1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17 #define pr_fmt(fmt) "OF: " fmt
18
19 #include <linux/cleanup.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31
32 #include "of_private.h"
33
34 LIST_HEAD(aliases_lookup);
35
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 EXPORT_SYMBOL(of_chosen);
40 struct device_node *of_aliases;
41 struct device_node *of_stdout;
42 static const char *of_stdout_options;
43
44 struct kset *of_kset;
45
46 /*
47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48 * This mutex must be held whenever modifications are being made to the
49 * device tree. The of_{attach,detach}_node() and
50 * of_{add,remove,update}_property() helpers make sure this happens.
51 */
52 DEFINE_MUTEX(of_mutex);
53
54 /* use when traversing tree through the child, sibling,
55 * or parent members of struct device_node.
56 */
57 DEFINE_RAW_SPINLOCK(devtree_lock);
58
of_node_name_eq(const struct device_node * np,const char * name)59 bool of_node_name_eq(const struct device_node *np, const char *name)
60 {
61 const char *node_name;
62 size_t len;
63
64 if (!np)
65 return false;
66
67 node_name = kbasename(np->full_name);
68 len = strchrnul(node_name, '@') - node_name;
69
70 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71 }
72 EXPORT_SYMBOL(of_node_name_eq);
73
of_node_name_prefix(const struct device_node * np,const char * prefix)74 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75 {
76 if (!np)
77 return false;
78
79 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80 }
81 EXPORT_SYMBOL(of_node_name_prefix);
82
__of_node_is_type(const struct device_node * np,const char * type)83 static bool __of_node_is_type(const struct device_node *np, const char *type)
84 {
85 const char *match = __of_get_property(np, "device_type", NULL);
86
87 return np && match && type && !strcmp(match, type);
88 }
89
of_bus_n_addr_cells(struct device_node * np)90 int of_bus_n_addr_cells(struct device_node *np)
91 {
92 u32 cells;
93
94 for (; np; np = np->parent)
95 if (!of_property_read_u32(np, "#address-cells", &cells))
96 return cells;
97
98 /* No #address-cells property for the root node */
99 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
100 }
101
of_n_addr_cells(struct device_node * np)102 int of_n_addr_cells(struct device_node *np)
103 {
104 if (np->parent)
105 np = np->parent;
106
107 return of_bus_n_addr_cells(np);
108 }
109 EXPORT_SYMBOL(of_n_addr_cells);
110
of_bus_n_size_cells(struct device_node * np)111 int of_bus_n_size_cells(struct device_node *np)
112 {
113 u32 cells;
114
115 for (; np; np = np->parent)
116 if (!of_property_read_u32(np, "#size-cells", &cells))
117 return cells;
118
119 /* No #size-cells property for the root node */
120 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
121 }
122
of_n_size_cells(struct device_node * np)123 int of_n_size_cells(struct device_node *np)
124 {
125 if (np->parent)
126 np = np->parent;
127
128 return of_bus_n_size_cells(np);
129 }
130 EXPORT_SYMBOL(of_n_size_cells);
131
132 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)133 int __weak of_node_to_nid(struct device_node *np)
134 {
135 return NUMA_NO_NODE;
136 }
137 #endif
138
139 #define OF_PHANDLE_CACHE_BITS 7
140 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
141
142 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
143
of_phandle_cache_hash(phandle handle)144 static u32 of_phandle_cache_hash(phandle handle)
145 {
146 return hash_32(handle, OF_PHANDLE_CACHE_BITS);
147 }
148
149 /*
150 * Caller must hold devtree_lock.
151 */
__of_phandle_cache_inv_entry(phandle handle)152 void __of_phandle_cache_inv_entry(phandle handle)
153 {
154 u32 handle_hash;
155 struct device_node *np;
156
157 if (!handle)
158 return;
159
160 handle_hash = of_phandle_cache_hash(handle);
161
162 np = phandle_cache[handle_hash];
163 if (np && handle == np->phandle)
164 phandle_cache[handle_hash] = NULL;
165 }
166
of_core_init(void)167 void __init of_core_init(void)
168 {
169 struct device_node *np;
170
171 of_platform_register_reconfig_notifier();
172
173 /* Create the kset, and register existing nodes */
174 mutex_lock(&of_mutex);
175 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
176 if (!of_kset) {
177 mutex_unlock(&of_mutex);
178 pr_err("failed to register existing nodes\n");
179 return;
180 }
181 for_each_of_allnodes(np) {
182 __of_attach_node_sysfs(np);
183 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
184 phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
185 }
186 mutex_unlock(&of_mutex);
187
188 /* Symlink in /proc as required by userspace ABI */
189 if (of_root)
190 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
191 }
192
__of_find_property(const struct device_node * np,const char * name,int * lenp)193 static struct property *__of_find_property(const struct device_node *np,
194 const char *name, int *lenp)
195 {
196 struct property *pp;
197
198 if (!np)
199 return NULL;
200
201 for (pp = np->properties; pp; pp = pp->next) {
202 if (of_prop_cmp(pp->name, name) == 0) {
203 if (lenp)
204 *lenp = pp->length;
205 break;
206 }
207 }
208
209 return pp;
210 }
211
of_find_property(const struct device_node * np,const char * name,int * lenp)212 struct property *of_find_property(const struct device_node *np,
213 const char *name,
214 int *lenp)
215 {
216 struct property *pp;
217 unsigned long flags;
218
219 raw_spin_lock_irqsave(&devtree_lock, flags);
220 pp = __of_find_property(np, name, lenp);
221 raw_spin_unlock_irqrestore(&devtree_lock, flags);
222
223 return pp;
224 }
225 EXPORT_SYMBOL(of_find_property);
226
__of_find_all_nodes(struct device_node * prev)227 struct device_node *__of_find_all_nodes(struct device_node *prev)
228 {
229 struct device_node *np;
230 if (!prev) {
231 np = of_root;
232 } else if (prev->child) {
233 np = prev->child;
234 } else {
235 /* Walk back up looking for a sibling, or the end of the structure */
236 np = prev;
237 while (np->parent && !np->sibling)
238 np = np->parent;
239 np = np->sibling; /* Might be null at the end of the tree */
240 }
241 return np;
242 }
243
244 /**
245 * of_find_all_nodes - Get next node in global list
246 * @prev: Previous node or NULL to start iteration
247 * of_node_put() will be called on it
248 *
249 * Return: A node pointer with refcount incremented, use
250 * of_node_put() on it when done.
251 */
of_find_all_nodes(struct device_node * prev)252 struct device_node *of_find_all_nodes(struct device_node *prev)
253 {
254 struct device_node *np;
255 unsigned long flags;
256
257 raw_spin_lock_irqsave(&devtree_lock, flags);
258 np = __of_find_all_nodes(prev);
259 of_node_get(np);
260 of_node_put(prev);
261 raw_spin_unlock_irqrestore(&devtree_lock, flags);
262 return np;
263 }
264 EXPORT_SYMBOL(of_find_all_nodes);
265
266 /*
267 * Find a property with a given name for a given node
268 * and return the value.
269 */
__of_get_property(const struct device_node * np,const char * name,int * lenp)270 const void *__of_get_property(const struct device_node *np,
271 const char *name, int *lenp)
272 {
273 struct property *pp = __of_find_property(np, name, lenp);
274
275 return pp ? pp->value : NULL;
276 }
277
278 /*
279 * Find a property with a given name for a given node
280 * and return the value.
281 */
of_get_property(const struct device_node * np,const char * name,int * lenp)282 const void *of_get_property(const struct device_node *np, const char *name,
283 int *lenp)
284 {
285 struct property *pp = of_find_property(np, name, lenp);
286
287 return pp ? pp->value : NULL;
288 }
289 EXPORT_SYMBOL(of_get_property);
290
291 /**
292 * __of_device_is_compatible() - Check if the node matches given constraints
293 * @device: pointer to node
294 * @compat: required compatible string, NULL or "" for any match
295 * @type: required device_type value, NULL or "" for any match
296 * @name: required node name, NULL or "" for any match
297 *
298 * Checks if the given @compat, @type and @name strings match the
299 * properties of the given @device. A constraints can be skipped by
300 * passing NULL or an empty string as the constraint.
301 *
302 * Returns 0 for no match, and a positive integer on match. The return
303 * value is a relative score with larger values indicating better
304 * matches. The score is weighted for the most specific compatible value
305 * to get the highest score. Matching type is next, followed by matching
306 * name. Practically speaking, this results in the following priority
307 * order for matches:
308 *
309 * 1. specific compatible && type && name
310 * 2. specific compatible && type
311 * 3. specific compatible && name
312 * 4. specific compatible
313 * 5. general compatible && type && name
314 * 6. general compatible && type
315 * 7. general compatible && name
316 * 8. general compatible
317 * 9. type && name
318 * 10. type
319 * 11. name
320 */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)321 static int __of_device_is_compatible(const struct device_node *device,
322 const char *compat, const char *type, const char *name)
323 {
324 struct property *prop;
325 const char *cp;
326 int index = 0, score = 0;
327
328 /* Compatible match has highest priority */
329 if (compat && compat[0]) {
330 prop = __of_find_property(device, "compatible", NULL);
331 for (cp = of_prop_next_string(prop, NULL); cp;
332 cp = of_prop_next_string(prop, cp), index++) {
333 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
334 score = INT_MAX/2 - (index << 2);
335 break;
336 }
337 }
338 if (!score)
339 return 0;
340 }
341
342 /* Matching type is better than matching name */
343 if (type && type[0]) {
344 if (!__of_node_is_type(device, type))
345 return 0;
346 score += 2;
347 }
348
349 /* Matching name is a bit better than not */
350 if (name && name[0]) {
351 if (!of_node_name_eq(device, name))
352 return 0;
353 score++;
354 }
355
356 return score;
357 }
358
359 /** Checks if the given "compat" string matches one of the strings in
360 * the device's "compatible" property
361 */
of_device_is_compatible(const struct device_node * device,const char * compat)362 int of_device_is_compatible(const struct device_node *device,
363 const char *compat)
364 {
365 unsigned long flags;
366 int res;
367
368 raw_spin_lock_irqsave(&devtree_lock, flags);
369 res = __of_device_is_compatible(device, compat, NULL, NULL);
370 raw_spin_unlock_irqrestore(&devtree_lock, flags);
371 return res;
372 }
373 EXPORT_SYMBOL(of_device_is_compatible);
374
375 /** Checks if the device is compatible with any of the entries in
376 * a NULL terminated array of strings. Returns the best match
377 * score or 0.
378 */
of_device_compatible_match(const struct device_node * device,const char * const * compat)379 int of_device_compatible_match(const struct device_node *device,
380 const char *const *compat)
381 {
382 unsigned int tmp, score = 0;
383
384 if (!compat)
385 return 0;
386
387 while (*compat) {
388 tmp = of_device_is_compatible(device, *compat);
389 if (tmp > score)
390 score = tmp;
391 compat++;
392 }
393
394 return score;
395 }
396 EXPORT_SYMBOL_GPL(of_device_compatible_match);
397
398 /**
399 * of_machine_compatible_match - Test root of device tree against a compatible array
400 * @compats: NULL terminated array of compatible strings to look for in root node's compatible property.
401 *
402 * Returns true if the root node has any of the given compatible values in its
403 * compatible property.
404 */
of_machine_compatible_match(const char * const * compats)405 bool of_machine_compatible_match(const char *const *compats)
406 {
407 struct device_node *root;
408 int rc = 0;
409
410 root = of_find_node_by_path("/");
411 if (root) {
412 rc = of_device_compatible_match(root, compats);
413 of_node_put(root);
414 }
415
416 return rc != 0;
417 }
418 EXPORT_SYMBOL(of_machine_compatible_match);
419
__of_device_is_status(const struct device_node * device,const char * const * strings)420 static bool __of_device_is_status(const struct device_node *device,
421 const char * const*strings)
422 {
423 const char *status;
424 int statlen;
425
426 if (!device)
427 return false;
428
429 status = __of_get_property(device, "status", &statlen);
430 if (status == NULL)
431 return false;
432
433 if (statlen > 0) {
434 while (*strings) {
435 unsigned int len = strlen(*strings);
436
437 if ((*strings)[len - 1] == '-') {
438 if (!strncmp(status, *strings, len))
439 return true;
440 } else {
441 if (!strcmp(status, *strings))
442 return true;
443 }
444 strings++;
445 }
446 }
447
448 return false;
449 }
450
451 /**
452 * __of_device_is_available - check if a device is available for use
453 *
454 * @device: Node to check for availability, with locks already held
455 *
456 * Return: True if the status property is absent or set to "okay" or "ok",
457 * false otherwise
458 */
__of_device_is_available(const struct device_node * device)459 static bool __of_device_is_available(const struct device_node *device)
460 {
461 static const char * const ok[] = {"okay", "ok", NULL};
462
463 if (!device)
464 return false;
465
466 return !__of_get_property(device, "status", NULL) ||
467 __of_device_is_status(device, ok);
468 }
469
470 /**
471 * __of_device_is_reserved - check if a device is reserved
472 *
473 * @device: Node to check for availability, with locks already held
474 *
475 * Return: True if the status property is set to "reserved", false otherwise
476 */
__of_device_is_reserved(const struct device_node * device)477 static bool __of_device_is_reserved(const struct device_node *device)
478 {
479 static const char * const reserved[] = {"reserved", NULL};
480
481 return __of_device_is_status(device, reserved);
482 }
483
484 /**
485 * of_device_is_available - check if a device is available for use
486 *
487 * @device: Node to check for availability
488 *
489 * Return: True if the status property is absent or set to "okay" or "ok",
490 * false otherwise
491 */
of_device_is_available(const struct device_node * device)492 bool of_device_is_available(const struct device_node *device)
493 {
494 unsigned long flags;
495 bool res;
496
497 raw_spin_lock_irqsave(&devtree_lock, flags);
498 res = __of_device_is_available(device);
499 raw_spin_unlock_irqrestore(&devtree_lock, flags);
500 return res;
501
502 }
503 EXPORT_SYMBOL(of_device_is_available);
504
505 /**
506 * __of_device_is_fail - check if a device has status "fail" or "fail-..."
507 *
508 * @device: Node to check status for, with locks already held
509 *
510 * Return: True if the status property is set to "fail" or "fail-..." (for any
511 * error code suffix), false otherwise
512 */
__of_device_is_fail(const struct device_node * device)513 static bool __of_device_is_fail(const struct device_node *device)
514 {
515 static const char * const fail[] = {"fail", "fail-", NULL};
516
517 return __of_device_is_status(device, fail);
518 }
519
520 /**
521 * of_device_is_big_endian - check if a device has BE registers
522 *
523 * @device: Node to check for endianness
524 *
525 * Return: True if the device has a "big-endian" property, or if the kernel
526 * was compiled for BE *and* the device has a "native-endian" property.
527 * Returns false otherwise.
528 *
529 * Callers would nominally use ioread32be/iowrite32be if
530 * of_device_is_big_endian() == true, or readl/writel otherwise.
531 */
of_device_is_big_endian(const struct device_node * device)532 bool of_device_is_big_endian(const struct device_node *device)
533 {
534 if (of_property_read_bool(device, "big-endian"))
535 return true;
536 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
537 of_property_read_bool(device, "native-endian"))
538 return true;
539 return false;
540 }
541 EXPORT_SYMBOL(of_device_is_big_endian);
542
543 /**
544 * of_get_parent - Get a node's parent if any
545 * @node: Node to get parent
546 *
547 * Return: A node pointer with refcount incremented, use
548 * of_node_put() on it when done.
549 */
of_get_parent(const struct device_node * node)550 struct device_node *of_get_parent(const struct device_node *node)
551 {
552 struct device_node *np;
553 unsigned long flags;
554
555 if (!node)
556 return NULL;
557
558 raw_spin_lock_irqsave(&devtree_lock, flags);
559 np = of_node_get(node->parent);
560 raw_spin_unlock_irqrestore(&devtree_lock, flags);
561 return np;
562 }
563 EXPORT_SYMBOL(of_get_parent);
564
565 /**
566 * of_get_next_parent - Iterate to a node's parent
567 * @node: Node to get parent of
568 *
569 * This is like of_get_parent() except that it drops the
570 * refcount on the passed node, making it suitable for iterating
571 * through a node's parents.
572 *
573 * Return: A node pointer with refcount incremented, use
574 * of_node_put() on it when done.
575 */
of_get_next_parent(struct device_node * node)576 struct device_node *of_get_next_parent(struct device_node *node)
577 {
578 struct device_node *parent;
579 unsigned long flags;
580
581 if (!node)
582 return NULL;
583
584 raw_spin_lock_irqsave(&devtree_lock, flags);
585 parent = of_node_get(node->parent);
586 of_node_put(node);
587 raw_spin_unlock_irqrestore(&devtree_lock, flags);
588 return parent;
589 }
590 EXPORT_SYMBOL(of_get_next_parent);
591
__of_get_next_child(const struct device_node * node,struct device_node * prev)592 static struct device_node *__of_get_next_child(const struct device_node *node,
593 struct device_node *prev)
594 {
595 struct device_node *next;
596
597 if (!node)
598 return NULL;
599
600 next = prev ? prev->sibling : node->child;
601 of_node_get(next);
602 of_node_put(prev);
603 return next;
604 }
605 #define __for_each_child_of_node(parent, child) \
606 for (child = __of_get_next_child(parent, NULL); child != NULL; \
607 child = __of_get_next_child(parent, child))
608
609 /**
610 * of_get_next_child - Iterate a node childs
611 * @node: parent node
612 * @prev: previous child of the parent node, or NULL to get first
613 *
614 * Return: A node pointer with refcount incremented, use of_node_put() on
615 * it when done. Returns NULL when prev is the last child. Decrements the
616 * refcount of prev.
617 */
of_get_next_child(const struct device_node * node,struct device_node * prev)618 struct device_node *of_get_next_child(const struct device_node *node,
619 struct device_node *prev)
620 {
621 struct device_node *next;
622 unsigned long flags;
623
624 raw_spin_lock_irqsave(&devtree_lock, flags);
625 next = __of_get_next_child(node, prev);
626 raw_spin_unlock_irqrestore(&devtree_lock, flags);
627 return next;
628 }
629 EXPORT_SYMBOL(of_get_next_child);
630
of_get_next_status_child(const struct device_node * node,struct device_node * prev,bool (* checker)(const struct device_node *))631 static struct device_node *of_get_next_status_child(const struct device_node *node,
632 struct device_node *prev,
633 bool (*checker)(const struct device_node *))
634 {
635 struct device_node *next;
636 unsigned long flags;
637
638 if (!node)
639 return NULL;
640
641 raw_spin_lock_irqsave(&devtree_lock, flags);
642 next = prev ? prev->sibling : node->child;
643 for (; next; next = next->sibling) {
644 if (!checker(next))
645 continue;
646 if (of_node_get(next))
647 break;
648 }
649 of_node_put(prev);
650 raw_spin_unlock_irqrestore(&devtree_lock, flags);
651 return next;
652 }
653
654 /**
655 * of_get_next_available_child - Find the next available child node
656 * @node: parent node
657 * @prev: previous child of the parent node, or NULL to get first
658 *
659 * This function is like of_get_next_child(), except that it
660 * automatically skips any disabled nodes (i.e. status = "disabled").
661 */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)662 struct device_node *of_get_next_available_child(const struct device_node *node,
663 struct device_node *prev)
664 {
665 return of_get_next_status_child(node, prev, __of_device_is_available);
666 }
667 EXPORT_SYMBOL(of_get_next_available_child);
668
669 /**
670 * of_get_next_reserved_child - Find the next reserved child node
671 * @node: parent node
672 * @prev: previous child of the parent node, or NULL to get first
673 *
674 * This function is like of_get_next_child(), except that it
675 * automatically skips any disabled nodes (i.e. status = "disabled").
676 */
of_get_next_reserved_child(const struct device_node * node,struct device_node * prev)677 struct device_node *of_get_next_reserved_child(const struct device_node *node,
678 struct device_node *prev)
679 {
680 return of_get_next_status_child(node, prev, __of_device_is_reserved);
681 }
682 EXPORT_SYMBOL(of_get_next_reserved_child);
683
684 /**
685 * of_get_next_cpu_node - Iterate on cpu nodes
686 * @prev: previous child of the /cpus node, or NULL to get first
687 *
688 * Unusable CPUs (those with the status property set to "fail" or "fail-...")
689 * will be skipped.
690 *
691 * Return: A cpu node pointer with refcount incremented, use of_node_put()
692 * on it when done. Returns NULL when prev is the last child. Decrements
693 * the refcount of prev.
694 */
of_get_next_cpu_node(struct device_node * prev)695 struct device_node *of_get_next_cpu_node(struct device_node *prev)
696 {
697 struct device_node *next = NULL;
698 unsigned long flags;
699 struct device_node *node;
700
701 if (!prev)
702 node = of_find_node_by_path("/cpus");
703
704 raw_spin_lock_irqsave(&devtree_lock, flags);
705 if (prev)
706 next = prev->sibling;
707 else if (node) {
708 next = node->child;
709 of_node_put(node);
710 }
711 for (; next; next = next->sibling) {
712 if (__of_device_is_fail(next))
713 continue;
714 if (!(of_node_name_eq(next, "cpu") ||
715 __of_node_is_type(next, "cpu")))
716 continue;
717 if (of_node_get(next))
718 break;
719 }
720 of_node_put(prev);
721 raw_spin_unlock_irqrestore(&devtree_lock, flags);
722 return next;
723 }
724 EXPORT_SYMBOL(of_get_next_cpu_node);
725
726 /**
727 * of_get_compatible_child - Find compatible child node
728 * @parent: parent node
729 * @compatible: compatible string
730 *
731 * Lookup child node whose compatible property contains the given compatible
732 * string.
733 *
734 * Return: a node pointer with refcount incremented, use of_node_put() on it
735 * when done; or NULL if not found.
736 */
of_get_compatible_child(const struct device_node * parent,const char * compatible)737 struct device_node *of_get_compatible_child(const struct device_node *parent,
738 const char *compatible)
739 {
740 struct device_node *child;
741
742 for_each_child_of_node(parent, child) {
743 if (of_device_is_compatible(child, compatible))
744 break;
745 }
746
747 return child;
748 }
749 EXPORT_SYMBOL(of_get_compatible_child);
750
751 /**
752 * of_get_child_by_name - Find the child node by name for a given parent
753 * @node: parent node
754 * @name: child name to look for.
755 *
756 * This function looks for child node for given matching name
757 *
758 * Return: A node pointer if found, with refcount incremented, use
759 * of_node_put() on it when done.
760 * Returns NULL if node is not found.
761 */
of_get_child_by_name(const struct device_node * node,const char * name)762 struct device_node *of_get_child_by_name(const struct device_node *node,
763 const char *name)
764 {
765 struct device_node *child;
766
767 for_each_child_of_node(node, child)
768 if (of_node_name_eq(child, name))
769 break;
770 return child;
771 }
772 EXPORT_SYMBOL(of_get_child_by_name);
773
__of_find_node_by_path(struct device_node * parent,const char * path)774 struct device_node *__of_find_node_by_path(struct device_node *parent,
775 const char *path)
776 {
777 struct device_node *child;
778 int len;
779
780 len = strcspn(path, "/:");
781 if (!len)
782 return NULL;
783
784 __for_each_child_of_node(parent, child) {
785 const char *name = kbasename(child->full_name);
786 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
787 return child;
788 }
789 return NULL;
790 }
791
__of_find_node_by_full_path(struct device_node * node,const char * path)792 struct device_node *__of_find_node_by_full_path(struct device_node *node,
793 const char *path)
794 {
795 const char *separator = strchr(path, ':');
796
797 while (node && *path == '/') {
798 struct device_node *tmp = node;
799
800 path++; /* Increment past '/' delimiter */
801 node = __of_find_node_by_path(node, path);
802 of_node_put(tmp);
803 path = strchrnul(path, '/');
804 if (separator && separator < path)
805 break;
806 }
807 return node;
808 }
809
810 /**
811 * of_find_node_opts_by_path - Find a node matching a full OF path
812 * @path: Either the full path to match, or if the path does not
813 * start with '/', the name of a property of the /aliases
814 * node (an alias). In the case of an alias, the node
815 * matching the alias' value will be returned.
816 * @opts: Address of a pointer into which to store the start of
817 * an options string appended to the end of the path with
818 * a ':' separator.
819 *
820 * Valid paths:
821 * * /foo/bar Full path
822 * * foo Valid alias
823 * * foo/bar Valid alias + relative path
824 *
825 * Return: A node pointer with refcount incremented, use
826 * of_node_put() on it when done.
827 */
of_find_node_opts_by_path(const char * path,const char ** opts)828 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
829 {
830 struct device_node *np = NULL;
831 struct property *pp;
832 unsigned long flags;
833 const char *separator = strchr(path, ':');
834
835 if (opts)
836 *opts = separator ? separator + 1 : NULL;
837
838 if (strcmp(path, "/") == 0)
839 return of_node_get(of_root);
840
841 /* The path could begin with an alias */
842 if (*path != '/') {
843 int len;
844 const char *p = strchrnul(path, '/');
845
846 if (separator && separator < p)
847 p = separator;
848 len = p - path;
849
850 /* of_aliases must not be NULL */
851 if (!of_aliases)
852 return NULL;
853
854 for_each_property_of_node(of_aliases, pp) {
855 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
856 np = of_find_node_by_path(pp->value);
857 break;
858 }
859 }
860 if (!np)
861 return NULL;
862 path = p;
863 }
864
865 /* Step down the tree matching path components */
866 raw_spin_lock_irqsave(&devtree_lock, flags);
867 if (!np)
868 np = of_node_get(of_root);
869 np = __of_find_node_by_full_path(np, path);
870 raw_spin_unlock_irqrestore(&devtree_lock, flags);
871 return np;
872 }
873 EXPORT_SYMBOL(of_find_node_opts_by_path);
874
875 /**
876 * of_find_node_by_name - Find a node by its "name" property
877 * @from: The node to start searching from or NULL; the node
878 * you pass will not be searched, only the next one
879 * will. Typically, you pass what the previous call
880 * returned. of_node_put() will be called on @from.
881 * @name: The name string to match against
882 *
883 * Return: A node pointer with refcount incremented, use
884 * of_node_put() on it when done.
885 */
of_find_node_by_name(struct device_node * from,const char * name)886 struct device_node *of_find_node_by_name(struct device_node *from,
887 const char *name)
888 {
889 struct device_node *np;
890 unsigned long flags;
891
892 raw_spin_lock_irqsave(&devtree_lock, flags);
893 for_each_of_allnodes_from(from, np)
894 if (of_node_name_eq(np, name) && of_node_get(np))
895 break;
896 of_node_put(from);
897 raw_spin_unlock_irqrestore(&devtree_lock, flags);
898 return np;
899 }
900 EXPORT_SYMBOL(of_find_node_by_name);
901
902 /**
903 * of_find_node_by_type - Find a node by its "device_type" property
904 * @from: The node to start searching from, or NULL to start searching
905 * the entire device tree. The node you pass will not be
906 * searched, only the next one will; typically, you pass
907 * what the previous call returned. of_node_put() will be
908 * called on from for you.
909 * @type: The type string to match against
910 *
911 * Return: A node pointer with refcount incremented, use
912 * of_node_put() on it when done.
913 */
of_find_node_by_type(struct device_node * from,const char * type)914 struct device_node *of_find_node_by_type(struct device_node *from,
915 const char *type)
916 {
917 struct device_node *np;
918 unsigned long flags;
919
920 raw_spin_lock_irqsave(&devtree_lock, flags);
921 for_each_of_allnodes_from(from, np)
922 if (__of_node_is_type(np, type) && of_node_get(np))
923 break;
924 of_node_put(from);
925 raw_spin_unlock_irqrestore(&devtree_lock, flags);
926 return np;
927 }
928 EXPORT_SYMBOL(of_find_node_by_type);
929
930 /**
931 * of_find_compatible_node - Find a node based on type and one of the
932 * tokens in its "compatible" property
933 * @from: The node to start searching from or NULL, the node
934 * you pass will not be searched, only the next one
935 * will; typically, you pass what the previous call
936 * returned. of_node_put() will be called on it
937 * @type: The type string to match "device_type" or NULL to ignore
938 * @compatible: The string to match to one of the tokens in the device
939 * "compatible" list.
940 *
941 * Return: A node pointer with refcount incremented, use
942 * of_node_put() on it when done.
943 */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)944 struct device_node *of_find_compatible_node(struct device_node *from,
945 const char *type, const char *compatible)
946 {
947 struct device_node *np;
948 unsigned long flags;
949
950 raw_spin_lock_irqsave(&devtree_lock, flags);
951 for_each_of_allnodes_from(from, np)
952 if (__of_device_is_compatible(np, compatible, type, NULL) &&
953 of_node_get(np))
954 break;
955 of_node_put(from);
956 raw_spin_unlock_irqrestore(&devtree_lock, flags);
957 return np;
958 }
959 EXPORT_SYMBOL(of_find_compatible_node);
960
961 /**
962 * of_find_node_with_property - Find a node which has a property with
963 * the given name.
964 * @from: The node to start searching from or NULL, the node
965 * you pass will not be searched, only the next one
966 * will; typically, you pass what the previous call
967 * returned. of_node_put() will be called on it
968 * @prop_name: The name of the property to look for.
969 *
970 * Return: A node pointer with refcount incremented, use
971 * of_node_put() on it when done.
972 */
of_find_node_with_property(struct device_node * from,const char * prop_name)973 struct device_node *of_find_node_with_property(struct device_node *from,
974 const char *prop_name)
975 {
976 struct device_node *np;
977 struct property *pp;
978 unsigned long flags;
979
980 raw_spin_lock_irqsave(&devtree_lock, flags);
981 for_each_of_allnodes_from(from, np) {
982 for (pp = np->properties; pp; pp = pp->next) {
983 if (of_prop_cmp(pp->name, prop_name) == 0) {
984 of_node_get(np);
985 goto out;
986 }
987 }
988 }
989 out:
990 of_node_put(from);
991 raw_spin_unlock_irqrestore(&devtree_lock, flags);
992 return np;
993 }
994 EXPORT_SYMBOL(of_find_node_with_property);
995
996 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)997 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
998 const struct device_node *node)
999 {
1000 const struct of_device_id *best_match = NULL;
1001 int score, best_score = 0;
1002
1003 if (!matches)
1004 return NULL;
1005
1006 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1007 score = __of_device_is_compatible(node, matches->compatible,
1008 matches->type, matches->name);
1009 if (score > best_score) {
1010 best_match = matches;
1011 best_score = score;
1012 }
1013 }
1014
1015 return best_match;
1016 }
1017
1018 /**
1019 * of_match_node - Tell if a device_node has a matching of_match structure
1020 * @matches: array of of device match structures to search in
1021 * @node: the of device structure to match against
1022 *
1023 * Low level utility function used by device matching.
1024 */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1025 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1026 const struct device_node *node)
1027 {
1028 const struct of_device_id *match;
1029 unsigned long flags;
1030
1031 raw_spin_lock_irqsave(&devtree_lock, flags);
1032 match = __of_match_node(matches, node);
1033 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1034 return match;
1035 }
1036 EXPORT_SYMBOL(of_match_node);
1037
1038 /**
1039 * of_find_matching_node_and_match - Find a node based on an of_device_id
1040 * match table.
1041 * @from: The node to start searching from or NULL, the node
1042 * you pass will not be searched, only the next one
1043 * will; typically, you pass what the previous call
1044 * returned. of_node_put() will be called on it
1045 * @matches: array of of device match structures to search in
1046 * @match: Updated to point at the matches entry which matched
1047 *
1048 * Return: A node pointer with refcount incremented, use
1049 * of_node_put() on it when done.
1050 */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1051 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1052 const struct of_device_id *matches,
1053 const struct of_device_id **match)
1054 {
1055 struct device_node *np;
1056 const struct of_device_id *m;
1057 unsigned long flags;
1058
1059 if (match)
1060 *match = NULL;
1061
1062 raw_spin_lock_irqsave(&devtree_lock, flags);
1063 for_each_of_allnodes_from(from, np) {
1064 m = __of_match_node(matches, np);
1065 if (m && of_node_get(np)) {
1066 if (match)
1067 *match = m;
1068 break;
1069 }
1070 }
1071 of_node_put(from);
1072 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1073 return np;
1074 }
1075 EXPORT_SYMBOL(of_find_matching_node_and_match);
1076
1077 /**
1078 * of_alias_from_compatible - Lookup appropriate alias for a device node
1079 * depending on compatible
1080 * @node: pointer to a device tree node
1081 * @alias: Pointer to buffer that alias value will be copied into
1082 * @len: Length of alias value
1083 *
1084 * Based on the value of the compatible property, this routine will attempt
1085 * to choose an appropriate alias value for a particular device tree node.
1086 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1087 * from the first entry in the compatible list property.
1088 *
1089 * Note: The matching on just the "product" side of the compatible is a relic
1090 * from I2C and SPI. Please do not add any new user.
1091 *
1092 * Return: This routine returns 0 on success, <0 on failure.
1093 */
of_alias_from_compatible(const struct device_node * node,char * alias,int len)1094 int of_alias_from_compatible(const struct device_node *node, char *alias, int len)
1095 {
1096 const char *compatible, *p;
1097 int cplen;
1098
1099 compatible = of_get_property(node, "compatible", &cplen);
1100 if (!compatible || strlen(compatible) > cplen)
1101 return -ENODEV;
1102 p = strchr(compatible, ',');
1103 strscpy(alias, p ? p + 1 : compatible, len);
1104 return 0;
1105 }
1106 EXPORT_SYMBOL_GPL(of_alias_from_compatible);
1107
1108 /**
1109 * of_find_node_by_phandle - Find a node given a phandle
1110 * @handle: phandle of the node to find
1111 *
1112 * Return: A node pointer with refcount incremented, use
1113 * of_node_put() on it when done.
1114 */
of_find_node_by_phandle(phandle handle)1115 struct device_node *of_find_node_by_phandle(phandle handle)
1116 {
1117 struct device_node *np = NULL;
1118 unsigned long flags;
1119 u32 handle_hash;
1120
1121 if (!handle)
1122 return NULL;
1123
1124 handle_hash = of_phandle_cache_hash(handle);
1125
1126 raw_spin_lock_irqsave(&devtree_lock, flags);
1127
1128 if (phandle_cache[handle_hash] &&
1129 handle == phandle_cache[handle_hash]->phandle)
1130 np = phandle_cache[handle_hash];
1131
1132 if (!np) {
1133 for_each_of_allnodes(np)
1134 if (np->phandle == handle &&
1135 !of_node_check_flag(np, OF_DETACHED)) {
1136 phandle_cache[handle_hash] = np;
1137 break;
1138 }
1139 }
1140
1141 of_node_get(np);
1142 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1143 return np;
1144 }
1145 EXPORT_SYMBOL(of_find_node_by_phandle);
1146
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1147 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1148 {
1149 int i;
1150 printk("%s %pOF", msg, args->np);
1151 for (i = 0; i < args->args_count; i++) {
1152 const char delim = i ? ',' : ':';
1153
1154 pr_cont("%c%08x", delim, args->args[i]);
1155 }
1156 pr_cont("\n");
1157 }
1158
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1159 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1160 const struct device_node *np,
1161 const char *list_name,
1162 const char *cells_name,
1163 int cell_count)
1164 {
1165 const __be32 *list;
1166 int size;
1167
1168 memset(it, 0, sizeof(*it));
1169
1170 /*
1171 * one of cell_count or cells_name must be provided to determine the
1172 * argument length.
1173 */
1174 if (cell_count < 0 && !cells_name)
1175 return -EINVAL;
1176
1177 list = of_get_property(np, list_name, &size);
1178 if (!list)
1179 return -ENOENT;
1180
1181 it->cells_name = cells_name;
1182 it->cell_count = cell_count;
1183 it->parent = np;
1184 it->list_end = list + size / sizeof(*list);
1185 it->phandle_end = list;
1186 it->cur = list;
1187
1188 return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1191
of_phandle_iterator_next(struct of_phandle_iterator * it)1192 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1193 {
1194 uint32_t count = 0;
1195
1196 if (it->node) {
1197 of_node_put(it->node);
1198 it->node = NULL;
1199 }
1200
1201 if (!it->cur || it->phandle_end >= it->list_end)
1202 return -ENOENT;
1203
1204 it->cur = it->phandle_end;
1205
1206 /* If phandle is 0, then it is an empty entry with no arguments. */
1207 it->phandle = be32_to_cpup(it->cur++);
1208
1209 if (it->phandle) {
1210
1211 /*
1212 * Find the provider node and parse the #*-cells property to
1213 * determine the argument length.
1214 */
1215 it->node = of_find_node_by_phandle(it->phandle);
1216
1217 if (it->cells_name) {
1218 if (!it->node) {
1219 pr_err("%pOF: could not find phandle %d\n",
1220 it->parent, it->phandle);
1221 goto err;
1222 }
1223
1224 if (of_property_read_u32(it->node, it->cells_name,
1225 &count)) {
1226 /*
1227 * If both cell_count and cells_name is given,
1228 * fall back to cell_count in absence
1229 * of the cells_name property
1230 */
1231 if (it->cell_count >= 0) {
1232 count = it->cell_count;
1233 } else {
1234 pr_err("%pOF: could not get %s for %pOF\n",
1235 it->parent,
1236 it->cells_name,
1237 it->node);
1238 goto err;
1239 }
1240 }
1241 } else {
1242 count = it->cell_count;
1243 }
1244
1245 /*
1246 * Make sure that the arguments actually fit in the remaining
1247 * property data length
1248 */
1249 if (it->cur + count > it->list_end) {
1250 if (it->cells_name)
1251 pr_err("%pOF: %s = %d found %td\n",
1252 it->parent, it->cells_name,
1253 count, it->list_end - it->cur);
1254 else
1255 pr_err("%pOF: phandle %s needs %d, found %td\n",
1256 it->parent, of_node_full_name(it->node),
1257 count, it->list_end - it->cur);
1258 goto err;
1259 }
1260 }
1261
1262 it->phandle_end = it->cur + count;
1263 it->cur_count = count;
1264
1265 return 0;
1266
1267 err:
1268 if (it->node) {
1269 of_node_put(it->node);
1270 it->node = NULL;
1271 }
1272
1273 return -EINVAL;
1274 }
1275 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1276
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1277 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1278 uint32_t *args,
1279 int size)
1280 {
1281 int i, count;
1282
1283 count = it->cur_count;
1284
1285 if (WARN_ON(size < count))
1286 count = size;
1287
1288 for (i = 0; i < count; i++)
1289 args[i] = be32_to_cpup(it->cur++);
1290
1291 return count;
1292 }
1293
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1294 int __of_parse_phandle_with_args(const struct device_node *np,
1295 const char *list_name,
1296 const char *cells_name,
1297 int cell_count, int index,
1298 struct of_phandle_args *out_args)
1299 {
1300 struct of_phandle_iterator it;
1301 int rc, cur_index = 0;
1302
1303 if (index < 0)
1304 return -EINVAL;
1305
1306 /* Loop over the phandles until all the requested entry is found */
1307 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1308 /*
1309 * All of the error cases bail out of the loop, so at
1310 * this point, the parsing is successful. If the requested
1311 * index matches, then fill the out_args structure and return,
1312 * or return -ENOENT for an empty entry.
1313 */
1314 rc = -ENOENT;
1315 if (cur_index == index) {
1316 if (!it.phandle)
1317 goto err;
1318
1319 if (out_args) {
1320 int c;
1321
1322 c = of_phandle_iterator_args(&it,
1323 out_args->args,
1324 MAX_PHANDLE_ARGS);
1325 out_args->np = it.node;
1326 out_args->args_count = c;
1327 } else {
1328 of_node_put(it.node);
1329 }
1330
1331 /* Found it! return success */
1332 return 0;
1333 }
1334
1335 cur_index++;
1336 }
1337
1338 /*
1339 * Unlock node before returning result; will be one of:
1340 * -ENOENT : index is for empty phandle
1341 * -EINVAL : parsing error on data
1342 */
1343
1344 err:
1345 of_node_put(it.node);
1346 return rc;
1347 }
1348 EXPORT_SYMBOL(__of_parse_phandle_with_args);
1349
1350 /**
1351 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1352 * @np: pointer to a device tree node containing a list
1353 * @list_name: property name that contains a list
1354 * @stem_name: stem of property names that specify phandles' arguments count
1355 * @index: index of a phandle to parse out
1356 * @out_args: optional pointer to output arguments structure (will be filled)
1357 *
1358 * This function is useful to parse lists of phandles and their arguments.
1359 * Returns 0 on success and fills out_args, on error returns appropriate errno
1360 * value. The difference between this function and of_parse_phandle_with_args()
1361 * is that this API remaps a phandle if the node the phandle points to has
1362 * a <@stem_name>-map property.
1363 *
1364 * Caller is responsible to call of_node_put() on the returned out_args->np
1365 * pointer.
1366 *
1367 * Example::
1368 *
1369 * phandle1: node1 {
1370 * #list-cells = <2>;
1371 * };
1372 *
1373 * phandle2: node2 {
1374 * #list-cells = <1>;
1375 * };
1376 *
1377 * phandle3: node3 {
1378 * #list-cells = <1>;
1379 * list-map = <0 &phandle2 3>,
1380 * <1 &phandle2 2>,
1381 * <2 &phandle1 5 1>;
1382 * list-map-mask = <0x3>;
1383 * };
1384 *
1385 * node4 {
1386 * list = <&phandle1 1 2 &phandle3 0>;
1387 * };
1388 *
1389 * To get a device_node of the ``node2`` node you may call this:
1390 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1391 */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1392 int of_parse_phandle_with_args_map(const struct device_node *np,
1393 const char *list_name,
1394 const char *stem_name,
1395 int index, struct of_phandle_args *out_args)
1396 {
1397 char *cells_name __free(kfree) = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1398 char *map_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1399 char *mask_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1400 char *pass_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1401 struct device_node *cur, *new = NULL;
1402 const __be32 *map, *mask, *pass;
1403 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) };
1404 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(0) };
1405 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1406 const __be32 *match_array = initial_match_array;
1407 int i, ret, map_len, match;
1408 u32 list_size, new_size;
1409
1410 if (index < 0)
1411 return -EINVAL;
1412
1413 if (!cells_name || !map_name || !mask_name || !pass_name)
1414 return -ENOMEM;
1415
1416 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1417 out_args);
1418 if (ret)
1419 return ret;
1420
1421 /* Get the #<list>-cells property */
1422 cur = out_args->np;
1423 ret = of_property_read_u32(cur, cells_name, &list_size);
1424 if (ret < 0)
1425 goto put;
1426
1427 /* Precalculate the match array - this simplifies match loop */
1428 for (i = 0; i < list_size; i++)
1429 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1430
1431 ret = -EINVAL;
1432 while (cur) {
1433 /* Get the <list>-map property */
1434 map = of_get_property(cur, map_name, &map_len);
1435 if (!map) {
1436 return 0;
1437 }
1438 map_len /= sizeof(u32);
1439
1440 /* Get the <list>-map-mask property (optional) */
1441 mask = of_get_property(cur, mask_name, NULL);
1442 if (!mask)
1443 mask = dummy_mask;
1444 /* Iterate through <list>-map property */
1445 match = 0;
1446 while (map_len > (list_size + 1) && !match) {
1447 /* Compare specifiers */
1448 match = 1;
1449 for (i = 0; i < list_size; i++, map_len--)
1450 match &= !((match_array[i] ^ *map++) & mask[i]);
1451
1452 of_node_put(new);
1453 new = of_find_node_by_phandle(be32_to_cpup(map));
1454 map++;
1455 map_len--;
1456
1457 /* Check if not found */
1458 if (!new) {
1459 ret = -EINVAL;
1460 goto put;
1461 }
1462
1463 if (!of_device_is_available(new))
1464 match = 0;
1465
1466 ret = of_property_read_u32(new, cells_name, &new_size);
1467 if (ret)
1468 goto put;
1469
1470 /* Check for malformed properties */
1471 if (WARN_ON(new_size > MAX_PHANDLE_ARGS) ||
1472 map_len < new_size) {
1473 ret = -EINVAL;
1474 goto put;
1475 }
1476
1477 /* Move forward by new node's #<list>-cells amount */
1478 map += new_size;
1479 map_len -= new_size;
1480 }
1481 if (!match) {
1482 ret = -ENOENT;
1483 goto put;
1484 }
1485
1486 /* Get the <list>-map-pass-thru property (optional) */
1487 pass = of_get_property(cur, pass_name, NULL);
1488 if (!pass)
1489 pass = dummy_pass;
1490
1491 /*
1492 * Successfully parsed a <list>-map translation; copy new
1493 * specifier into the out_args structure, keeping the
1494 * bits specified in <list>-map-pass-thru.
1495 */
1496 for (i = 0; i < new_size; i++) {
1497 __be32 val = *(map - new_size + i);
1498
1499 if (i < list_size) {
1500 val &= ~pass[i];
1501 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1502 }
1503
1504 initial_match_array[i] = val;
1505 out_args->args[i] = be32_to_cpu(val);
1506 }
1507 out_args->args_count = list_size = new_size;
1508 /* Iterate again with new provider */
1509 out_args->np = new;
1510 of_node_put(cur);
1511 cur = new;
1512 new = NULL;
1513 }
1514 put:
1515 of_node_put(cur);
1516 of_node_put(new);
1517 return ret;
1518 }
1519 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1520
1521 /**
1522 * of_count_phandle_with_args() - Find the number of phandles references in a property
1523 * @np: pointer to a device tree node containing a list
1524 * @list_name: property name that contains a list
1525 * @cells_name: property name that specifies phandles' arguments count
1526 *
1527 * Return: The number of phandle + argument tuples within a property. It
1528 * is a typical pattern to encode a list of phandle and variable
1529 * arguments into a single property. The number of arguments is encoded
1530 * by a property in the phandle-target node. For example, a gpios
1531 * property would contain a list of GPIO specifies consisting of a
1532 * phandle and 1 or more arguments. The number of arguments are
1533 * determined by the #gpio-cells property in the node pointed to by the
1534 * phandle.
1535 */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1536 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1537 const char *cells_name)
1538 {
1539 struct of_phandle_iterator it;
1540 int rc, cur_index = 0;
1541
1542 /*
1543 * If cells_name is NULL we assume a cell count of 0. This makes
1544 * counting the phandles trivial as each 32bit word in the list is a
1545 * phandle and no arguments are to consider. So we don't iterate through
1546 * the list but just use the length to determine the phandle count.
1547 */
1548 if (!cells_name) {
1549 const __be32 *list;
1550 int size;
1551
1552 list = of_get_property(np, list_name, &size);
1553 if (!list)
1554 return -ENOENT;
1555
1556 return size / sizeof(*list);
1557 }
1558
1559 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1560 if (rc)
1561 return rc;
1562
1563 while ((rc = of_phandle_iterator_next(&it)) == 0)
1564 cur_index += 1;
1565
1566 if (rc != -ENOENT)
1567 return rc;
1568
1569 return cur_index;
1570 }
1571 EXPORT_SYMBOL(of_count_phandle_with_args);
1572
__of_remove_property_from_list(struct property ** list,struct property * prop)1573 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop)
1574 {
1575 struct property **next;
1576
1577 for (next = list; *next; next = &(*next)->next) {
1578 if (*next == prop) {
1579 *next = prop->next;
1580 prop->next = NULL;
1581 return prop;
1582 }
1583 }
1584 return NULL;
1585 }
1586
1587 /**
1588 * __of_add_property - Add a property to a node without lock operations
1589 * @np: Caller's Device Node
1590 * @prop: Property to add
1591 */
__of_add_property(struct device_node * np,struct property * prop)1592 int __of_add_property(struct device_node *np, struct property *prop)
1593 {
1594 int rc = 0;
1595 unsigned long flags;
1596 struct property **next;
1597
1598 raw_spin_lock_irqsave(&devtree_lock, flags);
1599
1600 __of_remove_property_from_list(&np->deadprops, prop);
1601
1602 prop->next = NULL;
1603 next = &np->properties;
1604 while (*next) {
1605 if (strcmp(prop->name, (*next)->name) == 0) {
1606 /* duplicate ! don't insert it */
1607 rc = -EEXIST;
1608 goto out_unlock;
1609 }
1610 next = &(*next)->next;
1611 }
1612 *next = prop;
1613
1614 out_unlock:
1615 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1616 if (rc)
1617 return rc;
1618
1619 __of_add_property_sysfs(np, prop);
1620 return 0;
1621 }
1622
1623 /**
1624 * of_add_property - Add a property to a node
1625 * @np: Caller's Device Node
1626 * @prop: Property to add
1627 */
of_add_property(struct device_node * np,struct property * prop)1628 int of_add_property(struct device_node *np, struct property *prop)
1629 {
1630 int rc;
1631
1632 mutex_lock(&of_mutex);
1633 rc = __of_add_property(np, prop);
1634 mutex_unlock(&of_mutex);
1635
1636 if (!rc)
1637 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1638
1639 return rc;
1640 }
1641 EXPORT_SYMBOL_GPL(of_add_property);
1642
__of_remove_property(struct device_node * np,struct property * prop)1643 int __of_remove_property(struct device_node *np, struct property *prop)
1644 {
1645 unsigned long flags;
1646 int rc = -ENODEV;
1647
1648 raw_spin_lock_irqsave(&devtree_lock, flags);
1649
1650 if (__of_remove_property_from_list(&np->properties, prop)) {
1651 /* Found the property, add it to deadprops list */
1652 prop->next = np->deadprops;
1653 np->deadprops = prop;
1654 rc = 0;
1655 }
1656
1657 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1658 if (rc)
1659 return rc;
1660
1661 __of_remove_property_sysfs(np, prop);
1662 return 0;
1663 }
1664
1665 /**
1666 * of_remove_property - Remove a property from a node.
1667 * @np: Caller's Device Node
1668 * @prop: Property to remove
1669 *
1670 * Note that we don't actually remove it, since we have given out
1671 * who-knows-how-many pointers to the data using get-property.
1672 * Instead we just move the property to the "dead properties"
1673 * list, so it won't be found any more.
1674 */
of_remove_property(struct device_node * np,struct property * prop)1675 int of_remove_property(struct device_node *np, struct property *prop)
1676 {
1677 int rc;
1678
1679 if (!prop)
1680 return -ENODEV;
1681
1682 mutex_lock(&of_mutex);
1683 rc = __of_remove_property(np, prop);
1684 mutex_unlock(&of_mutex);
1685
1686 if (!rc)
1687 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1688
1689 return rc;
1690 }
1691 EXPORT_SYMBOL_GPL(of_remove_property);
1692
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1693 int __of_update_property(struct device_node *np, struct property *newprop,
1694 struct property **oldpropp)
1695 {
1696 struct property **next, *oldprop;
1697 unsigned long flags;
1698
1699 raw_spin_lock_irqsave(&devtree_lock, flags);
1700
1701 __of_remove_property_from_list(&np->deadprops, newprop);
1702
1703 for (next = &np->properties; *next; next = &(*next)->next) {
1704 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1705 break;
1706 }
1707 *oldpropp = oldprop = *next;
1708
1709 if (oldprop) {
1710 /* replace the node */
1711 newprop->next = oldprop->next;
1712 *next = newprop;
1713 oldprop->next = np->deadprops;
1714 np->deadprops = oldprop;
1715 } else {
1716 /* new node */
1717 newprop->next = NULL;
1718 *next = newprop;
1719 }
1720
1721 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1722
1723 __of_update_property_sysfs(np, newprop, oldprop);
1724
1725 return 0;
1726 }
1727
1728 /*
1729 * of_update_property - Update a property in a node, if the property does
1730 * not exist, add it.
1731 *
1732 * Note that we don't actually remove it, since we have given out
1733 * who-knows-how-many pointers to the data using get-property.
1734 * Instead we just move the property to the "dead properties" list,
1735 * and add the new property to the property list
1736 */
of_update_property(struct device_node * np,struct property * newprop)1737 int of_update_property(struct device_node *np, struct property *newprop)
1738 {
1739 struct property *oldprop;
1740 int rc;
1741
1742 if (!newprop->name)
1743 return -EINVAL;
1744
1745 mutex_lock(&of_mutex);
1746 rc = __of_update_property(np, newprop, &oldprop);
1747 mutex_unlock(&of_mutex);
1748
1749 if (!rc)
1750 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1751
1752 return rc;
1753 }
1754
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1755 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1756 int id, const char *stem, int stem_len)
1757 {
1758 ap->np = np;
1759 ap->id = id;
1760 strscpy(ap->stem, stem, stem_len + 1);
1761 list_add_tail(&ap->link, &aliases_lookup);
1762 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1763 ap->alias, ap->stem, ap->id, np);
1764 }
1765
1766 /**
1767 * of_alias_scan - Scan all properties of the 'aliases' node
1768 * @dt_alloc: An allocator that provides a virtual address to memory
1769 * for storing the resulting tree
1770 *
1771 * The function scans all the properties of the 'aliases' node and populates
1772 * the global lookup table with the properties. It returns the
1773 * number of alias properties found, or an error code in case of failure.
1774 */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1775 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1776 {
1777 struct property *pp;
1778
1779 of_aliases = of_find_node_by_path("/aliases");
1780 of_chosen = of_find_node_by_path("/chosen");
1781 if (of_chosen == NULL)
1782 of_chosen = of_find_node_by_path("/chosen@0");
1783
1784 if (of_chosen) {
1785 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1786 const char *name = NULL;
1787
1788 if (of_property_read_string(of_chosen, "stdout-path", &name))
1789 of_property_read_string(of_chosen, "linux,stdout-path",
1790 &name);
1791 if (IS_ENABLED(CONFIG_PPC) && !name)
1792 of_property_read_string(of_aliases, "stdout", &name);
1793 if (name)
1794 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1795 if (of_stdout)
1796 of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1797 }
1798
1799 if (!of_aliases)
1800 return;
1801
1802 for_each_property_of_node(of_aliases, pp) {
1803 const char *start = pp->name;
1804 const char *end = start + strlen(start);
1805 struct device_node *np;
1806 struct alias_prop *ap;
1807 int id, len;
1808
1809 /* Skip those we do not want to proceed */
1810 if (!strcmp(pp->name, "name") ||
1811 !strcmp(pp->name, "phandle") ||
1812 !strcmp(pp->name, "linux,phandle"))
1813 continue;
1814
1815 np = of_find_node_by_path(pp->value);
1816 if (!np)
1817 continue;
1818
1819 /* walk the alias backwards to extract the id and work out
1820 * the 'stem' string */
1821 while (isdigit(*(end-1)) && end > start)
1822 end--;
1823 len = end - start;
1824
1825 if (kstrtoint(end, 10, &id) < 0)
1826 continue;
1827
1828 /* Allocate an alias_prop with enough space for the stem */
1829 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1830 if (!ap)
1831 continue;
1832 memset(ap, 0, sizeof(*ap) + len + 1);
1833 ap->alias = start;
1834 of_alias_add(ap, np, id, start, len);
1835 }
1836 }
1837
1838 /**
1839 * of_alias_get_id - Get alias id for the given device_node
1840 * @np: Pointer to the given device_node
1841 * @stem: Alias stem of the given device_node
1842 *
1843 * The function travels the lookup table to get the alias id for the given
1844 * device_node and alias stem.
1845 *
1846 * Return: The alias id if found.
1847 */
of_alias_get_id(struct device_node * np,const char * stem)1848 int of_alias_get_id(struct device_node *np, const char *stem)
1849 {
1850 struct alias_prop *app;
1851 int id = -ENODEV;
1852
1853 mutex_lock(&of_mutex);
1854 list_for_each_entry(app, &aliases_lookup, link) {
1855 if (strcmp(app->stem, stem) != 0)
1856 continue;
1857
1858 if (np == app->np) {
1859 id = app->id;
1860 break;
1861 }
1862 }
1863 mutex_unlock(&of_mutex);
1864
1865 return id;
1866 }
1867 EXPORT_SYMBOL_GPL(of_alias_get_id);
1868
1869 /**
1870 * of_alias_get_highest_id - Get highest alias id for the given stem
1871 * @stem: Alias stem to be examined
1872 *
1873 * The function travels the lookup table to get the highest alias id for the
1874 * given alias stem. It returns the alias id if found.
1875 */
of_alias_get_highest_id(const char * stem)1876 int of_alias_get_highest_id(const char *stem)
1877 {
1878 struct alias_prop *app;
1879 int id = -ENODEV;
1880
1881 mutex_lock(&of_mutex);
1882 list_for_each_entry(app, &aliases_lookup, link) {
1883 if (strcmp(app->stem, stem) != 0)
1884 continue;
1885
1886 if (app->id > id)
1887 id = app->id;
1888 }
1889 mutex_unlock(&of_mutex);
1890
1891 return id;
1892 }
1893 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1894
1895 /**
1896 * of_console_check() - Test and setup console for DT setup
1897 * @dn: Pointer to device node
1898 * @name: Name to use for preferred console without index. ex. "ttyS"
1899 * @index: Index to use for preferred console.
1900 *
1901 * Check if the given device node matches the stdout-path property in the
1902 * /chosen node. If it does then register it as the preferred console.
1903 *
1904 * Return: TRUE if console successfully setup. Otherwise return FALSE.
1905 */
of_console_check(struct device_node * dn,char * name,int index)1906 bool of_console_check(struct device_node *dn, char *name, int index)
1907 {
1908 if (!dn || dn != of_stdout || console_set_on_cmdline)
1909 return false;
1910
1911 /*
1912 * XXX: cast `options' to char pointer to suppress complication
1913 * warnings: printk, UART and console drivers expect char pointer.
1914 */
1915 return !add_preferred_console(name, index, (char *)of_stdout_options);
1916 }
1917 EXPORT_SYMBOL_GPL(of_console_check);
1918
1919 /**
1920 * of_find_next_cache_node - Find a node's subsidiary cache
1921 * @np: node of type "cpu" or "cache"
1922 *
1923 * Return: A node pointer with refcount incremented, use
1924 * of_node_put() on it when done. Caller should hold a reference
1925 * to np.
1926 */
of_find_next_cache_node(const struct device_node * np)1927 struct device_node *of_find_next_cache_node(const struct device_node *np)
1928 {
1929 struct device_node *child, *cache_node;
1930
1931 cache_node = of_parse_phandle(np, "l2-cache", 0);
1932 if (!cache_node)
1933 cache_node = of_parse_phandle(np, "next-level-cache", 0);
1934
1935 if (cache_node)
1936 return cache_node;
1937
1938 /* OF on pmac has nodes instead of properties named "l2-cache"
1939 * beneath CPU nodes.
1940 */
1941 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
1942 for_each_child_of_node(np, child)
1943 if (of_node_is_type(child, "cache"))
1944 return child;
1945
1946 return NULL;
1947 }
1948
1949 /**
1950 * of_find_last_cache_level - Find the level at which the last cache is
1951 * present for the given logical cpu
1952 *
1953 * @cpu: cpu number(logical index) for which the last cache level is needed
1954 *
1955 * Return: The level at which the last cache is present. It is exactly
1956 * same as the total number of cache levels for the given logical cpu.
1957 */
of_find_last_cache_level(unsigned int cpu)1958 int of_find_last_cache_level(unsigned int cpu)
1959 {
1960 u32 cache_level = 0;
1961 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1962
1963 while (np) {
1964 of_node_put(prev);
1965 prev = np;
1966 np = of_find_next_cache_node(np);
1967 }
1968
1969 of_property_read_u32(prev, "cache-level", &cache_level);
1970 of_node_put(prev);
1971
1972 return cache_level;
1973 }
1974
1975 /**
1976 * of_map_id - Translate an ID through a downstream mapping.
1977 * @np: root complex device node.
1978 * @id: device ID to map.
1979 * @map_name: property name of the map to use.
1980 * @map_mask_name: optional property name of the mask to use.
1981 * @target: optional pointer to a target device node.
1982 * @id_out: optional pointer to receive the translated ID.
1983 *
1984 * Given a device ID, look up the appropriate implementation-defined
1985 * platform ID and/or the target device which receives transactions on that
1986 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
1987 * @id_out may be NULL if only the other is required. If @target points to
1988 * a non-NULL device node pointer, only entries targeting that node will be
1989 * matched; if it points to a NULL value, it will receive the device node of
1990 * the first matching target phandle, with a reference held.
1991 *
1992 * Return: 0 on success or a standard error code on failure.
1993 */
of_map_id(struct device_node * np,u32 id,const char * map_name,const char * map_mask_name,struct device_node ** target,u32 * id_out)1994 int of_map_id(struct device_node *np, u32 id,
1995 const char *map_name, const char *map_mask_name,
1996 struct device_node **target, u32 *id_out)
1997 {
1998 u32 map_mask, masked_id;
1999 int map_len;
2000 const __be32 *map = NULL;
2001
2002 if (!np || !map_name || (!target && !id_out))
2003 return -EINVAL;
2004
2005 map = of_get_property(np, map_name, &map_len);
2006 if (!map) {
2007 if (target)
2008 return -ENODEV;
2009 /* Otherwise, no map implies no translation */
2010 *id_out = id;
2011 return 0;
2012 }
2013
2014 if (!map_len || map_len % (4 * sizeof(*map))) {
2015 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2016 map_name, map_len);
2017 return -EINVAL;
2018 }
2019
2020 /* The default is to select all bits. */
2021 map_mask = 0xffffffff;
2022
2023 /*
2024 * Can be overridden by "{iommu,msi}-map-mask" property.
2025 * If of_property_read_u32() fails, the default is used.
2026 */
2027 if (map_mask_name)
2028 of_property_read_u32(np, map_mask_name, &map_mask);
2029
2030 masked_id = map_mask & id;
2031 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2032 struct device_node *phandle_node;
2033 u32 id_base = be32_to_cpup(map + 0);
2034 u32 phandle = be32_to_cpup(map + 1);
2035 u32 out_base = be32_to_cpup(map + 2);
2036 u32 id_len = be32_to_cpup(map + 3);
2037
2038 if (id_base & ~map_mask) {
2039 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2040 np, map_name, map_name,
2041 map_mask, id_base);
2042 return -EFAULT;
2043 }
2044
2045 if (masked_id < id_base || masked_id >= id_base + id_len)
2046 continue;
2047
2048 phandle_node = of_find_node_by_phandle(phandle);
2049 if (!phandle_node)
2050 return -ENODEV;
2051
2052 if (target) {
2053 if (*target)
2054 of_node_put(phandle_node);
2055 else
2056 *target = phandle_node;
2057
2058 if (*target != phandle_node)
2059 continue;
2060 }
2061
2062 if (id_out)
2063 *id_out = masked_id - id_base + out_base;
2064
2065 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2066 np, map_name, map_mask, id_base, out_base,
2067 id_len, id, masked_id - id_base + out_base);
2068 return 0;
2069 }
2070
2071 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2072 id, target && *target ? *target : NULL);
2073
2074 /* Bypasses translation */
2075 if (id_out)
2076 *id_out = id;
2077 return 0;
2078 }
2079 EXPORT_SYMBOL_GPL(of_map_id);
2080