• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * OF helpers for regulator framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Rajendra Nayak <rnayak@ti.com>
7  */
8 
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/of.h>
12 #include <linux/regulator/machine.h>
13 #include <linux/regulator/driver.h>
14 #include <linux/regulator/of_regulator.h>
15 
16 #include "internal.h"
17 
18 static const char *const regulator_states[PM_SUSPEND_MAX + 1] = {
19 	[PM_SUSPEND_STANDBY]	= "regulator-state-standby",
20 	[PM_SUSPEND_MEM]	= "regulator-state-mem",
21 	[PM_SUSPEND_MAX]	= "regulator-state-disk",
22 };
23 
fill_limit(int * limit,int val)24 static void fill_limit(int *limit, int val)
25 {
26 	if (val)
27 		if (val == 1)
28 			*limit = REGULATOR_NOTIF_LIMIT_ENABLE;
29 		else
30 			*limit = val;
31 	else
32 		*limit = REGULATOR_NOTIF_LIMIT_DISABLE;
33 }
34 
of_get_regulator_prot_limits(struct device_node * np,struct regulation_constraints * constraints)35 static void of_get_regulator_prot_limits(struct device_node *np,
36 				struct regulation_constraints *constraints)
37 {
38 	u32 pval;
39 	int i;
40 	static const char *const props[] = {
41 		"regulator-oc-%s-microamp",
42 		"regulator-ov-%s-microvolt",
43 		"regulator-temp-%s-kelvin",
44 		"regulator-uv-%s-microvolt",
45 	};
46 	struct notification_limit *limits[] = {
47 		&constraints->over_curr_limits,
48 		&constraints->over_voltage_limits,
49 		&constraints->temp_limits,
50 		&constraints->under_voltage_limits,
51 	};
52 	bool set[4] = {0};
53 
54 	/* Protection limits: */
55 	for (i = 0; i < ARRAY_SIZE(props); i++) {
56 		char prop[255];
57 		bool found;
58 		int j;
59 		static const char *const lvl[] = {
60 			"protection", "error", "warn"
61 		};
62 		int *l[] = {
63 			&limits[i]->prot, &limits[i]->err, &limits[i]->warn,
64 		};
65 
66 		for (j = 0; j < ARRAY_SIZE(lvl); j++) {
67 			snprintf(prop, 255, props[i], lvl[j]);
68 			found = !of_property_read_u32(np, prop, &pval);
69 			if (found)
70 				fill_limit(l[j], pval);
71 			set[i] |= found;
72 		}
73 	}
74 	constraints->over_current_detection = set[0];
75 	constraints->over_voltage_detection = set[1];
76 	constraints->over_temp_detection = set[2];
77 	constraints->under_voltage_detection = set[3];
78 }
79 
of_get_regulation_constraints(struct device * dev,struct device_node * np,struct regulator_init_data ** init_data,const struct regulator_desc * desc)80 static int of_get_regulation_constraints(struct device *dev,
81 					struct device_node *np,
82 					struct regulator_init_data **init_data,
83 					const struct regulator_desc *desc)
84 {
85 	struct regulation_constraints *constraints = &(*init_data)->constraints;
86 	struct regulator_state *suspend_state;
87 	struct device_node *suspend_np;
88 	unsigned int mode;
89 	int ret, i, len;
90 	int n_phandles;
91 	u32 pval;
92 
93 	n_phandles = of_count_phandle_with_args(np, "regulator-coupled-with",
94 						NULL);
95 	n_phandles = max(n_phandles, 0);
96 
97 	constraints->name = of_get_property(np, "regulator-name", NULL);
98 
99 	if (!of_property_read_u32(np, "regulator-min-microvolt", &pval))
100 		constraints->min_uV = pval;
101 
102 	if (!of_property_read_u32(np, "regulator-max-microvolt", &pval))
103 		constraints->max_uV = pval;
104 
105 	/* Voltage change possible? */
106 	if (constraints->min_uV != constraints->max_uV)
107 		constraints->valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE;
108 
109 	/* Do we have a voltage range, if so try to apply it? */
110 	if (constraints->min_uV && constraints->max_uV)
111 		constraints->apply_uV = true;
112 
113 	if (!of_property_read_u32(np, "regulator-microvolt-offset", &pval))
114 		constraints->uV_offset = pval;
115 	if (!of_property_read_u32(np, "regulator-min-microamp", &pval))
116 		constraints->min_uA = pval;
117 	if (!of_property_read_u32(np, "regulator-max-microamp", &pval))
118 		constraints->max_uA = pval;
119 
120 	if (!of_property_read_u32(np, "regulator-input-current-limit-microamp",
121 				  &pval))
122 		constraints->ilim_uA = pval;
123 
124 	/* Current change possible? */
125 	if (constraints->min_uA != constraints->max_uA)
126 		constraints->valid_ops_mask |= REGULATOR_CHANGE_CURRENT;
127 
128 	constraints->boot_on = of_property_read_bool(np, "regulator-boot-on");
129 	constraints->always_on = of_property_read_bool(np, "regulator-always-on");
130 	if (!constraints->always_on) /* status change should be possible. */
131 		constraints->valid_ops_mask |= REGULATOR_CHANGE_STATUS;
132 
133 	constraints->pull_down = of_property_read_bool(np, "regulator-pull-down");
134 	constraints->system_critical = of_property_read_bool(np,
135 						"system-critical-regulator");
136 
137 	if (of_property_read_bool(np, "regulator-allow-bypass"))
138 		constraints->valid_ops_mask |= REGULATOR_CHANGE_BYPASS;
139 
140 	if (of_property_read_bool(np, "regulator-allow-set-load"))
141 		constraints->valid_ops_mask |= REGULATOR_CHANGE_DRMS;
142 
143 	ret = of_property_read_u32(np, "regulator-ramp-delay", &pval);
144 	if (!ret) {
145 		if (pval)
146 			constraints->ramp_delay = pval;
147 		else
148 			constraints->ramp_disable = true;
149 	}
150 
151 	ret = of_property_read_u32(np, "regulator-settling-time-us", &pval);
152 	if (!ret)
153 		constraints->settling_time = pval;
154 
155 	ret = of_property_read_u32(np, "regulator-settling-time-up-us", &pval);
156 	if (!ret)
157 		constraints->settling_time_up = pval;
158 	if (constraints->settling_time_up && constraints->settling_time) {
159 		pr_warn("%pOFn: ambiguous configuration for settling time, ignoring 'regulator-settling-time-up-us'\n",
160 			np);
161 		constraints->settling_time_up = 0;
162 	}
163 
164 	ret = of_property_read_u32(np, "regulator-settling-time-down-us",
165 				   &pval);
166 	if (!ret)
167 		constraints->settling_time_down = pval;
168 	if (constraints->settling_time_down && constraints->settling_time) {
169 		pr_warn("%pOFn: ambiguous configuration for settling time, ignoring 'regulator-settling-time-down-us'\n",
170 			np);
171 		constraints->settling_time_down = 0;
172 	}
173 
174 	ret = of_property_read_u32(np, "regulator-enable-ramp-delay", &pval);
175 	if (!ret)
176 		constraints->enable_time = pval;
177 
178 	ret = of_property_read_u32(np, "regulator-uv-survival-time-ms", &pval);
179 	if (!ret)
180 		constraints->uv_less_critical_window_ms = pval;
181 	else
182 		constraints->uv_less_critical_window_ms =
183 				REGULATOR_DEF_UV_LESS_CRITICAL_WINDOW_MS;
184 
185 	constraints->soft_start = of_property_read_bool(np,
186 					"regulator-soft-start");
187 	ret = of_property_read_u32(np, "regulator-active-discharge", &pval);
188 	if (!ret) {
189 		constraints->active_discharge =
190 				(pval) ? REGULATOR_ACTIVE_DISCHARGE_ENABLE :
191 					REGULATOR_ACTIVE_DISCHARGE_DISABLE;
192 	}
193 
194 	if (!of_property_read_u32(np, "regulator-initial-mode", &pval)) {
195 		if (desc && desc->of_map_mode) {
196 			mode = desc->of_map_mode(pval);
197 			if (mode == REGULATOR_MODE_INVALID)
198 				pr_err("%pOFn: invalid mode %u\n", np, pval);
199 			else
200 				constraints->initial_mode = mode;
201 		} else {
202 			pr_warn("%pOFn: mapping for mode %d not defined\n",
203 				np, pval);
204 		}
205 	}
206 
207 	len = of_property_count_elems_of_size(np, "regulator-allowed-modes",
208 						sizeof(u32));
209 	if (len > 0) {
210 		if (desc && desc->of_map_mode) {
211 			for (i = 0; i < len; i++) {
212 				ret = of_property_read_u32_index(np,
213 					"regulator-allowed-modes", i, &pval);
214 				if (ret) {
215 					pr_err("%pOFn: couldn't read allowed modes index %d, ret=%d\n",
216 						np, i, ret);
217 					break;
218 				}
219 				mode = desc->of_map_mode(pval);
220 				if (mode == REGULATOR_MODE_INVALID)
221 					pr_err("%pOFn: invalid regulator-allowed-modes element %u\n",
222 						np, pval);
223 				else
224 					constraints->valid_modes_mask |= mode;
225 			}
226 			if (constraints->valid_modes_mask)
227 				constraints->valid_ops_mask
228 					|= REGULATOR_CHANGE_MODE;
229 		} else {
230 			pr_warn("%pOFn: mode mapping not defined\n", np);
231 		}
232 	}
233 
234 	if (!of_property_read_u32(np, "regulator-system-load", &pval))
235 		constraints->system_load = pval;
236 
237 	if (n_phandles) {
238 		constraints->max_spread = devm_kzalloc(dev,
239 				sizeof(*constraints->max_spread) * n_phandles,
240 				GFP_KERNEL);
241 
242 		if (!constraints->max_spread)
243 			return -ENOMEM;
244 
245 		of_property_read_u32_array(np, "regulator-coupled-max-spread",
246 					   constraints->max_spread, n_phandles);
247 	}
248 
249 	if (!of_property_read_u32(np, "regulator-max-step-microvolt",
250 				  &pval))
251 		constraints->max_uV_step = pval;
252 
253 	constraints->over_current_protection = of_property_read_bool(np,
254 					"regulator-over-current-protection");
255 
256 	of_get_regulator_prot_limits(np, constraints);
257 
258 	for (i = 0; i < ARRAY_SIZE(regulator_states); i++) {
259 		switch (i) {
260 		case PM_SUSPEND_MEM:
261 			suspend_state = &constraints->state_mem;
262 			break;
263 		case PM_SUSPEND_MAX:
264 			suspend_state = &constraints->state_disk;
265 			break;
266 		case PM_SUSPEND_STANDBY:
267 			suspend_state = &constraints->state_standby;
268 			break;
269 		case PM_SUSPEND_ON:
270 		case PM_SUSPEND_TO_IDLE:
271 		default:
272 			continue;
273 		}
274 
275 		suspend_np = of_get_child_by_name(np, regulator_states[i]);
276 		if (!suspend_np)
277 			continue;
278 		if (!suspend_state) {
279 			of_node_put(suspend_np);
280 			continue;
281 		}
282 
283 		if (!of_property_read_u32(suspend_np, "regulator-mode",
284 					  &pval)) {
285 			if (desc && desc->of_map_mode) {
286 				mode = desc->of_map_mode(pval);
287 				if (mode == REGULATOR_MODE_INVALID)
288 					pr_err("%pOFn: invalid mode %u\n",
289 					       np, pval);
290 				else
291 					suspend_state->mode = mode;
292 			} else {
293 				pr_warn("%pOFn: mapping for mode %d not defined\n",
294 					np, pval);
295 			}
296 		}
297 
298 		if (of_property_read_bool(suspend_np,
299 					"regulator-on-in-suspend"))
300 			suspend_state->enabled = ENABLE_IN_SUSPEND;
301 		else if (of_property_read_bool(suspend_np,
302 					"regulator-off-in-suspend"))
303 			suspend_state->enabled = DISABLE_IN_SUSPEND;
304 
305 		if (!of_property_read_u32(suspend_np,
306 				"regulator-suspend-min-microvolt", &pval))
307 			suspend_state->min_uV = pval;
308 
309 		if (!of_property_read_u32(suspend_np,
310 				"regulator-suspend-max-microvolt", &pval))
311 			suspend_state->max_uV = pval;
312 
313 		if (!of_property_read_u32(suspend_np,
314 					"regulator-suspend-microvolt", &pval))
315 			suspend_state->uV = pval;
316 		else /* otherwise use min_uV as default suspend voltage */
317 			suspend_state->uV = suspend_state->min_uV;
318 
319 		if (of_property_read_bool(suspend_np,
320 					"regulator-changeable-in-suspend"))
321 			suspend_state->changeable = true;
322 
323 		if (i == PM_SUSPEND_MEM)
324 			constraints->initial_state = PM_SUSPEND_MEM;
325 
326 		of_node_put(suspend_np);
327 		suspend_state = NULL;
328 		suspend_np = NULL;
329 	}
330 
331 	return 0;
332 }
333 
334 /**
335  * of_get_regulator_init_data - extract regulator_init_data structure info
336  * @dev: device requesting for regulator_init_data
337  * @node: regulator device node
338  * @desc: regulator description
339  *
340  * Populates regulator_init_data structure by extracting data from device
341  * tree node.
342  *
343  * Return: Pointer to a populated &struct regulator_init_data or NULL if
344  *	   memory allocation fails.
345  */
of_get_regulator_init_data(struct device * dev,struct device_node * node,const struct regulator_desc * desc)346 struct regulator_init_data *of_get_regulator_init_data(struct device *dev,
347 					  struct device_node *node,
348 					  const struct regulator_desc *desc)
349 {
350 	struct regulator_init_data *init_data;
351 
352 	if (!node)
353 		return NULL;
354 
355 	init_data = devm_kzalloc(dev, sizeof(*init_data), GFP_KERNEL);
356 	if (!init_data)
357 		return NULL; /* Out of memory? */
358 
359 	if (of_get_regulation_constraints(dev, node, &init_data, desc))
360 		return NULL;
361 
362 	return init_data;
363 }
364 EXPORT_SYMBOL_GPL(of_get_regulator_init_data);
365 
366 struct devm_of_regulator_matches {
367 	struct of_regulator_match *matches;
368 	unsigned int num_matches;
369 };
370 
devm_of_regulator_put_matches(struct device * dev,void * res)371 static void devm_of_regulator_put_matches(struct device *dev, void *res)
372 {
373 	struct devm_of_regulator_matches *devm_matches = res;
374 	int i;
375 
376 	for (i = 0; i < devm_matches->num_matches; i++)
377 		of_node_put(devm_matches->matches[i].of_node);
378 }
379 
380 /**
381  * of_regulator_match - extract multiple regulator init data from device tree.
382  * @dev: device requesting the data
383  * @node: parent device node of the regulators
384  * @matches: match table for the regulators
385  * @num_matches: number of entries in match table
386  *
387  * This function uses a match table specified by the regulator driver to
388  * parse regulator init data from the device tree. @node is expected to
389  * contain a set of child nodes, each providing the init data for one
390  * regulator. The data parsed from a child node will be matched to a regulator
391  * based on either the deprecated property regulator-compatible if present,
392  * or otherwise the child node's name. Note that the match table is modified
393  * in place and an additional of_node reference is taken for each matched
394  * regulator.
395  *
396  * Return: The number of matches found or a negative error number on failure.
397  */
of_regulator_match(struct device * dev,struct device_node * node,struct of_regulator_match * matches,unsigned int num_matches)398 int of_regulator_match(struct device *dev, struct device_node *node,
399 		       struct of_regulator_match *matches,
400 		       unsigned int num_matches)
401 {
402 	unsigned int count = 0;
403 	unsigned int i;
404 	const char *name;
405 	struct device_node *child;
406 	struct devm_of_regulator_matches *devm_matches;
407 
408 	if (!dev || !node)
409 		return -EINVAL;
410 
411 	devm_matches = devres_alloc(devm_of_regulator_put_matches,
412 				    sizeof(struct devm_of_regulator_matches),
413 				    GFP_KERNEL);
414 	if (!devm_matches)
415 		return -ENOMEM;
416 
417 	devm_matches->matches = matches;
418 	devm_matches->num_matches = num_matches;
419 
420 	devres_add(dev, devm_matches);
421 
422 	for (i = 0; i < num_matches; i++) {
423 		struct of_regulator_match *match = &matches[i];
424 		match->init_data = NULL;
425 		match->of_node = NULL;
426 	}
427 
428 	for_each_child_of_node(node, child) {
429 		name = of_get_property(child,
430 					"regulator-compatible", NULL);
431 		if (!name)
432 			name = child->name;
433 		for (i = 0; i < num_matches; i++) {
434 			struct of_regulator_match *match = &matches[i];
435 			if (match->of_node)
436 				continue;
437 
438 			if (strcmp(match->name, name))
439 				continue;
440 
441 			match->init_data =
442 				of_get_regulator_init_data(dev, child,
443 							   match->desc);
444 			if (!match->init_data) {
445 				dev_err(dev,
446 					"failed to parse DT for regulator %pOFn\n",
447 					child);
448 				of_node_put(child);
449 				goto err_put;
450 			}
451 			match->of_node = of_node_get(child);
452 			count++;
453 			break;
454 		}
455 	}
456 
457 	return count;
458 
459 err_put:
460 	for (i = 0; i < num_matches; i++) {
461 		struct of_regulator_match *match = &matches[i];
462 
463 		match->init_data = NULL;
464 		if (match->of_node) {
465 			of_node_put(match->of_node);
466 			match->of_node = NULL;
467 		}
468 	}
469 	return -EINVAL;
470 }
471 EXPORT_SYMBOL_GPL(of_regulator_match);
472 
473 static struct
regulator_of_get_init_node(struct device * dev,const struct regulator_desc * desc)474 device_node *regulator_of_get_init_node(struct device *dev,
475 					const struct regulator_desc *desc)
476 {
477 	struct device_node *search, *child;
478 	const char *name;
479 
480 	if (!dev->of_node || !desc->of_match)
481 		return NULL;
482 
483 	if (desc->regulators_node) {
484 		search = of_get_child_by_name(dev->of_node,
485 					      desc->regulators_node);
486 	} else {
487 		search = of_node_get(dev->of_node);
488 
489 		if (!strcmp(desc->of_match, search->name))
490 			return search;
491 	}
492 
493 	if (!search) {
494 		dev_dbg(dev, "Failed to find regulator container node '%s'\n",
495 			desc->regulators_node);
496 		return NULL;
497 	}
498 
499 	for_each_available_child_of_node(search, child) {
500 		name = of_get_property(child, "regulator-compatible", NULL);
501 		if (!name) {
502 			if (!desc->of_match_full_name)
503 				name = child->name;
504 			else
505 				name = child->full_name;
506 		}
507 
508 		if (!strcmp(desc->of_match, name)) {
509 			of_node_put(search);
510 			/*
511 			 * 'of_node_get(child)' is already performed by the
512 			 * for_each loop.
513 			 */
514 			return child;
515 		}
516 	}
517 
518 	of_node_put(search);
519 
520 	return NULL;
521 }
522 
regulator_of_get_init_data(struct device * dev,const struct regulator_desc * desc,struct regulator_config * config,struct device_node ** node)523 struct regulator_init_data *regulator_of_get_init_data(struct device *dev,
524 					    const struct regulator_desc *desc,
525 					    struct regulator_config *config,
526 					    struct device_node **node)
527 {
528 	struct device_node *child;
529 	struct regulator_init_data *init_data = NULL;
530 
531 	child = regulator_of_get_init_node(config->dev, desc);
532 	if (!child)
533 		return NULL;
534 
535 	init_data = of_get_regulator_init_data(dev, child, desc);
536 	if (!init_data) {
537 		dev_err(dev, "failed to parse DT for regulator %pOFn\n", child);
538 		goto error;
539 	}
540 
541 	if (desc->of_parse_cb) {
542 		int ret;
543 
544 		ret = desc->of_parse_cb(child, desc, config);
545 		if (ret) {
546 			if (ret == -EPROBE_DEFER) {
547 				of_node_put(child);
548 				return ERR_PTR(-EPROBE_DEFER);
549 			}
550 			dev_err(dev,
551 				"driver callback failed to parse DT for regulator %pOFn\n",
552 				child);
553 			goto error;
554 		}
555 	}
556 
557 	*node = child;
558 
559 	return init_data;
560 
561 error:
562 	of_node_put(child);
563 
564 	return NULL;
565 }
566 
567 /**
568  * of_get_child_regulator - get a child regulator device node
569  * based on supply name
570  * @parent: Parent device node
571  * @prop_name: Combination regulator supply name and "-supply"
572  *
573  * Traverse all child nodes.
574  * Extract the child regulator device node corresponding to the supply name.
575  *
576  * Return: Pointer to the &struct device_node corresponding to the regulator
577  *	   if found, or %NULL if not found.
578  */
of_get_child_regulator(struct device_node * parent,const char * prop_name)579 static struct device_node *of_get_child_regulator(struct device_node *parent,
580 						  const char *prop_name)
581 {
582 	struct device_node *regnode = NULL;
583 	struct device_node *child = NULL;
584 
585 	for_each_child_of_node(parent, child) {
586 		regnode = of_parse_phandle(child, prop_name, 0);
587 		if (regnode)
588 			goto err_node_put;
589 
590 		regnode = of_get_child_regulator(child, prop_name);
591 		if (regnode)
592 			goto err_node_put;
593 	}
594 	return NULL;
595 
596 err_node_put:
597 	of_node_put(child);
598 	return regnode;
599 }
600 
601 /**
602  * of_get_regulator - get a regulator device node based on supply name
603  * @dev: Device pointer for dev_printk() messages
604  * @node: Device node pointer for supply property lookup
605  * @supply: regulator supply name
606  *
607  * Extract the regulator device node corresponding to the supply name.
608  *
609  * Return: Pointer to the &struct device_node corresponding to the regulator
610  *	   if found, or %NULL if not found.
611  */
of_get_regulator(struct device * dev,struct device_node * node,const char * supply)612 static struct device_node *of_get_regulator(struct device *dev, struct device_node *node,
613 					    const char *supply)
614 {
615 	struct device_node *regnode = NULL;
616 	char prop_name[64]; /* 64 is max size of property name */
617 
618 	dev_dbg(dev, "Looking up %s-supply from device node %pOF\n", supply, node);
619 
620 	snprintf(prop_name, 64, "%s-supply", supply);
621 	regnode = of_parse_phandle(node, prop_name, 0);
622 	if (regnode)
623 		return regnode;
624 
625 	regnode = of_get_child_regulator(dev->of_node, prop_name);
626 	if (regnode)
627 		return regnode;
628 
629 	dev_dbg(dev, "Looking up %s property in node %pOF failed\n", prop_name, dev->of_node);
630 	return NULL;
631 }
632 
of_find_regulator_by_node(struct device_node * np)633 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
634 {
635 	struct device *dev;
636 
637 	dev = class_find_device_by_of_node(&regulator_class, np);
638 
639 	return dev ? dev_to_rdev(dev) : NULL;
640 }
641 
642 /**
643  * of_regulator_dev_lookup - lookup a regulator device with device tree only
644  * @dev: Device pointer for regulator supply lookup.
645  * @np: Device node pointer for regulator supply lookup.
646  * @supply: Supply name or regulator ID.
647  *
648  * Return: Pointer to the &struct regulator_dev on success, or ERR_PTR()
649  *	   encoded value on error.
650  *
651  * If successful, returns a pointer to the &struct regulator_dev that
652  * corresponds to the name @supply and with the embedded &struct device
653  * refcount incremented by one. The refcount must be dropped by calling
654  * put_device().
655  *
656  * On failure one of the following ERR_PTR() encoded values is returned:
657  * * -%ENODEV if lookup fails permanently.
658  * * -%EPROBE_DEFER if lookup could succeed in the future.
659  */
of_regulator_dev_lookup(struct device * dev,struct device_node * np,const char * supply)660 struct regulator_dev *of_regulator_dev_lookup(struct device *dev, struct device_node *np,
661 					      const char *supply)
662 {
663 	struct regulator_dev *r;
664 	struct device_node *node;
665 
666 	node = of_get_regulator(dev, np, supply);
667 	if (node) {
668 		r = of_find_regulator_by_node(node);
669 		of_node_put(node);
670 		if (r)
671 			return r;
672 
673 		/*
674 		 * We have a node, but there is no device.
675 		 * assume it has not registered yet.
676 		 */
677 		return ERR_PTR(-EPROBE_DEFER);
678 	}
679 
680 	return ERR_PTR(-ENODEV);
681 }
682 
_of_regulator_get(struct device * dev,struct device_node * node,const char * id,enum regulator_get_type get_type)683 static struct regulator *_of_regulator_get(struct device *dev, struct device_node *node,
684 					   const char *id, enum regulator_get_type get_type)
685 {
686 	struct regulator_dev *r;
687 	int ret;
688 
689 	ret = _regulator_get_common_check(dev, id, get_type);
690 	if (ret)
691 		return ERR_PTR(ret);
692 
693 	r = of_regulator_dev_lookup(dev, node, id);
694 	return _regulator_get_common(r, dev, id, get_type);
695 }
696 
697 /**
698  * of_regulator_get_optional - get optional regulator via device tree lookup
699  * @dev: device used for dev_printk() messages
700  * @node: device node for regulator "consumer"
701  * @id: Supply name
702  *
703  * Return: pointer to struct regulator corresponding to the regulator producer,
704  *	   or PTR_ERR() encoded error number.
705  *
706  * This is intended for use by consumers that want to get a regulator
707  * supply directly from a device node, and can and want to deal with
708  * absence of such supplies. This will _not_ consider supply aliases.
709  * See regulator_dev_lookup().
710  */
of_regulator_get_optional(struct device * dev,struct device_node * node,const char * id)711 struct regulator *of_regulator_get_optional(struct device *dev,
712 					    struct device_node *node,
713 					    const char *id)
714 {
715 	return _of_regulator_get(dev, node, id, OPTIONAL_GET);
716 }
717 EXPORT_SYMBOL_GPL(of_regulator_get_optional);
718 
719 /*
720  * Returns number of regulators coupled with rdev.
721  */
of_get_n_coupled(struct regulator_dev * rdev)722 int of_get_n_coupled(struct regulator_dev *rdev)
723 {
724 	struct device_node *node = rdev->dev.of_node;
725 	int n_phandles;
726 
727 	n_phandles = of_count_phandle_with_args(node,
728 						"regulator-coupled-with",
729 						NULL);
730 
731 	return (n_phandles > 0) ? n_phandles : 0;
732 }
733 
734 /* Looks for "to_find" device_node in src's "regulator-coupled-with" property */
of_coupling_find_node(struct device_node * src,struct device_node * to_find,int * index)735 static bool of_coupling_find_node(struct device_node *src,
736 				  struct device_node *to_find,
737 				  int *index)
738 {
739 	int n_phandles, i;
740 	bool found = false;
741 
742 	n_phandles = of_count_phandle_with_args(src,
743 						"regulator-coupled-with",
744 						NULL);
745 
746 	for (i = 0; i < n_phandles; i++) {
747 		struct device_node *tmp = of_parse_phandle(src,
748 					   "regulator-coupled-with", i);
749 
750 		if (!tmp)
751 			break;
752 
753 		/* found */
754 		if (tmp == to_find)
755 			found = true;
756 
757 		of_node_put(tmp);
758 
759 		if (found) {
760 			*index = i;
761 			break;
762 		}
763 	}
764 
765 	return found;
766 }
767 
768 /**
769  * of_check_coupling_data - Parse rdev's coupling properties and check data
770  *			    consistency
771  * @rdev: pointer to regulator_dev whose data is checked
772  *
773  * Function checks if all the following conditions are met:
774  * - rdev's max_spread is greater than 0
775  * - all coupled regulators have the same max_spread
776  * - all coupled regulators have the same number of regulator_dev phandles
777  * - all regulators are linked to each other
778  *
779  * Return: True if all conditions are met; false otherwise.
780  */
of_check_coupling_data(struct regulator_dev * rdev)781 bool of_check_coupling_data(struct regulator_dev *rdev)
782 {
783 	struct device_node *node = rdev->dev.of_node;
784 	int n_phandles = of_get_n_coupled(rdev);
785 	struct device_node *c_node;
786 	int index;
787 	int i;
788 	bool ret = true;
789 
790 	/* iterate over rdev's phandles */
791 	for (i = 0; i < n_phandles; i++) {
792 		int max_spread = rdev->constraints->max_spread[i];
793 		int c_max_spread, c_n_phandles;
794 
795 		if (max_spread <= 0) {
796 			dev_err(&rdev->dev, "max_spread value invalid\n");
797 			return false;
798 		}
799 
800 		c_node = of_parse_phandle(node,
801 					  "regulator-coupled-with", i);
802 
803 		if (!c_node)
804 			ret = false;
805 
806 		c_n_phandles = of_count_phandle_with_args(c_node,
807 							  "regulator-coupled-with",
808 							  NULL);
809 
810 		if (c_n_phandles != n_phandles) {
811 			dev_err(&rdev->dev, "number of coupled reg phandles mismatch\n");
812 			ret = false;
813 			goto clean;
814 		}
815 
816 		if (!of_coupling_find_node(c_node, node, &index)) {
817 			dev_err(&rdev->dev, "missing 2-way linking for coupled regulators\n");
818 			ret = false;
819 			goto clean;
820 		}
821 
822 		if (of_property_read_u32_index(c_node, "regulator-coupled-max-spread",
823 					       index, &c_max_spread)) {
824 			ret = false;
825 			goto clean;
826 		}
827 
828 		if (c_max_spread != max_spread) {
829 			dev_err(&rdev->dev,
830 				"coupled regulators max_spread mismatch\n");
831 			ret = false;
832 			goto clean;
833 		}
834 
835 clean:
836 		of_node_put(c_node);
837 		if (!ret)
838 			break;
839 	}
840 
841 	return ret;
842 }
843 
844 /**
845  * of_parse_coupled_regulator() - Get regulator_dev pointer from rdev's property
846  * @rdev: Pointer to regulator_dev, whose DTS is used as a source to parse
847  *	  "regulator-coupled-with" property
848  * @index: Index in phandles array
849  *
850  * Return: Pointer to the &struct regulator_dev parsed from DTS, or %NULL if
851  *	   it has not yet been registered.
852  */
of_parse_coupled_regulator(struct regulator_dev * rdev,int index)853 struct regulator_dev *of_parse_coupled_regulator(struct regulator_dev *rdev,
854 						 int index)
855 {
856 	struct device_node *node = rdev->dev.of_node;
857 	struct device_node *c_node;
858 	struct regulator_dev *c_rdev;
859 
860 	c_node = of_parse_phandle(node, "regulator-coupled-with", index);
861 	if (!c_node)
862 		return NULL;
863 
864 	c_rdev = of_find_regulator_by_node(c_node);
865 
866 	of_node_put(c_node);
867 
868 	return c_rdev;
869 }
870 
871 /*
872  * Check if name is a supply name according to the '*-supply' pattern
873  * return 0 if false
874  * return length of supply name without the -supply
875  */
is_supply_name(const char * name)876 static int is_supply_name(const char *name)
877 {
878 	int strs, i;
879 
880 	strs = strlen(name);
881 	/* string need to be at minimum len(x-supply) */
882 	if (strs < 8)
883 		return 0;
884 	for (i = strs - 6; i > 0; i--) {
885 		/* find first '-' and check if right part is supply */
886 		if (name[i] != '-')
887 			continue;
888 		if (strcmp(name + i + 1, "supply") != 0)
889 			return 0;
890 		return i;
891 	}
892 	return 0;
893 }
894 
895 /**
896  * of_regulator_bulk_get_all - get multiple regulator consumers
897  *
898  * @dev:	Device to supply
899  * @np:		device node to search for consumers
900  * @consumers:  Configuration of consumers; clients are stored here.
901  *
902  * This helper function allows drivers to get several regulator
903  * consumers in one operation.  If any of the regulators cannot be
904  * acquired then any regulators that were allocated will be freed
905  * before returning to the caller, and @consumers will not be
906  * changed.
907  *
908  * Return: Number of regulators on success, or a negative error number
909  *	   on failure.
910  */
of_regulator_bulk_get_all(struct device * dev,struct device_node * np,struct regulator_bulk_data ** consumers)911 int of_regulator_bulk_get_all(struct device *dev, struct device_node *np,
912 			      struct regulator_bulk_data **consumers)
913 {
914 	int num_consumers = 0;
915 	struct regulator *tmp;
916 	struct regulator_bulk_data *_consumers = NULL;
917 	struct property *prop;
918 	int i, n = 0, ret;
919 	char name[64];
920 
921 	/*
922 	 * first pass: get numbers of xxx-supply
923 	 * second pass: fill consumers
924 	 */
925 restart:
926 	for_each_property_of_node(np, prop) {
927 		i = is_supply_name(prop->name);
928 		if (i == 0)
929 			continue;
930 		if (!_consumers) {
931 			num_consumers++;
932 			continue;
933 		} else {
934 			memcpy(name, prop->name, i);
935 			name[i] = '\0';
936 			tmp = regulator_get(dev, name);
937 			if (IS_ERR(tmp)) {
938 				ret = PTR_ERR(tmp);
939 				goto error;
940 			}
941 			_consumers[n].consumer = tmp;
942 			n++;
943 			continue;
944 		}
945 	}
946 	if (_consumers) {
947 		*consumers = _consumers;
948 		return num_consumers;
949 	}
950 	if (num_consumers == 0)
951 		return 0;
952 	_consumers = kmalloc_array(num_consumers,
953 				   sizeof(struct regulator_bulk_data),
954 				   GFP_KERNEL);
955 	if (!_consumers)
956 		return -ENOMEM;
957 	goto restart;
958 
959 error:
960 	while (--n >= 0)
961 		regulator_put(_consumers[n].consumer);
962 	kfree(_consumers);
963 	return ret;
964 }
965 EXPORT_SYMBOL_GPL(of_regulator_bulk_get_all);
966