• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11 
12 #include <linux/cleanup.h>
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/notifier.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/power_supply.h>
23 #include <linux/property.h>
24 #include <linux/thermal.h>
25 #include <linux/fixp-arith.h>
26 #include "power_supply.h"
27 #include "samsung-sdi-battery.h"
28 
29 static const struct class power_supply_class = {
30 	.name = "power_supply",
31 	.dev_uevent = power_supply_uevent,
32 };
33 
34 static BLOCKING_NOTIFIER_HEAD(power_supply_notifier);
35 
36 static const struct device_type power_supply_dev_type = {
37 	.name = "power_supply",
38 	.groups = power_supply_attr_groups,
39 };
40 
41 struct match_device_node_array_param {
42 	struct device_node *parent_of_node;
43 	struct power_supply **psy;
44 	ssize_t psy_size;
45 	ssize_t psy_count;
46 };
47 
48 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME	msecs_to_jiffies(10)
49 
__power_supply_is_supplied_by(struct power_supply * supplier,struct power_supply * supply)50 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
51 					 struct power_supply *supply)
52 {
53 	int i;
54 
55 	if (!supply->supplied_from && !supplier->supplied_to)
56 		return false;
57 
58 	/* Support both supplied_to and supplied_from modes */
59 	if (supply->supplied_from) {
60 		if (!supplier->desc->name)
61 			return false;
62 		for (i = 0; i < supply->num_supplies; i++)
63 			if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
64 				return true;
65 	} else {
66 		if (!supply->desc->name)
67 			return false;
68 		for (i = 0; i < supplier->num_supplicants; i++)
69 			if (!strcmp(supplier->supplied_to[i], supply->desc->name))
70 				return true;
71 	}
72 
73 	return false;
74 }
75 
__power_supply_changed_work(struct device * dev,void * data)76 static int __power_supply_changed_work(struct device *dev, void *data)
77 {
78 	struct power_supply *psy = data;
79 	struct power_supply *pst = dev_get_drvdata(dev);
80 
81 	if (__power_supply_is_supplied_by(psy, pst)) {
82 		if (pst->desc->external_power_changed)
83 			pst->desc->external_power_changed(pst);
84 	}
85 
86 	return 0;
87 }
88 
power_supply_changed_work(struct work_struct * work)89 static void power_supply_changed_work(struct work_struct *work)
90 {
91 	unsigned long flags;
92 	struct power_supply *psy = container_of(work, struct power_supply,
93 						changed_work);
94 
95 	dev_dbg(&psy->dev, "%s\n", __func__);
96 
97 	spin_lock_irqsave(&psy->changed_lock, flags);
98 	/*
99 	 * Check 'changed' here to avoid issues due to race between
100 	 * power_supply_changed() and this routine. In worst case
101 	 * power_supply_changed() can be called again just before we take above
102 	 * lock. During the first call of this routine we will mark 'changed' as
103 	 * false and it will stay false for the next call as well.
104 	 */
105 	if (likely(psy->changed)) {
106 		psy->changed = false;
107 		spin_unlock_irqrestore(&psy->changed_lock, flags);
108 		power_supply_for_each_device(psy, __power_supply_changed_work);
109 		power_supply_update_leds(psy);
110 		blocking_notifier_call_chain(&power_supply_notifier,
111 				PSY_EVENT_PROP_CHANGED, psy);
112 		kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
113 		spin_lock_irqsave(&psy->changed_lock, flags);
114 	}
115 
116 	/*
117 	 * Hold the wakeup_source until all events are processed.
118 	 * power_supply_changed() might have called again and have set 'changed'
119 	 * to true.
120 	 */
121 	if (likely(!psy->changed))
122 		pm_relax(&psy->dev);
123 	spin_unlock_irqrestore(&psy->changed_lock, flags);
124 }
125 
power_supply_for_each_device(void * data,int (* fn)(struct device * dev,void * data))126 int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data))
127 {
128 	return class_for_each_device(&power_supply_class, NULL, data, fn);
129 }
130 EXPORT_SYMBOL_GPL(power_supply_for_each_device);
131 
power_supply_changed(struct power_supply * psy)132 void power_supply_changed(struct power_supply *psy)
133 {
134 	unsigned long flags;
135 
136 	dev_dbg(&psy->dev, "%s\n", __func__);
137 
138 	spin_lock_irqsave(&psy->changed_lock, flags);
139 	psy->changed = true;
140 	pm_stay_awake(&psy->dev);
141 	spin_unlock_irqrestore(&psy->changed_lock, flags);
142 	schedule_work(&psy->changed_work);
143 }
144 EXPORT_SYMBOL_GPL(power_supply_changed);
145 
146 /*
147  * Notify that power supply was registered after parent finished the probing.
148  *
149  * Often power supply is registered from driver's probe function. However
150  * calling power_supply_changed() directly from power_supply_register()
151  * would lead to execution of get_property() function provided by the driver
152  * too early - before the probe ends.
153  *
154  * Avoid that by waiting on parent's mutex.
155  */
power_supply_deferred_register_work(struct work_struct * work)156 static void power_supply_deferred_register_work(struct work_struct *work)
157 {
158 	struct power_supply *psy = container_of(work, struct power_supply,
159 						deferred_register_work.work);
160 
161 	if (psy->dev.parent) {
162 		while (!mutex_trylock(&psy->dev.parent->mutex)) {
163 			if (psy->removing)
164 				return;
165 			msleep(10);
166 		}
167 	}
168 
169 	power_supply_changed(psy);
170 
171 	if (psy->dev.parent)
172 		mutex_unlock(&psy->dev.parent->mutex);
173 }
174 
175 #ifdef CONFIG_OF
__power_supply_populate_supplied_from(struct device * dev,void * data)176 static int __power_supply_populate_supplied_from(struct device *dev,
177 						 void *data)
178 {
179 	struct power_supply *psy = data;
180 	struct power_supply *epsy = dev_get_drvdata(dev);
181 	struct device_node *np;
182 	int i = 0;
183 
184 	do {
185 		np = of_parse_phandle(psy->of_node, "power-supplies", i++);
186 		if (!np)
187 			break;
188 
189 		if (np == epsy->of_node) {
190 			dev_dbg(&psy->dev, "%s: Found supply : %s\n",
191 				psy->desc->name, epsy->desc->name);
192 			psy->supplied_from[i-1] = (char *)epsy->desc->name;
193 			psy->num_supplies++;
194 			of_node_put(np);
195 			break;
196 		}
197 		of_node_put(np);
198 	} while (np);
199 
200 	return 0;
201 }
202 
power_supply_populate_supplied_from(struct power_supply * psy)203 static int power_supply_populate_supplied_from(struct power_supply *psy)
204 {
205 	int error;
206 
207 	error = power_supply_for_each_device(psy, __power_supply_populate_supplied_from);
208 
209 	dev_dbg(&psy->dev, "%s %d\n", __func__, error);
210 
211 	return error;
212 }
213 
__power_supply_find_supply_from_node(struct device * dev,void * data)214 static int  __power_supply_find_supply_from_node(struct device *dev,
215 						 void *data)
216 {
217 	struct device_node *np = data;
218 	struct power_supply *epsy = dev_get_drvdata(dev);
219 
220 	/* returning non-zero breaks out of power_supply_for_each_device loop */
221 	if (epsy->of_node == np)
222 		return 1;
223 
224 	return 0;
225 }
226 
power_supply_find_supply_from_node(struct device_node * supply_node)227 static int power_supply_find_supply_from_node(struct device_node *supply_node)
228 {
229 	int error;
230 
231 	/*
232 	 * power_supply_for_each_device() either returns its own errors or values
233 	 * returned by __power_supply_find_supply_from_node().
234 	 *
235 	 * __power_supply_find_supply_from_node() will return 0 (no match)
236 	 * or 1 (match).
237 	 *
238 	 * We return 0 if power_supply_for_each_device() returned 1, -EPROBE_DEFER if
239 	 * it returned 0, or error as returned by it.
240 	 */
241 	error = power_supply_for_each_device(supply_node, __power_supply_find_supply_from_node);
242 
243 	return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
244 }
245 
power_supply_check_supplies(struct power_supply * psy)246 static int power_supply_check_supplies(struct power_supply *psy)
247 {
248 	struct device_node *np;
249 	int cnt = 0;
250 
251 	/* If there is already a list honor it */
252 	if (psy->supplied_from && psy->num_supplies > 0)
253 		return 0;
254 
255 	/* No device node found, nothing to do */
256 	if (!psy->of_node)
257 		return 0;
258 
259 	do {
260 		int ret;
261 
262 		np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
263 		if (!np)
264 			break;
265 
266 		ret = power_supply_find_supply_from_node(np);
267 		of_node_put(np);
268 
269 		if (ret) {
270 			dev_dbg(&psy->dev, "Failed to find supply!\n");
271 			return ret;
272 		}
273 	} while (np);
274 
275 	/* Missing valid "power-supplies" entries */
276 	if (cnt == 1)
277 		return 0;
278 
279 	/* All supplies found, allocate char ** array for filling */
280 	psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from),
281 					  GFP_KERNEL);
282 	if (!psy->supplied_from)
283 		return -ENOMEM;
284 
285 	*psy->supplied_from = devm_kcalloc(&psy->dev,
286 					   cnt - 1, sizeof(**psy->supplied_from),
287 					   GFP_KERNEL);
288 	if (!*psy->supplied_from)
289 		return -ENOMEM;
290 
291 	return power_supply_populate_supplied_from(psy);
292 }
293 #else
power_supply_check_supplies(struct power_supply * psy)294 static int power_supply_check_supplies(struct power_supply *psy)
295 {
296 	int nval, ret;
297 
298 	if (!psy->dev.parent)
299 		return 0;
300 
301 	nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
302 	if (nval <= 0)
303 		return 0;
304 
305 	psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
306 						sizeof(char *), GFP_KERNEL);
307 	if (!psy->supplied_from)
308 		return -ENOMEM;
309 
310 	ret = device_property_read_string_array(psy->dev.parent,
311 		"supplied-from", (const char **)psy->supplied_from, nval);
312 	if (ret < 0)
313 		return ret;
314 
315 	psy->num_supplies = nval;
316 
317 	return 0;
318 }
319 #endif
320 
321 struct psy_am_i_supplied_data {
322 	struct power_supply *psy;
323 	unsigned int count;
324 };
325 
__power_supply_am_i_supplied(struct device * dev,void * _data)326 static int __power_supply_am_i_supplied(struct device *dev, void *_data)
327 {
328 	union power_supply_propval ret = {0,};
329 	struct power_supply *epsy = dev_get_drvdata(dev);
330 	struct psy_am_i_supplied_data *data = _data;
331 
332 	if (__power_supply_is_supplied_by(epsy, data->psy)) {
333 		data->count++;
334 		if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
335 					&ret))
336 			return ret.intval;
337 	}
338 
339 	return 0;
340 }
341 
power_supply_am_i_supplied(struct power_supply * psy)342 int power_supply_am_i_supplied(struct power_supply *psy)
343 {
344 	struct psy_am_i_supplied_data data = { psy, 0 };
345 	int error;
346 
347 	error = power_supply_for_each_device(&data, __power_supply_am_i_supplied);
348 
349 	dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
350 
351 	if (data.count == 0)
352 		return -ENODEV;
353 
354 	return error;
355 }
356 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
357 
__power_supply_is_system_supplied(struct device * dev,void * data)358 static int __power_supply_is_system_supplied(struct device *dev, void *data)
359 {
360 	union power_supply_propval ret = {0,};
361 	struct power_supply *psy = dev_get_drvdata(dev);
362 	unsigned int *count = data;
363 
364 	if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
365 		if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
366 			return 0;
367 
368 	(*count)++;
369 	if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
370 		if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
371 					&ret))
372 			return ret.intval;
373 
374 	return 0;
375 }
376 
power_supply_is_system_supplied(void)377 int power_supply_is_system_supplied(void)
378 {
379 	int error;
380 	unsigned int count = 0;
381 
382 	error = power_supply_for_each_device(&count, __power_supply_is_system_supplied);
383 
384 	/*
385 	 * If no system scope power class device was found at all, most probably we
386 	 * are running on a desktop system, so assume we are on mains power.
387 	 */
388 	if (count == 0)
389 		return 1;
390 
391 	return error;
392 }
393 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
394 
395 struct psy_get_supplier_prop_data {
396 	struct power_supply *psy;
397 	enum power_supply_property psp;
398 	union power_supply_propval *val;
399 };
400 
__power_supply_get_supplier_property(struct device * dev,void * _data)401 static int __power_supply_get_supplier_property(struct device *dev, void *_data)
402 {
403 	struct power_supply *epsy = dev_get_drvdata(dev);
404 	struct psy_get_supplier_prop_data *data = _data;
405 
406 	if (__power_supply_is_supplied_by(epsy, data->psy))
407 		if (!power_supply_get_property(epsy, data->psp, data->val))
408 			return 1; /* Success */
409 
410 	return 0; /* Continue iterating */
411 }
412 
power_supply_get_property_from_supplier(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)413 int power_supply_get_property_from_supplier(struct power_supply *psy,
414 					    enum power_supply_property psp,
415 					    union power_supply_propval *val)
416 {
417 	struct psy_get_supplier_prop_data data = {
418 		.psy = psy,
419 		.psp = psp,
420 		.val = val,
421 	};
422 	int ret;
423 
424 	/*
425 	 * This function is not intended for use with a supply with multiple
426 	 * suppliers, we simply pick the first supply to report the psp.
427 	 */
428 	ret = power_supply_for_each_device(&data, __power_supply_get_supplier_property);
429 	if (ret < 0)
430 		return ret;
431 	if (ret == 0)
432 		return -ENODEV;
433 
434 	return 0;
435 }
436 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
437 
power_supply_set_battery_charged(struct power_supply * psy)438 int power_supply_set_battery_charged(struct power_supply *psy)
439 {
440 	if (atomic_read(&psy->use_cnt) >= 0 &&
441 			psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
442 			psy->desc->set_charged) {
443 		psy->desc->set_charged(psy);
444 		return 0;
445 	}
446 
447 	return -EINVAL;
448 }
449 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
450 
power_supply_match_device_by_name(struct device * dev,const void * data)451 static int power_supply_match_device_by_name(struct device *dev, const void *data)
452 {
453 	const char *name = data;
454 	struct power_supply *psy = dev_get_drvdata(dev);
455 
456 	return strcmp(psy->desc->name, name) == 0;
457 }
458 
459 /**
460  * power_supply_get_by_name() - Search for a power supply and returns its ref
461  * @name: Power supply name to fetch
462  *
463  * If power supply was found, it increases reference count for the
464  * internal power supply's device. The user should power_supply_put()
465  * after usage.
466  *
467  * Return: On success returns a reference to a power supply with
468  * matching name equals to @name, a NULL otherwise.
469  */
power_supply_get_by_name(const char * name)470 struct power_supply *power_supply_get_by_name(const char *name)
471 {
472 	struct power_supply *psy = NULL;
473 	struct device *dev = class_find_device(&power_supply_class, NULL, name,
474 					       power_supply_match_device_by_name);
475 
476 	if (dev) {
477 		psy = dev_get_drvdata(dev);
478 		atomic_inc(&psy->use_cnt);
479 	}
480 
481 	return psy;
482 }
483 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
484 
485 /**
486  * power_supply_put() - Drop reference obtained with power_supply_get_by_name
487  * @psy: Reference to put
488  *
489  * The reference to power supply should be put before unregistering
490  * the power supply.
491  */
power_supply_put(struct power_supply * psy)492 void power_supply_put(struct power_supply *psy)
493 {
494 	atomic_dec(&psy->use_cnt);
495 	put_device(&psy->dev);
496 }
497 EXPORT_SYMBOL_GPL(power_supply_put);
498 
499 #ifdef CONFIG_OF
power_supply_match_device_node(struct device * dev,const void * data)500 static int power_supply_match_device_node(struct device *dev, const void *data)
501 {
502 	return dev->parent && dev->parent->of_node == data;
503 }
504 
505 /**
506  * power_supply_get_by_phandle() - Search for a power supply and returns its ref
507  * @np: Pointer to device node holding phandle property
508  * @property: Name of property holding a power supply name
509  *
510  * If power supply was found, it increases reference count for the
511  * internal power supply's device. The user should power_supply_put()
512  * after usage.
513  *
514  * Return: On success returns a reference to a power supply with
515  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
516  */
power_supply_get_by_phandle(struct device_node * np,const char * property)517 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
518 							const char *property)
519 {
520 	struct device_node *power_supply_np;
521 	struct power_supply *psy = NULL;
522 	struct device *dev;
523 
524 	power_supply_np = of_parse_phandle(np, property, 0);
525 	if (!power_supply_np)
526 		return ERR_PTR(-ENODEV);
527 
528 	dev = class_find_device(&power_supply_class, NULL, power_supply_np,
529 				power_supply_match_device_node);
530 
531 	of_node_put(power_supply_np);
532 
533 	if (dev) {
534 		psy = dev_get_drvdata(dev);
535 		atomic_inc(&psy->use_cnt);
536 	}
537 
538 	return psy;
539 }
540 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
541 
power_supply_match_device_node_array(struct device * dev,void * data)542 static int power_supply_match_device_node_array(struct device *dev,
543 						void *data)
544 {
545 	struct match_device_node_array_param *param =
546 		(struct match_device_node_array_param *)data;
547 	struct power_supply **psy = param->psy;
548 	ssize_t size = param->psy_size;
549 	ssize_t *count = &param->psy_count;
550 
551 	if (!dev->parent || dev->parent->of_node != param->parent_of_node)
552 		return 0;
553 
554 	if (*count >= size)
555 		return -EOVERFLOW;
556 
557 	psy[*count] = dev_get_drvdata(dev);
558 	atomic_inc(&psy[*count]->use_cnt);
559 	(*count)++;
560 
561 	return 0;
562 }
563 
564 /**
565  * power_supply_get_by_phandle_array() - Similar to
566  * power_supply_get_by_phandle but returns an array of power supply
567  * objects which are associated with the phandle.
568  * @np: Pointer to device node holding phandle property.
569  * @property: Name of property holding a power supply name.
570  * @psy: Array of power_supply pointers provided by the client which is
571  * filled by power_supply_get_by_phandle_array.
572  * @size: size of power_supply pointer array.
573  *
574  * If power supply was found, it increases reference count for the
575  * internal power supply's device. The user should power_supply_put()
576  * after usage.
577  *
578  * Return: On success returns the number of power supply objects filled
579  * in the @psy array.
580  * -EOVERFLOW when size of @psy array is not suffice.
581  * -EINVAL when @psy is NULL or @size is 0.
582  * -ENODEV when matching device_node is not found.
583  */
power_supply_get_by_phandle_array(struct device_node * np,const char * property,struct power_supply ** psy,ssize_t size)584 int power_supply_get_by_phandle_array(struct device_node *np,
585 				      const char *property,
586 				      struct power_supply **psy,
587 				      ssize_t size)
588 {
589 	struct device_node *power_supply_np;
590 	int ret;
591 	struct match_device_node_array_param param;
592 
593 	if (!psy || !size)
594 		return -EINVAL;
595 
596 	power_supply_np = of_parse_phandle(np, property, 0);
597 	if (!power_supply_np)
598 		return -ENODEV;
599 
600 	param.parent_of_node = power_supply_np;
601 	param.psy = psy;
602 	param.psy_size = size;
603 	param.psy_count = 0;
604 	ret = class_for_each_device(&power_supply_class, NULL, &param,
605 				    power_supply_match_device_node_array);
606 
607 	of_node_put(power_supply_np);
608 
609 	return param.psy_count;
610 }
611 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle_array);
612 
devm_power_supply_put(struct device * dev,void * res)613 static void devm_power_supply_put(struct device *dev, void *res)
614 {
615 	struct power_supply **psy = res;
616 
617 	power_supply_put(*psy);
618 }
619 
620 /**
621  * devm_power_supply_get_by_phandle() - Resource managed version of
622  *  power_supply_get_by_phandle()
623  * @dev: Pointer to device holding phandle property
624  * @property: Name of property holding a power supply phandle
625  *
626  * Return: On success returns a reference to a power supply with
627  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
628  */
devm_power_supply_get_by_phandle(struct device * dev,const char * property)629 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
630 						      const char *property)
631 {
632 	struct power_supply **ptr, *psy;
633 
634 	if (!dev->of_node)
635 		return ERR_PTR(-ENODEV);
636 
637 	ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
638 	if (!ptr)
639 		return ERR_PTR(-ENOMEM);
640 
641 	psy = power_supply_get_by_phandle(dev->of_node, property);
642 	if (IS_ERR_OR_NULL(psy)) {
643 		devres_free(ptr);
644 	} else {
645 		*ptr = psy;
646 		devres_add(dev, ptr);
647 	}
648 	return psy;
649 }
650 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
651 #endif /* CONFIG_OF */
652 
power_supply_get_battery_info(struct power_supply * psy,struct power_supply_battery_info ** info_out)653 int power_supply_get_battery_info(struct power_supply *psy,
654 				  struct power_supply_battery_info **info_out)
655 {
656 	struct power_supply_resistance_temp_table *resist_table;
657 	struct power_supply_battery_info *info;
658 	struct device_node *battery_np = NULL;
659 	struct fwnode_reference_args args;
660 	struct fwnode_handle *fwnode = NULL;
661 	const char *value;
662 	int err, len, index;
663 	const __be32 *list;
664 	u32 min_max[2];
665 
666 	if (psy->of_node) {
667 		battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
668 		if (!battery_np)
669 			return -ENODEV;
670 
671 		fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
672 	} else if (psy->dev.parent) {
673 		err = fwnode_property_get_reference_args(
674 					dev_fwnode(psy->dev.parent),
675 					"monitored-battery", NULL, 0, 0, &args);
676 		if (err)
677 			return err;
678 
679 		fwnode = args.fwnode;
680 	}
681 
682 	if (!fwnode)
683 		return -ENOENT;
684 
685 	err = fwnode_property_read_string(fwnode, "compatible", &value);
686 	if (err)
687 		goto out_put_node;
688 
689 
690 	/* Try static batteries first */
691 	err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
692 	if (!err)
693 		goto out_ret_pointer;
694 	else if (err == -ENODEV)
695 		/*
696 		 * Device does not have a static battery.
697 		 * Proceed to look for a simple battery.
698 		 */
699 		err = 0;
700 
701 	if (strcmp("simple-battery", value)) {
702 		err = -ENODEV;
703 		goto out_put_node;
704 	}
705 
706 	info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
707 	if (!info) {
708 		err = -ENOMEM;
709 		goto out_put_node;
710 	}
711 
712 	info->technology                     = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
713 	info->energy_full_design_uwh         = -EINVAL;
714 	info->charge_full_design_uah         = -EINVAL;
715 	info->voltage_min_design_uv          = -EINVAL;
716 	info->voltage_max_design_uv          = -EINVAL;
717 	info->precharge_current_ua           = -EINVAL;
718 	info->charge_term_current_ua         = -EINVAL;
719 	info->constant_charge_current_max_ua = -EINVAL;
720 	info->constant_charge_voltage_max_uv = -EINVAL;
721 	info->tricklecharge_current_ua       = -EINVAL;
722 	info->precharge_voltage_max_uv       = -EINVAL;
723 	info->charge_restart_voltage_uv      = -EINVAL;
724 	info->overvoltage_limit_uv           = -EINVAL;
725 	info->maintenance_charge             = NULL;
726 	info->alert_low_temp_charge_current_ua = -EINVAL;
727 	info->alert_low_temp_charge_voltage_uv = -EINVAL;
728 	info->alert_high_temp_charge_current_ua = -EINVAL;
729 	info->alert_high_temp_charge_voltage_uv = -EINVAL;
730 	info->temp_ambient_alert_min         = INT_MIN;
731 	info->temp_ambient_alert_max         = INT_MAX;
732 	info->temp_alert_min                 = INT_MIN;
733 	info->temp_alert_max                 = INT_MAX;
734 	info->temp_min                       = INT_MIN;
735 	info->temp_max                       = INT_MAX;
736 	info->factory_internal_resistance_uohm  = -EINVAL;
737 	info->resist_table                   = NULL;
738 	info->bti_resistance_ohm             = -EINVAL;
739 	info->bti_resistance_tolerance       = -EINVAL;
740 
741 	for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
742 		info->ocv_table[index]       = NULL;
743 		info->ocv_temp[index]        = -EINVAL;
744 		info->ocv_table_size[index]  = -EINVAL;
745 	}
746 
747 	/* The property and field names below must correspond to elements
748 	 * in enum power_supply_property. For reasoning, see
749 	 * Documentation/power/power_supply_class.rst.
750 	 */
751 
752 	if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
753 		if (!strcmp("nickel-cadmium", value))
754 			info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
755 		else if (!strcmp("nickel-metal-hydride", value))
756 			info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
757 		else if (!strcmp("lithium-ion", value))
758 			/* Imprecise lithium-ion type */
759 			info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
760 		else if (!strcmp("lithium-ion-polymer", value))
761 			info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
762 		else if (!strcmp("lithium-ion-iron-phosphate", value))
763 			info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
764 		else if (!strcmp("lithium-ion-manganese-oxide", value))
765 			info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
766 		else
767 			dev_warn(&psy->dev, "%s unknown battery type\n", value);
768 	}
769 
770 	fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
771 			     &info->energy_full_design_uwh);
772 	fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
773 			     &info->charge_full_design_uah);
774 	fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
775 			     &info->voltage_min_design_uv);
776 	fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
777 			     &info->voltage_max_design_uv);
778 	fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
779 			     &info->tricklecharge_current_ua);
780 	fwnode_property_read_u32(fwnode, "precharge-current-microamp",
781 			     &info->precharge_current_ua);
782 	fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
783 			     &info->precharge_voltage_max_uv);
784 	fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
785 			     &info->charge_term_current_ua);
786 	fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
787 			     &info->charge_restart_voltage_uv);
788 	fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
789 			     &info->overvoltage_limit_uv);
790 	fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
791 			     &info->constant_charge_current_max_ua);
792 	fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
793 			     &info->constant_charge_voltage_max_uv);
794 	fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
795 			     &info->factory_internal_resistance_uohm);
796 
797 	if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
798 					    min_max, ARRAY_SIZE(min_max))) {
799 		info->temp_ambient_alert_min = min_max[0];
800 		info->temp_ambient_alert_max = min_max[1];
801 	}
802 	if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
803 					    min_max, ARRAY_SIZE(min_max))) {
804 		info->temp_alert_min = min_max[0];
805 		info->temp_alert_max = min_max[1];
806 	}
807 	if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
808 					    min_max, ARRAY_SIZE(min_max))) {
809 		info->temp_min = min_max[0];
810 		info->temp_max = min_max[1];
811 	}
812 
813 	/*
814 	 * The below code uses raw of-data parsing to parse
815 	 * /schemas/types.yaml#/definitions/uint32-matrix
816 	 * data, so for now this is only support with of.
817 	 */
818 	if (!battery_np)
819 		goto out_ret_pointer;
820 
821 	len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
822 	if (len < 0 && len != -EINVAL) {
823 		err = len;
824 		goto out_put_node;
825 	} else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
826 		dev_err(&psy->dev, "Too many temperature values\n");
827 		err = -EINVAL;
828 		goto out_put_node;
829 	} else if (len > 0) {
830 		of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
831 					   info->ocv_temp, len);
832 	}
833 
834 	for (index = 0; index < len; index++) {
835 		struct power_supply_battery_ocv_table *table;
836 		int i, tab_len, size;
837 
838 		char *propname __free(kfree) = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d",
839 							 index);
840 		if (!propname) {
841 			power_supply_put_battery_info(psy, info);
842 			err = -ENOMEM;
843 			goto out_put_node;
844 		}
845 		list = of_get_property(battery_np, propname, &size);
846 		if (!list || !size) {
847 			dev_err(&psy->dev, "failed to get %s\n", propname);
848 			power_supply_put_battery_info(psy, info);
849 			err = -EINVAL;
850 			goto out_put_node;
851 		}
852 
853 		tab_len = size / (2 * sizeof(__be32));
854 		info->ocv_table_size[index] = tab_len;
855 
856 		table = info->ocv_table[index] =
857 			devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
858 		if (!info->ocv_table[index]) {
859 			power_supply_put_battery_info(psy, info);
860 			err = -ENOMEM;
861 			goto out_put_node;
862 		}
863 
864 		for (i = 0; i < tab_len; i++) {
865 			table[i].ocv = be32_to_cpu(*list);
866 			list++;
867 			table[i].capacity = be32_to_cpu(*list);
868 			list++;
869 		}
870 	}
871 
872 	list = of_get_property(battery_np, "resistance-temp-table", &len);
873 	if (!list || !len)
874 		goto out_ret_pointer;
875 
876 	info->resist_table_size = len / (2 * sizeof(__be32));
877 	resist_table = info->resist_table = devm_kcalloc(&psy->dev,
878 							 info->resist_table_size,
879 							 sizeof(*resist_table),
880 							 GFP_KERNEL);
881 	if (!info->resist_table) {
882 		power_supply_put_battery_info(psy, info);
883 		err = -ENOMEM;
884 		goto out_put_node;
885 	}
886 
887 	for (index = 0; index < info->resist_table_size; index++) {
888 		resist_table[index].temp = be32_to_cpu(*list++);
889 		resist_table[index].resistance = be32_to_cpu(*list++);
890 	}
891 
892 out_ret_pointer:
893 	/* Finally return the whole thing */
894 	*info_out = info;
895 
896 out_put_node:
897 	fwnode_handle_put(fwnode);
898 	of_node_put(battery_np);
899 	return err;
900 }
901 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
902 
power_supply_put_battery_info(struct power_supply * psy,struct power_supply_battery_info * info)903 void power_supply_put_battery_info(struct power_supply *psy,
904 				   struct power_supply_battery_info *info)
905 {
906 	int i;
907 
908 	for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
909 		if (info->ocv_table[i])
910 			devm_kfree(&psy->dev, info->ocv_table[i]);
911 	}
912 
913 	if (info->resist_table)
914 		devm_kfree(&psy->dev, info->resist_table);
915 
916 	devm_kfree(&psy->dev, info);
917 }
918 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
919 
920 const enum power_supply_property power_supply_battery_info_properties[] = {
921 	POWER_SUPPLY_PROP_TECHNOLOGY,
922 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
923 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
924 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
925 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
926 	POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
927 	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
928 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
929 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
930 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
931 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
932 	POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
933 	POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
934 	POWER_SUPPLY_PROP_TEMP_MIN,
935 	POWER_SUPPLY_PROP_TEMP_MAX,
936 };
937 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties);
938 
939 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties);
940 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size);
941 
power_supply_battery_info_has_prop(struct power_supply_battery_info * info,enum power_supply_property psp)942 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
943 					enum power_supply_property psp)
944 {
945 	if (!info)
946 		return false;
947 
948 	switch (psp) {
949 	case POWER_SUPPLY_PROP_TECHNOLOGY:
950 		return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
951 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
952 		return info->energy_full_design_uwh >= 0;
953 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
954 		return info->charge_full_design_uah >= 0;
955 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
956 		return info->voltage_min_design_uv >= 0;
957 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
958 		return info->voltage_max_design_uv >= 0;
959 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
960 		return info->precharge_current_ua >= 0;
961 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
962 		return info->charge_term_current_ua >= 0;
963 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
964 		return info->constant_charge_current_max_ua >= 0;
965 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
966 		return info->constant_charge_voltage_max_uv >= 0;
967 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
968 		return info->temp_ambient_alert_min > INT_MIN;
969 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
970 		return info->temp_ambient_alert_max < INT_MAX;
971 	case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
972 		return info->temp_alert_min > INT_MIN;
973 	case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
974 		return info->temp_alert_max < INT_MAX;
975 	case POWER_SUPPLY_PROP_TEMP_MIN:
976 		return info->temp_min > INT_MIN;
977 	case POWER_SUPPLY_PROP_TEMP_MAX:
978 		return info->temp_max < INT_MAX;
979 	default:
980 		return false;
981 	}
982 }
983 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop);
984 
power_supply_battery_info_get_prop(struct power_supply_battery_info * info,enum power_supply_property psp,union power_supply_propval * val)985 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
986 				       enum power_supply_property psp,
987 				       union power_supply_propval *val)
988 {
989 	if (!info)
990 		return -EINVAL;
991 
992 	if (!power_supply_battery_info_has_prop(info, psp))
993 		return -EINVAL;
994 
995 	switch (psp) {
996 	case POWER_SUPPLY_PROP_TECHNOLOGY:
997 		val->intval = info->technology;
998 		return 0;
999 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
1000 		val->intval = info->energy_full_design_uwh;
1001 		return 0;
1002 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
1003 		val->intval = info->charge_full_design_uah;
1004 		return 0;
1005 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
1006 		val->intval = info->voltage_min_design_uv;
1007 		return 0;
1008 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
1009 		val->intval = info->voltage_max_design_uv;
1010 		return 0;
1011 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
1012 		val->intval = info->precharge_current_ua;
1013 		return 0;
1014 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
1015 		val->intval = info->charge_term_current_ua;
1016 		return 0;
1017 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
1018 		val->intval = info->constant_charge_current_max_ua;
1019 		return 0;
1020 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
1021 		val->intval = info->constant_charge_voltage_max_uv;
1022 		return 0;
1023 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
1024 		val->intval = info->temp_ambient_alert_min;
1025 		return 0;
1026 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
1027 		val->intval = info->temp_ambient_alert_max;
1028 		return 0;
1029 	case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
1030 		val->intval = info->temp_alert_min;
1031 		return 0;
1032 	case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
1033 		val->intval = info->temp_alert_max;
1034 		return 0;
1035 	case POWER_SUPPLY_PROP_TEMP_MIN:
1036 		val->intval = info->temp_min;
1037 		return 0;
1038 	case POWER_SUPPLY_PROP_TEMP_MAX:
1039 		val->intval = info->temp_max;
1040 		return 0;
1041 	default:
1042 		return -EINVAL;
1043 	}
1044 }
1045 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop);
1046 
1047 /**
1048  * power_supply_temp2resist_simple() - find the battery internal resistance
1049  * percent from temperature
1050  * @table: Pointer to battery resistance temperature table
1051  * @table_len: The table length
1052  * @temp: Current temperature
1053  *
1054  * This helper function is used to look up battery internal resistance percent
1055  * according to current temperature value from the resistance temperature table,
1056  * and the table must be ordered descending. Then the actual battery internal
1057  * resistance = the ideal battery internal resistance * percent / 100.
1058  *
1059  * Return: the battery internal resistance percent
1060  */
power_supply_temp2resist_simple(struct power_supply_resistance_temp_table * table,int table_len,int temp)1061 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
1062 				    int table_len, int temp)
1063 {
1064 	int i, high, low;
1065 
1066 	for (i = 0; i < table_len; i++)
1067 		if (temp > table[i].temp)
1068 			break;
1069 
1070 	/* The library function will deal with high == low */
1071 	if (i == 0)
1072 		high = low = i;
1073 	else if (i == table_len)
1074 		high = low = i - 1;
1075 	else
1076 		high = (low = i) - 1;
1077 
1078 	return fixp_linear_interpolate(table[low].temp,
1079 				       table[low].resistance,
1080 				       table[high].temp,
1081 				       table[high].resistance,
1082 				       temp);
1083 }
1084 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
1085 
1086 /**
1087  * power_supply_vbat2ri() - find the battery internal resistance
1088  * from the battery voltage
1089  * @info: The battery information container
1090  * @vbat_uv: The battery voltage in microvolt
1091  * @charging: If we are charging (true) or not (false)
1092  *
1093  * This helper function is used to look up battery internal resistance
1094  * according to current battery voltage. Depending on whether the battery
1095  * is currently charging or not, different resistance will be returned.
1096  *
1097  * Returns the internal resistance in microohm or negative error code.
1098  */
power_supply_vbat2ri(struct power_supply_battery_info * info,int vbat_uv,bool charging)1099 int power_supply_vbat2ri(struct power_supply_battery_info *info,
1100 			 int vbat_uv, bool charging)
1101 {
1102 	const struct power_supply_vbat_ri_table *vbat2ri;
1103 	int table_len;
1104 	int i, high, low;
1105 
1106 	/*
1107 	 * If we are charging, and the battery supplies a separate table
1108 	 * for this state, we use that in order to compensate for the
1109 	 * charging voltage. Otherwise we use the main table.
1110 	 */
1111 	if (charging && info->vbat2ri_charging) {
1112 		vbat2ri = info->vbat2ri_charging;
1113 		table_len = info->vbat2ri_charging_size;
1114 	} else {
1115 		vbat2ri = info->vbat2ri_discharging;
1116 		table_len = info->vbat2ri_discharging_size;
1117 	}
1118 
1119 	/*
1120 	 * If no tables are specified, or if we are above the highest voltage in
1121 	 * the voltage table, just return the factory specified internal resistance.
1122 	 */
1123 	if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
1124 		if (charging && (info->factory_internal_resistance_charging_uohm > 0))
1125 			return info->factory_internal_resistance_charging_uohm;
1126 		else
1127 			return info->factory_internal_resistance_uohm;
1128 	}
1129 
1130 	/* Break loop at table_len - 1 because that is the highest index */
1131 	for (i = 0; i < table_len - 1; i++)
1132 		if (vbat_uv > vbat2ri[i].vbat_uv)
1133 			break;
1134 
1135 	/* The library function will deal with high == low */
1136 	if ((i == 0) || (i == (table_len - 1)))
1137 		high = i;
1138 	else
1139 		high = i - 1;
1140 	low = i;
1141 
1142 	return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
1143 				       vbat2ri[low].ri_uohm,
1144 				       vbat2ri[high].vbat_uv,
1145 				       vbat2ri[high].ri_uohm,
1146 				       vbat_uv);
1147 }
1148 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
1149 
1150 const struct power_supply_maintenance_charge_table *
power_supply_get_maintenance_charging_setting(struct power_supply_battery_info * info,int index)1151 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
1152 					      int index)
1153 {
1154 	if (index >= info->maintenance_charge_size)
1155 		return NULL;
1156 	return &info->maintenance_charge[index];
1157 }
1158 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
1159 
1160 /**
1161  * power_supply_ocv2cap_simple() - find the battery capacity
1162  * @table: Pointer to battery OCV lookup table
1163  * @table_len: OCV table length
1164  * @ocv: Current OCV value
1165  *
1166  * This helper function is used to look up battery capacity according to
1167  * current OCV value from one OCV table, and the OCV table must be ordered
1168  * descending.
1169  *
1170  * Return: the battery capacity.
1171  */
power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table * table,int table_len,int ocv)1172 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
1173 				int table_len, int ocv)
1174 {
1175 	int i, high, low;
1176 
1177 	for (i = 0; i < table_len; i++)
1178 		if (ocv > table[i].ocv)
1179 			break;
1180 
1181 	/* The library function will deal with high == low */
1182 	if (i == 0)
1183 		high = low = i;
1184 	else if (i == table_len)
1185 		high = low = i - 1;
1186 	else
1187 		high = (low = i) - 1;
1188 
1189 	return fixp_linear_interpolate(table[low].ocv,
1190 				       table[low].capacity,
1191 				       table[high].ocv,
1192 				       table[high].capacity,
1193 				       ocv);
1194 }
1195 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
1196 
1197 struct power_supply_battery_ocv_table *
power_supply_find_ocv2cap_table(struct power_supply_battery_info * info,int temp,int * table_len)1198 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
1199 				int temp, int *table_len)
1200 {
1201 	int best_temp_diff = INT_MAX, temp_diff;
1202 	u8 i, best_index = 0;
1203 
1204 	if (!info->ocv_table[0])
1205 		return NULL;
1206 
1207 	for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
1208 		/* Out of capacity tables */
1209 		if (!info->ocv_table[i])
1210 			break;
1211 
1212 		temp_diff = abs(info->ocv_temp[i] - temp);
1213 
1214 		if (temp_diff < best_temp_diff) {
1215 			best_temp_diff = temp_diff;
1216 			best_index = i;
1217 		}
1218 	}
1219 
1220 	*table_len = info->ocv_table_size[best_index];
1221 	return info->ocv_table[best_index];
1222 }
1223 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1224 
power_supply_batinfo_ocv2cap(struct power_supply_battery_info * info,int ocv,int temp)1225 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1226 				 int ocv, int temp)
1227 {
1228 	struct power_supply_battery_ocv_table *table;
1229 	int table_len;
1230 
1231 	table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1232 	if (!table)
1233 		return -EINVAL;
1234 
1235 	return power_supply_ocv2cap_simple(table, table_len, ocv);
1236 }
1237 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1238 
power_supply_battery_bti_in_range(struct power_supply_battery_info * info,int resistance)1239 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1240 				       int resistance)
1241 {
1242 	int low, high;
1243 
1244 	/* Nothing like this can be checked */
1245 	if (info->bti_resistance_ohm <= 0)
1246 		return false;
1247 
1248 	/* This will be extremely strict and unlikely to work */
1249 	if (info->bti_resistance_tolerance <= 0)
1250 		return (info->bti_resistance_ohm == resistance);
1251 
1252 	low = info->bti_resistance_ohm -
1253 		(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1254 	high = info->bti_resistance_ohm +
1255 		(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1256 
1257 	return ((resistance >= low) && (resistance <= high));
1258 }
1259 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1260 
psy_has_property(const struct power_supply_desc * psy_desc,enum power_supply_property psp)1261 static bool psy_has_property(const struct power_supply_desc *psy_desc,
1262 			     enum power_supply_property psp)
1263 {
1264 	bool found = false;
1265 	int i;
1266 
1267 	for (i = 0; i < psy_desc->num_properties; i++) {
1268 		if (psy_desc->properties[i] == psp) {
1269 			found = true;
1270 			break;
1271 		}
1272 	}
1273 
1274 	return found;
1275 }
1276 
power_supply_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)1277 int power_supply_get_property(struct power_supply *psy,
1278 			    enum power_supply_property psp,
1279 			    union power_supply_propval *val)
1280 {
1281 	if (atomic_read(&psy->use_cnt) <= 0) {
1282 		if (!psy->initialized)
1283 			return -EAGAIN;
1284 		return -ENODEV;
1285 	}
1286 
1287 	if (psy_has_property(psy->desc, psp))
1288 		return psy->desc->get_property(psy, psp, val);
1289 	else if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1290 		return power_supply_battery_info_get_prop(psy->battery_info, psp, val);
1291 	else
1292 		return -EINVAL;
1293 }
1294 EXPORT_SYMBOL_GPL(power_supply_get_property);
1295 
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)1296 int power_supply_set_property(struct power_supply *psy,
1297 			    enum power_supply_property psp,
1298 			    const union power_supply_propval *val)
1299 {
1300 	if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
1301 		return -ENODEV;
1302 
1303 	return psy->desc->set_property(psy, psp, val);
1304 }
1305 EXPORT_SYMBOL_GPL(power_supply_set_property);
1306 
power_supply_property_is_writeable(struct power_supply * psy,enum power_supply_property psp)1307 int power_supply_property_is_writeable(struct power_supply *psy,
1308 					enum power_supply_property psp)
1309 {
1310 	return psy->desc->property_is_writeable && psy->desc->property_is_writeable(psy, psp);
1311 }
1312 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
1313 
power_supply_external_power_changed(struct power_supply * psy)1314 void power_supply_external_power_changed(struct power_supply *psy)
1315 {
1316 	if (atomic_read(&psy->use_cnt) <= 0 ||
1317 			!psy->desc->external_power_changed)
1318 		return;
1319 
1320 	psy->desc->external_power_changed(psy);
1321 }
1322 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1323 
power_supply_powers(struct power_supply * psy,struct device * dev)1324 int power_supply_powers(struct power_supply *psy, struct device *dev)
1325 {
1326 	return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1327 }
1328 EXPORT_SYMBOL_GPL(power_supply_powers);
1329 
power_supply_dev_release(struct device * dev)1330 static void power_supply_dev_release(struct device *dev)
1331 {
1332 	struct power_supply *psy = to_power_supply(dev);
1333 
1334 	dev_dbg(dev, "%s\n", __func__);
1335 	kfree(psy);
1336 }
1337 
power_supply_reg_notifier(struct notifier_block * nb)1338 int power_supply_reg_notifier(struct notifier_block *nb)
1339 {
1340 	return blocking_notifier_chain_register(&power_supply_notifier, nb);
1341 }
1342 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1343 
power_supply_unreg_notifier(struct notifier_block * nb)1344 void power_supply_unreg_notifier(struct notifier_block *nb)
1345 {
1346 	blocking_notifier_chain_unregister(&power_supply_notifier, nb);
1347 }
1348 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1349 
1350 #ifdef CONFIG_THERMAL
power_supply_read_temp(struct thermal_zone_device * tzd,int * temp)1351 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1352 		int *temp)
1353 {
1354 	struct power_supply *psy;
1355 	union power_supply_propval val;
1356 	int ret;
1357 
1358 	WARN_ON(tzd == NULL);
1359 	psy = thermal_zone_device_priv(tzd);
1360 	ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1361 	if (ret)
1362 		return ret;
1363 
1364 	/* Convert tenths of degree Celsius to milli degree Celsius. */
1365 	*temp = val.intval * 100;
1366 
1367 	return ret;
1368 }
1369 
1370 static const struct thermal_zone_device_ops psy_tzd_ops = {
1371 	.get_temp = power_supply_read_temp,
1372 };
1373 
psy_register_thermal(struct power_supply * psy)1374 static int psy_register_thermal(struct power_supply *psy)
1375 {
1376 	int ret;
1377 
1378 	if (psy->desc->no_thermal)
1379 		return 0;
1380 
1381 	/* Register battery zone device psy reports temperature */
1382 	if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1383 		/* Prefer our hwmon device and avoid duplicates */
1384 		struct thermal_zone_params tzp = {
1385 			.no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON)
1386 		};
1387 		psy->tzd = thermal_tripless_zone_device_register(psy->desc->name,
1388 				psy, &psy_tzd_ops, &tzp);
1389 		if (IS_ERR(psy->tzd))
1390 			return PTR_ERR(psy->tzd);
1391 		ret = thermal_zone_device_enable(psy->tzd);
1392 		if (ret)
1393 			thermal_zone_device_unregister(psy->tzd);
1394 		return ret;
1395 	}
1396 
1397 	return 0;
1398 }
1399 
psy_unregister_thermal(struct power_supply * psy)1400 static void psy_unregister_thermal(struct power_supply *psy)
1401 {
1402 	if (IS_ERR_OR_NULL(psy->tzd))
1403 		return;
1404 	thermal_zone_device_unregister(psy->tzd);
1405 }
1406 
1407 #else
psy_register_thermal(struct power_supply * psy)1408 static int psy_register_thermal(struct power_supply *psy)
1409 {
1410 	return 0;
1411 }
1412 
psy_unregister_thermal(struct power_supply * psy)1413 static void psy_unregister_thermal(struct power_supply *psy)
1414 {
1415 }
1416 #endif
1417 
1418 static struct power_supply *__must_check
__power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg,bool ws)1419 __power_supply_register(struct device *parent,
1420 				   const struct power_supply_desc *desc,
1421 				   const struct power_supply_config *cfg,
1422 				   bool ws)
1423 {
1424 	struct device *dev;
1425 	struct power_supply *psy;
1426 	int rc;
1427 
1428 	if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1429 		return ERR_PTR(-EINVAL);
1430 
1431 	if (!parent)
1432 		pr_warn("%s: Expected proper parent device for '%s'\n",
1433 			__func__, desc->name);
1434 
1435 	psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1436 	if (!psy)
1437 		return ERR_PTR(-ENOMEM);
1438 
1439 	dev = &psy->dev;
1440 
1441 	device_initialize(dev);
1442 
1443 	dev->class = &power_supply_class;
1444 	dev->type = &power_supply_dev_type;
1445 	dev->parent = parent;
1446 	dev->release = power_supply_dev_release;
1447 	dev_set_drvdata(dev, psy);
1448 	psy->desc = desc;
1449 	if (cfg) {
1450 		dev->groups = cfg->attr_grp;
1451 		psy->drv_data = cfg->drv_data;
1452 		psy->of_node =
1453 			cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1454 		dev->of_node = psy->of_node;
1455 		psy->supplied_to = cfg->supplied_to;
1456 		psy->num_supplicants = cfg->num_supplicants;
1457 	}
1458 
1459 	rc = dev_set_name(dev, "%s", desc->name);
1460 	if (rc)
1461 		goto dev_set_name_failed;
1462 
1463 	INIT_WORK(&psy->changed_work, power_supply_changed_work);
1464 	INIT_DELAYED_WORK(&psy->deferred_register_work,
1465 			  power_supply_deferred_register_work);
1466 
1467 	rc = power_supply_check_supplies(psy);
1468 	if (rc) {
1469 		dev_dbg(dev, "Not all required supplies found, defer probe\n");
1470 		goto check_supplies_failed;
1471 	}
1472 
1473 	/*
1474 	 * Expose constant battery info, if it is available. While there are
1475 	 * some chargers accessing constant battery data, we only want to
1476 	 * expose battery data to userspace for battery devices.
1477 	 */
1478 	if (desc->type == POWER_SUPPLY_TYPE_BATTERY) {
1479 		rc = power_supply_get_battery_info(psy, &psy->battery_info);
1480 		if (rc && rc != -ENODEV && rc != -ENOENT)
1481 			goto check_supplies_failed;
1482 	}
1483 
1484 	spin_lock_init(&psy->changed_lock);
1485 	rc = device_add(dev);
1486 	if (rc)
1487 		goto device_add_failed;
1488 
1489 	rc = device_init_wakeup(dev, ws);
1490 	if (rc)
1491 		goto wakeup_init_failed;
1492 
1493 	rc = psy_register_thermal(psy);
1494 	if (rc)
1495 		goto register_thermal_failed;
1496 
1497 	rc = power_supply_create_triggers(psy);
1498 	if (rc)
1499 		goto create_triggers_failed;
1500 
1501 	rc = power_supply_add_hwmon_sysfs(psy);
1502 	if (rc)
1503 		goto add_hwmon_sysfs_failed;
1504 
1505 	/*
1506 	 * Update use_cnt after any uevents (most notably from device_add()).
1507 	 * We are here still during driver's probe but
1508 	 * the power_supply_uevent() calls back driver's get_property
1509 	 * method so:
1510 	 * 1. Driver did not assigned the returned struct power_supply,
1511 	 * 2. Driver could not finish initialization (anything in its probe
1512 	 *    after calling power_supply_register()).
1513 	 */
1514 	atomic_inc(&psy->use_cnt);
1515 	psy->initialized = true;
1516 
1517 	queue_delayed_work(system_power_efficient_wq,
1518 			   &psy->deferred_register_work,
1519 			   POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1520 
1521 	return psy;
1522 
1523 add_hwmon_sysfs_failed:
1524 	power_supply_remove_triggers(psy);
1525 create_triggers_failed:
1526 	psy_unregister_thermal(psy);
1527 register_thermal_failed:
1528 wakeup_init_failed:
1529 	device_del(dev);
1530 device_add_failed:
1531 check_supplies_failed:
1532 dev_set_name_failed:
1533 	put_device(dev);
1534 	return ERR_PTR(rc);
1535 }
1536 
1537 /**
1538  * power_supply_register() - Register new power supply
1539  * @parent:	Device to be a parent of power supply's device, usually
1540  *		the device which probe function calls this
1541  * @desc:	Description of power supply, must be valid through whole
1542  *		lifetime of this power supply
1543  * @cfg:	Run-time specific configuration accessed during registering,
1544  *		may be NULL
1545  *
1546  * Return: A pointer to newly allocated power_supply on success
1547  * or ERR_PTR otherwise.
1548  * Use power_supply_unregister() on returned power_supply pointer to release
1549  * resources.
1550  */
power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1551 struct power_supply *__must_check power_supply_register(struct device *parent,
1552 		const struct power_supply_desc *desc,
1553 		const struct power_supply_config *cfg)
1554 {
1555 	return __power_supply_register(parent, desc, cfg, true);
1556 }
1557 EXPORT_SYMBOL_GPL(power_supply_register);
1558 
1559 /**
1560  * power_supply_register_no_ws() - Register new non-waking-source power supply
1561  * @parent:	Device to be a parent of power supply's device, usually
1562  *		the device which probe function calls this
1563  * @desc:	Description of power supply, must be valid through whole
1564  *		lifetime of this power supply
1565  * @cfg:	Run-time specific configuration accessed during registering,
1566  *		may be NULL
1567  *
1568  * Return: A pointer to newly allocated power_supply on success
1569  * or ERR_PTR otherwise.
1570  * Use power_supply_unregister() on returned power_supply pointer to release
1571  * resources.
1572  */
1573 struct power_supply *__must_check
power_supply_register_no_ws(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1574 power_supply_register_no_ws(struct device *parent,
1575 		const struct power_supply_desc *desc,
1576 		const struct power_supply_config *cfg)
1577 {
1578 	return __power_supply_register(parent, desc, cfg, false);
1579 }
1580 EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
1581 
devm_power_supply_release(struct device * dev,void * res)1582 static void devm_power_supply_release(struct device *dev, void *res)
1583 {
1584 	struct power_supply **psy = res;
1585 
1586 	power_supply_unregister(*psy);
1587 }
1588 
1589 /**
1590  * devm_power_supply_register() - Register managed power supply
1591  * @parent:	Device to be a parent of power supply's device, usually
1592  *		the device which probe function calls this
1593  * @desc:	Description of power supply, must be valid through whole
1594  *		lifetime of this power supply
1595  * @cfg:	Run-time specific configuration accessed during registering,
1596  *		may be NULL
1597  *
1598  * Return: A pointer to newly allocated power_supply on success
1599  * or ERR_PTR otherwise.
1600  * The returned power_supply pointer will be automatically unregistered
1601  * on driver detach.
1602  */
1603 struct power_supply *__must_check
devm_power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1604 devm_power_supply_register(struct device *parent,
1605 		const struct power_supply_desc *desc,
1606 		const struct power_supply_config *cfg)
1607 {
1608 	struct power_supply **ptr, *psy;
1609 
1610 	ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1611 
1612 	if (!ptr)
1613 		return ERR_PTR(-ENOMEM);
1614 	psy = __power_supply_register(parent, desc, cfg, true);
1615 	if (IS_ERR(psy)) {
1616 		devres_free(ptr);
1617 	} else {
1618 		*ptr = psy;
1619 		devres_add(parent, ptr);
1620 	}
1621 	return psy;
1622 }
1623 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1624 
1625 /**
1626  * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
1627  * @parent:	Device to be a parent of power supply's device, usually
1628  *		the device which probe function calls this
1629  * @desc:	Description of power supply, must be valid through whole
1630  *		lifetime of this power supply
1631  * @cfg:	Run-time specific configuration accessed during registering,
1632  *		may be NULL
1633  *
1634  * Return: A pointer to newly allocated power_supply on success
1635  * or ERR_PTR otherwise.
1636  * The returned power_supply pointer will be automatically unregistered
1637  * on driver detach.
1638  */
1639 struct power_supply *__must_check
devm_power_supply_register_no_ws(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1640 devm_power_supply_register_no_ws(struct device *parent,
1641 		const struct power_supply_desc *desc,
1642 		const struct power_supply_config *cfg)
1643 {
1644 	struct power_supply **ptr, *psy;
1645 
1646 	ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1647 
1648 	if (!ptr)
1649 		return ERR_PTR(-ENOMEM);
1650 	psy = __power_supply_register(parent, desc, cfg, false);
1651 	if (IS_ERR(psy)) {
1652 		devres_free(ptr);
1653 	} else {
1654 		*ptr = psy;
1655 		devres_add(parent, ptr);
1656 	}
1657 	return psy;
1658 }
1659 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
1660 
1661 /**
1662  * power_supply_unregister() - Remove this power supply from system
1663  * @psy:	Pointer to power supply to unregister
1664  *
1665  * Remove this power supply from the system. The resources of power supply
1666  * will be freed here or on last power_supply_put() call.
1667  */
power_supply_unregister(struct power_supply * psy)1668 void power_supply_unregister(struct power_supply *psy)
1669 {
1670 	WARN_ON(atomic_dec_return(&psy->use_cnt));
1671 	psy->removing = true;
1672 	cancel_work_sync(&psy->changed_work);
1673 	cancel_delayed_work_sync(&psy->deferred_register_work);
1674 	sysfs_remove_link(&psy->dev.kobj, "powers");
1675 	power_supply_remove_hwmon_sysfs(psy);
1676 	power_supply_remove_triggers(psy);
1677 	psy_unregister_thermal(psy);
1678 	device_init_wakeup(&psy->dev, false);
1679 	device_unregister(&psy->dev);
1680 }
1681 EXPORT_SYMBOL_GPL(power_supply_unregister);
1682 
power_supply_get_drvdata(struct power_supply * psy)1683 void *power_supply_get_drvdata(struct power_supply *psy)
1684 {
1685 	return psy->drv_data;
1686 }
1687 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1688 
power_supply_class_init(void)1689 static int __init power_supply_class_init(void)
1690 {
1691 	power_supply_init_attrs();
1692 	return class_register(&power_supply_class);
1693 }
1694 
power_supply_class_exit(void)1695 static void __exit power_supply_class_exit(void)
1696 {
1697 	class_unregister(&power_supply_class);
1698 }
1699 
1700 subsys_initcall(power_supply_class_init);
1701 module_exit(power_supply_class_exit);
1702 
1703 MODULE_DESCRIPTION("Universal power supply monitor class");
1704 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>");
1705 MODULE_AUTHOR("Szabolcs Gyurko");
1706 MODULE_AUTHOR("Anton Vorontsov <cbou@mail.ru>");
1707