• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Common code for Intel Running Average Power Limit (RAPL) support.
4  * Copyright (c) 2019, Intel Corporation.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/bitmap.h>
9 #include <linux/cleanup.h>
10 #include <linux/cpu.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/intel_rapl.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/nospec.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/powercap.h>
22 #include <linux/processor.h>
23 #include <linux/slab.h>
24 #include <linux/suspend.h>
25 #include <linux/sysfs.h>
26 #include <linux/types.h>
27 
28 #include <asm/cpu_device_id.h>
29 #include <asm/intel-family.h>
30 #include <asm/iosf_mbi.h>
31 
32 /* bitmasks for RAPL MSRs, used by primitive access functions */
33 #define ENERGY_STATUS_MASK      0xffffffff
34 
35 #define POWER_LIMIT1_MASK       0x7FFF
36 #define POWER_LIMIT1_ENABLE     BIT(15)
37 #define POWER_LIMIT1_CLAMP      BIT(16)
38 
39 #define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
40 #define POWER_LIMIT2_ENABLE     BIT_ULL(47)
41 #define POWER_LIMIT2_CLAMP      BIT_ULL(48)
42 #define POWER_HIGH_LOCK         BIT_ULL(63)
43 #define POWER_LOW_LOCK          BIT(31)
44 
45 #define POWER_LIMIT4_MASK		0x1FFF
46 
47 #define TIME_WINDOW1_MASK       (0x7FULL<<17)
48 #define TIME_WINDOW2_MASK       (0x7FULL<<49)
49 
50 #define POWER_UNIT_OFFSET	0
51 #define POWER_UNIT_MASK		0x0F
52 
53 #define ENERGY_UNIT_OFFSET	0x08
54 #define ENERGY_UNIT_MASK	0x1F00
55 
56 #define TIME_UNIT_OFFSET	0x10
57 #define TIME_UNIT_MASK		0xF0000
58 
59 #define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
60 #define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
61 #define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
62 #define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
63 
64 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
65 #define PP_POLICY_MASK         0x1F
66 
67 /*
68  * SPR has different layout for Psys Domain PowerLimit registers.
69  * There are 17 bits of PL1 and PL2 instead of 15 bits.
70  * The Enable bits and TimeWindow bits are also shifted as a result.
71  */
72 #define PSYS_POWER_LIMIT1_MASK       0x1FFFF
73 #define PSYS_POWER_LIMIT1_ENABLE     BIT(17)
74 
75 #define PSYS_POWER_LIMIT2_MASK       (0x1FFFFULL<<32)
76 #define PSYS_POWER_LIMIT2_ENABLE     BIT_ULL(49)
77 
78 #define PSYS_TIME_WINDOW1_MASK       (0x7FULL<<19)
79 #define PSYS_TIME_WINDOW2_MASK       (0x7FULL<<51)
80 
81 /* bitmasks for RAPL TPMI, used by primitive access functions */
82 #define TPMI_POWER_LIMIT_MASK	0x3FFFF
83 #define TPMI_POWER_LIMIT_ENABLE	BIT_ULL(62)
84 #define TPMI_TIME_WINDOW_MASK	(0x7FULL<<18)
85 #define TPMI_INFO_SPEC_MASK	0x3FFFF
86 #define TPMI_INFO_MIN_MASK	(0x3FFFFULL << 18)
87 #define TPMI_INFO_MAX_MASK	(0x3FFFFULL << 36)
88 #define TPMI_INFO_MAX_TIME_WIN_MASK	(0x7FULL << 54)
89 
90 /* Non HW constants */
91 #define RAPL_PRIMITIVE_DERIVED       BIT(1)	/* not from raw data */
92 #define RAPL_PRIMITIVE_DUMMY         BIT(2)
93 
94 #define TIME_WINDOW_MAX_MSEC 40000
95 #define TIME_WINDOW_MIN_MSEC 250
96 #define ENERGY_UNIT_SCALE    1000	/* scale from driver unit to powercap unit */
97 enum unit_type {
98 	ARBITRARY_UNIT,		/* no translation */
99 	POWER_UNIT,
100 	ENERGY_UNIT,
101 	TIME_UNIT,
102 };
103 
104 /* per domain data, some are optional */
105 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
106 
107 #define	DOMAIN_STATE_INACTIVE           BIT(0)
108 #define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
109 
110 static const char *pl_names[NR_POWER_LIMITS] = {
111 	[POWER_LIMIT1] = "long_term",
112 	[POWER_LIMIT2] = "short_term",
113 	[POWER_LIMIT4] = "peak_power",
114 };
115 
116 enum pl_prims {
117 	PL_ENABLE,
118 	PL_CLAMP,
119 	PL_LIMIT,
120 	PL_TIME_WINDOW,
121 	PL_MAX_POWER,
122 	PL_LOCK,
123 };
124 
is_pl_valid(struct rapl_domain * rd,int pl)125 static bool is_pl_valid(struct rapl_domain *rd, int pl)
126 {
127 	if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4)
128 		return false;
129 	return rd->rpl[pl].name ? true : false;
130 }
131 
get_pl_lock_prim(struct rapl_domain * rd,int pl)132 static int get_pl_lock_prim(struct rapl_domain *rd, int pl)
133 {
134 	if (rd->rp->priv->type == RAPL_IF_TPMI) {
135 		if (pl == POWER_LIMIT1)
136 			return PL1_LOCK;
137 		if (pl == POWER_LIMIT2)
138 			return PL2_LOCK;
139 		if (pl == POWER_LIMIT4)
140 			return PL4_LOCK;
141 	}
142 
143 	/* MSR/MMIO Interface doesn't have Lock bit for PL4 */
144 	if (pl == POWER_LIMIT4)
145 		return -EINVAL;
146 
147 	/*
148 	 * Power Limit register that supports two power limits has a different
149 	 * bit position for the Lock bit.
150 	 */
151 	if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2))
152 		return FW_HIGH_LOCK;
153 	return FW_LOCK;
154 }
155 
get_pl_prim(struct rapl_domain * rd,int pl,enum pl_prims prim)156 static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim)
157 {
158 	switch (pl) {
159 	case POWER_LIMIT1:
160 		if (prim == PL_ENABLE)
161 			return PL1_ENABLE;
162 		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
163 			return PL1_CLAMP;
164 		if (prim == PL_LIMIT)
165 			return POWER_LIMIT1;
166 		if (prim == PL_TIME_WINDOW)
167 			return TIME_WINDOW1;
168 		if (prim == PL_MAX_POWER)
169 			return THERMAL_SPEC_POWER;
170 		if (prim == PL_LOCK)
171 			return get_pl_lock_prim(rd, pl);
172 		return -EINVAL;
173 	case POWER_LIMIT2:
174 		if (prim == PL_ENABLE)
175 			return PL2_ENABLE;
176 		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
177 			return PL2_CLAMP;
178 		if (prim == PL_LIMIT)
179 			return POWER_LIMIT2;
180 		if (prim == PL_TIME_WINDOW)
181 			return TIME_WINDOW2;
182 		if (prim == PL_MAX_POWER)
183 			return MAX_POWER;
184 		if (prim == PL_LOCK)
185 			return get_pl_lock_prim(rd, pl);
186 		return -EINVAL;
187 	case POWER_LIMIT4:
188 		if (prim == PL_LIMIT)
189 			return POWER_LIMIT4;
190 		if (prim == PL_ENABLE)
191 			return PL4_ENABLE;
192 		/* PL4 would be around two times PL2, use same prim as PL2. */
193 		if (prim == PL_MAX_POWER)
194 			return MAX_POWER;
195 		if (prim == PL_LOCK)
196 			return get_pl_lock_prim(rd, pl);
197 		return -EINVAL;
198 	default:
199 		return -EINVAL;
200 	}
201 }
202 
203 #define power_zone_to_rapl_domain(_zone) \
204 	container_of(_zone, struct rapl_domain, power_zone)
205 
206 struct rapl_defaults {
207 	u8 floor_freq_reg_addr;
208 	int (*check_unit)(struct rapl_domain *rd);
209 	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
210 	u64 (*compute_time_window)(struct rapl_domain *rd, u64 val,
211 				    bool to_raw);
212 	unsigned int dram_domain_energy_unit;
213 	unsigned int psys_domain_energy_unit;
214 	bool spr_psys_bits;
215 };
216 static struct rapl_defaults *defaults_msr;
217 static const struct rapl_defaults defaults_tpmi;
218 
get_defaults(struct rapl_package * rp)219 static struct rapl_defaults *get_defaults(struct rapl_package *rp)
220 {
221 	return rp->priv->defaults;
222 }
223 
224 /* Sideband MBI registers */
225 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
226 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
227 
228 #define PACKAGE_PLN_INT_SAVED   BIT(0)
229 #define MAX_PRIM_NAME (32)
230 
231 /* per domain data. used to describe individual knobs such that access function
232  * can be consolidated into one instead of many inline functions.
233  */
234 struct rapl_primitive_info {
235 	const char *name;
236 	u64 mask;
237 	int shift;
238 	enum rapl_domain_reg_id id;
239 	enum unit_type unit;
240 	u32 flag;
241 };
242 
243 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
244 		.name = #p,			\
245 		.mask = m,			\
246 		.shift = s,			\
247 		.id = i,			\
248 		.unit = u,			\
249 		.flag = f			\
250 	}
251 
252 static void rapl_init_domains(struct rapl_package *rp);
253 static int rapl_read_data_raw(struct rapl_domain *rd,
254 			      enum rapl_primitives prim,
255 			      bool xlate, u64 *data);
256 static int rapl_write_data_raw(struct rapl_domain *rd,
257 			       enum rapl_primitives prim,
258 			       unsigned long long value);
259 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
260 			      enum pl_prims pl_prim,
261 			      bool xlate, u64 *data);
262 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
263 			       enum pl_prims pl_prim,
264 			       unsigned long long value);
265 static u64 rapl_unit_xlate(struct rapl_domain *rd,
266 			   enum unit_type type, u64 value, int to_raw);
267 static void package_power_limit_irq_save(struct rapl_package *rp);
268 
269 static LIST_HEAD(rapl_packages);	/* guarded by CPU hotplug lock */
270 
271 static const char *const rapl_domain_names[] = {
272 	"package",
273 	"core",
274 	"uncore",
275 	"dram",
276 	"psys",
277 };
278 
get_energy_counter(struct powercap_zone * power_zone,u64 * energy_raw)279 static int get_energy_counter(struct powercap_zone *power_zone,
280 			      u64 *energy_raw)
281 {
282 	struct rapl_domain *rd;
283 	u64 energy_now;
284 
285 	/* prevent CPU hotplug, make sure the RAPL domain does not go
286 	 * away while reading the counter.
287 	 */
288 	cpus_read_lock();
289 	rd = power_zone_to_rapl_domain(power_zone);
290 
291 	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
292 		*energy_raw = energy_now;
293 		cpus_read_unlock();
294 
295 		return 0;
296 	}
297 	cpus_read_unlock();
298 
299 	return -EIO;
300 }
301 
get_max_energy_counter(struct powercap_zone * pcd_dev,u64 * energy)302 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
303 {
304 	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
305 
306 	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
307 	return 0;
308 }
309 
release_zone(struct powercap_zone * power_zone)310 static int release_zone(struct powercap_zone *power_zone)
311 {
312 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
313 	struct rapl_package *rp = rd->rp;
314 
315 	/* package zone is the last zone of a package, we can free
316 	 * memory here since all children has been unregistered.
317 	 */
318 	if (rd->id == RAPL_DOMAIN_PACKAGE) {
319 		kfree(rd);
320 		rp->domains = NULL;
321 	}
322 
323 	return 0;
324 
325 }
326 
find_nr_power_limit(struct rapl_domain * rd)327 static int find_nr_power_limit(struct rapl_domain *rd)
328 {
329 	int i, nr_pl = 0;
330 
331 	for (i = 0; i < NR_POWER_LIMITS; i++) {
332 		if (is_pl_valid(rd, i))
333 			nr_pl++;
334 	}
335 
336 	return nr_pl;
337 }
338 
set_domain_enable(struct powercap_zone * power_zone,bool mode)339 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
340 {
341 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
342 	struct rapl_defaults *defaults = get_defaults(rd->rp);
343 	u64 val;
344 	int ret;
345 
346 	cpus_read_lock();
347 	ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode);
348 	if (ret)
349 		goto end;
350 
351 	ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, false, &val);
352 	if (ret)
353 		goto end;
354 
355 	if (mode != val) {
356 		pr_debug("%s cannot be %s\n", power_zone->name,
357 			 str_enabled_disabled(mode));
358 		goto end;
359 	}
360 
361 	if (defaults->set_floor_freq)
362 		defaults->set_floor_freq(rd, mode);
363 
364 end:
365 	cpus_read_unlock();
366 
367 	return ret;
368 }
369 
get_domain_enable(struct powercap_zone * power_zone,bool * mode)370 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
371 {
372 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
373 	u64 val;
374 	int ret;
375 
376 	if (rd->rpl[POWER_LIMIT1].locked) {
377 		*mode = false;
378 		return 0;
379 	}
380 	cpus_read_lock();
381 	ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val);
382 	if (!ret)
383 		*mode = val;
384 	cpus_read_unlock();
385 
386 	return ret;
387 }
388 
389 /* per RAPL domain ops, in the order of rapl_domain_type */
390 static const struct powercap_zone_ops zone_ops[] = {
391 	/* RAPL_DOMAIN_PACKAGE */
392 	{
393 	 .get_energy_uj = get_energy_counter,
394 	 .get_max_energy_range_uj = get_max_energy_counter,
395 	 .release = release_zone,
396 	 .set_enable = set_domain_enable,
397 	 .get_enable = get_domain_enable,
398 	 },
399 	/* RAPL_DOMAIN_PP0 */
400 	{
401 	 .get_energy_uj = get_energy_counter,
402 	 .get_max_energy_range_uj = get_max_energy_counter,
403 	 .release = release_zone,
404 	 .set_enable = set_domain_enable,
405 	 .get_enable = get_domain_enable,
406 	 },
407 	/* RAPL_DOMAIN_PP1 */
408 	{
409 	 .get_energy_uj = get_energy_counter,
410 	 .get_max_energy_range_uj = get_max_energy_counter,
411 	 .release = release_zone,
412 	 .set_enable = set_domain_enable,
413 	 .get_enable = get_domain_enable,
414 	 },
415 	/* RAPL_DOMAIN_DRAM */
416 	{
417 	 .get_energy_uj = get_energy_counter,
418 	 .get_max_energy_range_uj = get_max_energy_counter,
419 	 .release = release_zone,
420 	 .set_enable = set_domain_enable,
421 	 .get_enable = get_domain_enable,
422 	 },
423 	/* RAPL_DOMAIN_PLATFORM */
424 	{
425 	 .get_energy_uj = get_energy_counter,
426 	 .get_max_energy_range_uj = get_max_energy_counter,
427 	 .release = release_zone,
428 	 .set_enable = set_domain_enable,
429 	 .get_enable = get_domain_enable,
430 	 },
431 };
432 
433 /*
434  * Constraint index used by powercap can be different than power limit (PL)
435  * index in that some  PLs maybe missing due to non-existent MSRs. So we
436  * need to convert here by finding the valid PLs only (name populated).
437  */
contraint_to_pl(struct rapl_domain * rd,int cid)438 static int contraint_to_pl(struct rapl_domain *rd, int cid)
439 {
440 	int i, j;
441 
442 	for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) {
443 		if (is_pl_valid(rd, i) && j++ == cid) {
444 			pr_debug("%s: index %d\n", __func__, i);
445 			return i;
446 		}
447 	}
448 	pr_err("Cannot find matching power limit for constraint %d\n", cid);
449 
450 	return -EINVAL;
451 }
452 
set_power_limit(struct powercap_zone * power_zone,int cid,u64 power_limit)453 static int set_power_limit(struct powercap_zone *power_zone, int cid,
454 			   u64 power_limit)
455 {
456 	struct rapl_domain *rd;
457 	struct rapl_package *rp;
458 	int ret = 0;
459 	int id;
460 
461 	cpus_read_lock();
462 	rd = power_zone_to_rapl_domain(power_zone);
463 	id = contraint_to_pl(rd, cid);
464 	rp = rd->rp;
465 
466 	ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit);
467 	if (!ret)
468 		package_power_limit_irq_save(rp);
469 	cpus_read_unlock();
470 	return ret;
471 }
472 
get_current_power_limit(struct powercap_zone * power_zone,int cid,u64 * data)473 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
474 				   u64 *data)
475 {
476 	struct rapl_domain *rd;
477 	u64 val;
478 	int ret = 0;
479 	int id;
480 
481 	cpus_read_lock();
482 	rd = power_zone_to_rapl_domain(power_zone);
483 	id = contraint_to_pl(rd, cid);
484 
485 	ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val);
486 	if (!ret)
487 		*data = val;
488 
489 	cpus_read_unlock();
490 
491 	return ret;
492 }
493 
set_time_window(struct powercap_zone * power_zone,int cid,u64 window)494 static int set_time_window(struct powercap_zone *power_zone, int cid,
495 			   u64 window)
496 {
497 	struct rapl_domain *rd;
498 	int ret = 0;
499 	int id;
500 
501 	cpus_read_lock();
502 	rd = power_zone_to_rapl_domain(power_zone);
503 	id = contraint_to_pl(rd, cid);
504 
505 	ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window);
506 
507 	cpus_read_unlock();
508 	return ret;
509 }
510 
get_time_window(struct powercap_zone * power_zone,int cid,u64 * data)511 static int get_time_window(struct powercap_zone *power_zone, int cid,
512 			   u64 *data)
513 {
514 	struct rapl_domain *rd;
515 	u64 val;
516 	int ret = 0;
517 	int id;
518 
519 	cpus_read_lock();
520 	rd = power_zone_to_rapl_domain(power_zone);
521 	id = contraint_to_pl(rd, cid);
522 
523 	ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val);
524 	if (!ret)
525 		*data = val;
526 
527 	cpus_read_unlock();
528 
529 	return ret;
530 }
531 
get_constraint_name(struct powercap_zone * power_zone,int cid)532 static const char *get_constraint_name(struct powercap_zone *power_zone,
533 				       int cid)
534 {
535 	struct rapl_domain *rd;
536 	int id;
537 
538 	rd = power_zone_to_rapl_domain(power_zone);
539 	id = contraint_to_pl(rd, cid);
540 	if (id >= 0)
541 		return rd->rpl[id].name;
542 
543 	return NULL;
544 }
545 
get_max_power(struct powercap_zone * power_zone,int cid,u64 * data)546 static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data)
547 {
548 	struct rapl_domain *rd;
549 	u64 val;
550 	int ret = 0;
551 	int id;
552 
553 	cpus_read_lock();
554 	rd = power_zone_to_rapl_domain(power_zone);
555 	id = contraint_to_pl(rd, cid);
556 
557 	ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val);
558 	if (!ret)
559 		*data = val;
560 
561 	/* As a generalization rule, PL4 would be around two times PL2. */
562 	if (id == POWER_LIMIT4)
563 		*data = *data * 2;
564 
565 	cpus_read_unlock();
566 
567 	return ret;
568 }
569 
570 static const struct powercap_zone_constraint_ops constraint_ops = {
571 	.set_power_limit_uw = set_power_limit,
572 	.get_power_limit_uw = get_current_power_limit,
573 	.set_time_window_us = set_time_window,
574 	.get_time_window_us = get_time_window,
575 	.get_max_power_uw = get_max_power,
576 	.get_name = get_constraint_name,
577 };
578 
579 /* Return the id used for read_raw/write_raw callback */
get_rid(struct rapl_package * rp)580 static int get_rid(struct rapl_package *rp)
581 {
582 	return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id;
583 }
584 
585 /* called after domain detection and package level data are set */
rapl_init_domains(struct rapl_package * rp)586 static void rapl_init_domains(struct rapl_package *rp)
587 {
588 	enum rapl_domain_type i;
589 	enum rapl_domain_reg_id j;
590 	struct rapl_domain *rd = rp->domains;
591 
592 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
593 		unsigned int mask = rp->domain_map & (1 << i);
594 		int t;
595 
596 		if (!mask)
597 			continue;
598 
599 		rd->rp = rp;
600 
601 		if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
602 			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
603 				rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) :
604 				rp->id);
605 		} else {
606 			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
607 				rapl_domain_names[i]);
608 		}
609 
610 		rd->id = i;
611 
612 		/* PL1 is supported by default */
613 		rp->priv->limits[i] |= BIT(POWER_LIMIT1);
614 
615 		for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) {
616 			if (rp->priv->limits[i] & BIT(t))
617 				rd->rpl[t].name = pl_names[t];
618 		}
619 
620 		for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
621 			rd->regs[j] = rp->priv->regs[i][j];
622 
623 		rd++;
624 	}
625 }
626 
rapl_unit_xlate(struct rapl_domain * rd,enum unit_type type,u64 value,int to_raw)627 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
628 			   u64 value, int to_raw)
629 {
630 	u64 units = 1;
631 	struct rapl_defaults *defaults = get_defaults(rd->rp);
632 	u64 scale = 1;
633 
634 	switch (type) {
635 	case POWER_UNIT:
636 		units = rd->power_unit;
637 		break;
638 	case ENERGY_UNIT:
639 		scale = ENERGY_UNIT_SCALE;
640 		units = rd->energy_unit;
641 		break;
642 	case TIME_UNIT:
643 		return defaults->compute_time_window(rd, value, to_raw);
644 	case ARBITRARY_UNIT:
645 	default:
646 		return value;
647 	}
648 
649 	if (to_raw)
650 		return div64_u64(value, units) * scale;
651 
652 	value *= units;
653 
654 	return div64_u64(value, scale);
655 }
656 
657 /* RAPL primitives for MSR and MMIO I/F */
658 static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = {
659 	/* name, mask, shift, msr index, unit divisor */
660 	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
661 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
662 	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
663 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
664 	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
665 				RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
666 	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
667 			    RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
668 	[FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
669 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
670 	[FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63,
671 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
672 	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
673 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
674 	[PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
675 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
676 	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
677 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
678 	[PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
679 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
680 	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
681 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
682 	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
683 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
684 	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
685 			    0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
686 	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
687 			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
688 	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
689 			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
690 	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
691 			    RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
692 	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
693 			    RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
694 	[PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
695 			    RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
696 	[PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
697 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
698 	[PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
699 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
700 	[PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
701 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
702 	[PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
703 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
704 	[PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
705 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
706 	[PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
707 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
708 	/* non-hardware */
709 	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
710 			    RAPL_PRIMITIVE_DERIVED),
711 };
712 
713 /* RAPL primitives for TPMI I/F */
714 static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = {
715 	/* name, mask, shift, msr index, unit divisor */
716 	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0,
717 		RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
718 	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0,
719 		RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0),
720 	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0,
721 		RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
722 	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
723 		RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
724 	[PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63,
725 		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
726 	[PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63,
727 		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
728 	[PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63,
729 		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
730 	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
731 		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
732 	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
733 		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
734 	[PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
735 		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
736 	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18,
737 		RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
738 	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18,
739 		RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0),
740 	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0,
741 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
742 	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36,
743 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
744 	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18,
745 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
746 	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54,
747 		RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
748 	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
749 		RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
750 	/* non-hardware */
751 	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0,
752 		POWER_UNIT, RAPL_PRIMITIVE_DERIVED),
753 };
754 
get_rpi(struct rapl_package * rp,int prim)755 static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim)
756 {
757 	struct rapl_primitive_info *rpi = rp->priv->rpi;
758 
759 	if (prim < 0 || prim >= NR_RAPL_PRIMITIVES || !rpi)
760 		return NULL;
761 
762 	return &rpi[prim];
763 }
764 
rapl_config(struct rapl_package * rp)765 static int rapl_config(struct rapl_package *rp)
766 {
767 	switch (rp->priv->type) {
768 	/* MMIO I/F shares the same register layout as MSR registers */
769 	case RAPL_IF_MMIO:
770 	case RAPL_IF_MSR:
771 		rp->priv->defaults = (void *)defaults_msr;
772 		rp->priv->rpi = (void *)rpi_msr;
773 		break;
774 	case RAPL_IF_TPMI:
775 		rp->priv->defaults = (void *)&defaults_tpmi;
776 		rp->priv->rpi = (void *)rpi_tpmi;
777 		break;
778 	default:
779 		return -EINVAL;
780 	}
781 
782 	/* defaults_msr can be NULL on unsupported platforms */
783 	if (!rp->priv->defaults || !rp->priv->rpi)
784 		return -ENODEV;
785 
786 	return 0;
787 }
788 
789 static enum rapl_primitives
prim_fixups(struct rapl_domain * rd,enum rapl_primitives prim)790 prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
791 {
792 	struct rapl_defaults *defaults = get_defaults(rd->rp);
793 
794 	if (!defaults->spr_psys_bits)
795 		return prim;
796 
797 	if (rd->id != RAPL_DOMAIN_PLATFORM)
798 		return prim;
799 
800 	switch (prim) {
801 	case POWER_LIMIT1:
802 		return PSYS_POWER_LIMIT1;
803 	case POWER_LIMIT2:
804 		return PSYS_POWER_LIMIT2;
805 	case PL1_ENABLE:
806 		return PSYS_PL1_ENABLE;
807 	case PL2_ENABLE:
808 		return PSYS_PL2_ENABLE;
809 	case TIME_WINDOW1:
810 		return PSYS_TIME_WINDOW1;
811 	case TIME_WINDOW2:
812 		return PSYS_TIME_WINDOW2;
813 	default:
814 		return prim;
815 	}
816 }
817 
818 /* Read primitive data based on its related struct rapl_primitive_info.
819  * if xlate flag is set, return translated data based on data units, i.e.
820  * time, energy, and power.
821  * RAPL MSRs are non-architectual and are laid out not consistently across
822  * domains. Here we use primitive info to allow writing consolidated access
823  * functions.
824  * For a given primitive, it is processed by MSR mask and shift. Unit conversion
825  * is pre-assigned based on RAPL unit MSRs read at init time.
826  * 63-------------------------- 31--------------------------- 0
827  * |                           xxxxx (mask)                   |
828  * |                                |<- shift ----------------|
829  * 63-------------------------- 31--------------------------- 0
830  */
rapl_read_data_raw(struct rapl_domain * rd,enum rapl_primitives prim,bool xlate,u64 * data)831 static int rapl_read_data_raw(struct rapl_domain *rd,
832 			      enum rapl_primitives prim, bool xlate, u64 *data)
833 {
834 	u64 value;
835 	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
836 	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
837 	struct reg_action ra;
838 
839 	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
840 		return -EINVAL;
841 
842 	ra.reg = rd->regs[rpi->id];
843 	if (!ra.reg.val)
844 		return -EINVAL;
845 
846 	/* non-hardware data are collected by the polling thread */
847 	if (rpi->flag & RAPL_PRIMITIVE_DERIVED) {
848 		*data = rd->rdd.primitives[prim];
849 		return 0;
850 	}
851 
852 	ra.mask = rpi->mask;
853 
854 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
855 		pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name);
856 		return -EIO;
857 	}
858 
859 	value = ra.value >> rpi->shift;
860 
861 	if (xlate)
862 		*data = rapl_unit_xlate(rd, rpi->unit, value, 0);
863 	else
864 		*data = value;
865 
866 	return 0;
867 }
868 
869 /* Similar use of primitive info in the read counterpart */
rapl_write_data_raw(struct rapl_domain * rd,enum rapl_primitives prim,unsigned long long value)870 static int rapl_write_data_raw(struct rapl_domain *rd,
871 			       enum rapl_primitives prim,
872 			       unsigned long long value)
873 {
874 	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
875 	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
876 	u64 bits;
877 	struct reg_action ra;
878 	int ret;
879 
880 	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
881 		return -EINVAL;
882 
883 	bits = rapl_unit_xlate(rd, rpi->unit, value, 1);
884 	bits <<= rpi->shift;
885 	bits &= rpi->mask;
886 
887 	memset(&ra, 0, sizeof(ra));
888 
889 	ra.reg = rd->regs[rpi->id];
890 	ra.mask = rpi->mask;
891 	ra.value = bits;
892 
893 	ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra);
894 
895 	return ret;
896 }
897 
rapl_read_pl_data(struct rapl_domain * rd,int pl,enum pl_prims pl_prim,bool xlate,u64 * data)898 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
899 			      enum pl_prims pl_prim, bool xlate, u64 *data)
900 {
901 	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
902 
903 	if (!is_pl_valid(rd, pl))
904 		return -EINVAL;
905 
906 	return rapl_read_data_raw(rd, prim, xlate, data);
907 }
908 
rapl_write_pl_data(struct rapl_domain * rd,int pl,enum pl_prims pl_prim,unsigned long long value)909 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
910 			       enum pl_prims pl_prim,
911 			       unsigned long long value)
912 {
913 	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
914 
915 	if (!is_pl_valid(rd, pl))
916 		return -EINVAL;
917 
918 	if (rd->rpl[pl].locked) {
919 		pr_debug("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]);
920 		return -EACCES;
921 	}
922 
923 	return rapl_write_data_raw(rd, prim, value);
924 }
925 /*
926  * Raw RAPL data stored in MSRs are in certain scales. We need to
927  * convert them into standard units based on the units reported in
928  * the RAPL unit MSRs. This is specific to CPUs as the method to
929  * calculate units differ on different CPUs.
930  * We convert the units to below format based on CPUs.
931  * i.e.
932  * energy unit: picoJoules  : Represented in picoJoules by default
933  * power unit : microWatts  : Represented in milliWatts by default
934  * time unit  : microseconds: Represented in seconds by default
935  */
rapl_check_unit_core(struct rapl_domain * rd)936 static int rapl_check_unit_core(struct rapl_domain *rd)
937 {
938 	struct reg_action ra;
939 	u32 value;
940 
941 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
942 	ra.mask = ~0;
943 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
944 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
945 			ra.reg.val, rd->rp->name, rd->name);
946 		return -ENODEV;
947 	}
948 
949 	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
950 	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
951 
952 	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
953 	rd->power_unit = 1000000 / (1 << value);
954 
955 	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
956 	rd->time_unit = 1000000 / (1 << value);
957 
958 	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
959 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
960 
961 	return 0;
962 }
963 
rapl_check_unit_atom(struct rapl_domain * rd)964 static int rapl_check_unit_atom(struct rapl_domain *rd)
965 {
966 	struct reg_action ra;
967 	u32 value;
968 
969 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
970 	ra.mask = ~0;
971 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
972 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
973 			ra.reg.val, rd->rp->name, rd->name);
974 		return -ENODEV;
975 	}
976 
977 	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
978 	rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
979 
980 	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
981 	rd->power_unit = (1 << value) * 1000;
982 
983 	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
984 	rd->time_unit = 1000000 / (1 << value);
985 
986 	pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n",
987 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
988 
989 	return 0;
990 }
991 
power_limit_irq_save_cpu(void * info)992 static void power_limit_irq_save_cpu(void *info)
993 {
994 	u32 l, h = 0;
995 	struct rapl_package *rp = (struct rapl_package *)info;
996 
997 	/* save the state of PLN irq mask bit before disabling it */
998 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
999 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
1000 		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
1001 		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
1002 	}
1003 	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1004 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1005 }
1006 
1007 /* REVISIT:
1008  * When package power limit is set artificially low by RAPL, LVT
1009  * thermal interrupt for package power limit should be ignored
1010  * since we are not really exceeding the real limit. The intention
1011  * is to avoid excessive interrupts while we are trying to save power.
1012  * A useful feature might be routing the package_power_limit interrupt
1013  * to userspace via eventfd. once we have a usecase, this is simple
1014  * to do by adding an atomic notifier.
1015  */
1016 
package_power_limit_irq_save(struct rapl_package * rp)1017 static void package_power_limit_irq_save(struct rapl_package *rp)
1018 {
1019 	if (rp->lead_cpu < 0)
1020 		return;
1021 
1022 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1023 		return;
1024 
1025 	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
1026 }
1027 
1028 /*
1029  * Restore per package power limit interrupt enable state. Called from cpu
1030  * hotplug code on package removal.
1031  */
package_power_limit_irq_restore(struct rapl_package * rp)1032 static void package_power_limit_irq_restore(struct rapl_package *rp)
1033 {
1034 	u32 l, h;
1035 
1036 	if (rp->lead_cpu < 0)
1037 		return;
1038 
1039 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1040 		return;
1041 
1042 	/* irq enable state not saved, nothing to restore */
1043 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1044 		return;
1045 
1046 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1047 
1048 	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
1049 		l |= PACKAGE_THERM_INT_PLN_ENABLE;
1050 	else
1051 		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1052 
1053 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1054 }
1055 
set_floor_freq_default(struct rapl_domain * rd,bool mode)1056 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1057 {
1058 	int i;
1059 
1060 	/* always enable clamp such that p-state can go below OS requested
1061 	 * range. power capping priority over guranteed frequency.
1062 	 */
1063 	rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode);
1064 
1065 	for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) {
1066 		rapl_write_pl_data(rd, i, PL_ENABLE, mode);
1067 		rapl_write_pl_data(rd, i, PL_CLAMP, mode);
1068 	}
1069 }
1070 
set_floor_freq_atom(struct rapl_domain * rd,bool enable)1071 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1072 {
1073 	static u32 power_ctrl_orig_val;
1074 	struct rapl_defaults *defaults = get_defaults(rd->rp);
1075 	u32 mdata;
1076 
1077 	if (!defaults->floor_freq_reg_addr) {
1078 		pr_err("Invalid floor frequency config register\n");
1079 		return;
1080 	}
1081 
1082 	if (!power_ctrl_orig_val)
1083 		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1084 			      defaults->floor_freq_reg_addr,
1085 			      &power_ctrl_orig_val);
1086 	mdata = power_ctrl_orig_val;
1087 	if (enable) {
1088 		mdata &= ~(0x7f << 8);
1089 		mdata |= 1 << 8;
1090 	}
1091 	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1092 		       defaults->floor_freq_reg_addr, mdata);
1093 }
1094 
rapl_compute_time_window_core(struct rapl_domain * rd,u64 value,bool to_raw)1095 static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value,
1096 					 bool to_raw)
1097 {
1098 	u64 f, y;		/* fraction and exp. used for time unit */
1099 
1100 	/*
1101 	 * Special processing based on 2^Y*(1+F/4), refer
1102 	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1103 	 */
1104 	if (!to_raw) {
1105 		f = (value & 0x60) >> 5;
1106 		y = value & 0x1f;
1107 		value = (1 << y) * (4 + f) * rd->time_unit / 4;
1108 	} else {
1109 		if (value < rd->time_unit)
1110 			return 0;
1111 
1112 		do_div(value, rd->time_unit);
1113 		y = ilog2(value);
1114 
1115 		/*
1116 		 * The target hardware field is 7 bits wide, so return all ones
1117 		 * if the exponent is too large.
1118 		 */
1119 		if (y > 0x1f)
1120 			return 0x7f;
1121 
1122 		f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y);
1123 		value = (y & 0x1f) | ((f & 0x3) << 5);
1124 	}
1125 	return value;
1126 }
1127 
rapl_compute_time_window_atom(struct rapl_domain * rd,u64 value,bool to_raw)1128 static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value,
1129 					 bool to_raw)
1130 {
1131 	/*
1132 	 * Atom time unit encoding is straight forward val * time_unit,
1133 	 * where time_unit is default to 1 sec. Never 0.
1134 	 */
1135 	if (!to_raw)
1136 		return (value) ? value * rd->time_unit : rd->time_unit;
1137 
1138 	value = div64_u64(value, rd->time_unit);
1139 
1140 	return value;
1141 }
1142 
1143 /* TPMI Unit register has different layout */
1144 #define TPMI_POWER_UNIT_OFFSET	POWER_UNIT_OFFSET
1145 #define TPMI_POWER_UNIT_MASK	POWER_UNIT_MASK
1146 #define TPMI_ENERGY_UNIT_OFFSET	0x06
1147 #define TPMI_ENERGY_UNIT_MASK	0x7C0
1148 #define TPMI_TIME_UNIT_OFFSET	0x0C
1149 #define TPMI_TIME_UNIT_MASK	0xF000
1150 
rapl_check_unit_tpmi(struct rapl_domain * rd)1151 static int rapl_check_unit_tpmi(struct rapl_domain *rd)
1152 {
1153 	struct reg_action ra;
1154 	u32 value;
1155 
1156 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
1157 	ra.mask = ~0;
1158 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
1159 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
1160 			ra.reg.val, rd->rp->name, rd->name);
1161 		return -ENODEV;
1162 	}
1163 
1164 	value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET;
1165 	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
1166 
1167 	value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET;
1168 	rd->power_unit = 1000000 / (1 << value);
1169 
1170 	value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET;
1171 	rd->time_unit = 1000000 / (1 << value);
1172 
1173 	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
1174 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
1175 
1176 	return 0;
1177 }
1178 
1179 static const struct rapl_defaults defaults_tpmi = {
1180 	.check_unit = rapl_check_unit_tpmi,
1181 	/* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */
1182 	.set_floor_freq = set_floor_freq_default,
1183 	.compute_time_window = rapl_compute_time_window_core,
1184 };
1185 
1186 static const struct rapl_defaults rapl_defaults_core = {
1187 	.floor_freq_reg_addr = 0,
1188 	.check_unit = rapl_check_unit_core,
1189 	.set_floor_freq = set_floor_freq_default,
1190 	.compute_time_window = rapl_compute_time_window_core,
1191 };
1192 
1193 static const struct rapl_defaults rapl_defaults_hsw_server = {
1194 	.check_unit = rapl_check_unit_core,
1195 	.set_floor_freq = set_floor_freq_default,
1196 	.compute_time_window = rapl_compute_time_window_core,
1197 	.dram_domain_energy_unit = 15300,
1198 };
1199 
1200 static const struct rapl_defaults rapl_defaults_spr_server = {
1201 	.check_unit = rapl_check_unit_core,
1202 	.set_floor_freq = set_floor_freq_default,
1203 	.compute_time_window = rapl_compute_time_window_core,
1204 	.psys_domain_energy_unit = 1000000000,
1205 	.spr_psys_bits = true,
1206 };
1207 
1208 static const struct rapl_defaults rapl_defaults_byt = {
1209 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1210 	.check_unit = rapl_check_unit_atom,
1211 	.set_floor_freq = set_floor_freq_atom,
1212 	.compute_time_window = rapl_compute_time_window_atom,
1213 };
1214 
1215 static const struct rapl_defaults rapl_defaults_tng = {
1216 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1217 	.check_unit = rapl_check_unit_atom,
1218 	.set_floor_freq = set_floor_freq_atom,
1219 	.compute_time_window = rapl_compute_time_window_atom,
1220 };
1221 
1222 static const struct rapl_defaults rapl_defaults_ann = {
1223 	.floor_freq_reg_addr = 0,
1224 	.check_unit = rapl_check_unit_atom,
1225 	.set_floor_freq = NULL,
1226 	.compute_time_window = rapl_compute_time_window_atom,
1227 };
1228 
1229 static const struct rapl_defaults rapl_defaults_cht = {
1230 	.floor_freq_reg_addr = 0,
1231 	.check_unit = rapl_check_unit_atom,
1232 	.set_floor_freq = NULL,
1233 	.compute_time_window = rapl_compute_time_window_atom,
1234 };
1235 
1236 static const struct rapl_defaults rapl_defaults_amd = {
1237 	.check_unit = rapl_check_unit_core,
1238 };
1239 
1240 static const struct x86_cpu_id rapl_ids[] __initconst = {
1241 	X86_MATCH_VFM(INTEL_SANDYBRIDGE,	&rapl_defaults_core),
1242 	X86_MATCH_VFM(INTEL_SANDYBRIDGE_X,	&rapl_defaults_core),
1243 
1244 	X86_MATCH_VFM(INTEL_IVYBRIDGE,		&rapl_defaults_core),
1245 	X86_MATCH_VFM(INTEL_IVYBRIDGE_X,	&rapl_defaults_core),
1246 
1247 	X86_MATCH_VFM(INTEL_HASWELL,		&rapl_defaults_core),
1248 	X86_MATCH_VFM(INTEL_HASWELL_L,		&rapl_defaults_core),
1249 	X86_MATCH_VFM(INTEL_HASWELL_G,		&rapl_defaults_core),
1250 	X86_MATCH_VFM(INTEL_HASWELL_X,		&rapl_defaults_hsw_server),
1251 
1252 	X86_MATCH_VFM(INTEL_BROADWELL,		&rapl_defaults_core),
1253 	X86_MATCH_VFM(INTEL_BROADWELL_G,	&rapl_defaults_core),
1254 	X86_MATCH_VFM(INTEL_BROADWELL_D,	&rapl_defaults_core),
1255 	X86_MATCH_VFM(INTEL_BROADWELL_X,	&rapl_defaults_hsw_server),
1256 
1257 	X86_MATCH_VFM(INTEL_SKYLAKE,		&rapl_defaults_core),
1258 	X86_MATCH_VFM(INTEL_SKYLAKE_L,		&rapl_defaults_core),
1259 	X86_MATCH_VFM(INTEL_SKYLAKE_X,		&rapl_defaults_hsw_server),
1260 	X86_MATCH_VFM(INTEL_KABYLAKE_L,		&rapl_defaults_core),
1261 	X86_MATCH_VFM(INTEL_KABYLAKE,		&rapl_defaults_core),
1262 	X86_MATCH_VFM(INTEL_CANNONLAKE_L,	&rapl_defaults_core),
1263 	X86_MATCH_VFM(INTEL_ICELAKE_L,		&rapl_defaults_core),
1264 	X86_MATCH_VFM(INTEL_ICELAKE,		&rapl_defaults_core),
1265 	X86_MATCH_VFM(INTEL_ICELAKE_NNPI,	&rapl_defaults_core),
1266 	X86_MATCH_VFM(INTEL_ICELAKE_X,		&rapl_defaults_hsw_server),
1267 	X86_MATCH_VFM(INTEL_ICELAKE_D,		&rapl_defaults_hsw_server),
1268 	X86_MATCH_VFM(INTEL_COMETLAKE_L,	&rapl_defaults_core),
1269 	X86_MATCH_VFM(INTEL_COMETLAKE,		&rapl_defaults_core),
1270 	X86_MATCH_VFM(INTEL_TIGERLAKE_L,	&rapl_defaults_core),
1271 	X86_MATCH_VFM(INTEL_TIGERLAKE,		&rapl_defaults_core),
1272 	X86_MATCH_VFM(INTEL_ROCKETLAKE,		&rapl_defaults_core),
1273 	X86_MATCH_VFM(INTEL_ALDERLAKE,		&rapl_defaults_core),
1274 	X86_MATCH_VFM(INTEL_ALDERLAKE_L,	&rapl_defaults_core),
1275 	X86_MATCH_VFM(INTEL_ATOM_GRACEMONT,	&rapl_defaults_core),
1276 	X86_MATCH_VFM(INTEL_RAPTORLAKE,		&rapl_defaults_core),
1277 	X86_MATCH_VFM(INTEL_RAPTORLAKE_P,        &rapl_defaults_core),
1278 	X86_MATCH_VFM(INTEL_RAPTORLAKE_S,	&rapl_defaults_core),
1279 	X86_MATCH_VFM(INTEL_METEORLAKE,		&rapl_defaults_core),
1280 	X86_MATCH_VFM(INTEL_METEORLAKE_L,	&rapl_defaults_core),
1281 	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X,	&rapl_defaults_spr_server),
1282 	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X,	&rapl_defaults_spr_server),
1283 	X86_MATCH_VFM(INTEL_LUNARLAKE_M,	&rapl_defaults_core),
1284 	X86_MATCH_VFM(INTEL_ARROWLAKE_H,	&rapl_defaults_core),
1285 	X86_MATCH_VFM(INTEL_ARROWLAKE,		&rapl_defaults_core),
1286 	X86_MATCH_VFM(INTEL_ARROWLAKE_U,	&rapl_defaults_core),
1287 	X86_MATCH_VFM(INTEL_LAKEFIELD,		&rapl_defaults_core),
1288 
1289 	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT,	&rapl_defaults_byt),
1290 	X86_MATCH_VFM(INTEL_ATOM_AIRMONT,	&rapl_defaults_cht),
1291 	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID, &rapl_defaults_tng),
1292 	X86_MATCH_VFM(INTEL_ATOM_AIRMONT_MID,	&rapl_defaults_ann),
1293 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT,	&rapl_defaults_core),
1294 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_PLUS,	&rapl_defaults_core),
1295 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_D,	&rapl_defaults_core),
1296 	X86_MATCH_VFM(INTEL_ATOM_TREMONT,	&rapl_defaults_core),
1297 	X86_MATCH_VFM(INTEL_ATOM_TREMONT_D,	&rapl_defaults_core),
1298 	X86_MATCH_VFM(INTEL_ATOM_TREMONT_L,	&rapl_defaults_core),
1299 
1300 	X86_MATCH_VFM(INTEL_XEON_PHI_KNL,	&rapl_defaults_hsw_server),
1301 	X86_MATCH_VFM(INTEL_XEON_PHI_KNM,	&rapl_defaults_hsw_server),
1302 
1303 	X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1304 	X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1305 	X86_MATCH_VENDOR_FAM(AMD, 0x1A, &rapl_defaults_amd),
1306 	X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1307 	{}
1308 };
1309 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1310 
1311 /* Read once for all raw primitive data for domains */
rapl_update_domain_data(struct rapl_package * rp)1312 static void rapl_update_domain_data(struct rapl_package *rp)
1313 {
1314 	int dmn, prim;
1315 	u64 val;
1316 
1317 	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1318 		pr_debug("update %s domain %s data\n", rp->name,
1319 			 rp->domains[dmn].name);
1320 		/* exclude non-raw primitives */
1321 		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1322 			struct rapl_primitive_info *rpi = get_rpi(rp, prim);
1323 
1324 			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1325 						rpi->unit, &val))
1326 				rp->domains[dmn].rdd.primitives[prim] = val;
1327 		}
1328 	}
1329 
1330 }
1331 
rapl_package_register_powercap(struct rapl_package * rp)1332 static int rapl_package_register_powercap(struct rapl_package *rp)
1333 {
1334 	struct rapl_domain *rd;
1335 	struct powercap_zone *power_zone = NULL;
1336 	int nr_pl, ret;
1337 
1338 	/* Update the domain data of the new package */
1339 	rapl_update_domain_data(rp);
1340 
1341 	/* first we register package domain as the parent zone */
1342 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1343 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1344 			nr_pl = find_nr_power_limit(rd);
1345 			pr_debug("register package domain %s\n", rp->name);
1346 			power_zone = powercap_register_zone(&rd->power_zone,
1347 					    rp->priv->control_type, rp->name,
1348 					    NULL, &zone_ops[rd->id], nr_pl,
1349 					    &constraint_ops);
1350 			if (IS_ERR(power_zone)) {
1351 				pr_debug("failed to register power zone %s\n",
1352 					 rp->name);
1353 				return PTR_ERR(power_zone);
1354 			}
1355 			/* track parent zone in per package/socket data */
1356 			rp->power_zone = power_zone;
1357 			/* done, only one package domain per socket */
1358 			break;
1359 		}
1360 	}
1361 	if (!power_zone) {
1362 		pr_err("no package domain found, unknown topology!\n");
1363 		return -ENODEV;
1364 	}
1365 	/* now register domains as children of the socket/package */
1366 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1367 		struct powercap_zone *parent = rp->power_zone;
1368 
1369 		if (rd->id == RAPL_DOMAIN_PACKAGE)
1370 			continue;
1371 		if (rd->id == RAPL_DOMAIN_PLATFORM)
1372 			parent = NULL;
1373 		/* number of power limits per domain varies */
1374 		nr_pl = find_nr_power_limit(rd);
1375 		power_zone = powercap_register_zone(&rd->power_zone,
1376 						    rp->priv->control_type,
1377 						    rd->name, parent,
1378 						    &zone_ops[rd->id], nr_pl,
1379 						    &constraint_ops);
1380 
1381 		if (IS_ERR(power_zone)) {
1382 			pr_debug("failed to register power_zone, %s:%s\n",
1383 				 rp->name, rd->name);
1384 			ret = PTR_ERR(power_zone);
1385 			goto err_cleanup;
1386 		}
1387 	}
1388 	return 0;
1389 
1390 err_cleanup:
1391 	/*
1392 	 * Clean up previously initialized domains within the package if we
1393 	 * failed after the first domain setup.
1394 	 */
1395 	while (--rd >= rp->domains) {
1396 		pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1397 		powercap_unregister_zone(rp->priv->control_type,
1398 					 &rd->power_zone);
1399 	}
1400 
1401 	return ret;
1402 }
1403 
rapl_check_domain(int domain,struct rapl_package * rp)1404 static int rapl_check_domain(int domain, struct rapl_package *rp)
1405 {
1406 	struct reg_action ra;
1407 
1408 	switch (domain) {
1409 	case RAPL_DOMAIN_PACKAGE:
1410 	case RAPL_DOMAIN_PP0:
1411 	case RAPL_DOMAIN_PP1:
1412 	case RAPL_DOMAIN_DRAM:
1413 	case RAPL_DOMAIN_PLATFORM:
1414 		ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1415 		break;
1416 	default:
1417 		pr_err("invalid domain id %d\n", domain);
1418 		return -EINVAL;
1419 	}
1420 	/* make sure domain counters are available and contains non-zero
1421 	 * values, otherwise skip it.
1422 	 */
1423 
1424 	ra.mask = ENERGY_STATUS_MASK;
1425 	if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value)
1426 		return -ENODEV;
1427 
1428 	return 0;
1429 }
1430 
1431 /*
1432  * Get per domain energy/power/time unit.
1433  * RAPL Interfaces without per domain unit register will use the package
1434  * scope unit register to set per domain units.
1435  */
rapl_get_domain_unit(struct rapl_domain * rd)1436 static int rapl_get_domain_unit(struct rapl_domain *rd)
1437 {
1438 	struct rapl_defaults *defaults = get_defaults(rd->rp);
1439 	int ret;
1440 
1441 	if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) {
1442 		if (!rd->rp->priv->reg_unit.val) {
1443 			pr_err("No valid Unit register found\n");
1444 			return -ENODEV;
1445 		}
1446 		rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit;
1447 	}
1448 
1449 	if (!defaults->check_unit) {
1450 		pr_err("missing .check_unit() callback\n");
1451 		return -ENODEV;
1452 	}
1453 
1454 	ret = defaults->check_unit(rd);
1455 	if (ret)
1456 		return ret;
1457 
1458 	if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit)
1459 		rd->energy_unit = defaults->dram_domain_energy_unit;
1460 	if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit)
1461 		rd->energy_unit = defaults->psys_domain_energy_unit;
1462 	return 0;
1463 }
1464 
1465 /*
1466  * Check if power limits are available. Two cases when they are not available:
1467  * 1. Locked by BIOS, in this case we still provide read-only access so that
1468  *    users can see what limit is set by the BIOS.
1469  * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1470  *    exist at all. In this case, we do not show the constraints in powercap.
1471  *
1472  * Called after domains are detected and initialized.
1473  */
rapl_detect_powerlimit(struct rapl_domain * rd)1474 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1475 {
1476 	u64 val64;
1477 	int i;
1478 
1479 	for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1480 		if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) {
1481 			if (val64) {
1482 				rd->rpl[i].locked = true;
1483 				pr_info("%s:%s:%s locked by BIOS\n",
1484 					rd->rp->name, rd->name, pl_names[i]);
1485 			}
1486 		}
1487 
1488 		if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64))
1489 			rd->rpl[i].name = NULL;
1490 	}
1491 }
1492 
1493 /* Detect active and valid domains for the given CPU, caller must
1494  * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1495  */
rapl_detect_domains(struct rapl_package * rp)1496 static int rapl_detect_domains(struct rapl_package *rp)
1497 {
1498 	struct rapl_domain *rd;
1499 	int i;
1500 
1501 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1502 		/* use physical package id to read counters */
1503 		if (!rapl_check_domain(i, rp)) {
1504 			rp->domain_map |= 1 << i;
1505 			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1506 		}
1507 	}
1508 	rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1509 	if (!rp->nr_domains) {
1510 		pr_debug("no valid rapl domains found in %s\n", rp->name);
1511 		return -ENODEV;
1512 	}
1513 	pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1514 
1515 	rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain),
1516 			      GFP_KERNEL);
1517 	if (!rp->domains)
1518 		return -ENOMEM;
1519 
1520 	rapl_init_domains(rp);
1521 
1522 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1523 		rapl_get_domain_unit(rd);
1524 		rapl_detect_powerlimit(rd);
1525 	}
1526 
1527 	return 0;
1528 }
1529 
1530 #ifdef CONFIG_PERF_EVENTS
1531 
1532 /*
1533  * Support for RAPL PMU
1534  *
1535  * Register a PMU if any of the registered RAPL Packages have the requirement
1536  * of exposing its energy counters via Perf PMU.
1537  *
1538  * PMU Name:
1539  *	power
1540  *
1541  * Events:
1542  *	Name		Event id	RAPL Domain
1543  *	energy_cores	0x01		RAPL_DOMAIN_PP0
1544  *	energy_pkg	0x02		RAPL_DOMAIN_PACKAGE
1545  *	energy_ram	0x03		RAPL_DOMAIN_DRAM
1546  *	energy_gpu	0x04		RAPL_DOMAIN_PP1
1547  *	energy_psys	0x05		RAPL_DOMAIN_PLATFORM
1548  *
1549  * Unit:
1550  *	Joules
1551  *
1552  * Scale:
1553  *	2.3283064365386962890625e-10
1554  *	The same RAPL domain in different RAPL Packages may have different
1555  *	energy units. Use 2.3283064365386962890625e-10 (2^-32) Joules as
1556  *	the fixed unit for all energy counters, and covert each hardware
1557  *	counter increase to N times of PMU event counter increases.
1558  *
1559  * This is fully compatible with the current MSR RAPL PMU. This means that
1560  * userspace programs like turbostat can use the same code to handle RAPL Perf
1561  * PMU, no matter what RAPL Interface driver (MSR/TPMI, etc) is running
1562  * underlying on the platform.
1563  *
1564  * Note that RAPL Packages can be probed/removed dynamically, and the events
1565  * supported by each TPMI RAPL device can be different. Thus the RAPL PMU
1566  * support is done on demand, which means
1567  * 1. PMU is registered only if it is needed by a RAPL Package. PMU events for
1568  *    unsupported counters are not exposed.
1569  * 2. PMU is unregistered and registered when a new RAPL Package is probed and
1570  *    supports new counters that are not supported by current PMU.
1571  * 3. PMU is unregistered when all registered RAPL Packages don't need PMU.
1572  */
1573 
1574 struct rapl_pmu {
1575 	struct pmu pmu;			/* Perf PMU structure */
1576 	u64 timer_ms;			/* Maximum expiration time to avoid counter overflow */
1577 	unsigned long domain_map;	/* Events supported by current registered PMU */
1578 	bool registered;		/* Whether the PMU has been registered or not */
1579 };
1580 
1581 static struct rapl_pmu rapl_pmu;
1582 
1583 /* PMU helpers */
1584 
get_pmu_cpu(struct rapl_package * rp)1585 static int get_pmu_cpu(struct rapl_package *rp)
1586 {
1587 	int cpu;
1588 
1589 	if (!rp->has_pmu)
1590 		return nr_cpu_ids;
1591 
1592 	/* Only TPMI RAPL is supported for now */
1593 	if (rp->priv->type != RAPL_IF_TPMI)
1594 		return nr_cpu_ids;
1595 
1596 	/* TPMI RAPL uses any CPU in the package for PMU */
1597 	for_each_online_cpu(cpu)
1598 		if (topology_physical_package_id(cpu) == rp->id)
1599 			return cpu;
1600 
1601 	return nr_cpu_ids;
1602 }
1603 
is_rp_pmu_cpu(struct rapl_package * rp,int cpu)1604 static bool is_rp_pmu_cpu(struct rapl_package *rp, int cpu)
1605 {
1606 	if (!rp->has_pmu)
1607 		return false;
1608 
1609 	/* Only TPMI RAPL is supported for now */
1610 	if (rp->priv->type != RAPL_IF_TPMI)
1611 		return false;
1612 
1613 	/* TPMI RAPL uses any CPU in the package for PMU */
1614 	return topology_physical_package_id(cpu) == rp->id;
1615 }
1616 
event_to_pmu_data(struct perf_event * event)1617 static struct rapl_package_pmu_data *event_to_pmu_data(struct perf_event *event)
1618 {
1619 	struct rapl_package *rp = event->pmu_private;
1620 
1621 	return &rp->pmu_data;
1622 }
1623 
1624 /* PMU event callbacks */
1625 
event_read_counter(struct perf_event * event)1626 static u64 event_read_counter(struct perf_event *event)
1627 {
1628 	struct rapl_package *rp = event->pmu_private;
1629 	u64 val;
1630 	int ret;
1631 
1632 	/* Return 0 for unsupported events */
1633 	if (event->hw.idx < 0)
1634 		return 0;
1635 
1636 	ret = rapl_read_data_raw(&rp->domains[event->hw.idx], ENERGY_COUNTER, false, &val);
1637 
1638 	/* Return 0 for failed read */
1639 	if (ret)
1640 		return 0;
1641 
1642 	return val;
1643 }
1644 
__rapl_pmu_event_start(struct perf_event * event)1645 static void __rapl_pmu_event_start(struct perf_event *event)
1646 {
1647 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1648 
1649 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1650 		return;
1651 
1652 	event->hw.state = 0;
1653 
1654 	list_add_tail(&event->active_entry, &data->active_list);
1655 
1656 	local64_set(&event->hw.prev_count, event_read_counter(event));
1657 	if (++data->n_active == 1)
1658 		hrtimer_start(&data->hrtimer, data->timer_interval,
1659 			      HRTIMER_MODE_REL_PINNED);
1660 }
1661 
rapl_pmu_event_start(struct perf_event * event,int mode)1662 static void rapl_pmu_event_start(struct perf_event *event, int mode)
1663 {
1664 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1665 	unsigned long flags;
1666 
1667 	raw_spin_lock_irqsave(&data->lock, flags);
1668 	__rapl_pmu_event_start(event);
1669 	raw_spin_unlock_irqrestore(&data->lock, flags);
1670 }
1671 
rapl_event_update(struct perf_event * event)1672 static u64 rapl_event_update(struct perf_event *event)
1673 {
1674 	struct hw_perf_event *hwc = &event->hw;
1675 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1676 	u64 prev_raw_count, new_raw_count;
1677 	s64 delta, sdelta;
1678 
1679 	/*
1680 	 * Follow the generic code to drain hwc->prev_count.
1681 	 * The loop is not expected to run for multiple times.
1682 	 */
1683 	prev_raw_count = local64_read(&hwc->prev_count);
1684 	do {
1685 		new_raw_count = event_read_counter(event);
1686 	} while (!local64_try_cmpxchg(&hwc->prev_count,
1687 		&prev_raw_count, new_raw_count));
1688 
1689 
1690 	/*
1691 	 * Now we have the new raw value and have updated the prev
1692 	 * timestamp already. We can now calculate the elapsed delta
1693 	 * (event-)time and add that to the generic event.
1694 	 */
1695 	delta = new_raw_count - prev_raw_count;
1696 
1697 	/*
1698 	 * Scale delta to smallest unit (2^-32)
1699 	 * users must then scale back: count * 1/(1e9*2^32) to get Joules
1700 	 * or use ldexp(count, -32).
1701 	 * Watts = Joules/Time delta
1702 	 */
1703 	sdelta = delta * data->scale[event->hw.flags];
1704 
1705 	local64_add(sdelta, &event->count);
1706 
1707 	return new_raw_count;
1708 }
1709 
rapl_pmu_event_stop(struct perf_event * event,int mode)1710 static void rapl_pmu_event_stop(struct perf_event *event, int mode)
1711 {
1712 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1713 	struct hw_perf_event *hwc = &event->hw;
1714 	unsigned long flags;
1715 
1716 	raw_spin_lock_irqsave(&data->lock, flags);
1717 
1718 	/* Mark event as deactivated and stopped */
1719 	if (!(hwc->state & PERF_HES_STOPPED)) {
1720 		WARN_ON_ONCE(data->n_active <= 0);
1721 		if (--data->n_active == 0)
1722 			hrtimer_cancel(&data->hrtimer);
1723 
1724 		list_del(&event->active_entry);
1725 
1726 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1727 		hwc->state |= PERF_HES_STOPPED;
1728 	}
1729 
1730 	/* Check if update of sw counter is necessary */
1731 	if ((mode & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1732 		/*
1733 		 * Drain the remaining delta count out of a event
1734 		 * that we are disabling:
1735 		 */
1736 		rapl_event_update(event);
1737 		hwc->state |= PERF_HES_UPTODATE;
1738 	}
1739 
1740 	raw_spin_unlock_irqrestore(&data->lock, flags);
1741 }
1742 
rapl_pmu_event_add(struct perf_event * event,int mode)1743 static int rapl_pmu_event_add(struct perf_event *event, int mode)
1744 {
1745 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1746 	struct hw_perf_event *hwc = &event->hw;
1747 	unsigned long flags;
1748 
1749 	raw_spin_lock_irqsave(&data->lock, flags);
1750 
1751 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1752 
1753 	if (mode & PERF_EF_START)
1754 		__rapl_pmu_event_start(event);
1755 
1756 	raw_spin_unlock_irqrestore(&data->lock, flags);
1757 
1758 	return 0;
1759 }
1760 
rapl_pmu_event_del(struct perf_event * event,int flags)1761 static void rapl_pmu_event_del(struct perf_event *event, int flags)
1762 {
1763 	rapl_pmu_event_stop(event, PERF_EF_UPDATE);
1764 }
1765 
1766 /* RAPL PMU event ids, same as shown in sysfs */
1767 enum perf_rapl_events {
1768 	PERF_RAPL_PP0 = 1,	/* all cores */
1769 	PERF_RAPL_PKG,		/* entire package */
1770 	PERF_RAPL_RAM,		/* DRAM */
1771 	PERF_RAPL_PP1,		/* gpu */
1772 	PERF_RAPL_PSYS,		/* psys */
1773 	PERF_RAPL_MAX
1774 };
1775 #define RAPL_EVENT_MASK GENMASK(7, 0)
1776 
1777 static const int event_to_domain[PERF_RAPL_MAX] = {
1778 	[PERF_RAPL_PP0]		= RAPL_DOMAIN_PP0,
1779 	[PERF_RAPL_PKG]		= RAPL_DOMAIN_PACKAGE,
1780 	[PERF_RAPL_RAM]		= RAPL_DOMAIN_DRAM,
1781 	[PERF_RAPL_PP1]		= RAPL_DOMAIN_PP1,
1782 	[PERF_RAPL_PSYS]	= RAPL_DOMAIN_PLATFORM,
1783 };
1784 
rapl_pmu_event_init(struct perf_event * event)1785 static int rapl_pmu_event_init(struct perf_event *event)
1786 {
1787 	struct rapl_package *pos, *rp = NULL;
1788 	u64 cfg = event->attr.config & RAPL_EVENT_MASK;
1789 	int domain, idx;
1790 
1791 	/* Only look at RAPL events */
1792 	if (event->attr.type != event->pmu->type)
1793 		return -ENOENT;
1794 
1795 	/* Check for supported events only */
1796 	if (!cfg || cfg >= PERF_RAPL_MAX)
1797 		return -EINVAL;
1798 
1799 	if (event->cpu < 0)
1800 		return -EINVAL;
1801 
1802 	/* Find out which Package the event belongs to */
1803 	list_for_each_entry(pos, &rapl_packages, plist) {
1804 		if (is_rp_pmu_cpu(pos, event->cpu)) {
1805 			rp = pos;
1806 			break;
1807 		}
1808 	}
1809 	if (!rp)
1810 		return -ENODEV;
1811 
1812 	/* Find out which RAPL Domain the event belongs to */
1813 	domain = event_to_domain[cfg];
1814 
1815 	event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG;
1816 	event->pmu_private = rp;	/* Which package */
1817 	event->hw.flags = domain;	/* Which domain */
1818 
1819 	event->hw.idx = -1;
1820 	/* Find out the index in rp->domains[] to get domain pointer */
1821 	for (idx = 0; idx < rp->nr_domains; idx++) {
1822 		if (rp->domains[idx].id == domain) {
1823 			event->hw.idx = idx;
1824 			break;
1825 		}
1826 	}
1827 
1828 	return 0;
1829 }
1830 
rapl_pmu_event_read(struct perf_event * event)1831 static void rapl_pmu_event_read(struct perf_event *event)
1832 {
1833 	rapl_event_update(event);
1834 }
1835 
rapl_hrtimer_handle(struct hrtimer * hrtimer)1836 static enum hrtimer_restart rapl_hrtimer_handle(struct hrtimer *hrtimer)
1837 {
1838 	struct rapl_package_pmu_data *data =
1839 		container_of(hrtimer, struct rapl_package_pmu_data, hrtimer);
1840 	struct perf_event *event;
1841 	unsigned long flags;
1842 
1843 	if (!data->n_active)
1844 		return HRTIMER_NORESTART;
1845 
1846 	raw_spin_lock_irqsave(&data->lock, flags);
1847 
1848 	list_for_each_entry(event, &data->active_list, active_entry)
1849 		rapl_event_update(event);
1850 
1851 	raw_spin_unlock_irqrestore(&data->lock, flags);
1852 
1853 	hrtimer_forward_now(hrtimer, data->timer_interval);
1854 
1855 	return HRTIMER_RESTART;
1856 }
1857 
1858 /* PMU sysfs attributes */
1859 
1860 /*
1861  * There are no default events, but we need to create "events" group (with
1862  * empty attrs) before updating it with detected events.
1863  */
1864 static struct attribute *attrs_empty[] = {
1865 	NULL,
1866 };
1867 
1868 static struct attribute_group pmu_events_group = {
1869 	.name = "events",
1870 	.attrs = attrs_empty,
1871 };
1872 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)1873 static ssize_t cpumask_show(struct device *dev,
1874 			    struct device_attribute *attr, char *buf)
1875 {
1876 	struct rapl_package *rp;
1877 	cpumask_var_t cpu_mask;
1878 	int cpu;
1879 	int ret;
1880 
1881 	if (!alloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1882 		return -ENOMEM;
1883 
1884 	cpus_read_lock();
1885 
1886 	cpumask_clear(cpu_mask);
1887 
1888 	/* Choose a cpu for each RAPL Package */
1889 	list_for_each_entry(rp, &rapl_packages, plist) {
1890 		cpu = get_pmu_cpu(rp);
1891 		if (cpu < nr_cpu_ids)
1892 			cpumask_set_cpu(cpu, cpu_mask);
1893 	}
1894 	cpus_read_unlock();
1895 
1896 	ret = cpumap_print_to_pagebuf(true, buf, cpu_mask);
1897 
1898 	free_cpumask_var(cpu_mask);
1899 
1900 	return ret;
1901 }
1902 
1903 static DEVICE_ATTR_RO(cpumask);
1904 
1905 static struct attribute *pmu_cpumask_attrs[] = {
1906 	&dev_attr_cpumask.attr,
1907 	NULL
1908 };
1909 
1910 static struct attribute_group pmu_cpumask_group = {
1911 	.attrs = pmu_cpumask_attrs,
1912 };
1913 
1914 PMU_FORMAT_ATTR(event, "config:0-7");
1915 static struct attribute *pmu_format_attr[] = {
1916 	&format_attr_event.attr,
1917 	NULL
1918 };
1919 
1920 static struct attribute_group pmu_format_group = {
1921 	.name = "format",
1922 	.attrs = pmu_format_attr,
1923 };
1924 
1925 static const struct attribute_group *pmu_attr_groups[] = {
1926 	&pmu_events_group,
1927 	&pmu_cpumask_group,
1928 	&pmu_format_group,
1929 	NULL
1930 };
1931 
1932 #define RAPL_EVENT_ATTR_STR(_name, v, str)					\
1933 static struct perf_pmu_events_attr event_attr_##v = {				\
1934 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL),	\
1935 	.event_str	= str,							\
1936 }
1937 
1938 RAPL_EVENT_ATTR_STR(energy-cores,	rapl_cores,	"event=0x01");
1939 RAPL_EVENT_ATTR_STR(energy-pkg,		rapl_pkg,	"event=0x02");
1940 RAPL_EVENT_ATTR_STR(energy-ram,		rapl_ram,	"event=0x03");
1941 RAPL_EVENT_ATTR_STR(energy-gpu,		rapl_gpu,	"event=0x04");
1942 RAPL_EVENT_ATTR_STR(energy-psys,	rapl_psys,	"event=0x05");
1943 
1944 RAPL_EVENT_ATTR_STR(energy-cores.unit,	rapl_unit_cores,	"Joules");
1945 RAPL_EVENT_ATTR_STR(energy-pkg.unit,	rapl_unit_pkg,		"Joules");
1946 RAPL_EVENT_ATTR_STR(energy-ram.unit,	rapl_unit_ram,		"Joules");
1947 RAPL_EVENT_ATTR_STR(energy-gpu.unit,	rapl_unit_gpu,		"Joules");
1948 RAPL_EVENT_ATTR_STR(energy-psys.unit,	rapl_unit_psys,		"Joules");
1949 
1950 RAPL_EVENT_ATTR_STR(energy-cores.scale,	rapl_scale_cores,	"2.3283064365386962890625e-10");
1951 RAPL_EVENT_ATTR_STR(energy-pkg.scale,	rapl_scale_pkg,		"2.3283064365386962890625e-10");
1952 RAPL_EVENT_ATTR_STR(energy-ram.scale,	rapl_scale_ram,		"2.3283064365386962890625e-10");
1953 RAPL_EVENT_ATTR_STR(energy-gpu.scale,	rapl_scale_gpu,		"2.3283064365386962890625e-10");
1954 RAPL_EVENT_ATTR_STR(energy-psys.scale,	rapl_scale_psys,	"2.3283064365386962890625e-10");
1955 
1956 #define RAPL_EVENT_GROUP(_name, domain)			\
1957 static struct attribute *pmu_attr_##_name[] = {		\
1958 	&event_attr_rapl_##_name.attr.attr,		\
1959 	&event_attr_rapl_unit_##_name.attr.attr,	\
1960 	&event_attr_rapl_scale_##_name.attr.attr,	\
1961 	NULL						\
1962 };							\
1963 static umode_t is_visible_##_name(struct kobject *kobj, struct attribute *attr, int event)	\
1964 {											\
1965 	return rapl_pmu.domain_map & BIT(domain) ? attr->mode : 0;	\
1966 }							\
1967 static struct attribute_group pmu_group_##_name = {	\
1968 	.name  = "events",				\
1969 	.attrs = pmu_attr_##_name,			\
1970 	.is_visible = is_visible_##_name,		\
1971 }
1972 
1973 RAPL_EVENT_GROUP(cores,	RAPL_DOMAIN_PP0);
1974 RAPL_EVENT_GROUP(pkg,	RAPL_DOMAIN_PACKAGE);
1975 RAPL_EVENT_GROUP(ram,	RAPL_DOMAIN_DRAM);
1976 RAPL_EVENT_GROUP(gpu,	RAPL_DOMAIN_PP1);
1977 RAPL_EVENT_GROUP(psys,	RAPL_DOMAIN_PLATFORM);
1978 
1979 static const struct attribute_group *pmu_attr_update[] = {
1980 	&pmu_group_cores,
1981 	&pmu_group_pkg,
1982 	&pmu_group_ram,
1983 	&pmu_group_gpu,
1984 	&pmu_group_psys,
1985 	NULL
1986 };
1987 
rapl_pmu_update(struct rapl_package * rp)1988 static int rapl_pmu_update(struct rapl_package *rp)
1989 {
1990 	int ret = 0;
1991 
1992 	/* Return if PMU already covers all events supported by current RAPL Package */
1993 	if (rapl_pmu.registered && !(rp->domain_map & (~rapl_pmu.domain_map)))
1994 		goto end;
1995 
1996 	/* Unregister previous registered PMU */
1997 	if (rapl_pmu.registered)
1998 		perf_pmu_unregister(&rapl_pmu.pmu);
1999 
2000 	rapl_pmu.registered = false;
2001 	rapl_pmu.domain_map |= rp->domain_map;
2002 
2003 	memset(&rapl_pmu.pmu, 0, sizeof(struct pmu));
2004 	rapl_pmu.pmu.attr_groups = pmu_attr_groups;
2005 	rapl_pmu.pmu.attr_update = pmu_attr_update;
2006 	rapl_pmu.pmu.task_ctx_nr = perf_invalid_context;
2007 	rapl_pmu.pmu.event_init = rapl_pmu_event_init;
2008 	rapl_pmu.pmu.add = rapl_pmu_event_add;
2009 	rapl_pmu.pmu.del = rapl_pmu_event_del;
2010 	rapl_pmu.pmu.start = rapl_pmu_event_start;
2011 	rapl_pmu.pmu.stop = rapl_pmu_event_stop;
2012 	rapl_pmu.pmu.read = rapl_pmu_event_read;
2013 	rapl_pmu.pmu.module = THIS_MODULE;
2014 	rapl_pmu.pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT;
2015 	ret = perf_pmu_register(&rapl_pmu.pmu, "power", -1);
2016 	if (ret) {
2017 		pr_info("Failed to register PMU\n");
2018 		return ret;
2019 	}
2020 
2021 	rapl_pmu.registered = true;
2022 end:
2023 	rp->has_pmu = true;
2024 	return ret;
2025 }
2026 
rapl_package_add_pmu(struct rapl_package * rp)2027 int rapl_package_add_pmu(struct rapl_package *rp)
2028 {
2029 	struct rapl_package_pmu_data *data = &rp->pmu_data;
2030 	int idx;
2031 
2032 	if (rp->has_pmu)
2033 		return -EEXIST;
2034 
2035 	guard(cpus_read_lock)();
2036 
2037 	for (idx = 0; idx < rp->nr_domains; idx++) {
2038 		struct rapl_domain *rd = &rp->domains[idx];
2039 		int domain = rd->id;
2040 		u64 val;
2041 
2042 		if (!test_bit(domain, &rp->domain_map))
2043 			continue;
2044 
2045 		/*
2046 		 * The RAPL PMU granularity is 2^-32 Joules
2047 		 * data->scale[]: times of 2^-32 Joules for each ENERGY COUNTER increase
2048 		 */
2049 		val = rd->energy_unit * (1ULL << 32);
2050 		do_div(val, ENERGY_UNIT_SCALE * 1000000);
2051 		data->scale[domain] = val;
2052 
2053 		if (!rapl_pmu.timer_ms) {
2054 			struct rapl_primitive_info *rpi = get_rpi(rp, ENERGY_COUNTER);
2055 
2056 			/*
2057 			 * Calculate the timer rate:
2058 			 * Use reference of 200W for scaling the timeout to avoid counter
2059 			 * overflows.
2060 			 *
2061 			 * max_count = rpi->mask >> rpi->shift + 1
2062 			 * max_energy_pj = max_count * rd->energy_unit
2063 			 * max_time_sec = (max_energy_pj / 1000000000) / 200w
2064 			 *
2065 			 * rapl_pmu.timer_ms = max_time_sec * 1000 / 2
2066 			 */
2067 			val = (rpi->mask >> rpi->shift) + 1;
2068 			val *= rd->energy_unit;
2069 			do_div(val, 1000000 * 200 * 2);
2070 			rapl_pmu.timer_ms = val;
2071 
2072 			pr_debug("%llu ms overflow timer\n", rapl_pmu.timer_ms);
2073 		}
2074 
2075 		pr_debug("Domain %s: hw unit %lld * 2^-32 Joules\n", rd->name, data->scale[domain]);
2076 	}
2077 
2078 	/* Initialize per package PMU data */
2079 	raw_spin_lock_init(&data->lock);
2080 	INIT_LIST_HEAD(&data->active_list);
2081 	data->timer_interval = ms_to_ktime(rapl_pmu.timer_ms);
2082 	hrtimer_init(&data->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2083 	data->hrtimer.function = rapl_hrtimer_handle;
2084 
2085 	return rapl_pmu_update(rp);
2086 }
2087 EXPORT_SYMBOL_GPL(rapl_package_add_pmu);
2088 
rapl_package_remove_pmu(struct rapl_package * rp)2089 void rapl_package_remove_pmu(struct rapl_package *rp)
2090 {
2091 	struct rapl_package *pos;
2092 
2093 	if (!rp->has_pmu)
2094 		return;
2095 
2096 	guard(cpus_read_lock)();
2097 
2098 	list_for_each_entry(pos, &rapl_packages, plist) {
2099 		/* PMU is still needed */
2100 		if (pos->has_pmu && pos != rp)
2101 			return;
2102 	}
2103 
2104 	perf_pmu_unregister(&rapl_pmu.pmu);
2105 	memset(&rapl_pmu, 0, sizeof(struct rapl_pmu));
2106 }
2107 EXPORT_SYMBOL_GPL(rapl_package_remove_pmu);
2108 #endif
2109 
2110 /* called from CPU hotplug notifier, hotplug lock held */
rapl_remove_package_cpuslocked(struct rapl_package * rp)2111 void rapl_remove_package_cpuslocked(struct rapl_package *rp)
2112 {
2113 	struct rapl_domain *rd, *rd_package = NULL;
2114 
2115 	package_power_limit_irq_restore(rp);
2116 
2117 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
2118 		int i;
2119 
2120 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2121 			rapl_write_pl_data(rd, i, PL_ENABLE, 0);
2122 			rapl_write_pl_data(rd, i, PL_CLAMP, 0);
2123 		}
2124 
2125 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
2126 			rd_package = rd;
2127 			continue;
2128 		}
2129 		pr_debug("remove package, undo power limit on %s: %s\n",
2130 			 rp->name, rd->name);
2131 		powercap_unregister_zone(rp->priv->control_type,
2132 					 &rd->power_zone);
2133 	}
2134 	/* do parent zone last */
2135 	powercap_unregister_zone(rp->priv->control_type,
2136 				 &rd_package->power_zone);
2137 	list_del(&rp->plist);
2138 	kfree(rp);
2139 }
2140 EXPORT_SYMBOL_GPL(rapl_remove_package_cpuslocked);
2141 
rapl_remove_package(struct rapl_package * rp)2142 void rapl_remove_package(struct rapl_package *rp)
2143 {
2144 	guard(cpus_read_lock)();
2145 	rapl_remove_package_cpuslocked(rp);
2146 }
2147 EXPORT_SYMBOL_GPL(rapl_remove_package);
2148 
2149 /*
2150  * RAPL Package energy counter scope:
2151  * 1. AMD/HYGON platforms use per-PKG package energy counter
2152  * 2. For Intel platforms
2153  *	2.1 CLX-AP platform has per-DIE package energy counter
2154  *	2.2 Other platforms that uses MSR RAPL are single die systems so the
2155  *          package energy counter can be considered as per-PKG/per-DIE,
2156  *          here it is considered as per-DIE.
2157  *	2.3 New platforms that use TPMI RAPL doesn't care about the
2158  *	    scope because they are not MSR/CPU based.
2159  */
2160 #define rapl_msrs_are_pkg_scope()				\
2161 	(boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||	\
2162 	 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
2163 
2164 /* caller to ensure CPU hotplug lock is held */
rapl_find_package_domain_cpuslocked(int id,struct rapl_if_priv * priv,bool id_is_cpu)2165 struct rapl_package *rapl_find_package_domain_cpuslocked(int id, struct rapl_if_priv *priv,
2166 							 bool id_is_cpu)
2167 {
2168 	struct rapl_package *rp;
2169 	int uid;
2170 
2171 	if (id_is_cpu) {
2172 		uid = rapl_msrs_are_pkg_scope() ?
2173 		      topology_physical_package_id(id) : topology_logical_die_id(id);
2174 		if (uid < 0) {
2175 			pr_err("topology_logical_(package/die)_id() returned a negative value");
2176 			return NULL;
2177 		}
2178 	}
2179 	else
2180 		uid = id;
2181 
2182 	list_for_each_entry(rp, &rapl_packages, plist) {
2183 		if (rp->id == uid
2184 		    && rp->priv->control_type == priv->control_type)
2185 			return rp;
2186 	}
2187 
2188 	return NULL;
2189 }
2190 EXPORT_SYMBOL_GPL(rapl_find_package_domain_cpuslocked);
2191 
rapl_find_package_domain(int id,struct rapl_if_priv * priv,bool id_is_cpu)2192 struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2193 {
2194 	guard(cpus_read_lock)();
2195 	return rapl_find_package_domain_cpuslocked(id, priv, id_is_cpu);
2196 }
2197 EXPORT_SYMBOL_GPL(rapl_find_package_domain);
2198 
2199 /* called from CPU hotplug notifier, hotplug lock held */
rapl_add_package_cpuslocked(int id,struct rapl_if_priv * priv,bool id_is_cpu)2200 struct rapl_package *rapl_add_package_cpuslocked(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2201 {
2202 	struct rapl_package *rp;
2203 	int ret;
2204 
2205 	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
2206 	if (!rp)
2207 		return ERR_PTR(-ENOMEM);
2208 
2209 	if (id_is_cpu) {
2210 		rp->id = rapl_msrs_are_pkg_scope() ?
2211 			 topology_physical_package_id(id) : topology_logical_die_id(id);
2212 		if ((int)(rp->id) < 0) {
2213 			pr_err("topology_logical_(package/die)_id() returned a negative value");
2214 			return ERR_PTR(-EINVAL);
2215 		}
2216 		rp->lead_cpu = id;
2217 		if (!rapl_msrs_are_pkg_scope() && topology_max_dies_per_package() > 1)
2218 			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d",
2219 				 topology_physical_package_id(id), topology_die_id(id));
2220 		else
2221 			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
2222 				 topology_physical_package_id(id));
2223 	} else {
2224 		rp->id = id;
2225 		rp->lead_cpu = -1;
2226 		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id);
2227 	}
2228 
2229 	rp->priv = priv;
2230 	ret = rapl_config(rp);
2231 	if (ret)
2232 		goto err_free_package;
2233 
2234 	/* check if the package contains valid domains */
2235 	if (rapl_detect_domains(rp)) {
2236 		ret = -ENODEV;
2237 		goto err_free_package;
2238 	}
2239 	ret = rapl_package_register_powercap(rp);
2240 	if (!ret) {
2241 		INIT_LIST_HEAD(&rp->plist);
2242 		list_add(&rp->plist, &rapl_packages);
2243 		return rp;
2244 	}
2245 
2246 err_free_package:
2247 	kfree(rp->domains);
2248 	kfree(rp);
2249 	return ERR_PTR(ret);
2250 }
2251 EXPORT_SYMBOL_GPL(rapl_add_package_cpuslocked);
2252 
rapl_add_package(int id,struct rapl_if_priv * priv,bool id_is_cpu)2253 struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2254 {
2255 	guard(cpus_read_lock)();
2256 	return rapl_add_package_cpuslocked(id, priv, id_is_cpu);
2257 }
2258 EXPORT_SYMBOL_GPL(rapl_add_package);
2259 
power_limit_state_save(void)2260 static void power_limit_state_save(void)
2261 {
2262 	struct rapl_package *rp;
2263 	struct rapl_domain *rd;
2264 	int ret, i;
2265 
2266 	cpus_read_lock();
2267 	list_for_each_entry(rp, &rapl_packages, plist) {
2268 		if (!rp->power_zone)
2269 			continue;
2270 		rd = power_zone_to_rapl_domain(rp->power_zone);
2271 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2272 			ret = rapl_read_pl_data(rd, i, PL_LIMIT, true,
2273 						 &rd->rpl[i].last_power_limit);
2274 			if (ret)
2275 				rd->rpl[i].last_power_limit = 0;
2276 		}
2277 	}
2278 	cpus_read_unlock();
2279 }
2280 
power_limit_state_restore(void)2281 static void power_limit_state_restore(void)
2282 {
2283 	struct rapl_package *rp;
2284 	struct rapl_domain *rd;
2285 	int i;
2286 
2287 	cpus_read_lock();
2288 	list_for_each_entry(rp, &rapl_packages, plist) {
2289 		if (!rp->power_zone)
2290 			continue;
2291 		rd = power_zone_to_rapl_domain(rp->power_zone);
2292 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++)
2293 			if (rd->rpl[i].last_power_limit)
2294 				rapl_write_pl_data(rd, i, PL_LIMIT,
2295 					       rd->rpl[i].last_power_limit);
2296 	}
2297 	cpus_read_unlock();
2298 }
2299 
rapl_pm_callback(struct notifier_block * nb,unsigned long mode,void * _unused)2300 static int rapl_pm_callback(struct notifier_block *nb,
2301 			    unsigned long mode, void *_unused)
2302 {
2303 	switch (mode) {
2304 	case PM_SUSPEND_PREPARE:
2305 		power_limit_state_save();
2306 		break;
2307 	case PM_POST_SUSPEND:
2308 		power_limit_state_restore();
2309 		break;
2310 	}
2311 	return NOTIFY_OK;
2312 }
2313 
2314 static struct notifier_block rapl_pm_notifier = {
2315 	.notifier_call = rapl_pm_callback,
2316 };
2317 
2318 static struct platform_device *rapl_msr_platdev;
2319 
rapl_init(void)2320 static int __init rapl_init(void)
2321 {
2322 	const struct x86_cpu_id *id;
2323 	int ret;
2324 
2325 	id = x86_match_cpu(rapl_ids);
2326 	if (id) {
2327 		defaults_msr = (struct rapl_defaults *)id->driver_data;
2328 
2329 		rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
2330 		if (!rapl_msr_platdev)
2331 			return -ENOMEM;
2332 
2333 		ret = platform_device_add(rapl_msr_platdev);
2334 		if (ret) {
2335 			platform_device_put(rapl_msr_platdev);
2336 			return ret;
2337 		}
2338 	}
2339 
2340 	ret = register_pm_notifier(&rapl_pm_notifier);
2341 	if (ret && rapl_msr_platdev) {
2342 		platform_device_del(rapl_msr_platdev);
2343 		platform_device_put(rapl_msr_platdev);
2344 	}
2345 
2346 	return ret;
2347 }
2348 
rapl_exit(void)2349 static void __exit rapl_exit(void)
2350 {
2351 	platform_device_unregister(rapl_msr_platdev);
2352 	unregister_pm_notifier(&rapl_pm_notifier);
2353 }
2354 
2355 fs_initcall(rapl_init);
2356 module_exit(rapl_exit);
2357 
2358 MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
2359 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
2360 MODULE_LICENSE("GPL v2");
2361