• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/export.h>
18 #include <linux/pm_domain.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/xarray.h>
22 
23 #include "opp.h"
24 
25 /*
26  * The root of the list of all opp-tables. All opp_table structures branch off
27  * from here, with each opp_table containing the list of opps it supports in
28  * various states of availability.
29  */
30 LIST_HEAD(opp_tables);
31 
32 /* Lock to allow exclusive modification to the device and opp lists */
33 DEFINE_MUTEX(opp_table_lock);
34 /* Flag indicating that opp_tables list is being updated at the moment */
35 static bool opp_tables_busy;
36 
37 /* OPP ID allocator */
38 static DEFINE_XARRAY_ALLOC1(opp_configs);
39 
_find_opp_dev(const struct device * dev,struct opp_table * opp_table)40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41 {
42 	struct opp_device *opp_dev;
43 	bool found = false;
44 
45 	mutex_lock(&opp_table->lock);
46 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 		if (opp_dev->dev == dev) {
48 			found = true;
49 			break;
50 		}
51 
52 	mutex_unlock(&opp_table->lock);
53 	return found;
54 }
55 
_find_opp_table_unlocked(struct device * dev)56 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57 {
58 	struct opp_table *opp_table;
59 
60 	list_for_each_entry(opp_table, &opp_tables, node) {
61 		if (_find_opp_dev(dev, opp_table)) {
62 			_get_opp_table_kref(opp_table);
63 			return opp_table;
64 		}
65 	}
66 
67 	return ERR_PTR(-ENODEV);
68 }
69 
70 /**
71  * _find_opp_table() - find opp_table struct using device pointer
72  * @dev:	device pointer used to lookup OPP table
73  *
74  * Search OPP table for one containing matching device.
75  *
76  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77  * -EINVAL based on type of error.
78  *
79  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80  */
_find_opp_table(struct device * dev)81 struct opp_table *_find_opp_table(struct device *dev)
82 {
83 	struct opp_table *opp_table;
84 
85 	if (IS_ERR_OR_NULL(dev)) {
86 		pr_err("%s: Invalid parameters\n", __func__);
87 		return ERR_PTR(-EINVAL);
88 	}
89 
90 	mutex_lock(&opp_table_lock);
91 	opp_table = _find_opp_table_unlocked(dev);
92 	mutex_unlock(&opp_table_lock);
93 
94 	return opp_table;
95 }
96 
97 /*
98  * Returns true if multiple clocks aren't there, else returns false with WARN.
99  *
100  * We don't force clk_count == 1 here as there are users who don't have a clock
101  * representation in the OPP table and manage the clock configuration themselves
102  * in an platform specific way.
103  */
assert_single_clk(struct opp_table * opp_table,unsigned int __always_unused index)104 static bool assert_single_clk(struct opp_table *opp_table,
105 			      unsigned int __always_unused index)
106 {
107 	return !WARN_ON(opp_table->clk_count > 1);
108 }
109 
110 /*
111  * Returns true if clock table is large enough to contain the clock index.
112  */
assert_clk_index(struct opp_table * opp_table,unsigned int index)113 static bool assert_clk_index(struct opp_table *opp_table,
114 			     unsigned int index)
115 {
116 	return opp_table->clk_count > index;
117 }
118 
119 /*
120  * Returns true if bandwidth table is large enough to contain the bandwidth index.
121  */
assert_bandwidth_index(struct opp_table * opp_table,unsigned int index)122 static bool assert_bandwidth_index(struct opp_table *opp_table,
123 				   unsigned int index)
124 {
125 	return opp_table->path_count > index;
126 }
127 
128 /**
129  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
130  * @opp:	opp for which voltage has to be returned for
131  *
132  * Return: voltage in micro volt corresponding to the opp, else
133  * return 0
134  *
135  * This is useful only for devices with single power supply.
136  */
dev_pm_opp_get_voltage(struct dev_pm_opp * opp)137 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
138 {
139 	if (IS_ERR_OR_NULL(opp)) {
140 		pr_err("%s: Invalid parameters\n", __func__);
141 		return 0;
142 	}
143 
144 	return opp->supplies[0].u_volt;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
147 
148 /**
149  * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
150  * @opp:	opp for which voltage has to be returned for
151  * @supplies:	Placeholder for copying the supply information.
152  *
153  * Return: negative error number on failure, 0 otherwise on success after
154  * setting @supplies.
155  *
156  * This can be used for devices with any number of power supplies. The caller
157  * must ensure the @supplies array must contain space for each regulator.
158  */
dev_pm_opp_get_supplies(struct dev_pm_opp * opp,struct dev_pm_opp_supply * supplies)159 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
160 			    struct dev_pm_opp_supply *supplies)
161 {
162 	if (IS_ERR_OR_NULL(opp) || !supplies) {
163 		pr_err("%s: Invalid parameters\n", __func__);
164 		return -EINVAL;
165 	}
166 
167 	memcpy(supplies, opp->supplies,
168 	       sizeof(*supplies) * opp->opp_table->regulator_count);
169 	return 0;
170 }
171 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
172 
173 /**
174  * dev_pm_opp_get_power() - Gets the power corresponding to an opp
175  * @opp:	opp for which power has to be returned for
176  *
177  * Return: power in micro watt corresponding to the opp, else
178  * return 0
179  *
180  * This is useful only for devices with single power supply.
181  */
dev_pm_opp_get_power(struct dev_pm_opp * opp)182 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
183 {
184 	unsigned long opp_power = 0;
185 	int i;
186 
187 	if (IS_ERR_OR_NULL(opp)) {
188 		pr_err("%s: Invalid parameters\n", __func__);
189 		return 0;
190 	}
191 	for (i = 0; i < opp->opp_table->regulator_count; i++)
192 		opp_power += opp->supplies[i].u_watt;
193 
194 	return opp_power;
195 }
196 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
197 
198 /**
199  * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
200  *				   available opp with specified index
201  * @opp: opp for which frequency has to be returned for
202  * @index: index of the frequency within the required opp
203  *
204  * Return: frequency in hertz corresponding to the opp with specified index,
205  * else return 0
206  */
dev_pm_opp_get_freq_indexed(struct dev_pm_opp * opp,u32 index)207 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
208 {
209 	if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
210 		pr_err("%s: Invalid parameters\n", __func__);
211 		return 0;
212 	}
213 
214 	return opp->rates[index];
215 }
216 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
217 
218 /**
219  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
220  * @opp:	opp for which level value has to be returned for
221  *
222  * Return: level read from device tree corresponding to the opp, else
223  * return U32_MAX.
224  */
dev_pm_opp_get_level(struct dev_pm_opp * opp)225 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
226 {
227 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
228 		pr_err("%s: Invalid parameters\n", __func__);
229 		return 0;
230 	}
231 
232 	return opp->level;
233 }
234 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
235 
236 /**
237  * dev_pm_opp_get_required_pstate() - Gets the required performance state
238  *                                    corresponding to an available opp
239  * @opp:	opp for which performance state has to be returned for
240  * @index:	index of the required opp
241  *
242  * Return: performance state read from device tree corresponding to the
243  * required opp, else return U32_MAX.
244  */
dev_pm_opp_get_required_pstate(struct dev_pm_opp * opp,unsigned int index)245 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
246 					    unsigned int index)
247 {
248 	if (IS_ERR_OR_NULL(opp) || !opp->available ||
249 	    index >= opp->opp_table->required_opp_count) {
250 		pr_err("%s: Invalid parameters\n", __func__);
251 		return 0;
252 	}
253 
254 	/* required-opps not fully initialized yet */
255 	if (lazy_linking_pending(opp->opp_table))
256 		return 0;
257 
258 	/* The required OPP table must belong to a genpd */
259 	if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
260 		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
261 		return 0;
262 	}
263 
264 	return opp->required_opps[index]->level;
265 }
266 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
267 
268 /**
269  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
270  * @opp: opp for which turbo mode is being verified
271  *
272  * Turbo OPPs are not for normal use, and can be enabled (under certain
273  * conditions) for short duration of times to finish high throughput work
274  * quickly. Running on them for longer times may overheat the chip.
275  *
276  * Return: true if opp is turbo opp, else false.
277  */
dev_pm_opp_is_turbo(struct dev_pm_opp * opp)278 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
279 {
280 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
281 		pr_err("%s: Invalid parameters\n", __func__);
282 		return false;
283 	}
284 
285 	return opp->turbo;
286 }
287 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
288 
289 /**
290  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
291  * @dev:	device for which we do this operation
292  *
293  * Return: This function returns the max clock latency in nanoseconds.
294  */
dev_pm_opp_get_max_clock_latency(struct device * dev)295 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
296 {
297 	struct opp_table *opp_table;
298 	unsigned long clock_latency_ns;
299 
300 	opp_table = _find_opp_table(dev);
301 	if (IS_ERR(opp_table))
302 		return 0;
303 
304 	clock_latency_ns = opp_table->clock_latency_ns_max;
305 
306 	dev_pm_opp_put_opp_table(opp_table);
307 
308 	return clock_latency_ns;
309 }
310 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
311 
312 /**
313  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
314  * @dev: device for which we do this operation
315  *
316  * Return: This function returns the max voltage latency in nanoseconds.
317  */
dev_pm_opp_get_max_volt_latency(struct device * dev)318 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
319 {
320 	struct opp_table *opp_table;
321 	struct dev_pm_opp *opp;
322 	struct regulator *reg;
323 	unsigned long latency_ns = 0;
324 	int ret, i, count;
325 	struct {
326 		unsigned long min;
327 		unsigned long max;
328 	} *uV;
329 
330 	opp_table = _find_opp_table(dev);
331 	if (IS_ERR(opp_table))
332 		return 0;
333 
334 	/* Regulator may not be required for the device */
335 	if (!opp_table->regulators)
336 		goto put_opp_table;
337 
338 	count = opp_table->regulator_count;
339 
340 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
341 	if (!uV)
342 		goto put_opp_table;
343 
344 	mutex_lock(&opp_table->lock);
345 
346 	for (i = 0; i < count; i++) {
347 		uV[i].min = ~0;
348 		uV[i].max = 0;
349 
350 		list_for_each_entry(opp, &opp_table->opp_list, node) {
351 			if (!opp->available)
352 				continue;
353 
354 			if (opp->supplies[i].u_volt_min < uV[i].min)
355 				uV[i].min = opp->supplies[i].u_volt_min;
356 			if (opp->supplies[i].u_volt_max > uV[i].max)
357 				uV[i].max = opp->supplies[i].u_volt_max;
358 		}
359 	}
360 
361 	mutex_unlock(&opp_table->lock);
362 
363 	/*
364 	 * The caller needs to ensure that opp_table (and hence the regulator)
365 	 * isn't freed, while we are executing this routine.
366 	 */
367 	for (i = 0; i < count; i++) {
368 		reg = opp_table->regulators[i];
369 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
370 		if (ret > 0)
371 			latency_ns += ret * 1000;
372 	}
373 
374 	kfree(uV);
375 put_opp_table:
376 	dev_pm_opp_put_opp_table(opp_table);
377 
378 	return latency_ns;
379 }
380 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
381 
382 /**
383  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
384  *					     nanoseconds
385  * @dev: device for which we do this operation
386  *
387  * Return: This function returns the max transition latency, in nanoseconds, to
388  * switch from one OPP to other.
389  */
dev_pm_opp_get_max_transition_latency(struct device * dev)390 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
391 {
392 	return dev_pm_opp_get_max_volt_latency(dev) +
393 		dev_pm_opp_get_max_clock_latency(dev);
394 }
395 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
396 
397 /**
398  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
399  * @dev:	device for which we do this operation
400  *
401  * Return: This function returns the frequency of the OPP marked as suspend_opp
402  * if one is available, else returns 0;
403  */
dev_pm_opp_get_suspend_opp_freq(struct device * dev)404 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
405 {
406 	struct opp_table *opp_table;
407 	unsigned long freq = 0;
408 
409 	opp_table = _find_opp_table(dev);
410 	if (IS_ERR(opp_table))
411 		return 0;
412 
413 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
414 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
415 
416 	dev_pm_opp_put_opp_table(opp_table);
417 
418 	return freq;
419 }
420 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
421 
_get_opp_count(struct opp_table * opp_table)422 int _get_opp_count(struct opp_table *opp_table)
423 {
424 	struct dev_pm_opp *opp;
425 	int count = 0;
426 
427 	mutex_lock(&opp_table->lock);
428 
429 	list_for_each_entry(opp, &opp_table->opp_list, node) {
430 		if (opp->available)
431 			count++;
432 	}
433 
434 	mutex_unlock(&opp_table->lock);
435 
436 	return count;
437 }
438 
439 /**
440  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
441  * @dev:	device for which we do this operation
442  *
443  * Return: This function returns the number of available opps if there are any,
444  * else returns 0 if none or the corresponding error value.
445  */
dev_pm_opp_get_opp_count(struct device * dev)446 int dev_pm_opp_get_opp_count(struct device *dev)
447 {
448 	struct opp_table *opp_table;
449 	int count;
450 
451 	opp_table = _find_opp_table(dev);
452 	if (IS_ERR(opp_table)) {
453 		count = PTR_ERR(opp_table);
454 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
455 			__func__, count);
456 		return count;
457 	}
458 
459 	count = _get_opp_count(opp_table);
460 	dev_pm_opp_put_opp_table(opp_table);
461 
462 	return count;
463 }
464 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
465 
466 /* Helpers to read keys */
_read_freq(struct dev_pm_opp * opp,int index)467 static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
468 {
469 	return opp->rates[index];
470 }
471 
_read_level(struct dev_pm_opp * opp,int index)472 static unsigned long _read_level(struct dev_pm_opp *opp, int index)
473 {
474 	return opp->level;
475 }
476 
_read_bw(struct dev_pm_opp * opp,int index)477 static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
478 {
479 	return opp->bandwidth[index].peak;
480 }
481 
482 /* Generic comparison helpers */
_compare_exact(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)483 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
484 			   unsigned long opp_key, unsigned long key)
485 {
486 	if (opp_key == key) {
487 		*opp = temp_opp;
488 		return true;
489 	}
490 
491 	return false;
492 }
493 
_compare_ceil(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)494 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
495 			  unsigned long opp_key, unsigned long key)
496 {
497 	if (opp_key >= key) {
498 		*opp = temp_opp;
499 		return true;
500 	}
501 
502 	return false;
503 }
504 
_compare_floor(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)505 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
506 			   unsigned long opp_key, unsigned long key)
507 {
508 	if (opp_key > key)
509 		return true;
510 
511 	*opp = temp_opp;
512 	return false;
513 }
514 
515 /* Generic key finding helpers */
_opp_table_find_key(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table,unsigned int index))516 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
517 		unsigned long *key, int index, bool available,
518 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
519 		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
520 				unsigned long opp_key, unsigned long key),
521 		bool (*assert)(struct opp_table *opp_table, unsigned int index))
522 {
523 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
524 
525 	/* Assert that the requirement is met */
526 	if (assert && !assert(opp_table, index))
527 		return ERR_PTR(-EINVAL);
528 
529 	mutex_lock(&opp_table->lock);
530 
531 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
532 		if (temp_opp->available == available) {
533 			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
534 				break;
535 		}
536 	}
537 
538 	/* Increment the reference count of OPP */
539 	if (!IS_ERR(opp)) {
540 		*key = read(opp, index);
541 		dev_pm_opp_get(opp);
542 	}
543 
544 	mutex_unlock(&opp_table->lock);
545 
546 	return opp;
547 }
548 
549 static struct dev_pm_opp *
_find_key(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table,unsigned int index))550 _find_key(struct device *dev, unsigned long *key, int index, bool available,
551 	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
552 	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
553 			  unsigned long opp_key, unsigned long key),
554 	  bool (*assert)(struct opp_table *opp_table, unsigned int index))
555 {
556 	struct opp_table *opp_table;
557 	struct dev_pm_opp *opp;
558 
559 	opp_table = _find_opp_table(dev);
560 	if (IS_ERR(opp_table)) {
561 		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
562 			PTR_ERR(opp_table));
563 		return ERR_CAST(opp_table);
564 	}
565 
566 	opp = _opp_table_find_key(opp_table, key, index, available, read,
567 				  compare, assert);
568 
569 	dev_pm_opp_put_opp_table(opp_table);
570 
571 	return opp;
572 }
573 
_find_key_exact(struct device * dev,unsigned long key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))574 static struct dev_pm_opp *_find_key_exact(struct device *dev,
575 		unsigned long key, int index, bool available,
576 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
577 		bool (*assert)(struct opp_table *opp_table, unsigned int index))
578 {
579 	/*
580 	 * The value of key will be updated here, but will be ignored as the
581 	 * caller doesn't need it.
582 	 */
583 	return _find_key(dev, &key, index, available, read, _compare_exact,
584 			 assert);
585 }
586 
_opp_table_find_key_ceil(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))587 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
588 		unsigned long *key, int index, bool available,
589 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
590 		bool (*assert)(struct opp_table *opp_table, unsigned int index))
591 {
592 	return _opp_table_find_key(opp_table, key, index, available, read,
593 				   _compare_ceil, assert);
594 }
595 
_find_key_ceil(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))596 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
597 		int index, bool available,
598 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
599 		bool (*assert)(struct opp_table *opp_table, unsigned int index))
600 {
601 	return _find_key(dev, key, index, available, read, _compare_ceil,
602 			 assert);
603 }
604 
_find_key_floor(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))605 static struct dev_pm_opp *_find_key_floor(struct device *dev,
606 		unsigned long *key, int index, bool available,
607 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
608 		bool (*assert)(struct opp_table *opp_table, unsigned int index))
609 {
610 	return _find_key(dev, key, index, available, read, _compare_floor,
611 			 assert);
612 }
613 
614 /**
615  * dev_pm_opp_find_freq_exact() - search for an exact frequency
616  * @dev:		device for which we do this operation
617  * @freq:		frequency to search for
618  * @available:		true/false - match for available opp
619  *
620  * Return: Searches for exact match in the opp table and returns pointer to the
621  * matching opp if found, else returns ERR_PTR in case of error and should
622  * be handled using IS_ERR. Error return values can be:
623  * EINVAL:	for bad pointer
624  * ERANGE:	no match found for search
625  * ENODEV:	if device not found in list of registered devices
626  *
627  * Note: available is a modifier for the search. if available=true, then the
628  * match is for exact matching frequency and is available in the stored OPP
629  * table. if false, the match is for exact frequency which is not available.
630  *
631  * This provides a mechanism to enable an opp which is not available currently
632  * or the opposite as well.
633  *
634  * The callers are required to call dev_pm_opp_put() for the returned OPP after
635  * use.
636  */
dev_pm_opp_find_freq_exact(struct device * dev,unsigned long freq,bool available)637 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
638 		unsigned long freq, bool available)
639 {
640 	return _find_key_exact(dev, freq, 0, available, _read_freq,
641 			       assert_single_clk);
642 }
643 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
644 
645 /**
646  * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
647  *					 clock corresponding to the index
648  * @dev:	Device for which we do this operation
649  * @freq:	frequency to search for
650  * @index:	Clock index
651  * @available:	true/false - match for available opp
652  *
653  * Search for the matching exact OPP for the clock corresponding to the
654  * specified index from a starting freq for a device.
655  *
656  * Return: matching *opp , else returns ERR_PTR in case of error and should be
657  * handled using IS_ERR. Error return values can be:
658  * EINVAL:	for bad pointer
659  * ERANGE:	no match found for search
660  * ENODEV:	if device not found in list of registered devices
661  *
662  * The callers are required to call dev_pm_opp_put() for the returned OPP after
663  * use.
664  */
665 struct dev_pm_opp *
dev_pm_opp_find_freq_exact_indexed(struct device * dev,unsigned long freq,u32 index,bool available)666 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
667 				   u32 index, bool available)
668 {
669 	return _find_key_exact(dev, freq, index, available, _read_freq,
670 			       assert_clk_index);
671 }
672 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
673 
_find_freq_ceil(struct opp_table * opp_table,unsigned long * freq)674 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
675 						   unsigned long *freq)
676 {
677 	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
678 					assert_single_clk);
679 }
680 
681 /**
682  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
683  * @dev:	device for which we do this operation
684  * @freq:	Start frequency
685  *
686  * Search for the matching ceil *available* OPP from a starting freq
687  * for a device.
688  *
689  * Return: matching *opp and refreshes *freq accordingly, else returns
690  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
691  * values can be:
692  * EINVAL:	for bad pointer
693  * ERANGE:	no match found for search
694  * ENODEV:	if device not found in list of registered devices
695  *
696  * The callers are required to call dev_pm_opp_put() for the returned OPP after
697  * use.
698  */
dev_pm_opp_find_freq_ceil(struct device * dev,unsigned long * freq)699 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
700 					     unsigned long *freq)
701 {
702 	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
703 }
704 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
705 
706 /**
707  * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
708  *					 clock corresponding to the index
709  * @dev:	Device for which we do this operation
710  * @freq:	Start frequency
711  * @index:	Clock index
712  *
713  * Search for the matching ceil *available* OPP for the clock corresponding to
714  * the specified index from a starting freq for a device.
715  *
716  * Return: matching *opp and refreshes *freq accordingly, else returns
717  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
718  * values can be:
719  * EINVAL:	for bad pointer
720  * ERANGE:	no match found for search
721  * ENODEV:	if device not found in list of registered devices
722  *
723  * The callers are required to call dev_pm_opp_put() for the returned OPP after
724  * use.
725  */
726 struct dev_pm_opp *
dev_pm_opp_find_freq_ceil_indexed(struct device * dev,unsigned long * freq,u32 index)727 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
728 				  u32 index)
729 {
730 	return _find_key_ceil(dev, freq, index, true, _read_freq,
731 			      assert_clk_index);
732 }
733 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
734 
735 /**
736  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
737  * @dev:	device for which we do this operation
738  * @freq:	Start frequency
739  *
740  * Search for the matching floor *available* OPP from a starting freq
741  * for a device.
742  *
743  * Return: matching *opp and refreshes *freq accordingly, else returns
744  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
745  * values can be:
746  * EINVAL:	for bad pointer
747  * ERANGE:	no match found for search
748  * ENODEV:	if device not found in list of registered devices
749  *
750  * The callers are required to call dev_pm_opp_put() for the returned OPP after
751  * use.
752  */
dev_pm_opp_find_freq_floor(struct device * dev,unsigned long * freq)753 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
754 					      unsigned long *freq)
755 {
756 	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
757 }
758 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
759 
760 /**
761  * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
762  *					  clock corresponding to the index
763  * @dev:	Device for which we do this operation
764  * @freq:	Start frequency
765  * @index:	Clock index
766  *
767  * Search for the matching floor *available* OPP for the clock corresponding to
768  * the specified index from a starting freq for a device.
769  *
770  * Return: matching *opp and refreshes *freq accordingly, else returns
771  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
772  * values can be:
773  * EINVAL:	for bad pointer
774  * ERANGE:	no match found for search
775  * ENODEV:	if device not found in list of registered devices
776  *
777  * The callers are required to call dev_pm_opp_put() for the returned OPP after
778  * use.
779  */
780 struct dev_pm_opp *
dev_pm_opp_find_freq_floor_indexed(struct device * dev,unsigned long * freq,u32 index)781 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
782 				   u32 index)
783 {
784 	return _find_key_floor(dev, freq, index, true, _read_freq, assert_clk_index);
785 }
786 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
787 
788 /**
789  * dev_pm_opp_find_level_exact() - search for an exact level
790  * @dev:		device for which we do this operation
791  * @level:		level to search for
792  *
793  * Return: Searches for exact match in the opp table and returns pointer to the
794  * matching opp if found, else returns ERR_PTR in case of error and should
795  * be handled using IS_ERR. Error return values can be:
796  * EINVAL:	for bad pointer
797  * ERANGE:	no match found for search
798  * ENODEV:	if device not found in list of registered devices
799  *
800  * The callers are required to call dev_pm_opp_put() for the returned OPP after
801  * use.
802  */
dev_pm_opp_find_level_exact(struct device * dev,unsigned int level)803 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
804 					       unsigned int level)
805 {
806 	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
807 }
808 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
809 
810 /**
811  * dev_pm_opp_find_level_ceil() - search for an rounded up level
812  * @dev:		device for which we do this operation
813  * @level:		level to search for
814  *
815  * Return: Searches for rounded up match in the opp table and returns pointer
816  * to the  matching opp if found, else returns ERR_PTR in case of error and
817  * should be handled using IS_ERR. Error return values can be:
818  * EINVAL:	for bad pointer
819  * ERANGE:	no match found for search
820  * ENODEV:	if device not found in list of registered devices
821  *
822  * The callers are required to call dev_pm_opp_put() for the returned OPP after
823  * use.
824  */
dev_pm_opp_find_level_ceil(struct device * dev,unsigned int * level)825 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
826 					      unsigned int *level)
827 {
828 	unsigned long temp = *level;
829 	struct dev_pm_opp *opp;
830 
831 	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
832 	if (IS_ERR(opp))
833 		return opp;
834 
835 	/* False match */
836 	if (temp == OPP_LEVEL_UNSET) {
837 		dev_err(dev, "%s: OPP levels aren't available\n", __func__);
838 		dev_pm_opp_put(opp);
839 		return ERR_PTR(-ENODEV);
840 	}
841 
842 	*level = temp;
843 	return opp;
844 }
845 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
846 
847 /**
848  * dev_pm_opp_find_level_floor() - Search for a rounded floor level
849  * @dev:	device for which we do this operation
850  * @level:	Start level
851  *
852  * Search for the matching floor *available* OPP from a starting level
853  * for a device.
854  *
855  * Return: matching *opp and refreshes *level accordingly, else returns
856  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
857  * values can be:
858  * EINVAL:	for bad pointer
859  * ERANGE:	no match found for search
860  * ENODEV:	if device not found in list of registered devices
861  *
862  * The callers are required to call dev_pm_opp_put() for the returned OPP after
863  * use.
864  */
dev_pm_opp_find_level_floor(struct device * dev,unsigned int * level)865 struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
866 					       unsigned int *level)
867 {
868 	unsigned long temp = *level;
869 	struct dev_pm_opp *opp;
870 
871 	opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
872 	*level = temp;
873 	return opp;
874 }
875 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
876 
877 /**
878  * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
879  * @dev:	device for which we do this operation
880  * @bw:	start bandwidth
881  * @index:	which bandwidth to compare, in case of OPPs with several values
882  *
883  * Search for the matching floor *available* OPP from a starting bandwidth
884  * for a device.
885  *
886  * Return: matching *opp and refreshes *bw accordingly, else returns
887  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
888  * values can be:
889  * EINVAL:	for bad pointer
890  * ERANGE:	no match found for search
891  * ENODEV:	if device not found in list of registered devices
892  *
893  * The callers are required to call dev_pm_opp_put() for the returned OPP after
894  * use.
895  */
dev_pm_opp_find_bw_ceil(struct device * dev,unsigned int * bw,int index)896 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
897 					   int index)
898 {
899 	unsigned long temp = *bw;
900 	struct dev_pm_opp *opp;
901 
902 	opp = _find_key_ceil(dev, &temp, index, true, _read_bw,
903 			     assert_bandwidth_index);
904 	*bw = temp;
905 	return opp;
906 }
907 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
908 
909 /**
910  * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
911  * @dev:	device for which we do this operation
912  * @bw:	start bandwidth
913  * @index:	which bandwidth to compare, in case of OPPs with several values
914  *
915  * Search for the matching floor *available* OPP from a starting bandwidth
916  * for a device.
917  *
918  * Return: matching *opp and refreshes *bw accordingly, else returns
919  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
920  * values can be:
921  * EINVAL:	for bad pointer
922  * ERANGE:	no match found for search
923  * ENODEV:	if device not found in list of registered devices
924  *
925  * The callers are required to call dev_pm_opp_put() for the returned OPP after
926  * use.
927  */
dev_pm_opp_find_bw_floor(struct device * dev,unsigned int * bw,int index)928 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
929 					    unsigned int *bw, int index)
930 {
931 	unsigned long temp = *bw;
932 	struct dev_pm_opp *opp;
933 
934 	opp = _find_key_floor(dev, &temp, index, true, _read_bw,
935 			      assert_bandwidth_index);
936 	*bw = temp;
937 	return opp;
938 }
939 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
940 
_set_opp_voltage(struct device * dev,struct regulator * reg,struct dev_pm_opp_supply * supply)941 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
942 			    struct dev_pm_opp_supply *supply)
943 {
944 	int ret;
945 
946 	/* Regulator not available for device */
947 	if (IS_ERR(reg)) {
948 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
949 			PTR_ERR(reg));
950 		return 0;
951 	}
952 
953 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
954 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
955 
956 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
957 					    supply->u_volt, supply->u_volt_max);
958 	if (ret)
959 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
960 			__func__, supply->u_volt_min, supply->u_volt,
961 			supply->u_volt_max, ret);
962 
963 	return ret;
964 }
965 
966 static int
_opp_config_clk_single(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)967 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
968 		       struct dev_pm_opp *opp, void *data, bool scaling_down)
969 {
970 	unsigned long *target = data;
971 	unsigned long freq;
972 	int ret;
973 
974 	/* One of target and opp must be available */
975 	if (target) {
976 		freq = *target;
977 	} else if (opp) {
978 		freq = opp->rates[0];
979 	} else {
980 		WARN_ON(1);
981 		return -EINVAL;
982 	}
983 
984 	ret = clk_set_rate(opp_table->clk, freq);
985 	if (ret) {
986 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
987 			ret);
988 	} else {
989 		opp_table->current_rate_single_clk = freq;
990 	}
991 
992 	return ret;
993 }
994 
995 /*
996  * Simple implementation for configuring multiple clocks. Configure clocks in
997  * the order in which they are present in the array while scaling up.
998  */
dev_pm_opp_config_clks_simple(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)999 int dev_pm_opp_config_clks_simple(struct device *dev,
1000 		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
1001 		bool scaling_down)
1002 {
1003 	int ret, i;
1004 
1005 	if (scaling_down) {
1006 		for (i = opp_table->clk_count - 1; i >= 0; i--) {
1007 			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1008 			if (ret) {
1009 				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1010 					ret);
1011 				return ret;
1012 			}
1013 		}
1014 	} else {
1015 		for (i = 0; i < opp_table->clk_count; i++) {
1016 			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1017 			if (ret) {
1018 				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1019 					ret);
1020 				return ret;
1021 			}
1022 		}
1023 	}
1024 
1025 	return 0;
1026 }
1027 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1028 
_opp_config_regulator_single(struct device * dev,struct dev_pm_opp * old_opp,struct dev_pm_opp * new_opp,struct regulator ** regulators,unsigned int count)1029 static int _opp_config_regulator_single(struct device *dev,
1030 			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1031 			struct regulator **regulators, unsigned int count)
1032 {
1033 	struct regulator *reg = regulators[0];
1034 	int ret;
1035 
1036 	/* This function only supports single regulator per device */
1037 	if (WARN_ON(count > 1)) {
1038 		dev_err(dev, "multiple regulators are not supported\n");
1039 		return -EINVAL;
1040 	}
1041 
1042 	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1043 	if (ret)
1044 		return ret;
1045 
1046 	/*
1047 	 * Enable the regulator after setting its voltages, otherwise it breaks
1048 	 * some boot-enabled regulators.
1049 	 */
1050 	if (unlikely(!new_opp->opp_table->enabled)) {
1051 		ret = regulator_enable(reg);
1052 		if (ret < 0)
1053 			dev_warn(dev, "Failed to enable regulator: %d", ret);
1054 	}
1055 
1056 	return 0;
1057 }
1058 
_set_opp_bw(const struct opp_table * opp_table,struct dev_pm_opp * opp,struct device * dev)1059 static int _set_opp_bw(const struct opp_table *opp_table,
1060 		       struct dev_pm_opp *opp, struct device *dev)
1061 {
1062 	u32 avg, peak;
1063 	int i, ret;
1064 
1065 	if (!opp_table->paths)
1066 		return 0;
1067 
1068 	for (i = 0; i < opp_table->path_count; i++) {
1069 		if (!opp) {
1070 			avg = 0;
1071 			peak = 0;
1072 		} else {
1073 			avg = opp->bandwidth[i].avg;
1074 			peak = opp->bandwidth[i].peak;
1075 		}
1076 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
1077 		if (ret) {
1078 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1079 				opp ? "set" : "remove", i, ret);
1080 			return ret;
1081 		}
1082 	}
1083 
1084 	return 0;
1085 }
1086 
_set_opp_level(struct device * dev,struct dev_pm_opp * opp)1087 static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp)
1088 {
1089 	unsigned int level = 0;
1090 	int ret = 0;
1091 
1092 	if (opp) {
1093 		if (opp->level == OPP_LEVEL_UNSET)
1094 			return 0;
1095 
1096 		level = opp->level;
1097 	}
1098 
1099 	/* Request a new performance state through the device's PM domain. */
1100 	ret = dev_pm_domain_set_performance_state(dev, level);
1101 	if (ret)
1102 		dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1103 			ret);
1104 
1105 	return ret;
1106 }
1107 
1108 /* This is only called for PM domain for now */
_set_required_opps(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool up)1109 static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1110 			      struct dev_pm_opp *opp, bool up)
1111 {
1112 	struct device **devs = opp_table->required_devs;
1113 	struct dev_pm_opp *required_opp;
1114 	int index, target, delta, ret;
1115 
1116 	if (!devs)
1117 		return 0;
1118 
1119 	/* required-opps not fully initialized yet */
1120 	if (lazy_linking_pending(opp_table))
1121 		return -EBUSY;
1122 
1123 	/* Scaling up? Set required OPPs in normal order, else reverse */
1124 	if (up) {
1125 		index = 0;
1126 		target = opp_table->required_opp_count;
1127 		delta = 1;
1128 	} else {
1129 		index = opp_table->required_opp_count - 1;
1130 		target = -1;
1131 		delta = -1;
1132 	}
1133 
1134 	while (index != target) {
1135 		if (devs[index]) {
1136 			required_opp = opp ? opp->required_opps[index] : NULL;
1137 
1138 			ret = _set_opp_level(devs[index], required_opp);
1139 			if (ret)
1140 				return ret;
1141 		}
1142 
1143 		index += delta;
1144 	}
1145 
1146 	return 0;
1147 }
1148 
_find_current_opp(struct device * dev,struct opp_table * opp_table)1149 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1150 {
1151 	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1152 	unsigned long freq;
1153 
1154 	if (!IS_ERR(opp_table->clk)) {
1155 		freq = clk_get_rate(opp_table->clk);
1156 		opp = _find_freq_ceil(opp_table, &freq);
1157 	}
1158 
1159 	/*
1160 	 * Unable to find the current OPP ? Pick the first from the list since
1161 	 * it is in ascending order, otherwise rest of the code will need to
1162 	 * make special checks to validate current_opp.
1163 	 */
1164 	if (IS_ERR(opp)) {
1165 		mutex_lock(&opp_table->lock);
1166 		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1167 		dev_pm_opp_get(opp);
1168 		mutex_unlock(&opp_table->lock);
1169 	}
1170 
1171 	opp_table->current_opp = opp;
1172 }
1173 
_disable_opp_table(struct device * dev,struct opp_table * opp_table)1174 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1175 {
1176 	int ret;
1177 
1178 	if (!opp_table->enabled)
1179 		return 0;
1180 
1181 	/*
1182 	 * Some drivers need to support cases where some platforms may
1183 	 * have OPP table for the device, while others don't and
1184 	 * opp_set_rate() just needs to behave like clk_set_rate().
1185 	 */
1186 	if (!_get_opp_count(opp_table))
1187 		return 0;
1188 
1189 	ret = _set_opp_bw(opp_table, NULL, dev);
1190 	if (ret)
1191 		return ret;
1192 
1193 	if (opp_table->regulators)
1194 		regulator_disable(opp_table->regulators[0]);
1195 
1196 	ret = _set_opp_level(dev, NULL);
1197 	if (ret)
1198 		goto out;
1199 
1200 	ret = _set_required_opps(dev, opp_table, NULL, false);
1201 
1202 out:
1203 	opp_table->enabled = false;
1204 	return ret;
1205 }
1206 
_set_opp(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * clk_data,bool forced)1207 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1208 		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1209 {
1210 	struct dev_pm_opp *old_opp;
1211 	int scaling_down, ret;
1212 
1213 	if (unlikely(!opp))
1214 		return _disable_opp_table(dev, opp_table);
1215 
1216 	/* Find the currently set OPP if we don't know already */
1217 	if (unlikely(!opp_table->current_opp))
1218 		_find_current_opp(dev, opp_table);
1219 
1220 	old_opp = opp_table->current_opp;
1221 
1222 	/* Return early if nothing to do */
1223 	if (!forced && old_opp == opp && opp_table->enabled) {
1224 		dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1225 		return 0;
1226 	}
1227 
1228 	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1229 		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1230 		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1231 		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1232 
1233 	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1234 	if (scaling_down == -1)
1235 		scaling_down = 0;
1236 
1237 	/* Scaling up? Configure required OPPs before frequency */
1238 	if (!scaling_down) {
1239 		ret = _set_required_opps(dev, opp_table, opp, true);
1240 		if (ret) {
1241 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1242 			return ret;
1243 		}
1244 
1245 		ret = _set_opp_level(dev, opp);
1246 		if (ret)
1247 			return ret;
1248 
1249 		ret = _set_opp_bw(opp_table, opp, dev);
1250 		if (ret) {
1251 			dev_err(dev, "Failed to set bw: %d\n", ret);
1252 			return ret;
1253 		}
1254 
1255 		if (opp_table->config_regulators) {
1256 			ret = opp_table->config_regulators(dev, old_opp, opp,
1257 							   opp_table->regulators,
1258 							   opp_table->regulator_count);
1259 			if (ret) {
1260 				dev_err(dev, "Failed to set regulator voltages: %d\n",
1261 					ret);
1262 				return ret;
1263 			}
1264 		}
1265 	}
1266 
1267 	if (opp_table->config_clks) {
1268 		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1269 		if (ret)
1270 			return ret;
1271 	}
1272 
1273 	/* Scaling down? Configure required OPPs after frequency */
1274 	if (scaling_down) {
1275 		if (opp_table->config_regulators) {
1276 			ret = opp_table->config_regulators(dev, old_opp, opp,
1277 							   opp_table->regulators,
1278 							   opp_table->regulator_count);
1279 			if (ret) {
1280 				dev_err(dev, "Failed to set regulator voltages: %d\n",
1281 					ret);
1282 				return ret;
1283 			}
1284 		}
1285 
1286 		ret = _set_opp_bw(opp_table, opp, dev);
1287 		if (ret) {
1288 			dev_err(dev, "Failed to set bw: %d\n", ret);
1289 			return ret;
1290 		}
1291 
1292 		ret = _set_opp_level(dev, opp);
1293 		if (ret)
1294 			return ret;
1295 
1296 		ret = _set_required_opps(dev, opp_table, opp, false);
1297 		if (ret) {
1298 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1299 			return ret;
1300 		}
1301 	}
1302 
1303 	opp_table->enabled = true;
1304 	dev_pm_opp_put(old_opp);
1305 
1306 	/* Make sure current_opp doesn't get freed */
1307 	dev_pm_opp_get(opp);
1308 	opp_table->current_opp = opp;
1309 
1310 	return ret;
1311 }
1312 
1313 /**
1314  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1315  * @dev:	 device for which we do this operation
1316  * @target_freq: frequency to achieve
1317  *
1318  * This configures the power-supplies to the levels specified by the OPP
1319  * corresponding to the target_freq, and programs the clock to a value <=
1320  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1321  * provided by the opp, should have already rounded to the target OPP's
1322  * frequency.
1323  */
dev_pm_opp_set_rate(struct device * dev,unsigned long target_freq)1324 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1325 {
1326 	struct opp_table *opp_table;
1327 	unsigned long freq = 0, temp_freq;
1328 	struct dev_pm_opp *opp = NULL;
1329 	bool forced = false;
1330 	int ret;
1331 
1332 	opp_table = _find_opp_table(dev);
1333 	if (IS_ERR(opp_table)) {
1334 		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1335 		return PTR_ERR(opp_table);
1336 	}
1337 
1338 	if (target_freq) {
1339 		/*
1340 		 * For IO devices which require an OPP on some platforms/SoCs
1341 		 * while just needing to scale the clock on some others
1342 		 * we look for empty OPP tables with just a clock handle and
1343 		 * scale only the clk. This makes dev_pm_opp_set_rate()
1344 		 * equivalent to a clk_set_rate()
1345 		 */
1346 		if (!_get_opp_count(opp_table)) {
1347 			ret = opp_table->config_clks(dev, opp_table, NULL,
1348 						     &target_freq, false);
1349 			goto put_opp_table;
1350 		}
1351 
1352 		freq = clk_round_rate(opp_table->clk, target_freq);
1353 		if ((long)freq <= 0)
1354 			freq = target_freq;
1355 
1356 		/*
1357 		 * The clock driver may support finer resolution of the
1358 		 * frequencies than the OPP table, don't update the frequency we
1359 		 * pass to clk_set_rate() here.
1360 		 */
1361 		temp_freq = freq;
1362 		opp = _find_freq_ceil(opp_table, &temp_freq);
1363 		if (IS_ERR(opp)) {
1364 			ret = PTR_ERR(opp);
1365 			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1366 				__func__, freq, ret);
1367 			goto put_opp_table;
1368 		}
1369 
1370 		/*
1371 		 * An OPP entry specifies the highest frequency at which other
1372 		 * properties of the OPP entry apply. Even if the new OPP is
1373 		 * same as the old one, we may still reach here for a different
1374 		 * value of the frequency. In such a case, do not abort but
1375 		 * configure the hardware to the desired frequency forcefully.
1376 		 */
1377 		forced = opp_table->current_rate_single_clk != freq;
1378 	}
1379 
1380 	ret = _set_opp(dev, opp_table, opp, &freq, forced);
1381 
1382 	if (freq)
1383 		dev_pm_opp_put(opp);
1384 
1385 put_opp_table:
1386 	dev_pm_opp_put_opp_table(opp_table);
1387 	return ret;
1388 }
1389 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1390 
1391 /**
1392  * dev_pm_opp_set_opp() - Configure device for OPP
1393  * @dev: device for which we do this operation
1394  * @opp: OPP to set to
1395  *
1396  * This configures the device based on the properties of the OPP passed to this
1397  * routine.
1398  *
1399  * Return: 0 on success, a negative error number otherwise.
1400  */
dev_pm_opp_set_opp(struct device * dev,struct dev_pm_opp * opp)1401 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1402 {
1403 	struct opp_table *opp_table;
1404 	int ret;
1405 
1406 	opp_table = _find_opp_table(dev);
1407 	if (IS_ERR(opp_table)) {
1408 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1409 		return PTR_ERR(opp_table);
1410 	}
1411 
1412 	ret = _set_opp(dev, opp_table, opp, NULL, false);
1413 	dev_pm_opp_put_opp_table(opp_table);
1414 
1415 	return ret;
1416 }
1417 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1418 
1419 /* OPP-dev Helpers */
_remove_opp_dev(struct opp_device * opp_dev,struct opp_table * opp_table)1420 static void _remove_opp_dev(struct opp_device *opp_dev,
1421 			    struct opp_table *opp_table)
1422 {
1423 	opp_debug_unregister(opp_dev, opp_table);
1424 	list_del(&opp_dev->node);
1425 	kfree(opp_dev);
1426 }
1427 
_add_opp_dev(const struct device * dev,struct opp_table * opp_table)1428 struct opp_device *_add_opp_dev(const struct device *dev,
1429 				struct opp_table *opp_table)
1430 {
1431 	struct opp_device *opp_dev;
1432 
1433 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1434 	if (!opp_dev)
1435 		return NULL;
1436 
1437 	/* Initialize opp-dev */
1438 	opp_dev->dev = dev;
1439 
1440 	mutex_lock(&opp_table->lock);
1441 	list_add(&opp_dev->node, &opp_table->dev_list);
1442 	mutex_unlock(&opp_table->lock);
1443 
1444 	/* Create debugfs entries for the opp_table */
1445 	opp_debug_register(opp_dev, opp_table);
1446 
1447 	return opp_dev;
1448 }
1449 
_allocate_opp_table(struct device * dev,int index)1450 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1451 {
1452 	struct opp_table *opp_table;
1453 	struct opp_device *opp_dev;
1454 	int ret;
1455 
1456 	/*
1457 	 * Allocate a new OPP table. In the infrequent case where a new
1458 	 * device is needed to be added, we pay this penalty.
1459 	 */
1460 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1461 	if (!opp_table)
1462 		return ERR_PTR(-ENOMEM);
1463 
1464 	mutex_init(&opp_table->lock);
1465 	INIT_LIST_HEAD(&opp_table->dev_list);
1466 	INIT_LIST_HEAD(&opp_table->lazy);
1467 
1468 	opp_table->clk = ERR_PTR(-ENODEV);
1469 
1470 	/* Mark regulator count uninitialized */
1471 	opp_table->regulator_count = -1;
1472 
1473 	opp_dev = _add_opp_dev(dev, opp_table);
1474 	if (!opp_dev) {
1475 		ret = -ENOMEM;
1476 		goto err;
1477 	}
1478 
1479 	_of_init_opp_table(opp_table, dev, index);
1480 
1481 	/* Find interconnect path(s) for the device */
1482 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1483 	if (ret) {
1484 		if (ret == -EPROBE_DEFER)
1485 			goto remove_opp_dev;
1486 
1487 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1488 			 __func__, ret);
1489 	}
1490 
1491 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1492 	INIT_LIST_HEAD(&opp_table->opp_list);
1493 	kref_init(&opp_table->kref);
1494 
1495 	return opp_table;
1496 
1497 remove_opp_dev:
1498 	_of_clear_opp_table(opp_table);
1499 	_remove_opp_dev(opp_dev, opp_table);
1500 	mutex_destroy(&opp_table->lock);
1501 err:
1502 	kfree(opp_table);
1503 	return ERR_PTR(ret);
1504 }
1505 
_get_opp_table_kref(struct opp_table * opp_table)1506 void _get_opp_table_kref(struct opp_table *opp_table)
1507 {
1508 	kref_get(&opp_table->kref);
1509 }
1510 
_update_opp_table_clk(struct device * dev,struct opp_table * opp_table,bool getclk)1511 static struct opp_table *_update_opp_table_clk(struct device *dev,
1512 					       struct opp_table *opp_table,
1513 					       bool getclk)
1514 {
1515 	int ret;
1516 
1517 	/*
1518 	 * Return early if we don't need to get clk or we have already done it
1519 	 * earlier.
1520 	 */
1521 	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1522 	    opp_table->clks)
1523 		return opp_table;
1524 
1525 	/* Find clk for the device */
1526 	opp_table->clk = clk_get(dev, NULL);
1527 
1528 	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1529 	if (!ret) {
1530 		opp_table->config_clks = _opp_config_clk_single;
1531 		opp_table->clk_count = 1;
1532 		return opp_table;
1533 	}
1534 
1535 	if (ret == -ENOENT) {
1536 		/*
1537 		 * There are few platforms which don't want the OPP core to
1538 		 * manage device's clock settings. In such cases neither the
1539 		 * platform provides the clks explicitly to us, nor the DT
1540 		 * contains a valid clk entry. The OPP nodes in DT may still
1541 		 * contain "opp-hz" property though, which we need to parse and
1542 		 * allow the platform to find an OPP based on freq later on.
1543 		 *
1544 		 * This is a simple solution to take care of such corner cases,
1545 		 * i.e. make the clk_count 1, which lets us allocate space for
1546 		 * frequency in opp->rates and also parse the entries in DT.
1547 		 */
1548 		opp_table->clk_count = 1;
1549 
1550 		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1551 		return opp_table;
1552 	}
1553 
1554 	dev_pm_opp_put_opp_table(opp_table);
1555 	dev_err_probe(dev, ret, "Couldn't find clock\n");
1556 
1557 	return ERR_PTR(ret);
1558 }
1559 
1560 /*
1561  * We need to make sure that the OPP table for a device doesn't get added twice,
1562  * if this routine gets called in parallel with the same device pointer.
1563  *
1564  * The simplest way to enforce that is to perform everything (find existing
1565  * table and if not found, create a new one) under the opp_table_lock, so only
1566  * one creator gets access to the same. But that expands the critical section
1567  * under the lock and may end up causing circular dependencies with frameworks
1568  * like debugfs, interconnect or clock framework as they may be direct or
1569  * indirect users of OPP core.
1570  *
1571  * And for that reason we have to go for a bit tricky implementation here, which
1572  * uses the opp_tables_busy flag to indicate if another creator is in the middle
1573  * of adding an OPP table and others should wait for it to finish.
1574  */
_add_opp_table_indexed(struct device * dev,int index,bool getclk)1575 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1576 					 bool getclk)
1577 {
1578 	struct opp_table *opp_table;
1579 
1580 again:
1581 	mutex_lock(&opp_table_lock);
1582 
1583 	opp_table = _find_opp_table_unlocked(dev);
1584 	if (!IS_ERR(opp_table))
1585 		goto unlock;
1586 
1587 	/*
1588 	 * The opp_tables list or an OPP table's dev_list is getting updated by
1589 	 * another user, wait for it to finish.
1590 	 */
1591 	if (unlikely(opp_tables_busy)) {
1592 		mutex_unlock(&opp_table_lock);
1593 		cpu_relax();
1594 		goto again;
1595 	}
1596 
1597 	opp_tables_busy = true;
1598 	opp_table = _managed_opp(dev, index);
1599 
1600 	/* Drop the lock to reduce the size of critical section */
1601 	mutex_unlock(&opp_table_lock);
1602 
1603 	if (opp_table) {
1604 		if (!_add_opp_dev(dev, opp_table)) {
1605 			dev_pm_opp_put_opp_table(opp_table);
1606 			opp_table = ERR_PTR(-ENOMEM);
1607 		}
1608 
1609 		mutex_lock(&opp_table_lock);
1610 	} else {
1611 		opp_table = _allocate_opp_table(dev, index);
1612 
1613 		mutex_lock(&opp_table_lock);
1614 		if (!IS_ERR(opp_table))
1615 			list_add(&opp_table->node, &opp_tables);
1616 	}
1617 
1618 	opp_tables_busy = false;
1619 
1620 unlock:
1621 	mutex_unlock(&opp_table_lock);
1622 
1623 	return _update_opp_table_clk(dev, opp_table, getclk);
1624 }
1625 
_add_opp_table(struct device * dev,bool getclk)1626 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1627 {
1628 	return _add_opp_table_indexed(dev, 0, getclk);
1629 }
1630 
dev_pm_opp_get_opp_table(struct device * dev)1631 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1632 {
1633 	return _find_opp_table(dev);
1634 }
1635 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1636 
_opp_table_kref_release(struct kref * kref)1637 static void _opp_table_kref_release(struct kref *kref)
1638 {
1639 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1640 	struct opp_device *opp_dev, *temp;
1641 	int i;
1642 
1643 	/* Drop the lock as soon as we can */
1644 	list_del(&opp_table->node);
1645 	mutex_unlock(&opp_table_lock);
1646 
1647 	if (opp_table->current_opp)
1648 		dev_pm_opp_put(opp_table->current_opp);
1649 
1650 	_of_clear_opp_table(opp_table);
1651 
1652 	/* Release automatically acquired single clk */
1653 	if (!IS_ERR(opp_table->clk))
1654 		clk_put(opp_table->clk);
1655 
1656 	if (opp_table->paths) {
1657 		for (i = 0; i < opp_table->path_count; i++)
1658 			icc_put(opp_table->paths[i]);
1659 		kfree(opp_table->paths);
1660 	}
1661 
1662 	WARN_ON(!list_empty(&opp_table->opp_list));
1663 
1664 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1665 		_remove_opp_dev(opp_dev, opp_table);
1666 
1667 	mutex_destroy(&opp_table->lock);
1668 	kfree(opp_table);
1669 }
1670 
dev_pm_opp_put_opp_table(struct opp_table * opp_table)1671 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1672 {
1673 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1674 		       &opp_table_lock);
1675 }
1676 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1677 
_opp_free(struct dev_pm_opp * opp)1678 void _opp_free(struct dev_pm_opp *opp)
1679 {
1680 	kfree(opp);
1681 }
1682 
_opp_kref_release(struct kref * kref)1683 static void _opp_kref_release(struct kref *kref)
1684 {
1685 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1686 	struct opp_table *opp_table = opp->opp_table;
1687 
1688 	list_del(&opp->node);
1689 	mutex_unlock(&opp_table->lock);
1690 
1691 	/*
1692 	 * Notify the changes in the availability of the operable
1693 	 * frequency/voltage list.
1694 	 */
1695 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1696 	_of_clear_opp(opp_table, opp);
1697 	opp_debug_remove_one(opp);
1698 	kfree(opp);
1699 }
1700 
dev_pm_opp_get(struct dev_pm_opp * opp)1701 void dev_pm_opp_get(struct dev_pm_opp *opp)
1702 {
1703 	kref_get(&opp->kref);
1704 }
1705 
dev_pm_opp_put(struct dev_pm_opp * opp)1706 void dev_pm_opp_put(struct dev_pm_opp *opp)
1707 {
1708 	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1709 }
1710 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1711 
1712 /**
1713  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1714  * @dev:	device for which we do this operation
1715  * @freq:	OPP to remove with matching 'freq'
1716  *
1717  * This function removes an opp from the opp table.
1718  */
dev_pm_opp_remove(struct device * dev,unsigned long freq)1719 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1720 {
1721 	struct dev_pm_opp *opp = NULL, *iter;
1722 	struct opp_table *opp_table;
1723 
1724 	opp_table = _find_opp_table(dev);
1725 	if (IS_ERR(opp_table))
1726 		return;
1727 
1728 	if (!assert_single_clk(opp_table, 0))
1729 		goto put_table;
1730 
1731 	mutex_lock(&opp_table->lock);
1732 
1733 	list_for_each_entry(iter, &opp_table->opp_list, node) {
1734 		if (iter->rates[0] == freq) {
1735 			opp = iter;
1736 			break;
1737 		}
1738 	}
1739 
1740 	mutex_unlock(&opp_table->lock);
1741 
1742 	if (opp) {
1743 		dev_pm_opp_put(opp);
1744 
1745 		/* Drop the reference taken by dev_pm_opp_add() */
1746 		dev_pm_opp_put_opp_table(opp_table);
1747 	} else {
1748 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1749 			 __func__, freq);
1750 	}
1751 
1752 put_table:
1753 	/* Drop the reference taken by _find_opp_table() */
1754 	dev_pm_opp_put_opp_table(opp_table);
1755 }
1756 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1757 
_opp_get_next(struct opp_table * opp_table,bool dynamic)1758 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1759 					bool dynamic)
1760 {
1761 	struct dev_pm_opp *opp = NULL, *temp;
1762 
1763 	mutex_lock(&opp_table->lock);
1764 	list_for_each_entry(temp, &opp_table->opp_list, node) {
1765 		/*
1766 		 * Refcount must be dropped only once for each OPP by OPP core,
1767 		 * do that with help of "removed" flag.
1768 		 */
1769 		if (!temp->removed && dynamic == temp->dynamic) {
1770 			opp = temp;
1771 			break;
1772 		}
1773 	}
1774 
1775 	mutex_unlock(&opp_table->lock);
1776 	return opp;
1777 }
1778 
1779 /*
1780  * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1781  * happen lock less to avoid circular dependency issues. This routine must be
1782  * called without the opp_table->lock held.
1783  */
_opp_remove_all(struct opp_table * opp_table,bool dynamic)1784 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1785 {
1786 	struct dev_pm_opp *opp;
1787 
1788 	while ((opp = _opp_get_next(opp_table, dynamic))) {
1789 		opp->removed = true;
1790 		dev_pm_opp_put(opp);
1791 
1792 		/* Drop the references taken by dev_pm_opp_add() */
1793 		if (dynamic)
1794 			dev_pm_opp_put_opp_table(opp_table);
1795 	}
1796 }
1797 
_opp_remove_all_static(struct opp_table * opp_table)1798 bool _opp_remove_all_static(struct opp_table *opp_table)
1799 {
1800 	mutex_lock(&opp_table->lock);
1801 
1802 	if (!opp_table->parsed_static_opps) {
1803 		mutex_unlock(&opp_table->lock);
1804 		return false;
1805 	}
1806 
1807 	if (--opp_table->parsed_static_opps) {
1808 		mutex_unlock(&opp_table->lock);
1809 		return true;
1810 	}
1811 
1812 	mutex_unlock(&opp_table->lock);
1813 
1814 	_opp_remove_all(opp_table, false);
1815 	return true;
1816 }
1817 
1818 /**
1819  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1820  * @dev:	device for which we do this operation
1821  *
1822  * This function removes all dynamically created OPPs from the opp table.
1823  */
dev_pm_opp_remove_all_dynamic(struct device * dev)1824 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1825 {
1826 	struct opp_table *opp_table;
1827 
1828 	opp_table = _find_opp_table(dev);
1829 	if (IS_ERR(opp_table))
1830 		return;
1831 
1832 	_opp_remove_all(opp_table, true);
1833 
1834 	/* Drop the reference taken by _find_opp_table() */
1835 	dev_pm_opp_put_opp_table(opp_table);
1836 }
1837 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1838 
_opp_allocate(struct opp_table * opp_table)1839 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1840 {
1841 	struct dev_pm_opp *opp;
1842 	int supply_count, supply_size, icc_size, clk_size;
1843 
1844 	/* Allocate space for at least one supply */
1845 	supply_count = opp_table->regulator_count > 0 ?
1846 			opp_table->regulator_count : 1;
1847 	supply_size = sizeof(*opp->supplies) * supply_count;
1848 	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1849 	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1850 
1851 	/* allocate new OPP node and supplies structures */
1852 	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1853 	if (!opp)
1854 		return NULL;
1855 
1856 	/* Put the supplies, bw and clock at the end of the OPP structure */
1857 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1858 
1859 	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1860 
1861 	if (icc_size)
1862 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1863 
1864 	INIT_LIST_HEAD(&opp->node);
1865 
1866 	opp->level = OPP_LEVEL_UNSET;
1867 
1868 	return opp;
1869 }
1870 
_opp_supported_by_regulators(struct dev_pm_opp * opp,struct opp_table * opp_table)1871 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1872 					 struct opp_table *opp_table)
1873 {
1874 	struct regulator *reg;
1875 	int i;
1876 
1877 	if (!opp_table->regulators)
1878 		return true;
1879 
1880 	for (i = 0; i < opp_table->regulator_count; i++) {
1881 		reg = opp_table->regulators[i];
1882 
1883 		if (!regulator_is_supported_voltage(reg,
1884 					opp->supplies[i].u_volt_min,
1885 					opp->supplies[i].u_volt_max)) {
1886 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1887 				__func__, opp->supplies[i].u_volt_min,
1888 				opp->supplies[i].u_volt_max);
1889 			return false;
1890 		}
1891 	}
1892 
1893 	return true;
1894 }
1895 
_opp_compare_rate(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1896 static int _opp_compare_rate(struct opp_table *opp_table,
1897 			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1898 {
1899 	int i;
1900 
1901 	for (i = 0; i < opp_table->clk_count; i++) {
1902 		if (opp1->rates[i] != opp2->rates[i])
1903 			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1904 	}
1905 
1906 	/* Same rates for both OPPs */
1907 	return 0;
1908 }
1909 
_opp_compare_bw(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1910 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1911 			   struct dev_pm_opp *opp2)
1912 {
1913 	int i;
1914 
1915 	for (i = 0; i < opp_table->path_count; i++) {
1916 		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1917 			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1918 	}
1919 
1920 	/* Same bw for both OPPs */
1921 	return 0;
1922 }
1923 
1924 /*
1925  * Returns
1926  * 0: opp1 == opp2
1927  * 1: opp1 > opp2
1928  * -1: opp1 < opp2
1929  */
_opp_compare_key(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1930 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1931 		     struct dev_pm_opp *opp2)
1932 {
1933 	int ret;
1934 
1935 	ret = _opp_compare_rate(opp_table, opp1, opp2);
1936 	if (ret)
1937 		return ret;
1938 
1939 	ret = _opp_compare_bw(opp_table, opp1, opp2);
1940 	if (ret)
1941 		return ret;
1942 
1943 	if (opp1->level != opp2->level)
1944 		return opp1->level < opp2->level ? -1 : 1;
1945 
1946 	/* Duplicate OPPs */
1947 	return 0;
1948 }
1949 
_opp_is_duplicate(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct list_head ** head)1950 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1951 			     struct opp_table *opp_table,
1952 			     struct list_head **head)
1953 {
1954 	struct dev_pm_opp *opp;
1955 	int opp_cmp;
1956 
1957 	/*
1958 	 * Insert new OPP in order of increasing frequency and discard if
1959 	 * already present.
1960 	 *
1961 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1962 	 * loop, don't replace it with head otherwise it will become an infinite
1963 	 * loop.
1964 	 */
1965 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1966 		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1967 		if (opp_cmp > 0) {
1968 			*head = &opp->node;
1969 			continue;
1970 		}
1971 
1972 		if (opp_cmp < 0)
1973 			return 0;
1974 
1975 		/* Duplicate OPPs */
1976 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1977 			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1978 			 opp->available, new_opp->rates[0],
1979 			 new_opp->supplies[0].u_volt, new_opp->available);
1980 
1981 		/* Should we compare voltages for all regulators here ? */
1982 		return opp->available &&
1983 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1984 	}
1985 
1986 	return 0;
1987 }
1988 
_required_opps_available(struct dev_pm_opp * opp,int count)1989 void _required_opps_available(struct dev_pm_opp *opp, int count)
1990 {
1991 	int i;
1992 
1993 	for (i = 0; i < count; i++) {
1994 		if (opp->required_opps[i]->available)
1995 			continue;
1996 
1997 		opp->available = false;
1998 		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1999 			 __func__, opp->required_opps[i]->np, opp->rates[0]);
2000 		return;
2001 	}
2002 }
2003 
2004 /*
2005  * Returns:
2006  * 0: On success. And appropriate error message for duplicate OPPs.
2007  * -EBUSY: For OPP with same freq/volt and is available. The callers of
2008  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
2009  *  sure we don't print error messages unnecessarily if different parts of
2010  *  kernel try to initialize the OPP table.
2011  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
2012  *  should be considered an error by the callers of _opp_add().
2013  */
_opp_add(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table)2014 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
2015 	     struct opp_table *opp_table)
2016 {
2017 	struct list_head *head;
2018 	int ret;
2019 
2020 	mutex_lock(&opp_table->lock);
2021 	head = &opp_table->opp_list;
2022 
2023 	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2024 	if (ret) {
2025 		mutex_unlock(&opp_table->lock);
2026 		return ret;
2027 	}
2028 
2029 	list_add(&new_opp->node, head);
2030 	mutex_unlock(&opp_table->lock);
2031 
2032 	new_opp->opp_table = opp_table;
2033 	kref_init(&new_opp->kref);
2034 
2035 	opp_debug_create_one(new_opp, opp_table);
2036 
2037 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2038 		new_opp->available = false;
2039 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2040 			 __func__, new_opp->rates[0]);
2041 	}
2042 
2043 	/* required-opps not fully initialized yet */
2044 	if (lazy_linking_pending(opp_table))
2045 		return 0;
2046 
2047 	_required_opps_available(new_opp, opp_table->required_opp_count);
2048 
2049 	return 0;
2050 }
2051 
2052 /**
2053  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2054  * @opp_table:	OPP table
2055  * @dev:	device for which we do this operation
2056  * @data:	The OPP data for the OPP to add
2057  * @dynamic:	Dynamically added OPPs.
2058  *
2059  * This function adds an opp definition to the opp table and returns status.
2060  * The opp is made available by default and it can be controlled using
2061  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2062  *
2063  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2064  * and freed by dev_pm_opp_of_remove_table.
2065  *
2066  * Return:
2067  * 0		On success OR
2068  *		Duplicate OPPs (both freq and volt are same) and opp->available
2069  * -EEXIST	Freq are same and volt are different OR
2070  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2071  * -ENOMEM	Memory allocation failure
2072  */
_opp_add_v1(struct opp_table * opp_table,struct device * dev,struct dev_pm_opp_data * data,bool dynamic)2073 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2074 		struct dev_pm_opp_data *data, bool dynamic)
2075 {
2076 	struct dev_pm_opp *new_opp;
2077 	unsigned long tol, u_volt = data->u_volt;
2078 	int ret;
2079 
2080 	if (!assert_single_clk(opp_table, 0))
2081 		return -EINVAL;
2082 
2083 	new_opp = _opp_allocate(opp_table);
2084 	if (!new_opp)
2085 		return -ENOMEM;
2086 
2087 	/* populate the opp table */
2088 	new_opp->rates[0] = data->freq;
2089 	new_opp->level = data->level;
2090 	new_opp->turbo = data->turbo;
2091 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2092 	new_opp->supplies[0].u_volt = u_volt;
2093 	new_opp->supplies[0].u_volt_min = u_volt - tol;
2094 	new_opp->supplies[0].u_volt_max = u_volt + tol;
2095 	new_opp->available = true;
2096 	new_opp->dynamic = dynamic;
2097 
2098 	ret = _opp_add(dev, new_opp, opp_table);
2099 	if (ret) {
2100 		/* Don't return error for duplicate OPPs */
2101 		if (ret == -EBUSY)
2102 			ret = 0;
2103 		goto free_opp;
2104 	}
2105 
2106 	/*
2107 	 * Notify the changes in the availability of the operable
2108 	 * frequency/voltage list.
2109 	 */
2110 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2111 	return 0;
2112 
2113 free_opp:
2114 	_opp_free(new_opp);
2115 
2116 	return ret;
2117 }
2118 
2119 /*
2120  * This is required only for the V2 bindings, and it enables a platform to
2121  * specify the hierarchy of versions it supports. OPP layer will then enable
2122  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2123  * property.
2124  */
_opp_set_supported_hw(struct opp_table * opp_table,const u32 * versions,unsigned int count)2125 static int _opp_set_supported_hw(struct opp_table *opp_table,
2126 				 const u32 *versions, unsigned int count)
2127 {
2128 	/* Another CPU that shares the OPP table has set the property ? */
2129 	if (opp_table->supported_hw)
2130 		return 0;
2131 
2132 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2133 					GFP_KERNEL);
2134 	if (!opp_table->supported_hw)
2135 		return -ENOMEM;
2136 
2137 	opp_table->supported_hw_count = count;
2138 
2139 	return 0;
2140 }
2141 
_opp_put_supported_hw(struct opp_table * opp_table)2142 static void _opp_put_supported_hw(struct opp_table *opp_table)
2143 {
2144 	if (opp_table->supported_hw) {
2145 		kfree(opp_table->supported_hw);
2146 		opp_table->supported_hw = NULL;
2147 		opp_table->supported_hw_count = 0;
2148 	}
2149 }
2150 
2151 /*
2152  * This is required only for the V2 bindings, and it enables a platform to
2153  * specify the extn to be used for certain property names. The properties to
2154  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2155  * should postfix the property name with -<name> while looking for them.
2156  */
_opp_set_prop_name(struct opp_table * opp_table,const char * name)2157 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2158 {
2159 	/* Another CPU that shares the OPP table has set the property ? */
2160 	if (!opp_table->prop_name) {
2161 		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2162 		if (!opp_table->prop_name)
2163 			return -ENOMEM;
2164 	}
2165 
2166 	return 0;
2167 }
2168 
_opp_put_prop_name(struct opp_table * opp_table)2169 static void _opp_put_prop_name(struct opp_table *opp_table)
2170 {
2171 	if (opp_table->prop_name) {
2172 		kfree(opp_table->prop_name);
2173 		opp_table->prop_name = NULL;
2174 	}
2175 }
2176 
2177 /*
2178  * In order to support OPP switching, OPP layer needs to know the name of the
2179  * device's regulators, as the core would be required to switch voltages as
2180  * well.
2181  *
2182  * This must be called before any OPPs are initialized for the device.
2183  */
_opp_set_regulators(struct opp_table * opp_table,struct device * dev,const char * const names[])2184 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2185 			       const char * const names[])
2186 {
2187 	const char * const *temp = names;
2188 	struct regulator *reg;
2189 	int count = 0, ret, i;
2190 
2191 	/* Count number of regulators */
2192 	while (*temp++)
2193 		count++;
2194 
2195 	if (!count)
2196 		return -EINVAL;
2197 
2198 	/* Another CPU that shares the OPP table has set the regulators ? */
2199 	if (opp_table->regulators)
2200 		return 0;
2201 
2202 	opp_table->regulators = kmalloc_array(count,
2203 					      sizeof(*opp_table->regulators),
2204 					      GFP_KERNEL);
2205 	if (!opp_table->regulators)
2206 		return -ENOMEM;
2207 
2208 	for (i = 0; i < count; i++) {
2209 		reg = regulator_get_optional(dev, names[i]);
2210 		if (IS_ERR(reg)) {
2211 			ret = dev_err_probe(dev, PTR_ERR(reg),
2212 					    "%s: no regulator (%s) found\n",
2213 					    __func__, names[i]);
2214 			goto free_regulators;
2215 		}
2216 
2217 		opp_table->regulators[i] = reg;
2218 	}
2219 
2220 	opp_table->regulator_count = count;
2221 
2222 	/* Set generic config_regulators() for single regulators here */
2223 	if (count == 1)
2224 		opp_table->config_regulators = _opp_config_regulator_single;
2225 
2226 	return 0;
2227 
2228 free_regulators:
2229 	while (i != 0)
2230 		regulator_put(opp_table->regulators[--i]);
2231 
2232 	kfree(opp_table->regulators);
2233 	opp_table->regulators = NULL;
2234 	opp_table->regulator_count = -1;
2235 
2236 	return ret;
2237 }
2238 
_opp_put_regulators(struct opp_table * opp_table)2239 static void _opp_put_regulators(struct opp_table *opp_table)
2240 {
2241 	int i;
2242 
2243 	if (!opp_table->regulators)
2244 		return;
2245 
2246 	if (opp_table->enabled) {
2247 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2248 			regulator_disable(opp_table->regulators[i]);
2249 	}
2250 
2251 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2252 		regulator_put(opp_table->regulators[i]);
2253 
2254 	kfree(opp_table->regulators);
2255 	opp_table->regulators = NULL;
2256 	opp_table->regulator_count = -1;
2257 }
2258 
_put_clks(struct opp_table * opp_table,int count)2259 static void _put_clks(struct opp_table *opp_table, int count)
2260 {
2261 	int i;
2262 
2263 	for (i = count - 1; i >= 0; i--)
2264 		clk_put(opp_table->clks[i]);
2265 
2266 	kfree(opp_table->clks);
2267 	opp_table->clks = NULL;
2268 }
2269 
2270 /*
2271  * In order to support OPP switching, OPP layer needs to get pointers to the
2272  * clocks for the device. Simple cases work fine without using this routine
2273  * (i.e. by passing connection-id as NULL), but for a device with multiple
2274  * clocks available, the OPP core needs to know the exact names of the clks to
2275  * use.
2276  *
2277  * This must be called before any OPPs are initialized for the device.
2278  */
_opp_set_clknames(struct opp_table * opp_table,struct device * dev,const char * const names[],config_clks_t config_clks)2279 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2280 			     const char * const names[],
2281 			     config_clks_t config_clks)
2282 {
2283 	const char * const *temp = names;
2284 	int count = 0, ret, i;
2285 	struct clk *clk;
2286 
2287 	/* Count number of clks */
2288 	while (*temp++)
2289 		count++;
2290 
2291 	/*
2292 	 * This is a special case where we have a single clock, whose connection
2293 	 * id name is NULL, i.e. first two entries are NULL in the array.
2294 	 */
2295 	if (!count && !names[1])
2296 		count = 1;
2297 
2298 	/* Fail early for invalid configurations */
2299 	if (!count || (!config_clks && count > 1))
2300 		return -EINVAL;
2301 
2302 	/* Another CPU that shares the OPP table has set the clkname ? */
2303 	if (opp_table->clks)
2304 		return 0;
2305 
2306 	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2307 					GFP_KERNEL);
2308 	if (!opp_table->clks)
2309 		return -ENOMEM;
2310 
2311 	/* Find clks for the device */
2312 	for (i = 0; i < count; i++) {
2313 		clk = clk_get(dev, names[i]);
2314 		if (IS_ERR(clk)) {
2315 			ret = dev_err_probe(dev, PTR_ERR(clk),
2316 					    "%s: Couldn't find clock with name: %s\n",
2317 					    __func__, names[i]);
2318 			goto free_clks;
2319 		}
2320 
2321 		opp_table->clks[i] = clk;
2322 	}
2323 
2324 	opp_table->clk_count = count;
2325 	opp_table->config_clks = config_clks;
2326 
2327 	/* Set generic single clk set here */
2328 	if (count == 1) {
2329 		if (!opp_table->config_clks)
2330 			opp_table->config_clks = _opp_config_clk_single;
2331 
2332 		/*
2333 		 * We could have just dropped the "clk" field and used "clks"
2334 		 * everywhere. Instead we kept the "clk" field around for
2335 		 * following reasons:
2336 		 *
2337 		 * - avoiding clks[0] everywhere else.
2338 		 * - not running single clk helpers for multiple clk usecase by
2339 		 *   mistake.
2340 		 *
2341 		 * Since this is single-clk case, just update the clk pointer
2342 		 * too.
2343 		 */
2344 		opp_table->clk = opp_table->clks[0];
2345 	}
2346 
2347 	return 0;
2348 
2349 free_clks:
2350 	_put_clks(opp_table, i);
2351 	return ret;
2352 }
2353 
_opp_put_clknames(struct opp_table * opp_table)2354 static void _opp_put_clknames(struct opp_table *opp_table)
2355 {
2356 	if (!opp_table->clks)
2357 		return;
2358 
2359 	opp_table->config_clks = NULL;
2360 	opp_table->clk = ERR_PTR(-ENODEV);
2361 
2362 	_put_clks(opp_table, opp_table->clk_count);
2363 }
2364 
2365 /*
2366  * This is useful to support platforms with multiple regulators per device.
2367  *
2368  * This must be called before any OPPs are initialized for the device.
2369  */
_opp_set_config_regulators_helper(struct opp_table * opp_table,struct device * dev,config_regulators_t config_regulators)2370 static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2371 		struct device *dev, config_regulators_t config_regulators)
2372 {
2373 	/* Another CPU that shares the OPP table has set the helper ? */
2374 	if (!opp_table->config_regulators)
2375 		opp_table->config_regulators = config_regulators;
2376 
2377 	return 0;
2378 }
2379 
_opp_put_config_regulators_helper(struct opp_table * opp_table)2380 static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2381 {
2382 	if (opp_table->config_regulators)
2383 		opp_table->config_regulators = NULL;
2384 }
2385 
_opp_detach_genpd(struct opp_table * opp_table)2386 static void _opp_detach_genpd(struct opp_table *opp_table)
2387 {
2388 	int index;
2389 
2390 	for (index = 0; index < opp_table->required_opp_count; index++) {
2391 		if (!opp_table->required_devs[index])
2392 			continue;
2393 
2394 		dev_pm_domain_detach(opp_table->required_devs[index], false);
2395 		opp_table->required_devs[index] = NULL;
2396 	}
2397 }
2398 
2399 /*
2400  * Multiple generic power domains for a device are supported with the help of
2401  * virtual genpd devices, which are created for each consumer device - genpd
2402  * pair. These are the device structures which are attached to the power domain
2403  * and are required by the OPP core to set the performance state of the genpd.
2404  * The same API also works for the case where single genpd is available and so
2405  * we don't need to support that separately.
2406  *
2407  * This helper will normally be called by the consumer driver of the device
2408  * "dev", as only that has details of the genpd names.
2409  *
2410  * This helper needs to be called once with a list of all genpd to attach.
2411  * Otherwise the original device structure will be used instead by the OPP core.
2412  *
2413  * The order of entries in the names array must match the order in which
2414  * "required-opps" are added in DT.
2415  */
_opp_attach_genpd(struct opp_table * opp_table,struct device * dev,const char * const * names,struct device *** virt_devs)2416 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2417 			const char * const *names, struct device ***virt_devs)
2418 {
2419 	struct device *virt_dev, *gdev;
2420 	struct opp_table *genpd_table;
2421 	int index = 0, ret = -EINVAL;
2422 	const char * const *name = names;
2423 
2424 	if (!opp_table->required_devs) {
2425 		dev_err(dev, "Required OPPs not available, can't attach genpd\n");
2426 		return -EINVAL;
2427 	}
2428 
2429 	/* Genpd core takes care of propagation to parent genpd */
2430 	if (opp_table->is_genpd) {
2431 		dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2432 		return -EOPNOTSUPP;
2433 	}
2434 
2435 	/* Checking only the first one is enough ? */
2436 	if (opp_table->required_devs[0])
2437 		return 0;
2438 
2439 	while (*name) {
2440 		if (index >= opp_table->required_opp_count) {
2441 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2442 				*name, opp_table->required_opp_count, index);
2443 			goto err;
2444 		}
2445 
2446 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2447 		if (IS_ERR_OR_NULL(virt_dev)) {
2448 			ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2449 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2450 			goto err;
2451 		}
2452 
2453 		/*
2454 		 * The required_opp_tables parsing is not perfect, as the OPP
2455 		 * core does the parsing solely based on the DT node pointers.
2456 		 * The core sets the required_opp_tables entry to the first OPP
2457 		 * table in the "opp_tables" list, that matches with the node
2458 		 * pointer.
2459 		 *
2460 		 * If the target DT OPP table is used by multiple devices and
2461 		 * they all create separate instances of 'struct opp_table' from
2462 		 * it, then it is possible that the required_opp_tables entry
2463 		 * may be set to the incorrect sibling device.
2464 		 *
2465 		 * Cross check it again and fix if required.
2466 		 */
2467 		gdev = dev_to_genpd_dev(virt_dev);
2468 		if (IS_ERR(gdev)) {
2469 			ret = PTR_ERR(gdev);
2470 			goto err;
2471 		}
2472 
2473 		genpd_table = _find_opp_table(gdev);
2474 		if (!IS_ERR(genpd_table)) {
2475 			if (genpd_table != opp_table->required_opp_tables[index]) {
2476 				dev_pm_opp_put_opp_table(opp_table->required_opp_tables[index]);
2477 				opp_table->required_opp_tables[index] = genpd_table;
2478 			} else {
2479 				dev_pm_opp_put_opp_table(genpd_table);
2480 			}
2481 		}
2482 
2483 		opp_table->required_devs[index] = virt_dev;
2484 		index++;
2485 		name++;
2486 	}
2487 
2488 	if (virt_devs)
2489 		*virt_devs = opp_table->required_devs;
2490 
2491 	return 0;
2492 
2493 err:
2494 	_opp_detach_genpd(opp_table);
2495 	return ret;
2496 
2497 }
2498 
_opp_set_required_devs(struct opp_table * opp_table,struct device * dev,struct device ** required_devs)2499 static int _opp_set_required_devs(struct opp_table *opp_table,
2500 				  struct device *dev,
2501 				  struct device **required_devs)
2502 {
2503 	int i;
2504 
2505 	if (!opp_table->required_devs) {
2506 		dev_err(dev, "Required OPPs not available, can't set required devs\n");
2507 		return -EINVAL;
2508 	}
2509 
2510 	/* Another device that shares the OPP table has set the required devs ? */
2511 	if (opp_table->required_devs[0])
2512 		return 0;
2513 
2514 	for (i = 0; i < opp_table->required_opp_count; i++) {
2515 		/* Genpd core takes care of propagation to parent genpd */
2516 		if (required_devs[i] && opp_table->is_genpd &&
2517 		    opp_table->required_opp_tables[i]->is_genpd) {
2518 			dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2519 			return -EOPNOTSUPP;
2520 		}
2521 
2522 		opp_table->required_devs[i] = required_devs[i];
2523 	}
2524 
2525 	return 0;
2526 }
2527 
_opp_put_required_devs(struct opp_table * opp_table)2528 static void _opp_put_required_devs(struct opp_table *opp_table)
2529 {
2530 	int i;
2531 
2532 	for (i = 0; i < opp_table->required_opp_count; i++)
2533 		opp_table->required_devs[i] = NULL;
2534 }
2535 
_opp_clear_config(struct opp_config_data * data)2536 static void _opp_clear_config(struct opp_config_data *data)
2537 {
2538 	if (data->flags & OPP_CONFIG_REQUIRED_DEVS)
2539 		_opp_put_required_devs(data->opp_table);
2540 	else if (data->flags & OPP_CONFIG_GENPD)
2541 		_opp_detach_genpd(data->opp_table);
2542 
2543 	if (data->flags & OPP_CONFIG_REGULATOR)
2544 		_opp_put_regulators(data->opp_table);
2545 	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2546 		_opp_put_supported_hw(data->opp_table);
2547 	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2548 		_opp_put_config_regulators_helper(data->opp_table);
2549 	if (data->flags & OPP_CONFIG_PROP_NAME)
2550 		_opp_put_prop_name(data->opp_table);
2551 	if (data->flags & OPP_CONFIG_CLK)
2552 		_opp_put_clknames(data->opp_table);
2553 
2554 	dev_pm_opp_put_opp_table(data->opp_table);
2555 	kfree(data);
2556 }
2557 
2558 /**
2559  * dev_pm_opp_set_config() - Set OPP configuration for the device.
2560  * @dev: Device for which configuration is being set.
2561  * @config: OPP configuration.
2562  *
2563  * This allows all device OPP configurations to be performed at once.
2564  *
2565  * This must be called before any OPPs are initialized for the device. This may
2566  * be called multiple times for the same OPP table, for example once for each
2567  * CPU that share the same table. This must be balanced by the same number of
2568  * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2569  *
2570  * This returns a token to the caller, which must be passed to
2571  * dev_pm_opp_clear_config() to free the resources later. The value of the
2572  * returned token will be >= 1 for success and negative for errors. The minimum
2573  * value of 1 is chosen here to make it easy for callers to manage the resource.
2574  */
dev_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2575 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2576 {
2577 	struct opp_table *opp_table;
2578 	struct opp_config_data *data;
2579 	unsigned int id;
2580 	int ret;
2581 
2582 	data = kmalloc(sizeof(*data), GFP_KERNEL);
2583 	if (!data)
2584 		return -ENOMEM;
2585 
2586 	opp_table = _add_opp_table(dev, false);
2587 	if (IS_ERR(opp_table)) {
2588 		kfree(data);
2589 		return PTR_ERR(opp_table);
2590 	}
2591 
2592 	data->opp_table = opp_table;
2593 	data->flags = 0;
2594 
2595 	/* This should be called before OPPs are initialized */
2596 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2597 		ret = -EBUSY;
2598 		goto err;
2599 	}
2600 
2601 	/* Configure clocks */
2602 	if (config->clk_names) {
2603 		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2604 					config->config_clks);
2605 		if (ret)
2606 			goto err;
2607 
2608 		data->flags |= OPP_CONFIG_CLK;
2609 	} else if (config->config_clks) {
2610 		/* Don't allow config callback without clocks */
2611 		ret = -EINVAL;
2612 		goto err;
2613 	}
2614 
2615 	/* Configure property names */
2616 	if (config->prop_name) {
2617 		ret = _opp_set_prop_name(opp_table, config->prop_name);
2618 		if (ret)
2619 			goto err;
2620 
2621 		data->flags |= OPP_CONFIG_PROP_NAME;
2622 	}
2623 
2624 	/* Configure config_regulators helper */
2625 	if (config->config_regulators) {
2626 		ret = _opp_set_config_regulators_helper(opp_table, dev,
2627 						config->config_regulators);
2628 		if (ret)
2629 			goto err;
2630 
2631 		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2632 	}
2633 
2634 	/* Configure supported hardware */
2635 	if (config->supported_hw) {
2636 		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2637 					    config->supported_hw_count);
2638 		if (ret)
2639 			goto err;
2640 
2641 		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2642 	}
2643 
2644 	/* Configure supplies */
2645 	if (config->regulator_names) {
2646 		ret = _opp_set_regulators(opp_table, dev,
2647 					  config->regulator_names);
2648 		if (ret)
2649 			goto err;
2650 
2651 		data->flags |= OPP_CONFIG_REGULATOR;
2652 	}
2653 
2654 	/* Attach genpds */
2655 	if (config->genpd_names) {
2656 		if (config->required_devs) {
2657 			ret = -EINVAL;
2658 			goto err;
2659 		}
2660 
2661 		ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2662 					config->virt_devs);
2663 		if (ret)
2664 			goto err;
2665 
2666 		data->flags |= OPP_CONFIG_GENPD;
2667 	} else if (config->required_devs) {
2668 		ret = _opp_set_required_devs(opp_table, dev,
2669 					     config->required_devs);
2670 		if (ret)
2671 			goto err;
2672 
2673 		data->flags |= OPP_CONFIG_REQUIRED_DEVS;
2674 	}
2675 
2676 	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2677 		       GFP_KERNEL);
2678 	if (ret)
2679 		goto err;
2680 
2681 	return id;
2682 
2683 err:
2684 	_opp_clear_config(data);
2685 	return ret;
2686 }
2687 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2688 
2689 /**
2690  * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2691  * @token: The token returned by dev_pm_opp_set_config() previously.
2692  *
2693  * This allows all device OPP configurations to be cleared at once. This must be
2694  * called once for each call made to dev_pm_opp_set_config(), in order to free
2695  * the OPPs properly.
2696  *
2697  * Currently the first call itself ends up freeing all the OPP configurations,
2698  * while the later ones only drop the OPP table reference. This works well for
2699  * now as we would never want to use an half initialized OPP table and want to
2700  * remove the configurations together.
2701  */
dev_pm_opp_clear_config(int token)2702 void dev_pm_opp_clear_config(int token)
2703 {
2704 	struct opp_config_data *data;
2705 
2706 	/*
2707 	 * This lets the callers call this unconditionally and keep their code
2708 	 * simple.
2709 	 */
2710 	if (unlikely(token <= 0))
2711 		return;
2712 
2713 	data = xa_erase(&opp_configs, token);
2714 	if (WARN_ON(!data))
2715 		return;
2716 
2717 	_opp_clear_config(data);
2718 }
2719 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2720 
devm_pm_opp_config_release(void * token)2721 static void devm_pm_opp_config_release(void *token)
2722 {
2723 	dev_pm_opp_clear_config((unsigned long)token);
2724 }
2725 
2726 /**
2727  * devm_pm_opp_set_config() - Set OPP configuration for the device.
2728  * @dev: Device for which configuration is being set.
2729  * @config: OPP configuration.
2730  *
2731  * This allows all device OPP configurations to be performed at once.
2732  * This is a resource-managed variant of dev_pm_opp_set_config().
2733  *
2734  * Return: 0 on success and errorno otherwise.
2735  */
devm_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2736 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2737 {
2738 	int token = dev_pm_opp_set_config(dev, config);
2739 
2740 	if (token < 0)
2741 		return token;
2742 
2743 	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2744 					(void *) ((unsigned long) token));
2745 }
2746 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2747 
2748 /**
2749  * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2750  * @src_table: OPP table which has @dst_table as one of its required OPP table.
2751  * @dst_table: Required OPP table of the @src_table.
2752  * @src_opp: OPP from the @src_table.
2753  *
2754  * This function returns the OPP (present in @dst_table) pointed out by the
2755  * "required-opps" property of the @src_opp (present in @src_table).
2756  *
2757  * The callers are required to call dev_pm_opp_put() for the returned OPP after
2758  * use.
2759  *
2760  * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2761  */
dev_pm_opp_xlate_required_opp(struct opp_table * src_table,struct opp_table * dst_table,struct dev_pm_opp * src_opp)2762 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2763 						 struct opp_table *dst_table,
2764 						 struct dev_pm_opp *src_opp)
2765 {
2766 	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2767 	int i;
2768 
2769 	if (!src_table || !dst_table || !src_opp ||
2770 	    !src_table->required_opp_tables)
2771 		return ERR_PTR(-EINVAL);
2772 
2773 	/* required-opps not fully initialized yet */
2774 	if (lazy_linking_pending(src_table))
2775 		return ERR_PTR(-EBUSY);
2776 
2777 	for (i = 0; i < src_table->required_opp_count; i++) {
2778 		if (src_table->required_opp_tables[i] == dst_table) {
2779 			mutex_lock(&src_table->lock);
2780 
2781 			list_for_each_entry(opp, &src_table->opp_list, node) {
2782 				if (opp == src_opp) {
2783 					dest_opp = opp->required_opps[i];
2784 					dev_pm_opp_get(dest_opp);
2785 					break;
2786 				}
2787 			}
2788 
2789 			mutex_unlock(&src_table->lock);
2790 			break;
2791 		}
2792 	}
2793 
2794 	if (IS_ERR(dest_opp)) {
2795 		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2796 		       src_table, dst_table);
2797 	}
2798 
2799 	return dest_opp;
2800 }
2801 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2802 
2803 /**
2804  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2805  * @src_table: OPP table which has dst_table as one of its required OPP table.
2806  * @dst_table: Required OPP table of the src_table.
2807  * @pstate: Current performance state of the src_table.
2808  *
2809  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2810  * "required-opps" property of the OPP (present in @src_table) which has
2811  * performance state set to @pstate.
2812  *
2813  * Return: Zero or positive performance state on success, otherwise negative
2814  * value on errors.
2815  */
dev_pm_opp_xlate_performance_state(struct opp_table * src_table,struct opp_table * dst_table,unsigned int pstate)2816 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2817 				       struct opp_table *dst_table,
2818 				       unsigned int pstate)
2819 {
2820 	struct dev_pm_opp *opp;
2821 	int dest_pstate = -EINVAL;
2822 	int i;
2823 
2824 	/*
2825 	 * Normally the src_table will have the "required_opps" property set to
2826 	 * point to one of the OPPs in the dst_table, but in some cases the
2827 	 * genpd and its master have one to one mapping of performance states
2828 	 * and so none of them have the "required-opps" property set. Return the
2829 	 * pstate of the src_table as it is in such cases.
2830 	 */
2831 	if (!src_table || !src_table->required_opp_count)
2832 		return pstate;
2833 
2834 	/* Both OPP tables must belong to genpds */
2835 	if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2836 		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2837 		return -EINVAL;
2838 	}
2839 
2840 	/* required-opps not fully initialized yet */
2841 	if (lazy_linking_pending(src_table))
2842 		return -EBUSY;
2843 
2844 	for (i = 0; i < src_table->required_opp_count; i++) {
2845 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2846 			break;
2847 	}
2848 
2849 	if (unlikely(i == src_table->required_opp_count)) {
2850 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2851 		       __func__, src_table, dst_table);
2852 		return -EINVAL;
2853 	}
2854 
2855 	mutex_lock(&src_table->lock);
2856 
2857 	list_for_each_entry(opp, &src_table->opp_list, node) {
2858 		if (opp->level == pstate) {
2859 			dest_pstate = opp->required_opps[i]->level;
2860 			goto unlock;
2861 		}
2862 	}
2863 
2864 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2865 	       dst_table);
2866 
2867 unlock:
2868 	mutex_unlock(&src_table->lock);
2869 
2870 	return dest_pstate;
2871 }
2872 
2873 /**
2874  * dev_pm_opp_add_dynamic()  - Add an OPP table from a table definitions
2875  * @dev:	The device for which we do this operation
2876  * @data:	The OPP data for the OPP to add
2877  *
2878  * This function adds an opp definition to the opp table and returns status.
2879  * The opp is made available by default and it can be controlled using
2880  * dev_pm_opp_enable/disable functions.
2881  *
2882  * Return:
2883  * 0		On success OR
2884  *		Duplicate OPPs (both freq and volt are same) and opp->available
2885  * -EEXIST	Freq are same and volt are different OR
2886  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2887  * -ENOMEM	Memory allocation failure
2888  */
dev_pm_opp_add_dynamic(struct device * dev,struct dev_pm_opp_data * data)2889 int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2890 {
2891 	struct opp_table *opp_table;
2892 	int ret;
2893 
2894 	opp_table = _add_opp_table(dev, true);
2895 	if (IS_ERR(opp_table))
2896 		return PTR_ERR(opp_table);
2897 
2898 	/* Fix regulator count for dynamic OPPs */
2899 	opp_table->regulator_count = 1;
2900 
2901 	ret = _opp_add_v1(opp_table, dev, data, true);
2902 	if (ret)
2903 		dev_pm_opp_put_opp_table(opp_table);
2904 
2905 	return ret;
2906 }
2907 EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2908 
2909 /**
2910  * _opp_set_availability() - helper to set the availability of an opp
2911  * @dev:		device for which we do this operation
2912  * @freq:		OPP frequency to modify availability
2913  * @availability_req:	availability status requested for this opp
2914  *
2915  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2916  * which is isolated here.
2917  *
2918  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2919  * copy operation, returns 0 if no modification was done OR modification was
2920  * successful.
2921  */
_opp_set_availability(struct device * dev,unsigned long freq,bool availability_req)2922 static int _opp_set_availability(struct device *dev, unsigned long freq,
2923 				 bool availability_req)
2924 {
2925 	struct opp_table *opp_table;
2926 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2927 	int r = 0;
2928 
2929 	/* Find the opp_table */
2930 	opp_table = _find_opp_table(dev);
2931 	if (IS_ERR(opp_table)) {
2932 		r = PTR_ERR(opp_table);
2933 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2934 		return r;
2935 	}
2936 
2937 	if (!assert_single_clk(opp_table, 0)) {
2938 		r = -EINVAL;
2939 		goto put_table;
2940 	}
2941 
2942 	mutex_lock(&opp_table->lock);
2943 
2944 	/* Do we have the frequency? */
2945 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2946 		if (tmp_opp->rates[0] == freq) {
2947 			opp = tmp_opp;
2948 			break;
2949 		}
2950 	}
2951 
2952 	if (IS_ERR(opp)) {
2953 		r = PTR_ERR(opp);
2954 		goto unlock;
2955 	}
2956 
2957 	/* Is update really needed? */
2958 	if (opp->available == availability_req)
2959 		goto unlock;
2960 
2961 	opp->available = availability_req;
2962 
2963 	dev_pm_opp_get(opp);
2964 	mutex_unlock(&opp_table->lock);
2965 
2966 	/* Notify the change of the OPP availability */
2967 	if (availability_req)
2968 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2969 					     opp);
2970 	else
2971 		blocking_notifier_call_chain(&opp_table->head,
2972 					     OPP_EVENT_DISABLE, opp);
2973 
2974 	dev_pm_opp_put(opp);
2975 	goto put_table;
2976 
2977 unlock:
2978 	mutex_unlock(&opp_table->lock);
2979 put_table:
2980 	dev_pm_opp_put_opp_table(opp_table);
2981 	return r;
2982 }
2983 
2984 /**
2985  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2986  * @dev:		device for which we do this operation
2987  * @freq:		OPP frequency to adjust voltage of
2988  * @u_volt:		new OPP target voltage
2989  * @u_volt_min:		new OPP min voltage
2990  * @u_volt_max:		new OPP max voltage
2991  *
2992  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2993  * copy operation, returns 0 if no modifcation was done OR modification was
2994  * successful.
2995  */
dev_pm_opp_adjust_voltage(struct device * dev,unsigned long freq,unsigned long u_volt,unsigned long u_volt_min,unsigned long u_volt_max)2996 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2997 			      unsigned long u_volt, unsigned long u_volt_min,
2998 			      unsigned long u_volt_max)
2999 
3000 {
3001 	struct opp_table *opp_table;
3002 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
3003 	int r = 0;
3004 
3005 	/* Find the opp_table */
3006 	opp_table = _find_opp_table(dev);
3007 	if (IS_ERR(opp_table)) {
3008 		r = PTR_ERR(opp_table);
3009 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
3010 		return r;
3011 	}
3012 
3013 	if (!assert_single_clk(opp_table, 0)) {
3014 		r = -EINVAL;
3015 		goto put_table;
3016 	}
3017 
3018 	mutex_lock(&opp_table->lock);
3019 
3020 	/* Do we have the frequency? */
3021 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
3022 		if (tmp_opp->rates[0] == freq) {
3023 			opp = tmp_opp;
3024 			break;
3025 		}
3026 	}
3027 
3028 	if (IS_ERR(opp)) {
3029 		r = PTR_ERR(opp);
3030 		goto adjust_unlock;
3031 	}
3032 
3033 	/* Is update really needed? */
3034 	if (opp->supplies->u_volt == u_volt)
3035 		goto adjust_unlock;
3036 
3037 	opp->supplies->u_volt = u_volt;
3038 	opp->supplies->u_volt_min = u_volt_min;
3039 	opp->supplies->u_volt_max = u_volt_max;
3040 
3041 	dev_pm_opp_get(opp);
3042 	mutex_unlock(&opp_table->lock);
3043 
3044 	/* Notify the voltage change of the OPP */
3045 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3046 				     opp);
3047 
3048 	dev_pm_opp_put(opp);
3049 	goto put_table;
3050 
3051 adjust_unlock:
3052 	mutex_unlock(&opp_table->lock);
3053 put_table:
3054 	dev_pm_opp_put_opp_table(opp_table);
3055 	return r;
3056 }
3057 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3058 
3059 /**
3060  * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3061  * @dev:	device for which we do this operation
3062  *
3063  * Sync voltage state of the OPP table regulators.
3064  *
3065  * Return: 0 on success or a negative error value.
3066  */
dev_pm_opp_sync_regulators(struct device * dev)3067 int dev_pm_opp_sync_regulators(struct device *dev)
3068 {
3069 	struct opp_table *opp_table;
3070 	struct regulator *reg;
3071 	int i, ret = 0;
3072 
3073 	/* Device may not have OPP table */
3074 	opp_table = _find_opp_table(dev);
3075 	if (IS_ERR(opp_table))
3076 		return 0;
3077 
3078 	/* Regulator may not be required for the device */
3079 	if (unlikely(!opp_table->regulators))
3080 		goto put_table;
3081 
3082 	/* Nothing to sync if voltage wasn't changed */
3083 	if (!opp_table->enabled)
3084 		goto put_table;
3085 
3086 	for (i = 0; i < opp_table->regulator_count; i++) {
3087 		reg = opp_table->regulators[i];
3088 		ret = regulator_sync_voltage(reg);
3089 		if (ret)
3090 			break;
3091 	}
3092 put_table:
3093 	/* Drop reference taken by _find_opp_table() */
3094 	dev_pm_opp_put_opp_table(opp_table);
3095 
3096 	return ret;
3097 }
3098 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3099 
3100 /**
3101  * dev_pm_opp_enable() - Enable a specific OPP
3102  * @dev:	device for which we do this operation
3103  * @freq:	OPP frequency to enable
3104  *
3105  * Enables a provided opp. If the operation is valid, this returns 0, else the
3106  * corresponding error value. It is meant to be used for users an OPP available
3107  * after being temporarily made unavailable with dev_pm_opp_disable.
3108  *
3109  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3110  * copy operation, returns 0 if no modification was done OR modification was
3111  * successful.
3112  */
dev_pm_opp_enable(struct device * dev,unsigned long freq)3113 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3114 {
3115 	return _opp_set_availability(dev, freq, true);
3116 }
3117 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3118 
3119 /**
3120  * dev_pm_opp_disable() - Disable a specific OPP
3121  * @dev:	device for which we do this operation
3122  * @freq:	OPP frequency to disable
3123  *
3124  * Disables a provided opp. If the operation is valid, this returns
3125  * 0, else the corresponding error value. It is meant to be a temporary
3126  * control by users to make this OPP not available until the circumstances are
3127  * right to make it available again (with a call to dev_pm_opp_enable).
3128  *
3129  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3130  * copy operation, returns 0 if no modification was done OR modification was
3131  * successful.
3132  */
dev_pm_opp_disable(struct device * dev,unsigned long freq)3133 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3134 {
3135 	return _opp_set_availability(dev, freq, false);
3136 }
3137 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3138 
3139 /**
3140  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3141  * @dev:	Device for which notifier needs to be registered
3142  * @nb:		Notifier block to be registered
3143  *
3144  * Return: 0 on success or a negative error value.
3145  */
dev_pm_opp_register_notifier(struct device * dev,struct notifier_block * nb)3146 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3147 {
3148 	struct opp_table *opp_table;
3149 	int ret;
3150 
3151 	opp_table = _find_opp_table(dev);
3152 	if (IS_ERR(opp_table))
3153 		return PTR_ERR(opp_table);
3154 
3155 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
3156 
3157 	dev_pm_opp_put_opp_table(opp_table);
3158 
3159 	return ret;
3160 }
3161 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3162 
3163 /**
3164  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3165  * @dev:	Device for which notifier needs to be unregistered
3166  * @nb:		Notifier block to be unregistered
3167  *
3168  * Return: 0 on success or a negative error value.
3169  */
dev_pm_opp_unregister_notifier(struct device * dev,struct notifier_block * nb)3170 int dev_pm_opp_unregister_notifier(struct device *dev,
3171 				   struct notifier_block *nb)
3172 {
3173 	struct opp_table *opp_table;
3174 	int ret;
3175 
3176 	opp_table = _find_opp_table(dev);
3177 	if (IS_ERR(opp_table))
3178 		return PTR_ERR(opp_table);
3179 
3180 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3181 
3182 	dev_pm_opp_put_opp_table(opp_table);
3183 
3184 	return ret;
3185 }
3186 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3187 
3188 /**
3189  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3190  * @dev:	device pointer used to lookup OPP table.
3191  *
3192  * Free both OPPs created using static entries present in DT and the
3193  * dynamically added entries.
3194  */
dev_pm_opp_remove_table(struct device * dev)3195 void dev_pm_opp_remove_table(struct device *dev)
3196 {
3197 	struct opp_table *opp_table;
3198 
3199 	/* Check for existing table for 'dev' */
3200 	opp_table = _find_opp_table(dev);
3201 	if (IS_ERR(opp_table)) {
3202 		int error = PTR_ERR(opp_table);
3203 
3204 		if (error != -ENODEV)
3205 			WARN(1, "%s: opp_table: %d\n",
3206 			     IS_ERR_OR_NULL(dev) ?
3207 					"Invalid device" : dev_name(dev),
3208 			     error);
3209 		return;
3210 	}
3211 
3212 	/*
3213 	 * Drop the extra reference only if the OPP table was successfully added
3214 	 * with dev_pm_opp_of_add_table() earlier.
3215 	 **/
3216 	if (_opp_remove_all_static(opp_table))
3217 		dev_pm_opp_put_opp_table(opp_table);
3218 
3219 	/* Drop reference taken by _find_opp_table() */
3220 	dev_pm_opp_put_opp_table(opp_table);
3221 }
3222 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3223