• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *		http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11 
12 #define pr_fmt(fmt)	"OF: reserved mem: " fmt
13 
14 #include <linux/err.h>
15 #include <linux/libfdt.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_platform.h>
19 #include <linux/mm.h>
20 #include <linux/sizes.h>
21 #include <linux/of_reserved_mem.h>
22 #include <linux/sort.h>
23 #include <linux/slab.h>
24 #include <linux/memblock.h>
25 #include <linux/kmemleak.h>
26 #include <linux/cma.h>
27 #include <linux/dma-map-ops.h>
28 ANDROID_KABI_DECLONLY(dma_map_ops);
29 
30 #include "of_private.h"
31 
32 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
33 static int reserved_mem_count;
34 
early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,bool nomap,phys_addr_t * res_base)35 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
36 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
37 	phys_addr_t *res_base)
38 {
39 	phys_addr_t base;
40 	int err = 0;
41 
42 	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
43 	align = !align ? SMP_CACHE_BYTES : align;
44 	base = memblock_phys_alloc_range(size, align, start, end);
45 	if (!base)
46 		return -ENOMEM;
47 
48 	*res_base = base;
49 	if (nomap) {
50 		err = memblock_mark_nomap(base, size);
51 		if (err)
52 			memblock_phys_free(base, size);
53 	}
54 
55 	if (!err)
56 		kmemleak_ignore_phys(base);
57 
58 	return err;
59 }
60 
61 static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem);
62 /*
63  * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
64  */
fdt_reserved_mem_save_node(unsigned long node,const char * uname,phys_addr_t base,phys_addr_t size)65 static void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
66 					      phys_addr_t base, phys_addr_t size)
67 {
68 	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
69 
70 	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
71 		pr_err("not enough space for all defined regions.\n");
72 		return;
73 	}
74 
75 	rmem->fdt_node = node;
76 	rmem->name = uname;
77 	rmem->base = base;
78 	rmem->size = size;
79 
80 	/* Call the region specific initialization function */
81 	fdt_init_reserved_mem_node(rmem);
82 
83 	reserved_mem_count++;
84 	return;
85 }
86 
early_init_dt_reserve_memory(phys_addr_t base,phys_addr_t size,bool nomap)87 static int __init early_init_dt_reserve_memory(phys_addr_t base,
88 					       phys_addr_t size, bool nomap)
89 {
90 	if (nomap) {
91 		/*
92 		 * If the memory is already reserved (by another region), we
93 		 * should not allow it to be marked nomap, but don't worry
94 		 * if the region isn't memory as it won't be mapped.
95 		 */
96 		if (memblock_overlaps_region(&memblock.memory, base, size) &&
97 		    memblock_is_region_reserved(base, size))
98 			return -EBUSY;
99 
100 		return memblock_mark_nomap(base, size);
101 	}
102 	return memblock_reserve(base, size);
103 }
104 
105 /*
106  * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
107  */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)108 static int __init __reserved_mem_reserve_reg(unsigned long node,
109 					     const char *uname)
110 {
111 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
112 	phys_addr_t base, size;
113 	int len;
114 	const __be32 *prop;
115 	bool nomap;
116 
117 	prop = of_get_flat_dt_prop(node, "reg", &len);
118 	if (!prop)
119 		return -ENOENT;
120 
121 	if (len && len % t_len != 0) {
122 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
123 		       uname);
124 		return -EINVAL;
125 	}
126 
127 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
128 
129 	while (len >= t_len) {
130 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
131 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
132 
133 		if (size && early_init_dt_reserve_memory(base, size, nomap) == 0) {
134 			/* Architecture specific contiguous memory fixup. */
135 			if (of_flat_dt_is_compatible(node, "shared-dma-pool") &&
136 			    of_get_flat_dt_prop(node, "reusable", NULL))
137 				dma_contiguous_early_fixup(base, size);
138 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
139 				uname, &base, (unsigned long)(size / SZ_1M));
140 		} else {
141 			pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
142 			       uname, &base, (unsigned long)(size / SZ_1M));
143 		}
144 
145 		len -= t_len;
146 	}
147 	return 0;
148 }
149 
150 /*
151  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
152  * in /reserved-memory matches the values supported by the current implementation,
153  * also check if ranges property has been provided
154  */
__reserved_mem_check_root(unsigned long node)155 static int __init __reserved_mem_check_root(unsigned long node)
156 {
157 	const __be32 *prop;
158 
159 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
160 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
161 		return -EINVAL;
162 
163 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
164 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
165 		return -EINVAL;
166 
167 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
168 	if (!prop)
169 		return -EINVAL;
170 	return 0;
171 }
172 
173 static void __init __rmem_check_for_overlap(void);
174 
175 /**
176  * fdt_scan_reserved_mem_reg_nodes() - Store info for the "reg" defined
177  * reserved memory regions.
178  *
179  * This function is used to scan through the DT and store the
180  * information for the reserved memory regions that are defined using
181  * the "reg" property. The region node number, name, base address, and
182  * size are all stored in the reserved_mem array by calling the
183  * fdt_reserved_mem_save_node() function.
184  */
fdt_scan_reserved_mem_reg_nodes(void)185 void __init fdt_scan_reserved_mem_reg_nodes(void)
186 {
187 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
188 	const void *fdt = initial_boot_params;
189 	phys_addr_t base, size;
190 	const __be32 *prop;
191 	int node, child;
192 	int len;
193 
194 	if (!fdt)
195 		return;
196 
197 	node = fdt_path_offset(fdt, "/reserved-memory");
198 	if (node < 0) {
199 		pr_info("Reserved memory: No reserved-memory node in the DT\n");
200 		return;
201 	}
202 
203 	if (__reserved_mem_check_root(node)) {
204 		pr_err("Reserved memory: unsupported node format, ignoring\n");
205 		return;
206 	}
207 
208 	fdt_for_each_subnode(child, fdt, node) {
209 		const char *uname;
210 
211 		prop = of_get_flat_dt_prop(child, "reg", &len);
212 		if (!prop)
213 			continue;
214 		if (!of_fdt_device_is_available(fdt, child))
215 			continue;
216 
217 		uname = fdt_get_name(fdt, child, NULL);
218 		if (len && len % t_len != 0) {
219 			pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
220 			       uname);
221 			continue;
222 		}
223 
224 		if (len > t_len)
225 			pr_warn("%s() ignores %d regions in node '%s'\n",
226 				__func__, len / t_len - 1, uname);
227 
228 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
229 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
230 
231 		if (size)
232 			fdt_reserved_mem_save_node(child, uname, base, size);
233 	}
234 
235 	/* check for overlapping reserved regions */
236 	__rmem_check_for_overlap();
237 }
238 
239 static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname);
240 
241 /*
242  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
243  */
fdt_scan_reserved_mem(void)244 int __init fdt_scan_reserved_mem(void)
245 {
246 	int node, child;
247 	int dynamic_nodes_cnt = 0;
248 	int dynamic_nodes[MAX_RESERVED_REGIONS];
249 	const void *fdt = initial_boot_params;
250 
251 	node = fdt_path_offset(fdt, "/reserved-memory");
252 	if (node < 0)
253 		return -ENODEV;
254 
255 	if (__reserved_mem_check_root(node) != 0) {
256 		pr_err("Reserved memory: unsupported node format, ignoring\n");
257 		return -EINVAL;
258 	}
259 
260 	fdt_for_each_subnode(child, fdt, node) {
261 		const char *uname;
262 		int err;
263 
264 		if (!of_fdt_device_is_available(fdt, child))
265 			continue;
266 
267 		uname = fdt_get_name(fdt, child, NULL);
268 
269 		err = __reserved_mem_reserve_reg(child, uname);
270 		/*
271 		 * Save the nodes for the dynamically-placed regions
272 		 * into an array which will be used for allocation right
273 		 * after all the statically-placed regions are reserved
274 		 * or marked as no-map. This is done to avoid dynamically
275 		 * allocating from one of the statically-placed regions.
276 		 */
277 		if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL)) {
278 			dynamic_nodes[dynamic_nodes_cnt] = child;
279 			dynamic_nodes_cnt++;
280 		}
281 	}
282 	for (int i = 0; i < dynamic_nodes_cnt; i++) {
283 		const char *uname;
284 
285 		child = dynamic_nodes[i];
286 		uname = fdt_get_name(fdt, child, NULL);
287 		__reserved_mem_alloc_size(child, uname);
288 	}
289 	return 0;
290 }
291 
292 /*
293  * __reserved_mem_alloc_in_range() - allocate reserved memory described with
294  *	'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
295  *	reserved regions to keep the reserved memory contiguous if possible.
296  */
__reserved_mem_alloc_in_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,bool nomap,phys_addr_t * res_base)297 static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
298 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
299 	phys_addr_t *res_base)
300 {
301 	bool prev_bottom_up = memblock_bottom_up();
302 	bool bottom_up = false, top_down = false;
303 	int ret, i;
304 
305 	for (i = 0; i < reserved_mem_count; i++) {
306 		struct reserved_mem *rmem = &reserved_mem[i];
307 
308 		/* Skip regions that were not reserved yet */
309 		if (rmem->size == 0)
310 			continue;
311 
312 		/*
313 		 * If range starts next to an existing reservation, use bottom-up:
314 		 *	|....RRRR................RRRRRRRR..............|
315 		 *	       --RRRR------
316 		 */
317 		if (start >= rmem->base && start <= (rmem->base + rmem->size))
318 			bottom_up = true;
319 
320 		/*
321 		 * If range ends next to an existing reservation, use top-down:
322 		 *	|....RRRR................RRRRRRRR..............|
323 		 *	              -------RRRR-----
324 		 */
325 		if (end >= rmem->base && end <= (rmem->base + rmem->size))
326 			top_down = true;
327 	}
328 
329 	/* Change setting only if either bottom-up or top-down was selected */
330 	if (bottom_up != top_down)
331 		memblock_set_bottom_up(bottom_up);
332 
333 	ret = early_init_dt_alloc_reserved_memory_arch(size, align,
334 			start, end, nomap, res_base);
335 
336 	/* Restore old setting if needed */
337 	if (bottom_up != top_down)
338 		memblock_set_bottom_up(prev_bottom_up);
339 
340 	return ret;
341 }
342 
343 /*
344  * __reserved_mem_alloc_size() - allocate reserved memory described by
345  *	'size', 'alignment'  and 'alloc-ranges' properties.
346  */
__reserved_mem_alloc_size(unsigned long node,const char * uname)347 static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname)
348 {
349 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
350 	phys_addr_t start = 0, end = 0;
351 	phys_addr_t base = 0, align = 0, size;
352 	int len;
353 	const __be32 *prop;
354 	bool nomap;
355 	int ret;
356 
357 	prop = of_get_flat_dt_prop(node, "size", &len);
358 	if (!prop)
359 		return -EINVAL;
360 
361 	if (len != dt_root_size_cells * sizeof(__be32)) {
362 		pr_err("invalid size property in '%s' node.\n", uname);
363 		return -EINVAL;
364 	}
365 	size = dt_mem_next_cell(dt_root_size_cells, &prop);
366 
367 	prop = of_get_flat_dt_prop(node, "alignment", &len);
368 	if (prop) {
369 		if (len != dt_root_addr_cells * sizeof(__be32)) {
370 			pr_err("invalid alignment property in '%s' node.\n",
371 				uname);
372 			return -EINVAL;
373 		}
374 		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
375 	}
376 
377 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
378 
379 	/* Need adjust the alignment to satisfy the CMA requirement */
380 	if (IS_ENABLED(CONFIG_CMA)
381 	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
382 	    && of_get_flat_dt_prop(node, "reusable", NULL)
383 	    && !nomap)
384 		align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
385 
386 	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
387 	if (prop) {
388 
389 		if (len % t_len != 0) {
390 			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
391 			       uname);
392 			return -EINVAL;
393 		}
394 
395 		base = 0;
396 
397 		while (len > 0) {
398 			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
399 			end = start + dt_mem_next_cell(dt_root_size_cells,
400 						       &prop);
401 
402 			ret = __reserved_mem_alloc_in_range(size, align,
403 					start, end, nomap, &base);
404 			if (ret == 0) {
405 				pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
406 					uname, &base,
407 					(unsigned long)(size / SZ_1M));
408 				break;
409 			}
410 			len -= t_len;
411 		}
412 
413 	} else {
414 		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
415 							0, 0, nomap, &base);
416 		if (ret == 0)
417 			pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
418 				uname, &base, (unsigned long)(size / SZ_1M));
419 	}
420 
421 	if (base == 0) {
422 		pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
423 		       uname, (unsigned long)(size / SZ_1M));
424 		return -ENOMEM;
425 	}
426 	/* Architecture specific contiguous memory fixup. */
427 	if (of_flat_dt_is_compatible(node, "shared-dma-pool") &&
428 	    of_get_flat_dt_prop(node, "reusable", NULL))
429 		dma_contiguous_early_fixup(base, size);
430 	/* Save region in the reserved_mem array */
431 	fdt_reserved_mem_save_node(node, uname, base, size);
432 	return 0;
433 }
434 
435 static const struct of_device_id __rmem_of_table_sentinel
436 	__used __section("__reservedmem_of_table_end");
437 
438 /*
439  * __reserved_mem_init_node() - call region specific reserved memory init code
440  */
__reserved_mem_init_node(struct reserved_mem * rmem)441 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
442 {
443 	extern const struct of_device_id __reservedmem_of_table[];
444 	const struct of_device_id *i;
445 	int ret = -ENOENT;
446 
447 	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
448 		reservedmem_of_init_fn initfn = i->data;
449 		const char *compat = i->compatible;
450 
451 		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
452 			continue;
453 
454 		ret = initfn(rmem);
455 		if (ret == 0) {
456 			pr_info("initialized node %s, compatible id %s\n",
457 				rmem->name, compat);
458 			break;
459 		}
460 	}
461 	return ret;
462 }
463 
__rmem_cmp(const void * a,const void * b)464 static int __init __rmem_cmp(const void *a, const void *b)
465 {
466 	const struct reserved_mem *ra = a, *rb = b;
467 
468 	if (ra->base < rb->base)
469 		return -1;
470 
471 	if (ra->base > rb->base)
472 		return 1;
473 
474 	/*
475 	 * Put the dynamic allocations (address == 0, size == 0) before static
476 	 * allocations at address 0x0 so that overlap detection works
477 	 * correctly.
478 	 */
479 	if (ra->size < rb->size)
480 		return -1;
481 	if (ra->size > rb->size)
482 		return 1;
483 
484 	if (ra->fdt_node < rb->fdt_node)
485 		return -1;
486 	if (ra->fdt_node > rb->fdt_node)
487 		return 1;
488 
489 	return 0;
490 }
491 
__rmem_check_for_overlap(void)492 static void __init __rmem_check_for_overlap(void)
493 {
494 	int i;
495 
496 	if (reserved_mem_count < 2)
497 		return;
498 
499 	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
500 	     __rmem_cmp, NULL);
501 	for (i = 0; i < reserved_mem_count - 1; i++) {
502 		struct reserved_mem *this, *next;
503 
504 		this = &reserved_mem[i];
505 		next = &reserved_mem[i + 1];
506 
507 		if (this->base + this->size > next->base) {
508 			phys_addr_t this_end, next_end;
509 
510 			this_end = this->base + this->size;
511 			next_end = next->base + next->size;
512 			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
513 			       this->name, &this->base, &this_end,
514 			       next->name, &next->base, &next_end);
515 		}
516 	}
517 }
518 
519 /**
520  * fdt_init_reserved_mem_node() - Initialize a reserved memory region
521  * @rmem: reserved_mem struct of the memory region to be initialized.
522  *
523  * This function is used to call the region specific initialization
524  * function for a reserved memory region.
525  */
fdt_init_reserved_mem_node(struct reserved_mem * rmem)526 static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem)
527 {
528 	unsigned long node = rmem->fdt_node;
529 	int err = 0;
530 	bool nomap;
531 
532 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
533 
534 	err = __reserved_mem_init_node(rmem);
535 	if (err != 0 && err != -ENOENT) {
536 		pr_info("node %s compatible matching fail\n", rmem->name);
537 		if (nomap)
538 			memblock_clear_nomap(rmem->base, rmem->size);
539 		else
540 			memblock_phys_free(rmem->base, rmem->size);
541 	} else {
542 		phys_addr_t end = rmem->base + rmem->size - 1;
543 		bool reusable =
544 			(of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
545 
546 		pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
547 			&rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
548 			nomap ? "nomap" : "map",
549 			reusable ? "reusable" : "non-reusable",
550 			rmem->name ? rmem->name : "unknown");
551 
552 		memblock_memsize_record(rmem->name, rmem->base,
553 					rmem->size, nomap, reusable);
554 		if (reusable && !of_flat_dt_is_compatible(node, "shared-dma-pool"))
555 			memblock_memsize_mod_reusable_size(rmem->size);
556 	}
557 }
558 
559 struct rmem_assigned_device {
560 	struct device *dev;
561 	struct reserved_mem *rmem;
562 	struct list_head list;
563 };
564 
565 static LIST_HEAD(of_rmem_assigned_device_list);
566 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
567 
568 /**
569  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
570  *					  given device
571  * @dev:	Pointer to the device to configure
572  * @np:		Pointer to the device_node with 'reserved-memory' property
573  * @idx:	Index of selected region
574  *
575  * This function assigns respective DMA-mapping operations based on reserved
576  * memory region specified by 'memory-region' property in @np node to the @dev
577  * device. When driver needs to use more than one reserved memory region, it
578  * should allocate child devices and initialize regions by name for each of
579  * child device.
580  *
581  * Returns error code or zero on success.
582  */
of_reserved_mem_device_init_by_idx(struct device * dev,struct device_node * np,int idx)583 int of_reserved_mem_device_init_by_idx(struct device *dev,
584 				       struct device_node *np, int idx)
585 {
586 	struct rmem_assigned_device *rd;
587 	struct device_node *target;
588 	struct reserved_mem *rmem;
589 	int ret;
590 
591 	if (!np || !dev)
592 		return -EINVAL;
593 
594 	target = of_parse_phandle(np, "memory-region", idx);
595 	if (!target)
596 		return -ENODEV;
597 
598 	if (!of_device_is_available(target)) {
599 		of_node_put(target);
600 		return 0;
601 	}
602 
603 	rmem = of_reserved_mem_lookup(target);
604 	of_node_put(target);
605 
606 	if (!rmem || !rmem->ops || !rmem->ops->device_init)
607 		return -EINVAL;
608 
609 	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
610 	if (!rd)
611 		return -ENOMEM;
612 
613 	ret = rmem->ops->device_init(rmem, dev);
614 	if (ret == 0) {
615 		rd->dev = dev;
616 		rd->rmem = rmem;
617 
618 		mutex_lock(&of_rmem_assigned_device_mutex);
619 		list_add(&rd->list, &of_rmem_assigned_device_list);
620 		mutex_unlock(&of_rmem_assigned_device_mutex);
621 
622 		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
623 	} else {
624 		kfree(rd);
625 	}
626 
627 	return ret;
628 }
629 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
630 
631 /**
632  * of_reserved_mem_device_init_by_name() - assign named reserved memory region
633  *					   to given device
634  * @dev: pointer to the device to configure
635  * @np: pointer to the device node with 'memory-region' property
636  * @name: name of the selected memory region
637  *
638  * Returns: 0 on success or a negative error-code on failure.
639  */
of_reserved_mem_device_init_by_name(struct device * dev,struct device_node * np,const char * name)640 int of_reserved_mem_device_init_by_name(struct device *dev,
641 					struct device_node *np,
642 					const char *name)
643 {
644 	int idx = of_property_match_string(np, "memory-region-names", name);
645 
646 	return of_reserved_mem_device_init_by_idx(dev, np, idx);
647 }
648 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
649 
650 /**
651  * of_reserved_mem_device_release() - release reserved memory device structures
652  * @dev:	Pointer to the device to deconfigure
653  *
654  * This function releases structures allocated for memory region handling for
655  * the given device.
656  */
of_reserved_mem_device_release(struct device * dev)657 void of_reserved_mem_device_release(struct device *dev)
658 {
659 	struct rmem_assigned_device *rd, *tmp;
660 	LIST_HEAD(release_list);
661 
662 	mutex_lock(&of_rmem_assigned_device_mutex);
663 	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
664 		if (rd->dev == dev)
665 			list_move_tail(&rd->list, &release_list);
666 	}
667 	mutex_unlock(&of_rmem_assigned_device_mutex);
668 
669 	list_for_each_entry_safe(rd, tmp, &release_list, list) {
670 		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
671 			rd->rmem->ops->device_release(rd->rmem, dev);
672 
673 		kfree(rd);
674 	}
675 }
676 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
677 
678 /**
679  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
680  * @np:		node pointer of the desired reserved-memory region
681  *
682  * This function allows drivers to acquire a reference to the reserved_mem
683  * struct based on a device node handle.
684  *
685  * Returns a reserved_mem reference, or NULL on error.
686  */
of_reserved_mem_lookup(struct device_node * np)687 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
688 {
689 	const char *name;
690 	int i;
691 
692 	if (!np->full_name)
693 		return NULL;
694 
695 	name = kbasename(np->full_name);
696 	for (i = 0; i < reserved_mem_count; i++)
697 		if (!strcmp(reserved_mem[i].name, name))
698 			return &reserved_mem[i];
699 
700 	return NULL;
701 }
702 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
703