• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 #include "internals.h"
23 
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25 
26 #define FLAG_COMPAT		BIT(0)
27 struct nvmem_cell_entry {
28 	const char		*name;
29 	int			offset;
30 	size_t			raw_len;
31 	int			bytes;
32 	int			bit_offset;
33 	int			nbits;
34 	nvmem_cell_post_process_t read_post_process;
35 	void			*priv;
36 	struct device_node	*np;
37 	struct nvmem_device	*nvmem;
38 	struct list_head	node;
39 };
40 
41 struct nvmem_cell {
42 	struct nvmem_cell_entry *entry;
43 	const char		*id;
44 	int			index;
45 };
46 
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
49 
50 static DEFINE_MUTEX(nvmem_cell_mutex);
51 static LIST_HEAD(nvmem_cell_tables);
52 
53 static DEFINE_MUTEX(nvmem_lookup_mutex);
54 static LIST_HEAD(nvmem_lookup_list);
55 
56 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
57 
__nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)58 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
59 			    void *val, size_t bytes)
60 {
61 	if (nvmem->reg_read)
62 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
63 
64 	return -EINVAL;
65 }
66 
__nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)67 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
68 			     void *val, size_t bytes)
69 {
70 	int ret;
71 
72 	if (nvmem->reg_write) {
73 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
74 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
75 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
76 		return ret;
77 	}
78 
79 	return -EINVAL;
80 }
81 
nvmem_access_with_keepouts(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes,int write)82 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
83 				      unsigned int offset, void *val,
84 				      size_t bytes, int write)
85 {
86 
87 	unsigned int end = offset + bytes;
88 	unsigned int kend, ksize;
89 	const struct nvmem_keepout *keepout = nvmem->keepout;
90 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
91 	int rc;
92 
93 	/*
94 	 * Skip all keepouts before the range being accessed.
95 	 * Keepouts are sorted.
96 	 */
97 	while ((keepout < keepoutend) && (keepout->end <= offset))
98 		keepout++;
99 
100 	while ((offset < end) && (keepout < keepoutend)) {
101 		/* Access the valid portion before the keepout. */
102 		if (offset < keepout->start) {
103 			kend = min(end, keepout->start);
104 			ksize = kend - offset;
105 			if (write)
106 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
107 			else
108 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
109 
110 			if (rc)
111 				return rc;
112 
113 			offset += ksize;
114 			val += ksize;
115 		}
116 
117 		/*
118 		 * Now we're aligned to the start of this keepout zone. Go
119 		 * through it.
120 		 */
121 		kend = min(end, keepout->end);
122 		ksize = kend - offset;
123 		if (!write)
124 			memset(val, keepout->value, ksize);
125 
126 		val += ksize;
127 		offset += ksize;
128 		keepout++;
129 	}
130 
131 	/*
132 	 * If we ran out of keepouts but there's still stuff to do, send it
133 	 * down directly
134 	 */
135 	if (offset < end) {
136 		ksize = end - offset;
137 		if (write)
138 			return __nvmem_reg_write(nvmem, offset, val, ksize);
139 		else
140 			return __nvmem_reg_read(nvmem, offset, val, ksize);
141 	}
142 
143 	return 0;
144 }
145 
nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)146 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
147 			  void *val, size_t bytes)
148 {
149 	if (!nvmem->nkeepout)
150 		return __nvmem_reg_read(nvmem, offset, val, bytes);
151 
152 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
153 }
154 
nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)155 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
156 			   void *val, size_t bytes)
157 {
158 	if (!nvmem->nkeepout)
159 		return __nvmem_reg_write(nvmem, offset, val, bytes);
160 
161 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
162 }
163 
164 #ifdef CONFIG_NVMEM_SYSFS
165 static const char * const nvmem_type_str[] = {
166 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
167 	[NVMEM_TYPE_EEPROM] = "EEPROM",
168 	[NVMEM_TYPE_OTP] = "OTP",
169 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
170 	[NVMEM_TYPE_FRAM] = "FRAM",
171 };
172 
173 #ifdef CONFIG_DEBUG_LOCK_ALLOC
174 static struct lock_class_key eeprom_lock_key;
175 #endif
176 
type_show(struct device * dev,struct device_attribute * attr,char * buf)177 static ssize_t type_show(struct device *dev,
178 			 struct device_attribute *attr, char *buf)
179 {
180 	struct nvmem_device *nvmem = to_nvmem_device(dev);
181 
182 	return sysfs_emit(buf, "%s\n", nvmem_type_str[nvmem->type]);
183 }
184 
185 static DEVICE_ATTR_RO(type);
186 
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)187 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
188 			     char *buf)
189 {
190 	struct nvmem_device *nvmem = to_nvmem_device(dev);
191 
192 	return sysfs_emit(buf, "%d\n", nvmem->read_only);
193 }
194 
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)195 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
196 			      const char *buf, size_t count)
197 {
198 	struct nvmem_device *nvmem = to_nvmem_device(dev);
199 	int ret = kstrtobool(buf, &nvmem->read_only);
200 
201 	if (ret < 0)
202 		return ret;
203 
204 	return count;
205 }
206 
207 static DEVICE_ATTR_RW(force_ro);
208 
209 static struct attribute *nvmem_attrs[] = {
210 	&dev_attr_force_ro.attr,
211 	&dev_attr_type.attr,
212 	NULL,
213 };
214 
bin_attr_nvmem_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)215 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
216 				   struct bin_attribute *attr, char *buf,
217 				   loff_t pos, size_t count)
218 {
219 	struct device *dev;
220 	struct nvmem_device *nvmem;
221 	int rc;
222 
223 	if (attr->private)
224 		dev = attr->private;
225 	else
226 		dev = kobj_to_dev(kobj);
227 	nvmem = to_nvmem_device(dev);
228 
229 	if (!IS_ALIGNED(pos, nvmem->stride))
230 		return -EINVAL;
231 
232 	if (count < nvmem->word_size)
233 		return -EINVAL;
234 
235 	count = round_down(count, nvmem->word_size);
236 
237 	if (!nvmem->reg_read)
238 		return -EPERM;
239 
240 	rc = nvmem_reg_read(nvmem, pos, buf, count);
241 
242 	if (rc)
243 		return rc;
244 
245 	return count;
246 }
247 
bin_attr_nvmem_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)248 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
249 				    struct bin_attribute *attr, char *buf,
250 				    loff_t pos, size_t count)
251 {
252 	struct device *dev;
253 	struct nvmem_device *nvmem;
254 	int rc;
255 
256 	if (attr->private)
257 		dev = attr->private;
258 	else
259 		dev = kobj_to_dev(kobj);
260 	nvmem = to_nvmem_device(dev);
261 
262 	if (!IS_ALIGNED(pos, nvmem->stride))
263 		return -EINVAL;
264 
265 	if (count < nvmem->word_size)
266 		return -EINVAL;
267 
268 	count = round_down(count, nvmem->word_size);
269 
270 	if (!nvmem->reg_write || nvmem->read_only)
271 		return -EPERM;
272 
273 	rc = nvmem_reg_write(nvmem, pos, buf, count);
274 
275 	if (rc)
276 		return rc;
277 
278 	return count;
279 }
280 
nvmem_bin_attr_get_umode(struct nvmem_device * nvmem)281 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
282 {
283 	umode_t mode = 0400;
284 
285 	if (!nvmem->root_only)
286 		mode |= 0044;
287 
288 	if (!nvmem->read_only)
289 		mode |= 0200;
290 
291 	if (!nvmem->reg_write)
292 		mode &= ~0200;
293 
294 	if (!nvmem->reg_read)
295 		mode &= ~0444;
296 
297 	return mode;
298 }
299 
nvmem_bin_attr_is_visible(struct kobject * kobj,struct bin_attribute * attr,int i)300 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
301 					 struct bin_attribute *attr, int i)
302 {
303 	struct device *dev = kobj_to_dev(kobj);
304 	struct nvmem_device *nvmem = to_nvmem_device(dev);
305 
306 	attr->size = nvmem->size;
307 
308 	return nvmem_bin_attr_get_umode(nvmem);
309 }
310 
nvmem_attr_is_visible(struct kobject * kobj,struct attribute * attr,int i)311 static umode_t nvmem_attr_is_visible(struct kobject *kobj,
312 				     struct attribute *attr, int i)
313 {
314 	struct device *dev = kobj_to_dev(kobj);
315 	struct nvmem_device *nvmem = to_nvmem_device(dev);
316 
317 	/*
318 	 * If the device has no .reg_write operation, do not allow
319 	 * configuration as read-write.
320 	 * If the device is set as read-only by configuration, it
321 	 * can be forced into read-write mode using the 'force_ro'
322 	 * attribute.
323 	 */
324 	if (attr == &dev_attr_force_ro.attr && !nvmem->reg_write)
325 		return 0;	/* Attribute not visible */
326 
327 	return attr->mode;
328 }
329 
330 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
331 					    const char *id, int index);
332 
nvmem_cell_attr_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)333 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
334 				    struct bin_attribute *attr, char *buf,
335 				    loff_t pos, size_t count)
336 {
337 	struct nvmem_cell_entry *entry;
338 	struct nvmem_cell *cell = NULL;
339 	size_t cell_sz, read_len;
340 	void *content;
341 
342 	entry = attr->private;
343 	cell = nvmem_create_cell(entry, entry->name, 0);
344 	if (IS_ERR(cell))
345 		return PTR_ERR(cell);
346 
347 	if (!cell)
348 		return -EINVAL;
349 
350 	content = nvmem_cell_read(cell, &cell_sz);
351 	if (IS_ERR(content)) {
352 		read_len = PTR_ERR(content);
353 		goto destroy_cell;
354 	}
355 
356 	read_len = min_t(unsigned int, cell_sz - pos, count);
357 	memcpy(buf, content + pos, read_len);
358 	kfree(content);
359 
360 destroy_cell:
361 	kfree_const(cell->id);
362 	kfree(cell);
363 
364 	return read_len;
365 }
366 
367 /* default read/write permissions */
368 static struct bin_attribute bin_attr_rw_nvmem = {
369 	.attr	= {
370 		.name	= "nvmem",
371 		.mode	= 0644,
372 	},
373 	.read	= bin_attr_nvmem_read,
374 	.write	= bin_attr_nvmem_write,
375 };
376 
377 static struct bin_attribute *nvmem_bin_attributes[] = {
378 	&bin_attr_rw_nvmem,
379 	NULL,
380 };
381 
382 static const struct attribute_group nvmem_bin_group = {
383 	.bin_attrs	= nvmem_bin_attributes,
384 	.attrs		= nvmem_attrs,
385 	.is_bin_visible = nvmem_bin_attr_is_visible,
386 	.is_visible	= nvmem_attr_is_visible,
387 };
388 
389 static const struct attribute_group *nvmem_dev_groups[] = {
390 	&nvmem_bin_group,
391 	NULL,
392 };
393 
394 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
395 	.attr	= {
396 		.name	= "eeprom",
397 	},
398 	.read	= bin_attr_nvmem_read,
399 	.write	= bin_attr_nvmem_write,
400 };
401 
402 /*
403  * nvmem_setup_compat() - Create an additional binary entry in
404  * drivers sys directory, to be backwards compatible with the older
405  * drivers/misc/eeprom drivers.
406  */
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)407 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
408 				    const struct nvmem_config *config)
409 {
410 	int rval;
411 
412 	if (!config->compat)
413 		return 0;
414 
415 	if (!config->base_dev)
416 		return -EINVAL;
417 
418 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
419 	if (config->type == NVMEM_TYPE_FRAM)
420 		nvmem->eeprom.attr.name = "fram";
421 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
422 	nvmem->eeprom.size = nvmem->size;
423 #ifdef CONFIG_DEBUG_LOCK_ALLOC
424 	nvmem->eeprom.attr.key = &eeprom_lock_key;
425 #endif
426 	nvmem->eeprom.private = &nvmem->dev;
427 	nvmem->base_dev = config->base_dev;
428 
429 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
430 	if (rval) {
431 		dev_err(&nvmem->dev,
432 			"Failed to create eeprom binary file %d\n", rval);
433 		return rval;
434 	}
435 
436 	nvmem->flags |= FLAG_COMPAT;
437 
438 	return 0;
439 }
440 
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)441 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
442 			      const struct nvmem_config *config)
443 {
444 	if (config->compat)
445 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
446 }
447 
nvmem_populate_sysfs_cells(struct nvmem_device * nvmem)448 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
449 {
450 	struct attribute_group group = {
451 		.name	= "cells",
452 	};
453 	struct nvmem_cell_entry *entry;
454 	struct bin_attribute *attrs;
455 	unsigned int ncells = 0, i = 0;
456 	int ret = 0;
457 
458 	mutex_lock(&nvmem_mutex);
459 
460 	if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated)
461 		goto unlock_mutex;
462 
463 	/* Allocate an array of attributes with a sentinel */
464 	ncells = list_count_nodes(&nvmem->cells);
465 	group.bin_attrs = devm_kcalloc(&nvmem->dev, ncells + 1,
466 				       sizeof(struct bin_attribute *), GFP_KERNEL);
467 	if (!group.bin_attrs) {
468 		ret = -ENOMEM;
469 		goto unlock_mutex;
470 	}
471 
472 	attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
473 	if (!attrs) {
474 		ret = -ENOMEM;
475 		goto unlock_mutex;
476 	}
477 
478 	/* Initialize each attribute to take the name and size of the cell */
479 	list_for_each_entry(entry, &nvmem->cells, node) {
480 		sysfs_bin_attr_init(&attrs[i]);
481 		attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
482 						    "%s@%x,%x", entry->name,
483 						    entry->offset,
484 						    entry->bit_offset);
485 		attrs[i].attr.mode = 0444 & nvmem_bin_attr_get_umode(nvmem);
486 		attrs[i].size = entry->bytes;
487 		attrs[i].read = &nvmem_cell_attr_read;
488 		attrs[i].private = entry;
489 		if (!attrs[i].attr.name) {
490 			ret = -ENOMEM;
491 			goto unlock_mutex;
492 		}
493 
494 		group.bin_attrs[i] = &attrs[i];
495 		i++;
496 	}
497 
498 	ret = device_add_group(&nvmem->dev, &group);
499 	if (ret)
500 		goto unlock_mutex;
501 
502 	nvmem->sysfs_cells_populated = true;
503 
504 unlock_mutex:
505 	mutex_unlock(&nvmem_mutex);
506 
507 	return ret;
508 }
509 
510 #else /* CONFIG_NVMEM_SYSFS */
511 
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)512 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
513 				    const struct nvmem_config *config)
514 {
515 	return -ENOSYS;
516 }
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)517 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
518 				      const struct nvmem_config *config)
519 {
520 }
521 
522 #endif /* CONFIG_NVMEM_SYSFS */
523 
nvmem_release(struct device * dev)524 static void nvmem_release(struct device *dev)
525 {
526 	struct nvmem_device *nvmem = to_nvmem_device(dev);
527 
528 	ida_free(&nvmem_ida, nvmem->id);
529 	gpiod_put(nvmem->wp_gpio);
530 	kfree(nvmem);
531 }
532 
533 static const struct device_type nvmem_provider_type = {
534 	.release	= nvmem_release,
535 };
536 
537 static struct bus_type nvmem_bus_type = {
538 	.name		= "nvmem",
539 };
540 
nvmem_cell_entry_drop(struct nvmem_cell_entry * cell)541 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
542 {
543 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
544 	mutex_lock(&nvmem_mutex);
545 	list_del(&cell->node);
546 	mutex_unlock(&nvmem_mutex);
547 	of_node_put(cell->np);
548 	kfree_const(cell->name);
549 	kfree(cell);
550 }
551 
nvmem_device_remove_all_cells(const struct nvmem_device * nvmem)552 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
553 {
554 	struct nvmem_cell_entry *cell, *p;
555 
556 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
557 		nvmem_cell_entry_drop(cell);
558 }
559 
nvmem_cell_entry_add(struct nvmem_cell_entry * cell)560 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
561 {
562 	mutex_lock(&nvmem_mutex);
563 	list_add_tail(&cell->node, &cell->nvmem->cells);
564 	mutex_unlock(&nvmem_mutex);
565 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
566 }
567 
nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)568 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
569 						     const struct nvmem_cell_info *info,
570 						     struct nvmem_cell_entry *cell)
571 {
572 	cell->nvmem = nvmem;
573 	cell->offset = info->offset;
574 	cell->raw_len = info->raw_len ?: info->bytes;
575 	cell->bytes = info->bytes;
576 	cell->name = info->name;
577 	cell->read_post_process = info->read_post_process;
578 	cell->priv = info->priv;
579 
580 	cell->bit_offset = info->bit_offset;
581 	cell->nbits = info->nbits;
582 	cell->np = info->np;
583 
584 	if (cell->nbits) {
585 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
586 					   BITS_PER_BYTE);
587 		cell->raw_len = ALIGN(cell->bytes, nvmem->word_size);
588 	}
589 
590 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
591 		dev_err(&nvmem->dev,
592 			"cell %s unaligned to nvmem stride %d\n",
593 			cell->name ?: "<unknown>", nvmem->stride);
594 		return -EINVAL;
595 	}
596 
597 	if (!IS_ALIGNED(cell->raw_len, nvmem->word_size)) {
598 		dev_err(&nvmem->dev,
599 			"cell %s raw len %zd unaligned to nvmem word size %d\n",
600 			cell->name ?: "<unknown>", cell->raw_len,
601 			nvmem->word_size);
602 
603 		if (info->raw_len)
604 			return -EINVAL;
605 
606 		cell->raw_len = ALIGN(cell->raw_len, nvmem->word_size);
607 	}
608 
609 	return 0;
610 }
611 
nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)612 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
613 					       const struct nvmem_cell_info *info,
614 					       struct nvmem_cell_entry *cell)
615 {
616 	int err;
617 
618 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
619 	if (err)
620 		return err;
621 
622 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
623 	if (!cell->name)
624 		return -ENOMEM;
625 
626 	return 0;
627 }
628 
629 /**
630  * nvmem_add_one_cell() - Add one cell information to an nvmem device
631  *
632  * @nvmem: nvmem device to add cells to.
633  * @info: nvmem cell info to add to the device
634  *
635  * Return: 0 or negative error code on failure.
636  */
nvmem_add_one_cell(struct nvmem_device * nvmem,const struct nvmem_cell_info * info)637 int nvmem_add_one_cell(struct nvmem_device *nvmem,
638 		       const struct nvmem_cell_info *info)
639 {
640 	struct nvmem_cell_entry *cell;
641 	int rval;
642 
643 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
644 	if (!cell)
645 		return -ENOMEM;
646 
647 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
648 	if (rval) {
649 		kfree(cell);
650 		return rval;
651 	}
652 
653 	nvmem_cell_entry_add(cell);
654 
655 	return 0;
656 }
657 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
658 
659 /**
660  * nvmem_add_cells() - Add cell information to an nvmem device
661  *
662  * @nvmem: nvmem device to add cells to.
663  * @info: nvmem cell info to add to the device
664  * @ncells: number of cells in info
665  *
666  * Return: 0 or negative error code on failure.
667  */
nvmem_add_cells(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,int ncells)668 static int nvmem_add_cells(struct nvmem_device *nvmem,
669 		    const struct nvmem_cell_info *info,
670 		    int ncells)
671 {
672 	int i, rval;
673 
674 	for (i = 0; i < ncells; i++) {
675 		rval = nvmem_add_one_cell(nvmem, &info[i]);
676 		if (rval)
677 			return rval;
678 	}
679 
680 	return 0;
681 }
682 
683 /**
684  * nvmem_register_notifier() - Register a notifier block for nvmem events.
685  *
686  * @nb: notifier block to be called on nvmem events.
687  *
688  * Return: 0 on success, negative error number on failure.
689  */
nvmem_register_notifier(struct notifier_block * nb)690 int nvmem_register_notifier(struct notifier_block *nb)
691 {
692 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
693 }
694 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
695 
696 /**
697  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
698  *
699  * @nb: notifier block to be unregistered.
700  *
701  * Return: 0 on success, negative error number on failure.
702  */
nvmem_unregister_notifier(struct notifier_block * nb)703 int nvmem_unregister_notifier(struct notifier_block *nb)
704 {
705 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
706 }
707 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
708 
nvmem_add_cells_from_table(struct nvmem_device * nvmem)709 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
710 {
711 	const struct nvmem_cell_info *info;
712 	struct nvmem_cell_table *table;
713 	struct nvmem_cell_entry *cell;
714 	int rval = 0, i;
715 
716 	mutex_lock(&nvmem_cell_mutex);
717 	list_for_each_entry(table, &nvmem_cell_tables, node) {
718 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
719 			for (i = 0; i < table->ncells; i++) {
720 				info = &table->cells[i];
721 
722 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
723 				if (!cell) {
724 					rval = -ENOMEM;
725 					goto out;
726 				}
727 
728 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
729 				if (rval) {
730 					kfree(cell);
731 					goto out;
732 				}
733 
734 				nvmem_cell_entry_add(cell);
735 			}
736 		}
737 	}
738 
739 out:
740 	mutex_unlock(&nvmem_cell_mutex);
741 	return rval;
742 }
743 
744 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_name(struct nvmem_device * nvmem,const char * cell_id)745 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
746 {
747 	struct nvmem_cell_entry *iter, *cell = NULL;
748 
749 	mutex_lock(&nvmem_mutex);
750 	list_for_each_entry(iter, &nvmem->cells, node) {
751 		if (strcmp(cell_id, iter->name) == 0) {
752 			cell = iter;
753 			break;
754 		}
755 	}
756 	mutex_unlock(&nvmem_mutex);
757 
758 	return cell;
759 }
760 
nvmem_validate_keepouts(struct nvmem_device * nvmem)761 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
762 {
763 	unsigned int cur = 0;
764 	const struct nvmem_keepout *keepout = nvmem->keepout;
765 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
766 
767 	while (keepout < keepoutend) {
768 		/* Ensure keepouts are sorted and don't overlap. */
769 		if (keepout->start < cur) {
770 			dev_err(&nvmem->dev,
771 				"Keepout regions aren't sorted or overlap.\n");
772 
773 			return -ERANGE;
774 		}
775 
776 		if (keepout->end < keepout->start) {
777 			dev_err(&nvmem->dev,
778 				"Invalid keepout region.\n");
779 
780 			return -EINVAL;
781 		}
782 
783 		/*
784 		 * Validate keepouts (and holes between) don't violate
785 		 * word_size constraints.
786 		 */
787 		if ((keepout->end - keepout->start < nvmem->word_size) ||
788 		    ((keepout->start != cur) &&
789 		     (keepout->start - cur < nvmem->word_size))) {
790 
791 			dev_err(&nvmem->dev,
792 				"Keepout regions violate word_size constraints.\n");
793 
794 			return -ERANGE;
795 		}
796 
797 		/* Validate keepouts don't violate stride (alignment). */
798 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
799 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
800 
801 			dev_err(&nvmem->dev,
802 				"Keepout regions violate stride.\n");
803 
804 			return -EINVAL;
805 		}
806 
807 		cur = keepout->end;
808 		keepout++;
809 	}
810 
811 	return 0;
812 }
813 
nvmem_add_cells_from_dt(struct nvmem_device * nvmem,struct device_node * np)814 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
815 {
816 	struct device *dev = &nvmem->dev;
817 	struct device_node *child;
818 	const __be32 *addr;
819 	int len, ret;
820 
821 	for_each_child_of_node(np, child) {
822 		struct nvmem_cell_info info = {0};
823 
824 		addr = of_get_property(child, "reg", &len);
825 		if (!addr)
826 			continue;
827 		if (len < 2 * sizeof(u32)) {
828 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
829 			of_node_put(child);
830 			return -EINVAL;
831 		}
832 
833 		info.offset = be32_to_cpup(addr++);
834 		info.bytes = be32_to_cpup(addr);
835 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
836 
837 		addr = of_get_property(child, "bits", &len);
838 		if (addr && len == (2 * sizeof(u32))) {
839 			info.bit_offset = be32_to_cpup(addr++);
840 			info.nbits = be32_to_cpup(addr);
841 			if (info.bit_offset >= BITS_PER_BYTE * info.bytes ||
842 			    info.nbits < 1 ||
843 			    info.bit_offset + info.nbits > BITS_PER_BYTE * info.bytes) {
844 				dev_err(dev, "nvmem: invalid bits on %pOF\n", child);
845 				of_node_put(child);
846 				return -EINVAL;
847 			}
848 		}
849 
850 		info.np = of_node_get(child);
851 
852 		if (nvmem->fixup_dt_cell_info)
853 			nvmem->fixup_dt_cell_info(nvmem, &info);
854 
855 		ret = nvmem_add_one_cell(nvmem, &info);
856 		kfree(info.name);
857 		if (ret) {
858 			of_node_put(child);
859 			return ret;
860 		}
861 	}
862 
863 	return 0;
864 }
865 
nvmem_add_cells_from_legacy_of(struct nvmem_device * nvmem)866 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
867 {
868 	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
869 }
870 
nvmem_add_cells_from_fixed_layout(struct nvmem_device * nvmem)871 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
872 {
873 	struct device_node *layout_np;
874 	int err = 0;
875 
876 	layout_np = of_nvmem_layout_get_container(nvmem);
877 	if (!layout_np)
878 		return 0;
879 
880 	if (of_device_is_compatible(layout_np, "fixed-layout"))
881 		err = nvmem_add_cells_from_dt(nvmem, layout_np);
882 
883 	of_node_put(layout_np);
884 
885 	return err;
886 }
887 
nvmem_layout_register(struct nvmem_layout * layout)888 int nvmem_layout_register(struct nvmem_layout *layout)
889 {
890 	int ret;
891 
892 	if (!layout->add_cells)
893 		return -EINVAL;
894 
895 	/* Populate the cells */
896 	ret = layout->add_cells(layout);
897 	if (ret)
898 		return ret;
899 
900 #ifdef CONFIG_NVMEM_SYSFS
901 	ret = nvmem_populate_sysfs_cells(layout->nvmem);
902 	if (ret) {
903 		nvmem_device_remove_all_cells(layout->nvmem);
904 		return ret;
905 	}
906 #endif
907 
908 	return 0;
909 }
910 EXPORT_SYMBOL_GPL(nvmem_layout_register);
911 
nvmem_layout_unregister(struct nvmem_layout * layout)912 void nvmem_layout_unregister(struct nvmem_layout *layout)
913 {
914 	/* Keep the API even with an empty stub in case we need it later */
915 }
916 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
917 
918 /**
919  * nvmem_register() - Register a nvmem device for given nvmem_config.
920  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
921  *
922  * @config: nvmem device configuration with which nvmem device is created.
923  *
924  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
925  * on success.
926  */
927 
nvmem_register(const struct nvmem_config * config)928 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
929 {
930 	struct nvmem_device *nvmem;
931 	int rval;
932 
933 	if (!config->dev)
934 		return ERR_PTR(-EINVAL);
935 
936 	if (!config->reg_read && !config->reg_write)
937 		return ERR_PTR(-EINVAL);
938 
939 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
940 	if (!nvmem)
941 		return ERR_PTR(-ENOMEM);
942 
943 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
944 	if (rval < 0) {
945 		kfree(nvmem);
946 		return ERR_PTR(rval);
947 	}
948 
949 	nvmem->id = rval;
950 
951 	nvmem->dev.type = &nvmem_provider_type;
952 	nvmem->dev.bus = &nvmem_bus_type;
953 	nvmem->dev.parent = config->dev;
954 
955 	device_initialize(&nvmem->dev);
956 
957 	if (!config->ignore_wp)
958 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
959 						    GPIOD_OUT_HIGH);
960 	if (IS_ERR(nvmem->wp_gpio)) {
961 		rval = PTR_ERR(nvmem->wp_gpio);
962 		nvmem->wp_gpio = NULL;
963 		goto err_put_device;
964 	}
965 
966 	kref_init(&nvmem->refcnt);
967 	INIT_LIST_HEAD(&nvmem->cells);
968 	nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
969 
970 	nvmem->owner = config->owner;
971 	if (!nvmem->owner && config->dev->driver)
972 		nvmem->owner = config->dev->driver->owner;
973 	nvmem->stride = config->stride ?: 1;
974 	nvmem->word_size = config->word_size ?: 1;
975 	nvmem->size = config->size;
976 	nvmem->root_only = config->root_only;
977 	nvmem->priv = config->priv;
978 	nvmem->type = config->type;
979 	nvmem->reg_read = config->reg_read;
980 	nvmem->reg_write = config->reg_write;
981 	nvmem->keepout = config->keepout;
982 	nvmem->nkeepout = config->nkeepout;
983 	if (config->of_node)
984 		nvmem->dev.of_node = config->of_node;
985 	else
986 		nvmem->dev.of_node = config->dev->of_node;
987 
988 	switch (config->id) {
989 	case NVMEM_DEVID_NONE:
990 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
991 		break;
992 	case NVMEM_DEVID_AUTO:
993 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
994 		break;
995 	default:
996 		rval = dev_set_name(&nvmem->dev, "%s%d",
997 			     config->name ? : "nvmem",
998 			     config->name ? config->id : nvmem->id);
999 		break;
1000 	}
1001 
1002 	if (rval)
1003 		goto err_put_device;
1004 
1005 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
1006 			   config->read_only || !nvmem->reg_write;
1007 
1008 #ifdef CONFIG_NVMEM_SYSFS
1009 	nvmem->dev.groups = nvmem_dev_groups;
1010 #endif
1011 
1012 	if (nvmem->nkeepout) {
1013 		rval = nvmem_validate_keepouts(nvmem);
1014 		if (rval)
1015 			goto err_put_device;
1016 	}
1017 
1018 	if (config->compat) {
1019 		rval = nvmem_sysfs_setup_compat(nvmem, config);
1020 		if (rval)
1021 			goto err_put_device;
1022 	}
1023 
1024 	if (config->cells) {
1025 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
1026 		if (rval)
1027 			goto err_remove_cells;
1028 	}
1029 
1030 	rval = nvmem_add_cells_from_table(nvmem);
1031 	if (rval)
1032 		goto err_remove_cells;
1033 
1034 	if (config->add_legacy_fixed_of_cells) {
1035 		rval = nvmem_add_cells_from_legacy_of(nvmem);
1036 		if (rval)
1037 			goto err_remove_cells;
1038 	}
1039 
1040 	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1041 	if (rval)
1042 		goto err_remove_cells;
1043 
1044 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1045 
1046 	rval = device_add(&nvmem->dev);
1047 	if (rval)
1048 		goto err_remove_cells;
1049 
1050 	rval = nvmem_populate_layout(nvmem);
1051 	if (rval)
1052 		goto err_remove_dev;
1053 
1054 #ifdef CONFIG_NVMEM_SYSFS
1055 	rval = nvmem_populate_sysfs_cells(nvmem);
1056 	if (rval)
1057 		goto err_destroy_layout;
1058 #endif
1059 
1060 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1061 
1062 	return nvmem;
1063 
1064 #ifdef CONFIG_NVMEM_SYSFS
1065 err_destroy_layout:
1066 	nvmem_destroy_layout(nvmem);
1067 #endif
1068 err_remove_dev:
1069 	device_del(&nvmem->dev);
1070 err_remove_cells:
1071 	nvmem_device_remove_all_cells(nvmem);
1072 	if (config->compat)
1073 		nvmem_sysfs_remove_compat(nvmem, config);
1074 err_put_device:
1075 	put_device(&nvmem->dev);
1076 
1077 	return ERR_PTR(rval);
1078 }
1079 EXPORT_SYMBOL_GPL(nvmem_register);
1080 
nvmem_device_release(struct kref * kref)1081 static void nvmem_device_release(struct kref *kref)
1082 {
1083 	struct nvmem_device *nvmem;
1084 
1085 	nvmem = container_of(kref, struct nvmem_device, refcnt);
1086 
1087 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1088 
1089 	if (nvmem->flags & FLAG_COMPAT)
1090 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1091 
1092 	nvmem_device_remove_all_cells(nvmem);
1093 	nvmem_destroy_layout(nvmem);
1094 	device_unregister(&nvmem->dev);
1095 }
1096 
1097 /**
1098  * nvmem_unregister() - Unregister previously registered nvmem device
1099  *
1100  * @nvmem: Pointer to previously registered nvmem device.
1101  */
nvmem_unregister(struct nvmem_device * nvmem)1102 void nvmem_unregister(struct nvmem_device *nvmem)
1103 {
1104 	if (nvmem)
1105 		kref_put(&nvmem->refcnt, nvmem_device_release);
1106 }
1107 EXPORT_SYMBOL_GPL(nvmem_unregister);
1108 
devm_nvmem_unregister(void * nvmem)1109 static void devm_nvmem_unregister(void *nvmem)
1110 {
1111 	nvmem_unregister(nvmem);
1112 }
1113 
1114 /**
1115  * devm_nvmem_register() - Register a managed nvmem device for given
1116  * nvmem_config.
1117  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1118  *
1119  * @dev: Device that uses the nvmem device.
1120  * @config: nvmem device configuration with which nvmem device is created.
1121  *
1122  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1123  * on success.
1124  */
devm_nvmem_register(struct device * dev,const struct nvmem_config * config)1125 struct nvmem_device *devm_nvmem_register(struct device *dev,
1126 					 const struct nvmem_config *config)
1127 {
1128 	struct nvmem_device *nvmem;
1129 	int ret;
1130 
1131 	nvmem = nvmem_register(config);
1132 	if (IS_ERR(nvmem))
1133 		return nvmem;
1134 
1135 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1136 	if (ret)
1137 		return ERR_PTR(ret);
1138 
1139 	return nvmem;
1140 }
1141 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1142 
__nvmem_device_get(void * data,int (* match)(struct device * dev,const void * data))1143 static struct nvmem_device *__nvmem_device_get(void *data,
1144 			int (*match)(struct device *dev, const void *data))
1145 {
1146 	struct nvmem_device *nvmem = NULL;
1147 	struct device *dev;
1148 
1149 	mutex_lock(&nvmem_mutex);
1150 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1151 	if (dev)
1152 		nvmem = to_nvmem_device(dev);
1153 	mutex_unlock(&nvmem_mutex);
1154 	if (!nvmem)
1155 		return ERR_PTR(-EPROBE_DEFER);
1156 
1157 	if (!try_module_get(nvmem->owner)) {
1158 		dev_err(&nvmem->dev,
1159 			"could not increase module refcount for cell %s\n",
1160 			nvmem_dev_name(nvmem));
1161 
1162 		put_device(&nvmem->dev);
1163 		return ERR_PTR(-EINVAL);
1164 	}
1165 
1166 	kref_get(&nvmem->refcnt);
1167 
1168 	return nvmem;
1169 }
1170 
__nvmem_device_put(struct nvmem_device * nvmem)1171 static void __nvmem_device_put(struct nvmem_device *nvmem)
1172 {
1173 	put_device(&nvmem->dev);
1174 	module_put(nvmem->owner);
1175 	kref_put(&nvmem->refcnt, nvmem_device_release);
1176 }
1177 
1178 #if IS_ENABLED(CONFIG_OF)
1179 /**
1180  * of_nvmem_device_get() - Get nvmem device from a given id
1181  *
1182  * @np: Device tree node that uses the nvmem device.
1183  * @id: nvmem name from nvmem-names property.
1184  *
1185  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1186  * on success.
1187  */
of_nvmem_device_get(struct device_node * np,const char * id)1188 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1189 {
1190 
1191 	struct device_node *nvmem_np;
1192 	struct nvmem_device *nvmem;
1193 	int index = 0;
1194 
1195 	if (id)
1196 		index = of_property_match_string(np, "nvmem-names", id);
1197 
1198 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1199 	if (!nvmem_np)
1200 		return ERR_PTR(-ENOENT);
1201 
1202 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1203 	of_node_put(nvmem_np);
1204 	return nvmem;
1205 }
1206 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1207 #endif
1208 
1209 /**
1210  * nvmem_device_get() - Get nvmem device from a given id
1211  *
1212  * @dev: Device that uses the nvmem device.
1213  * @dev_name: name of the requested nvmem device.
1214  *
1215  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1216  * on success.
1217  */
nvmem_device_get(struct device * dev,const char * dev_name)1218 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1219 {
1220 	if (dev->of_node) { /* try dt first */
1221 		struct nvmem_device *nvmem;
1222 
1223 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1224 
1225 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1226 			return nvmem;
1227 
1228 	}
1229 
1230 	return __nvmem_device_get((void *)dev_name, device_match_name);
1231 }
1232 EXPORT_SYMBOL_GPL(nvmem_device_get);
1233 
1234 /**
1235  * nvmem_device_find() - Find nvmem device with matching function
1236  *
1237  * @data: Data to pass to match function
1238  * @match: Callback function to check device
1239  *
1240  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1241  * on success.
1242  */
nvmem_device_find(void * data,int (* match)(struct device * dev,const void * data))1243 struct nvmem_device *nvmem_device_find(void *data,
1244 			int (*match)(struct device *dev, const void *data))
1245 {
1246 	return __nvmem_device_get(data, match);
1247 }
1248 EXPORT_SYMBOL_GPL(nvmem_device_find);
1249 
devm_nvmem_device_match(struct device * dev,void * res,void * data)1250 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1251 {
1252 	struct nvmem_device **nvmem = res;
1253 
1254 	if (WARN_ON(!nvmem || !*nvmem))
1255 		return 0;
1256 
1257 	return *nvmem == data;
1258 }
1259 
devm_nvmem_device_release(struct device * dev,void * res)1260 static void devm_nvmem_device_release(struct device *dev, void *res)
1261 {
1262 	nvmem_device_put(*(struct nvmem_device **)res);
1263 }
1264 
1265 /**
1266  * devm_nvmem_device_put() - put alredy got nvmem device
1267  *
1268  * @dev: Device that uses the nvmem device.
1269  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1270  * that needs to be released.
1271  */
devm_nvmem_device_put(struct device * dev,struct nvmem_device * nvmem)1272 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1273 {
1274 	int ret;
1275 
1276 	ret = devres_release(dev, devm_nvmem_device_release,
1277 			     devm_nvmem_device_match, nvmem);
1278 
1279 	WARN_ON(ret);
1280 }
1281 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1282 
1283 /**
1284  * nvmem_device_put() - put alredy got nvmem device
1285  *
1286  * @nvmem: pointer to nvmem device that needs to be released.
1287  */
nvmem_device_put(struct nvmem_device * nvmem)1288 void nvmem_device_put(struct nvmem_device *nvmem)
1289 {
1290 	__nvmem_device_put(nvmem);
1291 }
1292 EXPORT_SYMBOL_GPL(nvmem_device_put);
1293 
1294 /**
1295  * devm_nvmem_device_get() - Get nvmem device of device form a given id
1296  *
1297  * @dev: Device that requests the nvmem device.
1298  * @id: name id for the requested nvmem device.
1299  *
1300  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1301  * on success.  The nvmem_device will be freed by the automatically once the
1302  * device is freed.
1303  */
devm_nvmem_device_get(struct device * dev,const char * id)1304 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1305 {
1306 	struct nvmem_device **ptr, *nvmem;
1307 
1308 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1309 	if (!ptr)
1310 		return ERR_PTR(-ENOMEM);
1311 
1312 	nvmem = nvmem_device_get(dev, id);
1313 	if (!IS_ERR(nvmem)) {
1314 		*ptr = nvmem;
1315 		devres_add(dev, ptr);
1316 	} else {
1317 		devres_free(ptr);
1318 	}
1319 
1320 	return nvmem;
1321 }
1322 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1323 
nvmem_create_cell(struct nvmem_cell_entry * entry,const char * id,int index)1324 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1325 					    const char *id, int index)
1326 {
1327 	struct nvmem_cell *cell;
1328 	const char *name = NULL;
1329 
1330 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1331 	if (!cell)
1332 		return ERR_PTR(-ENOMEM);
1333 
1334 	if (id) {
1335 		name = kstrdup_const(id, GFP_KERNEL);
1336 		if (!name) {
1337 			kfree(cell);
1338 			return ERR_PTR(-ENOMEM);
1339 		}
1340 	}
1341 
1342 	cell->id = name;
1343 	cell->entry = entry;
1344 	cell->index = index;
1345 
1346 	return cell;
1347 }
1348 
1349 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device * dev,const char * con_id)1350 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1351 {
1352 	struct nvmem_cell_entry *cell_entry;
1353 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1354 	struct nvmem_cell_lookup *lookup;
1355 	struct nvmem_device *nvmem;
1356 	const char *dev_id;
1357 
1358 	if (!dev)
1359 		return ERR_PTR(-EINVAL);
1360 
1361 	dev_id = dev_name(dev);
1362 
1363 	mutex_lock(&nvmem_lookup_mutex);
1364 
1365 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1366 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1367 		    (strcmp(lookup->con_id, con_id) == 0)) {
1368 			/* This is the right entry. */
1369 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1370 						   device_match_name);
1371 			if (IS_ERR(nvmem)) {
1372 				/* Provider may not be registered yet. */
1373 				cell = ERR_CAST(nvmem);
1374 				break;
1375 			}
1376 
1377 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1378 								   lookup->cell_name);
1379 			if (!cell_entry) {
1380 				__nvmem_device_put(nvmem);
1381 				cell = ERR_PTR(-ENOENT);
1382 			} else {
1383 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1384 				if (IS_ERR(cell))
1385 					__nvmem_device_put(nvmem);
1386 			}
1387 			break;
1388 		}
1389 	}
1390 
1391 	mutex_unlock(&nvmem_lookup_mutex);
1392 	return cell;
1393 }
1394 
nvmem_layout_module_put(struct nvmem_device * nvmem)1395 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1396 {
1397 	if (nvmem->layout && nvmem->layout->dev.driver)
1398 		module_put(nvmem->layout->dev.driver->owner);
1399 }
1400 
1401 #if IS_ENABLED(CONFIG_OF)
1402 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_node(struct nvmem_device * nvmem,struct device_node * np)1403 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1404 {
1405 	struct nvmem_cell_entry *iter, *cell = NULL;
1406 
1407 	mutex_lock(&nvmem_mutex);
1408 	list_for_each_entry(iter, &nvmem->cells, node) {
1409 		if (np == iter->np) {
1410 			cell = iter;
1411 			break;
1412 		}
1413 	}
1414 	mutex_unlock(&nvmem_mutex);
1415 
1416 	return cell;
1417 }
1418 
nvmem_layout_module_get_optional(struct nvmem_device * nvmem)1419 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1420 {
1421 	if (!nvmem->layout)
1422 		return 0;
1423 
1424 	if (!nvmem->layout->dev.driver ||
1425 	    !try_module_get(nvmem->layout->dev.driver->owner))
1426 		return -EPROBE_DEFER;
1427 
1428 	return 0;
1429 }
1430 
1431 /**
1432  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1433  *
1434  * @np: Device tree node that uses the nvmem cell.
1435  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1436  *      for the cell at index 0 (the lone cell with no accompanying
1437  *      nvmem-cell-names property).
1438  *
1439  * Return: Will be an ERR_PTR() on error or a valid pointer
1440  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1441  * nvmem_cell_put().
1442  */
of_nvmem_cell_get(struct device_node * np,const char * id)1443 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1444 {
1445 	struct device_node *cell_np, *nvmem_np;
1446 	struct nvmem_device *nvmem;
1447 	struct nvmem_cell_entry *cell_entry;
1448 	struct nvmem_cell *cell;
1449 	struct of_phandle_args cell_spec;
1450 	int index = 0;
1451 	int cell_index = 0;
1452 	int ret;
1453 
1454 	/* if cell name exists, find index to the name */
1455 	if (id)
1456 		index = of_property_match_string(np, "nvmem-cell-names", id);
1457 
1458 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1459 						  "#nvmem-cell-cells",
1460 						  index, &cell_spec);
1461 	if (ret)
1462 		return ERR_PTR(-ENOENT);
1463 
1464 	if (cell_spec.args_count > 1)
1465 		return ERR_PTR(-EINVAL);
1466 
1467 	cell_np = cell_spec.np;
1468 	if (cell_spec.args_count)
1469 		cell_index = cell_spec.args[0];
1470 
1471 	nvmem_np = of_get_parent(cell_np);
1472 	if (!nvmem_np) {
1473 		of_node_put(cell_np);
1474 		return ERR_PTR(-EINVAL);
1475 	}
1476 
1477 	/* nvmem layouts produce cells within the nvmem-layout container */
1478 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1479 		nvmem_np = of_get_next_parent(nvmem_np);
1480 		if (!nvmem_np) {
1481 			of_node_put(cell_np);
1482 			return ERR_PTR(-EINVAL);
1483 		}
1484 	}
1485 
1486 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1487 	of_node_put(nvmem_np);
1488 	if (IS_ERR(nvmem)) {
1489 		of_node_put(cell_np);
1490 		return ERR_CAST(nvmem);
1491 	}
1492 
1493 	ret = nvmem_layout_module_get_optional(nvmem);
1494 	if (ret) {
1495 		of_node_put(cell_np);
1496 		__nvmem_device_put(nvmem);
1497 		return ERR_PTR(ret);
1498 	}
1499 
1500 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1501 	of_node_put(cell_np);
1502 	if (!cell_entry) {
1503 		__nvmem_device_put(nvmem);
1504 		nvmem_layout_module_put(nvmem);
1505 		if (nvmem->layout)
1506 			return ERR_PTR(-EPROBE_DEFER);
1507 		else
1508 			return ERR_PTR(-ENOENT);
1509 	}
1510 
1511 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1512 	if (IS_ERR(cell)) {
1513 		__nvmem_device_put(nvmem);
1514 		nvmem_layout_module_put(nvmem);
1515 	}
1516 
1517 	return cell;
1518 }
1519 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1520 #endif
1521 
1522 /**
1523  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1524  *
1525  * @dev: Device that requests the nvmem cell.
1526  * @id: nvmem cell name to get (this corresponds with the name from the
1527  *      nvmem-cell-names property for DT systems and with the con_id from
1528  *      the lookup entry for non-DT systems).
1529  *
1530  * Return: Will be an ERR_PTR() on error or a valid pointer
1531  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1532  * nvmem_cell_put().
1533  */
nvmem_cell_get(struct device * dev,const char * id)1534 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1535 {
1536 	struct nvmem_cell *cell;
1537 
1538 	if (dev->of_node) { /* try dt first */
1539 		cell = of_nvmem_cell_get(dev->of_node, id);
1540 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1541 			return cell;
1542 	}
1543 
1544 	/* NULL cell id only allowed for device tree; invalid otherwise */
1545 	if (!id)
1546 		return ERR_PTR(-EINVAL);
1547 
1548 	return nvmem_cell_get_from_lookup(dev, id);
1549 }
1550 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1551 
devm_nvmem_cell_release(struct device * dev,void * res)1552 static void devm_nvmem_cell_release(struct device *dev, void *res)
1553 {
1554 	nvmem_cell_put(*(struct nvmem_cell **)res);
1555 }
1556 
1557 /**
1558  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1559  *
1560  * @dev: Device that requests the nvmem cell.
1561  * @id: nvmem cell name id to get.
1562  *
1563  * Return: Will be an ERR_PTR() on error or a valid pointer
1564  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1565  * automatically once the device is freed.
1566  */
devm_nvmem_cell_get(struct device * dev,const char * id)1567 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1568 {
1569 	struct nvmem_cell **ptr, *cell;
1570 
1571 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1572 	if (!ptr)
1573 		return ERR_PTR(-ENOMEM);
1574 
1575 	cell = nvmem_cell_get(dev, id);
1576 	if (!IS_ERR(cell)) {
1577 		*ptr = cell;
1578 		devres_add(dev, ptr);
1579 	} else {
1580 		devres_free(ptr);
1581 	}
1582 
1583 	return cell;
1584 }
1585 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1586 
devm_nvmem_cell_match(struct device * dev,void * res,void * data)1587 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1588 {
1589 	struct nvmem_cell **c = res;
1590 
1591 	if (WARN_ON(!c || !*c))
1592 		return 0;
1593 
1594 	return *c == data;
1595 }
1596 
1597 /**
1598  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1599  * from devm_nvmem_cell_get.
1600  *
1601  * @dev: Device that requests the nvmem cell.
1602  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1603  */
devm_nvmem_cell_put(struct device * dev,struct nvmem_cell * cell)1604 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1605 {
1606 	int ret;
1607 
1608 	ret = devres_release(dev, devm_nvmem_cell_release,
1609 				devm_nvmem_cell_match, cell);
1610 
1611 	WARN_ON(ret);
1612 }
1613 EXPORT_SYMBOL(devm_nvmem_cell_put);
1614 
1615 /**
1616  * nvmem_cell_put() - Release previously allocated nvmem cell.
1617  *
1618  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1619  */
nvmem_cell_put(struct nvmem_cell * cell)1620 void nvmem_cell_put(struct nvmem_cell *cell)
1621 {
1622 	struct nvmem_device *nvmem = cell->entry->nvmem;
1623 
1624 	if (cell->id)
1625 		kfree_const(cell->id);
1626 
1627 	kfree(cell);
1628 	__nvmem_device_put(nvmem);
1629 	nvmem_layout_module_put(nvmem);
1630 }
1631 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1632 
nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry * cell,void * buf)1633 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1634 {
1635 	u8 *p, *b;
1636 	int i, extra, bytes_offset;
1637 	int bit_offset = cell->bit_offset;
1638 
1639 	p = b = buf;
1640 
1641 	bytes_offset = bit_offset / BITS_PER_BYTE;
1642 	b += bytes_offset;
1643 	bit_offset %= BITS_PER_BYTE;
1644 
1645 	if (bit_offset % BITS_PER_BYTE) {
1646 		/* First shift */
1647 		*p = *b++ >> bit_offset;
1648 
1649 		/* setup rest of the bytes if any */
1650 		for (i = 1; i < cell->bytes; i++) {
1651 			/* Get bits from next byte and shift them towards msb */
1652 			*p++ |= *b << (BITS_PER_BYTE - bit_offset);
1653 
1654 			*p = *b++ >> bit_offset;
1655 		}
1656 	} else if (p != b) {
1657 		memmove(p, b, cell->bytes - bytes_offset);
1658 		p += cell->bytes - 1;
1659 	} else {
1660 		/* point to the msb */
1661 		p += cell->bytes - 1;
1662 	}
1663 
1664 	/* result fits in less bytes */
1665 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1666 	while (--extra >= 0)
1667 		*p-- = 0;
1668 
1669 	/* clear msb bits if any leftover in the last byte */
1670 	if (cell->nbits % BITS_PER_BYTE)
1671 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1672 }
1673 
__nvmem_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_entry * cell,void * buf,size_t * len,const char * id,int index)1674 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1675 			     struct nvmem_cell_entry *cell,
1676 			     void *buf, size_t *len, const char *id, int index)
1677 {
1678 	int rc;
1679 
1680 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1681 
1682 	if (rc)
1683 		return rc;
1684 
1685 	/* shift bits in-place */
1686 	if (cell->bit_offset || cell->nbits)
1687 		nvmem_shift_read_buffer_in_place(cell, buf);
1688 
1689 	if (cell->read_post_process) {
1690 		rc = cell->read_post_process(cell->priv, id, index,
1691 					     cell->offset, buf, cell->raw_len);
1692 		if (rc)
1693 			return rc;
1694 	}
1695 
1696 	if (len)
1697 		*len = cell->bytes;
1698 
1699 	return 0;
1700 }
1701 
1702 /**
1703  * nvmem_cell_read() - Read a given nvmem cell
1704  *
1705  * @cell: nvmem cell to be read.
1706  * @len: pointer to length of cell which will be populated on successful read;
1707  *	 can be NULL.
1708  *
1709  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1710  * buffer should be freed by the consumer with a kfree().
1711  */
nvmem_cell_read(struct nvmem_cell * cell,size_t * len)1712 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1713 {
1714 	struct nvmem_cell_entry *entry = cell->entry;
1715 	struct nvmem_device *nvmem = entry->nvmem;
1716 	u8 *buf;
1717 	int rc;
1718 
1719 	if (!nvmem)
1720 		return ERR_PTR(-EINVAL);
1721 
1722 	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1723 	if (!buf)
1724 		return ERR_PTR(-ENOMEM);
1725 
1726 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1727 	if (rc) {
1728 		kfree(buf);
1729 		return ERR_PTR(rc);
1730 	}
1731 
1732 	return buf;
1733 }
1734 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1735 
nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry * cell,u8 * _buf,int len)1736 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1737 					     u8 *_buf, int len)
1738 {
1739 	struct nvmem_device *nvmem = cell->nvmem;
1740 	int i, rc, nbits, bit_offset = cell->bit_offset;
1741 	u8 v, *p, *buf, *b, pbyte, pbits;
1742 
1743 	nbits = cell->nbits;
1744 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1745 	if (!buf)
1746 		return ERR_PTR(-ENOMEM);
1747 
1748 	memcpy(buf, _buf, len);
1749 	p = b = buf;
1750 
1751 	if (bit_offset) {
1752 		pbyte = *b;
1753 		*b <<= bit_offset;
1754 
1755 		/* setup the first byte with lsb bits from nvmem */
1756 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1757 		if (rc)
1758 			goto err;
1759 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1760 
1761 		/* setup rest of the byte if any */
1762 		for (i = 1; i < cell->bytes; i++) {
1763 			/* Get last byte bits and shift them towards lsb */
1764 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1765 			pbyte = *b;
1766 			p = b;
1767 			*b <<= bit_offset;
1768 			*b++ |= pbits;
1769 		}
1770 	}
1771 
1772 	/* if it's not end on byte boundary */
1773 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1774 		/* setup the last byte with msb bits from nvmem */
1775 		rc = nvmem_reg_read(nvmem,
1776 				    cell->offset + cell->bytes - 1, &v, 1);
1777 		if (rc)
1778 			goto err;
1779 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1780 
1781 	}
1782 
1783 	return buf;
1784 err:
1785 	kfree(buf);
1786 	return ERR_PTR(rc);
1787 }
1788 
__nvmem_cell_entry_write(struct nvmem_cell_entry * cell,void * buf,size_t len)1789 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1790 {
1791 	struct nvmem_device *nvmem = cell->nvmem;
1792 	int rc;
1793 
1794 	if (!nvmem || nvmem->read_only ||
1795 	    (cell->bit_offset == 0 && len != cell->bytes))
1796 		return -EINVAL;
1797 
1798 	/*
1799 	 * Any cells which have a read_post_process hook are read-only because
1800 	 * we cannot reverse the operation and it might affect other cells,
1801 	 * too.
1802 	 */
1803 	if (cell->read_post_process)
1804 		return -EINVAL;
1805 
1806 	if (cell->bit_offset || cell->nbits) {
1807 		if (len != BITS_TO_BYTES(cell->nbits) && len != cell->bytes)
1808 			return -EINVAL;
1809 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1810 		if (IS_ERR(buf))
1811 			return PTR_ERR(buf);
1812 	}
1813 
1814 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1815 
1816 	/* free the tmp buffer */
1817 	if (cell->bit_offset || cell->nbits)
1818 		kfree(buf);
1819 
1820 	if (rc)
1821 		return rc;
1822 
1823 	return len;
1824 }
1825 
1826 /**
1827  * nvmem_cell_write() - Write to a given nvmem cell
1828  *
1829  * @cell: nvmem cell to be written.
1830  * @buf: Buffer to be written.
1831  * @len: length of buffer to be written to nvmem cell.
1832  *
1833  * Return: length of bytes written or negative on failure.
1834  */
nvmem_cell_write(struct nvmem_cell * cell,void * buf,size_t len)1835 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1836 {
1837 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1838 }
1839 
1840 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1841 
nvmem_cell_read_common(struct device * dev,const char * cell_id,void * val,size_t count)1842 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1843 				  void *val, size_t count)
1844 {
1845 	struct nvmem_cell *cell;
1846 	void *buf;
1847 	size_t len;
1848 
1849 	cell = nvmem_cell_get(dev, cell_id);
1850 	if (IS_ERR(cell))
1851 		return PTR_ERR(cell);
1852 
1853 	buf = nvmem_cell_read(cell, &len);
1854 	if (IS_ERR(buf)) {
1855 		nvmem_cell_put(cell);
1856 		return PTR_ERR(buf);
1857 	}
1858 	if (len != count) {
1859 		kfree(buf);
1860 		nvmem_cell_put(cell);
1861 		return -EINVAL;
1862 	}
1863 	memcpy(val, buf, count);
1864 	kfree(buf);
1865 	nvmem_cell_put(cell);
1866 
1867 	return 0;
1868 }
1869 
1870 /**
1871  * nvmem_cell_read_u8() - Read a cell value as a u8
1872  *
1873  * @dev: Device that requests the nvmem cell.
1874  * @cell_id: Name of nvmem cell to read.
1875  * @val: pointer to output value.
1876  *
1877  * Return: 0 on success or negative errno.
1878  */
nvmem_cell_read_u8(struct device * dev,const char * cell_id,u8 * val)1879 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1880 {
1881 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1882 }
1883 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1884 
1885 /**
1886  * nvmem_cell_read_u16() - Read a cell value as a u16
1887  *
1888  * @dev: Device that requests the nvmem cell.
1889  * @cell_id: Name of nvmem cell to read.
1890  * @val: pointer to output value.
1891  *
1892  * Return: 0 on success or negative errno.
1893  */
nvmem_cell_read_u16(struct device * dev,const char * cell_id,u16 * val)1894 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1895 {
1896 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1897 }
1898 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1899 
1900 /**
1901  * nvmem_cell_read_u32() - Read a cell value as a u32
1902  *
1903  * @dev: Device that requests the nvmem cell.
1904  * @cell_id: Name of nvmem cell to read.
1905  * @val: pointer to output value.
1906  *
1907  * Return: 0 on success or negative errno.
1908  */
nvmem_cell_read_u32(struct device * dev,const char * cell_id,u32 * val)1909 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1910 {
1911 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1912 }
1913 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1914 
1915 /**
1916  * nvmem_cell_read_u64() - Read a cell value as a u64
1917  *
1918  * @dev: Device that requests the nvmem cell.
1919  * @cell_id: Name of nvmem cell to read.
1920  * @val: pointer to output value.
1921  *
1922  * Return: 0 on success or negative errno.
1923  */
nvmem_cell_read_u64(struct device * dev,const char * cell_id,u64 * val)1924 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1925 {
1926 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1927 }
1928 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1929 
nvmem_cell_read_variable_common(struct device * dev,const char * cell_id,size_t max_len,size_t * len)1930 static const void *nvmem_cell_read_variable_common(struct device *dev,
1931 						   const char *cell_id,
1932 						   size_t max_len, size_t *len)
1933 {
1934 	struct nvmem_cell *cell;
1935 	int nbits;
1936 	void *buf;
1937 
1938 	cell = nvmem_cell_get(dev, cell_id);
1939 	if (IS_ERR(cell))
1940 		return cell;
1941 
1942 	nbits = cell->entry->nbits;
1943 	buf = nvmem_cell_read(cell, len);
1944 	nvmem_cell_put(cell);
1945 	if (IS_ERR(buf))
1946 		return buf;
1947 
1948 	/*
1949 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1950 	 * the length of the real data. Throw away the extra junk.
1951 	 */
1952 	if (nbits)
1953 		*len = DIV_ROUND_UP(nbits, 8);
1954 
1955 	if (*len > max_len) {
1956 		kfree(buf);
1957 		return ERR_PTR(-ERANGE);
1958 	}
1959 
1960 	return buf;
1961 }
1962 
1963 /**
1964  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1965  *
1966  * @dev: Device that requests the nvmem cell.
1967  * @cell_id: Name of nvmem cell to read.
1968  * @val: pointer to output value.
1969  *
1970  * Return: 0 on success or negative errno.
1971  */
nvmem_cell_read_variable_le_u32(struct device * dev,const char * cell_id,u32 * val)1972 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1973 				    u32 *val)
1974 {
1975 	size_t len;
1976 	const u8 *buf;
1977 	int i;
1978 
1979 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1980 	if (IS_ERR(buf))
1981 		return PTR_ERR(buf);
1982 
1983 	/* Copy w/ implicit endian conversion */
1984 	*val = 0;
1985 	for (i = 0; i < len; i++)
1986 		*val |= buf[i] << (8 * i);
1987 
1988 	kfree(buf);
1989 
1990 	return 0;
1991 }
1992 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1993 
1994 /**
1995  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1996  *
1997  * @dev: Device that requests the nvmem cell.
1998  * @cell_id: Name of nvmem cell to read.
1999  * @val: pointer to output value.
2000  *
2001  * Return: 0 on success or negative errno.
2002  */
nvmem_cell_read_variable_le_u64(struct device * dev,const char * cell_id,u64 * val)2003 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
2004 				    u64 *val)
2005 {
2006 	size_t len;
2007 	const u8 *buf;
2008 	int i;
2009 
2010 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
2011 	if (IS_ERR(buf))
2012 		return PTR_ERR(buf);
2013 
2014 	/* Copy w/ implicit endian conversion */
2015 	*val = 0;
2016 	for (i = 0; i < len; i++)
2017 		*val |= (uint64_t)buf[i] << (8 * i);
2018 
2019 	kfree(buf);
2020 
2021 	return 0;
2022 }
2023 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
2024 
2025 /**
2026  * nvmem_device_cell_read() - Read a given nvmem device and cell
2027  *
2028  * @nvmem: nvmem device to read from.
2029  * @info: nvmem cell info to be read.
2030  * @buf: buffer pointer which will be populated on successful read.
2031  *
2032  * Return: length of successful bytes read on success and negative
2033  * error code on error.
2034  */
nvmem_device_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)2035 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
2036 			   struct nvmem_cell_info *info, void *buf)
2037 {
2038 	struct nvmem_cell_entry cell;
2039 	int rc;
2040 	ssize_t len;
2041 
2042 	if (!nvmem)
2043 		return -EINVAL;
2044 
2045 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2046 	if (rc)
2047 		return rc;
2048 
2049 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2050 	if (rc)
2051 		return rc;
2052 
2053 	return len;
2054 }
2055 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2056 
2057 /**
2058  * nvmem_device_cell_write() - Write cell to a given nvmem device
2059  *
2060  * @nvmem: nvmem device to be written to.
2061  * @info: nvmem cell info to be written.
2062  * @buf: buffer to be written to cell.
2063  *
2064  * Return: length of bytes written or negative error code on failure.
2065  */
nvmem_device_cell_write(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)2066 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2067 			    struct nvmem_cell_info *info, void *buf)
2068 {
2069 	struct nvmem_cell_entry cell;
2070 	int rc;
2071 
2072 	if (!nvmem)
2073 		return -EINVAL;
2074 
2075 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2076 	if (rc)
2077 		return rc;
2078 
2079 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2080 }
2081 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2082 
2083 /**
2084  * nvmem_device_read() - Read from a given nvmem device
2085  *
2086  * @nvmem: nvmem device to read from.
2087  * @offset: offset in nvmem device.
2088  * @bytes: number of bytes to read.
2089  * @buf: buffer pointer which will be populated on successful read.
2090  *
2091  * Return: length of successful bytes read on success and negative
2092  * error code on error.
2093  */
nvmem_device_read(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2094 int nvmem_device_read(struct nvmem_device *nvmem,
2095 		      unsigned int offset,
2096 		      size_t bytes, void *buf)
2097 {
2098 	int rc;
2099 
2100 	if (!nvmem)
2101 		return -EINVAL;
2102 
2103 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2104 
2105 	if (rc)
2106 		return rc;
2107 
2108 	return bytes;
2109 }
2110 EXPORT_SYMBOL_GPL(nvmem_device_read);
2111 
2112 /**
2113  * nvmem_device_write() - Write cell to a given nvmem device
2114  *
2115  * @nvmem: nvmem device to be written to.
2116  * @offset: offset in nvmem device.
2117  * @bytes: number of bytes to write.
2118  * @buf: buffer to be written.
2119  *
2120  * Return: length of bytes written or negative error code on failure.
2121  */
nvmem_device_write(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2122 int nvmem_device_write(struct nvmem_device *nvmem,
2123 		       unsigned int offset,
2124 		       size_t bytes, void *buf)
2125 {
2126 	int rc;
2127 
2128 	if (!nvmem)
2129 		return -EINVAL;
2130 
2131 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2132 
2133 	if (rc)
2134 		return rc;
2135 
2136 
2137 	return bytes;
2138 }
2139 EXPORT_SYMBOL_GPL(nvmem_device_write);
2140 
2141 /**
2142  * nvmem_add_cell_table() - register a table of cell info entries
2143  *
2144  * @table: table of cell info entries
2145  */
nvmem_add_cell_table(struct nvmem_cell_table * table)2146 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2147 {
2148 	mutex_lock(&nvmem_cell_mutex);
2149 	list_add_tail(&table->node, &nvmem_cell_tables);
2150 	mutex_unlock(&nvmem_cell_mutex);
2151 }
2152 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2153 
2154 /**
2155  * nvmem_del_cell_table() - remove a previously registered cell info table
2156  *
2157  * @table: table of cell info entries
2158  */
nvmem_del_cell_table(struct nvmem_cell_table * table)2159 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2160 {
2161 	mutex_lock(&nvmem_cell_mutex);
2162 	list_del(&table->node);
2163 	mutex_unlock(&nvmem_cell_mutex);
2164 }
2165 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2166 
2167 /**
2168  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2169  *
2170  * @entries: array of cell lookup entries
2171  * @nentries: number of cell lookup entries in the array
2172  */
nvmem_add_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2173 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2174 {
2175 	int i;
2176 
2177 	mutex_lock(&nvmem_lookup_mutex);
2178 	for (i = 0; i < nentries; i++)
2179 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2180 	mutex_unlock(&nvmem_lookup_mutex);
2181 }
2182 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2183 
2184 /**
2185  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2186  *                            entries
2187  *
2188  * @entries: array of cell lookup entries
2189  * @nentries: number of cell lookup entries in the array
2190  */
nvmem_del_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2191 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2192 {
2193 	int i;
2194 
2195 	mutex_lock(&nvmem_lookup_mutex);
2196 	for (i = 0; i < nentries; i++)
2197 		list_del(&entries[i].node);
2198 	mutex_unlock(&nvmem_lookup_mutex);
2199 }
2200 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2201 
2202 /**
2203  * nvmem_dev_name() - Get the name of a given nvmem device.
2204  *
2205  * @nvmem: nvmem device.
2206  *
2207  * Return: name of the nvmem device.
2208  */
nvmem_dev_name(struct nvmem_device * nvmem)2209 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2210 {
2211 	return dev_name(&nvmem->dev);
2212 }
2213 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2214 
2215 /**
2216  * nvmem_dev_size() - Get the size of a given nvmem device.
2217  *
2218  * @nvmem: nvmem device.
2219  *
2220  * Return: size of the nvmem device.
2221  */
nvmem_dev_size(struct nvmem_device * nvmem)2222 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2223 {
2224 	return nvmem->size;
2225 }
2226 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2227 
nvmem_init(void)2228 static int __init nvmem_init(void)
2229 {
2230 	int ret;
2231 
2232 	ret = bus_register(&nvmem_bus_type);
2233 	if (ret)
2234 		return ret;
2235 
2236 	ret = nvmem_layout_bus_register();
2237 	if (ret)
2238 		bus_unregister(&nvmem_bus_type);
2239 
2240 	return ret;
2241 }
2242 
nvmem_exit(void)2243 static void __exit nvmem_exit(void)
2244 {
2245 	nvmem_layout_bus_unregister();
2246 	bus_unregister(&nvmem_bus_type);
2247 }
2248 
2249 subsys_initcall(nvmem_init);
2250 module_exit(nvmem_exit);
2251 
2252 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2253 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2254 MODULE_DESCRIPTION("nvmem Driver Core");
2255