1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/reboot.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/of_regulator.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/regulator/coupler.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29 #include <linux/module.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
33
34 #include "dummy.h"
35 #include "internal.h"
36 #include "regnl.h"
37
38 static DEFINE_WW_CLASS(regulator_ww_class);
39 static DEFINE_MUTEX(regulator_nesting_mutex);
40 static DEFINE_MUTEX(regulator_list_mutex);
41 static LIST_HEAD(regulator_map_list);
42 static LIST_HEAD(regulator_ena_gpio_list);
43 static LIST_HEAD(regulator_supply_alias_list);
44 static LIST_HEAD(regulator_coupler_list);
45 static bool has_full_constraints;
46
47 static struct dentry *debugfs_root;
48
49 /*
50 * struct regulator_map
51 *
52 * Used to provide symbolic supply names to devices.
53 */
54 struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
59 };
60
61 /*
62 * struct regulator_enable_gpio
63 *
64 * Management for shared enable GPIO pin
65 */
66 struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
71 };
72
73 /*
74 * struct regulator_supply_alias
75 *
76 * Used to map lookups for a supply onto an alternative device.
77 */
78 struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
84 };
85
86 static int _regulator_is_enabled(struct regulator_dev *rdev);
87 static int _regulator_disable(struct regulator *regulator);
88 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89 static int _regulator_get_current_limit(struct regulator_dev *rdev);
90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91 static int _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95 static int regulator_balance_voltage(struct regulator_dev *rdev,
96 suspend_state_t state);
97 static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100 static void destroy_regulator(struct regulator *regulator);
101 static void _regulator_put(struct regulator *regulator);
102
rdev_get_name(struct regulator_dev * rdev)103 const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111 }
112 EXPORT_SYMBOL_GPL(rdev_get_name);
113
have_full_constraints(void)114 static bool have_full_constraints(void)
115 {
116 return has_full_constraints || of_have_populated_dt();
117 }
118
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)119 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120 {
121 if (!rdev->constraints) {
122 rdev_err(rdev, "no constraints\n");
123 return false;
124 }
125
126 if (rdev->constraints->valid_ops_mask & ops)
127 return true;
128
129 return false;
130 }
131
132 /**
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
136 *
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
142 *
143 * Return: 0 on success or a negative error number on failure.
144 */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)145 static inline int regulator_lock_nested(struct regulator_dev *rdev,
146 struct ww_acquire_ctx *ww_ctx)
147 {
148 bool lock = false;
149 int ret = 0;
150
151 mutex_lock(®ulator_nesting_mutex);
152
153 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
154 if (rdev->mutex_owner == current)
155 rdev->ref_cnt++;
156 else
157 lock = true;
158
159 if (lock) {
160 mutex_unlock(®ulator_nesting_mutex);
161 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
162 mutex_lock(®ulator_nesting_mutex);
163 }
164 } else {
165 lock = true;
166 }
167
168 if (lock && ret != -EDEADLK) {
169 rdev->ref_cnt++;
170 rdev->mutex_owner = current;
171 }
172
173 mutex_unlock(®ulator_nesting_mutex);
174
175 return ret;
176 }
177
178 /**
179 * regulator_lock - lock a single regulator
180 * @rdev: regulator source
181 *
182 * This function can be called many times by one task on
183 * a single regulator and its mutex will be locked only
184 * once. If a task, which is calling this function is other
185 * than the one, which initially locked the mutex, it will
186 * wait on mutex.
187 */
regulator_lock(struct regulator_dev * rdev)188 static void regulator_lock(struct regulator_dev *rdev)
189 {
190 regulator_lock_nested(rdev, NULL);
191 }
192
193 /**
194 * regulator_unlock - unlock a single regulator
195 * @rdev: regulator_source
196 *
197 * This function unlocks the mutex when the
198 * reference counter reaches 0.
199 */
regulator_unlock(struct regulator_dev * rdev)200 static void regulator_unlock(struct regulator_dev *rdev)
201 {
202 mutex_lock(®ulator_nesting_mutex);
203
204 if (--rdev->ref_cnt == 0) {
205 rdev->mutex_owner = NULL;
206 ww_mutex_unlock(&rdev->mutex);
207 }
208
209 WARN_ON_ONCE(rdev->ref_cnt < 0);
210
211 mutex_unlock(®ulator_nesting_mutex);
212 }
213
214 /**
215 * regulator_lock_two - lock two regulators
216 * @rdev1: first regulator
217 * @rdev2: second regulator
218 * @ww_ctx: w/w mutex acquire context
219 *
220 * Locks both rdevs using the regulator_ww_class.
221 */
regulator_lock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)222 static void regulator_lock_two(struct regulator_dev *rdev1,
223 struct regulator_dev *rdev2,
224 struct ww_acquire_ctx *ww_ctx)
225 {
226 struct regulator_dev *held, *contended;
227 int ret;
228
229 ww_acquire_init(ww_ctx, ®ulator_ww_class);
230
231 /* Try to just grab both of them */
232 ret = regulator_lock_nested(rdev1, ww_ctx);
233 WARN_ON(ret);
234 ret = regulator_lock_nested(rdev2, ww_ctx);
235 if (ret != -EDEADLOCK) {
236 WARN_ON(ret);
237 goto exit;
238 }
239
240 held = rdev1;
241 contended = rdev2;
242 while (true) {
243 regulator_unlock(held);
244
245 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
246 contended->ref_cnt++;
247 contended->mutex_owner = current;
248 swap(held, contended);
249 ret = regulator_lock_nested(contended, ww_ctx);
250
251 if (ret != -EDEADLOCK) {
252 WARN_ON(ret);
253 break;
254 }
255 }
256
257 exit:
258 ww_acquire_done(ww_ctx);
259 }
260
261 /**
262 * regulator_unlock_two - unlock two regulators
263 * @rdev1: first regulator
264 * @rdev2: second regulator
265 * @ww_ctx: w/w mutex acquire context
266 *
267 * The inverse of regulator_lock_two().
268 */
269
regulator_unlock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)270 static void regulator_unlock_two(struct regulator_dev *rdev1,
271 struct regulator_dev *rdev2,
272 struct ww_acquire_ctx *ww_ctx)
273 {
274 regulator_unlock(rdev2);
275 regulator_unlock(rdev1);
276 ww_acquire_fini(ww_ctx);
277 }
278
regulator_supply_is_couple(struct regulator_dev * rdev)279 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
280 {
281 struct regulator_dev *c_rdev;
282 int i;
283
284 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
285 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
286
287 if (rdev->supply->rdev == c_rdev)
288 return true;
289 }
290
291 return false;
292 }
293
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)294 static void regulator_unlock_recursive(struct regulator_dev *rdev,
295 unsigned int n_coupled)
296 {
297 struct regulator_dev *c_rdev, *supply_rdev;
298 int i, supply_n_coupled;
299
300 for (i = n_coupled; i > 0; i--) {
301 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
302
303 if (!c_rdev)
304 continue;
305
306 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
307 supply_rdev = c_rdev->supply->rdev;
308 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
309
310 regulator_unlock_recursive(supply_rdev,
311 supply_n_coupled);
312 }
313
314 regulator_unlock(c_rdev);
315 }
316 }
317
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)318 static int regulator_lock_recursive(struct regulator_dev *rdev,
319 struct regulator_dev **new_contended_rdev,
320 struct regulator_dev **old_contended_rdev,
321 struct ww_acquire_ctx *ww_ctx)
322 {
323 struct regulator_dev *c_rdev;
324 int i, err;
325
326 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
327 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
328
329 if (!c_rdev)
330 continue;
331
332 if (c_rdev != *old_contended_rdev) {
333 err = regulator_lock_nested(c_rdev, ww_ctx);
334 if (err) {
335 if (err == -EDEADLK) {
336 *new_contended_rdev = c_rdev;
337 goto err_unlock;
338 }
339
340 /* shouldn't happen */
341 WARN_ON_ONCE(err != -EALREADY);
342 }
343 } else {
344 *old_contended_rdev = NULL;
345 }
346
347 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
348 err = regulator_lock_recursive(c_rdev->supply->rdev,
349 new_contended_rdev,
350 old_contended_rdev,
351 ww_ctx);
352 if (err) {
353 regulator_unlock(c_rdev);
354 goto err_unlock;
355 }
356 }
357 }
358
359 return 0;
360
361 err_unlock:
362 regulator_unlock_recursive(rdev, i);
363
364 return err;
365 }
366
367 /**
368 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
369 * regulators
370 * @rdev: regulator source
371 * @ww_ctx: w/w mutex acquire context
372 *
373 * Unlock all regulators related with rdev by coupling or supplying.
374 */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)375 static void regulator_unlock_dependent(struct regulator_dev *rdev,
376 struct ww_acquire_ctx *ww_ctx)
377 {
378 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
379 ww_acquire_fini(ww_ctx);
380 }
381
382 /**
383 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
384 * @rdev: regulator source
385 * @ww_ctx: w/w mutex acquire context
386 *
387 * This function as a wrapper on regulator_lock_recursive(), which locks
388 * all regulators related with rdev by coupling or supplying.
389 */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)390 static void regulator_lock_dependent(struct regulator_dev *rdev,
391 struct ww_acquire_ctx *ww_ctx)
392 {
393 struct regulator_dev *new_contended_rdev = NULL;
394 struct regulator_dev *old_contended_rdev = NULL;
395 int err;
396
397 mutex_lock(®ulator_list_mutex);
398
399 ww_acquire_init(ww_ctx, ®ulator_ww_class);
400
401 do {
402 if (new_contended_rdev) {
403 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
404 old_contended_rdev = new_contended_rdev;
405 old_contended_rdev->ref_cnt++;
406 old_contended_rdev->mutex_owner = current;
407 }
408
409 err = regulator_lock_recursive(rdev,
410 &new_contended_rdev,
411 &old_contended_rdev,
412 ww_ctx);
413
414 if (old_contended_rdev)
415 regulator_unlock(old_contended_rdev);
416
417 } while (err == -EDEADLK);
418
419 ww_acquire_done(ww_ctx);
420
421 mutex_unlock(®ulator_list_mutex);
422 }
423
424 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)425 int regulator_check_voltage(struct regulator_dev *rdev,
426 int *min_uV, int *max_uV)
427 {
428 BUG_ON(*min_uV > *max_uV);
429
430 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
431 rdev_err(rdev, "voltage operation not allowed\n");
432 return -EPERM;
433 }
434
435 if (*max_uV > rdev->constraints->max_uV)
436 *max_uV = rdev->constraints->max_uV;
437 if (*min_uV < rdev->constraints->min_uV)
438 *min_uV = rdev->constraints->min_uV;
439
440 if (*min_uV > *max_uV) {
441 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
442 *min_uV, *max_uV);
443 return -EINVAL;
444 }
445
446 return 0;
447 }
448
449 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)450 static int regulator_check_states(suspend_state_t state)
451 {
452 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
453 }
454
455 /* Make sure we select a voltage that suits the needs of all
456 * regulator consumers
457 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)458 int regulator_check_consumers(struct regulator_dev *rdev,
459 int *min_uV, int *max_uV,
460 suspend_state_t state)
461 {
462 struct regulator *regulator;
463 struct regulator_voltage *voltage;
464
465 list_for_each_entry(regulator, &rdev->consumer_list, list) {
466 voltage = ®ulator->voltage[state];
467 /*
468 * Assume consumers that didn't say anything are OK
469 * with anything in the constraint range.
470 */
471 if (!voltage->min_uV && !voltage->max_uV)
472 continue;
473
474 if (*max_uV > voltage->max_uV)
475 *max_uV = voltage->max_uV;
476 if (*min_uV < voltage->min_uV)
477 *min_uV = voltage->min_uV;
478 }
479
480 if (*min_uV > *max_uV) {
481 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
482 *min_uV, *max_uV);
483 return -EINVAL;
484 }
485
486 return 0;
487 }
488
489 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)490 static int regulator_check_current_limit(struct regulator_dev *rdev,
491 int *min_uA, int *max_uA)
492 {
493 BUG_ON(*min_uA > *max_uA);
494
495 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
496 rdev_err(rdev, "current operation not allowed\n");
497 return -EPERM;
498 }
499
500 if (*max_uA > rdev->constraints->max_uA)
501 *max_uA = rdev->constraints->max_uA;
502 if (*min_uA < rdev->constraints->min_uA)
503 *min_uA = rdev->constraints->min_uA;
504
505 if (*min_uA > *max_uA) {
506 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
507 *min_uA, *max_uA);
508 return -EINVAL;
509 }
510
511 return 0;
512 }
513
514 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)515 static int regulator_mode_constrain(struct regulator_dev *rdev,
516 unsigned int *mode)
517 {
518 switch (*mode) {
519 case REGULATOR_MODE_FAST:
520 case REGULATOR_MODE_NORMAL:
521 case REGULATOR_MODE_IDLE:
522 case REGULATOR_MODE_STANDBY:
523 break;
524 default:
525 rdev_err(rdev, "invalid mode %x specified\n", *mode);
526 return -EINVAL;
527 }
528
529 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
530 rdev_err(rdev, "mode operation not allowed\n");
531 return -EPERM;
532 }
533
534 /* The modes are bitmasks, the most power hungry modes having
535 * the lowest values. If the requested mode isn't supported
536 * try higher modes.
537 */
538 while (*mode) {
539 if (rdev->constraints->valid_modes_mask & *mode)
540 return 0;
541 *mode /= 2;
542 }
543
544 return -EINVAL;
545 }
546
547 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)548 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
549 {
550 if (rdev->constraints == NULL)
551 return NULL;
552
553 switch (state) {
554 case PM_SUSPEND_STANDBY:
555 return &rdev->constraints->state_standby;
556 case PM_SUSPEND_MEM:
557 return &rdev->constraints->state_mem;
558 case PM_SUSPEND_MAX:
559 return &rdev->constraints->state_disk;
560 default:
561 return NULL;
562 }
563 }
564
565 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)566 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
567 {
568 const struct regulator_state *rstate;
569
570 rstate = regulator_get_suspend_state(rdev, state);
571 if (rstate == NULL)
572 return NULL;
573
574 /* If we have no suspend mode configuration don't set anything;
575 * only warn if the driver implements set_suspend_voltage or
576 * set_suspend_mode callback.
577 */
578 if (rstate->enabled != ENABLE_IN_SUSPEND &&
579 rstate->enabled != DISABLE_IN_SUSPEND) {
580 if (rdev->desc->ops->set_suspend_voltage ||
581 rdev->desc->ops->set_suspend_mode)
582 rdev_warn(rdev, "No configuration\n");
583 return NULL;
584 }
585
586 return rstate;
587 }
588
microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)589 static ssize_t microvolts_show(struct device *dev,
590 struct device_attribute *attr, char *buf)
591 {
592 struct regulator_dev *rdev = dev_get_drvdata(dev);
593 int uV;
594
595 regulator_lock(rdev);
596 uV = regulator_get_voltage_rdev(rdev);
597 regulator_unlock(rdev);
598
599 if (uV < 0)
600 return uV;
601 return sprintf(buf, "%d\n", uV);
602 }
603 static DEVICE_ATTR_RO(microvolts);
604
microamps_show(struct device * dev,struct device_attribute * attr,char * buf)605 static ssize_t microamps_show(struct device *dev,
606 struct device_attribute *attr, char *buf)
607 {
608 struct regulator_dev *rdev = dev_get_drvdata(dev);
609
610 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
611 }
612 static DEVICE_ATTR_RO(microamps);
613
name_show(struct device * dev,struct device_attribute * attr,char * buf)614 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
615 char *buf)
616 {
617 struct regulator_dev *rdev = dev_get_drvdata(dev);
618
619 return sprintf(buf, "%s\n", rdev_get_name(rdev));
620 }
621 static DEVICE_ATTR_RO(name);
622
regulator_opmode_to_str(int mode)623 static const char *regulator_opmode_to_str(int mode)
624 {
625 switch (mode) {
626 case REGULATOR_MODE_FAST:
627 return "fast";
628 case REGULATOR_MODE_NORMAL:
629 return "normal";
630 case REGULATOR_MODE_IDLE:
631 return "idle";
632 case REGULATOR_MODE_STANDBY:
633 return "standby";
634 }
635 return "unknown";
636 }
637
regulator_print_opmode(char * buf,int mode)638 static ssize_t regulator_print_opmode(char *buf, int mode)
639 {
640 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
641 }
642
opmode_show(struct device * dev,struct device_attribute * attr,char * buf)643 static ssize_t opmode_show(struct device *dev,
644 struct device_attribute *attr, char *buf)
645 {
646 struct regulator_dev *rdev = dev_get_drvdata(dev);
647
648 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
649 }
650 static DEVICE_ATTR_RO(opmode);
651
regulator_print_state(char * buf,int state)652 static ssize_t regulator_print_state(char *buf, int state)
653 {
654 if (state > 0)
655 return sprintf(buf, "enabled\n");
656 else if (state == 0)
657 return sprintf(buf, "disabled\n");
658 else
659 return sprintf(buf, "unknown\n");
660 }
661
state_show(struct device * dev,struct device_attribute * attr,char * buf)662 static ssize_t state_show(struct device *dev,
663 struct device_attribute *attr, char *buf)
664 {
665 struct regulator_dev *rdev = dev_get_drvdata(dev);
666 ssize_t ret;
667
668 regulator_lock(rdev);
669 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
670 regulator_unlock(rdev);
671
672 return ret;
673 }
674 static DEVICE_ATTR_RO(state);
675
status_show(struct device * dev,struct device_attribute * attr,char * buf)676 static ssize_t status_show(struct device *dev,
677 struct device_attribute *attr, char *buf)
678 {
679 struct regulator_dev *rdev = dev_get_drvdata(dev);
680 int status;
681 char *label;
682
683 status = rdev->desc->ops->get_status(rdev);
684 if (status < 0)
685 return status;
686
687 switch (status) {
688 case REGULATOR_STATUS_OFF:
689 label = "off";
690 break;
691 case REGULATOR_STATUS_ON:
692 label = "on";
693 break;
694 case REGULATOR_STATUS_ERROR:
695 label = "error";
696 break;
697 case REGULATOR_STATUS_FAST:
698 label = "fast";
699 break;
700 case REGULATOR_STATUS_NORMAL:
701 label = "normal";
702 break;
703 case REGULATOR_STATUS_IDLE:
704 label = "idle";
705 break;
706 case REGULATOR_STATUS_STANDBY:
707 label = "standby";
708 break;
709 case REGULATOR_STATUS_BYPASS:
710 label = "bypass";
711 break;
712 case REGULATOR_STATUS_UNDEFINED:
713 label = "undefined";
714 break;
715 default:
716 return -ERANGE;
717 }
718
719 return sprintf(buf, "%s\n", label);
720 }
721 static DEVICE_ATTR_RO(status);
722
min_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)723 static ssize_t min_microamps_show(struct device *dev,
724 struct device_attribute *attr, char *buf)
725 {
726 struct regulator_dev *rdev = dev_get_drvdata(dev);
727
728 if (!rdev->constraints)
729 return sprintf(buf, "constraint not defined\n");
730
731 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
732 }
733 static DEVICE_ATTR_RO(min_microamps);
734
max_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)735 static ssize_t max_microamps_show(struct device *dev,
736 struct device_attribute *attr, char *buf)
737 {
738 struct regulator_dev *rdev = dev_get_drvdata(dev);
739
740 if (!rdev->constraints)
741 return sprintf(buf, "constraint not defined\n");
742
743 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
744 }
745 static DEVICE_ATTR_RO(max_microamps);
746
min_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)747 static ssize_t min_microvolts_show(struct device *dev,
748 struct device_attribute *attr, char *buf)
749 {
750 struct regulator_dev *rdev = dev_get_drvdata(dev);
751
752 if (!rdev->constraints)
753 return sprintf(buf, "constraint not defined\n");
754
755 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
756 }
757 static DEVICE_ATTR_RO(min_microvolts);
758
max_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)759 static ssize_t max_microvolts_show(struct device *dev,
760 struct device_attribute *attr, char *buf)
761 {
762 struct regulator_dev *rdev = dev_get_drvdata(dev);
763
764 if (!rdev->constraints)
765 return sprintf(buf, "constraint not defined\n");
766
767 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
768 }
769 static DEVICE_ATTR_RO(max_microvolts);
770
requested_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)771 static ssize_t requested_microamps_show(struct device *dev,
772 struct device_attribute *attr, char *buf)
773 {
774 struct regulator_dev *rdev = dev_get_drvdata(dev);
775 struct regulator *regulator;
776 int uA = 0;
777
778 regulator_lock(rdev);
779 list_for_each_entry(regulator, &rdev->consumer_list, list) {
780 if (regulator->enable_count)
781 uA += regulator->uA_load;
782 }
783 regulator_unlock(rdev);
784 return sprintf(buf, "%d\n", uA);
785 }
786 static DEVICE_ATTR_RO(requested_microamps);
787
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)788 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
789 char *buf)
790 {
791 struct regulator_dev *rdev = dev_get_drvdata(dev);
792 return sprintf(buf, "%d\n", rdev->use_count);
793 }
794 static DEVICE_ATTR_RO(num_users);
795
type_show(struct device * dev,struct device_attribute * attr,char * buf)796 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
797 char *buf)
798 {
799 struct regulator_dev *rdev = dev_get_drvdata(dev);
800
801 switch (rdev->desc->type) {
802 case REGULATOR_VOLTAGE:
803 return sprintf(buf, "voltage\n");
804 case REGULATOR_CURRENT:
805 return sprintf(buf, "current\n");
806 }
807 return sprintf(buf, "unknown\n");
808 }
809 static DEVICE_ATTR_RO(type);
810
suspend_mem_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)811 static ssize_t suspend_mem_microvolts_show(struct device *dev,
812 struct device_attribute *attr, char *buf)
813 {
814 struct regulator_dev *rdev = dev_get_drvdata(dev);
815
816 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
817 }
818 static DEVICE_ATTR_RO(suspend_mem_microvolts);
819
suspend_disk_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)820 static ssize_t suspend_disk_microvolts_show(struct device *dev,
821 struct device_attribute *attr, char *buf)
822 {
823 struct regulator_dev *rdev = dev_get_drvdata(dev);
824
825 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
826 }
827 static DEVICE_ATTR_RO(suspend_disk_microvolts);
828
suspend_standby_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)829 static ssize_t suspend_standby_microvolts_show(struct device *dev,
830 struct device_attribute *attr, char *buf)
831 {
832 struct regulator_dev *rdev = dev_get_drvdata(dev);
833
834 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
835 }
836 static DEVICE_ATTR_RO(suspend_standby_microvolts);
837
suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)838 static ssize_t suspend_mem_mode_show(struct device *dev,
839 struct device_attribute *attr, char *buf)
840 {
841 struct regulator_dev *rdev = dev_get_drvdata(dev);
842
843 return regulator_print_opmode(buf,
844 rdev->constraints->state_mem.mode);
845 }
846 static DEVICE_ATTR_RO(suspend_mem_mode);
847
suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)848 static ssize_t suspend_disk_mode_show(struct device *dev,
849 struct device_attribute *attr, char *buf)
850 {
851 struct regulator_dev *rdev = dev_get_drvdata(dev);
852
853 return regulator_print_opmode(buf,
854 rdev->constraints->state_disk.mode);
855 }
856 static DEVICE_ATTR_RO(suspend_disk_mode);
857
suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)858 static ssize_t suspend_standby_mode_show(struct device *dev,
859 struct device_attribute *attr, char *buf)
860 {
861 struct regulator_dev *rdev = dev_get_drvdata(dev);
862
863 return regulator_print_opmode(buf,
864 rdev->constraints->state_standby.mode);
865 }
866 static DEVICE_ATTR_RO(suspend_standby_mode);
867
suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)868 static ssize_t suspend_mem_state_show(struct device *dev,
869 struct device_attribute *attr, char *buf)
870 {
871 struct regulator_dev *rdev = dev_get_drvdata(dev);
872
873 return regulator_print_state(buf,
874 rdev->constraints->state_mem.enabled);
875 }
876 static DEVICE_ATTR_RO(suspend_mem_state);
877
suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)878 static ssize_t suspend_disk_state_show(struct device *dev,
879 struct device_attribute *attr, char *buf)
880 {
881 struct regulator_dev *rdev = dev_get_drvdata(dev);
882
883 return regulator_print_state(buf,
884 rdev->constraints->state_disk.enabled);
885 }
886 static DEVICE_ATTR_RO(suspend_disk_state);
887
suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)888 static ssize_t suspend_standby_state_show(struct device *dev,
889 struct device_attribute *attr, char *buf)
890 {
891 struct regulator_dev *rdev = dev_get_drvdata(dev);
892
893 return regulator_print_state(buf,
894 rdev->constraints->state_standby.enabled);
895 }
896 static DEVICE_ATTR_RO(suspend_standby_state);
897
bypass_show(struct device * dev,struct device_attribute * attr,char * buf)898 static ssize_t bypass_show(struct device *dev,
899 struct device_attribute *attr, char *buf)
900 {
901 struct regulator_dev *rdev = dev_get_drvdata(dev);
902 const char *report;
903 bool bypass;
904 int ret;
905
906 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
907
908 if (ret != 0)
909 report = "unknown";
910 else if (bypass)
911 report = "enabled";
912 else
913 report = "disabled";
914
915 return sprintf(buf, "%s\n", report);
916 }
917 static DEVICE_ATTR_RO(bypass);
918
919 #define REGULATOR_ERROR_ATTR(name, bit) \
920 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
921 char *buf) \
922 { \
923 int ret; \
924 unsigned int flags; \
925 struct regulator_dev *rdev = dev_get_drvdata(dev); \
926 ret = _regulator_get_error_flags(rdev, &flags); \
927 if (ret) \
928 return ret; \
929 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
930 } \
931 static DEVICE_ATTR_RO(name)
932
933 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
934 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
935 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
936 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
937 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
938 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
939 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
940 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
941 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
942
943 /* Calculate the new optimum regulator operating mode based on the new total
944 * consumer load. All locks held by caller
945 */
drms_uA_update(struct regulator_dev * rdev)946 static int drms_uA_update(struct regulator_dev *rdev)
947 {
948 struct regulator *sibling;
949 int current_uA = 0, output_uV, input_uV, err;
950 unsigned int mode;
951
952 /*
953 * first check to see if we can set modes at all, otherwise just
954 * tell the consumer everything is OK.
955 */
956 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
957 rdev_dbg(rdev, "DRMS operation not allowed\n");
958 return 0;
959 }
960
961 if (!rdev->desc->ops->get_optimum_mode &&
962 !rdev->desc->ops->set_load)
963 return 0;
964
965 if (!rdev->desc->ops->set_mode &&
966 !rdev->desc->ops->set_load)
967 return -EINVAL;
968
969 /* calc total requested load */
970 list_for_each_entry(sibling, &rdev->consumer_list, list) {
971 if (sibling->enable_count)
972 current_uA += sibling->uA_load;
973 }
974
975 current_uA += rdev->constraints->system_load;
976
977 if (rdev->desc->ops->set_load) {
978 /* set the optimum mode for our new total regulator load */
979 err = rdev->desc->ops->set_load(rdev, current_uA);
980 if (err < 0)
981 rdev_err(rdev, "failed to set load %d: %pe\n",
982 current_uA, ERR_PTR(err));
983 } else {
984 /*
985 * Unfortunately in some cases the constraints->valid_ops has
986 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
987 * That's not really legit but we won't consider it a fatal
988 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
989 * wasn't set.
990 */
991 if (!rdev->constraints->valid_modes_mask) {
992 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
993 return 0;
994 }
995
996 /* get output voltage */
997 output_uV = regulator_get_voltage_rdev(rdev);
998
999 /*
1000 * Don't return an error; if regulator driver cares about
1001 * output_uV then it's up to the driver to validate.
1002 */
1003 if (output_uV <= 0)
1004 rdev_dbg(rdev, "invalid output voltage found\n");
1005
1006 /* get input voltage */
1007 input_uV = 0;
1008 if (rdev->supply)
1009 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1010 if (input_uV <= 0)
1011 input_uV = rdev->constraints->input_uV;
1012
1013 /*
1014 * Don't return an error; if regulator driver cares about
1015 * input_uV then it's up to the driver to validate.
1016 */
1017 if (input_uV <= 0)
1018 rdev_dbg(rdev, "invalid input voltage found\n");
1019
1020 /* now get the optimum mode for our new total regulator load */
1021 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1022 output_uV, current_uA);
1023
1024 /* check the new mode is allowed */
1025 err = regulator_mode_constrain(rdev, &mode);
1026 if (err < 0) {
1027 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1028 current_uA, input_uV, output_uV, ERR_PTR(err));
1029 return err;
1030 }
1031
1032 err = rdev->desc->ops->set_mode(rdev, mode);
1033 if (err < 0)
1034 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1035 mode, ERR_PTR(err));
1036 }
1037
1038 return err;
1039 }
1040
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1041 static int __suspend_set_state(struct regulator_dev *rdev,
1042 const struct regulator_state *rstate)
1043 {
1044 int ret = 0;
1045
1046 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1047 rdev->desc->ops->set_suspend_enable)
1048 ret = rdev->desc->ops->set_suspend_enable(rdev);
1049 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1050 rdev->desc->ops->set_suspend_disable)
1051 ret = rdev->desc->ops->set_suspend_disable(rdev);
1052 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1053 ret = 0;
1054
1055 if (ret < 0) {
1056 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1057 return ret;
1058 }
1059
1060 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1061 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1062 if (ret < 0) {
1063 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1064 return ret;
1065 }
1066 }
1067
1068 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1069 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1070 if (ret < 0) {
1071 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1072 return ret;
1073 }
1074 }
1075
1076 return ret;
1077 }
1078
suspend_set_initial_state(struct regulator_dev * rdev)1079 static int suspend_set_initial_state(struct regulator_dev *rdev)
1080 {
1081 const struct regulator_state *rstate;
1082
1083 rstate = regulator_get_suspend_state_check(rdev,
1084 rdev->constraints->initial_state);
1085 if (!rstate)
1086 return 0;
1087
1088 return __suspend_set_state(rdev, rstate);
1089 }
1090
1091 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1092 static void print_constraints_debug(struct regulator_dev *rdev)
1093 {
1094 struct regulation_constraints *constraints = rdev->constraints;
1095 char buf[160] = "";
1096 size_t len = sizeof(buf) - 1;
1097 int count = 0;
1098 int ret;
1099
1100 if (constraints->min_uV && constraints->max_uV) {
1101 if (constraints->min_uV == constraints->max_uV)
1102 count += scnprintf(buf + count, len - count, "%d mV ",
1103 constraints->min_uV / 1000);
1104 else
1105 count += scnprintf(buf + count, len - count,
1106 "%d <--> %d mV ",
1107 constraints->min_uV / 1000,
1108 constraints->max_uV / 1000);
1109 }
1110
1111 if (!constraints->min_uV ||
1112 constraints->min_uV != constraints->max_uV) {
1113 ret = regulator_get_voltage_rdev(rdev);
1114 if (ret > 0)
1115 count += scnprintf(buf + count, len - count,
1116 "at %d mV ", ret / 1000);
1117 }
1118
1119 if (constraints->uV_offset)
1120 count += scnprintf(buf + count, len - count, "%dmV offset ",
1121 constraints->uV_offset / 1000);
1122
1123 if (constraints->min_uA && constraints->max_uA) {
1124 if (constraints->min_uA == constraints->max_uA)
1125 count += scnprintf(buf + count, len - count, "%d mA ",
1126 constraints->min_uA / 1000);
1127 else
1128 count += scnprintf(buf + count, len - count,
1129 "%d <--> %d mA ",
1130 constraints->min_uA / 1000,
1131 constraints->max_uA / 1000);
1132 }
1133
1134 if (!constraints->min_uA ||
1135 constraints->min_uA != constraints->max_uA) {
1136 ret = _regulator_get_current_limit(rdev);
1137 if (ret > 0)
1138 count += scnprintf(buf + count, len - count,
1139 "at %d mA ", ret / 1000);
1140 }
1141
1142 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1143 count += scnprintf(buf + count, len - count, "fast ");
1144 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1145 count += scnprintf(buf + count, len - count, "normal ");
1146 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1147 count += scnprintf(buf + count, len - count, "idle ");
1148 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1149 count += scnprintf(buf + count, len - count, "standby ");
1150
1151 if (!count)
1152 count = scnprintf(buf, len, "no parameters");
1153 else
1154 --count;
1155
1156 count += scnprintf(buf + count, len - count, ", %s",
1157 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1158
1159 rdev_dbg(rdev, "%s\n", buf);
1160 }
1161 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1162 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1163 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1164
print_constraints(struct regulator_dev * rdev)1165 static void print_constraints(struct regulator_dev *rdev)
1166 {
1167 struct regulation_constraints *constraints = rdev->constraints;
1168
1169 print_constraints_debug(rdev);
1170
1171 if ((constraints->min_uV != constraints->max_uV) &&
1172 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1173 rdev_warn(rdev,
1174 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1175 }
1176
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1177 static int machine_constraints_voltage(struct regulator_dev *rdev,
1178 struct regulation_constraints *constraints)
1179 {
1180 const struct regulator_ops *ops = rdev->desc->ops;
1181 int ret;
1182
1183 /* do we need to apply the constraint voltage */
1184 if (rdev->constraints->apply_uV &&
1185 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1186 int target_min, target_max;
1187 int current_uV = regulator_get_voltage_rdev(rdev);
1188
1189 if (current_uV == -ENOTRECOVERABLE) {
1190 /* This regulator can't be read and must be initialized */
1191 rdev_info(rdev, "Setting %d-%duV\n",
1192 rdev->constraints->min_uV,
1193 rdev->constraints->max_uV);
1194 _regulator_do_set_voltage(rdev,
1195 rdev->constraints->min_uV,
1196 rdev->constraints->max_uV);
1197 current_uV = regulator_get_voltage_rdev(rdev);
1198 }
1199
1200 if (current_uV < 0) {
1201 if (current_uV != -EPROBE_DEFER)
1202 rdev_err(rdev,
1203 "failed to get the current voltage: %pe\n",
1204 ERR_PTR(current_uV));
1205 return current_uV;
1206 }
1207
1208 /*
1209 * If we're below the minimum voltage move up to the
1210 * minimum voltage, if we're above the maximum voltage
1211 * then move down to the maximum.
1212 */
1213 target_min = current_uV;
1214 target_max = current_uV;
1215
1216 if (current_uV < rdev->constraints->min_uV) {
1217 target_min = rdev->constraints->min_uV;
1218 target_max = rdev->constraints->min_uV;
1219 }
1220
1221 if (current_uV > rdev->constraints->max_uV) {
1222 target_min = rdev->constraints->max_uV;
1223 target_max = rdev->constraints->max_uV;
1224 }
1225
1226 if (target_min != current_uV || target_max != current_uV) {
1227 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1228 current_uV, target_min, target_max);
1229 ret = _regulator_do_set_voltage(
1230 rdev, target_min, target_max);
1231 if (ret < 0) {
1232 rdev_err(rdev,
1233 "failed to apply %d-%duV constraint: %pe\n",
1234 target_min, target_max, ERR_PTR(ret));
1235 return ret;
1236 }
1237 }
1238 }
1239
1240 /* constrain machine-level voltage specs to fit
1241 * the actual range supported by this regulator.
1242 */
1243 if (ops->list_voltage && rdev->desc->n_voltages) {
1244 int count = rdev->desc->n_voltages;
1245 int i;
1246 int min_uV = INT_MAX;
1247 int max_uV = INT_MIN;
1248 int cmin = constraints->min_uV;
1249 int cmax = constraints->max_uV;
1250
1251 /* it's safe to autoconfigure fixed-voltage supplies
1252 * and the constraints are used by list_voltage.
1253 */
1254 if (count == 1 && !cmin) {
1255 cmin = 1;
1256 cmax = INT_MAX;
1257 constraints->min_uV = cmin;
1258 constraints->max_uV = cmax;
1259 }
1260
1261 /* voltage constraints are optional */
1262 if ((cmin == 0) && (cmax == 0))
1263 return 0;
1264
1265 /* else require explicit machine-level constraints */
1266 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1267 rdev_err(rdev, "invalid voltage constraints\n");
1268 return -EINVAL;
1269 }
1270
1271 /* no need to loop voltages if range is continuous */
1272 if (rdev->desc->continuous_voltage_range)
1273 return 0;
1274
1275 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1276 for (i = 0; i < count; i++) {
1277 int value;
1278
1279 value = ops->list_voltage(rdev, i);
1280 if (value <= 0)
1281 continue;
1282
1283 /* maybe adjust [min_uV..max_uV] */
1284 if (value >= cmin && value < min_uV)
1285 min_uV = value;
1286 if (value <= cmax && value > max_uV)
1287 max_uV = value;
1288 }
1289
1290 /* final: [min_uV..max_uV] valid iff constraints valid */
1291 if (max_uV < min_uV) {
1292 rdev_err(rdev,
1293 "unsupportable voltage constraints %u-%uuV\n",
1294 min_uV, max_uV);
1295 return -EINVAL;
1296 }
1297
1298 /* use regulator's subset of machine constraints */
1299 if (constraints->min_uV < min_uV) {
1300 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1301 constraints->min_uV, min_uV);
1302 constraints->min_uV = min_uV;
1303 }
1304 if (constraints->max_uV > max_uV) {
1305 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1306 constraints->max_uV, max_uV);
1307 constraints->max_uV = max_uV;
1308 }
1309 }
1310
1311 return 0;
1312 }
1313
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1314 static int machine_constraints_current(struct regulator_dev *rdev,
1315 struct regulation_constraints *constraints)
1316 {
1317 const struct regulator_ops *ops = rdev->desc->ops;
1318 int ret;
1319
1320 if (!constraints->min_uA && !constraints->max_uA)
1321 return 0;
1322
1323 if (constraints->min_uA > constraints->max_uA) {
1324 rdev_err(rdev, "Invalid current constraints\n");
1325 return -EINVAL;
1326 }
1327
1328 if (!ops->set_current_limit || !ops->get_current_limit) {
1329 rdev_warn(rdev, "Operation of current configuration missing\n");
1330 return 0;
1331 }
1332
1333 /* Set regulator current in constraints range */
1334 ret = ops->set_current_limit(rdev, constraints->min_uA,
1335 constraints->max_uA);
1336 if (ret < 0) {
1337 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1338 return ret;
1339 }
1340
1341 return 0;
1342 }
1343
1344 static int _regulator_do_enable(struct regulator_dev *rdev);
1345
notif_set_limit(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),int limit,int severity)1346 static int notif_set_limit(struct regulator_dev *rdev,
1347 int (*set)(struct regulator_dev *, int, int, bool),
1348 int limit, int severity)
1349 {
1350 bool enable;
1351
1352 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1353 enable = false;
1354 limit = 0;
1355 } else {
1356 enable = true;
1357 }
1358
1359 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1360 limit = 0;
1361
1362 return set(rdev, limit, severity, enable);
1363 }
1364
handle_notify_limits(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),struct notification_limit * limits)1365 static int handle_notify_limits(struct regulator_dev *rdev,
1366 int (*set)(struct regulator_dev *, int, int, bool),
1367 struct notification_limit *limits)
1368 {
1369 int ret = 0;
1370
1371 if (!set)
1372 return -EOPNOTSUPP;
1373
1374 if (limits->prot)
1375 ret = notif_set_limit(rdev, set, limits->prot,
1376 REGULATOR_SEVERITY_PROT);
1377 if (ret)
1378 return ret;
1379
1380 if (limits->err)
1381 ret = notif_set_limit(rdev, set, limits->err,
1382 REGULATOR_SEVERITY_ERR);
1383 if (ret)
1384 return ret;
1385
1386 if (limits->warn)
1387 ret = notif_set_limit(rdev, set, limits->warn,
1388 REGULATOR_SEVERITY_WARN);
1389
1390 return ret;
1391 }
1392 /**
1393 * set_machine_constraints - sets regulator constraints
1394 * @rdev: regulator source
1395 *
1396 * Allows platform initialisation code to define and constrain
1397 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1398 * Constraints *must* be set by platform code in order for some
1399 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1400 * set_mode.
1401 *
1402 * Return: 0 on success or a negative error number on failure.
1403 */
set_machine_constraints(struct regulator_dev * rdev)1404 static int set_machine_constraints(struct regulator_dev *rdev)
1405 {
1406 int ret = 0;
1407 const struct regulator_ops *ops = rdev->desc->ops;
1408
1409 ret = machine_constraints_voltage(rdev, rdev->constraints);
1410 if (ret != 0)
1411 return ret;
1412
1413 ret = machine_constraints_current(rdev, rdev->constraints);
1414 if (ret != 0)
1415 return ret;
1416
1417 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1418 ret = ops->set_input_current_limit(rdev,
1419 rdev->constraints->ilim_uA);
1420 if (ret < 0) {
1421 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1422 return ret;
1423 }
1424 }
1425
1426 /* do we need to setup our suspend state */
1427 if (rdev->constraints->initial_state) {
1428 ret = suspend_set_initial_state(rdev);
1429 if (ret < 0) {
1430 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1431 return ret;
1432 }
1433 }
1434
1435 if (rdev->constraints->initial_mode) {
1436 if (!ops->set_mode) {
1437 rdev_err(rdev, "no set_mode operation\n");
1438 return -EINVAL;
1439 }
1440
1441 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1442 if (ret < 0) {
1443 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1444 return ret;
1445 }
1446 } else if (rdev->constraints->system_load) {
1447 /*
1448 * We'll only apply the initial system load if an
1449 * initial mode wasn't specified.
1450 */
1451 drms_uA_update(rdev);
1452 }
1453
1454 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1455 && ops->set_ramp_delay) {
1456 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1457 if (ret < 0) {
1458 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1459 return ret;
1460 }
1461 }
1462
1463 if (rdev->constraints->pull_down && ops->set_pull_down) {
1464 ret = ops->set_pull_down(rdev);
1465 if (ret < 0) {
1466 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1467 return ret;
1468 }
1469 }
1470
1471 if (rdev->constraints->soft_start && ops->set_soft_start) {
1472 ret = ops->set_soft_start(rdev);
1473 if (ret < 0) {
1474 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1475 return ret;
1476 }
1477 }
1478
1479 /*
1480 * Existing logic does not warn if over_current_protection is given as
1481 * a constraint but driver does not support that. I think we should
1482 * warn about this type of issues as it is possible someone changes
1483 * PMIC on board to another type - and the another PMIC's driver does
1484 * not support setting protection. Board composer may happily believe
1485 * the DT limits are respected - especially if the new PMIC HW also
1486 * supports protection but the driver does not. I won't change the logic
1487 * without hearing more experienced opinion on this though.
1488 *
1489 * If warning is seen as a good idea then we can merge handling the
1490 * over-curret protection and detection and get rid of this special
1491 * handling.
1492 */
1493 if (rdev->constraints->over_current_protection
1494 && ops->set_over_current_protection) {
1495 int lim = rdev->constraints->over_curr_limits.prot;
1496
1497 ret = ops->set_over_current_protection(rdev, lim,
1498 REGULATOR_SEVERITY_PROT,
1499 true);
1500 if (ret < 0) {
1501 rdev_err(rdev, "failed to set over current protection: %pe\n",
1502 ERR_PTR(ret));
1503 return ret;
1504 }
1505 }
1506
1507 if (rdev->constraints->over_current_detection)
1508 ret = handle_notify_limits(rdev,
1509 ops->set_over_current_protection,
1510 &rdev->constraints->over_curr_limits);
1511 if (ret) {
1512 if (ret != -EOPNOTSUPP) {
1513 rdev_err(rdev, "failed to set over current limits: %pe\n",
1514 ERR_PTR(ret));
1515 return ret;
1516 }
1517 rdev_warn(rdev,
1518 "IC does not support requested over-current limits\n");
1519 }
1520
1521 if (rdev->constraints->over_voltage_detection)
1522 ret = handle_notify_limits(rdev,
1523 ops->set_over_voltage_protection,
1524 &rdev->constraints->over_voltage_limits);
1525 if (ret) {
1526 if (ret != -EOPNOTSUPP) {
1527 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1528 ERR_PTR(ret));
1529 return ret;
1530 }
1531 rdev_warn(rdev,
1532 "IC does not support requested over voltage limits\n");
1533 }
1534
1535 if (rdev->constraints->under_voltage_detection)
1536 ret = handle_notify_limits(rdev,
1537 ops->set_under_voltage_protection,
1538 &rdev->constraints->under_voltage_limits);
1539 if (ret) {
1540 if (ret != -EOPNOTSUPP) {
1541 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1542 ERR_PTR(ret));
1543 return ret;
1544 }
1545 rdev_warn(rdev,
1546 "IC does not support requested under voltage limits\n");
1547 }
1548
1549 if (rdev->constraints->over_temp_detection)
1550 ret = handle_notify_limits(rdev,
1551 ops->set_thermal_protection,
1552 &rdev->constraints->temp_limits);
1553 if (ret) {
1554 if (ret != -EOPNOTSUPP) {
1555 rdev_err(rdev, "failed to set temperature limits %pe\n",
1556 ERR_PTR(ret));
1557 return ret;
1558 }
1559 rdev_warn(rdev,
1560 "IC does not support requested temperature limits\n");
1561 }
1562
1563 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1564 bool ad_state = (rdev->constraints->active_discharge ==
1565 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1566
1567 ret = ops->set_active_discharge(rdev, ad_state);
1568 if (ret < 0) {
1569 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1570 return ret;
1571 }
1572 }
1573
1574 /*
1575 * If there is no mechanism for controlling the regulator then
1576 * flag it as always_on so we don't end up duplicating checks
1577 * for this so much. Note that we could control the state of
1578 * a supply to control the output on a regulator that has no
1579 * direct control.
1580 */
1581 if (!rdev->ena_pin && !ops->enable) {
1582 if (rdev->supply_name && !rdev->supply)
1583 return -EPROBE_DEFER;
1584
1585 if (rdev->supply)
1586 rdev->constraints->always_on =
1587 rdev->supply->rdev->constraints->always_on;
1588 else
1589 rdev->constraints->always_on = true;
1590 }
1591
1592 /* If the constraints say the regulator should be on at this point
1593 * and we have control then make sure it is enabled.
1594 */
1595 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1596 /* If we want to enable this regulator, make sure that we know
1597 * the supplying regulator.
1598 */
1599 if (rdev->supply_name && !rdev->supply)
1600 return -EPROBE_DEFER;
1601
1602 /* If supplying regulator has already been enabled,
1603 * it's not intended to have use_count increment
1604 * when rdev is only boot-on.
1605 */
1606 if (rdev->supply &&
1607 (rdev->constraints->always_on ||
1608 !regulator_is_enabled(rdev->supply))) {
1609 ret = regulator_enable(rdev->supply);
1610 if (ret < 0) {
1611 _regulator_put(rdev->supply);
1612 rdev->supply = NULL;
1613 return ret;
1614 }
1615 }
1616
1617 ret = _regulator_do_enable(rdev);
1618 if (ret < 0 && ret != -EINVAL) {
1619 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1620 return ret;
1621 }
1622
1623 if (rdev->constraints->always_on)
1624 rdev->use_count++;
1625 } else if (rdev->desc->off_on_delay) {
1626 rdev->last_off = ktime_get();
1627 }
1628
1629 print_constraints(rdev);
1630 return 0;
1631 }
1632
1633 /**
1634 * set_supply - set regulator supply regulator
1635 * @rdev: regulator (locked)
1636 * @supply_rdev: supply regulator (locked))
1637 *
1638 * Called by platform initialisation code to set the supply regulator for this
1639 * regulator. This ensures that a regulators supply will also be enabled by the
1640 * core if it's child is enabled.
1641 *
1642 * Return: 0 on success or a negative error number on failure.
1643 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1644 static int set_supply(struct regulator_dev *rdev,
1645 struct regulator_dev *supply_rdev)
1646 {
1647 int err;
1648
1649 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1650
1651 if (!try_module_get(supply_rdev->owner))
1652 return -ENODEV;
1653
1654 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1655 if (rdev->supply == NULL) {
1656 module_put(supply_rdev->owner);
1657 err = -ENOMEM;
1658 return err;
1659 }
1660 supply_rdev->open_count++;
1661
1662 return 0;
1663 }
1664
1665 /**
1666 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1667 * @rdev: regulator source
1668 * @consumer_dev_name: dev_name() string for device supply applies to
1669 * @supply: symbolic name for supply
1670 *
1671 * Allows platform initialisation code to map physical regulator
1672 * sources to symbolic names for supplies for use by devices. Devices
1673 * should use these symbolic names to request regulators, avoiding the
1674 * need to provide board-specific regulator names as platform data.
1675 *
1676 * Return: 0 on success or a negative error number on failure.
1677 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1678 static int set_consumer_device_supply(struct regulator_dev *rdev,
1679 const char *consumer_dev_name,
1680 const char *supply)
1681 {
1682 struct regulator_map *node, *new_node;
1683 int has_dev;
1684
1685 if (supply == NULL)
1686 return -EINVAL;
1687
1688 if (consumer_dev_name != NULL)
1689 has_dev = 1;
1690 else
1691 has_dev = 0;
1692
1693 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1694 if (new_node == NULL)
1695 return -ENOMEM;
1696
1697 new_node->regulator = rdev;
1698 new_node->supply = supply;
1699
1700 if (has_dev) {
1701 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1702 if (new_node->dev_name == NULL) {
1703 kfree(new_node);
1704 return -ENOMEM;
1705 }
1706 }
1707
1708 mutex_lock(®ulator_list_mutex);
1709 list_for_each_entry(node, ®ulator_map_list, list) {
1710 if (node->dev_name && consumer_dev_name) {
1711 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1712 continue;
1713 } else if (node->dev_name || consumer_dev_name) {
1714 continue;
1715 }
1716
1717 if (strcmp(node->supply, supply) != 0)
1718 continue;
1719
1720 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1721 consumer_dev_name,
1722 dev_name(&node->regulator->dev),
1723 node->regulator->desc->name,
1724 supply,
1725 dev_name(&rdev->dev), rdev_get_name(rdev));
1726 goto fail;
1727 }
1728
1729 list_add(&new_node->list, ®ulator_map_list);
1730 mutex_unlock(®ulator_list_mutex);
1731
1732 return 0;
1733
1734 fail:
1735 mutex_unlock(®ulator_list_mutex);
1736 kfree(new_node->dev_name);
1737 kfree(new_node);
1738 return -EBUSY;
1739 }
1740
unset_regulator_supplies(struct regulator_dev * rdev)1741 static void unset_regulator_supplies(struct regulator_dev *rdev)
1742 {
1743 struct regulator_map *node, *n;
1744
1745 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1746 if (rdev == node->regulator) {
1747 list_del(&node->list);
1748 kfree(node->dev_name);
1749 kfree(node);
1750 }
1751 }
1752 }
1753
1754 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1755 static ssize_t constraint_flags_read_file(struct file *file,
1756 char __user *user_buf,
1757 size_t count, loff_t *ppos)
1758 {
1759 const struct regulator *regulator = file->private_data;
1760 const struct regulation_constraints *c = regulator->rdev->constraints;
1761 char *buf;
1762 ssize_t ret;
1763
1764 if (!c)
1765 return 0;
1766
1767 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1768 if (!buf)
1769 return -ENOMEM;
1770
1771 ret = snprintf(buf, PAGE_SIZE,
1772 "always_on: %u\n"
1773 "boot_on: %u\n"
1774 "apply_uV: %u\n"
1775 "ramp_disable: %u\n"
1776 "soft_start: %u\n"
1777 "pull_down: %u\n"
1778 "over_current_protection: %u\n",
1779 c->always_on,
1780 c->boot_on,
1781 c->apply_uV,
1782 c->ramp_disable,
1783 c->soft_start,
1784 c->pull_down,
1785 c->over_current_protection);
1786
1787 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1788 kfree(buf);
1789
1790 return ret;
1791 }
1792
1793 #endif
1794
1795 static const struct file_operations constraint_flags_fops = {
1796 #ifdef CONFIG_DEBUG_FS
1797 .open = simple_open,
1798 .read = constraint_flags_read_file,
1799 .llseek = default_llseek,
1800 #endif
1801 };
1802
1803 #define REG_STR_SIZE 64
1804
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1805 static struct regulator *create_regulator(struct regulator_dev *rdev,
1806 struct device *dev,
1807 const char *supply_name)
1808 {
1809 struct regulator *regulator;
1810 int err = 0;
1811
1812 lockdep_assert_held_once(&rdev->mutex.base);
1813
1814 if (dev) {
1815 char buf[REG_STR_SIZE];
1816 int size;
1817
1818 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1819 dev->kobj.name, supply_name);
1820 if (size >= REG_STR_SIZE)
1821 return NULL;
1822
1823 supply_name = kstrdup(buf, GFP_KERNEL);
1824 if (supply_name == NULL)
1825 return NULL;
1826 } else {
1827 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1828 if (supply_name == NULL)
1829 return NULL;
1830 }
1831
1832 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1833 if (regulator == NULL) {
1834 kfree_const(supply_name);
1835 return NULL;
1836 }
1837
1838 regulator->rdev = rdev;
1839 regulator->supply_name = supply_name;
1840
1841 list_add(®ulator->list, &rdev->consumer_list);
1842
1843 if (dev) {
1844 regulator->dev = dev;
1845
1846 /* Add a link to the device sysfs entry */
1847 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1848 supply_name);
1849 if (err) {
1850 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1851 dev->kobj.name, ERR_PTR(err));
1852 /* non-fatal */
1853 }
1854 }
1855
1856 if (err != -EEXIST) {
1857 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1858 if (IS_ERR(regulator->debugfs)) {
1859 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1860 regulator->debugfs = NULL;
1861 }
1862 }
1863
1864 if (regulator->debugfs) {
1865 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1866 ®ulator->uA_load);
1867 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1868 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1869 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1870 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1871 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1872 regulator, &constraint_flags_fops);
1873 }
1874
1875 /*
1876 * Check now if the regulator is an always on regulator - if
1877 * it is then we don't need to do nearly so much work for
1878 * enable/disable calls.
1879 */
1880 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1881 _regulator_is_enabled(rdev))
1882 regulator->always_on = true;
1883
1884 return regulator;
1885 }
1886
_regulator_get_enable_time(struct regulator_dev * rdev)1887 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1888 {
1889 if (rdev->constraints && rdev->constraints->enable_time)
1890 return rdev->constraints->enable_time;
1891 if (rdev->desc->ops->enable_time)
1892 return rdev->desc->ops->enable_time(rdev);
1893 return rdev->desc->enable_time;
1894 }
1895
regulator_find_supply_alias(struct device * dev,const char * supply)1896 static struct regulator_supply_alias *regulator_find_supply_alias(
1897 struct device *dev, const char *supply)
1898 {
1899 struct regulator_supply_alias *map;
1900
1901 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1902 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1903 return map;
1904
1905 return NULL;
1906 }
1907
regulator_supply_alias(struct device ** dev,const char ** supply)1908 static void regulator_supply_alias(struct device **dev, const char **supply)
1909 {
1910 struct regulator_supply_alias *map;
1911
1912 map = regulator_find_supply_alias(*dev, *supply);
1913 if (map) {
1914 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1915 *supply, map->alias_supply,
1916 dev_name(map->alias_dev));
1917 *dev = map->alias_dev;
1918 *supply = map->alias_supply;
1919 }
1920 }
1921
regulator_match(struct device * dev,const void * data)1922 static int regulator_match(struct device *dev, const void *data)
1923 {
1924 struct regulator_dev *r = dev_to_rdev(dev);
1925
1926 return strcmp(rdev_get_name(r), data) == 0;
1927 }
1928
regulator_lookup_by_name(const char * name)1929 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1930 {
1931 struct device *dev;
1932
1933 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1934
1935 return dev ? dev_to_rdev(dev) : NULL;
1936 }
1937
1938 /**
1939 * regulator_dev_lookup - lookup a regulator device.
1940 * @dev: device for regulator "consumer".
1941 * @supply: Supply name or regulator ID.
1942 *
1943 * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
1944 *
1945 * If successful, returns a struct regulator_dev that corresponds to the name
1946 * @supply and with the embedded struct device refcount incremented by one.
1947 * The refcount must be dropped by calling put_device().
1948 * On failure one of the following ERR_PTR() encoded values is returned:
1949 * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
1950 * in the future.
1951 */
regulator_dev_lookup(struct device * dev,const char * supply)1952 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1953 const char *supply)
1954 {
1955 struct regulator_dev *r = NULL;
1956 struct regulator_map *map;
1957 const char *devname = NULL;
1958
1959 regulator_supply_alias(&dev, &supply);
1960
1961 /* first do a dt based lookup */
1962 if (dev_of_node(dev)) {
1963 r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply);
1964 if (!IS_ERR(r))
1965 return r;
1966 if (PTR_ERR(r) == -EPROBE_DEFER)
1967 return r;
1968
1969 if (PTR_ERR(r) == -ENODEV)
1970 r = NULL;
1971 }
1972
1973 /* if not found, try doing it non-dt way */
1974 if (dev)
1975 devname = dev_name(dev);
1976
1977 mutex_lock(®ulator_list_mutex);
1978 list_for_each_entry(map, ®ulator_map_list, list) {
1979 /* If the mapping has a device set up it must match */
1980 if (map->dev_name &&
1981 (!devname || strcmp(map->dev_name, devname)))
1982 continue;
1983
1984 if (strcmp(map->supply, supply) == 0 &&
1985 get_device(&map->regulator->dev)) {
1986 r = map->regulator;
1987 break;
1988 }
1989 }
1990 mutex_unlock(®ulator_list_mutex);
1991
1992 if (r)
1993 return r;
1994
1995 r = regulator_lookup_by_name(supply);
1996 if (r)
1997 return r;
1998
1999 return ERR_PTR(-ENODEV);
2000 }
2001
regulator_resolve_supply(struct regulator_dev * rdev)2002 static int regulator_resolve_supply(struct regulator_dev *rdev)
2003 {
2004 struct regulator_dev *r;
2005 struct device *dev = rdev->dev.parent;
2006 struct ww_acquire_ctx ww_ctx;
2007 int ret = 0;
2008
2009 /* No supply to resolve? */
2010 if (!rdev->supply_name)
2011 return 0;
2012
2013 /* Supply already resolved? (fast-path without locking contention) */
2014 if (rdev->supply)
2015 return 0;
2016
2017 r = regulator_dev_lookup(dev, rdev->supply_name);
2018 if (IS_ERR(r)) {
2019 ret = PTR_ERR(r);
2020
2021 /* Did the lookup explicitly defer for us? */
2022 if (ret == -EPROBE_DEFER)
2023 goto out;
2024
2025 if (have_full_constraints()) {
2026 r = dummy_regulator_rdev;
2027 if (!r) {
2028 ret = -EPROBE_DEFER;
2029 goto out;
2030 }
2031 get_device(&r->dev);
2032 } else {
2033 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2034 rdev->supply_name, rdev->desc->name);
2035 ret = -EPROBE_DEFER;
2036 goto out;
2037 }
2038 }
2039
2040 if (r == rdev) {
2041 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2042 rdev->desc->name, rdev->supply_name);
2043 if (!have_full_constraints()) {
2044 ret = -EINVAL;
2045 goto out;
2046 }
2047 r = dummy_regulator_rdev;
2048 if (!r) {
2049 ret = -EPROBE_DEFER;
2050 goto out;
2051 }
2052 get_device(&r->dev);
2053 }
2054
2055 /*
2056 * If the supply's parent device is not the same as the
2057 * regulator's parent device, then ensure the parent device
2058 * is bound before we resolve the supply, in case the parent
2059 * device get probe deferred and unregisters the supply.
2060 */
2061 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2062 if (!device_is_bound(r->dev.parent)) {
2063 put_device(&r->dev);
2064 ret = -EPROBE_DEFER;
2065 goto out;
2066 }
2067 }
2068
2069 /* Recursively resolve the supply of the supply */
2070 ret = regulator_resolve_supply(r);
2071 if (ret < 0) {
2072 put_device(&r->dev);
2073 goto out;
2074 }
2075
2076 /*
2077 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2078 * between rdev->supply null check and setting rdev->supply in
2079 * set_supply() from concurrent tasks.
2080 */
2081 regulator_lock_two(rdev, r, &ww_ctx);
2082
2083 /* Supply just resolved by a concurrent task? */
2084 if (rdev->supply) {
2085 regulator_unlock_two(rdev, r, &ww_ctx);
2086 put_device(&r->dev);
2087 goto out;
2088 }
2089
2090 ret = set_supply(rdev, r);
2091 if (ret < 0) {
2092 regulator_unlock_two(rdev, r, &ww_ctx);
2093 put_device(&r->dev);
2094 goto out;
2095 }
2096
2097 regulator_unlock_two(rdev, r, &ww_ctx);
2098
2099 /*
2100 * In set_machine_constraints() we may have turned this regulator on
2101 * but we couldn't propagate to the supply if it hadn't been resolved
2102 * yet. Do it now.
2103 */
2104 if (rdev->use_count) {
2105 ret = regulator_enable(rdev->supply);
2106 if (ret < 0) {
2107 _regulator_put(rdev->supply);
2108 rdev->supply = NULL;
2109 goto out;
2110 }
2111 }
2112
2113 out:
2114 return ret;
2115 }
2116
2117 /* common pre-checks for regulator requests */
_regulator_get_common_check(struct device * dev,const char * id,enum regulator_get_type get_type)2118 int _regulator_get_common_check(struct device *dev, const char *id,
2119 enum regulator_get_type get_type)
2120 {
2121 if (get_type >= MAX_GET_TYPE) {
2122 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2123 return -EINVAL;
2124 }
2125
2126 if (id == NULL) {
2127 dev_err(dev, "regulator request with no identifier\n");
2128 return -EINVAL;
2129 }
2130
2131 return 0;
2132 }
2133
2134 /**
2135 * _regulator_get_common - Common code for regulator requests
2136 * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2137 * Its reference count is expected to have been incremented.
2138 * @dev: device used for dev_printk messages
2139 * @id: Supply name or regulator ID
2140 * @get_type: enum regulator_get_type value corresponding to type of request
2141 *
2142 * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2143 * encoded error.
2144 *
2145 * This function should be chained with *regulator_dev_lookup() functions.
2146 */
_regulator_get_common(struct regulator_dev * rdev,struct device * dev,const char * id,enum regulator_get_type get_type)2147 struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev,
2148 const char *id, enum regulator_get_type get_type)
2149 {
2150 struct regulator *regulator;
2151 struct device_link *link;
2152 int ret;
2153
2154 if (IS_ERR(rdev)) {
2155 ret = PTR_ERR(rdev);
2156
2157 /*
2158 * If regulator_dev_lookup() fails with error other
2159 * than -ENODEV our job here is done, we simply return it.
2160 */
2161 if (ret != -ENODEV)
2162 return ERR_PTR(ret);
2163
2164 if (!have_full_constraints()) {
2165 dev_warn(dev,
2166 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2167 return ERR_PTR(-ENODEV);
2168 }
2169
2170 switch (get_type) {
2171 case NORMAL_GET:
2172 /*
2173 * Assume that a regulator is physically present and
2174 * enabled, even if it isn't hooked up, and just
2175 * provide a dummy.
2176 */
2177 rdev = dummy_regulator_rdev;
2178 if (!rdev)
2179 return ERR_PTR(-EPROBE_DEFER);
2180 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2181 get_device(&rdev->dev);
2182 break;
2183
2184 case EXCLUSIVE_GET:
2185 dev_warn(dev,
2186 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2187 fallthrough;
2188
2189 default:
2190 return ERR_PTR(-ENODEV);
2191 }
2192 }
2193
2194 if (rdev->exclusive) {
2195 regulator = ERR_PTR(-EPERM);
2196 put_device(&rdev->dev);
2197 return regulator;
2198 }
2199
2200 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2201 regulator = ERR_PTR(-EBUSY);
2202 put_device(&rdev->dev);
2203 return regulator;
2204 }
2205
2206 mutex_lock(®ulator_list_mutex);
2207 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2208 mutex_unlock(®ulator_list_mutex);
2209
2210 if (ret != 0) {
2211 regulator = ERR_PTR(-EPROBE_DEFER);
2212 put_device(&rdev->dev);
2213 return regulator;
2214 }
2215
2216 ret = regulator_resolve_supply(rdev);
2217 if (ret < 0) {
2218 regulator = ERR_PTR(ret);
2219 put_device(&rdev->dev);
2220 return regulator;
2221 }
2222
2223 if (!try_module_get(rdev->owner)) {
2224 regulator = ERR_PTR(-EPROBE_DEFER);
2225 put_device(&rdev->dev);
2226 return regulator;
2227 }
2228
2229 regulator_lock(rdev);
2230 regulator = create_regulator(rdev, dev, id);
2231 regulator_unlock(rdev);
2232 if (regulator == NULL) {
2233 regulator = ERR_PTR(-ENOMEM);
2234 module_put(rdev->owner);
2235 put_device(&rdev->dev);
2236 return regulator;
2237 }
2238
2239 rdev->open_count++;
2240 if (get_type == EXCLUSIVE_GET) {
2241 rdev->exclusive = 1;
2242
2243 ret = _regulator_is_enabled(rdev);
2244 if (ret > 0) {
2245 rdev->use_count = 1;
2246 regulator->enable_count = 1;
2247
2248 /* Propagate the regulator state to its supply */
2249 if (rdev->supply) {
2250 ret = regulator_enable(rdev->supply);
2251 if (ret < 0) {
2252 destroy_regulator(regulator);
2253 module_put(rdev->owner);
2254 put_device(&rdev->dev);
2255 return ERR_PTR(ret);
2256 }
2257 }
2258 } else {
2259 rdev->use_count = 0;
2260 regulator->enable_count = 0;
2261 }
2262 }
2263
2264 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2265 if (!IS_ERR_OR_NULL(link))
2266 regulator->device_link = true;
2267
2268 return regulator;
2269 }
2270
2271 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2272 struct regulator *_regulator_get(struct device *dev, const char *id,
2273 enum regulator_get_type get_type)
2274 {
2275 struct regulator_dev *rdev;
2276 int ret;
2277
2278 ret = _regulator_get_common_check(dev, id, get_type);
2279 if (ret)
2280 return ERR_PTR(ret);
2281
2282 rdev = regulator_dev_lookup(dev, id);
2283 return _regulator_get_common(rdev, dev, id, get_type);
2284 }
2285
2286 /**
2287 * regulator_get - lookup and obtain a reference to a regulator.
2288 * @dev: device for regulator "consumer"
2289 * @id: Supply name or regulator ID.
2290 *
2291 * Use of supply names configured via set_consumer_device_supply() is
2292 * strongly encouraged. It is recommended that the supply name used
2293 * should match the name used for the supply and/or the relevant
2294 * device pins in the datasheet.
2295 *
2296 * Return: Pointer to a &struct regulator corresponding to the regulator
2297 * producer, or an ERR_PTR() encoded negative error number.
2298 */
regulator_get(struct device * dev,const char * id)2299 struct regulator *regulator_get(struct device *dev, const char *id)
2300 {
2301 return _regulator_get(dev, id, NORMAL_GET);
2302 }
2303 EXPORT_SYMBOL_GPL(regulator_get);
2304
2305 /**
2306 * regulator_get_exclusive - obtain exclusive access to a regulator.
2307 * @dev: device for regulator "consumer"
2308 * @id: Supply name or regulator ID.
2309 *
2310 * Other consumers will be unable to obtain this regulator while this
2311 * reference is held and the use count for the regulator will be
2312 * initialised to reflect the current state of the regulator.
2313 *
2314 * This is intended for use by consumers which cannot tolerate shared
2315 * use of the regulator such as those which need to force the
2316 * regulator off for correct operation of the hardware they are
2317 * controlling.
2318 *
2319 * Use of supply names configured via set_consumer_device_supply() is
2320 * strongly encouraged. It is recommended that the supply name used
2321 * should match the name used for the supply and/or the relevant
2322 * device pins in the datasheet.
2323 *
2324 * Return: Pointer to a &struct regulator corresponding to the regulator
2325 * producer, or an ERR_PTR() encoded negative error number.
2326 */
regulator_get_exclusive(struct device * dev,const char * id)2327 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2328 {
2329 return _regulator_get(dev, id, EXCLUSIVE_GET);
2330 }
2331 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2332
2333 /**
2334 * regulator_get_optional - obtain optional access to a regulator.
2335 * @dev: device for regulator "consumer"
2336 * @id: Supply name or regulator ID.
2337 *
2338 * This is intended for use by consumers for devices which can have
2339 * some supplies unconnected in normal use, such as some MMC devices.
2340 * It can allow the regulator core to provide stub supplies for other
2341 * supplies requested using normal regulator_get() calls without
2342 * disrupting the operation of drivers that can handle absent
2343 * supplies.
2344 *
2345 * Use of supply names configured via set_consumer_device_supply() is
2346 * strongly encouraged. It is recommended that the supply name used
2347 * should match the name used for the supply and/or the relevant
2348 * device pins in the datasheet.
2349 *
2350 * Return: Pointer to a &struct regulator corresponding to the regulator
2351 * producer, or an ERR_PTR() encoded negative error number.
2352 */
regulator_get_optional(struct device * dev,const char * id)2353 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2354 {
2355 return _regulator_get(dev, id, OPTIONAL_GET);
2356 }
2357 EXPORT_SYMBOL_GPL(regulator_get_optional);
2358
destroy_regulator(struct regulator * regulator)2359 static void destroy_regulator(struct regulator *regulator)
2360 {
2361 struct regulator_dev *rdev = regulator->rdev;
2362
2363 debugfs_remove_recursive(regulator->debugfs);
2364
2365 if (regulator->dev) {
2366 if (regulator->device_link)
2367 device_link_remove(regulator->dev, &rdev->dev);
2368
2369 /* remove any sysfs entries */
2370 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2371 }
2372
2373 regulator_lock(rdev);
2374 list_del(®ulator->list);
2375
2376 rdev->open_count--;
2377 rdev->exclusive = 0;
2378 regulator_unlock(rdev);
2379
2380 kfree_const(regulator->supply_name);
2381 kfree(regulator);
2382 }
2383
2384 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2385 static void _regulator_put(struct regulator *regulator)
2386 {
2387 struct regulator_dev *rdev;
2388
2389 if (IS_ERR_OR_NULL(regulator))
2390 return;
2391
2392 lockdep_assert_held_once(®ulator_list_mutex);
2393
2394 /* Docs say you must disable before calling regulator_put() */
2395 WARN_ON(regulator->enable_count);
2396
2397 rdev = regulator->rdev;
2398
2399 destroy_regulator(regulator);
2400
2401 module_put(rdev->owner);
2402 put_device(&rdev->dev);
2403 }
2404
2405 /**
2406 * regulator_put - "free" the regulator source
2407 * @regulator: regulator source
2408 *
2409 * Note: drivers must ensure that all regulator_enable calls made on this
2410 * regulator source are balanced by regulator_disable calls prior to calling
2411 * this function.
2412 */
regulator_put(struct regulator * regulator)2413 void regulator_put(struct regulator *regulator)
2414 {
2415 mutex_lock(®ulator_list_mutex);
2416 _regulator_put(regulator);
2417 mutex_unlock(®ulator_list_mutex);
2418 }
2419 EXPORT_SYMBOL_GPL(regulator_put);
2420
2421 /**
2422 * regulator_register_supply_alias - Provide device alias for supply lookup
2423 *
2424 * @dev: device that will be given as the regulator "consumer"
2425 * @id: Supply name or regulator ID
2426 * @alias_dev: device that should be used to lookup the supply
2427 * @alias_id: Supply name or regulator ID that should be used to lookup the
2428 * supply
2429 *
2430 * All lookups for id on dev will instead be conducted for alias_id on
2431 * alias_dev.
2432 *
2433 * Return: 0 on success or a negative error number on failure.
2434 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2435 int regulator_register_supply_alias(struct device *dev, const char *id,
2436 struct device *alias_dev,
2437 const char *alias_id)
2438 {
2439 struct regulator_supply_alias *map;
2440
2441 map = regulator_find_supply_alias(dev, id);
2442 if (map)
2443 return -EEXIST;
2444
2445 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2446 if (!map)
2447 return -ENOMEM;
2448
2449 map->src_dev = dev;
2450 map->src_supply = id;
2451 map->alias_dev = alias_dev;
2452 map->alias_supply = alias_id;
2453
2454 list_add(&map->list, ®ulator_supply_alias_list);
2455
2456 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2457 id, dev_name(dev), alias_id, dev_name(alias_dev));
2458
2459 return 0;
2460 }
2461 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2462
2463 /**
2464 * regulator_unregister_supply_alias - Remove device alias
2465 *
2466 * @dev: device that will be given as the regulator "consumer"
2467 * @id: Supply name or regulator ID
2468 *
2469 * Remove a lookup alias if one exists for id on dev.
2470 */
regulator_unregister_supply_alias(struct device * dev,const char * id)2471 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2472 {
2473 struct regulator_supply_alias *map;
2474
2475 map = regulator_find_supply_alias(dev, id);
2476 if (map) {
2477 list_del(&map->list);
2478 kfree(map);
2479 }
2480 }
2481 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2482
2483 /**
2484 * regulator_bulk_register_supply_alias - register multiple aliases
2485 *
2486 * @dev: device that will be given as the regulator "consumer"
2487 * @id: List of supply names or regulator IDs
2488 * @alias_dev: device that should be used to lookup the supply
2489 * @alias_id: List of supply names or regulator IDs that should be used to
2490 * lookup the supply
2491 * @num_id: Number of aliases to register
2492 *
2493 * This helper function allows drivers to register several supply
2494 * aliases in one operation. If any of the aliases cannot be
2495 * registered any aliases that were registered will be removed
2496 * before returning to the caller.
2497 *
2498 * Return: 0 on success or a negative error number on failure.
2499 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2500 int regulator_bulk_register_supply_alias(struct device *dev,
2501 const char *const *id,
2502 struct device *alias_dev,
2503 const char *const *alias_id,
2504 int num_id)
2505 {
2506 int i;
2507 int ret;
2508
2509 for (i = 0; i < num_id; ++i) {
2510 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2511 alias_id[i]);
2512 if (ret < 0)
2513 goto err;
2514 }
2515
2516 return 0;
2517
2518 err:
2519 dev_err(dev,
2520 "Failed to create supply alias %s,%s -> %s,%s\n",
2521 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2522
2523 while (--i >= 0)
2524 regulator_unregister_supply_alias(dev, id[i]);
2525
2526 return ret;
2527 }
2528 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2529
2530 /**
2531 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2532 *
2533 * @dev: device that will be given as the regulator "consumer"
2534 * @id: List of supply names or regulator IDs
2535 * @num_id: Number of aliases to unregister
2536 *
2537 * This helper function allows drivers to unregister several supply
2538 * aliases in one operation.
2539 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2540 void regulator_bulk_unregister_supply_alias(struct device *dev,
2541 const char *const *id,
2542 int num_id)
2543 {
2544 int i;
2545
2546 for (i = 0; i < num_id; ++i)
2547 regulator_unregister_supply_alias(dev, id[i]);
2548 }
2549 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2550
2551
2552 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2553 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2554 const struct regulator_config *config)
2555 {
2556 struct regulator_enable_gpio *pin, *new_pin;
2557 struct gpio_desc *gpiod;
2558
2559 gpiod = config->ena_gpiod;
2560 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2561
2562 mutex_lock(®ulator_list_mutex);
2563
2564 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2565 if (pin->gpiod == gpiod) {
2566 rdev_dbg(rdev, "GPIO is already used\n");
2567 goto update_ena_gpio_to_rdev;
2568 }
2569 }
2570
2571 if (new_pin == NULL) {
2572 mutex_unlock(®ulator_list_mutex);
2573 return -ENOMEM;
2574 }
2575
2576 pin = new_pin;
2577 new_pin = NULL;
2578
2579 pin->gpiod = gpiod;
2580 list_add(&pin->list, ®ulator_ena_gpio_list);
2581
2582 update_ena_gpio_to_rdev:
2583 pin->request_count++;
2584 rdev->ena_pin = pin;
2585
2586 mutex_unlock(®ulator_list_mutex);
2587 kfree(new_pin);
2588
2589 return 0;
2590 }
2591
regulator_ena_gpio_free(struct regulator_dev * rdev)2592 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2593 {
2594 struct regulator_enable_gpio *pin, *n;
2595
2596 if (!rdev->ena_pin)
2597 return;
2598
2599 /* Free the GPIO only in case of no use */
2600 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2601 if (pin != rdev->ena_pin)
2602 continue;
2603
2604 if (--pin->request_count)
2605 break;
2606
2607 gpiod_put(pin->gpiod);
2608 list_del(&pin->list);
2609 kfree(pin);
2610 break;
2611 }
2612
2613 rdev->ena_pin = NULL;
2614 }
2615
2616 /**
2617 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2618 * @rdev: regulator_dev structure
2619 * @enable: enable GPIO at initial use?
2620 *
2621 * GPIO is enabled in case of initial use. (enable_count is 0)
2622 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2623 *
2624 * Return: 0 on success or a negative error number on failure.
2625 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2626 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2627 {
2628 struct regulator_enable_gpio *pin = rdev->ena_pin;
2629
2630 if (!pin)
2631 return -EINVAL;
2632
2633 if (enable) {
2634 /* Enable GPIO at initial use */
2635 if (pin->enable_count == 0)
2636 gpiod_set_value_cansleep(pin->gpiod, 1);
2637
2638 pin->enable_count++;
2639 } else {
2640 if (pin->enable_count > 1) {
2641 pin->enable_count--;
2642 return 0;
2643 }
2644
2645 /* Disable GPIO if not used */
2646 if (pin->enable_count <= 1) {
2647 gpiod_set_value_cansleep(pin->gpiod, 0);
2648 pin->enable_count = 0;
2649 }
2650 }
2651
2652 return 0;
2653 }
2654
2655 /**
2656 * _regulator_delay_helper - a delay helper function
2657 * @delay: time to delay in microseconds
2658 *
2659 * Delay for the requested amount of time as per the guidelines in:
2660 *
2661 * Documentation/timers/timers-howto.rst
2662 *
2663 * The assumption here is that these regulator operations will never used in
2664 * atomic context and therefore sleeping functions can be used.
2665 */
_regulator_delay_helper(unsigned int delay)2666 static void _regulator_delay_helper(unsigned int delay)
2667 {
2668 unsigned int ms = delay / 1000;
2669 unsigned int us = delay % 1000;
2670
2671 if (ms > 0) {
2672 /*
2673 * For small enough values, handle super-millisecond
2674 * delays in the usleep_range() call below.
2675 */
2676 if (ms < 20)
2677 us += ms * 1000;
2678 else
2679 msleep(ms);
2680 }
2681
2682 /*
2683 * Give the scheduler some room to coalesce with any other
2684 * wakeup sources. For delays shorter than 10 us, don't even
2685 * bother setting up high-resolution timers and just busy-
2686 * loop.
2687 */
2688 if (us >= 10)
2689 usleep_range(us, us + 100);
2690 else
2691 udelay(us);
2692 }
2693
2694 /**
2695 * _regulator_check_status_enabled - check if regulator status can be
2696 * interpreted as "regulator is enabled"
2697 * @rdev: the regulator device to check
2698 *
2699 * Return:
2700 * * 1 - if status shows regulator is in enabled state
2701 * * 0 - if not enabled state
2702 * * Error Value - as received from ops->get_status()
2703 */
_regulator_check_status_enabled(struct regulator_dev * rdev)2704 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2705 {
2706 int ret = rdev->desc->ops->get_status(rdev);
2707
2708 if (ret < 0) {
2709 rdev_info(rdev, "get_status returned error: %d\n", ret);
2710 return ret;
2711 }
2712
2713 switch (ret) {
2714 case REGULATOR_STATUS_OFF:
2715 case REGULATOR_STATUS_ERROR:
2716 case REGULATOR_STATUS_UNDEFINED:
2717 return 0;
2718 default:
2719 return 1;
2720 }
2721 }
2722
_regulator_do_enable(struct regulator_dev * rdev)2723 static int _regulator_do_enable(struct regulator_dev *rdev)
2724 {
2725 int ret, delay;
2726
2727 /* Query before enabling in case configuration dependent. */
2728 ret = _regulator_get_enable_time(rdev);
2729 if (ret >= 0) {
2730 delay = ret;
2731 } else {
2732 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2733 delay = 0;
2734 }
2735
2736 trace_regulator_enable(rdev_get_name(rdev));
2737
2738 if (rdev->desc->off_on_delay) {
2739 /* if needed, keep a distance of off_on_delay from last time
2740 * this regulator was disabled.
2741 */
2742 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2743 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2744
2745 if (remaining > 0)
2746 _regulator_delay_helper(remaining);
2747 }
2748
2749 if (rdev->ena_pin) {
2750 if (!rdev->ena_gpio_state) {
2751 ret = regulator_ena_gpio_ctrl(rdev, true);
2752 if (ret < 0)
2753 return ret;
2754 rdev->ena_gpio_state = 1;
2755 }
2756 } else if (rdev->desc->ops->enable) {
2757 ret = rdev->desc->ops->enable(rdev);
2758 if (ret < 0)
2759 return ret;
2760 } else {
2761 return -EINVAL;
2762 }
2763
2764 /* Allow the regulator to ramp; it would be useful to extend
2765 * this for bulk operations so that the regulators can ramp
2766 * together.
2767 */
2768 trace_regulator_enable_delay(rdev_get_name(rdev));
2769
2770 /* If poll_enabled_time is set, poll upto the delay calculated
2771 * above, delaying poll_enabled_time uS to check if the regulator
2772 * actually got enabled.
2773 * If the regulator isn't enabled after our delay helper has expired,
2774 * return -ETIMEDOUT.
2775 */
2776 if (rdev->desc->poll_enabled_time) {
2777 int time_remaining = delay;
2778
2779 while (time_remaining > 0) {
2780 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2781
2782 if (rdev->desc->ops->get_status) {
2783 ret = _regulator_check_status_enabled(rdev);
2784 if (ret < 0)
2785 return ret;
2786 else if (ret)
2787 break;
2788 } else if (rdev->desc->ops->is_enabled(rdev))
2789 break;
2790
2791 time_remaining -= rdev->desc->poll_enabled_time;
2792 }
2793
2794 if (time_remaining <= 0) {
2795 rdev_err(rdev, "Enabled check timed out\n");
2796 return -ETIMEDOUT;
2797 }
2798 } else {
2799 _regulator_delay_helper(delay);
2800 }
2801
2802 trace_regulator_enable_complete(rdev_get_name(rdev));
2803
2804 return 0;
2805 }
2806
2807 /**
2808 * _regulator_handle_consumer_enable - handle that a consumer enabled
2809 * @regulator: regulator source
2810 *
2811 * Some things on a regulator consumer (like the contribution towards total
2812 * load on the regulator) only have an effect when the consumer wants the
2813 * regulator enabled. Explained in example with two consumers of the same
2814 * regulator:
2815 * consumer A: set_load(100); => total load = 0
2816 * consumer A: regulator_enable(); => total load = 100
2817 * consumer B: set_load(1000); => total load = 100
2818 * consumer B: regulator_enable(); => total load = 1100
2819 * consumer A: regulator_disable(); => total_load = 1000
2820 *
2821 * This function (together with _regulator_handle_consumer_disable) is
2822 * responsible for keeping track of the refcount for a given regulator consumer
2823 * and applying / unapplying these things.
2824 *
2825 * Return: 0 on success or negative error number on failure.
2826 */
_regulator_handle_consumer_enable(struct regulator * regulator)2827 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2828 {
2829 int ret;
2830 struct regulator_dev *rdev = regulator->rdev;
2831
2832 lockdep_assert_held_once(&rdev->mutex.base);
2833
2834 regulator->enable_count++;
2835 if (regulator->uA_load && regulator->enable_count == 1) {
2836 ret = drms_uA_update(rdev);
2837 if (ret)
2838 regulator->enable_count--;
2839 return ret;
2840 }
2841
2842 return 0;
2843 }
2844
2845 /**
2846 * _regulator_handle_consumer_disable - handle that a consumer disabled
2847 * @regulator: regulator source
2848 *
2849 * The opposite of _regulator_handle_consumer_enable().
2850 *
2851 * Return: 0 on success or a negative error number on failure.
2852 */
_regulator_handle_consumer_disable(struct regulator * regulator)2853 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2854 {
2855 struct regulator_dev *rdev = regulator->rdev;
2856
2857 lockdep_assert_held_once(&rdev->mutex.base);
2858
2859 if (!regulator->enable_count) {
2860 rdev_err(rdev, "Underflow of regulator enable count\n");
2861 return -EINVAL;
2862 }
2863
2864 regulator->enable_count--;
2865 if (regulator->uA_load && regulator->enable_count == 0)
2866 return drms_uA_update(rdev);
2867
2868 return 0;
2869 }
2870
2871 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2872 static int _regulator_enable(struct regulator *regulator)
2873 {
2874 struct regulator_dev *rdev = regulator->rdev;
2875 int ret;
2876
2877 lockdep_assert_held_once(&rdev->mutex.base);
2878
2879 if (rdev->use_count == 0 && rdev->supply) {
2880 ret = _regulator_enable(rdev->supply);
2881 if (ret < 0)
2882 return ret;
2883 }
2884
2885 /* balance only if there are regulators coupled */
2886 if (rdev->coupling_desc.n_coupled > 1) {
2887 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2888 if (ret < 0)
2889 goto err_disable_supply;
2890 }
2891
2892 ret = _regulator_handle_consumer_enable(regulator);
2893 if (ret < 0)
2894 goto err_disable_supply;
2895
2896 if (rdev->use_count == 0) {
2897 /*
2898 * The regulator may already be enabled if it's not switchable
2899 * or was left on
2900 */
2901 ret = _regulator_is_enabled(rdev);
2902 if (ret == -EINVAL || ret == 0) {
2903 if (!regulator_ops_is_valid(rdev,
2904 REGULATOR_CHANGE_STATUS)) {
2905 ret = -EPERM;
2906 goto err_consumer_disable;
2907 }
2908
2909 ret = _regulator_do_enable(rdev);
2910 if (ret < 0)
2911 goto err_consumer_disable;
2912
2913 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2914 NULL);
2915 } else if (ret < 0) {
2916 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2917 goto err_consumer_disable;
2918 }
2919 /* Fallthrough on positive return values - already enabled */
2920 }
2921
2922 if (regulator->enable_count == 1)
2923 rdev->use_count++;
2924
2925 return 0;
2926
2927 err_consumer_disable:
2928 _regulator_handle_consumer_disable(regulator);
2929
2930 err_disable_supply:
2931 if (rdev->use_count == 0 && rdev->supply)
2932 _regulator_disable(rdev->supply);
2933
2934 return ret;
2935 }
2936
2937 /**
2938 * regulator_enable - enable regulator output
2939 * @regulator: regulator source
2940 *
2941 * Request that the regulator be enabled with the regulator output at
2942 * the predefined voltage or current value. Calls to regulator_enable()
2943 * must be balanced with calls to regulator_disable().
2944 *
2945 * NOTE: the output value can be set by other drivers, boot loader or may be
2946 * hardwired in the regulator.
2947 *
2948 * Return: 0 on success or a negative error number on failure.
2949 */
regulator_enable(struct regulator * regulator)2950 int regulator_enable(struct regulator *regulator)
2951 {
2952 struct regulator_dev *rdev = regulator->rdev;
2953 struct ww_acquire_ctx ww_ctx;
2954 int ret;
2955
2956 regulator_lock_dependent(rdev, &ww_ctx);
2957 ret = _regulator_enable(regulator);
2958 regulator_unlock_dependent(rdev, &ww_ctx);
2959
2960 return ret;
2961 }
2962 EXPORT_SYMBOL_GPL(regulator_enable);
2963
_regulator_do_disable(struct regulator_dev * rdev)2964 static int _regulator_do_disable(struct regulator_dev *rdev)
2965 {
2966 int ret;
2967
2968 trace_regulator_disable(rdev_get_name(rdev));
2969
2970 if (rdev->ena_pin) {
2971 if (rdev->ena_gpio_state) {
2972 ret = regulator_ena_gpio_ctrl(rdev, false);
2973 if (ret < 0)
2974 return ret;
2975 rdev->ena_gpio_state = 0;
2976 }
2977
2978 } else if (rdev->desc->ops->disable) {
2979 ret = rdev->desc->ops->disable(rdev);
2980 if (ret != 0)
2981 return ret;
2982 }
2983
2984 if (rdev->desc->off_on_delay)
2985 rdev->last_off = ktime_get_boottime();
2986
2987 trace_regulator_disable_complete(rdev_get_name(rdev));
2988
2989 return 0;
2990 }
2991
2992 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)2993 static int _regulator_disable(struct regulator *regulator)
2994 {
2995 struct regulator_dev *rdev = regulator->rdev;
2996 int ret = 0;
2997
2998 lockdep_assert_held_once(&rdev->mutex.base);
2999
3000 if (WARN(regulator->enable_count == 0,
3001 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3002 return -EIO;
3003
3004 if (regulator->enable_count == 1) {
3005 /* disabling last enable_count from this regulator */
3006 /* are we the last user and permitted to disable ? */
3007 if (rdev->use_count == 1 &&
3008 (rdev->constraints && !rdev->constraints->always_on)) {
3009
3010 /* we are last user */
3011 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3012 ret = _notifier_call_chain(rdev,
3013 REGULATOR_EVENT_PRE_DISABLE,
3014 NULL);
3015 if (ret & NOTIFY_STOP_MASK)
3016 return -EINVAL;
3017
3018 ret = _regulator_do_disable(rdev);
3019 if (ret < 0) {
3020 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3021 _notifier_call_chain(rdev,
3022 REGULATOR_EVENT_ABORT_DISABLE,
3023 NULL);
3024 return ret;
3025 }
3026 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3027 NULL);
3028 }
3029
3030 rdev->use_count = 0;
3031 } else if (rdev->use_count > 1) {
3032 rdev->use_count--;
3033 }
3034 }
3035
3036 if (ret == 0)
3037 ret = _regulator_handle_consumer_disable(regulator);
3038
3039 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3040 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3041
3042 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3043 ret = _regulator_disable(rdev->supply);
3044
3045 return ret;
3046 }
3047
3048 /**
3049 * regulator_disable - disable regulator output
3050 * @regulator: regulator source
3051 *
3052 * Disable the regulator output voltage or current. Calls to
3053 * regulator_enable() must be balanced with calls to
3054 * regulator_disable().
3055 *
3056 * NOTE: this will only disable the regulator output if no other consumer
3057 * devices have it enabled, the regulator device supports disabling and
3058 * machine constraints permit this operation.
3059 *
3060 * Return: 0 on success or a negative error number on failure.
3061 */
regulator_disable(struct regulator * regulator)3062 int regulator_disable(struct regulator *regulator)
3063 {
3064 struct regulator_dev *rdev = regulator->rdev;
3065 struct ww_acquire_ctx ww_ctx;
3066 int ret;
3067
3068 regulator_lock_dependent(rdev, &ww_ctx);
3069 ret = _regulator_disable(regulator);
3070 regulator_unlock_dependent(rdev, &ww_ctx);
3071
3072 return ret;
3073 }
3074 EXPORT_SYMBOL_GPL(regulator_disable);
3075
3076 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)3077 static int _regulator_force_disable(struct regulator_dev *rdev)
3078 {
3079 int ret = 0;
3080
3081 lockdep_assert_held_once(&rdev->mutex.base);
3082
3083 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3084 REGULATOR_EVENT_PRE_DISABLE, NULL);
3085 if (ret & NOTIFY_STOP_MASK)
3086 return -EINVAL;
3087
3088 ret = _regulator_do_disable(rdev);
3089 if (ret < 0) {
3090 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3091 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3092 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3093 return ret;
3094 }
3095
3096 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3097 REGULATOR_EVENT_DISABLE, NULL);
3098
3099 return 0;
3100 }
3101
3102 /**
3103 * regulator_force_disable - force disable regulator output
3104 * @regulator: regulator source
3105 *
3106 * Forcibly disable the regulator output voltage or current.
3107 * NOTE: this *will* disable the regulator output even if other consumer
3108 * devices have it enabled. This should be used for situations when device
3109 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3110 *
3111 * Return: 0 on success or a negative error number on failure.
3112 */
regulator_force_disable(struct regulator * regulator)3113 int regulator_force_disable(struct regulator *regulator)
3114 {
3115 struct regulator_dev *rdev = regulator->rdev;
3116 struct ww_acquire_ctx ww_ctx;
3117 int ret;
3118
3119 regulator_lock_dependent(rdev, &ww_ctx);
3120
3121 ret = _regulator_force_disable(regulator->rdev);
3122
3123 if (rdev->coupling_desc.n_coupled > 1)
3124 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3125
3126 if (regulator->uA_load) {
3127 regulator->uA_load = 0;
3128 ret = drms_uA_update(rdev);
3129 }
3130
3131 if (rdev->use_count != 0 && rdev->supply)
3132 _regulator_disable(rdev->supply);
3133
3134 regulator_unlock_dependent(rdev, &ww_ctx);
3135
3136 return ret;
3137 }
3138 EXPORT_SYMBOL_GPL(regulator_force_disable);
3139
regulator_disable_work(struct work_struct * work)3140 static void regulator_disable_work(struct work_struct *work)
3141 {
3142 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3143 disable_work.work);
3144 struct ww_acquire_ctx ww_ctx;
3145 int count, i, ret;
3146 struct regulator *regulator;
3147 int total_count = 0;
3148
3149 regulator_lock_dependent(rdev, &ww_ctx);
3150
3151 /*
3152 * Workqueue functions queue the new work instance while the previous
3153 * work instance is being processed. Cancel the queued work instance
3154 * as the work instance under processing does the job of the queued
3155 * work instance.
3156 */
3157 cancel_delayed_work(&rdev->disable_work);
3158
3159 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3160 count = regulator->deferred_disables;
3161
3162 if (!count)
3163 continue;
3164
3165 total_count += count;
3166 regulator->deferred_disables = 0;
3167
3168 for (i = 0; i < count; i++) {
3169 ret = _regulator_disable(regulator);
3170 if (ret != 0)
3171 rdev_err(rdev, "Deferred disable failed: %pe\n",
3172 ERR_PTR(ret));
3173 }
3174 }
3175 WARN_ON(!total_count);
3176
3177 if (rdev->coupling_desc.n_coupled > 1)
3178 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3179
3180 regulator_unlock_dependent(rdev, &ww_ctx);
3181 }
3182
3183 /**
3184 * regulator_disable_deferred - disable regulator output with delay
3185 * @regulator: regulator source
3186 * @ms: milliseconds until the regulator is disabled
3187 *
3188 * Execute regulator_disable() on the regulator after a delay. This
3189 * is intended for use with devices that require some time to quiesce.
3190 *
3191 * NOTE: this will only disable the regulator output if no other consumer
3192 * devices have it enabled, the regulator device supports disabling and
3193 * machine constraints permit this operation.
3194 *
3195 * Return: 0 on success or a negative error number on failure.
3196 */
regulator_disable_deferred(struct regulator * regulator,int ms)3197 int regulator_disable_deferred(struct regulator *regulator, int ms)
3198 {
3199 struct regulator_dev *rdev = regulator->rdev;
3200
3201 if (!ms)
3202 return regulator_disable(regulator);
3203
3204 regulator_lock(rdev);
3205 regulator->deferred_disables++;
3206 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3207 msecs_to_jiffies(ms));
3208 regulator_unlock(rdev);
3209
3210 return 0;
3211 }
3212 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3213
_regulator_is_enabled(struct regulator_dev * rdev)3214 static int _regulator_is_enabled(struct regulator_dev *rdev)
3215 {
3216 /* A GPIO control always takes precedence */
3217 if (rdev->ena_pin)
3218 return rdev->ena_gpio_state;
3219
3220 /* If we don't know then assume that the regulator is always on */
3221 if (!rdev->desc->ops->is_enabled)
3222 return 1;
3223
3224 return rdev->desc->ops->is_enabled(rdev);
3225 }
3226
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3227 static int _regulator_list_voltage(struct regulator_dev *rdev,
3228 unsigned selector, int lock)
3229 {
3230 const struct regulator_ops *ops = rdev->desc->ops;
3231 int ret;
3232
3233 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3234 return rdev->desc->fixed_uV;
3235
3236 if (ops->list_voltage) {
3237 if (selector >= rdev->desc->n_voltages)
3238 return -EINVAL;
3239 if (selector < rdev->desc->linear_min_sel)
3240 return 0;
3241 if (lock)
3242 regulator_lock(rdev);
3243 ret = ops->list_voltage(rdev, selector);
3244 if (lock)
3245 regulator_unlock(rdev);
3246 } else if (rdev->is_switch && rdev->supply) {
3247 ret = _regulator_list_voltage(rdev->supply->rdev,
3248 selector, lock);
3249 } else {
3250 return -EINVAL;
3251 }
3252
3253 if (ret > 0) {
3254 if (ret < rdev->constraints->min_uV)
3255 ret = 0;
3256 else if (ret > rdev->constraints->max_uV)
3257 ret = 0;
3258 }
3259
3260 return ret;
3261 }
3262
3263 /**
3264 * regulator_is_enabled - is the regulator output enabled
3265 * @regulator: regulator source
3266 *
3267 * Note that the device backing this regulator handle can have multiple
3268 * users, so it might be enabled even if regulator_enable() was never
3269 * called for this particular source.
3270 *
3271 * Return: Positive if the regulator driver backing the source/client
3272 * has requested that the device be enabled, zero if it hasn't,
3273 * else a negative error number.
3274 */
regulator_is_enabled(struct regulator * regulator)3275 int regulator_is_enabled(struct regulator *regulator)
3276 {
3277 int ret;
3278
3279 if (regulator->always_on)
3280 return 1;
3281
3282 regulator_lock(regulator->rdev);
3283 ret = _regulator_is_enabled(regulator->rdev);
3284 regulator_unlock(regulator->rdev);
3285
3286 return ret;
3287 }
3288 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3289
3290 /**
3291 * regulator_count_voltages - count regulator_list_voltage() selectors
3292 * @regulator: regulator source
3293 *
3294 * Return: Number of selectors for @regulator, or negative error number.
3295 *
3296 * Selectors are numbered starting at zero, and typically correspond to
3297 * bitfields in hardware registers.
3298 */
regulator_count_voltages(struct regulator * regulator)3299 int regulator_count_voltages(struct regulator *regulator)
3300 {
3301 struct regulator_dev *rdev = regulator->rdev;
3302
3303 if (rdev->desc->n_voltages)
3304 return rdev->desc->n_voltages;
3305
3306 if (!rdev->is_switch || !rdev->supply)
3307 return -EINVAL;
3308
3309 return regulator_count_voltages(rdev->supply);
3310 }
3311 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3312
3313 /**
3314 * regulator_list_voltage - enumerate supported voltages
3315 * @regulator: regulator source
3316 * @selector: identify voltage to list
3317 * Context: can sleep
3318 *
3319 * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3320 * 0 if @selector can't be used on this system, or a negative error
3321 * number on failure.
3322 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3323 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3324 {
3325 return _regulator_list_voltage(regulator->rdev, selector, 1);
3326 }
3327 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3328
3329 /**
3330 * regulator_get_regmap - get the regulator's register map
3331 * @regulator: regulator source
3332 *
3333 * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3334 * encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3335 */
regulator_get_regmap(struct regulator * regulator)3336 struct regmap *regulator_get_regmap(struct regulator *regulator)
3337 {
3338 struct regmap *map = regulator->rdev->regmap;
3339
3340 return map ? map : ERR_PTR(-EOPNOTSUPP);
3341 }
3342 EXPORT_SYMBOL_GPL(regulator_get_regmap);
3343
3344 /**
3345 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3346 * @regulator: regulator source
3347 * @vsel_reg: voltage selector register, output parameter
3348 * @vsel_mask: mask for voltage selector bitfield, output parameter
3349 *
3350 * Returns the hardware register offset and bitmask used for setting the
3351 * regulator voltage. This might be useful when configuring voltage-scaling
3352 * hardware or firmware that can make I2C requests behind the kernel's back,
3353 * for example.
3354 *
3355 * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3356 * voltage selectors.
3357 *
3358 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3359 * and 0 is returned, otherwise a negative error number is returned.
3360 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3361 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3362 unsigned *vsel_reg,
3363 unsigned *vsel_mask)
3364 {
3365 struct regulator_dev *rdev = regulator->rdev;
3366 const struct regulator_ops *ops = rdev->desc->ops;
3367
3368 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3369 return -EOPNOTSUPP;
3370
3371 *vsel_reg = rdev->desc->vsel_reg;
3372 *vsel_mask = rdev->desc->vsel_mask;
3373
3374 return 0;
3375 }
3376 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3377
3378 /**
3379 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3380 * @regulator: regulator source
3381 * @selector: identify voltage to list
3382 *
3383 * Converts the selector to a hardware-specific voltage selector that can be
3384 * directly written to the regulator registers. The address of the voltage
3385 * register can be determined by calling @regulator_get_hardware_vsel_register.
3386 *
3387 * Return: 0 on success, -%EINVAL if the selector is outside the supported
3388 * range, or -%EOPNOTSUPP if the regulator does not support voltage
3389 * selectors.
3390 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3391 int regulator_list_hardware_vsel(struct regulator *regulator,
3392 unsigned selector)
3393 {
3394 struct regulator_dev *rdev = regulator->rdev;
3395 const struct regulator_ops *ops = rdev->desc->ops;
3396
3397 if (selector >= rdev->desc->n_voltages)
3398 return -EINVAL;
3399 if (selector < rdev->desc->linear_min_sel)
3400 return 0;
3401 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3402 return -EOPNOTSUPP;
3403
3404 return selector;
3405 }
3406 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3407
3408 /**
3409 * regulator_hardware_enable - access the HW for enable/disable regulator
3410 * @regulator: regulator source
3411 * @enable: true for enable, false for disable
3412 *
3413 * Request that the regulator be enabled/disabled with the regulator output at
3414 * the predefined voltage or current value.
3415 *
3416 * Return: 0 on success or a negative error number on failure.
3417 */
regulator_hardware_enable(struct regulator * regulator,bool enable)3418 int regulator_hardware_enable(struct regulator *regulator, bool enable)
3419 {
3420 struct regulator_dev *rdev = regulator->rdev;
3421 const struct regulator_ops *ops = rdev->desc->ops;
3422 int ret = -EOPNOTSUPP;
3423
3424 if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3425 return ret;
3426
3427 if (enable)
3428 ret = ops->enable(rdev);
3429 else
3430 ret = ops->disable(rdev);
3431
3432 return ret;
3433 }
3434 EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3435
3436 /**
3437 * regulator_get_linear_step - return the voltage step size between VSEL values
3438 * @regulator: regulator source
3439 *
3440 * Return: The voltage step size between VSEL values for linear regulators,
3441 * or 0 if the regulator isn't a linear regulator.
3442 */
regulator_get_linear_step(struct regulator * regulator)3443 unsigned int regulator_get_linear_step(struct regulator *regulator)
3444 {
3445 struct regulator_dev *rdev = regulator->rdev;
3446
3447 return rdev->desc->uV_step;
3448 }
3449 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3450
3451 /**
3452 * regulator_is_supported_voltage - check if a voltage range can be supported
3453 *
3454 * @regulator: Regulator to check.
3455 * @min_uV: Minimum required voltage in uV.
3456 * @max_uV: Maximum required voltage in uV.
3457 *
3458 * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3459 * number if @regulator's voltage can't be changed and voltage readback
3460 * failed.
3461 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3462 int regulator_is_supported_voltage(struct regulator *regulator,
3463 int min_uV, int max_uV)
3464 {
3465 struct regulator_dev *rdev = regulator->rdev;
3466 int i, voltages, ret;
3467
3468 /* If we can't change voltage check the current voltage */
3469 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3470 ret = regulator_get_voltage(regulator);
3471 if (ret >= 0)
3472 return min_uV <= ret && ret <= max_uV;
3473 else
3474 return ret;
3475 }
3476
3477 /* Any voltage within constrains range is fine? */
3478 if (rdev->desc->continuous_voltage_range)
3479 return min_uV >= rdev->constraints->min_uV &&
3480 max_uV <= rdev->constraints->max_uV;
3481
3482 ret = regulator_count_voltages(regulator);
3483 if (ret < 0)
3484 return 0;
3485 voltages = ret;
3486
3487 for (i = 0; i < voltages; i++) {
3488 ret = regulator_list_voltage(regulator, i);
3489
3490 if (ret >= min_uV && ret <= max_uV)
3491 return 1;
3492 }
3493
3494 return 0;
3495 }
3496 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3497
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3498 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3499 int max_uV)
3500 {
3501 const struct regulator_desc *desc = rdev->desc;
3502
3503 if (desc->ops->map_voltage)
3504 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3505
3506 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3507 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3508
3509 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3510 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3511
3512 if (desc->ops->list_voltage ==
3513 regulator_list_voltage_pickable_linear_range)
3514 return regulator_map_voltage_pickable_linear_range(rdev,
3515 min_uV, max_uV);
3516
3517 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3518 }
3519
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3520 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3521 int min_uV, int max_uV,
3522 unsigned *selector)
3523 {
3524 struct pre_voltage_change_data data;
3525 int ret;
3526
3527 data.old_uV = regulator_get_voltage_rdev(rdev);
3528 data.min_uV = min_uV;
3529 data.max_uV = max_uV;
3530 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3531 &data);
3532 if (ret & NOTIFY_STOP_MASK)
3533 return -EINVAL;
3534
3535 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3536 if (ret >= 0)
3537 return ret;
3538
3539 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3540 (void *)data.old_uV);
3541
3542 return ret;
3543 }
3544
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3545 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3546 int uV, unsigned selector)
3547 {
3548 struct pre_voltage_change_data data;
3549 int ret;
3550
3551 data.old_uV = regulator_get_voltage_rdev(rdev);
3552 data.min_uV = uV;
3553 data.max_uV = uV;
3554 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3555 &data);
3556 if (ret & NOTIFY_STOP_MASK)
3557 return -EINVAL;
3558
3559 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3560 if (ret >= 0)
3561 return ret;
3562
3563 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3564 (void *)data.old_uV);
3565
3566 return ret;
3567 }
3568
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3569 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3570 int uV, int new_selector)
3571 {
3572 const struct regulator_ops *ops = rdev->desc->ops;
3573 int diff, old_sel, curr_sel, ret;
3574
3575 /* Stepping is only needed if the regulator is enabled. */
3576 if (!_regulator_is_enabled(rdev))
3577 goto final_set;
3578
3579 if (!ops->get_voltage_sel)
3580 return -EINVAL;
3581
3582 old_sel = ops->get_voltage_sel(rdev);
3583 if (old_sel < 0)
3584 return old_sel;
3585
3586 diff = new_selector - old_sel;
3587 if (diff == 0)
3588 return 0; /* No change needed. */
3589
3590 if (diff > 0) {
3591 /* Stepping up. */
3592 for (curr_sel = old_sel + rdev->desc->vsel_step;
3593 curr_sel < new_selector;
3594 curr_sel += rdev->desc->vsel_step) {
3595 /*
3596 * Call the callback directly instead of using
3597 * _regulator_call_set_voltage_sel() as we don't
3598 * want to notify anyone yet. Same in the branch
3599 * below.
3600 */
3601 ret = ops->set_voltage_sel(rdev, curr_sel);
3602 if (ret)
3603 goto try_revert;
3604 }
3605 } else {
3606 /* Stepping down. */
3607 for (curr_sel = old_sel - rdev->desc->vsel_step;
3608 curr_sel > new_selector;
3609 curr_sel -= rdev->desc->vsel_step) {
3610 ret = ops->set_voltage_sel(rdev, curr_sel);
3611 if (ret)
3612 goto try_revert;
3613 }
3614 }
3615
3616 final_set:
3617 /* The final selector will trigger the notifiers. */
3618 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3619
3620 try_revert:
3621 /*
3622 * At least try to return to the previous voltage if setting a new
3623 * one failed.
3624 */
3625 (void)ops->set_voltage_sel(rdev, old_sel);
3626 return ret;
3627 }
3628
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3629 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3630 int old_uV, int new_uV)
3631 {
3632 unsigned int ramp_delay = 0;
3633
3634 if (rdev->constraints->ramp_delay)
3635 ramp_delay = rdev->constraints->ramp_delay;
3636 else if (rdev->desc->ramp_delay)
3637 ramp_delay = rdev->desc->ramp_delay;
3638 else if (rdev->constraints->settling_time)
3639 return rdev->constraints->settling_time;
3640 else if (rdev->constraints->settling_time_up &&
3641 (new_uV > old_uV))
3642 return rdev->constraints->settling_time_up;
3643 else if (rdev->constraints->settling_time_down &&
3644 (new_uV < old_uV))
3645 return rdev->constraints->settling_time_down;
3646
3647 if (ramp_delay == 0)
3648 return 0;
3649
3650 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3651 }
3652
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3653 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3654 int min_uV, int max_uV)
3655 {
3656 int ret;
3657 int delay = 0;
3658 int best_val = 0;
3659 unsigned int selector;
3660 int old_selector = -1;
3661 const struct regulator_ops *ops = rdev->desc->ops;
3662 int old_uV = regulator_get_voltage_rdev(rdev);
3663
3664 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3665
3666 min_uV += rdev->constraints->uV_offset;
3667 max_uV += rdev->constraints->uV_offset;
3668
3669 /*
3670 * If we can't obtain the old selector there is not enough
3671 * info to call set_voltage_time_sel().
3672 */
3673 if (_regulator_is_enabled(rdev) &&
3674 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3675 old_selector = ops->get_voltage_sel(rdev);
3676 if (old_selector < 0)
3677 return old_selector;
3678 }
3679
3680 if (ops->set_voltage) {
3681 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3682 &selector);
3683
3684 if (ret >= 0) {
3685 if (ops->list_voltage)
3686 best_val = ops->list_voltage(rdev,
3687 selector);
3688 else
3689 best_val = regulator_get_voltage_rdev(rdev);
3690 }
3691
3692 } else if (ops->set_voltage_sel) {
3693 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3694 if (ret >= 0) {
3695 best_val = ops->list_voltage(rdev, ret);
3696 if (min_uV <= best_val && max_uV >= best_val) {
3697 selector = ret;
3698 if (old_selector == selector)
3699 ret = 0;
3700 else if (rdev->desc->vsel_step)
3701 ret = _regulator_set_voltage_sel_step(
3702 rdev, best_val, selector);
3703 else
3704 ret = _regulator_call_set_voltage_sel(
3705 rdev, best_val, selector);
3706 } else {
3707 ret = -EINVAL;
3708 }
3709 }
3710 } else {
3711 ret = -EINVAL;
3712 }
3713
3714 if (ret)
3715 goto out;
3716
3717 if (ops->set_voltage_time_sel) {
3718 /*
3719 * Call set_voltage_time_sel if successfully obtained
3720 * old_selector
3721 */
3722 if (old_selector >= 0 && old_selector != selector)
3723 delay = ops->set_voltage_time_sel(rdev, old_selector,
3724 selector);
3725 } else {
3726 if (old_uV != best_val) {
3727 if (ops->set_voltage_time)
3728 delay = ops->set_voltage_time(rdev, old_uV,
3729 best_val);
3730 else
3731 delay = _regulator_set_voltage_time(rdev,
3732 old_uV,
3733 best_val);
3734 }
3735 }
3736
3737 if (delay < 0) {
3738 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3739 delay = 0;
3740 }
3741
3742 /* Insert any necessary delays */
3743 _regulator_delay_helper(delay);
3744
3745 if (best_val >= 0) {
3746 unsigned long data = best_val;
3747
3748 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3749 (void *)data);
3750 }
3751
3752 out:
3753 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3754
3755 return ret;
3756 }
3757
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3758 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3759 int min_uV, int max_uV, suspend_state_t state)
3760 {
3761 struct regulator_state *rstate;
3762 int uV, sel;
3763
3764 rstate = regulator_get_suspend_state(rdev, state);
3765 if (rstate == NULL)
3766 return -EINVAL;
3767
3768 if (min_uV < rstate->min_uV)
3769 min_uV = rstate->min_uV;
3770 if (max_uV > rstate->max_uV)
3771 max_uV = rstate->max_uV;
3772
3773 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3774 if (sel < 0)
3775 return sel;
3776
3777 uV = rdev->desc->ops->list_voltage(rdev, sel);
3778 if (uV >= min_uV && uV <= max_uV)
3779 rstate->uV = uV;
3780
3781 return 0;
3782 }
3783
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3784 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3785 int min_uV, int max_uV,
3786 suspend_state_t state)
3787 {
3788 struct regulator_dev *rdev = regulator->rdev;
3789 struct regulator_voltage *voltage = ®ulator->voltage[state];
3790 int ret = 0;
3791 int old_min_uV, old_max_uV;
3792 int current_uV;
3793
3794 /* If we're setting the same range as last time the change
3795 * should be a noop (some cpufreq implementations use the same
3796 * voltage for multiple frequencies, for example).
3797 */
3798 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3799 goto out;
3800
3801 /* If we're trying to set a range that overlaps the current voltage,
3802 * return successfully even though the regulator does not support
3803 * changing the voltage.
3804 */
3805 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3806 current_uV = regulator_get_voltage_rdev(rdev);
3807 if (min_uV <= current_uV && current_uV <= max_uV) {
3808 voltage->min_uV = min_uV;
3809 voltage->max_uV = max_uV;
3810 goto out;
3811 }
3812 }
3813
3814 /* sanity check */
3815 if (!rdev->desc->ops->set_voltage &&
3816 !rdev->desc->ops->set_voltage_sel) {
3817 ret = -EINVAL;
3818 goto out;
3819 }
3820
3821 /* constraints check */
3822 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3823 if (ret < 0)
3824 goto out;
3825
3826 /* restore original values in case of error */
3827 old_min_uV = voltage->min_uV;
3828 old_max_uV = voltage->max_uV;
3829 voltage->min_uV = min_uV;
3830 voltage->max_uV = max_uV;
3831
3832 /* for not coupled regulators this will just set the voltage */
3833 ret = regulator_balance_voltage(rdev, state);
3834 if (ret < 0) {
3835 voltage->min_uV = old_min_uV;
3836 voltage->max_uV = old_max_uV;
3837 }
3838
3839 out:
3840 return ret;
3841 }
3842
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3843 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3844 int max_uV, suspend_state_t state)
3845 {
3846 int best_supply_uV = 0;
3847 int supply_change_uV = 0;
3848 int ret;
3849
3850 if (rdev->supply &&
3851 regulator_ops_is_valid(rdev->supply->rdev,
3852 REGULATOR_CHANGE_VOLTAGE) &&
3853 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3854 rdev->desc->ops->get_voltage_sel))) {
3855 int current_supply_uV;
3856 int selector;
3857
3858 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3859 if (selector < 0) {
3860 ret = selector;
3861 goto out;
3862 }
3863
3864 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3865 if (best_supply_uV < 0) {
3866 ret = best_supply_uV;
3867 goto out;
3868 }
3869
3870 best_supply_uV += rdev->desc->min_dropout_uV;
3871
3872 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3873 if (current_supply_uV < 0) {
3874 ret = current_supply_uV;
3875 goto out;
3876 }
3877
3878 supply_change_uV = best_supply_uV - current_supply_uV;
3879 }
3880
3881 if (supply_change_uV > 0) {
3882 ret = regulator_set_voltage_unlocked(rdev->supply,
3883 best_supply_uV, INT_MAX, state);
3884 if (ret) {
3885 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3886 ERR_PTR(ret));
3887 goto out;
3888 }
3889 }
3890
3891 if (state == PM_SUSPEND_ON)
3892 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3893 else
3894 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3895 max_uV, state);
3896 if (ret < 0)
3897 goto out;
3898
3899 if (supply_change_uV < 0) {
3900 ret = regulator_set_voltage_unlocked(rdev->supply,
3901 best_supply_uV, INT_MAX, state);
3902 if (ret)
3903 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3904 ERR_PTR(ret));
3905 /* No need to fail here */
3906 ret = 0;
3907 }
3908
3909 out:
3910 return ret;
3911 }
3912 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3913
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3914 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3915 int *current_uV, int *min_uV)
3916 {
3917 struct regulation_constraints *constraints = rdev->constraints;
3918
3919 /* Limit voltage change only if necessary */
3920 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3921 return 1;
3922
3923 if (*current_uV < 0) {
3924 *current_uV = regulator_get_voltage_rdev(rdev);
3925
3926 if (*current_uV < 0)
3927 return *current_uV;
3928 }
3929
3930 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3931 return 1;
3932
3933 /* Clamp target voltage within the given step */
3934 if (*current_uV < *min_uV)
3935 *min_uV = min(*current_uV + constraints->max_uV_step,
3936 *min_uV);
3937 else
3938 *min_uV = max(*current_uV - constraints->max_uV_step,
3939 *min_uV);
3940
3941 return 0;
3942 }
3943
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3944 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3945 int *current_uV,
3946 int *min_uV, int *max_uV,
3947 suspend_state_t state,
3948 int n_coupled)
3949 {
3950 struct coupling_desc *c_desc = &rdev->coupling_desc;
3951 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3952 struct regulation_constraints *constraints = rdev->constraints;
3953 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3954 int max_current_uV = 0, min_current_uV = INT_MAX;
3955 int highest_min_uV = 0, target_uV, possible_uV;
3956 int i, ret, max_spread;
3957 bool done;
3958
3959 *current_uV = -1;
3960
3961 /*
3962 * If there are no coupled regulators, simply set the voltage
3963 * demanded by consumers.
3964 */
3965 if (n_coupled == 1) {
3966 /*
3967 * If consumers don't provide any demands, set voltage
3968 * to min_uV
3969 */
3970 desired_min_uV = constraints->min_uV;
3971 desired_max_uV = constraints->max_uV;
3972
3973 ret = regulator_check_consumers(rdev,
3974 &desired_min_uV,
3975 &desired_max_uV, state);
3976 if (ret < 0)
3977 return ret;
3978
3979 done = true;
3980
3981 goto finish;
3982 }
3983
3984 /* Find highest min desired voltage */
3985 for (i = 0; i < n_coupled; i++) {
3986 int tmp_min = 0;
3987 int tmp_max = INT_MAX;
3988
3989 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3990
3991 ret = regulator_check_consumers(c_rdevs[i],
3992 &tmp_min,
3993 &tmp_max, state);
3994 if (ret < 0)
3995 return ret;
3996
3997 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3998 if (ret < 0)
3999 return ret;
4000
4001 highest_min_uV = max(highest_min_uV, tmp_min);
4002
4003 if (i == 0) {
4004 desired_min_uV = tmp_min;
4005 desired_max_uV = tmp_max;
4006 }
4007 }
4008
4009 max_spread = constraints->max_spread[0];
4010
4011 /*
4012 * Let target_uV be equal to the desired one if possible.
4013 * If not, set it to minimum voltage, allowed by other coupled
4014 * regulators.
4015 */
4016 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
4017
4018 /*
4019 * Find min and max voltages, which currently aren't violating
4020 * max_spread.
4021 */
4022 for (i = 1; i < n_coupled; i++) {
4023 int tmp_act;
4024
4025 if (!_regulator_is_enabled(c_rdevs[i]))
4026 continue;
4027
4028 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
4029 if (tmp_act < 0)
4030 return tmp_act;
4031
4032 min_current_uV = min(tmp_act, min_current_uV);
4033 max_current_uV = max(tmp_act, max_current_uV);
4034 }
4035
4036 /* There aren't any other regulators enabled */
4037 if (max_current_uV == 0) {
4038 possible_uV = target_uV;
4039 } else {
4040 /*
4041 * Correct target voltage, so as it currently isn't
4042 * violating max_spread
4043 */
4044 possible_uV = max(target_uV, max_current_uV - max_spread);
4045 possible_uV = min(possible_uV, min_current_uV + max_spread);
4046 }
4047
4048 if (possible_uV > desired_max_uV)
4049 return -EINVAL;
4050
4051 done = (possible_uV == target_uV);
4052 desired_min_uV = possible_uV;
4053
4054 finish:
4055 /* Apply max_uV_step constraint if necessary */
4056 if (state == PM_SUSPEND_ON) {
4057 ret = regulator_limit_voltage_step(rdev, current_uV,
4058 &desired_min_uV);
4059 if (ret < 0)
4060 return ret;
4061
4062 if (ret == 0)
4063 done = false;
4064 }
4065
4066 /* Set current_uV if wasn't done earlier in the code and if necessary */
4067 if (n_coupled > 1 && *current_uV == -1) {
4068
4069 if (_regulator_is_enabled(rdev)) {
4070 ret = regulator_get_voltage_rdev(rdev);
4071 if (ret < 0)
4072 return ret;
4073
4074 *current_uV = ret;
4075 } else {
4076 *current_uV = desired_min_uV;
4077 }
4078 }
4079
4080 *min_uV = desired_min_uV;
4081 *max_uV = desired_max_uV;
4082
4083 return done;
4084 }
4085
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)4086 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4087 suspend_state_t state, bool skip_coupled)
4088 {
4089 struct regulator_dev **c_rdevs;
4090 struct regulator_dev *best_rdev;
4091 struct coupling_desc *c_desc = &rdev->coupling_desc;
4092 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4093 unsigned int delta, best_delta;
4094 unsigned long c_rdev_done = 0;
4095 bool best_c_rdev_done;
4096
4097 c_rdevs = c_desc->coupled_rdevs;
4098 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4099
4100 /*
4101 * Find the best possible voltage change on each loop. Leave the loop
4102 * if there isn't any possible change.
4103 */
4104 do {
4105 best_c_rdev_done = false;
4106 best_delta = 0;
4107 best_min_uV = 0;
4108 best_max_uV = 0;
4109 best_c_rdev = 0;
4110 best_rdev = NULL;
4111
4112 /*
4113 * Find highest difference between optimal voltage
4114 * and current voltage.
4115 */
4116 for (i = 0; i < n_coupled; i++) {
4117 /*
4118 * optimal_uV is the best voltage that can be set for
4119 * i-th regulator at the moment without violating
4120 * max_spread constraint in order to balance
4121 * the coupled voltages.
4122 */
4123 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4124
4125 if (test_bit(i, &c_rdev_done))
4126 continue;
4127
4128 ret = regulator_get_optimal_voltage(c_rdevs[i],
4129 ¤t_uV,
4130 &optimal_uV,
4131 &optimal_max_uV,
4132 state, n_coupled);
4133 if (ret < 0)
4134 goto out;
4135
4136 delta = abs(optimal_uV - current_uV);
4137
4138 if (delta && best_delta <= delta) {
4139 best_c_rdev_done = ret;
4140 best_delta = delta;
4141 best_rdev = c_rdevs[i];
4142 best_min_uV = optimal_uV;
4143 best_max_uV = optimal_max_uV;
4144 best_c_rdev = i;
4145 }
4146 }
4147
4148 /* Nothing to change, return successfully */
4149 if (!best_rdev) {
4150 ret = 0;
4151 goto out;
4152 }
4153
4154 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4155 best_max_uV, state);
4156
4157 if (ret < 0)
4158 goto out;
4159
4160 if (best_c_rdev_done)
4161 set_bit(best_c_rdev, &c_rdev_done);
4162
4163 } while (n_coupled > 1);
4164
4165 out:
4166 return ret;
4167 }
4168
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)4169 static int regulator_balance_voltage(struct regulator_dev *rdev,
4170 suspend_state_t state)
4171 {
4172 struct coupling_desc *c_desc = &rdev->coupling_desc;
4173 struct regulator_coupler *coupler = c_desc->coupler;
4174 bool skip_coupled = false;
4175
4176 /*
4177 * If system is in a state other than PM_SUSPEND_ON, don't check
4178 * other coupled regulators.
4179 */
4180 if (state != PM_SUSPEND_ON)
4181 skip_coupled = true;
4182
4183 if (c_desc->n_resolved < c_desc->n_coupled) {
4184 rdev_err(rdev, "Not all coupled regulators registered\n");
4185 return -EPERM;
4186 }
4187
4188 /* Invoke custom balancer for customized couplers */
4189 if (coupler && coupler->balance_voltage)
4190 return coupler->balance_voltage(coupler, rdev, state);
4191
4192 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4193 }
4194
4195 /**
4196 * regulator_set_voltage - set regulator output voltage
4197 * @regulator: regulator source
4198 * @min_uV: Minimum required voltage in uV
4199 * @max_uV: Maximum acceptable voltage in uV
4200 *
4201 * Sets a voltage regulator to the desired output voltage. This can be set
4202 * during any regulator state. IOW, regulator can be disabled or enabled.
4203 *
4204 * If the regulator is enabled then the voltage will change to the new value
4205 * immediately otherwise if the regulator is disabled the regulator will
4206 * output at the new voltage when enabled.
4207 *
4208 * NOTE: If the regulator is shared between several devices then the lowest
4209 * request voltage that meets the system constraints will be used.
4210 * Regulator system constraints must be set for this regulator before
4211 * calling this function otherwise this call will fail.
4212 *
4213 * Return: 0 on success or a negative error number on failure.
4214 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4215 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4216 {
4217 struct ww_acquire_ctx ww_ctx;
4218 int ret;
4219
4220 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4221
4222 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4223 PM_SUSPEND_ON);
4224
4225 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4226
4227 return ret;
4228 }
4229 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4230
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4231 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4232 suspend_state_t state, bool en)
4233 {
4234 struct regulator_state *rstate;
4235
4236 rstate = regulator_get_suspend_state(rdev, state);
4237 if (rstate == NULL)
4238 return -EINVAL;
4239
4240 if (!rstate->changeable)
4241 return -EPERM;
4242
4243 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4244
4245 return 0;
4246 }
4247
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4248 int regulator_suspend_enable(struct regulator_dev *rdev,
4249 suspend_state_t state)
4250 {
4251 return regulator_suspend_toggle(rdev, state, true);
4252 }
4253 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4254
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4255 int regulator_suspend_disable(struct regulator_dev *rdev,
4256 suspend_state_t state)
4257 {
4258 struct regulator *regulator;
4259 struct regulator_voltage *voltage;
4260
4261 /*
4262 * if any consumer wants this regulator device keeping on in
4263 * suspend states, don't set it as disabled.
4264 */
4265 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4266 voltage = ®ulator->voltage[state];
4267 if (voltage->min_uV || voltage->max_uV)
4268 return 0;
4269 }
4270
4271 return regulator_suspend_toggle(rdev, state, false);
4272 }
4273 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4274
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4275 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4276 int min_uV, int max_uV,
4277 suspend_state_t state)
4278 {
4279 struct regulator_dev *rdev = regulator->rdev;
4280 struct regulator_state *rstate;
4281
4282 rstate = regulator_get_suspend_state(rdev, state);
4283 if (rstate == NULL)
4284 return -EINVAL;
4285
4286 if (rstate->min_uV == rstate->max_uV) {
4287 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4288 return -EPERM;
4289 }
4290
4291 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4292 }
4293
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4294 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4295 int max_uV, suspend_state_t state)
4296 {
4297 struct ww_acquire_ctx ww_ctx;
4298 int ret;
4299
4300 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4301 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4302 return -EINVAL;
4303
4304 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4305
4306 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4307 max_uV, state);
4308
4309 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4310
4311 return ret;
4312 }
4313 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4314
4315 /**
4316 * regulator_set_voltage_time - get raise/fall time
4317 * @regulator: regulator source
4318 * @old_uV: starting voltage in microvolts
4319 * @new_uV: target voltage in microvolts
4320 *
4321 * Provided with the starting and ending voltage, this function attempts to
4322 * calculate the time in microseconds required to rise or fall to this new
4323 * voltage.
4324 *
4325 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4326 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4327 int regulator_set_voltage_time(struct regulator *regulator,
4328 int old_uV, int new_uV)
4329 {
4330 struct regulator_dev *rdev = regulator->rdev;
4331 const struct regulator_ops *ops = rdev->desc->ops;
4332 int old_sel = -1;
4333 int new_sel = -1;
4334 int voltage;
4335 int i;
4336
4337 if (ops->set_voltage_time)
4338 return ops->set_voltage_time(rdev, old_uV, new_uV);
4339 else if (!ops->set_voltage_time_sel)
4340 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4341
4342 /* Currently requires operations to do this */
4343 if (!ops->list_voltage || !rdev->desc->n_voltages)
4344 return -EINVAL;
4345
4346 for (i = 0; i < rdev->desc->n_voltages; i++) {
4347 /* We only look for exact voltage matches here */
4348 if (i < rdev->desc->linear_min_sel)
4349 continue;
4350
4351 if (old_sel >= 0 && new_sel >= 0)
4352 break;
4353
4354 voltage = regulator_list_voltage(regulator, i);
4355 if (voltage < 0)
4356 return -EINVAL;
4357 if (voltage == 0)
4358 continue;
4359 if (voltage == old_uV)
4360 old_sel = i;
4361 if (voltage == new_uV)
4362 new_sel = i;
4363 }
4364
4365 if (old_sel < 0 || new_sel < 0)
4366 return -EINVAL;
4367
4368 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4369 }
4370 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4371
4372 /**
4373 * regulator_set_voltage_time_sel - get raise/fall time
4374 * @rdev: regulator source device
4375 * @old_selector: selector for starting voltage
4376 * @new_selector: selector for target voltage
4377 *
4378 * Provided with the starting and target voltage selectors, this function
4379 * returns time in microseconds required to rise or fall to this new voltage
4380 *
4381 * Drivers providing ramp_delay in regulation_constraints can use this as their
4382 * set_voltage_time_sel() operation.
4383 *
4384 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4385 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4386 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4387 unsigned int old_selector,
4388 unsigned int new_selector)
4389 {
4390 int old_volt, new_volt;
4391
4392 /* sanity check */
4393 if (!rdev->desc->ops->list_voltage)
4394 return -EINVAL;
4395
4396 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4397 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4398
4399 if (rdev->desc->ops->set_voltage_time)
4400 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4401 new_volt);
4402 else
4403 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4404 }
4405 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4406
regulator_sync_voltage_rdev(struct regulator_dev * rdev)4407 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4408 {
4409 int ret;
4410
4411 regulator_lock(rdev);
4412
4413 if (!rdev->desc->ops->set_voltage &&
4414 !rdev->desc->ops->set_voltage_sel) {
4415 ret = -EINVAL;
4416 goto out;
4417 }
4418
4419 /* balance only, if regulator is coupled */
4420 if (rdev->coupling_desc.n_coupled > 1)
4421 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4422 else
4423 ret = -EOPNOTSUPP;
4424
4425 out:
4426 regulator_unlock(rdev);
4427 return ret;
4428 }
4429
4430 /**
4431 * regulator_sync_voltage - re-apply last regulator output voltage
4432 * @regulator: regulator source
4433 *
4434 * Re-apply the last configured voltage. This is intended to be used
4435 * where some external control source the consumer is cooperating with
4436 * has caused the configured voltage to change.
4437 *
4438 * Return: 0 on success or a negative error number on failure.
4439 */
regulator_sync_voltage(struct regulator * regulator)4440 int regulator_sync_voltage(struct regulator *regulator)
4441 {
4442 struct regulator_dev *rdev = regulator->rdev;
4443 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4444 int ret, min_uV, max_uV;
4445
4446 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4447 return 0;
4448
4449 regulator_lock(rdev);
4450
4451 if (!rdev->desc->ops->set_voltage &&
4452 !rdev->desc->ops->set_voltage_sel) {
4453 ret = -EINVAL;
4454 goto out;
4455 }
4456
4457 /* This is only going to work if we've had a voltage configured. */
4458 if (!voltage->min_uV && !voltage->max_uV) {
4459 ret = -EINVAL;
4460 goto out;
4461 }
4462
4463 min_uV = voltage->min_uV;
4464 max_uV = voltage->max_uV;
4465
4466 /* This should be a paranoia check... */
4467 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4468 if (ret < 0)
4469 goto out;
4470
4471 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4472 if (ret < 0)
4473 goto out;
4474
4475 /* balance only, if regulator is coupled */
4476 if (rdev->coupling_desc.n_coupled > 1)
4477 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4478 else
4479 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4480
4481 out:
4482 regulator_unlock(rdev);
4483 return ret;
4484 }
4485 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4486
regulator_get_voltage_rdev(struct regulator_dev * rdev)4487 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4488 {
4489 int sel, ret;
4490 bool bypassed;
4491
4492 if (rdev->desc->ops->get_bypass) {
4493 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4494 if (ret < 0)
4495 return ret;
4496 if (bypassed) {
4497 /* if bypassed the regulator must have a supply */
4498 if (!rdev->supply) {
4499 rdev_err(rdev,
4500 "bypassed regulator has no supply!\n");
4501 return -EPROBE_DEFER;
4502 }
4503
4504 return regulator_get_voltage_rdev(rdev->supply->rdev);
4505 }
4506 }
4507
4508 if (rdev->desc->ops->get_voltage_sel) {
4509 sel = rdev->desc->ops->get_voltage_sel(rdev);
4510 if (sel < 0)
4511 return sel;
4512 ret = rdev->desc->ops->list_voltage(rdev, sel);
4513 } else if (rdev->desc->ops->get_voltage) {
4514 ret = rdev->desc->ops->get_voltage(rdev);
4515 } else if (rdev->desc->ops->list_voltage) {
4516 ret = rdev->desc->ops->list_voltage(rdev, 0);
4517 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4518 ret = rdev->desc->fixed_uV;
4519 } else if (rdev->supply) {
4520 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4521 } else if (rdev->supply_name) {
4522 return -EPROBE_DEFER;
4523 } else {
4524 return -EINVAL;
4525 }
4526
4527 if (ret < 0)
4528 return ret;
4529 return ret - rdev->constraints->uV_offset;
4530 }
4531 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4532
4533 /**
4534 * regulator_get_voltage - get regulator output voltage
4535 * @regulator: regulator source
4536 *
4537 * Return: Current regulator voltage in uV, or a negative error number on failure.
4538 *
4539 * NOTE: If the regulator is disabled it will return the voltage value. This
4540 * function should not be used to determine regulator state.
4541 */
regulator_get_voltage(struct regulator * regulator)4542 int regulator_get_voltage(struct regulator *regulator)
4543 {
4544 struct ww_acquire_ctx ww_ctx;
4545 int ret;
4546
4547 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4548 ret = regulator_get_voltage_rdev(regulator->rdev);
4549 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4550
4551 return ret;
4552 }
4553 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4554
4555 /**
4556 * regulator_set_current_limit - set regulator output current limit
4557 * @regulator: regulator source
4558 * @min_uA: Minimum supported current in uA
4559 * @max_uA: Maximum supported current in uA
4560 *
4561 * Sets current sink to the desired output current. This can be set during
4562 * any regulator state. IOW, regulator can be disabled or enabled.
4563 *
4564 * If the regulator is enabled then the current will change to the new value
4565 * immediately otherwise if the regulator is disabled the regulator will
4566 * output at the new current when enabled.
4567 *
4568 * NOTE: Regulator system constraints must be set for this regulator before
4569 * calling this function otherwise this call will fail.
4570 *
4571 * Return: 0 on success or a negative error number on failure.
4572 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4573 int regulator_set_current_limit(struct regulator *regulator,
4574 int min_uA, int max_uA)
4575 {
4576 struct regulator_dev *rdev = regulator->rdev;
4577 int ret;
4578
4579 regulator_lock(rdev);
4580
4581 /* sanity check */
4582 if (!rdev->desc->ops->set_current_limit) {
4583 ret = -EINVAL;
4584 goto out;
4585 }
4586
4587 /* constraints check */
4588 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4589 if (ret < 0)
4590 goto out;
4591
4592 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4593 out:
4594 regulator_unlock(rdev);
4595 return ret;
4596 }
4597 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4598
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4599 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4600 {
4601 /* sanity check */
4602 if (!rdev->desc->ops->get_current_limit)
4603 return -EINVAL;
4604
4605 return rdev->desc->ops->get_current_limit(rdev);
4606 }
4607
_regulator_get_current_limit(struct regulator_dev * rdev)4608 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4609 {
4610 int ret;
4611
4612 regulator_lock(rdev);
4613 ret = _regulator_get_current_limit_unlocked(rdev);
4614 regulator_unlock(rdev);
4615
4616 return ret;
4617 }
4618
4619 /**
4620 * regulator_get_current_limit - get regulator output current
4621 * @regulator: regulator source
4622 *
4623 * Return: Current supplied by the specified current sink in uA,
4624 * or a negative error number on failure.
4625 *
4626 * NOTE: If the regulator is disabled it will return the current value. This
4627 * function should not be used to determine regulator state.
4628 */
regulator_get_current_limit(struct regulator * regulator)4629 int regulator_get_current_limit(struct regulator *regulator)
4630 {
4631 return _regulator_get_current_limit(regulator->rdev);
4632 }
4633 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4634
4635 /**
4636 * regulator_set_mode - set regulator operating mode
4637 * @regulator: regulator source
4638 * @mode: operating mode - one of the REGULATOR_MODE constants
4639 *
4640 * Set regulator operating mode to increase regulator efficiency or improve
4641 * regulation performance.
4642 *
4643 * NOTE: Regulator system constraints must be set for this regulator before
4644 * calling this function otherwise this call will fail.
4645 *
4646 * Return: 0 on success or a negative error number on failure.
4647 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4648 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4649 {
4650 struct regulator_dev *rdev = regulator->rdev;
4651 int ret;
4652 int regulator_curr_mode;
4653
4654 regulator_lock(rdev);
4655
4656 /* sanity check */
4657 if (!rdev->desc->ops->set_mode) {
4658 ret = -EINVAL;
4659 goto out;
4660 }
4661
4662 /* return if the same mode is requested */
4663 if (rdev->desc->ops->get_mode) {
4664 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4665 if (regulator_curr_mode == mode) {
4666 ret = 0;
4667 goto out;
4668 }
4669 }
4670
4671 /* constraints check */
4672 ret = regulator_mode_constrain(rdev, &mode);
4673 if (ret < 0)
4674 goto out;
4675
4676 ret = rdev->desc->ops->set_mode(rdev, mode);
4677 out:
4678 regulator_unlock(rdev);
4679 return ret;
4680 }
4681 EXPORT_SYMBOL_GPL(regulator_set_mode);
4682
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4683 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4684 {
4685 /* sanity check */
4686 if (!rdev->desc->ops->get_mode)
4687 return -EINVAL;
4688
4689 return rdev->desc->ops->get_mode(rdev);
4690 }
4691
_regulator_get_mode(struct regulator_dev * rdev)4692 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4693 {
4694 int ret;
4695
4696 regulator_lock(rdev);
4697 ret = _regulator_get_mode_unlocked(rdev);
4698 regulator_unlock(rdev);
4699
4700 return ret;
4701 }
4702
4703 /**
4704 * regulator_get_mode - get regulator operating mode
4705 * @regulator: regulator source
4706 *
4707 * Get the current regulator operating mode.
4708 *
4709 * Return: Current operating mode as %REGULATOR_MODE_* values,
4710 * or a negative error number on failure.
4711 */
regulator_get_mode(struct regulator * regulator)4712 unsigned int regulator_get_mode(struct regulator *regulator)
4713 {
4714 return _regulator_get_mode(regulator->rdev);
4715 }
4716 EXPORT_SYMBOL_GPL(regulator_get_mode);
4717
rdev_get_cached_err_flags(struct regulator_dev * rdev)4718 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4719 {
4720 int ret = 0;
4721
4722 if (rdev->use_cached_err) {
4723 spin_lock(&rdev->err_lock);
4724 ret = rdev->cached_err;
4725 spin_unlock(&rdev->err_lock);
4726 }
4727 return ret;
4728 }
4729
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4730 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4731 unsigned int *flags)
4732 {
4733 int cached_flags, ret = 0;
4734
4735 regulator_lock(rdev);
4736
4737 cached_flags = rdev_get_cached_err_flags(rdev);
4738
4739 if (rdev->desc->ops->get_error_flags)
4740 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4741 else if (!rdev->use_cached_err)
4742 ret = -EINVAL;
4743
4744 *flags |= cached_flags;
4745
4746 regulator_unlock(rdev);
4747
4748 return ret;
4749 }
4750
4751 /**
4752 * regulator_get_error_flags - get regulator error information
4753 * @regulator: regulator source
4754 * @flags: pointer to store error flags
4755 *
4756 * Get the current regulator error information.
4757 *
4758 * Return: 0 on success or a negative error number on failure.
4759 */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4760 int regulator_get_error_flags(struct regulator *regulator,
4761 unsigned int *flags)
4762 {
4763 return _regulator_get_error_flags(regulator->rdev, flags);
4764 }
4765 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4766
4767 /**
4768 * regulator_set_load - set regulator load
4769 * @regulator: regulator source
4770 * @uA_load: load current
4771 *
4772 * Notifies the regulator core of a new device load. This is then used by
4773 * DRMS (if enabled by constraints) to set the most efficient regulator
4774 * operating mode for the new regulator loading.
4775 *
4776 * Consumer devices notify their supply regulator of the maximum power
4777 * they will require (can be taken from device datasheet in the power
4778 * consumption tables) when they change operational status and hence power
4779 * state. Examples of operational state changes that can affect power
4780 * consumption are :-
4781 *
4782 * o Device is opened / closed.
4783 * o Device I/O is about to begin or has just finished.
4784 * o Device is idling in between work.
4785 *
4786 * This information is also exported via sysfs to userspace.
4787 *
4788 * DRMS will sum the total requested load on the regulator and change
4789 * to the most efficient operating mode if platform constraints allow.
4790 *
4791 * NOTE: when a regulator consumer requests to have a regulator
4792 * disabled then any load that consumer requested no longer counts
4793 * toward the total requested load. If the regulator is re-enabled
4794 * then the previously requested load will start counting again.
4795 *
4796 * If a regulator is an always-on regulator then an individual consumer's
4797 * load will still be removed if that consumer is fully disabled.
4798 *
4799 * Return: 0 on success or a negative error number on failure.
4800 */
regulator_set_load(struct regulator * regulator,int uA_load)4801 int regulator_set_load(struct regulator *regulator, int uA_load)
4802 {
4803 struct regulator_dev *rdev = regulator->rdev;
4804 int old_uA_load;
4805 int ret = 0;
4806
4807 regulator_lock(rdev);
4808 old_uA_load = regulator->uA_load;
4809 regulator->uA_load = uA_load;
4810 if (regulator->enable_count && old_uA_load != uA_load) {
4811 ret = drms_uA_update(rdev);
4812 if (ret < 0)
4813 regulator->uA_load = old_uA_load;
4814 }
4815 regulator_unlock(rdev);
4816
4817 return ret;
4818 }
4819 EXPORT_SYMBOL_GPL(regulator_set_load);
4820
4821 /**
4822 * regulator_allow_bypass - allow the regulator to go into bypass mode
4823 *
4824 * @regulator: Regulator to configure
4825 * @enable: enable or disable bypass mode
4826 *
4827 * Allow the regulator to go into bypass mode if all other consumers
4828 * for the regulator also enable bypass mode and the machine
4829 * constraints allow this. Bypass mode means that the regulator is
4830 * simply passing the input directly to the output with no regulation.
4831 *
4832 * Return: 0 on success or if changing bypass is not possible, or
4833 * a negative error number on failure.
4834 */
regulator_allow_bypass(struct regulator * regulator,bool enable)4835 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4836 {
4837 struct regulator_dev *rdev = regulator->rdev;
4838 const char *name = rdev_get_name(rdev);
4839 int ret = 0;
4840
4841 if (!rdev->desc->ops->set_bypass)
4842 return 0;
4843
4844 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4845 return 0;
4846
4847 regulator_lock(rdev);
4848
4849 if (enable && !regulator->bypass) {
4850 rdev->bypass_count++;
4851
4852 if (rdev->bypass_count == rdev->open_count) {
4853 trace_regulator_bypass_enable(name);
4854
4855 ret = rdev->desc->ops->set_bypass(rdev, enable);
4856 if (ret != 0)
4857 rdev->bypass_count--;
4858 else
4859 trace_regulator_bypass_enable_complete(name);
4860 }
4861
4862 } else if (!enable && regulator->bypass) {
4863 rdev->bypass_count--;
4864
4865 if (rdev->bypass_count != rdev->open_count) {
4866 trace_regulator_bypass_disable(name);
4867
4868 ret = rdev->desc->ops->set_bypass(rdev, enable);
4869 if (ret != 0)
4870 rdev->bypass_count++;
4871 else
4872 trace_regulator_bypass_disable_complete(name);
4873 }
4874 }
4875
4876 if (ret == 0)
4877 regulator->bypass = enable;
4878
4879 regulator_unlock(rdev);
4880
4881 return ret;
4882 }
4883 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4884
4885 /**
4886 * regulator_register_notifier - register regulator event notifier
4887 * @regulator: regulator source
4888 * @nb: notifier block
4889 *
4890 * Register notifier block to receive regulator events.
4891 *
4892 * Return: 0 on success or a negative error number on failure.
4893 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4894 int regulator_register_notifier(struct regulator *regulator,
4895 struct notifier_block *nb)
4896 {
4897 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4898 nb);
4899 }
4900 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4901
4902 /**
4903 * regulator_unregister_notifier - unregister regulator event notifier
4904 * @regulator: regulator source
4905 * @nb: notifier block
4906 *
4907 * Unregister regulator event notifier block.
4908 *
4909 * Return: 0 on success or a negative error number on failure.
4910 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)4911 int regulator_unregister_notifier(struct regulator *regulator,
4912 struct notifier_block *nb)
4913 {
4914 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4915 nb);
4916 }
4917 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4918
4919 /* notify regulator consumers and downstream regulator consumers.
4920 * Note mutex must be held by caller.
4921 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4922 static int _notifier_call_chain(struct regulator_dev *rdev,
4923 unsigned long event, void *data)
4924 {
4925 /* call rdev chain first */
4926 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data);
4927
4928 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4929 struct device *parent = rdev->dev.parent;
4930 const char *rname = rdev_get_name(rdev);
4931 char name[32];
4932
4933 /* Avoid duplicate debugfs directory names */
4934 if (parent && rname == rdev->desc->name) {
4935 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4936 rname);
4937 rname = name;
4938 }
4939 reg_generate_netlink_event(rname, event);
4940 }
4941
4942 return ret;
4943 }
4944
_regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers,enum regulator_get_type get_type)4945 int _regulator_bulk_get(struct device *dev, int num_consumers,
4946 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4947 {
4948 int i;
4949 int ret;
4950
4951 for (i = 0; i < num_consumers; i++)
4952 consumers[i].consumer = NULL;
4953
4954 for (i = 0; i < num_consumers; i++) {
4955 consumers[i].consumer = _regulator_get(dev,
4956 consumers[i].supply, get_type);
4957 if (IS_ERR(consumers[i].consumer)) {
4958 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4959 "Failed to get supply '%s'\n",
4960 consumers[i].supply);
4961 consumers[i].consumer = NULL;
4962 goto err;
4963 }
4964
4965 if (consumers[i].init_load_uA > 0) {
4966 ret = regulator_set_load(consumers[i].consumer,
4967 consumers[i].init_load_uA);
4968 if (ret) {
4969 i++;
4970 goto err;
4971 }
4972 }
4973 }
4974
4975 return 0;
4976
4977 err:
4978 while (--i >= 0)
4979 regulator_put(consumers[i].consumer);
4980
4981 return ret;
4982 }
4983
4984 /**
4985 * regulator_bulk_get - get multiple regulator consumers
4986 *
4987 * @dev: Device to supply
4988 * @num_consumers: Number of consumers to register
4989 * @consumers: Configuration of consumers; clients are stored here.
4990 *
4991 * This helper function allows drivers to get several regulator
4992 * consumers in one operation. If any of the regulators cannot be
4993 * acquired then any regulators that were allocated will be freed
4994 * before returning to the caller.
4995 *
4996 * Return: 0 on success or a negative error number on failure.
4997 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)4998 int regulator_bulk_get(struct device *dev, int num_consumers,
4999 struct regulator_bulk_data *consumers)
5000 {
5001 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
5002 }
5003 EXPORT_SYMBOL_GPL(regulator_bulk_get);
5004
regulator_bulk_enable_async(void * data,async_cookie_t cookie)5005 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
5006 {
5007 struct regulator_bulk_data *bulk = data;
5008
5009 bulk->ret = regulator_enable(bulk->consumer);
5010 }
5011
5012 /**
5013 * regulator_bulk_enable - enable multiple regulator consumers
5014 *
5015 * @num_consumers: Number of consumers
5016 * @consumers: Consumer data; clients are stored here.
5017 *
5018 * This convenience API allows consumers to enable multiple regulator
5019 * clients in a single API call. If any consumers cannot be enabled
5020 * then any others that were enabled will be disabled again prior to
5021 * return.
5022 *
5023 * Return: 0 on success or a negative error number on failure.
5024 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)5025 int regulator_bulk_enable(int num_consumers,
5026 struct regulator_bulk_data *consumers)
5027 {
5028 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
5029 int i;
5030 int ret = 0;
5031
5032 for (i = 0; i < num_consumers; i++) {
5033 async_schedule_domain(regulator_bulk_enable_async,
5034 &consumers[i], &async_domain);
5035 }
5036
5037 async_synchronize_full_domain(&async_domain);
5038
5039 /* If any consumer failed we need to unwind any that succeeded */
5040 for (i = 0; i < num_consumers; i++) {
5041 if (consumers[i].ret != 0) {
5042 ret = consumers[i].ret;
5043 goto err;
5044 }
5045 }
5046
5047 return 0;
5048
5049 err:
5050 for (i = 0; i < num_consumers; i++) {
5051 if (consumers[i].ret < 0)
5052 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5053 ERR_PTR(consumers[i].ret));
5054 else
5055 regulator_disable(consumers[i].consumer);
5056 }
5057
5058 return ret;
5059 }
5060 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5061
5062 /**
5063 * regulator_bulk_disable - disable multiple regulator consumers
5064 *
5065 * @num_consumers: Number of consumers
5066 * @consumers: Consumer data; clients are stored here.
5067 *
5068 * This convenience API allows consumers to disable multiple regulator
5069 * clients in a single API call. If any consumers cannot be disabled
5070 * then any others that were disabled will be enabled again prior to
5071 * return.
5072 *
5073 * Return: 0 on success or a negative error number on failure.
5074 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)5075 int regulator_bulk_disable(int num_consumers,
5076 struct regulator_bulk_data *consumers)
5077 {
5078 int i;
5079 int ret, r;
5080
5081 for (i = num_consumers - 1; i >= 0; --i) {
5082 ret = regulator_disable(consumers[i].consumer);
5083 if (ret != 0)
5084 goto err;
5085 }
5086
5087 return 0;
5088
5089 err:
5090 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5091 for (++i; i < num_consumers; ++i) {
5092 r = regulator_enable(consumers[i].consumer);
5093 if (r != 0)
5094 pr_err("Failed to re-enable %s: %pe\n",
5095 consumers[i].supply, ERR_PTR(r));
5096 }
5097
5098 return ret;
5099 }
5100 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5101
5102 /**
5103 * regulator_bulk_force_disable - force disable multiple regulator consumers
5104 *
5105 * @num_consumers: Number of consumers
5106 * @consumers: Consumer data; clients are stored here.
5107 *
5108 * This convenience API allows consumers to forcibly disable multiple regulator
5109 * clients in a single API call.
5110 * NOTE: This should be used for situations when device damage will
5111 * likely occur if the regulators are not disabled (e.g. over temp).
5112 * Although regulator_force_disable function call for some consumers can
5113 * return error numbers, the function is called for all consumers.
5114 *
5115 * Return: 0 on success or a negative error number on failure.
5116 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)5117 int regulator_bulk_force_disable(int num_consumers,
5118 struct regulator_bulk_data *consumers)
5119 {
5120 int i;
5121 int ret = 0;
5122
5123 for (i = 0; i < num_consumers; i++) {
5124 consumers[i].ret =
5125 regulator_force_disable(consumers[i].consumer);
5126
5127 /* Store first error for reporting */
5128 if (consumers[i].ret && !ret)
5129 ret = consumers[i].ret;
5130 }
5131
5132 return ret;
5133 }
5134 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5135
5136 /**
5137 * regulator_bulk_free - free multiple regulator consumers
5138 *
5139 * @num_consumers: Number of consumers
5140 * @consumers: Consumer data; clients are stored here.
5141 *
5142 * This convenience API allows consumers to free multiple regulator
5143 * clients in a single API call.
5144 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)5145 void regulator_bulk_free(int num_consumers,
5146 struct regulator_bulk_data *consumers)
5147 {
5148 int i;
5149
5150 for (i = 0; i < num_consumers; i++) {
5151 regulator_put(consumers[i].consumer);
5152 consumers[i].consumer = NULL;
5153 }
5154 }
5155 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5156
5157 /**
5158 * regulator_handle_critical - Handle events for system-critical regulators.
5159 * @rdev: The regulator device.
5160 * @event: The event being handled.
5161 *
5162 * This function handles critical events such as under-voltage, over-current,
5163 * and unknown errors for regulators deemed system-critical. On detecting such
5164 * events, it triggers a hardware protection shutdown with a defined timeout.
5165 */
regulator_handle_critical(struct regulator_dev * rdev,unsigned long event)5166 static void regulator_handle_critical(struct regulator_dev *rdev,
5167 unsigned long event)
5168 {
5169 const char *reason = NULL;
5170
5171 if (!rdev->constraints->system_critical)
5172 return;
5173
5174 switch (event) {
5175 case REGULATOR_EVENT_UNDER_VOLTAGE:
5176 reason = "System critical regulator: voltage drop detected";
5177 break;
5178 case REGULATOR_EVENT_OVER_CURRENT:
5179 reason = "System critical regulator: over-current detected";
5180 break;
5181 case REGULATOR_EVENT_FAIL:
5182 reason = "System critical regulator: unknown error";
5183 }
5184
5185 if (!reason)
5186 return;
5187
5188 hw_protection_shutdown(reason,
5189 rdev->constraints->uv_less_critical_window_ms);
5190 }
5191
5192 /**
5193 * regulator_notifier_call_chain - call regulator event notifier
5194 * @rdev: regulator source
5195 * @event: notifier block
5196 * @data: callback-specific data.
5197 *
5198 * Called by regulator drivers to notify clients a regulator event has
5199 * occurred.
5200 *
5201 * Return: %NOTIFY_DONE.
5202 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5203 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5204 unsigned long event, void *data)
5205 {
5206 regulator_handle_critical(rdev, event);
5207
5208 _notifier_call_chain(rdev, event, data);
5209 return NOTIFY_DONE;
5210
5211 }
5212 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5213
5214 /**
5215 * regulator_mode_to_status - convert a regulator mode into a status
5216 *
5217 * @mode: Mode to convert
5218 *
5219 * Convert a regulator mode into a status.
5220 *
5221 * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5222 */
regulator_mode_to_status(unsigned int mode)5223 int regulator_mode_to_status(unsigned int mode)
5224 {
5225 switch (mode) {
5226 case REGULATOR_MODE_FAST:
5227 return REGULATOR_STATUS_FAST;
5228 case REGULATOR_MODE_NORMAL:
5229 return REGULATOR_STATUS_NORMAL;
5230 case REGULATOR_MODE_IDLE:
5231 return REGULATOR_STATUS_IDLE;
5232 case REGULATOR_MODE_STANDBY:
5233 return REGULATOR_STATUS_STANDBY;
5234 default:
5235 return REGULATOR_STATUS_UNDEFINED;
5236 }
5237 }
5238 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5239
5240 static struct attribute *regulator_dev_attrs[] = {
5241 &dev_attr_name.attr,
5242 &dev_attr_num_users.attr,
5243 &dev_attr_type.attr,
5244 &dev_attr_microvolts.attr,
5245 &dev_attr_microamps.attr,
5246 &dev_attr_opmode.attr,
5247 &dev_attr_state.attr,
5248 &dev_attr_status.attr,
5249 &dev_attr_bypass.attr,
5250 &dev_attr_requested_microamps.attr,
5251 &dev_attr_min_microvolts.attr,
5252 &dev_attr_max_microvolts.attr,
5253 &dev_attr_min_microamps.attr,
5254 &dev_attr_max_microamps.attr,
5255 &dev_attr_under_voltage.attr,
5256 &dev_attr_over_current.attr,
5257 &dev_attr_regulation_out.attr,
5258 &dev_attr_fail.attr,
5259 &dev_attr_over_temp.attr,
5260 &dev_attr_under_voltage_warn.attr,
5261 &dev_attr_over_current_warn.attr,
5262 &dev_attr_over_voltage_warn.attr,
5263 &dev_attr_over_temp_warn.attr,
5264 &dev_attr_suspend_standby_state.attr,
5265 &dev_attr_suspend_mem_state.attr,
5266 &dev_attr_suspend_disk_state.attr,
5267 &dev_attr_suspend_standby_microvolts.attr,
5268 &dev_attr_suspend_mem_microvolts.attr,
5269 &dev_attr_suspend_disk_microvolts.attr,
5270 &dev_attr_suspend_standby_mode.attr,
5271 &dev_attr_suspend_mem_mode.attr,
5272 &dev_attr_suspend_disk_mode.attr,
5273 NULL
5274 };
5275
5276 /*
5277 * To avoid cluttering sysfs (and memory) with useless state, only
5278 * create attributes that can be meaningfully displayed.
5279 */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)5280 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5281 struct attribute *attr, int idx)
5282 {
5283 struct device *dev = kobj_to_dev(kobj);
5284 struct regulator_dev *rdev = dev_to_rdev(dev);
5285 const struct regulator_ops *ops = rdev->desc->ops;
5286 umode_t mode = attr->mode;
5287
5288 /* these three are always present */
5289 if (attr == &dev_attr_name.attr ||
5290 attr == &dev_attr_num_users.attr ||
5291 attr == &dev_attr_type.attr)
5292 return mode;
5293
5294 /* some attributes need specific methods to be displayed */
5295 if (attr == &dev_attr_microvolts.attr) {
5296 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5297 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5298 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5299 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5300 return mode;
5301 return 0;
5302 }
5303
5304 if (attr == &dev_attr_microamps.attr)
5305 return ops->get_current_limit ? mode : 0;
5306
5307 if (attr == &dev_attr_opmode.attr)
5308 return ops->get_mode ? mode : 0;
5309
5310 if (attr == &dev_attr_state.attr)
5311 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5312
5313 if (attr == &dev_attr_status.attr)
5314 return ops->get_status ? mode : 0;
5315
5316 if (attr == &dev_attr_bypass.attr)
5317 return ops->get_bypass ? mode : 0;
5318
5319 if (attr == &dev_attr_under_voltage.attr ||
5320 attr == &dev_attr_over_current.attr ||
5321 attr == &dev_attr_regulation_out.attr ||
5322 attr == &dev_attr_fail.attr ||
5323 attr == &dev_attr_over_temp.attr ||
5324 attr == &dev_attr_under_voltage_warn.attr ||
5325 attr == &dev_attr_over_current_warn.attr ||
5326 attr == &dev_attr_over_voltage_warn.attr ||
5327 attr == &dev_attr_over_temp_warn.attr)
5328 return ops->get_error_flags ? mode : 0;
5329
5330 /* constraints need specific supporting methods */
5331 if (attr == &dev_attr_min_microvolts.attr ||
5332 attr == &dev_attr_max_microvolts.attr)
5333 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5334
5335 if (attr == &dev_attr_min_microamps.attr ||
5336 attr == &dev_attr_max_microamps.attr)
5337 return ops->set_current_limit ? mode : 0;
5338
5339 if (attr == &dev_attr_suspend_standby_state.attr ||
5340 attr == &dev_attr_suspend_mem_state.attr ||
5341 attr == &dev_attr_suspend_disk_state.attr)
5342 return mode;
5343
5344 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5345 attr == &dev_attr_suspend_mem_microvolts.attr ||
5346 attr == &dev_attr_suspend_disk_microvolts.attr)
5347 return ops->set_suspend_voltage ? mode : 0;
5348
5349 if (attr == &dev_attr_suspend_standby_mode.attr ||
5350 attr == &dev_attr_suspend_mem_mode.attr ||
5351 attr == &dev_attr_suspend_disk_mode.attr)
5352 return ops->set_suspend_mode ? mode : 0;
5353
5354 return mode;
5355 }
5356
5357 static const struct attribute_group regulator_dev_group = {
5358 .attrs = regulator_dev_attrs,
5359 .is_visible = regulator_attr_is_visible,
5360 };
5361
5362 static const struct attribute_group *regulator_dev_groups[] = {
5363 ®ulator_dev_group,
5364 NULL
5365 };
5366
regulator_dev_release(struct device * dev)5367 static void regulator_dev_release(struct device *dev)
5368 {
5369 struct regulator_dev *rdev = dev_get_drvdata(dev);
5370
5371 debugfs_remove_recursive(rdev->debugfs);
5372 kfree(rdev->constraints);
5373 of_node_put(rdev->dev.of_node);
5374 kfree(rdev);
5375 }
5376
rdev_init_debugfs(struct regulator_dev * rdev)5377 static void rdev_init_debugfs(struct regulator_dev *rdev)
5378 {
5379 struct device *parent = rdev->dev.parent;
5380 const char *rname = rdev_get_name(rdev);
5381 char name[NAME_MAX];
5382
5383 /* Avoid duplicate debugfs directory names */
5384 if (parent && rname == rdev->desc->name) {
5385 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5386 rname);
5387 rname = name;
5388 }
5389
5390 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5391 if (IS_ERR(rdev->debugfs))
5392 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5393
5394 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5395 &rdev->use_count);
5396 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5397 &rdev->open_count);
5398 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5399 &rdev->bypass_count);
5400 }
5401
regulator_register_resolve_supply(struct device * dev,void * data)5402 static int regulator_register_resolve_supply(struct device *dev, void *data)
5403 {
5404 struct regulator_dev *rdev = dev_to_rdev(dev);
5405
5406 if (regulator_resolve_supply(rdev))
5407 rdev_dbg(rdev, "unable to resolve supply\n");
5408
5409 return 0;
5410 }
5411
regulator_coupler_register(struct regulator_coupler * coupler)5412 int regulator_coupler_register(struct regulator_coupler *coupler)
5413 {
5414 mutex_lock(®ulator_list_mutex);
5415 list_add_tail(&coupler->list, ®ulator_coupler_list);
5416 mutex_unlock(®ulator_list_mutex);
5417
5418 return 0;
5419 }
5420
5421 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5422 regulator_find_coupler(struct regulator_dev *rdev)
5423 {
5424 struct regulator_coupler *coupler;
5425 int err;
5426
5427 /*
5428 * Note that regulators are appended to the list and the generic
5429 * coupler is registered first, hence it will be attached at last
5430 * if nobody cared.
5431 */
5432 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5433 err = coupler->attach_regulator(coupler, rdev);
5434 if (!err) {
5435 if (!coupler->balance_voltage &&
5436 rdev->coupling_desc.n_coupled > 2)
5437 goto err_unsupported;
5438
5439 return coupler;
5440 }
5441
5442 if (err < 0)
5443 return ERR_PTR(err);
5444
5445 if (err == 1)
5446 continue;
5447
5448 break;
5449 }
5450
5451 return ERR_PTR(-EINVAL);
5452
5453 err_unsupported:
5454 if (coupler->detach_regulator)
5455 coupler->detach_regulator(coupler, rdev);
5456
5457 rdev_err(rdev,
5458 "Voltage balancing for multiple regulator couples is unimplemented\n");
5459
5460 return ERR_PTR(-EPERM);
5461 }
5462
regulator_resolve_coupling(struct regulator_dev * rdev)5463 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5464 {
5465 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5466 struct coupling_desc *c_desc = &rdev->coupling_desc;
5467 int n_coupled = c_desc->n_coupled;
5468 struct regulator_dev *c_rdev;
5469 int i;
5470
5471 for (i = 1; i < n_coupled; i++) {
5472 /* already resolved */
5473 if (c_desc->coupled_rdevs[i])
5474 continue;
5475
5476 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5477
5478 if (!c_rdev)
5479 continue;
5480
5481 if (c_rdev->coupling_desc.coupler != coupler) {
5482 rdev_err(rdev, "coupler mismatch with %s\n",
5483 rdev_get_name(c_rdev));
5484 return;
5485 }
5486
5487 c_desc->coupled_rdevs[i] = c_rdev;
5488 c_desc->n_resolved++;
5489
5490 regulator_resolve_coupling(c_rdev);
5491 }
5492 }
5493
regulator_remove_coupling(struct regulator_dev * rdev)5494 static void regulator_remove_coupling(struct regulator_dev *rdev)
5495 {
5496 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5497 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5498 struct regulator_dev *__c_rdev, *c_rdev;
5499 unsigned int __n_coupled, n_coupled;
5500 int i, k;
5501 int err;
5502
5503 n_coupled = c_desc->n_coupled;
5504
5505 for (i = 1; i < n_coupled; i++) {
5506 c_rdev = c_desc->coupled_rdevs[i];
5507
5508 if (!c_rdev)
5509 continue;
5510
5511 regulator_lock(c_rdev);
5512
5513 __c_desc = &c_rdev->coupling_desc;
5514 __n_coupled = __c_desc->n_coupled;
5515
5516 for (k = 1; k < __n_coupled; k++) {
5517 __c_rdev = __c_desc->coupled_rdevs[k];
5518
5519 if (__c_rdev == rdev) {
5520 __c_desc->coupled_rdevs[k] = NULL;
5521 __c_desc->n_resolved--;
5522 break;
5523 }
5524 }
5525
5526 regulator_unlock(c_rdev);
5527
5528 c_desc->coupled_rdevs[i] = NULL;
5529 c_desc->n_resolved--;
5530 }
5531
5532 if (coupler && coupler->detach_regulator) {
5533 err = coupler->detach_regulator(coupler, rdev);
5534 if (err)
5535 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5536 ERR_PTR(err));
5537 }
5538
5539 rdev->coupling_desc.n_coupled = 0;
5540 kfree(rdev->coupling_desc.coupled_rdevs);
5541 rdev->coupling_desc.coupled_rdevs = NULL;
5542 }
5543
regulator_init_coupling(struct regulator_dev * rdev)5544 static int regulator_init_coupling(struct regulator_dev *rdev)
5545 {
5546 struct regulator_dev **coupled;
5547 int err, n_phandles;
5548
5549 if (!IS_ENABLED(CONFIG_OF))
5550 n_phandles = 0;
5551 else
5552 n_phandles = of_get_n_coupled(rdev);
5553
5554 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5555 if (!coupled)
5556 return -ENOMEM;
5557
5558 rdev->coupling_desc.coupled_rdevs = coupled;
5559
5560 /*
5561 * Every regulator should always have coupling descriptor filled with
5562 * at least pointer to itself.
5563 */
5564 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5565 rdev->coupling_desc.n_coupled = n_phandles + 1;
5566 rdev->coupling_desc.n_resolved++;
5567
5568 /* regulator isn't coupled */
5569 if (n_phandles == 0)
5570 return 0;
5571
5572 if (!of_check_coupling_data(rdev))
5573 return -EPERM;
5574
5575 mutex_lock(®ulator_list_mutex);
5576 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5577 mutex_unlock(®ulator_list_mutex);
5578
5579 if (IS_ERR(rdev->coupling_desc.coupler)) {
5580 err = PTR_ERR(rdev->coupling_desc.coupler);
5581 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5582 return err;
5583 }
5584
5585 return 0;
5586 }
5587
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5588 static int generic_coupler_attach(struct regulator_coupler *coupler,
5589 struct regulator_dev *rdev)
5590 {
5591 if (rdev->coupling_desc.n_coupled > 2) {
5592 rdev_err(rdev,
5593 "Voltage balancing for multiple regulator couples is unimplemented\n");
5594 return -EPERM;
5595 }
5596
5597 if (!rdev->constraints->always_on) {
5598 rdev_err(rdev,
5599 "Coupling of a non always-on regulator is unimplemented\n");
5600 return -ENOTSUPP;
5601 }
5602
5603 return 0;
5604 }
5605
5606 static struct regulator_coupler generic_regulator_coupler = {
5607 .attach_regulator = generic_coupler_attach,
5608 };
5609
5610 /**
5611 * regulator_register - register regulator
5612 * @dev: the device that drive the regulator
5613 * @regulator_desc: regulator to register
5614 * @cfg: runtime configuration for regulator
5615 *
5616 * Called by regulator drivers to register a regulator.
5617 *
5618 * Return: Pointer to a valid &struct regulator_dev on success or
5619 * an ERR_PTR() encoded negative error number on failure.
5620 */
5621 struct regulator_dev *
regulator_register(struct device * dev,const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5622 regulator_register(struct device *dev,
5623 const struct regulator_desc *regulator_desc,
5624 const struct regulator_config *cfg)
5625 {
5626 const struct regulator_init_data *init_data;
5627 struct regulator_config *config = NULL;
5628 static atomic_t regulator_no = ATOMIC_INIT(-1);
5629 struct regulator_dev *rdev;
5630 bool dangling_cfg_gpiod = false;
5631 bool dangling_of_gpiod = false;
5632 int ret, i;
5633 bool resolved_early = false;
5634
5635 if (cfg == NULL)
5636 return ERR_PTR(-EINVAL);
5637 if (cfg->ena_gpiod)
5638 dangling_cfg_gpiod = true;
5639 if (regulator_desc == NULL) {
5640 ret = -EINVAL;
5641 goto rinse;
5642 }
5643
5644 WARN_ON(!dev || !cfg->dev);
5645
5646 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5647 ret = -EINVAL;
5648 goto rinse;
5649 }
5650
5651 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5652 regulator_desc->type != REGULATOR_CURRENT) {
5653 ret = -EINVAL;
5654 goto rinse;
5655 }
5656
5657 /* Only one of each should be implemented */
5658 WARN_ON(regulator_desc->ops->get_voltage &&
5659 regulator_desc->ops->get_voltage_sel);
5660 WARN_ON(regulator_desc->ops->set_voltage &&
5661 regulator_desc->ops->set_voltage_sel);
5662
5663 /* If we're using selectors we must implement list_voltage. */
5664 if (regulator_desc->ops->get_voltage_sel &&
5665 !regulator_desc->ops->list_voltage) {
5666 ret = -EINVAL;
5667 goto rinse;
5668 }
5669 if (regulator_desc->ops->set_voltage_sel &&
5670 !regulator_desc->ops->list_voltage) {
5671 ret = -EINVAL;
5672 goto rinse;
5673 }
5674
5675 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5676 if (rdev == NULL) {
5677 ret = -ENOMEM;
5678 goto rinse;
5679 }
5680 device_initialize(&rdev->dev);
5681 dev_set_drvdata(&rdev->dev, rdev);
5682 rdev->dev.class = ®ulator_class;
5683 spin_lock_init(&rdev->err_lock);
5684
5685 /*
5686 * Duplicate the config so the driver could override it after
5687 * parsing init data.
5688 */
5689 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5690 if (config == NULL) {
5691 ret = -ENOMEM;
5692 goto clean;
5693 }
5694
5695 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5696 &rdev->dev.of_node);
5697
5698 /*
5699 * Sometimes not all resources are probed already so we need to take
5700 * that into account. This happens most the time if the ena_gpiod comes
5701 * from a gpio extender or something else.
5702 */
5703 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5704 ret = -EPROBE_DEFER;
5705 goto clean;
5706 }
5707
5708 /*
5709 * We need to keep track of any GPIO descriptor coming from the
5710 * device tree until we have handled it over to the core. If the
5711 * config that was passed in to this function DOES NOT contain
5712 * a descriptor, and the config after this call DOES contain
5713 * a descriptor, we definitely got one from parsing the device
5714 * tree.
5715 */
5716 if (!cfg->ena_gpiod && config->ena_gpiod)
5717 dangling_of_gpiod = true;
5718 if (!init_data) {
5719 init_data = config->init_data;
5720 rdev->dev.of_node = of_node_get(config->of_node);
5721 }
5722
5723 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5724 rdev->reg_data = config->driver_data;
5725 rdev->owner = regulator_desc->owner;
5726 rdev->desc = regulator_desc;
5727 if (config->regmap)
5728 rdev->regmap = config->regmap;
5729 else if (dev_get_regmap(dev, NULL))
5730 rdev->regmap = dev_get_regmap(dev, NULL);
5731 else if (dev->parent)
5732 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5733 INIT_LIST_HEAD(&rdev->consumer_list);
5734 INIT_LIST_HEAD(&rdev->list);
5735 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5736 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5737
5738 if (init_data && init_data->supply_regulator)
5739 rdev->supply_name = init_data->supply_regulator;
5740 else if (regulator_desc->supply_name)
5741 rdev->supply_name = regulator_desc->supply_name;
5742
5743 /* register with sysfs */
5744 rdev->dev.parent = config->dev;
5745 dev_set_name(&rdev->dev, "regulator.%lu",
5746 (unsigned long) atomic_inc_return(®ulator_no));
5747
5748 /* set regulator constraints */
5749 if (init_data)
5750 rdev->constraints = kmemdup(&init_data->constraints,
5751 sizeof(*rdev->constraints),
5752 GFP_KERNEL);
5753 else
5754 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5755 GFP_KERNEL);
5756 if (!rdev->constraints) {
5757 ret = -ENOMEM;
5758 goto wash;
5759 }
5760
5761 if ((rdev->supply_name && !rdev->supply) &&
5762 (rdev->constraints->always_on ||
5763 rdev->constraints->boot_on)) {
5764 ret = regulator_resolve_supply(rdev);
5765 if (ret)
5766 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5767 ERR_PTR(ret));
5768
5769 resolved_early = true;
5770 }
5771
5772 /* perform any regulator specific init */
5773 if (init_data && init_data->regulator_init) {
5774 ret = init_data->regulator_init(rdev->reg_data);
5775 if (ret < 0)
5776 goto wash;
5777 }
5778
5779 if (config->ena_gpiod) {
5780 ret = regulator_ena_gpio_request(rdev, config);
5781 if (ret != 0) {
5782 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5783 ERR_PTR(ret));
5784 goto wash;
5785 }
5786 /* The regulator core took over the GPIO descriptor */
5787 dangling_cfg_gpiod = false;
5788 dangling_of_gpiod = false;
5789 }
5790
5791 ret = set_machine_constraints(rdev);
5792 if (ret == -EPROBE_DEFER && !resolved_early) {
5793 /* Regulator might be in bypass mode and so needs its supply
5794 * to set the constraints
5795 */
5796 /* FIXME: this currently triggers a chicken-and-egg problem
5797 * when creating -SUPPLY symlink in sysfs to a regulator
5798 * that is just being created
5799 */
5800 rdev_dbg(rdev, "will resolve supply early: %s\n",
5801 rdev->supply_name);
5802 ret = regulator_resolve_supply(rdev);
5803 if (!ret)
5804 ret = set_machine_constraints(rdev);
5805 else
5806 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5807 ERR_PTR(ret));
5808 }
5809 if (ret < 0)
5810 goto wash;
5811
5812 ret = regulator_init_coupling(rdev);
5813 if (ret < 0)
5814 goto wash;
5815
5816 /* add consumers devices */
5817 if (init_data) {
5818 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5819 ret = set_consumer_device_supply(rdev,
5820 init_data->consumer_supplies[i].dev_name,
5821 init_data->consumer_supplies[i].supply);
5822 if (ret < 0) {
5823 dev_err(dev, "Failed to set supply %s\n",
5824 init_data->consumer_supplies[i].supply);
5825 goto unset_supplies;
5826 }
5827 }
5828 }
5829
5830 if (!rdev->desc->ops->get_voltage &&
5831 !rdev->desc->ops->list_voltage &&
5832 !rdev->desc->fixed_uV)
5833 rdev->is_switch = true;
5834
5835 ret = device_add(&rdev->dev);
5836 if (ret != 0)
5837 goto unset_supplies;
5838
5839 rdev_init_debugfs(rdev);
5840
5841 /* try to resolve regulators coupling since a new one was registered */
5842 mutex_lock(®ulator_list_mutex);
5843 regulator_resolve_coupling(rdev);
5844 mutex_unlock(®ulator_list_mutex);
5845
5846 /* try to resolve regulators supply since a new one was registered */
5847 class_for_each_device(®ulator_class, NULL, NULL,
5848 regulator_register_resolve_supply);
5849 kfree(config);
5850 return rdev;
5851
5852 unset_supplies:
5853 mutex_lock(®ulator_list_mutex);
5854 unset_regulator_supplies(rdev);
5855 regulator_remove_coupling(rdev);
5856 mutex_unlock(®ulator_list_mutex);
5857 wash:
5858 regulator_put(rdev->supply);
5859 kfree(rdev->coupling_desc.coupled_rdevs);
5860 mutex_lock(®ulator_list_mutex);
5861 regulator_ena_gpio_free(rdev);
5862 mutex_unlock(®ulator_list_mutex);
5863 clean:
5864 if (dangling_of_gpiod)
5865 gpiod_put(config->ena_gpiod);
5866 kfree(config);
5867 put_device(&rdev->dev);
5868 rinse:
5869 if (dangling_cfg_gpiod)
5870 gpiod_put(cfg->ena_gpiod);
5871 return ERR_PTR(ret);
5872 }
5873 EXPORT_SYMBOL_GPL(regulator_register);
5874
5875 /**
5876 * regulator_unregister - unregister regulator
5877 * @rdev: regulator to unregister
5878 *
5879 * Called by regulator drivers to unregister a regulator.
5880 */
regulator_unregister(struct regulator_dev * rdev)5881 void regulator_unregister(struct regulator_dev *rdev)
5882 {
5883 if (rdev == NULL)
5884 return;
5885
5886 if (rdev->supply) {
5887 while (rdev->use_count--)
5888 regulator_disable(rdev->supply);
5889 regulator_put(rdev->supply);
5890 }
5891
5892 flush_work(&rdev->disable_work.work);
5893
5894 mutex_lock(®ulator_list_mutex);
5895
5896 WARN_ON(rdev->open_count);
5897 regulator_remove_coupling(rdev);
5898 unset_regulator_supplies(rdev);
5899 list_del(&rdev->list);
5900 regulator_ena_gpio_free(rdev);
5901 device_unregister(&rdev->dev);
5902
5903 mutex_unlock(®ulator_list_mutex);
5904 }
5905 EXPORT_SYMBOL_GPL(regulator_unregister);
5906
5907 #ifdef CONFIG_SUSPEND
5908 /**
5909 * regulator_suspend - prepare regulators for system wide suspend
5910 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5911 *
5912 * Configure each regulator with it's suspend operating parameters for state.
5913 *
5914 * Return: 0 on success or a negative error number on failure.
5915 */
regulator_suspend(struct device * dev)5916 static int regulator_suspend(struct device *dev)
5917 {
5918 struct regulator_dev *rdev = dev_to_rdev(dev);
5919 suspend_state_t state = pm_suspend_target_state;
5920 int ret;
5921 const struct regulator_state *rstate;
5922
5923 rstate = regulator_get_suspend_state_check(rdev, state);
5924 if (!rstate)
5925 return 0;
5926
5927 regulator_lock(rdev);
5928 ret = __suspend_set_state(rdev, rstate);
5929 regulator_unlock(rdev);
5930
5931 return ret;
5932 }
5933
regulator_resume(struct device * dev)5934 static int regulator_resume(struct device *dev)
5935 {
5936 suspend_state_t state = pm_suspend_target_state;
5937 struct regulator_dev *rdev = dev_to_rdev(dev);
5938 struct regulator_state *rstate;
5939 int ret = 0;
5940
5941 rstate = regulator_get_suspend_state(rdev, state);
5942 if (rstate == NULL)
5943 return 0;
5944
5945 /* Avoid grabbing the lock if we don't need to */
5946 if (!rdev->desc->ops->resume)
5947 return 0;
5948
5949 regulator_lock(rdev);
5950
5951 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5952 rstate->enabled == DISABLE_IN_SUSPEND)
5953 ret = rdev->desc->ops->resume(rdev);
5954
5955 regulator_unlock(rdev);
5956
5957 return ret;
5958 }
5959 #else /* !CONFIG_SUSPEND */
5960
5961 #define regulator_suspend NULL
5962 #define regulator_resume NULL
5963
5964 #endif /* !CONFIG_SUSPEND */
5965
5966 #ifdef CONFIG_PM
5967 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5968 .suspend = regulator_suspend,
5969 .resume = regulator_resume,
5970 };
5971 #endif
5972
5973 const struct class regulator_class = {
5974 .name = "regulator",
5975 .dev_release = regulator_dev_release,
5976 .dev_groups = regulator_dev_groups,
5977 #ifdef CONFIG_PM
5978 .pm = ®ulator_pm_ops,
5979 #endif
5980 };
5981 /**
5982 * regulator_has_full_constraints - the system has fully specified constraints
5983 *
5984 * Calling this function will cause the regulator API to disable all
5985 * regulators which have a zero use count and don't have an always_on
5986 * constraint in a late_initcall.
5987 *
5988 * The intention is that this will become the default behaviour in a
5989 * future kernel release so users are encouraged to use this facility
5990 * now.
5991 */
regulator_has_full_constraints(void)5992 void regulator_has_full_constraints(void)
5993 {
5994 has_full_constraints = 1;
5995 }
5996 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5997
5998 /**
5999 * rdev_get_drvdata - get rdev regulator driver data
6000 * @rdev: regulator
6001 *
6002 * Get rdev regulator driver private data. This call can be used in the
6003 * regulator driver context.
6004 *
6005 * Return: Pointer to regulator driver private data.
6006 */
rdev_get_drvdata(struct regulator_dev * rdev)6007 void *rdev_get_drvdata(struct regulator_dev *rdev)
6008 {
6009 return rdev->reg_data;
6010 }
6011 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
6012
6013 /**
6014 * regulator_get_drvdata - get regulator driver data
6015 * @regulator: regulator
6016 *
6017 * Get regulator driver private data. This call can be used in the consumer
6018 * driver context when non API regulator specific functions need to be called.
6019 *
6020 * Return: Pointer to regulator driver private data.
6021 */
regulator_get_drvdata(struct regulator * regulator)6022 void *regulator_get_drvdata(struct regulator *regulator)
6023 {
6024 return regulator->rdev->reg_data;
6025 }
6026 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
6027
6028 /**
6029 * regulator_set_drvdata - set regulator driver data
6030 * @regulator: regulator
6031 * @data: data
6032 */
regulator_set_drvdata(struct regulator * regulator,void * data)6033 void regulator_set_drvdata(struct regulator *regulator, void *data)
6034 {
6035 regulator->rdev->reg_data = data;
6036 }
6037 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
6038
6039 /**
6040 * rdev_get_id - get regulator ID
6041 * @rdev: regulator
6042 *
6043 * Return: Regulator ID for @rdev.
6044 */
rdev_get_id(struct regulator_dev * rdev)6045 int rdev_get_id(struct regulator_dev *rdev)
6046 {
6047 return rdev->desc->id;
6048 }
6049 EXPORT_SYMBOL_GPL(rdev_get_id);
6050
rdev_get_dev(struct regulator_dev * rdev)6051 struct device *rdev_get_dev(struct regulator_dev *rdev)
6052 {
6053 return &rdev->dev;
6054 }
6055 EXPORT_SYMBOL_GPL(rdev_get_dev);
6056
rdev_get_regmap(struct regulator_dev * rdev)6057 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6058 {
6059 return rdev->regmap;
6060 }
6061 EXPORT_SYMBOL_GPL(rdev_get_regmap);
6062
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)6063 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6064 {
6065 return reg_init_data->driver_data;
6066 }
6067 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6068
6069 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)6070 static int supply_map_show(struct seq_file *sf, void *data)
6071 {
6072 struct regulator_map *map;
6073
6074 list_for_each_entry(map, ®ulator_map_list, list) {
6075 seq_printf(sf, "%s -> %s.%s\n",
6076 rdev_get_name(map->regulator), map->dev_name,
6077 map->supply);
6078 }
6079
6080 return 0;
6081 }
6082 DEFINE_SHOW_ATTRIBUTE(supply_map);
6083
6084 struct summary_data {
6085 struct seq_file *s;
6086 struct regulator_dev *parent;
6087 int level;
6088 };
6089
6090 static void regulator_summary_show_subtree(struct seq_file *s,
6091 struct regulator_dev *rdev,
6092 int level);
6093
regulator_summary_show_children(struct device * dev,void * data)6094 static int regulator_summary_show_children(struct device *dev, void *data)
6095 {
6096 struct regulator_dev *rdev = dev_to_rdev(dev);
6097 struct summary_data *summary_data = data;
6098
6099 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6100 regulator_summary_show_subtree(summary_data->s, rdev,
6101 summary_data->level + 1);
6102
6103 return 0;
6104 }
6105
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)6106 static void regulator_summary_show_subtree(struct seq_file *s,
6107 struct regulator_dev *rdev,
6108 int level)
6109 {
6110 struct regulation_constraints *c;
6111 struct regulator *consumer;
6112 struct summary_data summary_data;
6113 unsigned int opmode;
6114
6115 if (!rdev)
6116 return;
6117
6118 opmode = _regulator_get_mode_unlocked(rdev);
6119 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6120 level * 3 + 1, "",
6121 30 - level * 3, rdev_get_name(rdev),
6122 rdev->use_count, rdev->open_count, rdev->bypass_count,
6123 regulator_opmode_to_str(opmode));
6124
6125 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6126 seq_printf(s, "%5dmA ",
6127 _regulator_get_current_limit_unlocked(rdev) / 1000);
6128
6129 c = rdev->constraints;
6130 if (c) {
6131 switch (rdev->desc->type) {
6132 case REGULATOR_VOLTAGE:
6133 seq_printf(s, "%5dmV %5dmV ",
6134 c->min_uV / 1000, c->max_uV / 1000);
6135 break;
6136 case REGULATOR_CURRENT:
6137 seq_printf(s, "%5dmA %5dmA ",
6138 c->min_uA / 1000, c->max_uA / 1000);
6139 break;
6140 }
6141 }
6142
6143 seq_puts(s, "\n");
6144
6145 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6146 if (consumer->dev && consumer->dev->class == ®ulator_class)
6147 continue;
6148
6149 seq_printf(s, "%*s%-*s ",
6150 (level + 1) * 3 + 1, "",
6151 30 - (level + 1) * 3,
6152 consumer->supply_name ? consumer->supply_name :
6153 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6154
6155 switch (rdev->desc->type) {
6156 case REGULATOR_VOLTAGE:
6157 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6158 consumer->enable_count,
6159 consumer->uA_load / 1000,
6160 consumer->uA_load && !consumer->enable_count ?
6161 '*' : ' ',
6162 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6163 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6164 break;
6165 case REGULATOR_CURRENT:
6166 break;
6167 }
6168
6169 seq_puts(s, "\n");
6170 }
6171
6172 summary_data.s = s;
6173 summary_data.level = level;
6174 summary_data.parent = rdev;
6175
6176 class_for_each_device(®ulator_class, NULL, &summary_data,
6177 regulator_summary_show_children);
6178 }
6179
6180 struct summary_lock_data {
6181 struct ww_acquire_ctx *ww_ctx;
6182 struct regulator_dev **new_contended_rdev;
6183 struct regulator_dev **old_contended_rdev;
6184 };
6185
regulator_summary_lock_one(struct device * dev,void * data)6186 static int regulator_summary_lock_one(struct device *dev, void *data)
6187 {
6188 struct regulator_dev *rdev = dev_to_rdev(dev);
6189 struct summary_lock_data *lock_data = data;
6190 int ret = 0;
6191
6192 if (rdev != *lock_data->old_contended_rdev) {
6193 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6194
6195 if (ret == -EDEADLK)
6196 *lock_data->new_contended_rdev = rdev;
6197 else
6198 WARN_ON_ONCE(ret);
6199 } else {
6200 *lock_data->old_contended_rdev = NULL;
6201 }
6202
6203 return ret;
6204 }
6205
regulator_summary_unlock_one(struct device * dev,void * data)6206 static int regulator_summary_unlock_one(struct device *dev, void *data)
6207 {
6208 struct regulator_dev *rdev = dev_to_rdev(dev);
6209 struct summary_lock_data *lock_data = data;
6210
6211 if (lock_data) {
6212 if (rdev == *lock_data->new_contended_rdev)
6213 return -EDEADLK;
6214 }
6215
6216 regulator_unlock(rdev);
6217
6218 return 0;
6219 }
6220
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)6221 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6222 struct regulator_dev **new_contended_rdev,
6223 struct regulator_dev **old_contended_rdev)
6224 {
6225 struct summary_lock_data lock_data;
6226 int ret;
6227
6228 lock_data.ww_ctx = ww_ctx;
6229 lock_data.new_contended_rdev = new_contended_rdev;
6230 lock_data.old_contended_rdev = old_contended_rdev;
6231
6232 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6233 regulator_summary_lock_one);
6234 if (ret)
6235 class_for_each_device(®ulator_class, NULL, &lock_data,
6236 regulator_summary_unlock_one);
6237
6238 return ret;
6239 }
6240
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)6241 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6242 {
6243 struct regulator_dev *new_contended_rdev = NULL;
6244 struct regulator_dev *old_contended_rdev = NULL;
6245 int err;
6246
6247 mutex_lock(®ulator_list_mutex);
6248
6249 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6250
6251 do {
6252 if (new_contended_rdev) {
6253 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6254 old_contended_rdev = new_contended_rdev;
6255 old_contended_rdev->ref_cnt++;
6256 old_contended_rdev->mutex_owner = current;
6257 }
6258
6259 err = regulator_summary_lock_all(ww_ctx,
6260 &new_contended_rdev,
6261 &old_contended_rdev);
6262
6263 if (old_contended_rdev)
6264 regulator_unlock(old_contended_rdev);
6265
6266 } while (err == -EDEADLK);
6267
6268 ww_acquire_done(ww_ctx);
6269 }
6270
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)6271 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6272 {
6273 class_for_each_device(®ulator_class, NULL, NULL,
6274 regulator_summary_unlock_one);
6275 ww_acquire_fini(ww_ctx);
6276
6277 mutex_unlock(®ulator_list_mutex);
6278 }
6279
regulator_summary_show_roots(struct device * dev,void * data)6280 static int regulator_summary_show_roots(struct device *dev, void *data)
6281 {
6282 struct regulator_dev *rdev = dev_to_rdev(dev);
6283 struct seq_file *s = data;
6284
6285 if (!rdev->supply)
6286 regulator_summary_show_subtree(s, rdev, 0);
6287
6288 return 0;
6289 }
6290
regulator_summary_show(struct seq_file * s,void * data)6291 static int regulator_summary_show(struct seq_file *s, void *data)
6292 {
6293 struct ww_acquire_ctx ww_ctx;
6294
6295 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6296 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6297
6298 regulator_summary_lock(&ww_ctx);
6299
6300 class_for_each_device(®ulator_class, NULL, s,
6301 regulator_summary_show_roots);
6302
6303 regulator_summary_unlock(&ww_ctx);
6304
6305 return 0;
6306 }
6307 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6308 #endif /* CONFIG_DEBUG_FS */
6309
regulator_init(void)6310 static int __init regulator_init(void)
6311 {
6312 int ret;
6313
6314 ret = class_register(®ulator_class);
6315
6316 debugfs_root = debugfs_create_dir("regulator", NULL);
6317 if (IS_ERR(debugfs_root))
6318 pr_debug("regulator: Failed to create debugfs directory\n");
6319
6320 #ifdef CONFIG_DEBUG_FS
6321 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6322 &supply_map_fops);
6323
6324 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6325 NULL, ®ulator_summary_fops);
6326 #endif
6327 regulator_dummy_init();
6328
6329 regulator_coupler_register(&generic_regulator_coupler);
6330
6331 return ret;
6332 }
6333
6334 /* init early to allow our consumers to complete system booting */
6335 core_initcall(regulator_init);
6336
regulator_late_cleanup(struct device * dev,void * data)6337 static int regulator_late_cleanup(struct device *dev, void *data)
6338 {
6339 struct regulator_dev *rdev = dev_to_rdev(dev);
6340 struct regulation_constraints *c = rdev->constraints;
6341 int ret;
6342
6343 if (c && c->always_on)
6344 return 0;
6345
6346 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6347 return 0;
6348
6349 regulator_lock(rdev);
6350
6351 if (rdev->use_count)
6352 goto unlock;
6353
6354 /* If reading the status failed, assume that it's off. */
6355 if (_regulator_is_enabled(rdev) <= 0)
6356 goto unlock;
6357
6358 if (have_full_constraints()) {
6359 /* We log since this may kill the system if it goes
6360 * wrong.
6361 */
6362 rdev_info(rdev, "disabling\n");
6363 ret = _regulator_do_disable(rdev);
6364 if (ret != 0)
6365 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6366 } else {
6367 /* The intention is that in future we will
6368 * assume that full constraints are provided
6369 * so warn even if we aren't going to do
6370 * anything here.
6371 */
6372 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6373 }
6374
6375 unlock:
6376 regulator_unlock(rdev);
6377
6378 return 0;
6379 }
6380
6381 static bool regulator_ignore_unused;
regulator_ignore_unused_setup(char * __unused)6382 static int __init regulator_ignore_unused_setup(char *__unused)
6383 {
6384 regulator_ignore_unused = true;
6385 return 1;
6386 }
6387 __setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6388
regulator_init_complete_work_function(struct work_struct * work)6389 static void regulator_init_complete_work_function(struct work_struct *work)
6390 {
6391 /*
6392 * Regulators may had failed to resolve their input supplies
6393 * when were registered, either because the input supply was
6394 * not registered yet or because its parent device was not
6395 * bound yet. So attempt to resolve the input supplies for
6396 * pending regulators before trying to disable unused ones.
6397 */
6398 class_for_each_device(®ulator_class, NULL, NULL,
6399 regulator_register_resolve_supply);
6400
6401 /*
6402 * For debugging purposes, it may be useful to prevent unused
6403 * regulators from being disabled.
6404 */
6405 if (regulator_ignore_unused) {
6406 pr_warn("regulator: Not disabling unused regulators\n");
6407 return;
6408 }
6409
6410 /* If we have a full configuration then disable any regulators
6411 * we have permission to change the status for and which are
6412 * not in use or always_on. This is effectively the default
6413 * for DT and ACPI as they have full constraints.
6414 */
6415 class_for_each_device(®ulator_class, NULL, NULL,
6416 regulator_late_cleanup);
6417 }
6418
6419 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6420 regulator_init_complete_work_function);
6421
regulator_init_complete(void)6422 static int __init regulator_init_complete(void)
6423 {
6424 /*
6425 * Since DT doesn't provide an idiomatic mechanism for
6426 * enabling full constraints and since it's much more natural
6427 * with DT to provide them just assume that a DT enabled
6428 * system has full constraints.
6429 */
6430 if (of_have_populated_dt())
6431 has_full_constraints = true;
6432
6433 /*
6434 * We punt completion for an arbitrary amount of time since
6435 * systems like distros will load many drivers from userspace
6436 * so consumers might not always be ready yet, this is
6437 * particularly an issue with laptops where this might bounce
6438 * the display off then on. Ideally we'd get a notification
6439 * from userspace when this happens but we don't so just wait
6440 * a bit and hope we waited long enough. It'd be better if
6441 * we'd only do this on systems that need it, and a kernel
6442 * command line option might be useful.
6443 */
6444 schedule_delayed_work(®ulator_init_complete_work,
6445 msecs_to_jiffies(30000));
6446
6447 return 0;
6448 }
6449 late_initcall_sync(regulator_init_complete);
6450