1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/export.h>
18 #include <linux/pm_domain.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/xarray.h>
22
23 #include "opp.h"
24
25 /*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30 LIST_HEAD(opp_tables);
31
32 /* Lock to allow exclusive modification to the device and opp lists */
33 DEFINE_MUTEX(opp_table_lock);
34 /* Flag indicating that opp_tables list is being updated at the moment */
35 static bool opp_tables_busy;
36
37 /* OPP ID allocator */
38 static DEFINE_XARRAY_ALLOC1(opp_configs);
39
_find_opp_dev(const struct device * dev,struct opp_table * opp_table)40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41 {
42 struct opp_device *opp_dev;
43 bool found = false;
44
45 mutex_lock(&opp_table->lock);
46 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 if (opp_dev->dev == dev) {
48 found = true;
49 break;
50 }
51
52 mutex_unlock(&opp_table->lock);
53 return found;
54 }
55
_find_opp_table_unlocked(struct device * dev)56 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57 {
58 struct opp_table *opp_table;
59
60 list_for_each_entry(opp_table, &opp_tables, node) {
61 if (_find_opp_dev(dev, opp_table)) {
62 _get_opp_table_kref(opp_table);
63 return opp_table;
64 }
65 }
66
67 return ERR_PTR(-ENODEV);
68 }
69
70 /**
71 * _find_opp_table() - find opp_table struct using device pointer
72 * @dev: device pointer used to lookup OPP table
73 *
74 * Search OPP table for one containing matching device.
75 *
76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77 * -EINVAL based on type of error.
78 *
79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80 */
_find_opp_table(struct device * dev)81 struct opp_table *_find_opp_table(struct device *dev)
82 {
83 struct opp_table *opp_table;
84
85 if (IS_ERR_OR_NULL(dev)) {
86 pr_err("%s: Invalid parameters\n", __func__);
87 return ERR_PTR(-EINVAL);
88 }
89
90 mutex_lock(&opp_table_lock);
91 opp_table = _find_opp_table_unlocked(dev);
92 mutex_unlock(&opp_table_lock);
93
94 return opp_table;
95 }
96
97 /*
98 * Returns true if multiple clocks aren't there, else returns false with WARN.
99 *
100 * We don't force clk_count == 1 here as there are users who don't have a clock
101 * representation in the OPP table and manage the clock configuration themselves
102 * in an platform specific way.
103 */
assert_single_clk(struct opp_table * opp_table,unsigned int __always_unused index)104 static bool assert_single_clk(struct opp_table *opp_table,
105 unsigned int __always_unused index)
106 {
107 return !WARN_ON(opp_table->clk_count > 1);
108 }
109
110 /*
111 * Returns true if clock table is large enough to contain the clock index.
112 */
assert_clk_index(struct opp_table * opp_table,unsigned int index)113 static bool assert_clk_index(struct opp_table *opp_table,
114 unsigned int index)
115 {
116 return opp_table->clk_count > index;
117 }
118
119 /*
120 * Returns true if bandwidth table is large enough to contain the bandwidth index.
121 */
assert_bandwidth_index(struct opp_table * opp_table,unsigned int index)122 static bool assert_bandwidth_index(struct opp_table *opp_table,
123 unsigned int index)
124 {
125 return opp_table->path_count > index;
126 }
127
128 /**
129 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
130 * @opp: opp for which voltage has to be returned for
131 *
132 * Return: voltage in micro volt corresponding to the opp, else
133 * return 0
134 *
135 * This is useful only for devices with single power supply.
136 */
dev_pm_opp_get_voltage(struct dev_pm_opp * opp)137 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
138 {
139 if (IS_ERR_OR_NULL(opp)) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->supplies[0].u_volt;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
147
148 /**
149 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
150 * @opp: opp for which voltage has to be returned for
151 * @supplies: Placeholder for copying the supply information.
152 *
153 * Return: negative error number on failure, 0 otherwise on success after
154 * setting @supplies.
155 *
156 * This can be used for devices with any number of power supplies. The caller
157 * must ensure the @supplies array must contain space for each regulator.
158 */
dev_pm_opp_get_supplies(struct dev_pm_opp * opp,struct dev_pm_opp_supply * supplies)159 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
160 struct dev_pm_opp_supply *supplies)
161 {
162 if (IS_ERR_OR_NULL(opp) || !supplies) {
163 pr_err("%s: Invalid parameters\n", __func__);
164 return -EINVAL;
165 }
166
167 memcpy(supplies, opp->supplies,
168 sizeof(*supplies) * opp->opp_table->regulator_count);
169 return 0;
170 }
171 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
172
173 /**
174 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
175 * @opp: opp for which power has to be returned for
176 *
177 * Return: power in micro watt corresponding to the opp, else
178 * return 0
179 *
180 * This is useful only for devices with single power supply.
181 */
dev_pm_opp_get_power(struct dev_pm_opp * opp)182 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
183 {
184 unsigned long opp_power = 0;
185 int i;
186
187 if (IS_ERR_OR_NULL(opp)) {
188 pr_err("%s: Invalid parameters\n", __func__);
189 return 0;
190 }
191 for (i = 0; i < opp->opp_table->regulator_count; i++)
192 opp_power += opp->supplies[i].u_watt;
193
194 return opp_power;
195 }
196 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
197
198 /**
199 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
200 * available opp with specified index
201 * @opp: opp for which frequency has to be returned for
202 * @index: index of the frequency within the required opp
203 *
204 * Return: frequency in hertz corresponding to the opp with specified index,
205 * else return 0
206 */
dev_pm_opp_get_freq_indexed(struct dev_pm_opp * opp,u32 index)207 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
208 {
209 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
210 pr_err("%s: Invalid parameters\n", __func__);
211 return 0;
212 }
213
214 return opp->rates[index];
215 }
216 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
217
218 /**
219 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
220 * @opp: opp for which level value has to be returned for
221 *
222 * Return: level read from device tree corresponding to the opp, else
223 * return U32_MAX.
224 */
dev_pm_opp_get_level(struct dev_pm_opp * opp)225 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
226 {
227 if (IS_ERR_OR_NULL(opp) || !opp->available) {
228 pr_err("%s: Invalid parameters\n", __func__);
229 return 0;
230 }
231
232 return opp->level;
233 }
234 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
235
236 /**
237 * dev_pm_opp_get_required_pstate() - Gets the required performance state
238 * corresponding to an available opp
239 * @opp: opp for which performance state has to be returned for
240 * @index: index of the required opp
241 *
242 * Return: performance state read from device tree corresponding to the
243 * required opp, else return U32_MAX.
244 */
dev_pm_opp_get_required_pstate(struct dev_pm_opp * opp,unsigned int index)245 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
246 unsigned int index)
247 {
248 if (IS_ERR_OR_NULL(opp) || !opp->available ||
249 index >= opp->opp_table->required_opp_count) {
250 pr_err("%s: Invalid parameters\n", __func__);
251 return 0;
252 }
253
254 /* required-opps not fully initialized yet */
255 if (lazy_linking_pending(opp->opp_table))
256 return 0;
257
258 /* The required OPP table must belong to a genpd */
259 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
260 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
261 return 0;
262 }
263
264 return opp->required_opps[index]->level;
265 }
266 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
267
268 /**
269 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
270 * @opp: opp for which turbo mode is being verified
271 *
272 * Turbo OPPs are not for normal use, and can be enabled (under certain
273 * conditions) for short duration of times to finish high throughput work
274 * quickly. Running on them for longer times may overheat the chip.
275 *
276 * Return: true if opp is turbo opp, else false.
277 */
dev_pm_opp_is_turbo(struct dev_pm_opp * opp)278 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
279 {
280 if (IS_ERR_OR_NULL(opp) || !opp->available) {
281 pr_err("%s: Invalid parameters\n", __func__);
282 return false;
283 }
284
285 return opp->turbo;
286 }
287 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
288
289 /**
290 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
291 * @dev: device for which we do this operation
292 *
293 * Return: This function returns the max clock latency in nanoseconds.
294 */
dev_pm_opp_get_max_clock_latency(struct device * dev)295 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
296 {
297 struct opp_table *opp_table;
298 unsigned long clock_latency_ns;
299
300 opp_table = _find_opp_table(dev);
301 if (IS_ERR(opp_table))
302 return 0;
303
304 clock_latency_ns = opp_table->clock_latency_ns_max;
305
306 dev_pm_opp_put_opp_table(opp_table);
307
308 return clock_latency_ns;
309 }
310 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
311
312 /**
313 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
314 * @dev: device for which we do this operation
315 *
316 * Return: This function returns the max voltage latency in nanoseconds.
317 */
dev_pm_opp_get_max_volt_latency(struct device * dev)318 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
319 {
320 struct opp_table *opp_table;
321 struct dev_pm_opp *opp;
322 struct regulator *reg;
323 unsigned long latency_ns = 0;
324 int ret, i, count;
325 struct {
326 unsigned long min;
327 unsigned long max;
328 } *uV;
329
330 opp_table = _find_opp_table(dev);
331 if (IS_ERR(opp_table))
332 return 0;
333
334 /* Regulator may not be required for the device */
335 if (!opp_table->regulators)
336 goto put_opp_table;
337
338 count = opp_table->regulator_count;
339
340 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
341 if (!uV)
342 goto put_opp_table;
343
344 mutex_lock(&opp_table->lock);
345
346 for (i = 0; i < count; i++) {
347 uV[i].min = ~0;
348 uV[i].max = 0;
349
350 list_for_each_entry(opp, &opp_table->opp_list, node) {
351 if (!opp->available)
352 continue;
353
354 if (opp->supplies[i].u_volt_min < uV[i].min)
355 uV[i].min = opp->supplies[i].u_volt_min;
356 if (opp->supplies[i].u_volt_max > uV[i].max)
357 uV[i].max = opp->supplies[i].u_volt_max;
358 }
359 }
360
361 mutex_unlock(&opp_table->lock);
362
363 /*
364 * The caller needs to ensure that opp_table (and hence the regulator)
365 * isn't freed, while we are executing this routine.
366 */
367 for (i = 0; i < count; i++) {
368 reg = opp_table->regulators[i];
369 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
370 if (ret > 0)
371 latency_ns += ret * 1000;
372 }
373
374 kfree(uV);
375 put_opp_table:
376 dev_pm_opp_put_opp_table(opp_table);
377
378 return latency_ns;
379 }
380 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
381
382 /**
383 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
384 * nanoseconds
385 * @dev: device for which we do this operation
386 *
387 * Return: This function returns the max transition latency, in nanoseconds, to
388 * switch from one OPP to other.
389 */
dev_pm_opp_get_max_transition_latency(struct device * dev)390 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
391 {
392 return dev_pm_opp_get_max_volt_latency(dev) +
393 dev_pm_opp_get_max_clock_latency(dev);
394 }
395 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
396
397 /**
398 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
399 * @dev: device for which we do this operation
400 *
401 * Return: This function returns the frequency of the OPP marked as suspend_opp
402 * if one is available, else returns 0;
403 */
dev_pm_opp_get_suspend_opp_freq(struct device * dev)404 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
405 {
406 struct opp_table *opp_table;
407 unsigned long freq = 0;
408
409 opp_table = _find_opp_table(dev);
410 if (IS_ERR(opp_table))
411 return 0;
412
413 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
414 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
415
416 dev_pm_opp_put_opp_table(opp_table);
417
418 return freq;
419 }
420 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
421
_get_opp_count(struct opp_table * opp_table)422 int _get_opp_count(struct opp_table *opp_table)
423 {
424 struct dev_pm_opp *opp;
425 int count = 0;
426
427 mutex_lock(&opp_table->lock);
428
429 list_for_each_entry(opp, &opp_table->opp_list, node) {
430 if (opp->available)
431 count++;
432 }
433
434 mutex_unlock(&opp_table->lock);
435
436 return count;
437 }
438
439 /**
440 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
441 * @dev: device for which we do this operation
442 *
443 * Return: This function returns the number of available opps if there are any,
444 * else returns 0 if none or the corresponding error value.
445 */
dev_pm_opp_get_opp_count(struct device * dev)446 int dev_pm_opp_get_opp_count(struct device *dev)
447 {
448 struct opp_table *opp_table;
449 int count;
450
451 opp_table = _find_opp_table(dev);
452 if (IS_ERR(opp_table)) {
453 count = PTR_ERR(opp_table);
454 dev_dbg(dev, "%s: OPP table not found (%d)\n",
455 __func__, count);
456 return count;
457 }
458
459 count = _get_opp_count(opp_table);
460 dev_pm_opp_put_opp_table(opp_table);
461
462 return count;
463 }
464 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
465
466 /* Helpers to read keys */
_read_freq(struct dev_pm_opp * opp,int index)467 static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
468 {
469 return opp->rates[index];
470 }
471
_read_level(struct dev_pm_opp * opp,int index)472 static unsigned long _read_level(struct dev_pm_opp *opp, int index)
473 {
474 return opp->level;
475 }
476
_read_bw(struct dev_pm_opp * opp,int index)477 static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
478 {
479 return opp->bandwidth[index].peak;
480 }
481
482 /* Generic comparison helpers */
_compare_exact(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)483 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
484 unsigned long opp_key, unsigned long key)
485 {
486 if (opp_key == key) {
487 *opp = temp_opp;
488 return true;
489 }
490
491 return false;
492 }
493
_compare_ceil(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)494 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
495 unsigned long opp_key, unsigned long key)
496 {
497 if (opp_key >= key) {
498 *opp = temp_opp;
499 return true;
500 }
501
502 return false;
503 }
504
_compare_floor(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)505 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
506 unsigned long opp_key, unsigned long key)
507 {
508 if (opp_key > key)
509 return true;
510
511 *opp = temp_opp;
512 return false;
513 }
514
515 /* Generic key finding helpers */
_opp_table_find_key(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table,unsigned int index))516 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
517 unsigned long *key, int index, bool available,
518 unsigned long (*read)(struct dev_pm_opp *opp, int index),
519 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
520 unsigned long opp_key, unsigned long key),
521 bool (*assert)(struct opp_table *opp_table, unsigned int index))
522 {
523 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
524
525 /* Assert that the requirement is met */
526 if (assert && !assert(opp_table, index))
527 return ERR_PTR(-EINVAL);
528
529 mutex_lock(&opp_table->lock);
530
531 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
532 if (temp_opp->available == available) {
533 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
534 break;
535 }
536 }
537
538 /* Increment the reference count of OPP */
539 if (!IS_ERR(opp)) {
540 *key = read(opp, index);
541 dev_pm_opp_get(opp);
542 }
543
544 mutex_unlock(&opp_table->lock);
545
546 return opp;
547 }
548
549 static struct dev_pm_opp *
_find_key(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table,unsigned int index))550 _find_key(struct device *dev, unsigned long *key, int index, bool available,
551 unsigned long (*read)(struct dev_pm_opp *opp, int index),
552 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
553 unsigned long opp_key, unsigned long key),
554 bool (*assert)(struct opp_table *opp_table, unsigned int index))
555 {
556 struct opp_table *opp_table;
557 struct dev_pm_opp *opp;
558
559 opp_table = _find_opp_table(dev);
560 if (IS_ERR(opp_table)) {
561 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
562 PTR_ERR(opp_table));
563 return ERR_CAST(opp_table);
564 }
565
566 opp = _opp_table_find_key(opp_table, key, index, available, read,
567 compare, assert);
568
569 dev_pm_opp_put_opp_table(opp_table);
570
571 return opp;
572 }
573
_find_key_exact(struct device * dev,unsigned long key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))574 static struct dev_pm_opp *_find_key_exact(struct device *dev,
575 unsigned long key, int index, bool available,
576 unsigned long (*read)(struct dev_pm_opp *opp, int index),
577 bool (*assert)(struct opp_table *opp_table, unsigned int index))
578 {
579 /*
580 * The value of key will be updated here, but will be ignored as the
581 * caller doesn't need it.
582 */
583 return _find_key(dev, &key, index, available, read, _compare_exact,
584 assert);
585 }
586
_opp_table_find_key_ceil(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))587 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
588 unsigned long *key, int index, bool available,
589 unsigned long (*read)(struct dev_pm_opp *opp, int index),
590 bool (*assert)(struct opp_table *opp_table, unsigned int index))
591 {
592 return _opp_table_find_key(opp_table, key, index, available, read,
593 _compare_ceil, assert);
594 }
595
_find_key_ceil(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))596 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
597 int index, bool available,
598 unsigned long (*read)(struct dev_pm_opp *opp, int index),
599 bool (*assert)(struct opp_table *opp_table, unsigned int index))
600 {
601 return _find_key(dev, key, index, available, read, _compare_ceil,
602 assert);
603 }
604
_find_key_floor(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))605 static struct dev_pm_opp *_find_key_floor(struct device *dev,
606 unsigned long *key, int index, bool available,
607 unsigned long (*read)(struct dev_pm_opp *opp, int index),
608 bool (*assert)(struct opp_table *opp_table, unsigned int index))
609 {
610 return _find_key(dev, key, index, available, read, _compare_floor,
611 assert);
612 }
613
614 /**
615 * dev_pm_opp_find_freq_exact() - search for an exact frequency
616 * @dev: device for which we do this operation
617 * @freq: frequency to search for
618 * @available: true/false - match for available opp
619 *
620 * Return: Searches for exact match in the opp table and returns pointer to the
621 * matching opp if found, else returns ERR_PTR in case of error and should
622 * be handled using IS_ERR. Error return values can be:
623 * EINVAL: for bad pointer
624 * ERANGE: no match found for search
625 * ENODEV: if device not found in list of registered devices
626 *
627 * Note: available is a modifier for the search. if available=true, then the
628 * match is for exact matching frequency and is available in the stored OPP
629 * table. if false, the match is for exact frequency which is not available.
630 *
631 * This provides a mechanism to enable an opp which is not available currently
632 * or the opposite as well.
633 *
634 * The callers are required to call dev_pm_opp_put() for the returned OPP after
635 * use.
636 */
dev_pm_opp_find_freq_exact(struct device * dev,unsigned long freq,bool available)637 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
638 unsigned long freq, bool available)
639 {
640 return _find_key_exact(dev, freq, 0, available, _read_freq,
641 assert_single_clk);
642 }
643 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
644
645 /**
646 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
647 * clock corresponding to the index
648 * @dev: Device for which we do this operation
649 * @freq: frequency to search for
650 * @index: Clock index
651 * @available: true/false - match for available opp
652 *
653 * Search for the matching exact OPP for the clock corresponding to the
654 * specified index from a starting freq for a device.
655 *
656 * Return: matching *opp , else returns ERR_PTR in case of error and should be
657 * handled using IS_ERR. Error return values can be:
658 * EINVAL: for bad pointer
659 * ERANGE: no match found for search
660 * ENODEV: if device not found in list of registered devices
661 *
662 * The callers are required to call dev_pm_opp_put() for the returned OPP after
663 * use.
664 */
665 struct dev_pm_opp *
dev_pm_opp_find_freq_exact_indexed(struct device * dev,unsigned long freq,u32 index,bool available)666 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
667 u32 index, bool available)
668 {
669 return _find_key_exact(dev, freq, index, available, _read_freq,
670 assert_clk_index);
671 }
672 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
673
_find_freq_ceil(struct opp_table * opp_table,unsigned long * freq)674 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
675 unsigned long *freq)
676 {
677 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
678 assert_single_clk);
679 }
680
681 /**
682 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
683 * @dev: device for which we do this operation
684 * @freq: Start frequency
685 *
686 * Search for the matching ceil *available* OPP from a starting freq
687 * for a device.
688 *
689 * Return: matching *opp and refreshes *freq accordingly, else returns
690 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
691 * values can be:
692 * EINVAL: for bad pointer
693 * ERANGE: no match found for search
694 * ENODEV: if device not found in list of registered devices
695 *
696 * The callers are required to call dev_pm_opp_put() for the returned OPP after
697 * use.
698 */
dev_pm_opp_find_freq_ceil(struct device * dev,unsigned long * freq)699 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
700 unsigned long *freq)
701 {
702 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
703 }
704 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
705
706 /**
707 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
708 * clock corresponding to the index
709 * @dev: Device for which we do this operation
710 * @freq: Start frequency
711 * @index: Clock index
712 *
713 * Search for the matching ceil *available* OPP for the clock corresponding to
714 * the specified index from a starting freq for a device.
715 *
716 * Return: matching *opp and refreshes *freq accordingly, else returns
717 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
718 * values can be:
719 * EINVAL: for bad pointer
720 * ERANGE: no match found for search
721 * ENODEV: if device not found in list of registered devices
722 *
723 * The callers are required to call dev_pm_opp_put() for the returned OPP after
724 * use.
725 */
726 struct dev_pm_opp *
dev_pm_opp_find_freq_ceil_indexed(struct device * dev,unsigned long * freq,u32 index)727 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
728 u32 index)
729 {
730 return _find_key_ceil(dev, freq, index, true, _read_freq,
731 assert_clk_index);
732 }
733 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
734
735 /**
736 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
737 * @dev: device for which we do this operation
738 * @freq: Start frequency
739 *
740 * Search for the matching floor *available* OPP from a starting freq
741 * for a device.
742 *
743 * Return: matching *opp and refreshes *freq accordingly, else returns
744 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
745 * values can be:
746 * EINVAL: for bad pointer
747 * ERANGE: no match found for search
748 * ENODEV: if device not found in list of registered devices
749 *
750 * The callers are required to call dev_pm_opp_put() for the returned OPP after
751 * use.
752 */
dev_pm_opp_find_freq_floor(struct device * dev,unsigned long * freq)753 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
754 unsigned long *freq)
755 {
756 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
757 }
758 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
759
760 /**
761 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
762 * clock corresponding to the index
763 * @dev: Device for which we do this operation
764 * @freq: Start frequency
765 * @index: Clock index
766 *
767 * Search for the matching floor *available* OPP for the clock corresponding to
768 * the specified index from a starting freq for a device.
769 *
770 * Return: matching *opp and refreshes *freq accordingly, else returns
771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
772 * values can be:
773 * EINVAL: for bad pointer
774 * ERANGE: no match found for search
775 * ENODEV: if device not found in list of registered devices
776 *
777 * The callers are required to call dev_pm_opp_put() for the returned OPP after
778 * use.
779 */
780 struct dev_pm_opp *
dev_pm_opp_find_freq_floor_indexed(struct device * dev,unsigned long * freq,u32 index)781 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
782 u32 index)
783 {
784 return _find_key_floor(dev, freq, index, true, _read_freq, assert_clk_index);
785 }
786 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
787
788 /**
789 * dev_pm_opp_find_level_exact() - search for an exact level
790 * @dev: device for which we do this operation
791 * @level: level to search for
792 *
793 * Return: Searches for exact match in the opp table and returns pointer to the
794 * matching opp if found, else returns ERR_PTR in case of error and should
795 * be handled using IS_ERR. Error return values can be:
796 * EINVAL: for bad pointer
797 * ERANGE: no match found for search
798 * ENODEV: if device not found in list of registered devices
799 *
800 * The callers are required to call dev_pm_opp_put() for the returned OPP after
801 * use.
802 */
dev_pm_opp_find_level_exact(struct device * dev,unsigned int level)803 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
804 unsigned int level)
805 {
806 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
807 }
808 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
809
810 /**
811 * dev_pm_opp_find_level_ceil() - search for an rounded up level
812 * @dev: device for which we do this operation
813 * @level: level to search for
814 *
815 * Return: Searches for rounded up match in the opp table and returns pointer
816 * to the matching opp if found, else returns ERR_PTR in case of error and
817 * should be handled using IS_ERR. Error return values can be:
818 * EINVAL: for bad pointer
819 * ERANGE: no match found for search
820 * ENODEV: if device not found in list of registered devices
821 *
822 * The callers are required to call dev_pm_opp_put() for the returned OPP after
823 * use.
824 */
dev_pm_opp_find_level_ceil(struct device * dev,unsigned int * level)825 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
826 unsigned int *level)
827 {
828 unsigned long temp = *level;
829 struct dev_pm_opp *opp;
830
831 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
832 if (IS_ERR(opp))
833 return opp;
834
835 /* False match */
836 if (temp == OPP_LEVEL_UNSET) {
837 dev_err(dev, "%s: OPP levels aren't available\n", __func__);
838 dev_pm_opp_put(opp);
839 return ERR_PTR(-ENODEV);
840 }
841
842 *level = temp;
843 return opp;
844 }
845 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
846
847 /**
848 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
849 * @dev: device for which we do this operation
850 * @level: Start level
851 *
852 * Search for the matching floor *available* OPP from a starting level
853 * for a device.
854 *
855 * Return: matching *opp and refreshes *level accordingly, else returns
856 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
857 * values can be:
858 * EINVAL: for bad pointer
859 * ERANGE: no match found for search
860 * ENODEV: if device not found in list of registered devices
861 *
862 * The callers are required to call dev_pm_opp_put() for the returned OPP after
863 * use.
864 */
dev_pm_opp_find_level_floor(struct device * dev,unsigned int * level)865 struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
866 unsigned int *level)
867 {
868 unsigned long temp = *level;
869 struct dev_pm_opp *opp;
870
871 opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
872 *level = temp;
873 return opp;
874 }
875 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
876
877 /**
878 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
879 * @dev: device for which we do this operation
880 * @bw: start bandwidth
881 * @index: which bandwidth to compare, in case of OPPs with several values
882 *
883 * Search for the matching floor *available* OPP from a starting bandwidth
884 * for a device.
885 *
886 * Return: matching *opp and refreshes *bw accordingly, else returns
887 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
888 * values can be:
889 * EINVAL: for bad pointer
890 * ERANGE: no match found for search
891 * ENODEV: if device not found in list of registered devices
892 *
893 * The callers are required to call dev_pm_opp_put() for the returned OPP after
894 * use.
895 */
dev_pm_opp_find_bw_ceil(struct device * dev,unsigned int * bw,int index)896 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
897 int index)
898 {
899 unsigned long temp = *bw;
900 struct dev_pm_opp *opp;
901
902 opp = _find_key_ceil(dev, &temp, index, true, _read_bw,
903 assert_bandwidth_index);
904 *bw = temp;
905 return opp;
906 }
907 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
908
909 /**
910 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
911 * @dev: device for which we do this operation
912 * @bw: start bandwidth
913 * @index: which bandwidth to compare, in case of OPPs with several values
914 *
915 * Search for the matching floor *available* OPP from a starting bandwidth
916 * for a device.
917 *
918 * Return: matching *opp and refreshes *bw accordingly, else returns
919 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
920 * values can be:
921 * EINVAL: for bad pointer
922 * ERANGE: no match found for search
923 * ENODEV: if device not found in list of registered devices
924 *
925 * The callers are required to call dev_pm_opp_put() for the returned OPP after
926 * use.
927 */
dev_pm_opp_find_bw_floor(struct device * dev,unsigned int * bw,int index)928 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
929 unsigned int *bw, int index)
930 {
931 unsigned long temp = *bw;
932 struct dev_pm_opp *opp;
933
934 opp = _find_key_floor(dev, &temp, index, true, _read_bw,
935 assert_bandwidth_index);
936 *bw = temp;
937 return opp;
938 }
939 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
940
_set_opp_voltage(struct device * dev,struct regulator * reg,struct dev_pm_opp_supply * supply)941 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
942 struct dev_pm_opp_supply *supply)
943 {
944 int ret;
945
946 /* Regulator not available for device */
947 if (IS_ERR(reg)) {
948 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
949 PTR_ERR(reg));
950 return 0;
951 }
952
953 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
954 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
955
956 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
957 supply->u_volt, supply->u_volt_max);
958 if (ret)
959 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
960 __func__, supply->u_volt_min, supply->u_volt,
961 supply->u_volt_max, ret);
962
963 return ret;
964 }
965
966 static int
_opp_config_clk_single(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)967 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
968 struct dev_pm_opp *opp, void *data, bool scaling_down)
969 {
970 unsigned long *target = data;
971 unsigned long freq;
972 int ret;
973
974 /* One of target and opp must be available */
975 if (target) {
976 freq = *target;
977 } else if (opp) {
978 freq = opp->rates[0];
979 } else {
980 WARN_ON(1);
981 return -EINVAL;
982 }
983
984 ret = clk_set_rate(opp_table->clk, freq);
985 if (ret) {
986 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
987 ret);
988 } else {
989 opp_table->current_rate_single_clk = freq;
990 }
991
992 return ret;
993 }
994
995 /*
996 * Simple implementation for configuring multiple clocks. Configure clocks in
997 * the order in which they are present in the array while scaling up.
998 */
dev_pm_opp_config_clks_simple(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)999 int dev_pm_opp_config_clks_simple(struct device *dev,
1000 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
1001 bool scaling_down)
1002 {
1003 int ret, i;
1004
1005 if (scaling_down) {
1006 for (i = opp_table->clk_count - 1; i >= 0; i--) {
1007 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1008 if (ret) {
1009 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1010 ret);
1011 return ret;
1012 }
1013 }
1014 } else {
1015 for (i = 0; i < opp_table->clk_count; i++) {
1016 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1017 if (ret) {
1018 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1019 ret);
1020 return ret;
1021 }
1022 }
1023 }
1024
1025 return 0;
1026 }
1027 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1028
_opp_config_regulator_single(struct device * dev,struct dev_pm_opp * old_opp,struct dev_pm_opp * new_opp,struct regulator ** regulators,unsigned int count)1029 static int _opp_config_regulator_single(struct device *dev,
1030 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1031 struct regulator **regulators, unsigned int count)
1032 {
1033 struct regulator *reg = regulators[0];
1034 int ret;
1035
1036 /* This function only supports single regulator per device */
1037 if (WARN_ON(count > 1)) {
1038 dev_err(dev, "multiple regulators are not supported\n");
1039 return -EINVAL;
1040 }
1041
1042 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1043 if (ret)
1044 return ret;
1045
1046 /*
1047 * Enable the regulator after setting its voltages, otherwise it breaks
1048 * some boot-enabled regulators.
1049 */
1050 if (unlikely(!new_opp->opp_table->enabled)) {
1051 ret = regulator_enable(reg);
1052 if (ret < 0)
1053 dev_warn(dev, "Failed to enable regulator: %d", ret);
1054 }
1055
1056 return 0;
1057 }
1058
_set_opp_bw(const struct opp_table * opp_table,struct dev_pm_opp * opp,struct device * dev)1059 static int _set_opp_bw(const struct opp_table *opp_table,
1060 struct dev_pm_opp *opp, struct device *dev)
1061 {
1062 u32 avg, peak;
1063 int i, ret;
1064
1065 if (!opp_table->paths)
1066 return 0;
1067
1068 for (i = 0; i < opp_table->path_count; i++) {
1069 if (!opp) {
1070 avg = 0;
1071 peak = 0;
1072 } else {
1073 avg = opp->bandwidth[i].avg;
1074 peak = opp->bandwidth[i].peak;
1075 }
1076 ret = icc_set_bw(opp_table->paths[i], avg, peak);
1077 if (ret) {
1078 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1079 opp ? "set" : "remove", i, ret);
1080 return ret;
1081 }
1082 }
1083
1084 return 0;
1085 }
1086
_set_opp_level(struct device * dev,struct dev_pm_opp * opp)1087 static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp)
1088 {
1089 unsigned int level = 0;
1090 int ret = 0;
1091
1092 if (opp) {
1093 if (opp->level == OPP_LEVEL_UNSET)
1094 return 0;
1095
1096 level = opp->level;
1097 }
1098
1099 /* Request a new performance state through the device's PM domain. */
1100 ret = dev_pm_domain_set_performance_state(dev, level);
1101 if (ret)
1102 dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1103 ret);
1104
1105 return ret;
1106 }
1107
1108 /* This is only called for PM domain for now */
_set_required_opps(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool up)1109 static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1110 struct dev_pm_opp *opp, bool up)
1111 {
1112 struct device **devs = opp_table->required_devs;
1113 struct dev_pm_opp *required_opp;
1114 int index, target, delta, ret;
1115
1116 if (!devs)
1117 return 0;
1118
1119 /* required-opps not fully initialized yet */
1120 if (lazy_linking_pending(opp_table))
1121 return -EBUSY;
1122
1123 /* Scaling up? Set required OPPs in normal order, else reverse */
1124 if (up) {
1125 index = 0;
1126 target = opp_table->required_opp_count;
1127 delta = 1;
1128 } else {
1129 index = opp_table->required_opp_count - 1;
1130 target = -1;
1131 delta = -1;
1132 }
1133
1134 while (index != target) {
1135 if (devs[index]) {
1136 required_opp = opp ? opp->required_opps[index] : NULL;
1137
1138 ret = _set_opp_level(devs[index], required_opp);
1139 if (ret)
1140 return ret;
1141 }
1142
1143 index += delta;
1144 }
1145
1146 return 0;
1147 }
1148
_find_current_opp(struct device * dev,struct opp_table * opp_table)1149 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1150 {
1151 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1152 unsigned long freq;
1153
1154 if (!IS_ERR(opp_table->clk)) {
1155 freq = clk_get_rate(opp_table->clk);
1156 opp = _find_freq_ceil(opp_table, &freq);
1157 }
1158
1159 /*
1160 * Unable to find the current OPP ? Pick the first from the list since
1161 * it is in ascending order, otherwise rest of the code will need to
1162 * make special checks to validate current_opp.
1163 */
1164 if (IS_ERR(opp)) {
1165 mutex_lock(&opp_table->lock);
1166 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1167 dev_pm_opp_get(opp);
1168 mutex_unlock(&opp_table->lock);
1169 }
1170
1171 opp_table->current_opp = opp;
1172 }
1173
_disable_opp_table(struct device * dev,struct opp_table * opp_table)1174 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1175 {
1176 int ret;
1177
1178 if (!opp_table->enabled)
1179 return 0;
1180
1181 /*
1182 * Some drivers need to support cases where some platforms may
1183 * have OPP table for the device, while others don't and
1184 * opp_set_rate() just needs to behave like clk_set_rate().
1185 */
1186 if (!_get_opp_count(opp_table))
1187 return 0;
1188
1189 ret = _set_opp_bw(opp_table, NULL, dev);
1190 if (ret)
1191 return ret;
1192
1193 if (opp_table->regulators)
1194 regulator_disable(opp_table->regulators[0]);
1195
1196 ret = _set_opp_level(dev, NULL);
1197 if (ret)
1198 goto out;
1199
1200 ret = _set_required_opps(dev, opp_table, NULL, false);
1201
1202 out:
1203 opp_table->enabled = false;
1204 return ret;
1205 }
1206
_set_opp(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * clk_data,bool forced)1207 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1208 struct dev_pm_opp *opp, void *clk_data, bool forced)
1209 {
1210 struct dev_pm_opp *old_opp;
1211 int scaling_down, ret;
1212
1213 if (unlikely(!opp))
1214 return _disable_opp_table(dev, opp_table);
1215
1216 /* Find the currently set OPP if we don't know already */
1217 if (unlikely(!opp_table->current_opp))
1218 _find_current_opp(dev, opp_table);
1219
1220 old_opp = opp_table->current_opp;
1221
1222 /* Return early if nothing to do */
1223 if (!forced && old_opp == opp && opp_table->enabled) {
1224 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1225 return 0;
1226 }
1227
1228 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1229 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1230 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1231 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1232
1233 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1234 if (scaling_down == -1)
1235 scaling_down = 0;
1236
1237 /* Scaling up? Configure required OPPs before frequency */
1238 if (!scaling_down) {
1239 ret = _set_required_opps(dev, opp_table, opp, true);
1240 if (ret) {
1241 dev_err(dev, "Failed to set required opps: %d\n", ret);
1242 return ret;
1243 }
1244
1245 ret = _set_opp_level(dev, opp);
1246 if (ret)
1247 return ret;
1248
1249 ret = _set_opp_bw(opp_table, opp, dev);
1250 if (ret) {
1251 dev_err(dev, "Failed to set bw: %d\n", ret);
1252 return ret;
1253 }
1254
1255 if (opp_table->config_regulators) {
1256 ret = opp_table->config_regulators(dev, old_opp, opp,
1257 opp_table->regulators,
1258 opp_table->regulator_count);
1259 if (ret) {
1260 dev_err(dev, "Failed to set regulator voltages: %d\n",
1261 ret);
1262 return ret;
1263 }
1264 }
1265 }
1266
1267 if (opp_table->config_clks) {
1268 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1269 if (ret)
1270 return ret;
1271 }
1272
1273 /* Scaling down? Configure required OPPs after frequency */
1274 if (scaling_down) {
1275 if (opp_table->config_regulators) {
1276 ret = opp_table->config_regulators(dev, old_opp, opp,
1277 opp_table->regulators,
1278 opp_table->regulator_count);
1279 if (ret) {
1280 dev_err(dev, "Failed to set regulator voltages: %d\n",
1281 ret);
1282 return ret;
1283 }
1284 }
1285
1286 ret = _set_opp_bw(opp_table, opp, dev);
1287 if (ret) {
1288 dev_err(dev, "Failed to set bw: %d\n", ret);
1289 return ret;
1290 }
1291
1292 ret = _set_opp_level(dev, opp);
1293 if (ret)
1294 return ret;
1295
1296 ret = _set_required_opps(dev, opp_table, opp, false);
1297 if (ret) {
1298 dev_err(dev, "Failed to set required opps: %d\n", ret);
1299 return ret;
1300 }
1301 }
1302
1303 opp_table->enabled = true;
1304 dev_pm_opp_put(old_opp);
1305
1306 /* Make sure current_opp doesn't get freed */
1307 dev_pm_opp_get(opp);
1308 opp_table->current_opp = opp;
1309
1310 return ret;
1311 }
1312
1313 /**
1314 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1315 * @dev: device for which we do this operation
1316 * @target_freq: frequency to achieve
1317 *
1318 * This configures the power-supplies to the levels specified by the OPP
1319 * corresponding to the target_freq, and programs the clock to a value <=
1320 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1321 * provided by the opp, should have already rounded to the target OPP's
1322 * frequency.
1323 */
dev_pm_opp_set_rate(struct device * dev,unsigned long target_freq)1324 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1325 {
1326 struct opp_table *opp_table;
1327 unsigned long freq = 0, temp_freq;
1328 struct dev_pm_opp *opp = NULL;
1329 bool forced = false;
1330 int ret;
1331
1332 opp_table = _find_opp_table(dev);
1333 if (IS_ERR(opp_table)) {
1334 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1335 return PTR_ERR(opp_table);
1336 }
1337
1338 if (target_freq) {
1339 /*
1340 * For IO devices which require an OPP on some platforms/SoCs
1341 * while just needing to scale the clock on some others
1342 * we look for empty OPP tables with just a clock handle and
1343 * scale only the clk. This makes dev_pm_opp_set_rate()
1344 * equivalent to a clk_set_rate()
1345 */
1346 if (!_get_opp_count(opp_table)) {
1347 ret = opp_table->config_clks(dev, opp_table, NULL,
1348 &target_freq, false);
1349 goto put_opp_table;
1350 }
1351
1352 freq = clk_round_rate(opp_table->clk, target_freq);
1353 if ((long)freq <= 0)
1354 freq = target_freq;
1355
1356 /*
1357 * The clock driver may support finer resolution of the
1358 * frequencies than the OPP table, don't update the frequency we
1359 * pass to clk_set_rate() here.
1360 */
1361 temp_freq = freq;
1362 opp = _find_freq_ceil(opp_table, &temp_freq);
1363 if (IS_ERR(opp)) {
1364 ret = PTR_ERR(opp);
1365 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1366 __func__, freq, ret);
1367 goto put_opp_table;
1368 }
1369
1370 /*
1371 * An OPP entry specifies the highest frequency at which other
1372 * properties of the OPP entry apply. Even if the new OPP is
1373 * same as the old one, we may still reach here for a different
1374 * value of the frequency. In such a case, do not abort but
1375 * configure the hardware to the desired frequency forcefully.
1376 */
1377 forced = opp_table->current_rate_single_clk != freq;
1378 }
1379
1380 ret = _set_opp(dev, opp_table, opp, &freq, forced);
1381
1382 if (freq)
1383 dev_pm_opp_put(opp);
1384
1385 put_opp_table:
1386 dev_pm_opp_put_opp_table(opp_table);
1387 return ret;
1388 }
1389 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1390
1391 /**
1392 * dev_pm_opp_set_opp() - Configure device for OPP
1393 * @dev: device for which we do this operation
1394 * @opp: OPP to set to
1395 *
1396 * This configures the device based on the properties of the OPP passed to this
1397 * routine.
1398 *
1399 * Return: 0 on success, a negative error number otherwise.
1400 */
dev_pm_opp_set_opp(struct device * dev,struct dev_pm_opp * opp)1401 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1402 {
1403 struct opp_table *opp_table;
1404 int ret;
1405
1406 opp_table = _find_opp_table(dev);
1407 if (IS_ERR(opp_table)) {
1408 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1409 return PTR_ERR(opp_table);
1410 }
1411
1412 ret = _set_opp(dev, opp_table, opp, NULL, false);
1413 dev_pm_opp_put_opp_table(opp_table);
1414
1415 return ret;
1416 }
1417 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1418
1419 /* OPP-dev Helpers */
_remove_opp_dev(struct opp_device * opp_dev,struct opp_table * opp_table)1420 static void _remove_opp_dev(struct opp_device *opp_dev,
1421 struct opp_table *opp_table)
1422 {
1423 opp_debug_unregister(opp_dev, opp_table);
1424 list_del(&opp_dev->node);
1425 kfree(opp_dev);
1426 }
1427
_add_opp_dev(const struct device * dev,struct opp_table * opp_table)1428 struct opp_device *_add_opp_dev(const struct device *dev,
1429 struct opp_table *opp_table)
1430 {
1431 struct opp_device *opp_dev;
1432
1433 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1434 if (!opp_dev)
1435 return NULL;
1436
1437 /* Initialize opp-dev */
1438 opp_dev->dev = dev;
1439
1440 mutex_lock(&opp_table->lock);
1441 list_add(&opp_dev->node, &opp_table->dev_list);
1442 mutex_unlock(&opp_table->lock);
1443
1444 /* Create debugfs entries for the opp_table */
1445 opp_debug_register(opp_dev, opp_table);
1446
1447 return opp_dev;
1448 }
1449
_allocate_opp_table(struct device * dev,int index)1450 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1451 {
1452 struct opp_table *opp_table;
1453 struct opp_device *opp_dev;
1454 int ret;
1455
1456 /*
1457 * Allocate a new OPP table. In the infrequent case where a new
1458 * device is needed to be added, we pay this penalty.
1459 */
1460 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1461 if (!opp_table)
1462 return ERR_PTR(-ENOMEM);
1463
1464 mutex_init(&opp_table->lock);
1465 INIT_LIST_HEAD(&opp_table->dev_list);
1466 INIT_LIST_HEAD(&opp_table->lazy);
1467
1468 opp_table->clk = ERR_PTR(-ENODEV);
1469
1470 /* Mark regulator count uninitialized */
1471 opp_table->regulator_count = -1;
1472
1473 opp_dev = _add_opp_dev(dev, opp_table);
1474 if (!opp_dev) {
1475 ret = -ENOMEM;
1476 goto err;
1477 }
1478
1479 _of_init_opp_table(opp_table, dev, index);
1480
1481 /* Find interconnect path(s) for the device */
1482 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1483 if (ret) {
1484 if (ret == -EPROBE_DEFER)
1485 goto remove_opp_dev;
1486
1487 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1488 __func__, ret);
1489 }
1490
1491 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1492 INIT_LIST_HEAD(&opp_table->opp_list);
1493 kref_init(&opp_table->kref);
1494
1495 return opp_table;
1496
1497 remove_opp_dev:
1498 _of_clear_opp_table(opp_table);
1499 _remove_opp_dev(opp_dev, opp_table);
1500 mutex_destroy(&opp_table->lock);
1501 err:
1502 kfree(opp_table);
1503 return ERR_PTR(ret);
1504 }
1505
_get_opp_table_kref(struct opp_table * opp_table)1506 void _get_opp_table_kref(struct opp_table *opp_table)
1507 {
1508 kref_get(&opp_table->kref);
1509 }
1510
_update_opp_table_clk(struct device * dev,struct opp_table * opp_table,bool getclk)1511 static struct opp_table *_update_opp_table_clk(struct device *dev,
1512 struct opp_table *opp_table,
1513 bool getclk)
1514 {
1515 int ret;
1516
1517 /*
1518 * Return early if we don't need to get clk or we have already done it
1519 * earlier.
1520 */
1521 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1522 opp_table->clks)
1523 return opp_table;
1524
1525 /* Find clk for the device */
1526 opp_table->clk = clk_get(dev, NULL);
1527
1528 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1529 if (!ret) {
1530 opp_table->config_clks = _opp_config_clk_single;
1531 opp_table->clk_count = 1;
1532 return opp_table;
1533 }
1534
1535 if (ret == -ENOENT) {
1536 /*
1537 * There are few platforms which don't want the OPP core to
1538 * manage device's clock settings. In such cases neither the
1539 * platform provides the clks explicitly to us, nor the DT
1540 * contains a valid clk entry. The OPP nodes in DT may still
1541 * contain "opp-hz" property though, which we need to parse and
1542 * allow the platform to find an OPP based on freq later on.
1543 *
1544 * This is a simple solution to take care of such corner cases,
1545 * i.e. make the clk_count 1, which lets us allocate space for
1546 * frequency in opp->rates and also parse the entries in DT.
1547 */
1548 opp_table->clk_count = 1;
1549
1550 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1551 return opp_table;
1552 }
1553
1554 dev_pm_opp_put_opp_table(opp_table);
1555 dev_err_probe(dev, ret, "Couldn't find clock\n");
1556
1557 return ERR_PTR(ret);
1558 }
1559
1560 /*
1561 * We need to make sure that the OPP table for a device doesn't get added twice,
1562 * if this routine gets called in parallel with the same device pointer.
1563 *
1564 * The simplest way to enforce that is to perform everything (find existing
1565 * table and if not found, create a new one) under the opp_table_lock, so only
1566 * one creator gets access to the same. But that expands the critical section
1567 * under the lock and may end up causing circular dependencies with frameworks
1568 * like debugfs, interconnect or clock framework as they may be direct or
1569 * indirect users of OPP core.
1570 *
1571 * And for that reason we have to go for a bit tricky implementation here, which
1572 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1573 * of adding an OPP table and others should wait for it to finish.
1574 */
_add_opp_table_indexed(struct device * dev,int index,bool getclk)1575 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1576 bool getclk)
1577 {
1578 struct opp_table *opp_table;
1579
1580 again:
1581 mutex_lock(&opp_table_lock);
1582
1583 opp_table = _find_opp_table_unlocked(dev);
1584 if (!IS_ERR(opp_table))
1585 goto unlock;
1586
1587 /*
1588 * The opp_tables list or an OPP table's dev_list is getting updated by
1589 * another user, wait for it to finish.
1590 */
1591 if (unlikely(opp_tables_busy)) {
1592 mutex_unlock(&opp_table_lock);
1593 cpu_relax();
1594 goto again;
1595 }
1596
1597 opp_tables_busy = true;
1598 opp_table = _managed_opp(dev, index);
1599
1600 /* Drop the lock to reduce the size of critical section */
1601 mutex_unlock(&opp_table_lock);
1602
1603 if (opp_table) {
1604 if (!_add_opp_dev(dev, opp_table)) {
1605 dev_pm_opp_put_opp_table(opp_table);
1606 opp_table = ERR_PTR(-ENOMEM);
1607 }
1608
1609 mutex_lock(&opp_table_lock);
1610 } else {
1611 opp_table = _allocate_opp_table(dev, index);
1612
1613 mutex_lock(&opp_table_lock);
1614 if (!IS_ERR(opp_table))
1615 list_add(&opp_table->node, &opp_tables);
1616 }
1617
1618 opp_tables_busy = false;
1619
1620 unlock:
1621 mutex_unlock(&opp_table_lock);
1622
1623 return _update_opp_table_clk(dev, opp_table, getclk);
1624 }
1625
_add_opp_table(struct device * dev,bool getclk)1626 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1627 {
1628 return _add_opp_table_indexed(dev, 0, getclk);
1629 }
1630
dev_pm_opp_get_opp_table(struct device * dev)1631 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1632 {
1633 return _find_opp_table(dev);
1634 }
1635 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1636
_opp_table_kref_release(struct kref * kref)1637 static void _opp_table_kref_release(struct kref *kref)
1638 {
1639 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1640 struct opp_device *opp_dev, *temp;
1641 int i;
1642
1643 /* Drop the lock as soon as we can */
1644 list_del(&opp_table->node);
1645 mutex_unlock(&opp_table_lock);
1646
1647 if (opp_table->current_opp)
1648 dev_pm_opp_put(opp_table->current_opp);
1649
1650 _of_clear_opp_table(opp_table);
1651
1652 /* Release automatically acquired single clk */
1653 if (!IS_ERR(opp_table->clk))
1654 clk_put(opp_table->clk);
1655
1656 if (opp_table->paths) {
1657 for (i = 0; i < opp_table->path_count; i++)
1658 icc_put(opp_table->paths[i]);
1659 kfree(opp_table->paths);
1660 }
1661
1662 WARN_ON(!list_empty(&opp_table->opp_list));
1663
1664 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1665 _remove_opp_dev(opp_dev, opp_table);
1666
1667 mutex_destroy(&opp_table->lock);
1668 kfree(opp_table);
1669 }
1670
dev_pm_opp_put_opp_table(struct opp_table * opp_table)1671 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1672 {
1673 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1674 &opp_table_lock);
1675 }
1676 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1677
_opp_free(struct dev_pm_opp * opp)1678 void _opp_free(struct dev_pm_opp *opp)
1679 {
1680 kfree(opp);
1681 }
1682
_opp_kref_release(struct kref * kref)1683 static void _opp_kref_release(struct kref *kref)
1684 {
1685 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1686 struct opp_table *opp_table = opp->opp_table;
1687
1688 list_del(&opp->node);
1689 mutex_unlock(&opp_table->lock);
1690
1691 /*
1692 * Notify the changes in the availability of the operable
1693 * frequency/voltage list.
1694 */
1695 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1696 _of_clear_opp(opp_table, opp);
1697 opp_debug_remove_one(opp);
1698 kfree(opp);
1699 }
1700
dev_pm_opp_get(struct dev_pm_opp * opp)1701 void dev_pm_opp_get(struct dev_pm_opp *opp)
1702 {
1703 kref_get(&opp->kref);
1704 }
1705
dev_pm_opp_put(struct dev_pm_opp * opp)1706 void dev_pm_opp_put(struct dev_pm_opp *opp)
1707 {
1708 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1709 }
1710 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1711
1712 /**
1713 * dev_pm_opp_remove() - Remove an OPP from OPP table
1714 * @dev: device for which we do this operation
1715 * @freq: OPP to remove with matching 'freq'
1716 *
1717 * This function removes an opp from the opp table.
1718 */
dev_pm_opp_remove(struct device * dev,unsigned long freq)1719 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1720 {
1721 struct dev_pm_opp *opp = NULL, *iter;
1722 struct opp_table *opp_table;
1723
1724 opp_table = _find_opp_table(dev);
1725 if (IS_ERR(opp_table))
1726 return;
1727
1728 if (!assert_single_clk(opp_table, 0))
1729 goto put_table;
1730
1731 mutex_lock(&opp_table->lock);
1732
1733 list_for_each_entry(iter, &opp_table->opp_list, node) {
1734 if (iter->rates[0] == freq) {
1735 opp = iter;
1736 break;
1737 }
1738 }
1739
1740 mutex_unlock(&opp_table->lock);
1741
1742 if (opp) {
1743 dev_pm_opp_put(opp);
1744
1745 /* Drop the reference taken by dev_pm_opp_add() */
1746 dev_pm_opp_put_opp_table(opp_table);
1747 } else {
1748 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1749 __func__, freq);
1750 }
1751
1752 put_table:
1753 /* Drop the reference taken by _find_opp_table() */
1754 dev_pm_opp_put_opp_table(opp_table);
1755 }
1756 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1757
_opp_get_next(struct opp_table * opp_table,bool dynamic)1758 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1759 bool dynamic)
1760 {
1761 struct dev_pm_opp *opp = NULL, *temp;
1762
1763 mutex_lock(&opp_table->lock);
1764 list_for_each_entry(temp, &opp_table->opp_list, node) {
1765 /*
1766 * Refcount must be dropped only once for each OPP by OPP core,
1767 * do that with help of "removed" flag.
1768 */
1769 if (!temp->removed && dynamic == temp->dynamic) {
1770 opp = temp;
1771 break;
1772 }
1773 }
1774
1775 mutex_unlock(&opp_table->lock);
1776 return opp;
1777 }
1778
1779 /*
1780 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1781 * happen lock less to avoid circular dependency issues. This routine must be
1782 * called without the opp_table->lock held.
1783 */
_opp_remove_all(struct opp_table * opp_table,bool dynamic)1784 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1785 {
1786 struct dev_pm_opp *opp;
1787
1788 while ((opp = _opp_get_next(opp_table, dynamic))) {
1789 opp->removed = true;
1790 dev_pm_opp_put(opp);
1791
1792 /* Drop the references taken by dev_pm_opp_add() */
1793 if (dynamic)
1794 dev_pm_opp_put_opp_table(opp_table);
1795 }
1796 }
1797
_opp_remove_all_static(struct opp_table * opp_table)1798 bool _opp_remove_all_static(struct opp_table *opp_table)
1799 {
1800 mutex_lock(&opp_table->lock);
1801
1802 if (!opp_table->parsed_static_opps) {
1803 mutex_unlock(&opp_table->lock);
1804 return false;
1805 }
1806
1807 if (--opp_table->parsed_static_opps) {
1808 mutex_unlock(&opp_table->lock);
1809 return true;
1810 }
1811
1812 mutex_unlock(&opp_table->lock);
1813
1814 _opp_remove_all(opp_table, false);
1815 return true;
1816 }
1817
1818 /**
1819 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1820 * @dev: device for which we do this operation
1821 *
1822 * This function removes all dynamically created OPPs from the opp table.
1823 */
dev_pm_opp_remove_all_dynamic(struct device * dev)1824 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1825 {
1826 struct opp_table *opp_table;
1827
1828 opp_table = _find_opp_table(dev);
1829 if (IS_ERR(opp_table))
1830 return;
1831
1832 _opp_remove_all(opp_table, true);
1833
1834 /* Drop the reference taken by _find_opp_table() */
1835 dev_pm_opp_put_opp_table(opp_table);
1836 }
1837 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1838
_opp_allocate(struct opp_table * opp_table)1839 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1840 {
1841 struct dev_pm_opp *opp;
1842 int supply_count, supply_size, icc_size, clk_size;
1843
1844 /* Allocate space for at least one supply */
1845 supply_count = opp_table->regulator_count > 0 ?
1846 opp_table->regulator_count : 1;
1847 supply_size = sizeof(*opp->supplies) * supply_count;
1848 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1849 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1850
1851 /* allocate new OPP node and supplies structures */
1852 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1853 if (!opp)
1854 return NULL;
1855
1856 /* Put the supplies, bw and clock at the end of the OPP structure */
1857 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1858
1859 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1860
1861 if (icc_size)
1862 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1863
1864 INIT_LIST_HEAD(&opp->node);
1865
1866 opp->level = OPP_LEVEL_UNSET;
1867
1868 return opp;
1869 }
1870
_opp_supported_by_regulators(struct dev_pm_opp * opp,struct opp_table * opp_table)1871 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1872 struct opp_table *opp_table)
1873 {
1874 struct regulator *reg;
1875 int i;
1876
1877 if (!opp_table->regulators)
1878 return true;
1879
1880 for (i = 0; i < opp_table->regulator_count; i++) {
1881 reg = opp_table->regulators[i];
1882
1883 if (!regulator_is_supported_voltage(reg,
1884 opp->supplies[i].u_volt_min,
1885 opp->supplies[i].u_volt_max)) {
1886 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1887 __func__, opp->supplies[i].u_volt_min,
1888 opp->supplies[i].u_volt_max);
1889 return false;
1890 }
1891 }
1892
1893 return true;
1894 }
1895
_opp_compare_rate(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1896 static int _opp_compare_rate(struct opp_table *opp_table,
1897 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1898 {
1899 int i;
1900
1901 for (i = 0; i < opp_table->clk_count; i++) {
1902 if (opp1->rates[i] != opp2->rates[i])
1903 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1904 }
1905
1906 /* Same rates for both OPPs */
1907 return 0;
1908 }
1909
_opp_compare_bw(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1910 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1911 struct dev_pm_opp *opp2)
1912 {
1913 int i;
1914
1915 for (i = 0; i < opp_table->path_count; i++) {
1916 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1917 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1918 }
1919
1920 /* Same bw for both OPPs */
1921 return 0;
1922 }
1923
1924 /*
1925 * Returns
1926 * 0: opp1 == opp2
1927 * 1: opp1 > opp2
1928 * -1: opp1 < opp2
1929 */
_opp_compare_key(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1930 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1931 struct dev_pm_opp *opp2)
1932 {
1933 int ret;
1934
1935 ret = _opp_compare_rate(opp_table, opp1, opp2);
1936 if (ret)
1937 return ret;
1938
1939 ret = _opp_compare_bw(opp_table, opp1, opp2);
1940 if (ret)
1941 return ret;
1942
1943 if (opp1->level != opp2->level)
1944 return opp1->level < opp2->level ? -1 : 1;
1945
1946 /* Duplicate OPPs */
1947 return 0;
1948 }
1949
_opp_is_duplicate(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct list_head ** head)1950 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1951 struct opp_table *opp_table,
1952 struct list_head **head)
1953 {
1954 struct dev_pm_opp *opp;
1955 int opp_cmp;
1956
1957 /*
1958 * Insert new OPP in order of increasing frequency and discard if
1959 * already present.
1960 *
1961 * Need to use &opp_table->opp_list in the condition part of the 'for'
1962 * loop, don't replace it with head otherwise it will become an infinite
1963 * loop.
1964 */
1965 list_for_each_entry(opp, &opp_table->opp_list, node) {
1966 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1967 if (opp_cmp > 0) {
1968 *head = &opp->node;
1969 continue;
1970 }
1971
1972 if (opp_cmp < 0)
1973 return 0;
1974
1975 /* Duplicate OPPs */
1976 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1977 __func__, opp->rates[0], opp->supplies[0].u_volt,
1978 opp->available, new_opp->rates[0],
1979 new_opp->supplies[0].u_volt, new_opp->available);
1980
1981 /* Should we compare voltages for all regulators here ? */
1982 return opp->available &&
1983 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1984 }
1985
1986 return 0;
1987 }
1988
_required_opps_available(struct dev_pm_opp * opp,int count)1989 void _required_opps_available(struct dev_pm_opp *opp, int count)
1990 {
1991 int i;
1992
1993 for (i = 0; i < count; i++) {
1994 if (opp->required_opps[i]->available)
1995 continue;
1996
1997 opp->available = false;
1998 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1999 __func__, opp->required_opps[i]->np, opp->rates[0]);
2000 return;
2001 }
2002 }
2003
2004 /*
2005 * Returns:
2006 * 0: On success. And appropriate error message for duplicate OPPs.
2007 * -EBUSY: For OPP with same freq/volt and is available. The callers of
2008 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
2009 * sure we don't print error messages unnecessarily if different parts of
2010 * kernel try to initialize the OPP table.
2011 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
2012 * should be considered an error by the callers of _opp_add().
2013 */
_opp_add(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table)2014 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
2015 struct opp_table *opp_table)
2016 {
2017 struct list_head *head;
2018 int ret;
2019
2020 mutex_lock(&opp_table->lock);
2021 head = &opp_table->opp_list;
2022
2023 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2024 if (ret) {
2025 mutex_unlock(&opp_table->lock);
2026 return ret;
2027 }
2028
2029 list_add(&new_opp->node, head);
2030 mutex_unlock(&opp_table->lock);
2031
2032 new_opp->opp_table = opp_table;
2033 kref_init(&new_opp->kref);
2034
2035 opp_debug_create_one(new_opp, opp_table);
2036
2037 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2038 new_opp->available = false;
2039 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2040 __func__, new_opp->rates[0]);
2041 }
2042
2043 /* required-opps not fully initialized yet */
2044 if (lazy_linking_pending(opp_table))
2045 return 0;
2046
2047 _required_opps_available(new_opp, opp_table->required_opp_count);
2048
2049 return 0;
2050 }
2051
2052 /**
2053 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2054 * @opp_table: OPP table
2055 * @dev: device for which we do this operation
2056 * @data: The OPP data for the OPP to add
2057 * @dynamic: Dynamically added OPPs.
2058 *
2059 * This function adds an opp definition to the opp table and returns status.
2060 * The opp is made available by default and it can be controlled using
2061 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2062 *
2063 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2064 * and freed by dev_pm_opp_of_remove_table.
2065 *
2066 * Return:
2067 * 0 On success OR
2068 * Duplicate OPPs (both freq and volt are same) and opp->available
2069 * -EEXIST Freq are same and volt are different OR
2070 * Duplicate OPPs (both freq and volt are same) and !opp->available
2071 * -ENOMEM Memory allocation failure
2072 */
_opp_add_v1(struct opp_table * opp_table,struct device * dev,struct dev_pm_opp_data * data,bool dynamic)2073 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2074 struct dev_pm_opp_data *data, bool dynamic)
2075 {
2076 struct dev_pm_opp *new_opp;
2077 unsigned long tol, u_volt = data->u_volt;
2078 int ret;
2079
2080 if (!assert_single_clk(opp_table, 0))
2081 return -EINVAL;
2082
2083 new_opp = _opp_allocate(opp_table);
2084 if (!new_opp)
2085 return -ENOMEM;
2086
2087 /* populate the opp table */
2088 new_opp->rates[0] = data->freq;
2089 new_opp->level = data->level;
2090 new_opp->turbo = data->turbo;
2091 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2092 new_opp->supplies[0].u_volt = u_volt;
2093 new_opp->supplies[0].u_volt_min = u_volt - tol;
2094 new_opp->supplies[0].u_volt_max = u_volt + tol;
2095 new_opp->available = true;
2096 new_opp->dynamic = dynamic;
2097
2098 ret = _opp_add(dev, new_opp, opp_table);
2099 if (ret) {
2100 /* Don't return error for duplicate OPPs */
2101 if (ret == -EBUSY)
2102 ret = 0;
2103 goto free_opp;
2104 }
2105
2106 /*
2107 * Notify the changes in the availability of the operable
2108 * frequency/voltage list.
2109 */
2110 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2111 return 0;
2112
2113 free_opp:
2114 _opp_free(new_opp);
2115
2116 return ret;
2117 }
2118
2119 /*
2120 * This is required only for the V2 bindings, and it enables a platform to
2121 * specify the hierarchy of versions it supports. OPP layer will then enable
2122 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2123 * property.
2124 */
_opp_set_supported_hw(struct opp_table * opp_table,const u32 * versions,unsigned int count)2125 static int _opp_set_supported_hw(struct opp_table *opp_table,
2126 const u32 *versions, unsigned int count)
2127 {
2128 /* Another CPU that shares the OPP table has set the property ? */
2129 if (opp_table->supported_hw)
2130 return 0;
2131
2132 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2133 GFP_KERNEL);
2134 if (!opp_table->supported_hw)
2135 return -ENOMEM;
2136
2137 opp_table->supported_hw_count = count;
2138
2139 return 0;
2140 }
2141
_opp_put_supported_hw(struct opp_table * opp_table)2142 static void _opp_put_supported_hw(struct opp_table *opp_table)
2143 {
2144 if (opp_table->supported_hw) {
2145 kfree(opp_table->supported_hw);
2146 opp_table->supported_hw = NULL;
2147 opp_table->supported_hw_count = 0;
2148 }
2149 }
2150
2151 /*
2152 * This is required only for the V2 bindings, and it enables a platform to
2153 * specify the extn to be used for certain property names. The properties to
2154 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2155 * should postfix the property name with -<name> while looking for them.
2156 */
_opp_set_prop_name(struct opp_table * opp_table,const char * name)2157 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2158 {
2159 /* Another CPU that shares the OPP table has set the property ? */
2160 if (!opp_table->prop_name) {
2161 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2162 if (!opp_table->prop_name)
2163 return -ENOMEM;
2164 }
2165
2166 return 0;
2167 }
2168
_opp_put_prop_name(struct opp_table * opp_table)2169 static void _opp_put_prop_name(struct opp_table *opp_table)
2170 {
2171 if (opp_table->prop_name) {
2172 kfree(opp_table->prop_name);
2173 opp_table->prop_name = NULL;
2174 }
2175 }
2176
2177 /*
2178 * In order to support OPP switching, OPP layer needs to know the name of the
2179 * device's regulators, as the core would be required to switch voltages as
2180 * well.
2181 *
2182 * This must be called before any OPPs are initialized for the device.
2183 */
_opp_set_regulators(struct opp_table * opp_table,struct device * dev,const char * const names[])2184 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2185 const char * const names[])
2186 {
2187 const char * const *temp = names;
2188 struct regulator *reg;
2189 int count = 0, ret, i;
2190
2191 /* Count number of regulators */
2192 while (*temp++)
2193 count++;
2194
2195 if (!count)
2196 return -EINVAL;
2197
2198 /* Another CPU that shares the OPP table has set the regulators ? */
2199 if (opp_table->regulators)
2200 return 0;
2201
2202 opp_table->regulators = kmalloc_array(count,
2203 sizeof(*opp_table->regulators),
2204 GFP_KERNEL);
2205 if (!opp_table->regulators)
2206 return -ENOMEM;
2207
2208 for (i = 0; i < count; i++) {
2209 reg = regulator_get_optional(dev, names[i]);
2210 if (IS_ERR(reg)) {
2211 ret = dev_err_probe(dev, PTR_ERR(reg),
2212 "%s: no regulator (%s) found\n",
2213 __func__, names[i]);
2214 goto free_regulators;
2215 }
2216
2217 opp_table->regulators[i] = reg;
2218 }
2219
2220 opp_table->regulator_count = count;
2221
2222 /* Set generic config_regulators() for single regulators here */
2223 if (count == 1)
2224 opp_table->config_regulators = _opp_config_regulator_single;
2225
2226 return 0;
2227
2228 free_regulators:
2229 while (i != 0)
2230 regulator_put(opp_table->regulators[--i]);
2231
2232 kfree(opp_table->regulators);
2233 opp_table->regulators = NULL;
2234 opp_table->regulator_count = -1;
2235
2236 return ret;
2237 }
2238
_opp_put_regulators(struct opp_table * opp_table)2239 static void _opp_put_regulators(struct opp_table *opp_table)
2240 {
2241 int i;
2242
2243 if (!opp_table->regulators)
2244 return;
2245
2246 if (opp_table->enabled) {
2247 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2248 regulator_disable(opp_table->regulators[i]);
2249 }
2250
2251 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2252 regulator_put(opp_table->regulators[i]);
2253
2254 kfree(opp_table->regulators);
2255 opp_table->regulators = NULL;
2256 opp_table->regulator_count = -1;
2257 }
2258
_put_clks(struct opp_table * opp_table,int count)2259 static void _put_clks(struct opp_table *opp_table, int count)
2260 {
2261 int i;
2262
2263 for (i = count - 1; i >= 0; i--)
2264 clk_put(opp_table->clks[i]);
2265
2266 kfree(opp_table->clks);
2267 opp_table->clks = NULL;
2268 }
2269
2270 /*
2271 * In order to support OPP switching, OPP layer needs to get pointers to the
2272 * clocks for the device. Simple cases work fine without using this routine
2273 * (i.e. by passing connection-id as NULL), but for a device with multiple
2274 * clocks available, the OPP core needs to know the exact names of the clks to
2275 * use.
2276 *
2277 * This must be called before any OPPs are initialized for the device.
2278 */
_opp_set_clknames(struct opp_table * opp_table,struct device * dev,const char * const names[],config_clks_t config_clks)2279 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2280 const char * const names[],
2281 config_clks_t config_clks)
2282 {
2283 const char * const *temp = names;
2284 int count = 0, ret, i;
2285 struct clk *clk;
2286
2287 /* Count number of clks */
2288 while (*temp++)
2289 count++;
2290
2291 /*
2292 * This is a special case where we have a single clock, whose connection
2293 * id name is NULL, i.e. first two entries are NULL in the array.
2294 */
2295 if (!count && !names[1])
2296 count = 1;
2297
2298 /* Fail early for invalid configurations */
2299 if (!count || (!config_clks && count > 1))
2300 return -EINVAL;
2301
2302 /* Another CPU that shares the OPP table has set the clkname ? */
2303 if (opp_table->clks)
2304 return 0;
2305
2306 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2307 GFP_KERNEL);
2308 if (!opp_table->clks)
2309 return -ENOMEM;
2310
2311 /* Find clks for the device */
2312 for (i = 0; i < count; i++) {
2313 clk = clk_get(dev, names[i]);
2314 if (IS_ERR(clk)) {
2315 ret = dev_err_probe(dev, PTR_ERR(clk),
2316 "%s: Couldn't find clock with name: %s\n",
2317 __func__, names[i]);
2318 goto free_clks;
2319 }
2320
2321 opp_table->clks[i] = clk;
2322 }
2323
2324 opp_table->clk_count = count;
2325 opp_table->config_clks = config_clks;
2326
2327 /* Set generic single clk set here */
2328 if (count == 1) {
2329 if (!opp_table->config_clks)
2330 opp_table->config_clks = _opp_config_clk_single;
2331
2332 /*
2333 * We could have just dropped the "clk" field and used "clks"
2334 * everywhere. Instead we kept the "clk" field around for
2335 * following reasons:
2336 *
2337 * - avoiding clks[0] everywhere else.
2338 * - not running single clk helpers for multiple clk usecase by
2339 * mistake.
2340 *
2341 * Since this is single-clk case, just update the clk pointer
2342 * too.
2343 */
2344 opp_table->clk = opp_table->clks[0];
2345 }
2346
2347 return 0;
2348
2349 free_clks:
2350 _put_clks(opp_table, i);
2351 return ret;
2352 }
2353
_opp_put_clknames(struct opp_table * opp_table)2354 static void _opp_put_clknames(struct opp_table *opp_table)
2355 {
2356 if (!opp_table->clks)
2357 return;
2358
2359 opp_table->config_clks = NULL;
2360 opp_table->clk = ERR_PTR(-ENODEV);
2361
2362 _put_clks(opp_table, opp_table->clk_count);
2363 }
2364
2365 /*
2366 * This is useful to support platforms with multiple regulators per device.
2367 *
2368 * This must be called before any OPPs are initialized for the device.
2369 */
_opp_set_config_regulators_helper(struct opp_table * opp_table,struct device * dev,config_regulators_t config_regulators)2370 static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2371 struct device *dev, config_regulators_t config_regulators)
2372 {
2373 /* Another CPU that shares the OPP table has set the helper ? */
2374 if (!opp_table->config_regulators)
2375 opp_table->config_regulators = config_regulators;
2376
2377 return 0;
2378 }
2379
_opp_put_config_regulators_helper(struct opp_table * opp_table)2380 static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2381 {
2382 if (opp_table->config_regulators)
2383 opp_table->config_regulators = NULL;
2384 }
2385
_opp_detach_genpd(struct opp_table * opp_table)2386 static void _opp_detach_genpd(struct opp_table *opp_table)
2387 {
2388 int index;
2389
2390 for (index = 0; index < opp_table->required_opp_count; index++) {
2391 if (!opp_table->required_devs[index])
2392 continue;
2393
2394 dev_pm_domain_detach(opp_table->required_devs[index], false);
2395 opp_table->required_devs[index] = NULL;
2396 }
2397 }
2398
2399 /*
2400 * Multiple generic power domains for a device are supported with the help of
2401 * virtual genpd devices, which are created for each consumer device - genpd
2402 * pair. These are the device structures which are attached to the power domain
2403 * and are required by the OPP core to set the performance state of the genpd.
2404 * The same API also works for the case where single genpd is available and so
2405 * we don't need to support that separately.
2406 *
2407 * This helper will normally be called by the consumer driver of the device
2408 * "dev", as only that has details of the genpd names.
2409 *
2410 * This helper needs to be called once with a list of all genpd to attach.
2411 * Otherwise the original device structure will be used instead by the OPP core.
2412 *
2413 * The order of entries in the names array must match the order in which
2414 * "required-opps" are added in DT.
2415 */
_opp_attach_genpd(struct opp_table * opp_table,struct device * dev,const char * const * names,struct device *** virt_devs)2416 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2417 const char * const *names, struct device ***virt_devs)
2418 {
2419 struct device *virt_dev, *gdev;
2420 struct opp_table *genpd_table;
2421 int index = 0, ret = -EINVAL;
2422 const char * const *name = names;
2423
2424 if (!opp_table->required_devs) {
2425 dev_err(dev, "Required OPPs not available, can't attach genpd\n");
2426 return -EINVAL;
2427 }
2428
2429 /* Genpd core takes care of propagation to parent genpd */
2430 if (opp_table->is_genpd) {
2431 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2432 return -EOPNOTSUPP;
2433 }
2434
2435 /* Checking only the first one is enough ? */
2436 if (opp_table->required_devs[0])
2437 return 0;
2438
2439 while (*name) {
2440 if (index >= opp_table->required_opp_count) {
2441 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2442 *name, opp_table->required_opp_count, index);
2443 goto err;
2444 }
2445
2446 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2447 if (IS_ERR_OR_NULL(virt_dev)) {
2448 ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2449 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2450 goto err;
2451 }
2452
2453 /*
2454 * The required_opp_tables parsing is not perfect, as the OPP
2455 * core does the parsing solely based on the DT node pointers.
2456 * The core sets the required_opp_tables entry to the first OPP
2457 * table in the "opp_tables" list, that matches with the node
2458 * pointer.
2459 *
2460 * If the target DT OPP table is used by multiple devices and
2461 * they all create separate instances of 'struct opp_table' from
2462 * it, then it is possible that the required_opp_tables entry
2463 * may be set to the incorrect sibling device.
2464 *
2465 * Cross check it again and fix if required.
2466 */
2467 gdev = dev_to_genpd_dev(virt_dev);
2468 if (IS_ERR(gdev)) {
2469 ret = PTR_ERR(gdev);
2470 goto err;
2471 }
2472
2473 genpd_table = _find_opp_table(gdev);
2474 if (!IS_ERR(genpd_table)) {
2475 if (genpd_table != opp_table->required_opp_tables[index]) {
2476 dev_pm_opp_put_opp_table(opp_table->required_opp_tables[index]);
2477 opp_table->required_opp_tables[index] = genpd_table;
2478 } else {
2479 dev_pm_opp_put_opp_table(genpd_table);
2480 }
2481 }
2482
2483 opp_table->required_devs[index] = virt_dev;
2484 index++;
2485 name++;
2486 }
2487
2488 if (virt_devs)
2489 *virt_devs = opp_table->required_devs;
2490
2491 return 0;
2492
2493 err:
2494 _opp_detach_genpd(opp_table);
2495 return ret;
2496
2497 }
2498
_opp_set_required_devs(struct opp_table * opp_table,struct device * dev,struct device ** required_devs)2499 static int _opp_set_required_devs(struct opp_table *opp_table,
2500 struct device *dev,
2501 struct device **required_devs)
2502 {
2503 int i;
2504
2505 if (!opp_table->required_devs) {
2506 dev_err(dev, "Required OPPs not available, can't set required devs\n");
2507 return -EINVAL;
2508 }
2509
2510 /* Another device that shares the OPP table has set the required devs ? */
2511 if (opp_table->required_devs[0])
2512 return 0;
2513
2514 for (i = 0; i < opp_table->required_opp_count; i++) {
2515 /* Genpd core takes care of propagation to parent genpd */
2516 if (required_devs[i] && opp_table->is_genpd &&
2517 opp_table->required_opp_tables[i]->is_genpd) {
2518 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2519 return -EOPNOTSUPP;
2520 }
2521
2522 opp_table->required_devs[i] = required_devs[i];
2523 }
2524
2525 return 0;
2526 }
2527
_opp_put_required_devs(struct opp_table * opp_table)2528 static void _opp_put_required_devs(struct opp_table *opp_table)
2529 {
2530 int i;
2531
2532 for (i = 0; i < opp_table->required_opp_count; i++)
2533 opp_table->required_devs[i] = NULL;
2534 }
2535
_opp_clear_config(struct opp_config_data * data)2536 static void _opp_clear_config(struct opp_config_data *data)
2537 {
2538 if (data->flags & OPP_CONFIG_REQUIRED_DEVS)
2539 _opp_put_required_devs(data->opp_table);
2540 else if (data->flags & OPP_CONFIG_GENPD)
2541 _opp_detach_genpd(data->opp_table);
2542
2543 if (data->flags & OPP_CONFIG_REGULATOR)
2544 _opp_put_regulators(data->opp_table);
2545 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2546 _opp_put_supported_hw(data->opp_table);
2547 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2548 _opp_put_config_regulators_helper(data->opp_table);
2549 if (data->flags & OPP_CONFIG_PROP_NAME)
2550 _opp_put_prop_name(data->opp_table);
2551 if (data->flags & OPP_CONFIG_CLK)
2552 _opp_put_clknames(data->opp_table);
2553
2554 dev_pm_opp_put_opp_table(data->opp_table);
2555 kfree(data);
2556 }
2557
2558 /**
2559 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2560 * @dev: Device for which configuration is being set.
2561 * @config: OPP configuration.
2562 *
2563 * This allows all device OPP configurations to be performed at once.
2564 *
2565 * This must be called before any OPPs are initialized for the device. This may
2566 * be called multiple times for the same OPP table, for example once for each
2567 * CPU that share the same table. This must be balanced by the same number of
2568 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2569 *
2570 * This returns a token to the caller, which must be passed to
2571 * dev_pm_opp_clear_config() to free the resources later. The value of the
2572 * returned token will be >= 1 for success and negative for errors. The minimum
2573 * value of 1 is chosen here to make it easy for callers to manage the resource.
2574 */
dev_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2575 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2576 {
2577 struct opp_table *opp_table;
2578 struct opp_config_data *data;
2579 unsigned int id;
2580 int ret;
2581
2582 data = kmalloc(sizeof(*data), GFP_KERNEL);
2583 if (!data)
2584 return -ENOMEM;
2585
2586 opp_table = _add_opp_table(dev, false);
2587 if (IS_ERR(opp_table)) {
2588 kfree(data);
2589 return PTR_ERR(opp_table);
2590 }
2591
2592 data->opp_table = opp_table;
2593 data->flags = 0;
2594
2595 /* This should be called before OPPs are initialized */
2596 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2597 ret = -EBUSY;
2598 goto err;
2599 }
2600
2601 /* Configure clocks */
2602 if (config->clk_names) {
2603 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2604 config->config_clks);
2605 if (ret)
2606 goto err;
2607
2608 data->flags |= OPP_CONFIG_CLK;
2609 } else if (config->config_clks) {
2610 /* Don't allow config callback without clocks */
2611 ret = -EINVAL;
2612 goto err;
2613 }
2614
2615 /* Configure property names */
2616 if (config->prop_name) {
2617 ret = _opp_set_prop_name(opp_table, config->prop_name);
2618 if (ret)
2619 goto err;
2620
2621 data->flags |= OPP_CONFIG_PROP_NAME;
2622 }
2623
2624 /* Configure config_regulators helper */
2625 if (config->config_regulators) {
2626 ret = _opp_set_config_regulators_helper(opp_table, dev,
2627 config->config_regulators);
2628 if (ret)
2629 goto err;
2630
2631 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2632 }
2633
2634 /* Configure supported hardware */
2635 if (config->supported_hw) {
2636 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2637 config->supported_hw_count);
2638 if (ret)
2639 goto err;
2640
2641 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2642 }
2643
2644 /* Configure supplies */
2645 if (config->regulator_names) {
2646 ret = _opp_set_regulators(opp_table, dev,
2647 config->regulator_names);
2648 if (ret)
2649 goto err;
2650
2651 data->flags |= OPP_CONFIG_REGULATOR;
2652 }
2653
2654 /* Attach genpds */
2655 if (config->genpd_names) {
2656 if (config->required_devs) {
2657 ret = -EINVAL;
2658 goto err;
2659 }
2660
2661 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2662 config->virt_devs);
2663 if (ret)
2664 goto err;
2665
2666 data->flags |= OPP_CONFIG_GENPD;
2667 } else if (config->required_devs) {
2668 ret = _opp_set_required_devs(opp_table, dev,
2669 config->required_devs);
2670 if (ret)
2671 goto err;
2672
2673 data->flags |= OPP_CONFIG_REQUIRED_DEVS;
2674 }
2675
2676 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2677 GFP_KERNEL);
2678 if (ret)
2679 goto err;
2680
2681 return id;
2682
2683 err:
2684 _opp_clear_config(data);
2685 return ret;
2686 }
2687 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2688
2689 /**
2690 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2691 * @token: The token returned by dev_pm_opp_set_config() previously.
2692 *
2693 * This allows all device OPP configurations to be cleared at once. This must be
2694 * called once for each call made to dev_pm_opp_set_config(), in order to free
2695 * the OPPs properly.
2696 *
2697 * Currently the first call itself ends up freeing all the OPP configurations,
2698 * while the later ones only drop the OPP table reference. This works well for
2699 * now as we would never want to use an half initialized OPP table and want to
2700 * remove the configurations together.
2701 */
dev_pm_opp_clear_config(int token)2702 void dev_pm_opp_clear_config(int token)
2703 {
2704 struct opp_config_data *data;
2705
2706 /*
2707 * This lets the callers call this unconditionally and keep their code
2708 * simple.
2709 */
2710 if (unlikely(token <= 0))
2711 return;
2712
2713 data = xa_erase(&opp_configs, token);
2714 if (WARN_ON(!data))
2715 return;
2716
2717 _opp_clear_config(data);
2718 }
2719 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2720
devm_pm_opp_config_release(void * token)2721 static void devm_pm_opp_config_release(void *token)
2722 {
2723 dev_pm_opp_clear_config((unsigned long)token);
2724 }
2725
2726 /**
2727 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2728 * @dev: Device for which configuration is being set.
2729 * @config: OPP configuration.
2730 *
2731 * This allows all device OPP configurations to be performed at once.
2732 * This is a resource-managed variant of dev_pm_opp_set_config().
2733 *
2734 * Return: 0 on success and errorno otherwise.
2735 */
devm_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2736 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2737 {
2738 int token = dev_pm_opp_set_config(dev, config);
2739
2740 if (token < 0)
2741 return token;
2742
2743 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2744 (void *) ((unsigned long) token));
2745 }
2746 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2747
2748 /**
2749 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2750 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2751 * @dst_table: Required OPP table of the @src_table.
2752 * @src_opp: OPP from the @src_table.
2753 *
2754 * This function returns the OPP (present in @dst_table) pointed out by the
2755 * "required-opps" property of the @src_opp (present in @src_table).
2756 *
2757 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2758 * use.
2759 *
2760 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2761 */
dev_pm_opp_xlate_required_opp(struct opp_table * src_table,struct opp_table * dst_table,struct dev_pm_opp * src_opp)2762 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2763 struct opp_table *dst_table,
2764 struct dev_pm_opp *src_opp)
2765 {
2766 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2767 int i;
2768
2769 if (!src_table || !dst_table || !src_opp ||
2770 !src_table->required_opp_tables)
2771 return ERR_PTR(-EINVAL);
2772
2773 /* required-opps not fully initialized yet */
2774 if (lazy_linking_pending(src_table))
2775 return ERR_PTR(-EBUSY);
2776
2777 for (i = 0; i < src_table->required_opp_count; i++) {
2778 if (src_table->required_opp_tables[i] == dst_table) {
2779 mutex_lock(&src_table->lock);
2780
2781 list_for_each_entry(opp, &src_table->opp_list, node) {
2782 if (opp == src_opp) {
2783 dest_opp = opp->required_opps[i];
2784 dev_pm_opp_get(dest_opp);
2785 break;
2786 }
2787 }
2788
2789 mutex_unlock(&src_table->lock);
2790 break;
2791 }
2792 }
2793
2794 if (IS_ERR(dest_opp)) {
2795 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2796 src_table, dst_table);
2797 }
2798
2799 return dest_opp;
2800 }
2801 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2802
2803 /**
2804 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2805 * @src_table: OPP table which has dst_table as one of its required OPP table.
2806 * @dst_table: Required OPP table of the src_table.
2807 * @pstate: Current performance state of the src_table.
2808 *
2809 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2810 * "required-opps" property of the OPP (present in @src_table) which has
2811 * performance state set to @pstate.
2812 *
2813 * Return: Zero or positive performance state on success, otherwise negative
2814 * value on errors.
2815 */
dev_pm_opp_xlate_performance_state(struct opp_table * src_table,struct opp_table * dst_table,unsigned int pstate)2816 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2817 struct opp_table *dst_table,
2818 unsigned int pstate)
2819 {
2820 struct dev_pm_opp *opp;
2821 int dest_pstate = -EINVAL;
2822 int i;
2823
2824 /*
2825 * Normally the src_table will have the "required_opps" property set to
2826 * point to one of the OPPs in the dst_table, but in some cases the
2827 * genpd and its master have one to one mapping of performance states
2828 * and so none of them have the "required-opps" property set. Return the
2829 * pstate of the src_table as it is in such cases.
2830 */
2831 if (!src_table || !src_table->required_opp_count)
2832 return pstate;
2833
2834 /* Both OPP tables must belong to genpds */
2835 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2836 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2837 return -EINVAL;
2838 }
2839
2840 /* required-opps not fully initialized yet */
2841 if (lazy_linking_pending(src_table))
2842 return -EBUSY;
2843
2844 for (i = 0; i < src_table->required_opp_count; i++) {
2845 if (src_table->required_opp_tables[i]->np == dst_table->np)
2846 break;
2847 }
2848
2849 if (unlikely(i == src_table->required_opp_count)) {
2850 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2851 __func__, src_table, dst_table);
2852 return -EINVAL;
2853 }
2854
2855 mutex_lock(&src_table->lock);
2856
2857 list_for_each_entry(opp, &src_table->opp_list, node) {
2858 if (opp->level == pstate) {
2859 dest_pstate = opp->required_opps[i]->level;
2860 goto unlock;
2861 }
2862 }
2863
2864 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2865 dst_table);
2866
2867 unlock:
2868 mutex_unlock(&src_table->lock);
2869
2870 return dest_pstate;
2871 }
2872
2873 /**
2874 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions
2875 * @dev: The device for which we do this operation
2876 * @data: The OPP data for the OPP to add
2877 *
2878 * This function adds an opp definition to the opp table and returns status.
2879 * The opp is made available by default and it can be controlled using
2880 * dev_pm_opp_enable/disable functions.
2881 *
2882 * Return:
2883 * 0 On success OR
2884 * Duplicate OPPs (both freq and volt are same) and opp->available
2885 * -EEXIST Freq are same and volt are different OR
2886 * Duplicate OPPs (both freq and volt are same) and !opp->available
2887 * -ENOMEM Memory allocation failure
2888 */
dev_pm_opp_add_dynamic(struct device * dev,struct dev_pm_opp_data * data)2889 int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2890 {
2891 struct opp_table *opp_table;
2892 int ret;
2893
2894 opp_table = _add_opp_table(dev, true);
2895 if (IS_ERR(opp_table))
2896 return PTR_ERR(opp_table);
2897
2898 /* Fix regulator count for dynamic OPPs */
2899 opp_table->regulator_count = 1;
2900
2901 ret = _opp_add_v1(opp_table, dev, data, true);
2902 if (ret)
2903 dev_pm_opp_put_opp_table(opp_table);
2904
2905 return ret;
2906 }
2907 EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2908
2909 /**
2910 * _opp_set_availability() - helper to set the availability of an opp
2911 * @dev: device for which we do this operation
2912 * @freq: OPP frequency to modify availability
2913 * @availability_req: availability status requested for this opp
2914 *
2915 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2916 * which is isolated here.
2917 *
2918 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2919 * copy operation, returns 0 if no modification was done OR modification was
2920 * successful.
2921 */
_opp_set_availability(struct device * dev,unsigned long freq,bool availability_req)2922 static int _opp_set_availability(struct device *dev, unsigned long freq,
2923 bool availability_req)
2924 {
2925 struct opp_table *opp_table;
2926 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2927 int r = 0;
2928
2929 /* Find the opp_table */
2930 opp_table = _find_opp_table(dev);
2931 if (IS_ERR(opp_table)) {
2932 r = PTR_ERR(opp_table);
2933 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2934 return r;
2935 }
2936
2937 if (!assert_single_clk(opp_table, 0)) {
2938 r = -EINVAL;
2939 goto put_table;
2940 }
2941
2942 mutex_lock(&opp_table->lock);
2943
2944 /* Do we have the frequency? */
2945 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2946 if (tmp_opp->rates[0] == freq) {
2947 opp = tmp_opp;
2948 break;
2949 }
2950 }
2951
2952 if (IS_ERR(opp)) {
2953 r = PTR_ERR(opp);
2954 goto unlock;
2955 }
2956
2957 /* Is update really needed? */
2958 if (opp->available == availability_req)
2959 goto unlock;
2960
2961 opp->available = availability_req;
2962
2963 dev_pm_opp_get(opp);
2964 mutex_unlock(&opp_table->lock);
2965
2966 /* Notify the change of the OPP availability */
2967 if (availability_req)
2968 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2969 opp);
2970 else
2971 blocking_notifier_call_chain(&opp_table->head,
2972 OPP_EVENT_DISABLE, opp);
2973
2974 dev_pm_opp_put(opp);
2975 goto put_table;
2976
2977 unlock:
2978 mutex_unlock(&opp_table->lock);
2979 put_table:
2980 dev_pm_opp_put_opp_table(opp_table);
2981 return r;
2982 }
2983
2984 /**
2985 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2986 * @dev: device for which we do this operation
2987 * @freq: OPP frequency to adjust voltage of
2988 * @u_volt: new OPP target voltage
2989 * @u_volt_min: new OPP min voltage
2990 * @u_volt_max: new OPP max voltage
2991 *
2992 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2993 * copy operation, returns 0 if no modifcation was done OR modification was
2994 * successful.
2995 */
dev_pm_opp_adjust_voltage(struct device * dev,unsigned long freq,unsigned long u_volt,unsigned long u_volt_min,unsigned long u_volt_max)2996 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2997 unsigned long u_volt, unsigned long u_volt_min,
2998 unsigned long u_volt_max)
2999
3000 {
3001 struct opp_table *opp_table;
3002 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
3003 int r = 0;
3004
3005 /* Find the opp_table */
3006 opp_table = _find_opp_table(dev);
3007 if (IS_ERR(opp_table)) {
3008 r = PTR_ERR(opp_table);
3009 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
3010 return r;
3011 }
3012
3013 if (!assert_single_clk(opp_table, 0)) {
3014 r = -EINVAL;
3015 goto put_table;
3016 }
3017
3018 mutex_lock(&opp_table->lock);
3019
3020 /* Do we have the frequency? */
3021 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
3022 if (tmp_opp->rates[0] == freq) {
3023 opp = tmp_opp;
3024 break;
3025 }
3026 }
3027
3028 if (IS_ERR(opp)) {
3029 r = PTR_ERR(opp);
3030 goto adjust_unlock;
3031 }
3032
3033 /* Is update really needed? */
3034 if (opp->supplies->u_volt == u_volt)
3035 goto adjust_unlock;
3036
3037 opp->supplies->u_volt = u_volt;
3038 opp->supplies->u_volt_min = u_volt_min;
3039 opp->supplies->u_volt_max = u_volt_max;
3040
3041 dev_pm_opp_get(opp);
3042 mutex_unlock(&opp_table->lock);
3043
3044 /* Notify the voltage change of the OPP */
3045 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3046 opp);
3047
3048 dev_pm_opp_put(opp);
3049 goto put_table;
3050
3051 adjust_unlock:
3052 mutex_unlock(&opp_table->lock);
3053 put_table:
3054 dev_pm_opp_put_opp_table(opp_table);
3055 return r;
3056 }
3057 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3058
3059 /**
3060 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3061 * @dev: device for which we do this operation
3062 *
3063 * Sync voltage state of the OPP table regulators.
3064 *
3065 * Return: 0 on success or a negative error value.
3066 */
dev_pm_opp_sync_regulators(struct device * dev)3067 int dev_pm_opp_sync_regulators(struct device *dev)
3068 {
3069 struct opp_table *opp_table;
3070 struct regulator *reg;
3071 int i, ret = 0;
3072
3073 /* Device may not have OPP table */
3074 opp_table = _find_opp_table(dev);
3075 if (IS_ERR(opp_table))
3076 return 0;
3077
3078 /* Regulator may not be required for the device */
3079 if (unlikely(!opp_table->regulators))
3080 goto put_table;
3081
3082 /* Nothing to sync if voltage wasn't changed */
3083 if (!opp_table->enabled)
3084 goto put_table;
3085
3086 for (i = 0; i < opp_table->regulator_count; i++) {
3087 reg = opp_table->regulators[i];
3088 ret = regulator_sync_voltage(reg);
3089 if (ret)
3090 break;
3091 }
3092 put_table:
3093 /* Drop reference taken by _find_opp_table() */
3094 dev_pm_opp_put_opp_table(opp_table);
3095
3096 return ret;
3097 }
3098 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3099
3100 /**
3101 * dev_pm_opp_enable() - Enable a specific OPP
3102 * @dev: device for which we do this operation
3103 * @freq: OPP frequency to enable
3104 *
3105 * Enables a provided opp. If the operation is valid, this returns 0, else the
3106 * corresponding error value. It is meant to be used for users an OPP available
3107 * after being temporarily made unavailable with dev_pm_opp_disable.
3108 *
3109 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3110 * copy operation, returns 0 if no modification was done OR modification was
3111 * successful.
3112 */
dev_pm_opp_enable(struct device * dev,unsigned long freq)3113 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3114 {
3115 return _opp_set_availability(dev, freq, true);
3116 }
3117 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3118
3119 /**
3120 * dev_pm_opp_disable() - Disable a specific OPP
3121 * @dev: device for which we do this operation
3122 * @freq: OPP frequency to disable
3123 *
3124 * Disables a provided opp. If the operation is valid, this returns
3125 * 0, else the corresponding error value. It is meant to be a temporary
3126 * control by users to make this OPP not available until the circumstances are
3127 * right to make it available again (with a call to dev_pm_opp_enable).
3128 *
3129 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3130 * copy operation, returns 0 if no modification was done OR modification was
3131 * successful.
3132 */
dev_pm_opp_disable(struct device * dev,unsigned long freq)3133 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3134 {
3135 return _opp_set_availability(dev, freq, false);
3136 }
3137 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3138
3139 /**
3140 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3141 * @dev: Device for which notifier needs to be registered
3142 * @nb: Notifier block to be registered
3143 *
3144 * Return: 0 on success or a negative error value.
3145 */
dev_pm_opp_register_notifier(struct device * dev,struct notifier_block * nb)3146 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3147 {
3148 struct opp_table *opp_table;
3149 int ret;
3150
3151 opp_table = _find_opp_table(dev);
3152 if (IS_ERR(opp_table))
3153 return PTR_ERR(opp_table);
3154
3155 ret = blocking_notifier_chain_register(&opp_table->head, nb);
3156
3157 dev_pm_opp_put_opp_table(opp_table);
3158
3159 return ret;
3160 }
3161 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3162
3163 /**
3164 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3165 * @dev: Device for which notifier needs to be unregistered
3166 * @nb: Notifier block to be unregistered
3167 *
3168 * Return: 0 on success or a negative error value.
3169 */
dev_pm_opp_unregister_notifier(struct device * dev,struct notifier_block * nb)3170 int dev_pm_opp_unregister_notifier(struct device *dev,
3171 struct notifier_block *nb)
3172 {
3173 struct opp_table *opp_table;
3174 int ret;
3175
3176 opp_table = _find_opp_table(dev);
3177 if (IS_ERR(opp_table))
3178 return PTR_ERR(opp_table);
3179
3180 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3181
3182 dev_pm_opp_put_opp_table(opp_table);
3183
3184 return ret;
3185 }
3186 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3187
3188 /**
3189 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3190 * @dev: device pointer used to lookup OPP table.
3191 *
3192 * Free both OPPs created using static entries present in DT and the
3193 * dynamically added entries.
3194 */
dev_pm_opp_remove_table(struct device * dev)3195 void dev_pm_opp_remove_table(struct device *dev)
3196 {
3197 struct opp_table *opp_table;
3198
3199 /* Check for existing table for 'dev' */
3200 opp_table = _find_opp_table(dev);
3201 if (IS_ERR(opp_table)) {
3202 int error = PTR_ERR(opp_table);
3203
3204 if (error != -ENODEV)
3205 WARN(1, "%s: opp_table: %d\n",
3206 IS_ERR_OR_NULL(dev) ?
3207 "Invalid device" : dev_name(dev),
3208 error);
3209 return;
3210 }
3211
3212 /*
3213 * Drop the extra reference only if the OPP table was successfully added
3214 * with dev_pm_opp_of_add_table() earlier.
3215 **/
3216 if (_opp_remove_all_static(opp_table))
3217 dev_pm_opp_put_opp_table(opp_table);
3218
3219 /* Drop reference taken by _find_opp_table() */
3220 dev_pm_opp_put_opp_table(opp_table);
3221 }
3222 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3223