__);
2843 	return -EINVAL;
2844 }
2845 
2846 static int
nvmet_fc_add_port(struct nvmet_port * port)2847 nvmet_fc_add_port(struct nvmet_port *port)
2848 {
2849 	struct nvmet_fc_tgtport *tgtport;
2850 	struct nvmet_fc_port_entry *pe;
2851 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2852 	unsigned long flags;
2853 	int ret;
2854 
2855 	/* validate the address info */
2856 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2857 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2858 		return -EINVAL;
2859 
2860 	/* map the traddr address info to a target port */
2861 
2862 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2863 			sizeof(port->disc_addr.traddr));
2864 	if (ret)
2865 		return ret;
2866 
2867 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2868 	if (!pe)
2869 		return -ENOMEM;
2870 
2871 	ret = -ENXIO;
2872 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2873 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2874 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2875 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2876 			/* a FC port can only be 1 nvmet port id */
2877 			if (!tgtport->pe) {
2878 				nvmet_fc_portentry_bind(tgtport, pe, port);
2879 				ret = 0;
2880 			} else
2881 				ret = -EALREADY;
2882 			break;
2883 		}
2884 	}
2885 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2886 
2887 	if (ret)
2888 		kfree(pe);
2889 
2890 	return ret;
2891 }
2892 
2893 static void
nvmet_fc_remove_port(struct nvmet_port * port)2894 nvmet_fc_remove_port(struct nvmet_port *port)
2895 {
2896 	struct nvmet_fc_port_entry *pe = port->priv;
2897 
2898 	nvmet_fc_portentry_unbind(pe);
2899 
2900 	/* terminate any outstanding associations */
2901 	__nvmet_fc_free_assocs(pe->tgtport);
2902 
2903 	kfree(pe);
2904 }
2905 
2906 static void
nvmet_fc_discovery_chg(struct nvmet_port * port)2907 nvmet_fc_discovery_chg(struct nvmet_port *port)
2908 {
2909 	struct nvmet_fc_port_entry *pe = port->priv;
2910 	struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2911 
2912 	if (tgtport && tgtport->ops->discovery_event)
2913 		tgtport->ops->discovery_event(&tgtport->fc_target_port);
2914 }
2915 
2916 static ssize_t
nvmet_fc_host_traddr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_size)2917 nvmet_fc_host_traddr(struct nvmet_ctrl *ctrl,
2918 		char *traddr, size_t traddr_size)
2919 {
2920 	struct nvmet_sq *sq = ctrl->sqs[0];
2921 	struct nvmet_fc_tgt_queue *queue =
2922 		container_of(sq, struct nvmet_fc_tgt_queue, nvme_sq);
2923 	struct nvmet_fc_tgtport *tgtport = queue->assoc ? queue->assoc->tgtport : NULL;
2924 	struct nvmet_fc_hostport *hostport = queue->assoc ? queue->assoc->hostport : NULL;
2925 	u64 wwnn, wwpn;
2926 	ssize_t ret = 0;
2927 
2928 	if (!tgtport || !nvmet_fc_tgtport_get(tgtport))
2929 		return -ENODEV;
2930 	if (!hostport || !nvmet_fc_hostport_get(hostport)) {
2931 		ret = -ENODEV;
2932 		goto out_put;
2933 	}
2934 
2935 	if (tgtport->ops->host_traddr) {
2936 		ret = tgtport->ops->host_traddr(hostport->hosthandle, &wwnn, &wwpn);
2937 		if (ret)
2938 			goto out_put_host;
2939 		ret = snprintf(traddr, traddr_size, "nn-0x%llx:pn-0x%llx", wwnn, wwpn);
2940 	}
2941 out_put_host:
2942 	nvmet_fc_hostport_put(hostport);
2943 out_put:
2944 	nvmet_fc_tgtport_put(tgtport);
2945 	return ret;
2946 }
2947 
2948 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2949 	.owner			= THIS_MODULE,
2950 	.type			= NVMF_TRTYPE_FC,
2951 	.msdbd			= 1,
2952 	.add_port		= nvmet_fc_add_port,
2953 	.remove_port		= nvmet_fc_remove_port,
2954 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
2955 	.delete_ctrl		= nvmet_fc_delete_ctrl,
2956 	.discovery_chg		= nvmet_fc_discovery_chg,
2957 	.host_traddr		= nvmet_fc_host_traddr,
2958 };
2959 
nvmet_fc_init_module(void)2960 static int __init nvmet_fc_init_module(void)
2961 {
2962 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2963 }
2964 
nvmet_fc_exit_module(void)2965 static void __exit nvmet_fc_exit_module(void)
2966 {
2967 	/* ensure any shutdown operation, e.g. delete ctrls have finished */
2968 	flush_workqueue(nvmet_wq);
2969 
2970 	/* sanity check - all lports should be removed */
2971 	if (!list_empty(&nvmet_fc_target_list))
2972 		pr_warn("%s: targetport list not empty\n", __func__);
2973 
2974 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2975 
2976 	ida_destroy(&nvmet_fc_tgtport_cnt);
2977 }
2978 
2979 module_init(nvmet_fc_init_module);
2980 module_exit(nvmet_fc_exit_module);
2981 
2982 MODULE_DESCRIPTION("NVMe target FC transport driver");
2983 MODULE_LICENSE("GPL v2");
2984