1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
5 */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/pci-acpi.h>
15 #include <linux/pci-ecam.h>
16 #include <linux/srcu.h>
17 #include <linux/rculist.h>
18 #include <linux/rcupdate.h>
19
20 #include <xen/xen.h>
21
22 #include <asm/irqdomain.h>
23
24 #define VMD_CFGBAR 0
25 #define VMD_MEMBAR1 2
26 #define VMD_MEMBAR2 4
27
28 #define PCI_REG_VMCAP 0x40
29 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
30 #define PCI_REG_VMCONFIG 0x44
31 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
32 #define VMCONFIG_MSI_REMAP 0x2
33 #define PCI_REG_VMLOCK 0x70
34 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
35
36 #define MB2_SHADOW_OFFSET 0x2000
37 #define MB2_SHADOW_SIZE 16
38
39 enum vmd_features {
40 /*
41 * Device may contain registers which hint the physical location of the
42 * membars, in order to allow proper address translation during
43 * resource assignment to enable guest virtualization
44 */
45 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0),
46
47 /*
48 * Device may provide root port configuration information which limits
49 * bus numbering
50 */
51 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1),
52
53 /*
54 * Device contains physical location shadow registers in
55 * vendor-specific capability space
56 */
57 VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2),
58
59 /*
60 * Device may use MSI-X vector 0 for software triggering and will not
61 * be used for MSI remapping
62 */
63 VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3),
64
65 /*
66 * Device can bypass remapping MSI-X transactions into its MSI-X table,
67 * avoiding the requirement of a VMD MSI domain for child device
68 * interrupt handling.
69 */
70 VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4),
71
72 /*
73 * Enable ASPM on the PCIE root ports and set the default LTR of the
74 * storage devices on platforms where these values are not configured by
75 * BIOS. This is needed for laptops, which require these settings for
76 * proper power management of the SoC.
77 */
78 VMD_FEAT_BIOS_PM_QUIRK = (1 << 5),
79 };
80
81 #define VMD_BIOS_PM_QUIRK_LTR 0x1003 /* 3145728 ns */
82
83 #define VMD_FEATS_CLIENT (VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | \
84 VMD_FEAT_HAS_BUS_RESTRICTIONS | \
85 VMD_FEAT_OFFSET_FIRST_VECTOR | \
86 VMD_FEAT_BIOS_PM_QUIRK)
87
88 static DEFINE_IDA(vmd_instance_ida);
89
90 /*
91 * Lock for manipulating VMD IRQ lists.
92 */
93 static DEFINE_RAW_SPINLOCK(list_lock);
94
95 /**
96 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
97 * @node: list item for parent traversal.
98 * @irq: back pointer to parent.
99 * @enabled: true if driver enabled IRQ
100 * @virq: the virtual IRQ value provided to the requesting driver.
101 *
102 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
103 * a VMD IRQ using this structure.
104 */
105 struct vmd_irq {
106 struct list_head node;
107 struct vmd_irq_list *irq;
108 bool enabled;
109 unsigned int virq;
110 };
111
112 /**
113 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
114 * @irq_list: the list of irq's the VMD one demuxes to.
115 * @srcu: SRCU struct for local synchronization.
116 * @count: number of child IRQs assigned to this vector; used to track
117 * sharing.
118 * @virq: The underlying VMD Linux interrupt number
119 */
120 struct vmd_irq_list {
121 struct list_head irq_list;
122 struct srcu_struct srcu;
123 unsigned int count;
124 unsigned int virq;
125 };
126
127 struct vmd_dev {
128 struct pci_dev *dev;
129
130 raw_spinlock_t cfg_lock;
131 void __iomem *cfgbar;
132
133 int msix_count;
134 struct vmd_irq_list *irqs;
135
136 struct pci_sysdata sysdata;
137 struct resource resources[3];
138 struct irq_domain *irq_domain;
139 struct pci_bus *bus;
140 u8 busn_start;
141 u8 first_vec;
142 char *name;
143 int instance;
144 };
145
vmd_from_bus(struct pci_bus * bus)146 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
147 {
148 return container_of(bus->sysdata, struct vmd_dev, sysdata);
149 }
150
index_from_irqs(struct vmd_dev * vmd,struct vmd_irq_list * irqs)151 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
152 struct vmd_irq_list *irqs)
153 {
154 return irqs - vmd->irqs;
155 }
156
157 /*
158 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
159 * but the MSI entry for the hardware it's driving will be programmed with a
160 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
161 * domain into one of its own, and the VMD driver de-muxes these for the
162 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
163 * and irq_chip to set this up.
164 */
vmd_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)165 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
166 {
167 struct vmd_irq *vmdirq = data->chip_data;
168 struct vmd_irq_list *irq = vmdirq->irq;
169 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
170
171 memset(msg, 0, sizeof(*msg));
172 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
173 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
174 msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
175 }
176
177 /*
178 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
179 */
vmd_irq_enable(struct irq_data * data)180 static void vmd_irq_enable(struct irq_data *data)
181 {
182 struct vmd_irq *vmdirq = data->chip_data;
183 unsigned long flags;
184
185 raw_spin_lock_irqsave(&list_lock, flags);
186 WARN_ON(vmdirq->enabled);
187 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
188 vmdirq->enabled = true;
189 raw_spin_unlock_irqrestore(&list_lock, flags);
190
191 data->chip->irq_unmask(data);
192 }
193
vmd_irq_disable(struct irq_data * data)194 static void vmd_irq_disable(struct irq_data *data)
195 {
196 struct vmd_irq *vmdirq = data->chip_data;
197 unsigned long flags;
198
199 data->chip->irq_mask(data);
200
201 raw_spin_lock_irqsave(&list_lock, flags);
202 if (vmdirq->enabled) {
203 list_del_rcu(&vmdirq->node);
204 vmdirq->enabled = false;
205 }
206 raw_spin_unlock_irqrestore(&list_lock, flags);
207 }
208
209 static struct irq_chip vmd_msi_controller = {
210 .name = "VMD-MSI",
211 .irq_enable = vmd_irq_enable,
212 .irq_disable = vmd_irq_disable,
213 .irq_compose_msi_msg = vmd_compose_msi_msg,
214 };
215
vmd_get_hwirq(struct msi_domain_info * info,msi_alloc_info_t * arg)216 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
217 msi_alloc_info_t *arg)
218 {
219 return 0;
220 }
221
222 /*
223 * XXX: We can be even smarter selecting the best IRQ once we solve the
224 * affinity problem.
225 */
vmd_next_irq(struct vmd_dev * vmd,struct msi_desc * desc)226 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
227 {
228 unsigned long flags;
229 int i, best;
230
231 if (vmd->msix_count == 1 + vmd->first_vec)
232 return &vmd->irqs[vmd->first_vec];
233
234 /*
235 * White list for fast-interrupt handlers. All others will share the
236 * "slow" interrupt vector.
237 */
238 switch (msi_desc_to_pci_dev(desc)->class) {
239 case PCI_CLASS_STORAGE_EXPRESS:
240 break;
241 default:
242 return &vmd->irqs[vmd->first_vec];
243 }
244
245 raw_spin_lock_irqsave(&list_lock, flags);
246 best = vmd->first_vec + 1;
247 for (i = best; i < vmd->msix_count; i++)
248 if (vmd->irqs[i].count < vmd->irqs[best].count)
249 best = i;
250 vmd->irqs[best].count++;
251 raw_spin_unlock_irqrestore(&list_lock, flags);
252
253 return &vmd->irqs[best];
254 }
255
vmd_msi_init(struct irq_domain * domain,struct msi_domain_info * info,unsigned int virq,irq_hw_number_t hwirq,msi_alloc_info_t * arg)256 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
257 unsigned int virq, irq_hw_number_t hwirq,
258 msi_alloc_info_t *arg)
259 {
260 struct msi_desc *desc = arg->desc;
261 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
262 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
263
264 if (!vmdirq)
265 return -ENOMEM;
266
267 INIT_LIST_HEAD(&vmdirq->node);
268 vmdirq->irq = vmd_next_irq(vmd, desc);
269 vmdirq->virq = virq;
270
271 irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq,
272 handle_untracked_irq, vmd, NULL);
273 return 0;
274 }
275
vmd_msi_free(struct irq_domain * domain,struct msi_domain_info * info,unsigned int virq)276 static void vmd_msi_free(struct irq_domain *domain,
277 struct msi_domain_info *info, unsigned int virq)
278 {
279 struct vmd_irq *vmdirq = irq_get_chip_data(virq);
280 unsigned long flags;
281
282 synchronize_srcu(&vmdirq->irq->srcu);
283
284 /* XXX: Potential optimization to rebalance */
285 raw_spin_lock_irqsave(&list_lock, flags);
286 vmdirq->irq->count--;
287 raw_spin_unlock_irqrestore(&list_lock, flags);
288
289 kfree(vmdirq);
290 }
291
vmd_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * arg)292 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
293 int nvec, msi_alloc_info_t *arg)
294 {
295 struct pci_dev *pdev = to_pci_dev(dev);
296 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
297
298 if (nvec > vmd->msix_count)
299 return vmd->msix_count;
300
301 memset(arg, 0, sizeof(*arg));
302 return 0;
303 }
304
vmd_set_desc(msi_alloc_info_t * arg,struct msi_desc * desc)305 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
306 {
307 arg->desc = desc;
308 }
309
310 static struct msi_domain_ops vmd_msi_domain_ops = {
311 .get_hwirq = vmd_get_hwirq,
312 .msi_init = vmd_msi_init,
313 .msi_free = vmd_msi_free,
314 .msi_prepare = vmd_msi_prepare,
315 .set_desc = vmd_set_desc,
316 };
317
318 static struct msi_domain_info vmd_msi_domain_info = {
319 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
320 MSI_FLAG_NO_AFFINITY | MSI_FLAG_PCI_MSIX,
321 .ops = &vmd_msi_domain_ops,
322 .chip = &vmd_msi_controller,
323 };
324
vmd_set_msi_remapping(struct vmd_dev * vmd,bool enable)325 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
326 {
327 u16 reg;
328
329 pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®);
330 reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
331 (reg | VMCONFIG_MSI_REMAP);
332 pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
333 }
334
vmd_create_irq_domain(struct vmd_dev * vmd)335 static int vmd_create_irq_domain(struct vmd_dev *vmd)
336 {
337 struct fwnode_handle *fn;
338
339 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
340 if (!fn)
341 return -ENODEV;
342
343 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
344 if (!vmd->irq_domain) {
345 irq_domain_free_fwnode(fn);
346 return -ENODEV;
347 }
348
349 return 0;
350 }
351
vmd_remove_irq_domain(struct vmd_dev * vmd)352 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
353 {
354 /*
355 * Some production BIOS won't enable remapping between soft reboots.
356 * Ensure remapping is restored before unloading the driver.
357 */
358 if (!vmd->msix_count)
359 vmd_set_msi_remapping(vmd, true);
360
361 if (vmd->irq_domain) {
362 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
363
364 irq_domain_remove(vmd->irq_domain);
365 irq_domain_free_fwnode(fn);
366 }
367 }
368
vmd_cfg_addr(struct vmd_dev * vmd,struct pci_bus * bus,unsigned int devfn,int reg,int len)369 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
370 unsigned int devfn, int reg, int len)
371 {
372 unsigned int busnr_ecam = bus->number - vmd->busn_start;
373 u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
374
375 if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
376 return NULL;
377
378 return vmd->cfgbar + offset;
379 }
380
381 /*
382 * CPU may deadlock if config space is not serialized on some versions of this
383 * hardware, so all config space access is done under a spinlock.
384 */
vmd_pci_read(struct pci_bus * bus,unsigned int devfn,int reg,int len,u32 * value)385 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
386 int len, u32 *value)
387 {
388 struct vmd_dev *vmd = vmd_from_bus(bus);
389 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
390 unsigned long flags;
391 int ret = 0;
392
393 if (!addr)
394 return -EFAULT;
395
396 raw_spin_lock_irqsave(&vmd->cfg_lock, flags);
397 switch (len) {
398 case 1:
399 *value = readb(addr);
400 break;
401 case 2:
402 *value = readw(addr);
403 break;
404 case 4:
405 *value = readl(addr);
406 break;
407 default:
408 ret = -EINVAL;
409 break;
410 }
411 raw_spin_unlock_irqrestore(&vmd->cfg_lock, flags);
412 return ret;
413 }
414
415 /*
416 * VMD h/w converts non-posted config writes to posted memory writes. The
417 * read-back in this function forces the completion so it returns only after
418 * the config space was written, as expected.
419 */
vmd_pci_write(struct pci_bus * bus,unsigned int devfn,int reg,int len,u32 value)420 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
421 int len, u32 value)
422 {
423 struct vmd_dev *vmd = vmd_from_bus(bus);
424 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
425 unsigned long flags;
426 int ret = 0;
427
428 if (!addr)
429 return -EFAULT;
430
431 raw_spin_lock_irqsave(&vmd->cfg_lock, flags);
432 switch (len) {
433 case 1:
434 writeb(value, addr);
435 readb(addr);
436 break;
437 case 2:
438 writew(value, addr);
439 readw(addr);
440 break;
441 case 4:
442 writel(value, addr);
443 readl(addr);
444 break;
445 default:
446 ret = -EINVAL;
447 break;
448 }
449 raw_spin_unlock_irqrestore(&vmd->cfg_lock, flags);
450 return ret;
451 }
452
453 static struct pci_ops vmd_ops = {
454 .read = vmd_pci_read,
455 .write = vmd_pci_write,
456 };
457
458 #ifdef CONFIG_ACPI
vmd_acpi_find_companion(struct pci_dev * pci_dev)459 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
460 {
461 struct pci_host_bridge *bridge;
462 u32 busnr, addr;
463
464 if (pci_dev->bus->ops != &vmd_ops)
465 return NULL;
466
467 bridge = pci_find_host_bridge(pci_dev->bus);
468 busnr = pci_dev->bus->number - bridge->bus->number;
469 /*
470 * The address computation below is only applicable to relative bus
471 * numbers below 32.
472 */
473 if (busnr > 31)
474 return NULL;
475
476 addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
477
478 dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
479 addr);
480
481 return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
482 false);
483 }
484
485 static bool hook_installed;
486
vmd_acpi_begin(void)487 static void vmd_acpi_begin(void)
488 {
489 if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
490 return;
491
492 hook_installed = true;
493 }
494
vmd_acpi_end(void)495 static void vmd_acpi_end(void)
496 {
497 if (!hook_installed)
498 return;
499
500 pci_acpi_clear_companion_lookup_hook();
501 hook_installed = false;
502 }
503 #else
vmd_acpi_begin(void)504 static inline void vmd_acpi_begin(void) { }
vmd_acpi_end(void)505 static inline void vmd_acpi_end(void) { }
506 #endif /* CONFIG_ACPI */
507
vmd_domain_reset(struct vmd_dev * vmd)508 static void vmd_domain_reset(struct vmd_dev *vmd)
509 {
510 u16 bus, max_buses = resource_size(&vmd->resources[0]);
511 u8 dev, functions, fn, hdr_type;
512 char __iomem *base;
513
514 for (bus = 0; bus < max_buses; bus++) {
515 for (dev = 0; dev < 32; dev++) {
516 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
517 PCI_DEVFN(dev, 0), 0);
518
519 hdr_type = readb(base + PCI_HEADER_TYPE);
520
521 functions = (hdr_type & PCI_HEADER_TYPE_MFD) ? 8 : 1;
522 for (fn = 0; fn < functions; fn++) {
523 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
524 PCI_DEVFN(dev, fn), 0);
525
526 hdr_type = readb(base + PCI_HEADER_TYPE) &
527 PCI_HEADER_TYPE_MASK;
528
529 if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
530 (readw(base + PCI_CLASS_DEVICE) !=
531 PCI_CLASS_BRIDGE_PCI))
532 continue;
533
534 /*
535 * Temporarily disable the I/O range before updating
536 * PCI_IO_BASE.
537 */
538 writel(0x0000ffff, base + PCI_IO_BASE_UPPER16);
539 /* Update lower 16 bits of I/O base/limit */
540 writew(0x00f0, base + PCI_IO_BASE);
541 /* Update upper 16 bits of I/O base/limit */
542 writel(0, base + PCI_IO_BASE_UPPER16);
543
544 /* MMIO Base/Limit */
545 writel(0x0000fff0, base + PCI_MEMORY_BASE);
546
547 /* Prefetchable MMIO Base/Limit */
548 writel(0, base + PCI_PREF_LIMIT_UPPER32);
549 writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE);
550 writel(0xffffffff, base + PCI_PREF_BASE_UPPER32);
551 }
552 }
553 }
554 }
555
vmd_attach_resources(struct vmd_dev * vmd)556 static void vmd_attach_resources(struct vmd_dev *vmd)
557 {
558 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
559 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
560 }
561
vmd_detach_resources(struct vmd_dev * vmd)562 static void vmd_detach_resources(struct vmd_dev *vmd)
563 {
564 vmd->dev->resource[VMD_MEMBAR1].child = NULL;
565 vmd->dev->resource[VMD_MEMBAR2].child = NULL;
566 }
567
568 /*
569 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
570 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
571 * 16 bits are the PCI Segment Group (domain) number. Other bits are
572 * currently reserved.
573 */
vmd_find_free_domain(void)574 static int vmd_find_free_domain(void)
575 {
576 int domain = 0xffff;
577 struct pci_bus *bus = NULL;
578
579 while ((bus = pci_find_next_bus(bus)) != NULL)
580 domain = max_t(int, domain, pci_domain_nr(bus));
581 return domain + 1;
582 }
583
vmd_get_phys_offsets(struct vmd_dev * vmd,bool native_hint,resource_size_t * offset1,resource_size_t * offset2)584 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
585 resource_size_t *offset1,
586 resource_size_t *offset2)
587 {
588 struct pci_dev *dev = vmd->dev;
589 u64 phys1, phys2;
590
591 if (native_hint) {
592 u32 vmlock;
593 int ret;
594
595 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
596 if (ret || PCI_POSSIBLE_ERROR(vmlock))
597 return -ENODEV;
598
599 if (MB2_SHADOW_EN(vmlock)) {
600 void __iomem *membar2;
601
602 membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
603 if (!membar2)
604 return -ENOMEM;
605 phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
606 phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
607 pci_iounmap(dev, membar2);
608 } else
609 return 0;
610 } else {
611 /* Hypervisor-Emulated Vendor-Specific Capability */
612 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
613 u32 reg, regu;
614
615 pci_read_config_dword(dev, pos + 4, ®);
616
617 /* "SHDW" */
618 if (pos && reg == 0x53484457) {
619 pci_read_config_dword(dev, pos + 8, ®);
620 pci_read_config_dword(dev, pos + 12, ®u);
621 phys1 = (u64) regu << 32 | reg;
622
623 pci_read_config_dword(dev, pos + 16, ®);
624 pci_read_config_dword(dev, pos + 20, ®u);
625 phys2 = (u64) regu << 32 | reg;
626 } else
627 return 0;
628 }
629
630 *offset1 = dev->resource[VMD_MEMBAR1].start -
631 (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
632 *offset2 = dev->resource[VMD_MEMBAR2].start -
633 (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
634
635 return 0;
636 }
637
vmd_get_bus_number_start(struct vmd_dev * vmd)638 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
639 {
640 struct pci_dev *dev = vmd->dev;
641 u16 reg;
642
643 pci_read_config_word(dev, PCI_REG_VMCAP, ®);
644 if (BUS_RESTRICT_CAP(reg)) {
645 pci_read_config_word(dev, PCI_REG_VMCONFIG, ®);
646
647 switch (BUS_RESTRICT_CFG(reg)) {
648 case 0:
649 vmd->busn_start = 0;
650 break;
651 case 1:
652 vmd->busn_start = 128;
653 break;
654 case 2:
655 vmd->busn_start = 224;
656 break;
657 default:
658 pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
659 BUS_RESTRICT_CFG(reg));
660 return -ENODEV;
661 }
662 }
663
664 return 0;
665 }
666
vmd_irq(int irq,void * data)667 static irqreturn_t vmd_irq(int irq, void *data)
668 {
669 struct vmd_irq_list *irqs = data;
670 struct vmd_irq *vmdirq;
671 int idx;
672
673 idx = srcu_read_lock(&irqs->srcu);
674 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
675 generic_handle_irq(vmdirq->virq);
676 srcu_read_unlock(&irqs->srcu, idx);
677
678 return IRQ_HANDLED;
679 }
680
vmd_alloc_irqs(struct vmd_dev * vmd)681 static int vmd_alloc_irqs(struct vmd_dev *vmd)
682 {
683 struct pci_dev *dev = vmd->dev;
684 int i, err;
685
686 vmd->msix_count = pci_msix_vec_count(dev);
687 if (vmd->msix_count < 0)
688 return -ENODEV;
689
690 vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
691 vmd->msix_count, PCI_IRQ_MSIX);
692 if (vmd->msix_count < 0)
693 return vmd->msix_count;
694
695 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
696 GFP_KERNEL);
697 if (!vmd->irqs)
698 return -ENOMEM;
699
700 for (i = 0; i < vmd->msix_count; i++) {
701 err = init_srcu_struct(&vmd->irqs[i].srcu);
702 if (err)
703 return err;
704
705 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
706 vmd->irqs[i].virq = pci_irq_vector(dev, i);
707 err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
708 vmd_irq, IRQF_NO_THREAD,
709 vmd->name, &vmd->irqs[i]);
710 if (err)
711 return err;
712 }
713
714 return 0;
715 }
716
717 /*
718 * Since VMD is an aperture to regular PCIe root ports, only allow it to
719 * control features that the OS is allowed to control on the physical PCI bus.
720 */
vmd_copy_host_bridge_flags(struct pci_host_bridge * root_bridge,struct pci_host_bridge * vmd_bridge)721 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
722 struct pci_host_bridge *vmd_bridge)
723 {
724 vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
725 vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
726 vmd_bridge->native_aer = root_bridge->native_aer;
727 vmd_bridge->native_pme = root_bridge->native_pme;
728 vmd_bridge->native_ltr = root_bridge->native_ltr;
729 vmd_bridge->native_dpc = root_bridge->native_dpc;
730 }
731
732 /*
733 * Enable ASPM and LTR settings on devices that aren't configured by BIOS.
734 */
vmd_pm_enable_quirk(struct pci_dev * pdev,void * userdata)735 static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata)
736 {
737 unsigned long features = *(unsigned long *)userdata;
738 u16 ltr = VMD_BIOS_PM_QUIRK_LTR;
739 u32 ltr_reg;
740 int pos;
741
742 if (!(features & VMD_FEAT_BIOS_PM_QUIRK))
743 return 0;
744
745 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR);
746 if (!pos)
747 goto out_state_change;
748
749 /*
750 * Skip if the max snoop LTR is non-zero, indicating BIOS has set it
751 * so the LTR quirk is not needed.
752 */
753 pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, <r_reg);
754 if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK)))
755 goto out_state_change;
756
757 /*
758 * Set the default values to the maximum required by the platform to
759 * allow the deepest power management savings. Write as a DWORD where
760 * the lower word is the max snoop latency and the upper word is the
761 * max non-snoop latency.
762 */
763 ltr_reg = (ltr << 16) | ltr;
764 pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg);
765 pci_info(pdev, "VMD: Default LTR value set by driver\n");
766
767 out_state_change:
768 /*
769 * Ensure devices are in D0 before enabling PCI-PM L1 PM Substates, per
770 * PCIe r6.0, sec 5.5.4.
771 */
772 pci_set_power_state_locked(pdev, PCI_D0);
773 pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL);
774 return 0;
775 }
776
vmd_enable_domain(struct vmd_dev * vmd,unsigned long features)777 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
778 {
779 struct pci_sysdata *sd = &vmd->sysdata;
780 struct resource *res;
781 u32 upper_bits;
782 unsigned long flags;
783 LIST_HEAD(resources);
784 resource_size_t offset[2] = {0};
785 resource_size_t membar2_offset = 0x2000;
786 struct pci_bus *child;
787 struct pci_dev *dev;
788 int ret;
789
790 /*
791 * Shadow registers may exist in certain VMD device ids which allow
792 * guests to correctly assign host physical addresses to the root ports
793 * and child devices. These registers will either return the host value
794 * or 0, depending on an enable bit in the VMD device.
795 */
796 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
797 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
798 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
799 if (ret)
800 return ret;
801 } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
802 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
803 if (ret)
804 return ret;
805 }
806
807 /*
808 * Certain VMD devices may have a root port configuration option which
809 * limits the bus range to between 0-127, 128-255, or 224-255
810 */
811 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
812 ret = vmd_get_bus_number_start(vmd);
813 if (ret)
814 return ret;
815 }
816
817 res = &vmd->dev->resource[VMD_CFGBAR];
818 vmd->resources[0] = (struct resource) {
819 .name = "VMD CFGBAR",
820 .start = vmd->busn_start,
821 .end = vmd->busn_start + (resource_size(res) >> 20) - 1,
822 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
823 };
824
825 /*
826 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
827 * put 32-bit resources in the window.
828 *
829 * There's no hardware reason why a 64-bit window *couldn't*
830 * contain a 32-bit resource, but pbus_size_mem() computes the
831 * bridge window size assuming a 64-bit window will contain no
832 * 32-bit resources. __pci_assign_resource() enforces that
833 * artificial restriction to make sure everything will fit.
834 *
835 * The only way we could use a 64-bit non-prefetchable MEMBAR is
836 * if its address is <4GB so that we can convert it to a 32-bit
837 * resource. To be visible to the host OS, all VMD endpoints must
838 * be initially configured by platform BIOS, which includes setting
839 * up these resources. We can assume the device is configured
840 * according to the platform needs.
841 */
842 res = &vmd->dev->resource[VMD_MEMBAR1];
843 upper_bits = upper_32_bits(res->end);
844 flags = res->flags & ~IORESOURCE_SIZEALIGN;
845 if (!upper_bits)
846 flags &= ~IORESOURCE_MEM_64;
847 vmd->resources[1] = (struct resource) {
848 .name = "VMD MEMBAR1",
849 .start = res->start,
850 .end = res->end,
851 .flags = flags,
852 .parent = res,
853 };
854
855 res = &vmd->dev->resource[VMD_MEMBAR2];
856 upper_bits = upper_32_bits(res->end);
857 flags = res->flags & ~IORESOURCE_SIZEALIGN;
858 if (!upper_bits)
859 flags &= ~IORESOURCE_MEM_64;
860 vmd->resources[2] = (struct resource) {
861 .name = "VMD MEMBAR2",
862 .start = res->start + membar2_offset,
863 .end = res->end,
864 .flags = flags,
865 .parent = res,
866 };
867
868 sd->vmd_dev = vmd->dev;
869 sd->domain = vmd_find_free_domain();
870 if (sd->domain < 0)
871 return sd->domain;
872
873 sd->node = pcibus_to_node(vmd->dev->bus);
874
875 /*
876 * Currently MSI remapping must be enabled in guest passthrough mode
877 * due to some missing interrupt remapping plumbing. This is probably
878 * acceptable because the guest is usually CPU-limited and MSI
879 * remapping doesn't become a performance bottleneck.
880 */
881 if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
882 offset[0] || offset[1]) {
883 ret = vmd_alloc_irqs(vmd);
884 if (ret)
885 return ret;
886
887 vmd_set_msi_remapping(vmd, true);
888
889 ret = vmd_create_irq_domain(vmd);
890 if (ret)
891 return ret;
892
893 /*
894 * Override the IRQ domain bus token so the domain can be
895 * distinguished from a regular PCI/MSI domain.
896 */
897 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
898 } else {
899 vmd_set_msi_remapping(vmd, false);
900 }
901
902 pci_add_resource(&resources, &vmd->resources[0]);
903 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
904 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
905
906 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
907 &vmd_ops, sd, &resources);
908 if (!vmd->bus) {
909 pci_free_resource_list(&resources);
910 vmd_remove_irq_domain(vmd);
911 return -ENODEV;
912 }
913
914 vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
915 to_pci_host_bridge(vmd->bus->bridge));
916
917 vmd_attach_resources(vmd);
918 if (vmd->irq_domain)
919 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
920 else
921 dev_set_msi_domain(&vmd->bus->dev,
922 dev_get_msi_domain(&vmd->dev->dev));
923
924 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
925 "domain"), "Can't create symlink to domain\n");
926
927 vmd_acpi_begin();
928
929 pci_scan_child_bus(vmd->bus);
930 vmd_domain_reset(vmd);
931
932 /* When Intel VMD is enabled, the OS does not discover the Root Ports
933 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
934 * a reset to the parent of the PCI device supplied as argument. This
935 * is why we pass a child device, so the reset can be triggered at
936 * the Intel bridge level and propagated to all the children in the
937 * hierarchy.
938 */
939 list_for_each_entry(child, &vmd->bus->children, node) {
940 if (!list_empty(&child->devices)) {
941 dev = list_first_entry(&child->devices,
942 struct pci_dev, bus_list);
943 ret = pci_reset_bus(dev);
944 if (ret)
945 pci_warn(dev, "can't reset device: %d\n", ret);
946
947 break;
948 }
949 }
950
951 pci_assign_unassigned_bus_resources(vmd->bus);
952
953 pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features);
954
955 /*
956 * VMD root buses are virtual and don't return true on pci_is_pcie()
957 * and will fail pcie_bus_configure_settings() early. It can instead be
958 * run on each of the real root ports.
959 */
960 list_for_each_entry(child, &vmd->bus->children, node)
961 pcie_bus_configure_settings(child);
962
963 pci_bus_add_devices(vmd->bus);
964
965 vmd_acpi_end();
966 return 0;
967 }
968
vmd_probe(struct pci_dev * dev,const struct pci_device_id * id)969 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
970 {
971 unsigned long features = (unsigned long) id->driver_data;
972 struct vmd_dev *vmd;
973 int err;
974
975 if (xen_domain()) {
976 /*
977 * Xen doesn't have knowledge about devices in the VMD bus
978 * because the config space of devices behind the VMD bridge is
979 * not known to Xen, and hence Xen cannot discover or configure
980 * them in any way.
981 *
982 * Bypass of MSI remapping won't work in that case as direct
983 * write by Linux to the MSI entries won't result in functional
984 * interrupts, as Xen is the entity that manages the host
985 * interrupt controller and must configure interrupts. However
986 * multiplexing of interrupts by the VMD bridge will work under
987 * Xen, so force the usage of that mode which must always be
988 * supported by VMD bridges.
989 */
990 features &= ~VMD_FEAT_CAN_BYPASS_MSI_REMAP;
991 }
992
993 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
994 return -ENOMEM;
995
996 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
997 if (!vmd)
998 return -ENOMEM;
999
1000 vmd->dev = dev;
1001 vmd->instance = ida_alloc(&vmd_instance_ida, GFP_KERNEL);
1002 if (vmd->instance < 0)
1003 return vmd->instance;
1004
1005 vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
1006 vmd->instance);
1007 if (!vmd->name) {
1008 err = -ENOMEM;
1009 goto out_release_instance;
1010 }
1011
1012 err = pcim_enable_device(dev);
1013 if (err < 0)
1014 goto out_release_instance;
1015
1016 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
1017 if (!vmd->cfgbar) {
1018 err = -ENOMEM;
1019 goto out_release_instance;
1020 }
1021
1022 pci_set_master(dev);
1023 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
1024 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
1025 err = -ENODEV;
1026 goto out_release_instance;
1027 }
1028
1029 if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
1030 vmd->first_vec = 1;
1031
1032 raw_spin_lock_init(&vmd->cfg_lock);
1033 pci_set_drvdata(dev, vmd);
1034 err = vmd_enable_domain(vmd, features);
1035 if (err)
1036 goto out_release_instance;
1037
1038 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
1039 vmd->sysdata.domain);
1040 return 0;
1041
1042 out_release_instance:
1043 ida_free(&vmd_instance_ida, vmd->instance);
1044 return err;
1045 }
1046
vmd_cleanup_srcu(struct vmd_dev * vmd)1047 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
1048 {
1049 int i;
1050
1051 for (i = 0; i < vmd->msix_count; i++)
1052 cleanup_srcu_struct(&vmd->irqs[i].srcu);
1053 }
1054
vmd_remove(struct pci_dev * dev)1055 static void vmd_remove(struct pci_dev *dev)
1056 {
1057 struct vmd_dev *vmd = pci_get_drvdata(dev);
1058
1059 pci_stop_root_bus(vmd->bus);
1060 sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
1061 pci_remove_root_bus(vmd->bus);
1062 vmd_cleanup_srcu(vmd);
1063 vmd_detach_resources(vmd);
1064 vmd_remove_irq_domain(vmd);
1065 ida_free(&vmd_instance_ida, vmd->instance);
1066 }
1067
vmd_shutdown(struct pci_dev * dev)1068 static void vmd_shutdown(struct pci_dev *dev)
1069 {
1070 struct vmd_dev *vmd = pci_get_drvdata(dev);
1071
1072 vmd_remove_irq_domain(vmd);
1073 }
1074
1075 #ifdef CONFIG_PM_SLEEP
vmd_suspend(struct device * dev)1076 static int vmd_suspend(struct device *dev)
1077 {
1078 struct pci_dev *pdev = to_pci_dev(dev);
1079 struct vmd_dev *vmd = pci_get_drvdata(pdev);
1080 int i;
1081
1082 for (i = 0; i < vmd->msix_count; i++)
1083 devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
1084
1085 return 0;
1086 }
1087
vmd_resume(struct device * dev)1088 static int vmd_resume(struct device *dev)
1089 {
1090 struct pci_dev *pdev = to_pci_dev(dev);
1091 struct vmd_dev *vmd = pci_get_drvdata(pdev);
1092 int err, i;
1093
1094 vmd_set_msi_remapping(vmd, !!vmd->irq_domain);
1095
1096 for (i = 0; i < vmd->msix_count; i++) {
1097 err = devm_request_irq(dev, vmd->irqs[i].virq,
1098 vmd_irq, IRQF_NO_THREAD,
1099 vmd->name, &vmd->irqs[i]);
1100 if (err)
1101 return err;
1102 }
1103
1104 return 0;
1105 }
1106 #endif
1107 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
1108
1109 static const struct pci_device_id vmd_ids[] = {
1110 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
1111 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
1112 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1113 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1114 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1115 VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1116 {PCI_VDEVICE(INTEL, 0x467f),
1117 .driver_data = VMD_FEATS_CLIENT,},
1118 {PCI_VDEVICE(INTEL, 0x4c3d),
1119 .driver_data = VMD_FEATS_CLIENT,},
1120 {PCI_VDEVICE(INTEL, 0xa77f),
1121 .driver_data = VMD_FEATS_CLIENT,},
1122 {PCI_VDEVICE(INTEL, 0x7d0b),
1123 .driver_data = VMD_FEATS_CLIENT,},
1124 {PCI_VDEVICE(INTEL, 0xad0b),
1125 .driver_data = VMD_FEATS_CLIENT,},
1126 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1127 .driver_data = VMD_FEATS_CLIENT,},
1128 {PCI_VDEVICE(INTEL, 0xb60b),
1129 .driver_data = VMD_FEATS_CLIENT,},
1130 {PCI_VDEVICE(INTEL, 0xb06f),
1131 .driver_data = VMD_FEATS_CLIENT,},
1132 {0,}
1133 };
1134 MODULE_DEVICE_TABLE(pci, vmd_ids);
1135
1136 static struct pci_driver vmd_drv = {
1137 .name = "vmd",
1138 .id_table = vmd_ids,
1139 .probe = vmd_probe,
1140 .remove = vmd_remove,
1141 .shutdown = vmd_shutdown,
1142 .driver = {
1143 .pm = &vmd_dev_pm_ops,
1144 },
1145 };
1146 module_pci_driver(vmd_drv);
1147
1148 MODULE_AUTHOR("Intel Corporation");
1149 MODULE_DESCRIPTION("Volume Management Device driver");
1150 MODULE_LICENSE("GPL v2");
1151 MODULE_VERSION("0.6");
1152