• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI K3 DSP Remote Processor(s) driver
4  *
5  * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
6  *	Suman Anna <s-anna@ti.com>
7  */
8 
9 #include <linux/io.h>
10 #include <linux/mailbox_client.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_reserved_mem.h>
14 #include <linux/omap-mailbox.h>
15 #include <linux/platform_device.h>
16 #include <linux/remoteproc.h>
17 #include <linux/reset.h>
18 #include <linux/slab.h>
19 
20 #include "omap_remoteproc.h"
21 #include "remoteproc_internal.h"
22 #include "ti_sci_proc.h"
23 
24 #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK	(SZ_16M - 1)
25 
26 /**
27  * struct k3_dsp_mem - internal memory structure
28  * @cpu_addr: MPU virtual address of the memory region
29  * @bus_addr: Bus address used to access the memory region
30  * @dev_addr: Device address of the memory region from DSP view
31  * @size: Size of the memory region
32  */
33 struct k3_dsp_mem {
34 	void __iomem *cpu_addr;
35 	phys_addr_t bus_addr;
36 	u32 dev_addr;
37 	size_t size;
38 };
39 
40 /**
41  * struct k3_dsp_mem_data - memory definitions for a DSP
42  * @name: name for this memory entry
43  * @dev_addr: device address for the memory entry
44  */
45 struct k3_dsp_mem_data {
46 	const char *name;
47 	const u32 dev_addr;
48 };
49 
50 /**
51  * struct k3_dsp_dev_data - device data structure for a DSP
52  * @mems: pointer to memory definitions for a DSP
53  * @num_mems: number of memory regions in @mems
54  * @boot_align_addr: boot vector address alignment granularity
55  * @uses_lreset: flag to denote the need for local reset management
56  */
57 struct k3_dsp_dev_data {
58 	const struct k3_dsp_mem_data *mems;
59 	u32 num_mems;
60 	u32 boot_align_addr;
61 	bool uses_lreset;
62 };
63 
64 /**
65  * struct k3_dsp_rproc - k3 DSP remote processor driver structure
66  * @dev: cached device pointer
67  * @rproc: remoteproc device handle
68  * @mem: internal memory regions data
69  * @num_mems: number of internal memory regions
70  * @rmem: reserved memory regions data
71  * @num_rmems: number of reserved memory regions
72  * @reset: reset control handle
73  * @data: pointer to DSP-specific device data
74  * @tsp: TI-SCI processor control handle
75  * @ti_sci: TI-SCI handle
76  * @ti_sci_id: TI-SCI device identifier
77  * @mbox: mailbox channel handle
78  * @client: mailbox client to request the mailbox channel
79  */
80 struct k3_dsp_rproc {
81 	struct device *dev;
82 	struct rproc *rproc;
83 	struct k3_dsp_mem *mem;
84 	int num_mems;
85 	struct k3_dsp_mem *rmem;
86 	int num_rmems;
87 	struct reset_control *reset;
88 	const struct k3_dsp_dev_data *data;
89 	struct ti_sci_proc *tsp;
90 	const struct ti_sci_handle *ti_sci;
91 	u32 ti_sci_id;
92 	struct mbox_chan *mbox;
93 	struct mbox_client client;
94 };
95 
96 /**
97  * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler
98  * @client: mailbox client pointer used for requesting the mailbox channel
99  * @data: mailbox payload
100  *
101  * This handler is invoked by the OMAP mailbox driver whenever a mailbox
102  * message is received. Usually, the mailbox payload simply contains
103  * the index of the virtqueue that is kicked by the remote processor,
104  * and we let remoteproc core handle it.
105  *
106  * In addition to virtqueue indices, we also have some out-of-band values
107  * that indicate different events. Those values are deliberately very
108  * large so they don't coincide with virtqueue indices.
109  */
k3_dsp_rproc_mbox_callback(struct mbox_client * client,void * data)110 static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data)
111 {
112 	struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc,
113 						  client);
114 	struct device *dev = kproc->rproc->dev.parent;
115 	const char *name = kproc->rproc->name;
116 	u32 msg = omap_mbox_message(data);
117 
118 	dev_dbg(dev, "mbox msg: 0x%x\n", msg);
119 
120 	switch (msg) {
121 	case RP_MBOX_CRASH:
122 		/*
123 		 * remoteproc detected an exception, but error recovery is not
124 		 * supported. So, just log this for now
125 		 */
126 		dev_err(dev, "K3 DSP rproc %s crashed\n", name);
127 		break;
128 	case RP_MBOX_ECHO_REPLY:
129 		dev_info(dev, "received echo reply from %s\n", name);
130 		break;
131 	default:
132 		/* silently handle all other valid messages */
133 		if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
134 			return;
135 		if (msg > kproc->rproc->max_notifyid) {
136 			dev_dbg(dev, "dropping unknown message 0x%x", msg);
137 			return;
138 		}
139 		/* msg contains the index of the triggered vring */
140 		if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
141 			dev_dbg(dev, "no message was found in vqid %d\n", msg);
142 	}
143 }
144 
145 /*
146  * Kick the remote processor to notify about pending unprocessed messages.
147  * The vqid usage is not used and is inconsequential, as the kick is performed
148  * through a simulated GPIO (a bit in an IPC interrupt-triggering register),
149  * the remote processor is expected to process both its Tx and Rx virtqueues.
150  */
k3_dsp_rproc_kick(struct rproc * rproc,int vqid)151 static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid)
152 {
153 	struct k3_dsp_rproc *kproc = rproc->priv;
154 	struct device *dev = rproc->dev.parent;
155 	mbox_msg_t msg = (mbox_msg_t)vqid;
156 	int ret;
157 
158 	/* send the index of the triggered virtqueue in the mailbox payload */
159 	ret = mbox_send_message(kproc->mbox, (void *)msg);
160 	if (ret < 0)
161 		dev_err(dev, "failed to send mailbox message (%pe)\n",
162 			ERR_PTR(ret));
163 }
164 
165 /* Put the DSP processor into reset */
k3_dsp_rproc_reset(struct k3_dsp_rproc * kproc)166 static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc)
167 {
168 	struct device *dev = kproc->dev;
169 	int ret;
170 
171 	ret = reset_control_assert(kproc->reset);
172 	if (ret) {
173 		dev_err(dev, "local-reset assert failed (%pe)\n", ERR_PTR(ret));
174 		return ret;
175 	}
176 
177 	if (kproc->data->uses_lreset)
178 		return ret;
179 
180 	ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
181 						    kproc->ti_sci_id);
182 	if (ret) {
183 		dev_err(dev, "module-reset assert failed (%pe)\n", ERR_PTR(ret));
184 		if (reset_control_deassert(kproc->reset))
185 			dev_warn(dev, "local-reset deassert back failed\n");
186 	}
187 
188 	return ret;
189 }
190 
191 /* Release the DSP processor from reset */
k3_dsp_rproc_release(struct k3_dsp_rproc * kproc)192 static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc)
193 {
194 	struct device *dev = kproc->dev;
195 	int ret;
196 
197 	if (kproc->data->uses_lreset)
198 		goto lreset;
199 
200 	ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
201 						    kproc->ti_sci_id);
202 	if (ret) {
203 		dev_err(dev, "module-reset deassert failed (%pe)\n", ERR_PTR(ret));
204 		return ret;
205 	}
206 
207 lreset:
208 	ret = reset_control_deassert(kproc->reset);
209 	if (ret) {
210 		dev_err(dev, "local-reset deassert failed, (%pe)\n", ERR_PTR(ret));
211 		if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
212 							  kproc->ti_sci_id))
213 			dev_warn(dev, "module-reset assert back failed\n");
214 	}
215 
216 	return ret;
217 }
218 
k3_dsp_rproc_request_mbox(struct rproc * rproc)219 static int k3_dsp_rproc_request_mbox(struct rproc *rproc)
220 {
221 	struct k3_dsp_rproc *kproc = rproc->priv;
222 	struct mbox_client *client = &kproc->client;
223 	struct device *dev = kproc->dev;
224 	int ret;
225 
226 	client->dev = dev;
227 	client->tx_done = NULL;
228 	client->rx_callback = k3_dsp_rproc_mbox_callback;
229 	client->tx_block = false;
230 	client->knows_txdone = false;
231 
232 	kproc->mbox = mbox_request_channel(client, 0);
233 	if (IS_ERR(kproc->mbox))
234 		return dev_err_probe(dev, PTR_ERR(kproc->mbox),
235 				     "mbox_request_channel failed\n");
236 
237 	/*
238 	 * Ping the remote processor, this is only for sanity-sake for now;
239 	 * there is no functional effect whatsoever.
240 	 *
241 	 * Note that the reply will _not_ arrive immediately: this message
242 	 * will wait in the mailbox fifo until the remote processor is booted.
243 	 */
244 	ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
245 	if (ret < 0) {
246 		dev_err(dev, "mbox_send_message failed (%pe)\n", ERR_PTR(ret));
247 		mbox_free_channel(kproc->mbox);
248 		return ret;
249 	}
250 
251 	return 0;
252 }
253 /*
254  * The C66x DSP cores have a local reset that affects only the CPU, and a
255  * generic module reset that powers on the device and allows the DSP internal
256  * memories to be accessed while the local reset is asserted. This function is
257  * used to release the global reset on C66x DSPs to allow loading into the DSP
258  * internal RAMs. The .prepare() ops is invoked by remoteproc core before any
259  * firmware loading, and is followed by the .start() ops after loading to
260  * actually let the C66x DSP cores run. This callback is invoked only in
261  * remoteproc mode.
262  */
k3_dsp_rproc_prepare(struct rproc * rproc)263 static int k3_dsp_rproc_prepare(struct rproc *rproc)
264 {
265 	struct k3_dsp_rproc *kproc = rproc->priv;
266 	struct device *dev = kproc->dev;
267 	int ret;
268 
269 	ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
270 						    kproc->ti_sci_id);
271 	if (ret)
272 		dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading (%pe)\n",
273 			ERR_PTR(ret));
274 
275 	return ret;
276 }
277 
278 /*
279  * This function implements the .unprepare() ops and performs the complimentary
280  * operations to that of the .prepare() ops. The function is used to assert the
281  * global reset on applicable C66x cores. This completes the second portion of
282  * powering down the C66x DSP cores. The cores themselves are only halted in the
283  * .stop() callback through the local reset, and the .unprepare() ops is invoked
284  * by the remoteproc core after the remoteproc is stopped to balance the global
285  * reset. This callback is invoked only in remoteproc mode.
286  */
k3_dsp_rproc_unprepare(struct rproc * rproc)287 static int k3_dsp_rproc_unprepare(struct rproc *rproc)
288 {
289 	struct k3_dsp_rproc *kproc = rproc->priv;
290 	struct device *dev = kproc->dev;
291 	int ret;
292 
293 	ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
294 						    kproc->ti_sci_id);
295 	if (ret)
296 		dev_err(dev, "module-reset assert failed (%pe)\n", ERR_PTR(ret));
297 
298 	return ret;
299 }
300 
301 /*
302  * Power up the DSP remote processor.
303  *
304  * This function will be invoked only after the firmware for this rproc
305  * was loaded, parsed successfully, and all of its resource requirements
306  * were met. This callback is invoked only in remoteproc mode.
307  */
k3_dsp_rproc_start(struct rproc * rproc)308 static int k3_dsp_rproc_start(struct rproc *rproc)
309 {
310 	struct k3_dsp_rproc *kproc = rproc->priv;
311 	struct device *dev = kproc->dev;
312 	u32 boot_addr;
313 	int ret;
314 
315 	boot_addr = rproc->bootaddr;
316 	if (boot_addr & (kproc->data->boot_align_addr - 1)) {
317 		dev_err(dev, "invalid boot address 0x%x, must be aligned on a 0x%x boundary\n",
318 			boot_addr, kproc->data->boot_align_addr);
319 		return -EINVAL;
320 	}
321 
322 	dev_dbg(dev, "booting DSP core using boot addr = 0x%x\n", boot_addr);
323 	ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0);
324 	if (ret)
325 		return ret;
326 
327 	ret = k3_dsp_rproc_release(kproc);
328 	if (ret)
329 		return ret;
330 
331 	return 0;
332 }
333 
334 /*
335  * Stop the DSP remote processor.
336  *
337  * This function puts the DSP processor into reset, and finishes processing
338  * of any pending messages. This callback is invoked only in remoteproc mode.
339  */
k3_dsp_rproc_stop(struct rproc * rproc)340 static int k3_dsp_rproc_stop(struct rproc *rproc)
341 {
342 	struct k3_dsp_rproc *kproc = rproc->priv;
343 
344 	k3_dsp_rproc_reset(kproc);
345 
346 	return 0;
347 }
348 
349 /*
350  * Attach to a running DSP remote processor (IPC-only mode)
351  *
352  * This rproc attach callback is a NOP. The remote processor is already booted,
353  * and all required resources have been acquired during probe routine, so there
354  * is no need to issue any TI-SCI commands to boot the DSP core. This callback
355  * is invoked only in IPC-only mode and exists because rproc_validate() checks
356  * for its existence.
357  */
k3_dsp_rproc_attach(struct rproc * rproc)358 static int k3_dsp_rproc_attach(struct rproc *rproc) { return 0; }
359 
360 /*
361  * Detach from a running DSP remote processor (IPC-only mode)
362  *
363  * This rproc detach callback is a NOP. The DSP core is not stopped and will be
364  * left to continue to run its booted firmware. This callback is invoked only in
365  * IPC-only mode and exists for sanity sake.
366  */
k3_dsp_rproc_detach(struct rproc * rproc)367 static int k3_dsp_rproc_detach(struct rproc *rproc) { return 0; }
368 
369 /*
370  * This function implements the .get_loaded_rsc_table() callback and is used
371  * to provide the resource table for a booted DSP in IPC-only mode. The K3 DSP
372  * firmwares follow a design-by-contract approach and are expected to have the
373  * resource table at the base of the DDR region reserved for firmware usage.
374  * This provides flexibility for the remote processor to be booted by different
375  * bootloaders that may or may not have the ability to publish the resource table
376  * address and size through a DT property. This callback is invoked only in
377  * IPC-only mode.
378  */
k3_dsp_get_loaded_rsc_table(struct rproc * rproc,size_t * rsc_table_sz)379 static struct resource_table *k3_dsp_get_loaded_rsc_table(struct rproc *rproc,
380 							  size_t *rsc_table_sz)
381 {
382 	struct k3_dsp_rproc *kproc = rproc->priv;
383 	struct device *dev = kproc->dev;
384 
385 	if (!kproc->rmem[0].cpu_addr) {
386 		dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
387 		return ERR_PTR(-ENOMEM);
388 	}
389 
390 	/*
391 	 * NOTE: The resource table size is currently hard-coded to a maximum
392 	 * of 256 bytes. The most common resource table usage for K3 firmwares
393 	 * is to only have the vdev resource entry and an optional trace entry.
394 	 * The exact size could be computed based on resource table address, but
395 	 * the hard-coded value suffices to support the IPC-only mode.
396 	 */
397 	*rsc_table_sz = 256;
398 	return (struct resource_table *)kproc->rmem[0].cpu_addr;
399 }
400 
401 /*
402  * Custom function to translate a DSP device address (internal RAMs only) to a
403  * kernel virtual address.  The DSPs can access their RAMs at either an internal
404  * address visible only from a DSP, or at the SoC-level bus address. Both these
405  * addresses need to be looked through for translation. The translated addresses
406  * can be used either by the remoteproc core for loading (when using kernel
407  * remoteproc loader), or by any rpmsg bus drivers.
408  */
k3_dsp_rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)409 static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
410 {
411 	struct k3_dsp_rproc *kproc = rproc->priv;
412 	void __iomem *va = NULL;
413 	phys_addr_t bus_addr;
414 	u32 dev_addr, offset;
415 	size_t size;
416 	int i;
417 
418 	if (len == 0)
419 		return NULL;
420 
421 	for (i = 0; i < kproc->num_mems; i++) {
422 		bus_addr = kproc->mem[i].bus_addr;
423 		dev_addr = kproc->mem[i].dev_addr;
424 		size = kproc->mem[i].size;
425 
426 		if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) {
427 			/* handle DSP-view addresses */
428 			if (da >= dev_addr &&
429 			    ((da + len) <= (dev_addr + size))) {
430 				offset = da - dev_addr;
431 				va = kproc->mem[i].cpu_addr + offset;
432 				return (__force void *)va;
433 			}
434 		} else {
435 			/* handle SoC-view addresses */
436 			if (da >= bus_addr &&
437 			    (da + len) <= (bus_addr + size)) {
438 				offset = da - bus_addr;
439 				va = kproc->mem[i].cpu_addr + offset;
440 				return (__force void *)va;
441 			}
442 		}
443 	}
444 
445 	/* handle static DDR reserved memory regions */
446 	for (i = 0; i < kproc->num_rmems; i++) {
447 		dev_addr = kproc->rmem[i].dev_addr;
448 		size = kproc->rmem[i].size;
449 
450 		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
451 			offset = da - dev_addr;
452 			va = kproc->rmem[i].cpu_addr + offset;
453 			return (__force void *)va;
454 		}
455 	}
456 
457 	return NULL;
458 }
459 
460 static const struct rproc_ops k3_dsp_rproc_ops = {
461 	.start		= k3_dsp_rproc_start,
462 	.stop		= k3_dsp_rproc_stop,
463 	.kick		= k3_dsp_rproc_kick,
464 	.da_to_va	= k3_dsp_rproc_da_to_va,
465 };
466 
k3_dsp_rproc_of_get_memories(struct platform_device * pdev,struct k3_dsp_rproc * kproc)467 static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev,
468 					struct k3_dsp_rproc *kproc)
469 {
470 	const struct k3_dsp_dev_data *data = kproc->data;
471 	struct device *dev = &pdev->dev;
472 	struct resource *res;
473 	int num_mems = 0;
474 	int i;
475 
476 	num_mems = kproc->data->num_mems;
477 	kproc->mem = devm_kcalloc(kproc->dev, num_mems,
478 				  sizeof(*kproc->mem), GFP_KERNEL);
479 	if (!kproc->mem)
480 		return -ENOMEM;
481 
482 	for (i = 0; i < num_mems; i++) {
483 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
484 						   data->mems[i].name);
485 		if (!res) {
486 			dev_err(dev, "found no memory resource for %s\n",
487 				data->mems[i].name);
488 			return -EINVAL;
489 		}
490 		if (!devm_request_mem_region(dev, res->start,
491 					     resource_size(res),
492 					     dev_name(dev))) {
493 			dev_err(dev, "could not request %s region for resource\n",
494 				data->mems[i].name);
495 			return -EBUSY;
496 		}
497 
498 		kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
499 							 resource_size(res));
500 		if (!kproc->mem[i].cpu_addr) {
501 			dev_err(dev, "failed to map %s memory\n",
502 				data->mems[i].name);
503 			return -ENOMEM;
504 		}
505 		kproc->mem[i].bus_addr = res->start;
506 		kproc->mem[i].dev_addr = data->mems[i].dev_addr;
507 		kproc->mem[i].size = resource_size(res);
508 
509 		dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
510 			data->mems[i].name, &kproc->mem[i].bus_addr,
511 			kproc->mem[i].size, kproc->mem[i].cpu_addr,
512 			kproc->mem[i].dev_addr);
513 	}
514 	kproc->num_mems = num_mems;
515 
516 	return 0;
517 }
518 
k3_dsp_mem_release(void * data)519 static void k3_dsp_mem_release(void *data)
520 {
521 	struct device *dev = data;
522 
523 	of_reserved_mem_device_release(dev);
524 }
525 
k3_dsp_reserved_mem_init(struct k3_dsp_rproc * kproc)526 static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc)
527 {
528 	struct device *dev = kproc->dev;
529 	struct device_node *np = dev->of_node;
530 	struct device_node *rmem_np;
531 	struct reserved_mem *rmem;
532 	int num_rmems;
533 	int ret, i;
534 
535 	num_rmems = of_property_count_elems_of_size(np, "memory-region",
536 						    sizeof(phandle));
537 	if (num_rmems < 0) {
538 		dev_err(dev, "device does not reserved memory regions (%pe)\n",
539 			ERR_PTR(num_rmems));
540 		return -EINVAL;
541 	}
542 	if (num_rmems < 2) {
543 		dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
544 			num_rmems);
545 		return -EINVAL;
546 	}
547 
548 	/* use reserved memory region 0 for vring DMA allocations */
549 	ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
550 	if (ret) {
551 		dev_err(dev, "device cannot initialize DMA pool (%pe)\n",
552 			ERR_PTR(ret));
553 		return ret;
554 	}
555 	ret = devm_add_action_or_reset(dev, k3_dsp_mem_release, dev);
556 	if (ret)
557 		return ret;
558 
559 	num_rmems--;
560 	kproc->rmem = devm_kcalloc(dev, num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
561 	if (!kproc->rmem)
562 		return -ENOMEM;
563 
564 	/* use remaining reserved memory regions for static carveouts */
565 	for (i = 0; i < num_rmems; i++) {
566 		rmem_np = of_parse_phandle(np, "memory-region", i + 1);
567 		if (!rmem_np)
568 			return -EINVAL;
569 
570 		rmem = of_reserved_mem_lookup(rmem_np);
571 		of_node_put(rmem_np);
572 		if (!rmem)
573 			return -EINVAL;
574 
575 		kproc->rmem[i].bus_addr = rmem->base;
576 		/* 64-bit address regions currently not supported */
577 		kproc->rmem[i].dev_addr = (u32)rmem->base;
578 		kproc->rmem[i].size = rmem->size;
579 		kproc->rmem[i].cpu_addr = devm_ioremap_wc(dev, rmem->base, rmem->size);
580 		if (!kproc->rmem[i].cpu_addr) {
581 			dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
582 				i + 1, &rmem->base, &rmem->size);
583 			return -ENOMEM;
584 		}
585 
586 		dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
587 			i + 1, &kproc->rmem[i].bus_addr,
588 			kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
589 			kproc->rmem[i].dev_addr);
590 	}
591 	kproc->num_rmems = num_rmems;
592 
593 	return 0;
594 }
595 
k3_dsp_release_tsp(void * data)596 static void k3_dsp_release_tsp(void *data)
597 {
598 	struct ti_sci_proc *tsp = data;
599 
600 	ti_sci_proc_release(tsp);
601 }
602 
k3_dsp_rproc_probe(struct platform_device * pdev)603 static int k3_dsp_rproc_probe(struct platform_device *pdev)
604 {
605 	struct device *dev = &pdev->dev;
606 	struct device_node *np = dev->of_node;
607 	const struct k3_dsp_dev_data *data;
608 	struct k3_dsp_rproc *kproc;
609 	struct rproc *rproc;
610 	const char *fw_name;
611 	bool p_state = false;
612 	int ret = 0;
613 
614 	data = of_device_get_match_data(dev);
615 	if (!data)
616 		return -ENODEV;
617 
618 	ret = rproc_of_parse_firmware(dev, 0, &fw_name);
619 	if (ret)
620 		return dev_err_probe(dev, ret, "failed to parse firmware-name property\n");
621 
622 	rproc = devm_rproc_alloc(dev, dev_name(dev), &k3_dsp_rproc_ops,
623 				 fw_name, sizeof(*kproc));
624 	if (!rproc)
625 		return -ENOMEM;
626 
627 	rproc->has_iommu = false;
628 	rproc->recovery_disabled = true;
629 	if (data->uses_lreset) {
630 		rproc->ops->prepare = k3_dsp_rproc_prepare;
631 		rproc->ops->unprepare = k3_dsp_rproc_unprepare;
632 	}
633 	kproc = rproc->priv;
634 	kproc->rproc = rproc;
635 	kproc->dev = dev;
636 	kproc->data = data;
637 
638 	ret = k3_dsp_rproc_request_mbox(rproc);
639 	if (ret)
640 		return ret;
641 
642 	kproc->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
643 	if (IS_ERR(kproc->ti_sci))
644 		return dev_err_probe(dev, PTR_ERR(kproc->ti_sci),
645 				     "failed to get ti-sci handle\n");
646 
647 	ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id);
648 	if (ret)
649 		return dev_err_probe(dev, ret, "missing 'ti,sci-dev-id' property\n");
650 
651 	kproc->reset = devm_reset_control_get_exclusive(dev, NULL);
652 	if (IS_ERR(kproc->reset))
653 		return dev_err_probe(dev, PTR_ERR(kproc->reset),
654 				     "failed to get reset\n");
655 
656 	kproc->tsp = ti_sci_proc_of_get_tsp(dev, kproc->ti_sci);
657 	if (IS_ERR(kproc->tsp))
658 		return dev_err_probe(dev, PTR_ERR(kproc->tsp),
659 				     "failed to construct ti-sci proc control\n");
660 
661 	ret = ti_sci_proc_request(kproc->tsp);
662 	if (ret < 0) {
663 		dev_err_probe(dev, ret, "ti_sci_proc_request failed\n");
664 		return ret;
665 	}
666 	ret = devm_add_action_or_reset(dev, k3_dsp_release_tsp, kproc->tsp);
667 	if (ret)
668 		return ret;
669 
670 	ret = k3_dsp_rproc_of_get_memories(pdev, kproc);
671 	if (ret)
672 		return ret;
673 
674 	ret = k3_dsp_reserved_mem_init(kproc);
675 	if (ret)
676 		return dev_err_probe(dev, ret, "reserved memory init failed\n");
677 
678 	ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id,
679 					       NULL, &p_state);
680 	if (ret)
681 		return dev_err_probe(dev, ret, "failed to get initial state, mode cannot be determined\n");
682 
683 	/* configure J721E devices for either remoteproc or IPC-only mode */
684 	if (p_state) {
685 		dev_info(dev, "configured DSP for IPC-only mode\n");
686 		rproc->state = RPROC_DETACHED;
687 		/* override rproc ops with only required IPC-only mode ops */
688 		rproc->ops->prepare = NULL;
689 		rproc->ops->unprepare = NULL;
690 		rproc->ops->start = NULL;
691 		rproc->ops->stop = NULL;
692 		rproc->ops->attach = k3_dsp_rproc_attach;
693 		rproc->ops->detach = k3_dsp_rproc_detach;
694 		rproc->ops->get_loaded_rsc_table = k3_dsp_get_loaded_rsc_table;
695 	} else {
696 		dev_info(dev, "configured DSP for remoteproc mode\n");
697 		/*
698 		 * ensure the DSP local reset is asserted to ensure the DSP
699 		 * doesn't execute bogus code in .prepare() when the module
700 		 * reset is released.
701 		 */
702 		if (data->uses_lreset) {
703 			ret = reset_control_status(kproc->reset);
704 			if (ret < 0) {
705 				return dev_err_probe(dev, ret, "failed to get reset status\n");
706 			} else if (ret == 0) {
707 				dev_warn(dev, "local reset is deasserted for device\n");
708 				k3_dsp_rproc_reset(kproc);
709 			}
710 		}
711 	}
712 
713 	ret = devm_rproc_add(dev, rproc);
714 	if (ret)
715 		return dev_err_probe(dev, ret, "failed to add register device with remoteproc core\n");
716 
717 	platform_set_drvdata(pdev, kproc);
718 
719 	return 0;
720 }
721 
k3_dsp_rproc_remove(struct platform_device * pdev)722 static void k3_dsp_rproc_remove(struct platform_device *pdev)
723 {
724 	struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev);
725 	struct rproc *rproc = kproc->rproc;
726 	struct device *dev = &pdev->dev;
727 	int ret;
728 
729 	if (rproc->state == RPROC_ATTACHED) {
730 		ret = rproc_detach(rproc);
731 		if (ret)
732 			dev_err(dev, "failed to detach proc (%pe)\n", ERR_PTR(ret));
733 	}
734 
735 	mbox_free_channel(kproc->mbox);
736 }
737 
738 static const struct k3_dsp_mem_data c66_mems[] = {
739 	{ .name = "l2sram", .dev_addr = 0x800000 },
740 	{ .name = "l1pram", .dev_addr = 0xe00000 },
741 	{ .name = "l1dram", .dev_addr = 0xf00000 },
742 };
743 
744 /* C71x cores only have a L1P Cache, there are no L1P SRAMs */
745 static const struct k3_dsp_mem_data c71_mems[] = {
746 	{ .name = "l2sram", .dev_addr = 0x800000 },
747 	{ .name = "l1dram", .dev_addr = 0xe00000 },
748 };
749 
750 static const struct k3_dsp_mem_data c7xv_mems[] = {
751 	{ .name = "l2sram", .dev_addr = 0x800000 },
752 };
753 
754 static const struct k3_dsp_dev_data c66_data = {
755 	.mems = c66_mems,
756 	.num_mems = ARRAY_SIZE(c66_mems),
757 	.boot_align_addr = SZ_1K,
758 	.uses_lreset = true,
759 };
760 
761 static const struct k3_dsp_dev_data c71_data = {
762 	.mems = c71_mems,
763 	.num_mems = ARRAY_SIZE(c71_mems),
764 	.boot_align_addr = SZ_2M,
765 	.uses_lreset = false,
766 };
767 
768 static const struct k3_dsp_dev_data c7xv_data = {
769 	.mems = c7xv_mems,
770 	.num_mems = ARRAY_SIZE(c7xv_mems),
771 	.boot_align_addr = SZ_2M,
772 	.uses_lreset = false,
773 };
774 
775 static const struct of_device_id k3_dsp_of_match[] = {
776 	{ .compatible = "ti,j721e-c66-dsp", .data = &c66_data, },
777 	{ .compatible = "ti,j721e-c71-dsp", .data = &c71_data, },
778 	{ .compatible = "ti,j721s2-c71-dsp", .data = &c71_data, },
779 	{ .compatible = "ti,am62a-c7xv-dsp", .data = &c7xv_data, },
780 	{ /* sentinel */ },
781 };
782 MODULE_DEVICE_TABLE(of, k3_dsp_of_match);
783 
784 static struct platform_driver k3_dsp_rproc_driver = {
785 	.probe	= k3_dsp_rproc_probe,
786 	.remove_new = k3_dsp_rproc_remove,
787 	.driver	= {
788 		.name = "k3-dsp-rproc",
789 		.of_match_table = k3_dsp_of_match,
790 	},
791 };
792 
793 module_platform_driver(k3_dsp_rproc_driver);
794 
795 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
796 MODULE_LICENSE("GPL v2");
797 MODULE_DESCRIPTION("TI K3 DSP Remoteproc driver");
798