1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18
19
20 /* *************************** Data Structures/Defines ****************** */
21
22
23 #define NVMET_LS_CTX_COUNT 256
24
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27
28 struct nvmet_fc_ls_iod { /* for an LS RQST RCV */
29 struct nvmefc_ls_rsp *lsrsp;
30 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */
31
32 struct list_head ls_rcv_list; /* tgtport->ls_rcv_list */
33
34 struct nvmet_fc_tgtport *tgtport;
35 struct nvmet_fc_tgt_assoc *assoc;
36 void *hosthandle;
37
38 union nvmefc_ls_requests *rqstbuf;
39 union nvmefc_ls_responses *rspbuf;
40 u16 rqstdatalen;
41 dma_addr_t rspdma;
42
43 struct scatterlist sg[2];
44
45 struct work_struct work;
46 } __aligned(sizeof(unsigned long long));
47
48 struct nvmet_fc_ls_req_op { /* for an LS RQST XMT */
49 struct nvmefc_ls_req ls_req;
50
51 struct nvmet_fc_tgtport *tgtport;
52 void *hosthandle;
53
54 int ls_error;
55 struct list_head lsreq_list; /* tgtport->ls_req_list */
56 bool req_queued;
57 };
58
59
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024)
62
63 enum nvmet_fcp_datadir {
64 NVMET_FCP_NODATA,
65 NVMET_FCP_WRITE,
66 NVMET_FCP_READ,
67 NVMET_FCP_ABORTED,
68 };
69
70 struct nvmet_fc_fcp_iod {
71 struct nvmefc_tgt_fcp_req *fcpreq;
72
73 struct nvme_fc_cmd_iu cmdiubuf;
74 struct nvme_fc_ersp_iu rspiubuf;
75 dma_addr_t rspdma;
76 struct scatterlist *next_sg;
77 struct scatterlist *data_sg;
78 int data_sg_cnt;
79 u32 offset;
80 enum nvmet_fcp_datadir io_dir;
81 bool active;
82 bool abort;
83 bool aborted;
84 bool writedataactive;
85 spinlock_t flock;
86
87 struct nvmet_req req;
88 struct work_struct defer_work;
89
90 struct nvmet_fc_tgtport *tgtport;
91 struct nvmet_fc_tgt_queue *queue;
92
93 struct list_head fcp_list; /* tgtport->fcp_list */
94 };
95
96 struct nvmet_fc_tgtport {
97 struct nvmet_fc_target_port fc_target_port;
98
99 struct list_head tgt_list; /* nvmet_fc_target_list */
100 struct device *dev; /* dev for dma mapping */
101 struct nvmet_fc_target_template *ops;
102
103 struct nvmet_fc_ls_iod *iod;
104 spinlock_t lock;
105 struct list_head ls_rcv_list;
106 struct list_head ls_req_list;
107 struct list_head ls_busylist;
108 struct list_head assoc_list;
109 struct list_head host_list;
110 struct ida assoc_cnt;
111 struct nvmet_fc_port_entry *pe;
112 struct kref ref;
113 u32 max_sg_cnt;
114
115 struct work_struct put_work;
116 };
117
118 struct nvmet_fc_port_entry {
119 struct nvmet_fc_tgtport *tgtport;
120 struct nvmet_port *port;
121 u64 node_name;
122 u64 port_name;
123 struct list_head pe_list;
124 };
125
126 struct nvmet_fc_defer_fcp_req {
127 struct list_head req_list;
128 struct nvmefc_tgt_fcp_req *fcp_req;
129 };
130
131 struct nvmet_fc_tgt_queue {
132 bool ninetypercent;
133 u16 qid;
134 u16 sqsize;
135 u16 ersp_ratio;
136 __le16 sqhd;
137 atomic_t connected;
138 atomic_t sqtail;
139 atomic_t zrspcnt;
140 atomic_t rsn;
141 spinlock_t qlock;
142 struct nvmet_cq nvme_cq;
143 struct nvmet_sq nvme_sq;
144 struct nvmet_fc_tgt_assoc *assoc;
145 struct list_head fod_list;
146 struct list_head pending_cmd_list;
147 struct list_head avail_defer_list;
148 struct workqueue_struct *work_q;
149 struct kref ref;
150 /* array of fcp_iods */
151 struct nvmet_fc_fcp_iod fod[] /* __counted_by(sqsize) */;
152 } __aligned(sizeof(unsigned long long));
153
154 struct nvmet_fc_hostport {
155 struct nvmet_fc_tgtport *tgtport;
156 void *hosthandle;
157 struct list_head host_list;
158 struct kref ref;
159 u8 invalid;
160 };
161
162 struct nvmet_fc_tgt_assoc {
163 u64 association_id;
164 u32 a_id;
165 atomic_t terminating;
166 struct nvmet_fc_tgtport *tgtport;
167 struct nvmet_fc_hostport *hostport;
168 struct nvmet_fc_ls_iod *rcv_disconn;
169 struct list_head a_list;
170 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES + 1];
171 struct kref ref;
172 struct work_struct del_work;
173 };
174
175 /*
176 * Association and Connection IDs:
177 *
178 * Association ID will have random number in upper 6 bytes and zero
179 * in lower 2 bytes
180 *
181 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
182 *
183 * note: Association ID = Connection ID for queue 0
184 */
185 #define BYTES_FOR_QID sizeof(u16)
186 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
187 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
188
189 static inline u64
nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc * assoc,u16 qid)190 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
191 {
192 return (assoc->association_id | qid);
193 }
194
195 static inline u64
nvmet_fc_getassociationid(u64 connectionid)196 nvmet_fc_getassociationid(u64 connectionid)
197 {
198 return connectionid & ~NVMET_FC_QUEUEID_MASK;
199 }
200
201 static inline u16
nvmet_fc_getqueueid(u64 connectionid)202 nvmet_fc_getqueueid(u64 connectionid)
203 {
204 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
205 }
206
207 static inline struct nvmet_fc_tgtport *
targetport_to_tgtport(struct nvmet_fc_target_port * targetport)208 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
209 {
210 return container_of(targetport, struct nvmet_fc_tgtport,
211 fc_target_port);
212 }
213
214 static inline struct nvmet_fc_fcp_iod *
nvmet_req_to_fod(struct nvmet_req * nvme_req)215 nvmet_req_to_fod(struct nvmet_req *nvme_req)
216 {
217 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
218 }
219
220
221 /* *************************** Globals **************************** */
222
223
224 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
225
226 static LIST_HEAD(nvmet_fc_target_list);
227 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
228 static LIST_HEAD(nvmet_fc_portentry_list);
229
230
231 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
232 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
233 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
234 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
235 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
236 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
237 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
nvmet_fc_put_tgtport_work(struct work_struct * work)238 static void nvmet_fc_put_tgtport_work(struct work_struct *work)
239 {
240 struct nvmet_fc_tgtport *tgtport =
241 container_of(work, struct nvmet_fc_tgtport, put_work);
242
243 nvmet_fc_tgtport_put(tgtport);
244 }
245 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
246 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
247 struct nvmet_fc_fcp_iod *fod);
248 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
249 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
250 struct nvmet_fc_ls_iod *iod);
251
252
253 /* *********************** FC-NVME DMA Handling **************************** */
254
255 /*
256 * The fcloop device passes in a NULL device pointer. Real LLD's will
257 * pass in a valid device pointer. If NULL is passed to the dma mapping
258 * routines, depending on the platform, it may or may not succeed, and
259 * may crash.
260 *
261 * As such:
262 * Wrapper all the dma routines and check the dev pointer.
263 *
264 * If simple mappings (return just a dma address, we'll noop them,
265 * returning a dma address of 0.
266 *
267 * On more complex mappings (dma_map_sg), a pseudo routine fills
268 * in the scatter list, setting all dma addresses to 0.
269 */
270
271 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)272 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
273 enum dma_data_direction dir)
274 {
275 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
276 }
277
278 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)279 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
280 {
281 return dev ? dma_mapping_error(dev, dma_addr) : 0;
282 }
283
284 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)285 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
286 enum dma_data_direction dir)
287 {
288 if (dev)
289 dma_unmap_single(dev, addr, size, dir);
290 }
291
292 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)293 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
294 enum dma_data_direction dir)
295 {
296 if (dev)
297 dma_sync_single_for_cpu(dev, addr, size, dir);
298 }
299
300 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)301 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
302 enum dma_data_direction dir)
303 {
304 if (dev)
305 dma_sync_single_for_device(dev, addr, size, dir);
306 }
307
308 /* pseudo dma_map_sg call */
309 static int
fc_map_sg(struct scatterlist * sg,int nents)310 fc_map_sg(struct scatterlist *sg, int nents)
311 {
312 struct scatterlist *s;
313 int i;
314
315 WARN_ON(nents == 0 || sg[0].length == 0);
316
317 for_each_sg(sg, s, nents, i) {
318 s->dma_address = 0L;
319 #ifdef CONFIG_NEED_SG_DMA_LENGTH
320 s->dma_length = s->length;
321 #endif
322 }
323 return nents;
324 }
325
326 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)327 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
328 enum dma_data_direction dir)
329 {
330 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
331 }
332
333 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)334 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
335 enum dma_data_direction dir)
336 {
337 if (dev)
338 dma_unmap_sg(dev, sg, nents, dir);
339 }
340
341
342 /* ********************** FC-NVME LS XMT Handling ************************* */
343
344
345 static void
__nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op * lsop)346 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
347 {
348 struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
349 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
350 unsigned long flags;
351
352 spin_lock_irqsave(&tgtport->lock, flags);
353
354 if (!lsop->req_queued) {
355 spin_unlock_irqrestore(&tgtport->lock, flags);
356 goto out_putwork;
357 }
358
359 list_del(&lsop->lsreq_list);
360
361 lsop->req_queued = false;
362
363 spin_unlock_irqrestore(&tgtport->lock, flags);
364
365 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
366 (lsreq->rqstlen + lsreq->rsplen),
367 DMA_BIDIRECTIONAL);
368
369 out_putwork:
370 queue_work(nvmet_wq, &tgtport->put_work);
371 }
372
373 static int
__nvmet_fc_send_ls_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))374 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
375 struct nvmet_fc_ls_req_op *lsop,
376 void (*done)(struct nvmefc_ls_req *req, int status))
377 {
378 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
379 unsigned long flags;
380 int ret = 0;
381
382 if (!tgtport->ops->ls_req)
383 return -EOPNOTSUPP;
384
385 if (!nvmet_fc_tgtport_get(tgtport))
386 return -ESHUTDOWN;
387
388 lsreq->done = done;
389 lsop->req_queued = false;
390 INIT_LIST_HEAD(&lsop->lsreq_list);
391
392 lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
393 lsreq->rqstlen + lsreq->rsplen,
394 DMA_BIDIRECTIONAL);
395 if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
396 ret = -EFAULT;
397 goto out_puttgtport;
398 }
399 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
400
401 spin_lock_irqsave(&tgtport->lock, flags);
402
403 list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
404
405 lsop->req_queued = true;
406
407 spin_unlock_irqrestore(&tgtport->lock, flags);
408
409 ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
410 lsreq);
411 if (ret)
412 goto out_unlink;
413
414 return 0;
415
416 out_unlink:
417 lsop->ls_error = ret;
418 spin_lock_irqsave(&tgtport->lock, flags);
419 lsop->req_queued = false;
420 list_del(&lsop->lsreq_list);
421 spin_unlock_irqrestore(&tgtport->lock, flags);
422 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
423 (lsreq->rqstlen + lsreq->rsplen),
424 DMA_BIDIRECTIONAL);
425 out_puttgtport:
426 nvmet_fc_tgtport_put(tgtport);
427
428 return ret;
429 }
430
431 static int
nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))432 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
433 struct nvmet_fc_ls_req_op *lsop,
434 void (*done)(struct nvmefc_ls_req *req, int status))
435 {
436 /* don't wait for completion */
437
438 return __nvmet_fc_send_ls_req(tgtport, lsop, done);
439 }
440
441 static void
nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)442 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
443 {
444 struct nvmet_fc_ls_req_op *lsop =
445 container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
446
447 __nvmet_fc_finish_ls_req(lsop);
448
449 /* fc-nvme target doesn't care about success or failure of cmd */
450
451 kfree(lsop);
452 }
453
454 /*
455 * This routine sends a FC-NVME LS to disconnect (aka terminate)
456 * the FC-NVME Association. Terminating the association also
457 * terminates the FC-NVME connections (per queue, both admin and io
458 * queues) that are part of the association. E.g. things are torn
459 * down, and the related FC-NVME Association ID and Connection IDs
460 * become invalid.
461 *
462 * The behavior of the fc-nvme target is such that it's
463 * understanding of the association and connections will implicitly
464 * be torn down. The action is implicit as it may be due to a loss of
465 * connectivity with the fc-nvme host, so the target may never get a
466 * response even if it tried. As such, the action of this routine
467 * is to asynchronously send the LS, ignore any results of the LS, and
468 * continue on with terminating the association. If the fc-nvme host
469 * is present and receives the LS, it too can tear down.
470 */
471 static void
nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc * assoc)472 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
473 {
474 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
475 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
476 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
477 struct nvmet_fc_ls_req_op *lsop;
478 struct nvmefc_ls_req *lsreq;
479 int ret;
480
481 /*
482 * If ls_req is NULL or no hosthandle, it's an older lldd and no
483 * message is normal. Otherwise, send unless the hostport has
484 * already been invalidated by the lldd.
485 */
486 if (!tgtport->ops->ls_req || assoc->hostport->invalid)
487 return;
488
489 lsop = kzalloc((sizeof(*lsop) +
490 sizeof(*discon_rqst) + sizeof(*discon_acc) +
491 tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
492 if (!lsop) {
493 dev_info(tgtport->dev,
494 "{%d:%d} send Disconnect Association failed: ENOMEM\n",
495 tgtport->fc_target_port.port_num, assoc->a_id);
496 return;
497 }
498
499 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
500 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
501 lsreq = &lsop->ls_req;
502 if (tgtport->ops->lsrqst_priv_sz)
503 lsreq->private = (void *)&discon_acc[1];
504 else
505 lsreq->private = NULL;
506
507 lsop->tgtport = tgtport;
508 lsop->hosthandle = assoc->hostport->hosthandle;
509
510 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
511 assoc->association_id);
512
513 ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
514 nvmet_fc_disconnect_assoc_done);
515 if (ret) {
516 dev_info(tgtport->dev,
517 "{%d:%d} XMT Disconnect Association failed: %d\n",
518 tgtport->fc_target_port.port_num, assoc->a_id, ret);
519 kfree(lsop);
520 }
521 }
522
523
524 /* *********************** FC-NVME Port Management ************************ */
525
526
527 static int
nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport * tgtport)528 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
529 {
530 struct nvmet_fc_ls_iod *iod;
531 int i;
532
533 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
534 GFP_KERNEL);
535 if (!iod)
536 return -ENOMEM;
537
538 tgtport->iod = iod;
539
540 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
541 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
542 iod->tgtport = tgtport;
543 list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
544
545 iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
546 sizeof(union nvmefc_ls_responses),
547 GFP_KERNEL);
548 if (!iod->rqstbuf)
549 goto out_fail;
550
551 iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
552
553 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
554 sizeof(*iod->rspbuf),
555 DMA_TO_DEVICE);
556 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
557 goto out_fail;
558 }
559
560 return 0;
561
562 out_fail:
563 kfree(iod->rqstbuf);
564 list_del(&iod->ls_rcv_list);
565 for (iod--, i--; i >= 0; iod--, i--) {
566 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
567 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
568 kfree(iod->rqstbuf);
569 list_del(&iod->ls_rcv_list);
570 }
571
572 kfree(iod);
573
574 return -EFAULT;
575 }
576
577 static void
nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport * tgtport)578 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
579 {
580 struct nvmet_fc_ls_iod *iod = tgtport->iod;
581 int i;
582
583 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
584 fc_dma_unmap_single(tgtport->dev,
585 iod->rspdma, sizeof(*iod->rspbuf),
586 DMA_TO_DEVICE);
587 kfree(iod->rqstbuf);
588 list_del(&iod->ls_rcv_list);
589 }
590 kfree(tgtport->iod);
591 }
592
593 static struct nvmet_fc_ls_iod *
nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport * tgtport)594 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
595 {
596 struct nvmet_fc_ls_iod *iod;
597 unsigned long flags;
598
599 spin_lock_irqsave(&tgtport->lock, flags);
600 iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
601 struct nvmet_fc_ls_iod, ls_rcv_list);
602 if (iod)
603 list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
604 spin_unlock_irqrestore(&tgtport->lock, flags);
605 return iod;
606 }
607
608
609 static void
nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)610 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
611 struct nvmet_fc_ls_iod *iod)
612 {
613 unsigned long flags;
614
615 spin_lock_irqsave(&tgtport->lock, flags);
616 list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
617 spin_unlock_irqrestore(&tgtport->lock, flags);
618 }
619
620 static void
nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)621 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
622 struct nvmet_fc_tgt_queue *queue)
623 {
624 struct nvmet_fc_fcp_iod *fod = queue->fod;
625 int i;
626
627 for (i = 0; i < queue->sqsize; fod++, i++) {
628 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
629 fod->tgtport = tgtport;
630 fod->queue = queue;
631 fod->active = false;
632 fod->abort = false;
633 fod->aborted = false;
634 fod->fcpreq = NULL;
635 list_add_tail(&fod->fcp_list, &queue->fod_list);
636 spin_lock_init(&fod->flock);
637
638 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
639 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
640 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
641 list_del(&fod->fcp_list);
642 for (fod--, i--; i >= 0; fod--, i--) {
643 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
644 sizeof(fod->rspiubuf),
645 DMA_TO_DEVICE);
646 fod->rspdma = 0L;
647 list_del(&fod->fcp_list);
648 }
649
650 return;
651 }
652 }
653 }
654
655 static void
nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)656 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
657 struct nvmet_fc_tgt_queue *queue)
658 {
659 struct nvmet_fc_fcp_iod *fod = queue->fod;
660 int i;
661
662 for (i = 0; i < queue->sqsize; fod++, i++) {
663 if (fod->rspdma)
664 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
665 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
666 }
667 }
668
669 static struct nvmet_fc_fcp_iod *
nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue * queue)670 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
671 {
672 struct nvmet_fc_fcp_iod *fod;
673
674 lockdep_assert_held(&queue->qlock);
675
676 fod = list_first_entry_or_null(&queue->fod_list,
677 struct nvmet_fc_fcp_iod, fcp_list);
678 if (fod) {
679 list_del(&fod->fcp_list);
680 fod->active = true;
681 /*
682 * no queue reference is taken, as it was taken by the
683 * queue lookup just prior to the allocation. The iod
684 * will "inherit" that reference.
685 */
686 }
687 return fod;
688 }
689
690
691 static void
nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue,struct nvmefc_tgt_fcp_req * fcpreq)692 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
693 struct nvmet_fc_tgt_queue *queue,
694 struct nvmefc_tgt_fcp_req *fcpreq)
695 {
696 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
697
698 /*
699 * put all admin cmds on hw queue id 0. All io commands go to
700 * the respective hw queue based on a modulo basis
701 */
702 fcpreq->hwqid = queue->qid ?
703 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
704
705 nvmet_fc_handle_fcp_rqst(tgtport, fod);
706 }
707
708 static void
nvmet_fc_fcp_rqst_op_defer_work(struct work_struct * work)709 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
710 {
711 struct nvmet_fc_fcp_iod *fod =
712 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
713
714 /* Submit deferred IO for processing */
715 nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
716
717 }
718
719 static void
nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue * queue,struct nvmet_fc_fcp_iod * fod)720 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
721 struct nvmet_fc_fcp_iod *fod)
722 {
723 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
724 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
725 struct nvmet_fc_defer_fcp_req *deferfcp;
726 unsigned long flags;
727
728 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
729 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
730
731 fcpreq->nvmet_fc_private = NULL;
732
733 fod->active = false;
734 fod->abort = false;
735 fod->aborted = false;
736 fod->writedataactive = false;
737 fod->fcpreq = NULL;
738
739 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
740
741 /* release the queue lookup reference on the completed IO */
742 nvmet_fc_tgt_q_put(queue);
743
744 spin_lock_irqsave(&queue->qlock, flags);
745 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
746 struct nvmet_fc_defer_fcp_req, req_list);
747 if (!deferfcp) {
748 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
749 spin_unlock_irqrestore(&queue->qlock, flags);
750 return;
751 }
752
753 /* Re-use the fod for the next pending cmd that was deferred */
754 list_del(&deferfcp->req_list);
755
756 fcpreq = deferfcp->fcp_req;
757
758 /* deferfcp can be reused for another IO at a later date */
759 list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
760
761 spin_unlock_irqrestore(&queue->qlock, flags);
762
763 /* Save NVME CMD IO in fod */
764 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
765
766 /* Setup new fcpreq to be processed */
767 fcpreq->rspaddr = NULL;
768 fcpreq->rsplen = 0;
769 fcpreq->nvmet_fc_private = fod;
770 fod->fcpreq = fcpreq;
771 fod->active = true;
772
773 /* inform LLDD IO is now being processed */
774 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
775
776 /*
777 * Leave the queue lookup get reference taken when
778 * fod was originally allocated.
779 */
780
781 queue_work(queue->work_q, &fod->defer_work);
782 }
783
784 static struct nvmet_fc_tgt_queue *
nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc * assoc,u16 qid,u16 sqsize)785 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
786 u16 qid, u16 sqsize)
787 {
788 struct nvmet_fc_tgt_queue *queue;
789 int ret;
790
791 if (qid > NVMET_NR_QUEUES)
792 return NULL;
793
794 queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
795 if (!queue)
796 return NULL;
797
798 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
799 assoc->tgtport->fc_target_port.port_num,
800 assoc->a_id, qid);
801 if (!queue->work_q)
802 goto out_free_queue;
803
804 queue->qid = qid;
805 queue->sqsize = sqsize;
806 queue->assoc = assoc;
807 INIT_LIST_HEAD(&queue->fod_list);
808 INIT_LIST_HEAD(&queue->avail_defer_list);
809 INIT_LIST_HEAD(&queue->pending_cmd_list);
810 atomic_set(&queue->connected, 0);
811 atomic_set(&queue->sqtail, 0);
812 atomic_set(&queue->rsn, 1);
813 atomic_set(&queue->zrspcnt, 0);
814 spin_lock_init(&queue->qlock);
815 kref_init(&queue->ref);
816
817 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
818
819 ret = nvmet_sq_init(&queue->nvme_sq);
820 if (ret)
821 goto out_fail_iodlist;
822
823 WARN_ON(assoc->queues[qid]);
824 assoc->queues[qid] = queue;
825
826 return queue;
827
828 out_fail_iodlist:
829 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
830 destroy_workqueue(queue->work_q);
831 out_free_queue:
832 kfree(queue);
833 return NULL;
834 }
835
836
837 static void
nvmet_fc_tgt_queue_free(struct kref * ref)838 nvmet_fc_tgt_queue_free(struct kref *ref)
839 {
840 struct nvmet_fc_tgt_queue *queue =
841 container_of(ref, struct nvmet_fc_tgt_queue, ref);
842
843 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
844
845 destroy_workqueue(queue->work_q);
846
847 kfree(queue);
848 }
849
850 static void
nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue * queue)851 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
852 {
853 kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
854 }
855
856 static int
nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue * queue)857 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
858 {
859 return kref_get_unless_zero(&queue->ref);
860 }
861
862
863 static void
nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue * queue)864 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
865 {
866 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
867 struct nvmet_fc_fcp_iod *fod = queue->fod;
868 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
869 unsigned long flags;
870 int i;
871 bool disconnect;
872
873 disconnect = atomic_xchg(&queue->connected, 0);
874
875 /* if not connected, nothing to do */
876 if (!disconnect)
877 return;
878
879 spin_lock_irqsave(&queue->qlock, flags);
880 /* abort outstanding io's */
881 for (i = 0; i < queue->sqsize; fod++, i++) {
882 if (fod->active) {
883 spin_lock(&fod->flock);
884 fod->abort = true;
885 /*
886 * only call lldd abort routine if waiting for
887 * writedata. other outstanding ops should finish
888 * on their own.
889 */
890 if (fod->writedataactive) {
891 fod->aborted = true;
892 spin_unlock(&fod->flock);
893 tgtport->ops->fcp_abort(
894 &tgtport->fc_target_port, fod->fcpreq);
895 } else
896 spin_unlock(&fod->flock);
897 }
898 }
899
900 /* Cleanup defer'ed IOs in queue */
901 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
902 req_list) {
903 list_del(&deferfcp->req_list);
904 kfree(deferfcp);
905 }
906
907 for (;;) {
908 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
909 struct nvmet_fc_defer_fcp_req, req_list);
910 if (!deferfcp)
911 break;
912
913 list_del(&deferfcp->req_list);
914 spin_unlock_irqrestore(&queue->qlock, flags);
915
916 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
917 deferfcp->fcp_req);
918
919 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
920 deferfcp->fcp_req);
921
922 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
923 deferfcp->fcp_req);
924
925 /* release the queue lookup reference */
926 nvmet_fc_tgt_q_put(queue);
927
928 kfree(deferfcp);
929
930 spin_lock_irqsave(&queue->qlock, flags);
931 }
932 spin_unlock_irqrestore(&queue->qlock, flags);
933
934 flush_workqueue(queue->work_q);
935
936 nvmet_sq_destroy(&queue->nvme_sq);
937
938 nvmet_fc_tgt_q_put(queue);
939 }
940
941 static struct nvmet_fc_tgt_queue *
nvmet_fc_find_target_queue(struct nvmet_fc_tgtport * tgtport,u64 connection_id)942 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
943 u64 connection_id)
944 {
945 struct nvmet_fc_tgt_assoc *assoc;
946 struct nvmet_fc_tgt_queue *queue;
947 u64 association_id = nvmet_fc_getassociationid(connection_id);
948 u16 qid = nvmet_fc_getqueueid(connection_id);
949
950 if (qid > NVMET_NR_QUEUES)
951 return NULL;
952
953 rcu_read_lock();
954 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
955 if (association_id == assoc->association_id) {
956 queue = assoc->queues[qid];
957 if (queue &&
958 (!atomic_read(&queue->connected) ||
959 !nvmet_fc_tgt_q_get(queue)))
960 queue = NULL;
961 rcu_read_unlock();
962 return queue;
963 }
964 }
965 rcu_read_unlock();
966 return NULL;
967 }
968
969 static void
nvmet_fc_hostport_free(struct kref * ref)970 nvmet_fc_hostport_free(struct kref *ref)
971 {
972 struct nvmet_fc_hostport *hostport =
973 container_of(ref, struct nvmet_fc_hostport, ref);
974 struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
975 unsigned long flags;
976
977 spin_lock_irqsave(&tgtport->lock, flags);
978 list_del(&hostport->host_list);
979 spin_unlock_irqrestore(&tgtport->lock, flags);
980 if (tgtport->ops->host_release && hostport->invalid)
981 tgtport->ops->host_release(hostport->hosthandle);
982 kfree(hostport);
983 nvmet_fc_tgtport_put(tgtport);
984 }
985
986 static void
nvmet_fc_hostport_put(struct nvmet_fc_hostport * hostport)987 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
988 {
989 kref_put(&hostport->ref, nvmet_fc_hostport_free);
990 }
991
992 static int
nvmet_fc_hostport_get(struct nvmet_fc_hostport * hostport)993 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
994 {
995 return kref_get_unless_zero(&hostport->ref);
996 }
997
998 static void
nvmet_fc_free_hostport(struct nvmet_fc_hostport * hostport)999 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1000 {
1001 /* if LLDD not implemented, leave as NULL */
1002 if (!hostport || !hostport->hosthandle)
1003 return;
1004
1005 nvmet_fc_hostport_put(hostport);
1006 }
1007
1008 static struct nvmet_fc_hostport *
nvmet_fc_match_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1009 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1010 {
1011 struct nvmet_fc_hostport *host;
1012
1013 lockdep_assert_held(&tgtport->lock);
1014
1015 list_for_each_entry(host, &tgtport->host_list, host_list) {
1016 if (host->hosthandle == hosthandle && !host->invalid) {
1017 if (nvmet_fc_hostport_get(host))
1018 return host;
1019 }
1020 }
1021
1022 return NULL;
1023 }
1024
1025 static struct nvmet_fc_hostport *
nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1026 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1027 {
1028 struct nvmet_fc_hostport *newhost, *match = NULL;
1029 unsigned long flags;
1030
1031 /*
1032 * Caller holds a reference on tgtport.
1033 */
1034
1035 /* if LLDD not implemented, leave as NULL */
1036 if (!hosthandle)
1037 return NULL;
1038
1039 spin_lock_irqsave(&tgtport->lock, flags);
1040 match = nvmet_fc_match_hostport(tgtport, hosthandle);
1041 spin_unlock_irqrestore(&tgtport->lock, flags);
1042
1043 if (match)
1044 return match;
1045
1046 newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1047 if (!newhost)
1048 return ERR_PTR(-ENOMEM);
1049
1050 spin_lock_irqsave(&tgtport->lock, flags);
1051 match = nvmet_fc_match_hostport(tgtport, hosthandle);
1052 if (match) {
1053 /* new allocation not needed */
1054 kfree(newhost);
1055 newhost = match;
1056 } else {
1057 nvmet_fc_tgtport_get(tgtport);
1058 newhost->tgtport = tgtport;
1059 newhost->hosthandle = hosthandle;
1060 INIT_LIST_HEAD(&newhost->host_list);
1061 kref_init(&newhost->ref);
1062
1063 list_add_tail(&newhost->host_list, &tgtport->host_list);
1064 }
1065 spin_unlock_irqrestore(&tgtport->lock, flags);
1066
1067 return newhost;
1068 }
1069
1070 static void
nvmet_fc_delete_assoc(struct nvmet_fc_tgt_assoc * assoc)1071 nvmet_fc_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1072 {
1073 nvmet_fc_delete_target_assoc(assoc);
1074 nvmet_fc_tgt_a_put(assoc);
1075 }
1076
1077 static void
nvmet_fc_delete_assoc_work(struct work_struct * work)1078 nvmet_fc_delete_assoc_work(struct work_struct *work)
1079 {
1080 struct nvmet_fc_tgt_assoc *assoc =
1081 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1082 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1083
1084 nvmet_fc_delete_assoc(assoc);
1085 nvmet_fc_tgtport_put(tgtport);
1086 }
1087
1088 static void
nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc * assoc)1089 nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1090 {
1091 nvmet_fc_tgtport_get(assoc->tgtport);
1092 if (!queue_work(nvmet_wq, &assoc->del_work))
1093 nvmet_fc_tgtport_put(assoc->tgtport);
1094 }
1095
1096 static bool
nvmet_fc_assoc_exists(struct nvmet_fc_tgtport * tgtport,u64 association_id)1097 nvmet_fc_assoc_exists(struct nvmet_fc_tgtport *tgtport, u64 association_id)
1098 {
1099 struct nvmet_fc_tgt_assoc *a;
1100 bool found = false;
1101
1102 rcu_read_lock();
1103 list_for_each_entry_rcu(a, &tgtport->assoc_list, a_list) {
1104 if (association_id == a->association_id) {
1105 found = true;
1106 break;
1107 }
1108 }
1109 rcu_read_unlock();
1110
1111 return found;
1112 }
1113
1114 static struct nvmet_fc_tgt_assoc *
nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1115 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1116 {
1117 struct nvmet_fc_tgt_assoc *assoc;
1118 unsigned long flags;
1119 bool done;
1120 u64 ran;
1121 int idx;
1122
1123 if (!tgtport->pe)
1124 return NULL;
1125
1126 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1127 if (!assoc)
1128 return NULL;
1129
1130 idx = ida_alloc(&tgtport->assoc_cnt, GFP_KERNEL);
1131 if (idx < 0)
1132 goto out_free_assoc;
1133
1134 assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1135 if (IS_ERR(assoc->hostport))
1136 goto out_ida;
1137
1138 assoc->tgtport = tgtport;
1139 assoc->a_id = idx;
1140 INIT_LIST_HEAD(&assoc->a_list);
1141 kref_init(&assoc->ref);
1142 INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc_work);
1143 atomic_set(&assoc->terminating, 0);
1144
1145 done = false;
1146 do {
1147 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1148 ran = ran << BYTES_FOR_QID_SHIFT;
1149
1150 spin_lock_irqsave(&tgtport->lock, flags);
1151 if (!nvmet_fc_assoc_exists(tgtport, ran)) {
1152 assoc->association_id = ran;
1153 list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1154 done = true;
1155 }
1156 spin_unlock_irqrestore(&tgtport->lock, flags);
1157 } while (!done);
1158
1159 return assoc;
1160
1161 out_ida:
1162 ida_free(&tgtport->assoc_cnt, idx);
1163 out_free_assoc:
1164 kfree(assoc);
1165 return NULL;
1166 }
1167
1168 static void
nvmet_fc_target_assoc_free(struct kref * ref)1169 nvmet_fc_target_assoc_free(struct kref *ref)
1170 {
1171 struct nvmet_fc_tgt_assoc *assoc =
1172 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1173 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1174 struct nvmet_fc_ls_iod *oldls;
1175 unsigned long flags;
1176 int i;
1177
1178 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1179 if (assoc->queues[i])
1180 nvmet_fc_delete_target_queue(assoc->queues[i]);
1181 }
1182
1183 /* Send Disconnect now that all i/o has completed */
1184 nvmet_fc_xmt_disconnect_assoc(assoc);
1185
1186 nvmet_fc_free_hostport(assoc->hostport);
1187 spin_lock_irqsave(&tgtport->lock, flags);
1188 oldls = assoc->rcv_disconn;
1189 spin_unlock_irqrestore(&tgtport->lock, flags);
1190 /* if pending Rcv Disconnect Association LS, send rsp now */
1191 if (oldls)
1192 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1193 ida_free(&tgtport->assoc_cnt, assoc->a_id);
1194 dev_info(tgtport->dev,
1195 "{%d:%d} Association freed\n",
1196 tgtport->fc_target_port.port_num, assoc->a_id);
1197 kfree(assoc);
1198 }
1199
1200 static void
nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc * assoc)1201 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1202 {
1203 kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1204 }
1205
1206 static int
nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc * assoc)1207 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1208 {
1209 return kref_get_unless_zero(&assoc->ref);
1210 }
1211
1212 static void
nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc * assoc)1213 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1214 {
1215 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1216 unsigned long flags;
1217 int i, terminating;
1218
1219 terminating = atomic_xchg(&assoc->terminating, 1);
1220
1221 /* if already terminating, do nothing */
1222 if (terminating)
1223 return;
1224
1225 spin_lock_irqsave(&tgtport->lock, flags);
1226 list_del_rcu(&assoc->a_list);
1227 spin_unlock_irqrestore(&tgtport->lock, flags);
1228
1229 synchronize_rcu();
1230
1231 /* ensure all in-flight I/Os have been processed */
1232 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1233 if (assoc->queues[i])
1234 flush_workqueue(assoc->queues[i]->work_q);
1235 }
1236
1237 dev_info(tgtport->dev,
1238 "{%d:%d} Association deleted\n",
1239 tgtport->fc_target_port.port_num, assoc->a_id);
1240 }
1241
1242 static struct nvmet_fc_tgt_assoc *
nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport * tgtport,u64 association_id)1243 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1244 u64 association_id)
1245 {
1246 struct nvmet_fc_tgt_assoc *assoc;
1247 struct nvmet_fc_tgt_assoc *ret = NULL;
1248
1249 rcu_read_lock();
1250 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1251 if (association_id == assoc->association_id) {
1252 ret = assoc;
1253 if (!nvmet_fc_tgt_a_get(assoc))
1254 ret = NULL;
1255 break;
1256 }
1257 }
1258 rcu_read_unlock();
1259
1260 return ret;
1261 }
1262
1263 static void
nvmet_fc_portentry_bind(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_port_entry * pe,struct nvmet_port * port)1264 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1265 struct nvmet_fc_port_entry *pe,
1266 struct nvmet_port *port)
1267 {
1268 lockdep_assert_held(&nvmet_fc_tgtlock);
1269
1270 pe->tgtport = tgtport;
1271 tgtport->pe = pe;
1272
1273 pe->port = port;
1274 port->priv = pe;
1275
1276 pe->node_name = tgtport->fc_target_port.node_name;
1277 pe->port_name = tgtport->fc_target_port.port_name;
1278 INIT_LIST_HEAD(&pe->pe_list);
1279
1280 list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1281 }
1282
1283 static void
nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry * pe)1284 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1285 {
1286 unsigned long flags;
1287
1288 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1289 if (pe->tgtport)
1290 pe->tgtport->pe = NULL;
1291 list_del(&pe->pe_list);
1292 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1293 }
1294
1295 /*
1296 * called when a targetport deregisters. Breaks the relationship
1297 * with the nvmet port, but leaves the port_entry in place so that
1298 * re-registration can resume operation.
1299 */
1300 static void
nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport * tgtport)1301 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1302 {
1303 struct nvmet_fc_port_entry *pe;
1304 unsigned long flags;
1305
1306 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1307 pe = tgtport->pe;
1308 if (pe)
1309 pe->tgtport = NULL;
1310 tgtport->pe = NULL;
1311 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1312 }
1313
1314 /*
1315 * called when a new targetport is registered. Looks in the
1316 * existing nvmet port_entries to see if the nvmet layer is
1317 * configured for the targetport's wwn's. (the targetport existed,
1318 * nvmet configured, the lldd unregistered the tgtport, and is now
1319 * reregistering the same targetport). If so, set the nvmet port
1320 * port entry on the targetport.
1321 */
1322 static void
nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport * tgtport)1323 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1324 {
1325 struct nvmet_fc_port_entry *pe;
1326 unsigned long flags;
1327
1328 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1329 list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1330 if (tgtport->fc_target_port.node_name == pe->node_name &&
1331 tgtport->fc_target_port.port_name == pe->port_name) {
1332 WARN_ON(pe->tgtport);
1333 tgtport->pe = pe;
1334 pe->tgtport = tgtport;
1335 break;
1336 }
1337 }
1338 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1339 }
1340
1341 /**
1342 * nvmet_fc_register_targetport - transport entry point called by an
1343 * LLDD to register the existence of a local
1344 * NVME subystem FC port.
1345 * @pinfo: pointer to information about the port to be registered
1346 * @template: LLDD entrypoints and operational parameters for the port
1347 * @dev: physical hardware device node port corresponds to. Will be
1348 * used for DMA mappings
1349 * @portptr: pointer to a local port pointer. Upon success, the routine
1350 * will allocate a nvme_fc_local_port structure and place its
1351 * address in the local port pointer. Upon failure, local port
1352 * pointer will be set to NULL.
1353 *
1354 * Returns:
1355 * a completion status. Must be 0 upon success; a negative errno
1356 * (ex: -ENXIO) upon failure.
1357 */
1358 int
nvmet_fc_register_targetport(struct nvmet_fc_port_info * pinfo,struct nvmet_fc_target_template * template,struct device * dev,struct nvmet_fc_target_port ** portptr)1359 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1360 struct nvmet_fc_target_template *template,
1361 struct device *dev,
1362 struct nvmet_fc_target_port **portptr)
1363 {
1364 struct nvmet_fc_tgtport *newrec;
1365 unsigned long flags;
1366 int ret, idx;
1367
1368 if (!template->xmt_ls_rsp || !template->fcp_op ||
1369 !template->fcp_abort ||
1370 !template->fcp_req_release || !template->targetport_delete ||
1371 !template->max_hw_queues || !template->max_sgl_segments ||
1372 !template->max_dif_sgl_segments || !template->dma_boundary) {
1373 ret = -EINVAL;
1374 goto out_regtgt_failed;
1375 }
1376
1377 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1378 GFP_KERNEL);
1379 if (!newrec) {
1380 ret = -ENOMEM;
1381 goto out_regtgt_failed;
1382 }
1383
1384 idx = ida_alloc(&nvmet_fc_tgtport_cnt, GFP_KERNEL);
1385 if (idx < 0) {
1386 ret = -ENOSPC;
1387 goto out_fail_kfree;
1388 }
1389
1390 if (!get_device(dev) && dev) {
1391 ret = -ENODEV;
1392 goto out_ida_put;
1393 }
1394
1395 newrec->fc_target_port.node_name = pinfo->node_name;
1396 newrec->fc_target_port.port_name = pinfo->port_name;
1397 if (template->target_priv_sz)
1398 newrec->fc_target_port.private = &newrec[1];
1399 else
1400 newrec->fc_target_port.private = NULL;
1401 newrec->fc_target_port.port_id = pinfo->port_id;
1402 newrec->fc_target_port.port_num = idx;
1403 INIT_LIST_HEAD(&newrec->tgt_list);
1404 newrec->dev = dev;
1405 newrec->ops = template;
1406 spin_lock_init(&newrec->lock);
1407 INIT_LIST_HEAD(&newrec->ls_rcv_list);
1408 INIT_LIST_HEAD(&newrec->ls_req_list);
1409 INIT_LIST_HEAD(&newrec->ls_busylist);
1410 INIT_LIST_HEAD(&newrec->assoc_list);
1411 INIT_LIST_HEAD(&newrec->host_list);
1412 kref_init(&newrec->ref);
1413 ida_init(&newrec->assoc_cnt);
1414 newrec->max_sg_cnt = template->max_sgl_segments;
1415 INIT_WORK(&newrec->put_work, nvmet_fc_put_tgtport_work);
1416
1417 ret = nvmet_fc_alloc_ls_iodlist(newrec);
1418 if (ret) {
1419 ret = -ENOMEM;
1420 goto out_free_newrec;
1421 }
1422
1423 nvmet_fc_portentry_rebind_tgt(newrec);
1424
1425 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1426 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1427 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1428
1429 *portptr = &newrec->fc_target_port;
1430 return 0;
1431
1432 out_free_newrec:
1433 put_device(dev);
1434 out_ida_put:
1435 ida_free(&nvmet_fc_tgtport_cnt, idx);
1436 out_fail_kfree:
1437 kfree(newrec);
1438 out_regtgt_failed:
1439 *portptr = NULL;
1440 return ret;
1441 }
1442 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1443
1444
1445 static void
nvmet_fc_free_tgtport(struct kref * ref)1446 nvmet_fc_free_tgtport(struct kref *ref)
1447 {
1448 struct nvmet_fc_tgtport *tgtport =
1449 container_of(ref, struct nvmet_fc_tgtport, ref);
1450 struct device *dev = tgtport->dev;
1451 unsigned long flags;
1452
1453 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1454 list_del(&tgtport->tgt_list);
1455 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1456
1457 nvmet_fc_free_ls_iodlist(tgtport);
1458
1459 /* let the LLDD know we've finished tearing it down */
1460 tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1461
1462 ida_free(&nvmet_fc_tgtport_cnt,
1463 tgtport->fc_target_port.port_num);
1464
1465 ida_destroy(&tgtport->assoc_cnt);
1466
1467 kfree(tgtport);
1468
1469 put_device(dev);
1470 }
1471
1472 static void
nvmet_fc_tgtport_put(struct nvmet_fc_tgtport * tgtport)1473 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1474 {
1475 kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1476 }
1477
1478 static int
nvmet_fc_tgtport_get(struct nvmet_fc_tgtport * tgtport)1479 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1480 {
1481 return kref_get_unless_zero(&tgtport->ref);
1482 }
1483
1484 static void
__nvmet_fc_free_assocs(struct nvmet_fc_tgtport * tgtport)1485 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1486 {
1487 struct nvmet_fc_tgt_assoc *assoc;
1488
1489 rcu_read_lock();
1490 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1491 if (!nvmet_fc_tgt_a_get(assoc))
1492 continue;
1493 nvmet_fc_schedule_delete_assoc(assoc);
1494 nvmet_fc_tgt_a_put(assoc);
1495 }
1496 rcu_read_unlock();
1497 }
1498
1499 /**
1500 * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1501 * to remove references to a hosthandle for LS's.
1502 *
1503 * The nvmet-fc layer ensures that any references to the hosthandle
1504 * on the targetport are forgotten (set to NULL). The LLDD will
1505 * typically call this when a login with a remote host port has been
1506 * lost, thus LS's for the remote host port are no longer possible.
1507 *
1508 * If an LS request is outstanding to the targetport/hosthandle (or
1509 * issued concurrently with the call to invalidate the host), the
1510 * LLDD is responsible for terminating/aborting the LS and completing
1511 * the LS request. It is recommended that these terminations/aborts
1512 * occur after calling to invalidate the host handle to avoid additional
1513 * retries by the nvmet-fc transport. The nvmet-fc transport may
1514 * continue to reference host handle while it cleans up outstanding
1515 * NVME associations. The nvmet-fc transport will call the
1516 * ops->host_release() callback to notify the LLDD that all references
1517 * are complete and the related host handle can be recovered.
1518 * Note: if there are no references, the callback may be called before
1519 * the invalidate host call returns.
1520 *
1521 * @target_port: pointer to the (registered) target port that a prior
1522 * LS was received on and which supplied the transport the
1523 * hosthandle.
1524 * @hosthandle: the handle (pointer) that represents the host port
1525 * that no longer has connectivity and that LS's should
1526 * no longer be directed to.
1527 */
1528 void
nvmet_fc_invalidate_host(struct nvmet_fc_target_port * target_port,void * hosthandle)1529 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1530 void *hosthandle)
1531 {
1532 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1533 struct nvmet_fc_tgt_assoc *assoc, *next;
1534 unsigned long flags;
1535 bool noassoc = true;
1536
1537 spin_lock_irqsave(&tgtport->lock, flags);
1538 list_for_each_entry_safe(assoc, next,
1539 &tgtport->assoc_list, a_list) {
1540 if (assoc->hostport->hosthandle != hosthandle)
1541 continue;
1542 if (!nvmet_fc_tgt_a_get(assoc))
1543 continue;
1544 assoc->hostport->invalid = 1;
1545 noassoc = false;
1546 nvmet_fc_schedule_delete_assoc(assoc);
1547 nvmet_fc_tgt_a_put(assoc);
1548 }
1549 spin_unlock_irqrestore(&tgtport->lock, flags);
1550
1551 /* if there's nothing to wait for - call the callback */
1552 if (noassoc && tgtport->ops->host_release)
1553 tgtport->ops->host_release(hosthandle);
1554 }
1555 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1556
1557 /*
1558 * nvmet layer has called to terminate an association
1559 */
1560 static void
nvmet_fc_delete_ctrl(struct nvmet_ctrl * ctrl)1561 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1562 {
1563 struct nvmet_fc_tgtport *tgtport, *next;
1564 struct nvmet_fc_tgt_assoc *assoc;
1565 struct nvmet_fc_tgt_queue *queue;
1566 unsigned long flags;
1567 bool found_ctrl = false;
1568
1569 /* this is a bit ugly, but don't want to make locks layered */
1570 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1571 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1572 tgt_list) {
1573 if (!nvmet_fc_tgtport_get(tgtport))
1574 continue;
1575 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1576
1577 rcu_read_lock();
1578 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1579 queue = assoc->queues[0];
1580 if (queue && queue->nvme_sq.ctrl == ctrl) {
1581 if (nvmet_fc_tgt_a_get(assoc))
1582 found_ctrl = true;
1583 break;
1584 }
1585 }
1586 rcu_read_unlock();
1587
1588 nvmet_fc_tgtport_put(tgtport);
1589
1590 if (found_ctrl) {
1591 nvmet_fc_schedule_delete_assoc(assoc);
1592 nvmet_fc_tgt_a_put(assoc);
1593 return;
1594 }
1595
1596 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1597 }
1598 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1599 }
1600
1601 /**
1602 * nvmet_fc_unregister_targetport - transport entry point called by an
1603 * LLDD to deregister/remove a previously
1604 * registered a local NVME subsystem FC port.
1605 * @target_port: pointer to the (registered) target port that is to be
1606 * deregistered.
1607 *
1608 * Returns:
1609 * a completion status. Must be 0 upon success; a negative errno
1610 * (ex: -ENXIO) upon failure.
1611 */
1612 int
nvmet_fc_unregister_targetport(struct nvmet_fc_target_port * target_port)1613 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1614 {
1615 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1616
1617 nvmet_fc_portentry_unbind_tgt(tgtport);
1618
1619 /* terminate any outstanding associations */
1620 __nvmet_fc_free_assocs(tgtport);
1621
1622 flush_workqueue(nvmet_wq);
1623
1624 /*
1625 * should terminate LS's as well. However, LS's will be generated
1626 * at the tail end of association termination, so they likely don't
1627 * exist yet. And even if they did, it's worthwhile to just let
1628 * them finish and targetport ref counting will clean things up.
1629 */
1630
1631 nvmet_fc_tgtport_put(tgtport);
1632
1633 return 0;
1634 }
1635 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1636
1637
1638 /* ********************** FC-NVME LS RCV Handling ************************* */
1639
1640
1641 static void
nvmet_fc_ls_create_association(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1642 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1643 struct nvmet_fc_ls_iod *iod)
1644 {
1645 struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1646 struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1647 struct nvmet_fc_tgt_queue *queue;
1648 int ret = 0;
1649
1650 memset(acc, 0, sizeof(*acc));
1651
1652 /*
1653 * FC-NVME spec changes. There are initiators sending different
1654 * lengths as padding sizes for Create Association Cmd descriptor
1655 * was incorrect.
1656 * Accept anything of "minimum" length. Assume format per 1.15
1657 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1658 * trailing pad length is.
1659 */
1660 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1661 ret = VERR_CR_ASSOC_LEN;
1662 else if (be32_to_cpu(rqst->desc_list_len) <
1663 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1664 ret = VERR_CR_ASSOC_RQST_LEN;
1665 else if (rqst->assoc_cmd.desc_tag !=
1666 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1667 ret = VERR_CR_ASSOC_CMD;
1668 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1669 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1670 ret = VERR_CR_ASSOC_CMD_LEN;
1671 else if (!rqst->assoc_cmd.ersp_ratio ||
1672 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1673 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1674 ret = VERR_ERSP_RATIO;
1675
1676 else {
1677 /* new association w/ admin queue */
1678 iod->assoc = nvmet_fc_alloc_target_assoc(
1679 tgtport, iod->hosthandle);
1680 if (!iod->assoc)
1681 ret = VERR_ASSOC_ALLOC_FAIL;
1682 else {
1683 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1684 be16_to_cpu(rqst->assoc_cmd.sqsize));
1685 if (!queue) {
1686 ret = VERR_QUEUE_ALLOC_FAIL;
1687 nvmet_fc_tgt_a_put(iod->assoc);
1688 }
1689 }
1690 }
1691
1692 if (ret) {
1693 dev_err(tgtport->dev,
1694 "Create Association LS failed: %s\n",
1695 validation_errors[ret]);
1696 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1697 sizeof(*acc), rqst->w0.ls_cmd,
1698 FCNVME_RJT_RC_LOGIC,
1699 FCNVME_RJT_EXP_NONE, 0);
1700 return;
1701 }
1702
1703 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1704 atomic_set(&queue->connected, 1);
1705 queue->sqhd = 0; /* best place to init value */
1706
1707 dev_info(tgtport->dev,
1708 "{%d:%d} Association created\n",
1709 tgtport->fc_target_port.port_num, iod->assoc->a_id);
1710
1711 /* format a response */
1712
1713 iod->lsrsp->rsplen = sizeof(*acc);
1714
1715 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1716 fcnvme_lsdesc_len(
1717 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1718 FCNVME_LS_CREATE_ASSOCIATION);
1719 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1720 acc->associd.desc_len =
1721 fcnvme_lsdesc_len(
1722 sizeof(struct fcnvme_lsdesc_assoc_id));
1723 acc->associd.association_id =
1724 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1725 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1726 acc->connectid.desc_len =
1727 fcnvme_lsdesc_len(
1728 sizeof(struct fcnvme_lsdesc_conn_id));
1729 acc->connectid.connection_id = acc->associd.association_id;
1730 }
1731
1732 static void
nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1733 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1734 struct nvmet_fc_ls_iod *iod)
1735 {
1736 struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1737 struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1738 struct nvmet_fc_tgt_queue *queue;
1739 int ret = 0;
1740
1741 memset(acc, 0, sizeof(*acc));
1742
1743 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1744 ret = VERR_CR_CONN_LEN;
1745 else if (rqst->desc_list_len !=
1746 fcnvme_lsdesc_len(
1747 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1748 ret = VERR_CR_CONN_RQST_LEN;
1749 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1750 ret = VERR_ASSOC_ID;
1751 else if (rqst->associd.desc_len !=
1752 fcnvme_lsdesc_len(
1753 sizeof(struct fcnvme_lsdesc_assoc_id)))
1754 ret = VERR_ASSOC_ID_LEN;
1755 else if (rqst->connect_cmd.desc_tag !=
1756 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1757 ret = VERR_CR_CONN_CMD;
1758 else if (rqst->connect_cmd.desc_len !=
1759 fcnvme_lsdesc_len(
1760 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1761 ret = VERR_CR_CONN_CMD_LEN;
1762 else if (!rqst->connect_cmd.ersp_ratio ||
1763 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1764 be16_to_cpu(rqst->connect_cmd.sqsize)))
1765 ret = VERR_ERSP_RATIO;
1766
1767 else {
1768 /* new io queue */
1769 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1770 be64_to_cpu(rqst->associd.association_id));
1771 if (!iod->assoc)
1772 ret = VERR_NO_ASSOC;
1773 else {
1774 queue = nvmet_fc_alloc_target_queue(iod->assoc,
1775 be16_to_cpu(rqst->connect_cmd.qid),
1776 be16_to_cpu(rqst->connect_cmd.sqsize));
1777 if (!queue)
1778 ret = VERR_QUEUE_ALLOC_FAIL;
1779
1780 /* release get taken in nvmet_fc_find_target_assoc */
1781 nvmet_fc_tgt_a_put(iod->assoc);
1782 }
1783 }
1784
1785 if (ret) {
1786 dev_err(tgtport->dev,
1787 "Create Connection LS failed: %s\n",
1788 validation_errors[ret]);
1789 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1790 sizeof(*acc), rqst->w0.ls_cmd,
1791 (ret == VERR_NO_ASSOC) ?
1792 FCNVME_RJT_RC_INV_ASSOC :
1793 FCNVME_RJT_RC_LOGIC,
1794 FCNVME_RJT_EXP_NONE, 0);
1795 return;
1796 }
1797
1798 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1799 atomic_set(&queue->connected, 1);
1800 queue->sqhd = 0; /* best place to init value */
1801
1802 /* format a response */
1803
1804 iod->lsrsp->rsplen = sizeof(*acc);
1805
1806 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1807 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1808 FCNVME_LS_CREATE_CONNECTION);
1809 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1810 acc->connectid.desc_len =
1811 fcnvme_lsdesc_len(
1812 sizeof(struct fcnvme_lsdesc_conn_id));
1813 acc->connectid.connection_id =
1814 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1815 be16_to_cpu(rqst->connect_cmd.qid)));
1816 }
1817
1818 /*
1819 * Returns true if the LS response is to be transmit
1820 * Returns false if the LS response is to be delayed
1821 */
1822 static int
nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1823 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1824 struct nvmet_fc_ls_iod *iod)
1825 {
1826 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1827 &iod->rqstbuf->rq_dis_assoc;
1828 struct fcnvme_ls_disconnect_assoc_acc *acc =
1829 &iod->rspbuf->rsp_dis_assoc;
1830 struct nvmet_fc_tgt_assoc *assoc = NULL;
1831 struct nvmet_fc_ls_iod *oldls = NULL;
1832 unsigned long flags;
1833 int ret = 0;
1834
1835 memset(acc, 0, sizeof(*acc));
1836
1837 ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1838 if (!ret) {
1839 /* match an active association - takes an assoc ref if !NULL */
1840 assoc = nvmet_fc_find_target_assoc(tgtport,
1841 be64_to_cpu(rqst->associd.association_id));
1842 iod->assoc = assoc;
1843 if (!assoc)
1844 ret = VERR_NO_ASSOC;
1845 }
1846
1847 if (ret || !assoc) {
1848 dev_err(tgtport->dev,
1849 "Disconnect LS failed: %s\n",
1850 validation_errors[ret]);
1851 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1852 sizeof(*acc), rqst->w0.ls_cmd,
1853 (ret == VERR_NO_ASSOC) ?
1854 FCNVME_RJT_RC_INV_ASSOC :
1855 FCNVME_RJT_RC_LOGIC,
1856 FCNVME_RJT_EXP_NONE, 0);
1857 return true;
1858 }
1859
1860 /* format a response */
1861
1862 iod->lsrsp->rsplen = sizeof(*acc);
1863
1864 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1865 fcnvme_lsdesc_len(
1866 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1867 FCNVME_LS_DISCONNECT_ASSOC);
1868
1869 /*
1870 * The rules for LS response says the response cannot
1871 * go back until ABTS's have been sent for all outstanding
1872 * I/O and a Disconnect Association LS has been sent.
1873 * So... save off the Disconnect LS to send the response
1874 * later. If there was a prior LS already saved, replace
1875 * it with the newer one and send a can't perform reject
1876 * on the older one.
1877 */
1878 spin_lock_irqsave(&tgtport->lock, flags);
1879 oldls = assoc->rcv_disconn;
1880 assoc->rcv_disconn = iod;
1881 spin_unlock_irqrestore(&tgtport->lock, flags);
1882
1883 if (oldls) {
1884 dev_info(tgtport->dev,
1885 "{%d:%d} Multiple Disconnect Association LS's "
1886 "received\n",
1887 tgtport->fc_target_port.port_num, assoc->a_id);
1888 /* overwrite good response with bogus failure */
1889 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1890 sizeof(*iod->rspbuf),
1891 /* ok to use rqst, LS is same */
1892 rqst->w0.ls_cmd,
1893 FCNVME_RJT_RC_UNAB,
1894 FCNVME_RJT_EXP_NONE, 0);
1895 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1896 }
1897
1898 nvmet_fc_schedule_delete_assoc(assoc);
1899 nvmet_fc_tgt_a_put(assoc);
1900
1901 return false;
1902 }
1903
1904
1905 /* *********************** NVME Ctrl Routines **************************** */
1906
1907
1908 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1909
1910 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1911
1912 static void
nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1913 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1914 {
1915 struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1916 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1917
1918 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1919 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1920 nvmet_fc_free_ls_iod(tgtport, iod);
1921 nvmet_fc_tgtport_put(tgtport);
1922 }
1923
1924 static void
nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1925 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1926 struct nvmet_fc_ls_iod *iod)
1927 {
1928 int ret;
1929
1930 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1931 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1932
1933 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1934 if (ret)
1935 nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1936 }
1937
1938 /*
1939 * Actual processing routine for received FC-NVME LS Requests from the LLD
1940 */
1941 static void
nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1942 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1943 struct nvmet_fc_ls_iod *iod)
1944 {
1945 struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1946 bool sendrsp = true;
1947
1948 iod->lsrsp->nvme_fc_private = iod;
1949 iod->lsrsp->rspbuf = iod->rspbuf;
1950 iod->lsrsp->rspdma = iod->rspdma;
1951 iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1952 /* Be preventative. handlers will later set to valid length */
1953 iod->lsrsp->rsplen = 0;
1954
1955 iod->assoc = NULL;
1956
1957 /*
1958 * handlers:
1959 * parse request input, execute the request, and format the
1960 * LS response
1961 */
1962 switch (w0->ls_cmd) {
1963 case FCNVME_LS_CREATE_ASSOCIATION:
1964 /* Creates Association and initial Admin Queue/Connection */
1965 nvmet_fc_ls_create_association(tgtport, iod);
1966 break;
1967 case FCNVME_LS_CREATE_CONNECTION:
1968 /* Creates an IO Queue/Connection */
1969 nvmet_fc_ls_create_connection(tgtport, iod);
1970 break;
1971 case FCNVME_LS_DISCONNECT_ASSOC:
1972 /* Terminate a Queue/Connection or the Association */
1973 sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1974 break;
1975 default:
1976 iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1977 sizeof(*iod->rspbuf), w0->ls_cmd,
1978 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1979 }
1980
1981 if (sendrsp)
1982 nvmet_fc_xmt_ls_rsp(tgtport, iod);
1983 }
1984
1985 /*
1986 * Actual processing routine for received FC-NVME LS Requests from the LLD
1987 */
1988 static void
nvmet_fc_handle_ls_rqst_work(struct work_struct * work)1989 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1990 {
1991 struct nvmet_fc_ls_iod *iod =
1992 container_of(work, struct nvmet_fc_ls_iod, work);
1993 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1994
1995 nvmet_fc_handle_ls_rqst(tgtport, iod);
1996 }
1997
1998
1999 /**
2000 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2001 * upon the reception of a NVME LS request.
2002 *
2003 * The nvmet-fc layer will copy payload to an internal structure for
2004 * processing. As such, upon completion of the routine, the LLDD may
2005 * immediately free/reuse the LS request buffer passed in the call.
2006 *
2007 * If this routine returns error, the LLDD should abort the exchange.
2008 *
2009 * @target_port: pointer to the (registered) target port the LS was
2010 * received on.
2011 * @hosthandle: pointer to the host specific data, gets stored in iod.
2012 * @lsrsp: pointer to a lsrsp structure to be used to reference
2013 * the exchange corresponding to the LS.
2014 * @lsreqbuf: pointer to the buffer containing the LS Request
2015 * @lsreqbuf_len: length, in bytes, of the received LS request
2016 */
2017 int
nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port * target_port,void * hosthandle,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)2018 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2019 void *hosthandle,
2020 struct nvmefc_ls_rsp *lsrsp,
2021 void *lsreqbuf, u32 lsreqbuf_len)
2022 {
2023 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2024 struct nvmet_fc_ls_iod *iod;
2025 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2026
2027 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2028 dev_info(tgtport->dev,
2029 "RCV %s LS failed: payload too large (%d)\n",
2030 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2031 nvmefc_ls_names[w0->ls_cmd] : "",
2032 lsreqbuf_len);
2033 return -E2BIG;
2034 }
2035
2036 if (!nvmet_fc_tgtport_get(tgtport)) {
2037 dev_info(tgtport->dev,
2038 "RCV %s LS failed: target deleting\n",
2039 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2040 nvmefc_ls_names[w0->ls_cmd] : "");
2041 return -ESHUTDOWN;
2042 }
2043
2044 iod = nvmet_fc_alloc_ls_iod(tgtport);
2045 if (!iod) {
2046 dev_info(tgtport->dev,
2047 "RCV %s LS failed: context allocation failed\n",
2048 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2049 nvmefc_ls_names[w0->ls_cmd] : "");
2050 nvmet_fc_tgtport_put(tgtport);
2051 return -ENOENT;
2052 }
2053
2054 iod->lsrsp = lsrsp;
2055 iod->fcpreq = NULL;
2056 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2057 iod->rqstdatalen = lsreqbuf_len;
2058 iod->hosthandle = hosthandle;
2059
2060 queue_work(nvmet_wq, &iod->work);
2061
2062 return 0;
2063 }
2064 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2065
2066
2067 /*
2068 * **********************
2069 * Start of FCP handling
2070 * **********************
2071 */
2072
2073 static int
nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2074 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2075 {
2076 struct scatterlist *sg;
2077 unsigned int nent;
2078
2079 sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2080 if (!sg)
2081 goto out;
2082
2083 fod->data_sg = sg;
2084 fod->data_sg_cnt = nent;
2085 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2086 ((fod->io_dir == NVMET_FCP_WRITE) ?
2087 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2088 /* note: write from initiator perspective */
2089 fod->next_sg = fod->data_sg;
2090
2091 return 0;
2092
2093 out:
2094 return NVME_SC_INTERNAL;
2095 }
2096
2097 static void
nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2098 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2099 {
2100 if (!fod->data_sg || !fod->data_sg_cnt)
2101 return;
2102
2103 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2104 ((fod->io_dir == NVMET_FCP_WRITE) ?
2105 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2106 sgl_free(fod->data_sg);
2107 fod->data_sg = NULL;
2108 fod->data_sg_cnt = 0;
2109 }
2110
2111
2112 static bool
queue_90percent_full(struct nvmet_fc_tgt_queue * q,u32 sqhd)2113 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2114 {
2115 u32 sqtail, used;
2116
2117 /* egad, this is ugly. And sqtail is just a best guess */
2118 sqtail = atomic_read(&q->sqtail) % q->sqsize;
2119
2120 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2121 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2122 }
2123
2124 /*
2125 * Prep RSP payload.
2126 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2127 */
2128 static void
nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2129 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2130 struct nvmet_fc_fcp_iod *fod)
2131 {
2132 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2133 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2134 struct nvme_completion *cqe = &ersp->cqe;
2135 u32 *cqewd = (u32 *)cqe;
2136 bool send_ersp = false;
2137 u32 rsn, rspcnt, xfr_length;
2138
2139 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2140 xfr_length = fod->req.transfer_len;
2141 else
2142 xfr_length = fod->offset;
2143
2144 /*
2145 * check to see if we can send a 0's rsp.
2146 * Note: to send a 0's response, the NVME-FC host transport will
2147 * recreate the CQE. The host transport knows: sq id, SQHD (last
2148 * seen in an ersp), and command_id. Thus it will create a
2149 * zero-filled CQE with those known fields filled in. Transport
2150 * must send an ersp for any condition where the cqe won't match
2151 * this.
2152 *
2153 * Here are the FC-NVME mandated cases where we must send an ersp:
2154 * every N responses, where N=ersp_ratio
2155 * force fabric commands to send ersp's (not in FC-NVME but good
2156 * practice)
2157 * normal cmds: any time status is non-zero, or status is zero
2158 * but words 0 or 1 are non-zero.
2159 * the SQ is 90% or more full
2160 * the cmd is a fused command
2161 * transferred data length not equal to cmd iu length
2162 */
2163 rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2164 if (!(rspcnt % fod->queue->ersp_ratio) ||
2165 nvme_is_fabrics((struct nvme_command *) sqe) ||
2166 xfr_length != fod->req.transfer_len ||
2167 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2168 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2169 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2170 send_ersp = true;
2171
2172 /* re-set the fields */
2173 fod->fcpreq->rspaddr = ersp;
2174 fod->fcpreq->rspdma = fod->rspdma;
2175
2176 if (!send_ersp) {
2177 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2178 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2179 } else {
2180 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2181 rsn = atomic_inc_return(&fod->queue->rsn);
2182 ersp->rsn = cpu_to_be32(rsn);
2183 ersp->xfrd_len = cpu_to_be32(xfr_length);
2184 fod->fcpreq->rsplen = sizeof(*ersp);
2185 }
2186
2187 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2188 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2189 }
2190
2191 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2192
2193 static void
nvmet_fc_abort_op(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2194 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2195 struct nvmet_fc_fcp_iod *fod)
2196 {
2197 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2198
2199 /* data no longer needed */
2200 nvmet_fc_free_tgt_pgs(fod);
2201
2202 /*
2203 * if an ABTS was received or we issued the fcp_abort early
2204 * don't call abort routine again.
2205 */
2206 /* no need to take lock - lock was taken earlier to get here */
2207 if (!fod->aborted)
2208 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2209
2210 nvmet_fc_free_fcp_iod(fod->queue, fod);
2211 }
2212
2213 static void
nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2214 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2215 struct nvmet_fc_fcp_iod *fod)
2216 {
2217 int ret;
2218
2219 fod->fcpreq->op = NVMET_FCOP_RSP;
2220 fod->fcpreq->timeout = 0;
2221
2222 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2223
2224 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2225 if (ret)
2226 nvmet_fc_abort_op(tgtport, fod);
2227 }
2228
2229 static void
nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,u8 op)2230 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2231 struct nvmet_fc_fcp_iod *fod, u8 op)
2232 {
2233 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2234 struct scatterlist *sg = fod->next_sg;
2235 unsigned long flags;
2236 u32 remaininglen = fod->req.transfer_len - fod->offset;
2237 u32 tlen = 0;
2238 int ret;
2239
2240 fcpreq->op = op;
2241 fcpreq->offset = fod->offset;
2242 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2243
2244 /*
2245 * for next sequence:
2246 * break at a sg element boundary
2247 * attempt to keep sequence length capped at
2248 * NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2249 * be longer if a single sg element is larger
2250 * than that amount. This is done to avoid creating
2251 * a new sg list to use for the tgtport api.
2252 */
2253 fcpreq->sg = sg;
2254 fcpreq->sg_cnt = 0;
2255 while (tlen < remaininglen &&
2256 fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2257 tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2258 fcpreq->sg_cnt++;
2259 tlen += sg_dma_len(sg);
2260 sg = sg_next(sg);
2261 }
2262 if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2263 fcpreq->sg_cnt++;
2264 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2265 sg = sg_next(sg);
2266 }
2267 if (tlen < remaininglen)
2268 fod->next_sg = sg;
2269 else
2270 fod->next_sg = NULL;
2271
2272 fcpreq->transfer_length = tlen;
2273 fcpreq->transferred_length = 0;
2274 fcpreq->fcp_error = 0;
2275 fcpreq->rsplen = 0;
2276
2277 /*
2278 * If the last READDATA request: check if LLDD supports
2279 * combined xfr with response.
2280 */
2281 if ((op == NVMET_FCOP_READDATA) &&
2282 ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2283 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2284 fcpreq->op = NVMET_FCOP_READDATA_RSP;
2285 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2286 }
2287
2288 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2289 if (ret) {
2290 /*
2291 * should be ok to set w/o lock as its in the thread of
2292 * execution (not an async timer routine) and doesn't
2293 * contend with any clearing action
2294 */
2295 fod->abort = true;
2296
2297 if (op == NVMET_FCOP_WRITEDATA) {
2298 spin_lock_irqsave(&fod->flock, flags);
2299 fod->writedataactive = false;
2300 spin_unlock_irqrestore(&fod->flock, flags);
2301 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2302 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2303 fcpreq->fcp_error = ret;
2304 fcpreq->transferred_length = 0;
2305 nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2306 }
2307 }
2308 }
2309
2310 static inline bool
__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod * fod,bool abort)2311 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2312 {
2313 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2314 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2315
2316 /* if in the middle of an io and we need to tear down */
2317 if (abort) {
2318 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2319 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2320 return true;
2321 }
2322
2323 nvmet_fc_abort_op(tgtport, fod);
2324 return true;
2325 }
2326
2327 return false;
2328 }
2329
2330 /*
2331 * actual done handler for FCP operations when completed by the lldd
2332 */
2333 static void
nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod * fod)2334 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2335 {
2336 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2337 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2338 unsigned long flags;
2339 bool abort;
2340
2341 spin_lock_irqsave(&fod->flock, flags);
2342 abort = fod->abort;
2343 fod->writedataactive = false;
2344 spin_unlock_irqrestore(&fod->flock, flags);
2345
2346 switch (fcpreq->op) {
2347
2348 case NVMET_FCOP_WRITEDATA:
2349 if (__nvmet_fc_fod_op_abort(fod, abort))
2350 return;
2351 if (fcpreq->fcp_error ||
2352 fcpreq->transferred_length != fcpreq->transfer_length) {
2353 spin_lock_irqsave(&fod->flock, flags);
2354 fod->abort = true;
2355 spin_unlock_irqrestore(&fod->flock, flags);
2356
2357 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2358 return;
2359 }
2360
2361 fod->offset += fcpreq->transferred_length;
2362 if (fod->offset != fod->req.transfer_len) {
2363 spin_lock_irqsave(&fod->flock, flags);
2364 fod->writedataactive = true;
2365 spin_unlock_irqrestore(&fod->flock, flags);
2366
2367 /* transfer the next chunk */
2368 nvmet_fc_transfer_fcp_data(tgtport, fod,
2369 NVMET_FCOP_WRITEDATA);
2370 return;
2371 }
2372
2373 /* data transfer complete, resume with nvmet layer */
2374 fod->req.execute(&fod->req);
2375 break;
2376
2377 case NVMET_FCOP_READDATA:
2378 case NVMET_FCOP_READDATA_RSP:
2379 if (__nvmet_fc_fod_op_abort(fod, abort))
2380 return;
2381 if (fcpreq->fcp_error ||
2382 fcpreq->transferred_length != fcpreq->transfer_length) {
2383 nvmet_fc_abort_op(tgtport, fod);
2384 return;
2385 }
2386
2387 /* success */
2388
2389 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2390 /* data no longer needed */
2391 nvmet_fc_free_tgt_pgs(fod);
2392 nvmet_fc_free_fcp_iod(fod->queue, fod);
2393 return;
2394 }
2395
2396 fod->offset += fcpreq->transferred_length;
2397 if (fod->offset != fod->req.transfer_len) {
2398 /* transfer the next chunk */
2399 nvmet_fc_transfer_fcp_data(tgtport, fod,
2400 NVMET_FCOP_READDATA);
2401 return;
2402 }
2403
2404 /* data transfer complete, send response */
2405
2406 /* data no longer needed */
2407 nvmet_fc_free_tgt_pgs(fod);
2408
2409 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2410
2411 break;
2412
2413 case NVMET_FCOP_RSP:
2414 if (__nvmet_fc_fod_op_abort(fod, abort))
2415 return;
2416 nvmet_fc_free_fcp_iod(fod->queue, fod);
2417 break;
2418
2419 default:
2420 break;
2421 }
2422 }
2423
2424 static void
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req * fcpreq)2425 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2426 {
2427 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2428
2429 nvmet_fc_fod_op_done(fod);
2430 }
2431
2432 /*
2433 * actual completion handler after execution by the nvmet layer
2434 */
2435 static void
__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,int status)2436 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2437 struct nvmet_fc_fcp_iod *fod, int status)
2438 {
2439 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2440 struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2441 unsigned long flags;
2442 bool abort;
2443
2444 spin_lock_irqsave(&fod->flock, flags);
2445 abort = fod->abort;
2446 spin_unlock_irqrestore(&fod->flock, flags);
2447
2448 /* if we have a CQE, snoop the last sq_head value */
2449 if (!status)
2450 fod->queue->sqhd = cqe->sq_head;
2451
2452 if (abort) {
2453 nvmet_fc_abort_op(tgtport, fod);
2454 return;
2455 }
2456
2457 /* if an error handling the cmd post initial parsing */
2458 if (status) {
2459 /* fudge up a failed CQE status for our transport error */
2460 memset(cqe, 0, sizeof(*cqe));
2461 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */
2462 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2463 cqe->command_id = sqe->command_id;
2464 cqe->status = cpu_to_le16(status);
2465 } else {
2466
2467 /*
2468 * try to push the data even if the SQE status is non-zero.
2469 * There may be a status where data still was intended to
2470 * be moved
2471 */
2472 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2473 /* push the data over before sending rsp */
2474 nvmet_fc_transfer_fcp_data(tgtport, fod,
2475 NVMET_FCOP_READDATA);
2476 return;
2477 }
2478
2479 /* writes & no data - fall thru */
2480 }
2481
2482 /* data no longer needed */
2483 nvmet_fc_free_tgt_pgs(fod);
2484
2485 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2486 }
2487
2488
2489 static void
nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req * nvme_req)2490 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2491 {
2492 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2493 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2494
2495 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2496 }
2497
2498
2499 /*
2500 * Actual processing routine for received FC-NVME I/O Requests from the LLD
2501 */
2502 static void
nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2503 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2504 struct nvmet_fc_fcp_iod *fod)
2505 {
2506 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2507 u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2508 int ret;
2509
2510 /*
2511 * Fused commands are currently not supported in the linux
2512 * implementation.
2513 *
2514 * As such, the implementation of the FC transport does not
2515 * look at the fused commands and order delivery to the upper
2516 * layer until we have both based on csn.
2517 */
2518
2519 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2520
2521 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2522 fod->io_dir = NVMET_FCP_WRITE;
2523 if (!nvme_is_write(&cmdiu->sqe))
2524 goto transport_error;
2525 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2526 fod->io_dir = NVMET_FCP_READ;
2527 if (nvme_is_write(&cmdiu->sqe))
2528 goto transport_error;
2529 } else {
2530 fod->io_dir = NVMET_FCP_NODATA;
2531 if (xfrlen)
2532 goto transport_error;
2533 }
2534
2535 fod->req.cmd = &fod->cmdiubuf.sqe;
2536 fod->req.cqe = &fod->rspiubuf.cqe;
2537 if (!tgtport->pe)
2538 goto transport_error;
2539 fod->req.port = tgtport->pe->port;
2540
2541 /* clear any response payload */
2542 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2543
2544 fod->data_sg = NULL;
2545 fod->data_sg_cnt = 0;
2546
2547 ret = nvmet_req_init(&fod->req,
2548 &fod->queue->nvme_cq,
2549 &fod->queue->nvme_sq,
2550 &nvmet_fc_tgt_fcp_ops);
2551 if (!ret) {
2552 /* bad SQE content or invalid ctrl state */
2553 /* nvmet layer has already called op done to send rsp. */
2554 return;
2555 }
2556
2557 fod->req.transfer_len = xfrlen;
2558
2559 /* keep a running counter of tail position */
2560 atomic_inc(&fod->queue->sqtail);
2561
2562 if (fod->req.transfer_len) {
2563 ret = nvmet_fc_alloc_tgt_pgs(fod);
2564 if (ret) {
2565 nvmet_req_complete(&fod->req, ret);
2566 return;
2567 }
2568 }
2569 fod->req.sg = fod->data_sg;
2570 fod->req.sg_cnt = fod->data_sg_cnt;
2571 fod->offset = 0;
2572
2573 if (fod->io_dir == NVMET_FCP_WRITE) {
2574 /* pull the data over before invoking nvmet layer */
2575 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2576 return;
2577 }
2578
2579 /*
2580 * Reads or no data:
2581 *
2582 * can invoke the nvmet_layer now. If read data, cmd completion will
2583 * push the data
2584 */
2585 fod->req.execute(&fod->req);
2586 return;
2587
2588 transport_error:
2589 nvmet_fc_abort_op(tgtport, fod);
2590 }
2591
2592 /**
2593 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2594 * upon the reception of a NVME FCP CMD IU.
2595 *
2596 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2597 * layer for processing.
2598 *
2599 * The nvmet_fc layer allocates a local job structure (struct
2600 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2601 * CMD IU buffer to the job structure. As such, on a successful
2602 * completion (returns 0), the LLDD may immediately free/reuse
2603 * the CMD IU buffer passed in the call.
2604 *
2605 * However, in some circumstances, due to the packetized nature of FC
2606 * and the api of the FC LLDD which may issue a hw command to send the
2607 * response, but the LLDD may not get the hw completion for that command
2608 * and upcall the nvmet_fc layer before a new command may be
2609 * asynchronously received - its possible for a command to be received
2610 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2611 * the appearance of more commands received than fits in the sq.
2612 * To alleviate this scenario, a temporary queue is maintained in the
2613 * transport for pending LLDD requests waiting for a queue job structure.
2614 * In these "overrun" cases, a temporary queue element is allocated
2615 * the LLDD request and CMD iu buffer information remembered, and the
2616 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2617 * structure is freed, it is immediately reallocated for anything on the
2618 * pending request list. The LLDDs defer_rcv() callback is called,
2619 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2620 * is then started normally with the transport.
2621 *
2622 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2623 * the completion as successful but must not reuse the CMD IU buffer
2624 * until the LLDD's defer_rcv() callback has been called for the
2625 * corresponding struct nvmefc_tgt_fcp_req pointer.
2626 *
2627 * If there is any other condition in which an error occurs, the
2628 * transport will return a non-zero status indicating the error.
2629 * In all cases other than -EOVERFLOW, the transport has not accepted the
2630 * request and the LLDD should abort the exchange.
2631 *
2632 * @target_port: pointer to the (registered) target port the FCP CMD IU
2633 * was received on.
2634 * @fcpreq: pointer to a fcpreq request structure to be used to reference
2635 * the exchange corresponding to the FCP Exchange.
2636 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU
2637 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2638 */
2639 int
nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq,void * cmdiubuf,u32 cmdiubuf_len)2640 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2641 struct nvmefc_tgt_fcp_req *fcpreq,
2642 void *cmdiubuf, u32 cmdiubuf_len)
2643 {
2644 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2645 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2646 struct nvmet_fc_tgt_queue *queue;
2647 struct nvmet_fc_fcp_iod *fod;
2648 struct nvmet_fc_defer_fcp_req *deferfcp;
2649 unsigned long flags;
2650
2651 /* validate iu, so the connection id can be used to find the queue */
2652 if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2653 (cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2654 (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2655 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2656 return -EIO;
2657
2658 queue = nvmet_fc_find_target_queue(tgtport,
2659 be64_to_cpu(cmdiu->connection_id));
2660 if (!queue)
2661 return -ENOTCONN;
2662
2663 /*
2664 * note: reference taken by find_target_queue
2665 * After successful fod allocation, the fod will inherit the
2666 * ownership of that reference and will remove the reference
2667 * when the fod is freed.
2668 */
2669
2670 spin_lock_irqsave(&queue->qlock, flags);
2671
2672 fod = nvmet_fc_alloc_fcp_iod(queue);
2673 if (fod) {
2674 spin_unlock_irqrestore(&queue->qlock, flags);
2675
2676 fcpreq->nvmet_fc_private = fod;
2677 fod->fcpreq = fcpreq;
2678
2679 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2680
2681 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2682
2683 return 0;
2684 }
2685
2686 if (!tgtport->ops->defer_rcv) {
2687 spin_unlock_irqrestore(&queue->qlock, flags);
2688 /* release the queue lookup reference */
2689 nvmet_fc_tgt_q_put(queue);
2690 return -ENOENT;
2691 }
2692
2693 deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2694 struct nvmet_fc_defer_fcp_req, req_list);
2695 if (deferfcp) {
2696 /* Just re-use one that was previously allocated */
2697 list_del(&deferfcp->req_list);
2698 } else {
2699 spin_unlock_irqrestore(&queue->qlock, flags);
2700
2701 /* Now we need to dynamically allocate one */
2702 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2703 if (!deferfcp) {
2704 /* release the queue lookup reference */
2705 nvmet_fc_tgt_q_put(queue);
2706 return -ENOMEM;
2707 }
2708 spin_lock_irqsave(&queue->qlock, flags);
2709 }
2710
2711 /* For now, use rspaddr / rsplen to save payload information */
2712 fcpreq->rspaddr = cmdiubuf;
2713 fcpreq->rsplen = cmdiubuf_len;
2714 deferfcp->fcp_req = fcpreq;
2715
2716 /* defer processing till a fod becomes available */
2717 list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2718
2719 /* NOTE: the queue lookup reference is still valid */
2720
2721 spin_unlock_irqrestore(&queue->qlock, flags);
2722
2723 return -EOVERFLOW;
2724 }
2725 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2726
2727 /**
2728 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2729 * upon the reception of an ABTS for a FCP command
2730 *
2731 * Notify the transport that an ABTS has been received for a FCP command
2732 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2733 * LLDD believes the command is still being worked on
2734 * (template_ops->fcp_req_release() has not been called).
2735 *
2736 * The transport will wait for any outstanding work (an op to the LLDD,
2737 * which the lldd should complete with error due to the ABTS; or the
2738 * completion from the nvmet layer of the nvme command), then will
2739 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2740 * return the i/o context to the LLDD. The LLDD may send the BA_ACC
2741 * to the ABTS either after return from this function (assuming any
2742 * outstanding op work has been terminated) or upon the callback being
2743 * called.
2744 *
2745 * @target_port: pointer to the (registered) target port the FCP CMD IU
2746 * was received on.
2747 * @fcpreq: pointer to the fcpreq request structure that corresponds
2748 * to the exchange that received the ABTS.
2749 */
2750 void
nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq)2751 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2752 struct nvmefc_tgt_fcp_req *fcpreq)
2753 {
2754 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2755 struct nvmet_fc_tgt_queue *queue;
2756 unsigned long flags;
2757
2758 if (!fod || fod->fcpreq != fcpreq)
2759 /* job appears to have already completed, ignore abort */
2760 return;
2761
2762 queue = fod->queue;
2763
2764 spin_lock_irqsave(&queue->qlock, flags);
2765 if (fod->active) {
2766 /*
2767 * mark as abort. The abort handler, invoked upon completion
2768 * of any work, will detect the aborted status and do the
2769 * callback.
2770 */
2771 spin_lock(&fod->flock);
2772 fod->abort = true;
2773 fod->aborted = true;
2774 spin_unlock(&fod->flock);
2775 }
2776 spin_unlock_irqrestore(&queue->qlock, flags);
2777 }
2778 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2779
2780
2781 struct nvmet_fc_traddr {
2782 u64 nn;
2783 u64 pn;
2784 };
2785
2786 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)2787 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2788 {
2789 u64 token64;
2790
2791 if (match_u64(sstr, &token64))
2792 return -EINVAL;
2793 *val = token64;
2794
2795 return 0;
2796 }
2797
2798 /*
2799 * This routine validates and extracts the WWN's from the TRADDR string.
2800 * As kernel parsers need the 0x to determine number base, universally
2801 * build string to parse with 0x prefix before parsing name strings.
2802 */
2803 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)2804 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2805 {
2806 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2807 substring_t wwn = { name, &name[sizeof(name)-1] };
2808 int nnoffset, pnoffset;
2809
2810 /* validate if string is one of the 2 allowed formats */
2811 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2812 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2813 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2814 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2815 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2816 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2817 NVME_FC_TRADDR_OXNNLEN;
2818 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2819 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2820 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2821 "pn-", NVME_FC_TRADDR_NNLEN))) {
2822 nnoffset = NVME_FC_TRADDR_NNLEN;
2823 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2824 } else
2825 goto out_einval;
2826
2827 name[0] = '0';
2828 name[1] = 'x';
2829 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2830
2831 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2832 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2833 goto out_einval;
2834
2835 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2836 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2837 goto out_einval;
2838
2839 return 0;
2840
2841 out_einval:
2842 pr_warn("%s: bad traddr string\n", __func__);
2843 return -EINVAL;
2844 }
2845
2846 static int
nvmet_fc_add_port(struct nvmet_port * port)2847 nvmet_fc_add_port(struct nvmet_port *port)
2848 {
2849 struct nvmet_fc_tgtport *tgtport;
2850 struct nvmet_fc_port_entry *pe;
2851 struct nvmet_fc_traddr traddr = { 0L, 0L };
2852 unsigned long flags;
2853 int ret;
2854
2855 /* validate the address info */
2856 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2857 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2858 return -EINVAL;
2859
2860 /* map the traddr address info to a target port */
2861
2862 ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2863 sizeof(port->disc_addr.traddr));
2864 if (ret)
2865 return ret;
2866
2867 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2868 if (!pe)
2869 return -ENOMEM;
2870
2871 ret = -ENXIO;
2872 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2873 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2874 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2875 (tgtport->fc_target_port.port_name == traddr.pn)) {
2876 /* a FC port can only be 1 nvmet port id */
2877 if (!tgtport->pe) {
2878 nvmet_fc_portentry_bind(tgtport, pe, port);
2879 ret = 0;
2880 } else
2881 ret = -EALREADY;
2882 break;
2883 }
2884 }
2885 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2886
2887 if (ret)
2888 kfree(pe);
2889
2890 return ret;
2891 }
2892
2893 static void
nvmet_fc_remove_port(struct nvmet_port * port)2894 nvmet_fc_remove_port(struct nvmet_port *port)
2895 {
2896 struct nvmet_fc_port_entry *pe = port->priv;
2897
2898 nvmet_fc_portentry_unbind(pe);
2899
2900 /* terminate any outstanding associations */
2901 __nvmet_fc_free_assocs(pe->tgtport);
2902
2903 kfree(pe);
2904 }
2905
2906 static void
nvmet_fc_discovery_chg(struct nvmet_port * port)2907 nvmet_fc_discovery_chg(struct nvmet_port *port)
2908 {
2909 struct nvmet_fc_port_entry *pe = port->priv;
2910 struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2911
2912 if (tgtport && tgtport->ops->discovery_event)
2913 tgtport->ops->discovery_event(&tgtport->fc_target_port);
2914 }
2915
2916 static ssize_t
nvmet_fc_host_traddr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_size)2917 nvmet_fc_host_traddr(struct nvmet_ctrl *ctrl,
2918 char *traddr, size_t traddr_size)
2919 {
2920 struct nvmet_sq *sq = ctrl->sqs[0];
2921 struct nvmet_fc_tgt_queue *queue =
2922 container_of(sq, struct nvmet_fc_tgt_queue, nvme_sq);
2923 struct nvmet_fc_tgtport *tgtport = queue->assoc ? queue->assoc->tgtport : NULL;
2924 struct nvmet_fc_hostport *hostport = queue->assoc ? queue->assoc->hostport : NULL;
2925 u64 wwnn, wwpn;
2926 ssize_t ret = 0;
2927
2928 if (!tgtport || !nvmet_fc_tgtport_get(tgtport))
2929 return -ENODEV;
2930 if (!hostport || !nvmet_fc_hostport_get(hostport)) {
2931 ret = -ENODEV;
2932 goto out_put;
2933 }
2934
2935 if (tgtport->ops->host_traddr) {
2936 ret = tgtport->ops->host_traddr(hostport->hosthandle, &wwnn, &wwpn);
2937 if (ret)
2938 goto out_put_host;
2939 ret = snprintf(traddr, traddr_size, "nn-0x%llx:pn-0x%llx", wwnn, wwpn);
2940 }
2941 out_put_host:
2942 nvmet_fc_hostport_put(hostport);
2943 out_put:
2944 nvmet_fc_tgtport_put(tgtport);
2945 return ret;
2946 }
2947
2948 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2949 .owner = THIS_MODULE,
2950 .type = NVMF_TRTYPE_FC,
2951 .msdbd = 1,
2952 .add_port = nvmet_fc_add_port,
2953 .remove_port = nvmet_fc_remove_port,
2954 .queue_response = nvmet_fc_fcp_nvme_cmd_done,
2955 .delete_ctrl = nvmet_fc_delete_ctrl,
2956 .discovery_chg = nvmet_fc_discovery_chg,
2957 .host_traddr = nvmet_fc_host_traddr,
2958 };
2959
nvmet_fc_init_module(void)2960 static int __init nvmet_fc_init_module(void)
2961 {
2962 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2963 }
2964
nvmet_fc_exit_module(void)2965 static void __exit nvmet_fc_exit_module(void)
2966 {
2967 /* ensure any shutdown operation, e.g. delete ctrls have finished */
2968 flush_workqueue(nvmet_wq);
2969
2970 /* sanity check - all lports should be removed */
2971 if (!list_empty(&nvmet_fc_target_list))
2972 pr_warn("%s: targetport list not empty\n", __func__);
2973
2974 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2975
2976 ida_destroy(&nvmet_fc_tgtport_cnt);
2977 }
2978
2979 module_init(nvmet_fc_init_module);
2980 module_exit(nvmet_fc_exit_module);
2981
2982 MODULE_DESCRIPTION("NVMe target FC transport driver");
2983 MODULE_LICENSE("GPL v2");
2984