• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/circ_buf.h>
12 #include <linux/module.h>
13 #include <linux/ioport.h>
14 #include <linux/init.h>
15 #include <linux/console.h>
16 #include <linux/sysrq.h>
17 #include <linux/platform_device.h>
18 #include <linux/tty.h>
19 #include <linux/tty_flip.h>
20 #include <linux/serial_core.h>
21 #include <linux/serial.h>
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/ktime.h>
25 #include <linux/pinctrl/consumer.h>
26 #include <linux/rational.h>
27 #include <linux/slab.h>
28 #include <linux/of.h>
29 #include <linux/io.h>
30 #include <linux/iopoll.h>
31 #include <linux/dma-mapping.h>
32 
33 #include <asm/irq.h>
34 #include <linux/dma/imx-dma.h>
35 
36 #include "serial_mctrl_gpio.h"
37 
38 /* Register definitions */
39 #define URXD0 0x0  /* Receiver Register */
40 #define URTX0 0x40 /* Transmitter Register */
41 #define UCR1  0x80 /* Control Register 1 */
42 #define UCR2  0x84 /* Control Register 2 */
43 #define UCR3  0x88 /* Control Register 3 */
44 #define UCR4  0x8c /* Control Register 4 */
45 #define UFCR  0x90 /* FIFO Control Register */
46 #define USR1  0x94 /* Status Register 1 */
47 #define USR2  0x98 /* Status Register 2 */
48 #define UESC  0x9c /* Escape Character Register */
49 #define UTIM  0xa0 /* Escape Timer Register */
50 #define UBIR  0xa4 /* BRM Incremental Register */
51 #define UBMR  0xa8 /* BRM Modulator Register */
52 #define UBRC  0xac /* Baud Rate Count Register */
53 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
54 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
55 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
56 
57 /* UART Control Register Bit Fields.*/
58 #define URXD_DUMMY_READ (1<<16)
59 #define URXD_CHARRDY	(1<<15)
60 #define URXD_ERR	(1<<14)
61 #define URXD_OVRRUN	(1<<13)
62 #define URXD_FRMERR	(1<<12)
63 #define URXD_BRK	(1<<11)
64 #define URXD_PRERR	(1<<10)
65 #define URXD_RX_DATA	(0xFF<<0)
66 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
67 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
68 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
69 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
70 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
71 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
72 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
73 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
74 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
75 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
76 #define UCR1_SNDBRK	(1<<4)	/* Send break */
77 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
78 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
79 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
80 #define UCR1_DOZE	(1<<1)	/* Doze */
81 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
82 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
83 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
84 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
85 #define UCR2_CTS	(1<<12)	/* Clear to send */
86 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
87 #define UCR2_PREN	(1<<8)	/* Parity enable */
88 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
89 #define UCR2_STPB	(1<<6)	/* Stop */
90 #define UCR2_WS		(1<<5)	/* Word size */
91 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
92 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
93 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
94 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
95 #define UCR2_SRST	(1<<0)	/* SW reset */
96 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
97 #define UCR3_PARERREN	(1<<12) /* Parity enable */
98 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
99 #define UCR3_DSR	(1<<10) /* Data set ready */
100 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
101 #define UCR3_RI		(1<<8)	/* Ring indicator */
102 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
103 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
104 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
105 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
106 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
107 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
108 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
109 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
110 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
111 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
112 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
113 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
114 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
115 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
116 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
117 #define UCR4_IRSC	(1<<5)	/* IR special case */
118 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
119 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
120 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
121 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
122 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
123 #define UFCR_RXTL_MASK	0x3F	/* Receiver trigger 6 bits wide */
124 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
125 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
126 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
127 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
128 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
129 #define USR1_RTSS	(1<<14) /* RTS pin status */
130 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
131 #define USR1_RTSD	(1<<12) /* RTS delta */
132 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
133 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
134 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
135 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
136 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
137 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
138 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
139 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
140 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
141 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
142 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
143 #define USR2_IDLE	 (1<<12) /* Idle condition */
144 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
145 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
146 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
147 #define USR2_WAKE	 (1<<7)	 /* Wake */
148 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
149 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
150 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
151 #define USR2_BRCD	 (1<<2)	 /* Break condition */
152 #define USR2_ORE	(1<<1)	 /* Overrun error */
153 #define USR2_RDR	(1<<0)	 /* Recv data ready */
154 #define UTS_FRCPERR	(1<<13) /* Force parity error */
155 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
156 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
157 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
158 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
159 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
160 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
161 
162 /* We've been assigned a range on the "Low-density serial ports" major */
163 #define SERIAL_IMX_MAJOR	207
164 #define MINOR_START		16
165 #define DEV_NAME		"ttymxc"
166 
167 /*
168  * This determines how often we check the modem status signals
169  * for any change.  They generally aren't connected to an IRQ
170  * so we have to poll them.  We also check immediately before
171  * filling the TX fifo incase CTS has been dropped.
172  */
173 #define MCTRL_TIMEOUT	(250*HZ/1000)
174 
175 #define DRIVER_NAME "IMX-uart"
176 
177 #define UART_NR 8
178 
179 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
180 enum imx_uart_type {
181 	IMX1_UART,
182 	IMX21_UART,
183 };
184 
185 /* device type dependent stuff */
186 struct imx_uart_data {
187 	unsigned uts_reg;
188 	enum imx_uart_type devtype;
189 };
190 
191 enum imx_tx_state {
192 	OFF,
193 	WAIT_AFTER_RTS,
194 	SEND,
195 	WAIT_AFTER_SEND,
196 };
197 
198 struct imx_port {
199 	struct uart_port	port;
200 	struct timer_list	timer;
201 	unsigned int		old_status;
202 	unsigned int		have_rtscts:1;
203 	unsigned int		have_rtsgpio:1;
204 	unsigned int		dte_mode:1;
205 	unsigned int		inverted_tx:1;
206 	unsigned int		inverted_rx:1;
207 	struct clk		*clk_ipg;
208 	struct clk		*clk_per;
209 	const struct imx_uart_data *devdata;
210 
211 	struct mctrl_gpios *gpios;
212 
213 	/* counter to stop 0xff flood */
214 	int idle_counter;
215 
216 	/* DMA fields */
217 	unsigned int		dma_is_enabled:1;
218 	unsigned int		dma_is_rxing:1;
219 	unsigned int		dma_is_txing:1;
220 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
221 	struct scatterlist	rx_sgl, tx_sgl[2];
222 	void			*rx_buf;
223 	struct circ_buf		rx_ring;
224 	unsigned int		rx_buf_size;
225 	unsigned int		rx_period_length;
226 	unsigned int		rx_periods;
227 	dma_cookie_t		rx_cookie;
228 	unsigned int		tx_bytes;
229 	unsigned int		dma_tx_nents;
230 	unsigned int            saved_reg[10];
231 	bool			context_saved;
232 
233 	enum imx_tx_state	tx_state;
234 	struct hrtimer		trigger_start_tx;
235 	struct hrtimer		trigger_stop_tx;
236 	unsigned int		rxtl;
237 };
238 
239 struct imx_port_ucrs {
240 	unsigned int	ucr1;
241 	unsigned int	ucr2;
242 	unsigned int	ucr3;
243 };
244 
245 static const struct imx_uart_data imx_uart_imx1_devdata = {
246 	.uts_reg = IMX1_UTS,
247 	.devtype = IMX1_UART,
248 };
249 
250 static const struct imx_uart_data imx_uart_imx21_devdata = {
251 	.uts_reg = IMX21_UTS,
252 	.devtype = IMX21_UART,
253 };
254 
255 static const struct of_device_id imx_uart_dt_ids[] = {
256 	/*
257 	 * For reasons unknown to me, some UART devices (e.g. imx6ul's) are
258 	 * compatible to fsl,imx6q-uart, but not fsl,imx21-uart, while the
259 	 * original imx6q's UART is compatible to fsl,imx21-uart. This driver
260 	 * doesn't make any distinction between these two variants.
261 	 */
262 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_imx21_devdata, },
263 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_imx1_devdata, },
264 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_imx21_devdata, },
265 	{ /* sentinel */ }
266 };
267 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
268 
to_imx_port(struct uart_port * port)269 static inline struct imx_port *to_imx_port(struct uart_port *port)
270 {
271         return container_of(port, struct imx_port, port);
272 }
273 
imx_uart_writel(struct imx_port * sport,u32 val,u32 offset)274 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
275 {
276 	writel(val, sport->port.membase + offset);
277 }
278 
imx_uart_readl(struct imx_port * sport,u32 offset)279 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset)
280 {
281 	return readl(sport->port.membase + offset);
282 }
283 
imx_uart_uts_reg(struct imx_port * sport)284 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
285 {
286 	return sport->devdata->uts_reg;
287 }
288 
imx_uart_is_imx1(struct imx_port * sport)289 static inline int imx_uart_is_imx1(struct imx_port *sport)
290 {
291 	return sport->devdata->devtype == IMX1_UART;
292 }
293 
294 /*
295  * Save and restore functions for UCR1, UCR2 and UCR3 registers
296  */
297 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
imx_uart_ucrs_save(struct imx_port * sport,struct imx_port_ucrs * ucr)298 static void imx_uart_ucrs_save(struct imx_port *sport,
299 			       struct imx_port_ucrs *ucr)
300 {
301 	/* save control registers */
302 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
303 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
304 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
305 }
306 
imx_uart_ucrs_restore(struct imx_port * sport,struct imx_port_ucrs * ucr)307 static void imx_uart_ucrs_restore(struct imx_port *sport,
308 				  struct imx_port_ucrs *ucr)
309 {
310 	/* restore control registers */
311 	imx_uart_writel(sport, ucr->ucr1, UCR1);
312 	imx_uart_writel(sport, ucr->ucr2, UCR2);
313 	imx_uart_writel(sport, ucr->ucr3, UCR3);
314 }
315 #endif
316 
317 /* called with port.lock taken and irqs caller dependent */
imx_uart_rts_active(struct imx_port * sport,u32 * ucr2)318 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
319 {
320 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
321 
322 	mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS);
323 }
324 
325 /* called with port.lock taken and irqs caller dependent */
imx_uart_rts_inactive(struct imx_port * sport,u32 * ucr2)326 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
327 {
328 	*ucr2 &= ~UCR2_CTSC;
329 	*ucr2 |= UCR2_CTS;
330 
331 	mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS);
332 }
333 
start_hrtimer_ms(struct hrtimer * hrt,unsigned long msec)334 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
335 {
336        hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
337 }
338 
339 /* called with port.lock taken and irqs off */
imx_uart_soft_reset(struct imx_port * sport)340 static void imx_uart_soft_reset(struct imx_port *sport)
341 {
342 	int i = 10;
343 	u32 ucr2, ubir, ubmr, uts;
344 
345 	/*
346 	 * According to the Reference Manual description of the UART SRST bit:
347 	 *
348 	 * "Reset the transmit and receive state machines,
349 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
350 	 * and UTS[6-3]".
351 	 *
352 	 * We don't need to restore the old values from USR1, USR2, URXD and
353 	 * UTXD. UBRC is read only, so only save/restore the other three
354 	 * registers.
355 	 */
356 	ubir = imx_uart_readl(sport, UBIR);
357 	ubmr = imx_uart_readl(sport, UBMR);
358 	uts = imx_uart_readl(sport, IMX21_UTS);
359 
360 	ucr2 = imx_uart_readl(sport, UCR2);
361 	imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2);
362 
363 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
364 		udelay(1);
365 
366 	/* Restore the registers */
367 	imx_uart_writel(sport, ubir, UBIR);
368 	imx_uart_writel(sport, ubmr, UBMR);
369 	imx_uart_writel(sport, uts, IMX21_UTS);
370 
371 	sport->idle_counter = 0;
372 }
373 
imx_uart_disable_loopback_rs485(struct imx_port * sport)374 static void imx_uart_disable_loopback_rs485(struct imx_port *sport)
375 {
376 	unsigned int uts;
377 
378 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
379 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
380 	uts &= ~UTS_LOOP;
381 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
382 }
383 
384 /* called with port.lock taken and irqs off */
imx_uart_start_rx(struct uart_port * port)385 static void imx_uart_start_rx(struct uart_port *port)
386 {
387 	struct imx_port *sport = to_imx_port(port);
388 	unsigned int ucr1, ucr2;
389 
390 	ucr1 = imx_uart_readl(sport, UCR1);
391 	ucr2 = imx_uart_readl(sport, UCR2);
392 
393 	ucr2 |= UCR2_RXEN;
394 
395 	if (sport->dma_is_enabled) {
396 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
397 	} else {
398 		ucr1 |= UCR1_RRDYEN;
399 		ucr2 |= UCR2_ATEN;
400 	}
401 
402 	/* Write UCR2 first as it includes RXEN */
403 	imx_uart_writel(sport, ucr2, UCR2);
404 	imx_uart_writel(sport, ucr1, UCR1);
405 	imx_uart_disable_loopback_rs485(sport);
406 }
407 
408 /* called with port.lock taken and irqs off */
imx_uart_stop_tx(struct uart_port * port)409 static void imx_uart_stop_tx(struct uart_port *port)
410 {
411 	struct imx_port *sport = to_imx_port(port);
412 	u32 ucr1, ucr4, usr2;
413 
414 	if (sport->tx_state == OFF)
415 		return;
416 
417 	/*
418 	 * We are maybe in the SMP context, so if the DMA TX thread is running
419 	 * on other cpu, we have to wait for it to finish.
420 	 */
421 	if (sport->dma_is_txing)
422 		return;
423 
424 	ucr1 = imx_uart_readl(sport, UCR1);
425 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
426 
427 	ucr4 = imx_uart_readl(sport, UCR4);
428 	usr2 = imx_uart_readl(sport, USR2);
429 	if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) {
430 		/* The shifter is still busy, so retry once TC triggers */
431 		return;
432 	}
433 
434 	ucr4 &= ~UCR4_TCEN;
435 	imx_uart_writel(sport, ucr4, UCR4);
436 
437 	/* in rs485 mode disable transmitter */
438 	if (port->rs485.flags & SER_RS485_ENABLED) {
439 		if (sport->tx_state == SEND) {
440 			sport->tx_state = WAIT_AFTER_SEND;
441 
442 			if (port->rs485.delay_rts_after_send > 0) {
443 				start_hrtimer_ms(&sport->trigger_stop_tx,
444 					 port->rs485.delay_rts_after_send);
445 				return;
446 			}
447 
448 			/* continue without any delay */
449 		}
450 
451 		if (sport->tx_state == WAIT_AFTER_RTS ||
452 		    sport->tx_state == WAIT_AFTER_SEND) {
453 			u32 ucr2;
454 
455 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
456 
457 			ucr2 = imx_uart_readl(sport, UCR2);
458 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
459 				imx_uart_rts_active(sport, &ucr2);
460 			else
461 				imx_uart_rts_inactive(sport, &ucr2);
462 			imx_uart_writel(sport, ucr2, UCR2);
463 
464 			if (!port->rs485_rx_during_tx_gpio)
465 				imx_uart_start_rx(port);
466 
467 			sport->tx_state = OFF;
468 		}
469 	} else {
470 		sport->tx_state = OFF;
471 	}
472 }
473 
imx_uart_stop_rx_with_loopback_ctrl(struct uart_port * port,bool loopback)474 static void imx_uart_stop_rx_with_loopback_ctrl(struct uart_port *port, bool loopback)
475 {
476 	struct imx_port *sport = to_imx_port(port);
477 	u32 ucr1, ucr2, ucr4, uts;
478 
479 	ucr1 = imx_uart_readl(sport, UCR1);
480 	ucr2 = imx_uart_readl(sport, UCR2);
481 	ucr4 = imx_uart_readl(sport, UCR4);
482 
483 	if (sport->dma_is_enabled) {
484 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
485 	} else {
486 		ucr1 &= ~UCR1_RRDYEN;
487 		ucr2 &= ~UCR2_ATEN;
488 		ucr4 &= ~UCR4_OREN;
489 	}
490 	imx_uart_writel(sport, ucr1, UCR1);
491 	imx_uart_writel(sport, ucr4, UCR4);
492 
493 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
494 	if (port->rs485.flags & SER_RS485_ENABLED &&
495 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
496 	    sport->have_rtscts && !sport->have_rtsgpio && loopback) {
497 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
498 		uts |= UTS_LOOP;
499 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
500 		ucr2 |= UCR2_RXEN;
501 	} else {
502 		ucr2 &= ~UCR2_RXEN;
503 	}
504 
505 	imx_uart_writel(sport, ucr2, UCR2);
506 }
507 
508 /* called with port.lock taken and irqs off */
imx_uart_stop_rx(struct uart_port * port)509 static void imx_uart_stop_rx(struct uart_port *port)
510 {
511 	/*
512 	 * Stop RX and enable loopback in order to make sure RS485 bus
513 	 * is not blocked. Se comment in imx_uart_probe().
514 	 */
515 	imx_uart_stop_rx_with_loopback_ctrl(port, true);
516 }
517 
518 /* called with port.lock taken and irqs off */
imx_uart_enable_ms(struct uart_port * port)519 static void imx_uart_enable_ms(struct uart_port *port)
520 {
521 	struct imx_port *sport = to_imx_port(port);
522 
523 	mod_timer(&sport->timer, jiffies);
524 
525 	mctrl_gpio_enable_ms(sport->gpios);
526 }
527 
528 static void imx_uart_dma_tx(struct imx_port *sport);
529 
530 /* called with port.lock taken and irqs off */
imx_uart_transmit_buffer(struct imx_port * sport)531 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
532 {
533 	struct tty_port *tport = &sport->port.state->port;
534 	unsigned char c;
535 
536 	if (sport->port.x_char) {
537 		/* Send next char */
538 		imx_uart_writel(sport, sport->port.x_char, URTX0);
539 		sport->port.icount.tx++;
540 		sport->port.x_char = 0;
541 		return;
542 	}
543 
544 	if (kfifo_is_empty(&tport->xmit_fifo) ||
545 			uart_tx_stopped(&sport->port)) {
546 		imx_uart_stop_tx(&sport->port);
547 		return;
548 	}
549 
550 	if (sport->dma_is_enabled) {
551 		u32 ucr1;
552 		/*
553 		 * We've just sent a X-char Ensure the TX DMA is enabled
554 		 * and the TX IRQ is disabled.
555 		 **/
556 		ucr1 = imx_uart_readl(sport, UCR1);
557 		ucr1 &= ~UCR1_TRDYEN;
558 		if (sport->dma_is_txing) {
559 			ucr1 |= UCR1_TXDMAEN;
560 			imx_uart_writel(sport, ucr1, UCR1);
561 		} else {
562 			imx_uart_writel(sport, ucr1, UCR1);
563 			imx_uart_dma_tx(sport);
564 		}
565 
566 		return;
567 	}
568 
569 	while (!(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) &&
570 			uart_fifo_get(&sport->port, &c))
571 		imx_uart_writel(sport, c, URTX0);
572 
573 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
574 		uart_write_wakeup(&sport->port);
575 
576 	if (kfifo_is_empty(&tport->xmit_fifo))
577 		imx_uart_stop_tx(&sport->port);
578 }
579 
imx_uart_dma_tx_callback(void * data)580 static void imx_uart_dma_tx_callback(void *data)
581 {
582 	struct imx_port *sport = data;
583 	struct tty_port *tport = &sport->port.state->port;
584 	struct scatterlist *sgl = &sport->tx_sgl[0];
585 	unsigned long flags;
586 	u32 ucr1;
587 
588 	uart_port_lock_irqsave(&sport->port, &flags);
589 
590 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
591 
592 	ucr1 = imx_uart_readl(sport, UCR1);
593 	ucr1 &= ~UCR1_TXDMAEN;
594 	imx_uart_writel(sport, ucr1, UCR1);
595 
596 	uart_xmit_advance(&sport->port, sport->tx_bytes);
597 
598 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
599 
600 	sport->dma_is_txing = 0;
601 
602 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
603 		uart_write_wakeup(&sport->port);
604 
605 	if (!kfifo_is_empty(&tport->xmit_fifo) &&
606 			!uart_tx_stopped(&sport->port))
607 		imx_uart_dma_tx(sport);
608 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
609 		u32 ucr4 = imx_uart_readl(sport, UCR4);
610 		ucr4 |= UCR4_TCEN;
611 		imx_uart_writel(sport, ucr4, UCR4);
612 	}
613 
614 	uart_port_unlock_irqrestore(&sport->port, flags);
615 }
616 
617 /* called with port.lock taken and irqs off */
imx_uart_dma_tx(struct imx_port * sport)618 static void imx_uart_dma_tx(struct imx_port *sport)
619 {
620 	struct tty_port *tport = &sport->port.state->port;
621 	struct scatterlist *sgl = sport->tx_sgl;
622 	struct dma_async_tx_descriptor *desc;
623 	struct dma_chan	*chan = sport->dma_chan_tx;
624 	struct device *dev = sport->port.dev;
625 	u32 ucr1, ucr4;
626 	int ret;
627 
628 	if (sport->dma_is_txing)
629 		return;
630 
631 	ucr4 = imx_uart_readl(sport, UCR4);
632 	ucr4 &= ~UCR4_TCEN;
633 	imx_uart_writel(sport, ucr4, UCR4);
634 
635 	sg_init_table(sgl, ARRAY_SIZE(sport->tx_sgl));
636 	sport->tx_bytes = kfifo_len(&tport->xmit_fifo);
637 	sport->dma_tx_nents = kfifo_dma_out_prepare(&tport->xmit_fifo, sgl,
638 			ARRAY_SIZE(sport->tx_sgl), sport->tx_bytes);
639 
640 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
641 	if (ret == 0) {
642 		dev_err(dev, "DMA mapping error for TX.\n");
643 		return;
644 	}
645 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
646 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
647 	if (!desc) {
648 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
649 			     DMA_TO_DEVICE);
650 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
651 		return;
652 	}
653 	desc->callback = imx_uart_dma_tx_callback;
654 	desc->callback_param = sport;
655 
656 	dev_dbg(dev, "TX: prepare to send %u bytes by DMA.\n", sport->tx_bytes);
657 
658 	ucr1 = imx_uart_readl(sport, UCR1);
659 	ucr1 |= UCR1_TXDMAEN;
660 	imx_uart_writel(sport, ucr1, UCR1);
661 
662 	/* fire it */
663 	sport->dma_is_txing = 1;
664 	dmaengine_submit(desc);
665 	dma_async_issue_pending(chan);
666 	return;
667 }
668 
669 /* called with port.lock taken and irqs off */
imx_uart_start_tx(struct uart_port * port)670 static void imx_uart_start_tx(struct uart_port *port)
671 {
672 	struct imx_port *sport = to_imx_port(port);
673 	struct tty_port *tport = &sport->port.state->port;
674 	u32 ucr1;
675 
676 	if (!sport->port.x_char && kfifo_is_empty(&tport->xmit_fifo))
677 		return;
678 
679 	/*
680 	 * We cannot simply do nothing here if sport->tx_state == SEND already
681 	 * because UCR1_TXMPTYEN might already have been cleared in
682 	 * imx_uart_stop_tx(), but tx_state is still SEND.
683 	 */
684 
685 	if (port->rs485.flags & SER_RS485_ENABLED) {
686 		if (sport->tx_state == OFF) {
687 			u32 ucr2 = imx_uart_readl(sport, UCR2);
688 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
689 				imx_uart_rts_active(sport, &ucr2);
690 			else
691 				imx_uart_rts_inactive(sport, &ucr2);
692 			imx_uart_writel(sport, ucr2, UCR2);
693 
694 			/*
695 			 * Since we are about to transmit we can not stop RX
696 			 * with loopback enabled because that will make our
697 			 * transmitted data being just looped to RX.
698 			 */
699 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) &&
700 			    !port->rs485_rx_during_tx_gpio)
701 				imx_uart_stop_rx_with_loopback_ctrl(port, false);
702 
703 			sport->tx_state = WAIT_AFTER_RTS;
704 
705 			if (port->rs485.delay_rts_before_send > 0) {
706 				start_hrtimer_ms(&sport->trigger_start_tx,
707 					 port->rs485.delay_rts_before_send);
708 				return;
709 			}
710 
711 			/* continue without any delay */
712 		}
713 
714 		if (sport->tx_state == WAIT_AFTER_SEND
715 		    || sport->tx_state == WAIT_AFTER_RTS) {
716 
717 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
718 
719 			/*
720 			 * Enable transmitter and shifter empty irq only if DMA
721 			 * is off.  In the DMA case this is done in the
722 			 * tx-callback.
723 			 */
724 			if (!sport->dma_is_enabled) {
725 				u32 ucr4 = imx_uart_readl(sport, UCR4);
726 				ucr4 |= UCR4_TCEN;
727 				imx_uart_writel(sport, ucr4, UCR4);
728 			}
729 
730 			sport->tx_state = SEND;
731 		}
732 	} else {
733 		sport->tx_state = SEND;
734 	}
735 
736 	if (!sport->dma_is_enabled) {
737 		ucr1 = imx_uart_readl(sport, UCR1);
738 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
739 	}
740 
741 	if (sport->dma_is_enabled) {
742 		if (sport->port.x_char) {
743 			/* We have X-char to send, so enable TX IRQ and
744 			 * disable TX DMA to let TX interrupt to send X-char */
745 			ucr1 = imx_uart_readl(sport, UCR1);
746 			ucr1 &= ~UCR1_TXDMAEN;
747 			ucr1 |= UCR1_TRDYEN;
748 			imx_uart_writel(sport, ucr1, UCR1);
749 			return;
750 		}
751 
752 		if (!kfifo_is_empty(&tport->xmit_fifo) &&
753 		    !uart_tx_stopped(port))
754 			imx_uart_dma_tx(sport);
755 		return;
756 	}
757 }
758 
__imx_uart_rtsint(int irq,void * dev_id)759 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
760 {
761 	struct imx_port *sport = dev_id;
762 	u32 usr1;
763 
764 	imx_uart_writel(sport, USR1_RTSD, USR1);
765 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
766 	/*
767 	 * Update sport->old_status here, so any follow-up calls to
768 	 * imx_uart_mctrl_check() will be able to recognize that RTS
769 	 * state changed since last imx_uart_mctrl_check() call.
770 	 *
771 	 * In case RTS has been detected as asserted here and later on
772 	 * deasserted by the time imx_uart_mctrl_check() was called,
773 	 * imx_uart_mctrl_check() can detect the RTS state change and
774 	 * trigger uart_handle_cts_change() to unblock the port for
775 	 * further TX transfers.
776 	 */
777 	if (usr1 & USR1_RTSS)
778 		sport->old_status |= TIOCM_CTS;
779 	else
780 		sport->old_status &= ~TIOCM_CTS;
781 	uart_handle_cts_change(&sport->port, usr1);
782 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
783 
784 	return IRQ_HANDLED;
785 }
786 
imx_uart_rtsint(int irq,void * dev_id)787 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
788 {
789 	struct imx_port *sport = dev_id;
790 	irqreturn_t ret;
791 
792 	uart_port_lock(&sport->port);
793 
794 	ret = __imx_uart_rtsint(irq, dev_id);
795 
796 	uart_port_unlock(&sport->port);
797 
798 	return ret;
799 }
800 
imx_uart_txint(int irq,void * dev_id)801 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
802 {
803 	struct imx_port *sport = dev_id;
804 
805 	uart_port_lock(&sport->port);
806 	imx_uart_transmit_buffer(sport);
807 	uart_port_unlock(&sport->port);
808 	return IRQ_HANDLED;
809 }
810 
811 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it.
812  * This is to be called from Rx ISRs only when some bytes were actually
813  * received.
814  *
815  * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600
816  * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of
817  * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART
818  * that is terminated by any activity on RxD line, or could be stopped by
819  * issuing soft reset to the UART (just stop/start of RX does not help). Note
820  * that what we do here is sending isolated start bit about 2.4 times shorter
821  * than it is to be on UART configured baud rate.
822  */
imx_uart_check_flood(struct imx_port * sport,u32 usr2)823 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2)
824 {
825 	/* To detect hardware 0xff flood we monitor RxD line between RX
826 	 * interrupts to isolate "receiving" of char(s) with no activity
827 	 * on RxD line, that'd never happen on actual data transfers.
828 	 *
829 	 * We use USR2_WAKE bit to check for activity on RxD line, but we have a
830 	 * race here if we clear USR2_WAKE when receiving of a char is in
831 	 * progress, so we might get RX interrupt later with USR2_WAKE bit
832 	 * cleared. Note though that as we don't try to clear USR2_WAKE when we
833 	 * detected no activity, this race may hide actual activity only once.
834 	 *
835 	 * Yet another case where receive interrupt may occur without RxD
836 	 * activity is expiration of aging timer, so we consider this as well.
837 	 *
838 	 * We use 'idle_counter' to ensure that we got at least so many RX
839 	 * interrupts without any detected activity on RxD line. 2 cases
840 	 * described plus 1 to be on the safe side gives us a margin of 3,
841 	 * below. In practice I was not able to produce a false positive to
842 	 * induce soft reset at regular data transfers even using 1 as the
843 	 * margin, so 3 is actually very strong.
844 	 *
845 	 * We count interrupts, not chars in 'idle-counter' for simplicity.
846 	 */
847 
848 	if (usr2 & USR2_WAKE) {
849 		imx_uart_writel(sport, USR2_WAKE, USR2);
850 		sport->idle_counter = 0;
851 	} else if (++sport->idle_counter > 3) {
852 		dev_warn(sport->port.dev, "RX flood detected: soft reset.");
853 		imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */
854 	}
855 }
856 
__imx_uart_rxint(int irq,void * dev_id)857 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
858 {
859 	struct imx_port *sport = dev_id;
860 	struct tty_port *port = &sport->port.state->port;
861 	u32 usr2, rx;
862 
863 	/* If we received something, check for 0xff flood */
864 	usr2 = imx_uart_readl(sport, USR2);
865 	if (usr2 & USR2_RDR)
866 		imx_uart_check_flood(sport, usr2);
867 
868 	while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) {
869 		unsigned int flg = TTY_NORMAL;
870 		sport->port.icount.rx++;
871 
872 		if (unlikely(rx & URXD_ERR)) {
873 			if (rx & URXD_BRK) {
874 				sport->port.icount.brk++;
875 				if (uart_handle_break(&sport->port))
876 					continue;
877 			}
878 			else if (rx & URXD_PRERR)
879 				sport->port.icount.parity++;
880 			else if (rx & URXD_FRMERR)
881 				sport->port.icount.frame++;
882 			if (rx & URXD_OVRRUN)
883 				sport->port.icount.overrun++;
884 
885 			if (rx & sport->port.ignore_status_mask)
886 				continue;
887 
888 			rx &= (sport->port.read_status_mask | 0xFF);
889 
890 			if (rx & URXD_BRK)
891 				flg = TTY_BREAK;
892 			else if (rx & URXD_PRERR)
893 				flg = TTY_PARITY;
894 			else if (rx & URXD_FRMERR)
895 				flg = TTY_FRAME;
896 			if (rx & URXD_OVRRUN)
897 				flg = TTY_OVERRUN;
898 
899 			sport->port.sysrq = 0;
900 		} else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) {
901 			continue;
902 		}
903 
904 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
905 			continue;
906 
907 		if (tty_insert_flip_char(port, rx, flg) == 0)
908 			sport->port.icount.buf_overrun++;
909 	}
910 
911 	tty_flip_buffer_push(port);
912 
913 	return IRQ_HANDLED;
914 }
915 
imx_uart_rxint(int irq,void * dev_id)916 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
917 {
918 	struct imx_port *sport = dev_id;
919 	irqreturn_t ret;
920 
921 	uart_port_lock(&sport->port);
922 
923 	ret = __imx_uart_rxint(irq, dev_id);
924 
925 	uart_port_unlock(&sport->port);
926 
927 	return ret;
928 }
929 
930 static void imx_uart_clear_rx_errors(struct imx_port *sport);
931 
932 /*
933  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
934  */
imx_uart_get_hwmctrl(struct imx_port * sport)935 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
936 {
937 	unsigned int tmp = TIOCM_DSR;
938 	unsigned usr1 = imx_uart_readl(sport, USR1);
939 	unsigned usr2 = imx_uart_readl(sport, USR2);
940 
941 	if (usr1 & USR1_RTSS)
942 		tmp |= TIOCM_CTS;
943 
944 	/* in DCE mode DCDIN is always 0 */
945 	if (!(usr2 & USR2_DCDIN))
946 		tmp |= TIOCM_CAR;
947 
948 	if (sport->dte_mode)
949 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
950 			tmp |= TIOCM_RI;
951 
952 	return tmp;
953 }
954 
955 /*
956  * Handle any change of modem status signal since we were last called.
957  */
imx_uart_mctrl_check(struct imx_port * sport)958 static void imx_uart_mctrl_check(struct imx_port *sport)
959 {
960 	unsigned int status, changed;
961 
962 	status = imx_uart_get_hwmctrl(sport);
963 	changed = status ^ sport->old_status;
964 
965 	if (changed == 0)
966 		return;
967 
968 	sport->old_status = status;
969 
970 	if (changed & TIOCM_RI && status & TIOCM_RI)
971 		sport->port.icount.rng++;
972 	if (changed & TIOCM_DSR)
973 		sport->port.icount.dsr++;
974 	if (changed & TIOCM_CAR)
975 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
976 	if (changed & TIOCM_CTS)
977 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
978 
979 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
980 }
981 
imx_uart_int(int irq,void * dev_id)982 static irqreturn_t imx_uart_int(int irq, void *dev_id)
983 {
984 	struct imx_port *sport = dev_id;
985 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
986 	irqreturn_t ret = IRQ_NONE;
987 
988 	uart_port_lock(&sport->port);
989 
990 	usr1 = imx_uart_readl(sport, USR1);
991 	usr2 = imx_uart_readl(sport, USR2);
992 	ucr1 = imx_uart_readl(sport, UCR1);
993 	ucr2 = imx_uart_readl(sport, UCR2);
994 	ucr3 = imx_uart_readl(sport, UCR3);
995 	ucr4 = imx_uart_readl(sport, UCR4);
996 
997 	/*
998 	 * Even if a condition is true that can trigger an irq only handle it if
999 	 * the respective irq source is enabled. This prevents some undesired
1000 	 * actions, for example if a character that sits in the RX FIFO and that
1001 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
1002 	 * receiver is currently off and so reading from URXD0 results in an
1003 	 * exception. So just mask the (raw) status bits for disabled irqs.
1004 	 */
1005 	if ((ucr1 & UCR1_RRDYEN) == 0)
1006 		usr1 &= ~USR1_RRDY;
1007 	if ((ucr2 & UCR2_ATEN) == 0)
1008 		usr1 &= ~USR1_AGTIM;
1009 	if ((ucr1 & UCR1_TRDYEN) == 0)
1010 		usr1 &= ~USR1_TRDY;
1011 	if ((ucr4 & UCR4_TCEN) == 0)
1012 		usr2 &= ~USR2_TXDC;
1013 	if ((ucr3 & UCR3_DTRDEN) == 0)
1014 		usr1 &= ~USR1_DTRD;
1015 	if ((ucr1 & UCR1_RTSDEN) == 0)
1016 		usr1 &= ~USR1_RTSD;
1017 	if ((ucr3 & UCR3_AWAKEN) == 0)
1018 		usr1 &= ~USR1_AWAKE;
1019 	if ((ucr4 & UCR4_OREN) == 0)
1020 		usr2 &= ~USR2_ORE;
1021 
1022 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
1023 		imx_uart_writel(sport, USR1_AGTIM, USR1);
1024 
1025 		__imx_uart_rxint(irq, dev_id);
1026 		ret = IRQ_HANDLED;
1027 	}
1028 
1029 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
1030 		imx_uart_transmit_buffer(sport);
1031 		ret = IRQ_HANDLED;
1032 	}
1033 
1034 	if (usr1 & USR1_DTRD) {
1035 		imx_uart_writel(sport, USR1_DTRD, USR1);
1036 
1037 		imx_uart_mctrl_check(sport);
1038 
1039 		ret = IRQ_HANDLED;
1040 	}
1041 
1042 	if (usr1 & USR1_RTSD) {
1043 		__imx_uart_rtsint(irq, dev_id);
1044 		ret = IRQ_HANDLED;
1045 	}
1046 
1047 	if (usr1 & USR1_AWAKE) {
1048 		imx_uart_writel(sport, USR1_AWAKE, USR1);
1049 		ret = IRQ_HANDLED;
1050 	}
1051 
1052 	if (usr2 & USR2_ORE) {
1053 		sport->port.icount.overrun++;
1054 		imx_uart_writel(sport, USR2_ORE, USR2);
1055 		ret = IRQ_HANDLED;
1056 	}
1057 
1058 	uart_port_unlock(&sport->port);
1059 
1060 	return ret;
1061 }
1062 
1063 /*
1064  * Return TIOCSER_TEMT when transmitter is not busy.
1065  */
imx_uart_tx_empty(struct uart_port * port)1066 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1067 {
1068 	struct imx_port *sport = to_imx_port(port);
1069 	unsigned int ret;
1070 
1071 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1072 
1073 	/* If the TX DMA is working, return 0. */
1074 	if (sport->dma_is_txing)
1075 		ret = 0;
1076 
1077 	return ret;
1078 }
1079 
1080 /* called with port.lock taken and irqs off */
imx_uart_get_mctrl(struct uart_port * port)1081 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1082 {
1083 	struct imx_port *sport = to_imx_port(port);
1084 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1085 
1086 	mctrl_gpio_get(sport->gpios, &ret);
1087 
1088 	return ret;
1089 }
1090 
1091 /* called with port.lock taken and irqs off */
imx_uart_set_mctrl(struct uart_port * port,unsigned int mctrl)1092 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1093 {
1094 	struct imx_port *sport = to_imx_port(port);
1095 	u32 ucr3, uts;
1096 
1097 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1098 		u32 ucr2;
1099 
1100 		/*
1101 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1102 		 * setting if RTS is raised.
1103 		 */
1104 		ucr2 = imx_uart_readl(sport, UCR2);
1105 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1106 		if (mctrl & TIOCM_RTS) {
1107 			ucr2 |= UCR2_CTS;
1108 			/*
1109 			 * UCR2_IRTS is unset if and only if the port is
1110 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1111 			 * to get the state to restore to.
1112 			 */
1113 			if (!(ucr2 & UCR2_IRTS))
1114 				ucr2 |= UCR2_CTSC;
1115 		}
1116 		imx_uart_writel(sport, ucr2, UCR2);
1117 	}
1118 
1119 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1120 	if (!(mctrl & TIOCM_DTR))
1121 		ucr3 |= UCR3_DSR;
1122 	imx_uart_writel(sport, ucr3, UCR3);
1123 
1124 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1125 	if (mctrl & TIOCM_LOOP)
1126 		uts |= UTS_LOOP;
1127 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1128 
1129 	mctrl_gpio_set(sport->gpios, mctrl);
1130 }
1131 
1132 /*
1133  * Interrupts always disabled.
1134  */
imx_uart_break_ctl(struct uart_port * port,int break_state)1135 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1136 {
1137 	struct imx_port *sport = to_imx_port(port);
1138 	unsigned long flags;
1139 	u32 ucr1;
1140 
1141 	uart_port_lock_irqsave(&sport->port, &flags);
1142 
1143 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1144 
1145 	if (break_state != 0)
1146 		ucr1 |= UCR1_SNDBRK;
1147 
1148 	imx_uart_writel(sport, ucr1, UCR1);
1149 
1150 	uart_port_unlock_irqrestore(&sport->port, flags);
1151 }
1152 
1153 /*
1154  * This is our per-port timeout handler, for checking the
1155  * modem status signals.
1156  */
imx_uart_timeout(struct timer_list * t)1157 static void imx_uart_timeout(struct timer_list *t)
1158 {
1159 	struct imx_port *sport = from_timer(sport, t, timer);
1160 	unsigned long flags;
1161 
1162 	if (sport->port.state) {
1163 		uart_port_lock_irqsave(&sport->port, &flags);
1164 		imx_uart_mctrl_check(sport);
1165 		uart_port_unlock_irqrestore(&sport->port, flags);
1166 
1167 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1168 	}
1169 }
1170 
1171 /*
1172  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1173  *   [1] the RX DMA buffer is full.
1174  *   [2] the aging timer expires
1175  *
1176  * Condition [2] is triggered when a character has been sitting in the FIFO
1177  * for at least 8 byte durations.
1178  */
imx_uart_dma_rx_callback(void * data)1179 static void imx_uart_dma_rx_callback(void *data)
1180 {
1181 	struct imx_port *sport = data;
1182 	struct dma_chan	*chan = sport->dma_chan_rx;
1183 	struct scatterlist *sgl = &sport->rx_sgl;
1184 	struct tty_port *port = &sport->port.state->port;
1185 	struct dma_tx_state state;
1186 	struct circ_buf *rx_ring = &sport->rx_ring;
1187 	enum dma_status status;
1188 	unsigned int w_bytes = 0;
1189 	unsigned int r_bytes;
1190 	unsigned int bd_size;
1191 
1192 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1193 
1194 	if (status == DMA_ERROR) {
1195 		uart_port_lock(&sport->port);
1196 		imx_uart_clear_rx_errors(sport);
1197 		uart_port_unlock(&sport->port);
1198 		return;
1199 	}
1200 
1201 	/*
1202 	 * The state-residue variable represents the empty space
1203 	 * relative to the entire buffer. Taking this in consideration
1204 	 * the head is always calculated base on the buffer total
1205 	 * length - DMA transaction residue. The UART script from the
1206 	 * SDMA firmware will jump to the next buffer descriptor,
1207 	 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1208 	 * Taking this in consideration the tail is always at the
1209 	 * beginning of the buffer descriptor that contains the head.
1210 	 */
1211 
1212 	/* Calculate the head */
1213 	rx_ring->head = sg_dma_len(sgl) - state.residue;
1214 
1215 	/* Calculate the tail. */
1216 	bd_size = sg_dma_len(sgl) / sport->rx_periods;
1217 	rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1218 
1219 	if (rx_ring->head <= sg_dma_len(sgl) &&
1220 	    rx_ring->head > rx_ring->tail) {
1221 
1222 		/* Move data from tail to head */
1223 		r_bytes = rx_ring->head - rx_ring->tail;
1224 
1225 		/* If we received something, check for 0xff flood */
1226 		uart_port_lock(&sport->port);
1227 		imx_uart_check_flood(sport, imx_uart_readl(sport, USR2));
1228 		uart_port_unlock(&sport->port);
1229 
1230 		if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1231 
1232 			/* CPU claims ownership of RX DMA buffer */
1233 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1234 					    DMA_FROM_DEVICE);
1235 
1236 			w_bytes = tty_insert_flip_string(port,
1237 							 sport->rx_buf + rx_ring->tail, r_bytes);
1238 
1239 			/* UART retrieves ownership of RX DMA buffer */
1240 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1241 					       DMA_FROM_DEVICE);
1242 
1243 			if (w_bytes != r_bytes)
1244 				sport->port.icount.buf_overrun++;
1245 
1246 			sport->port.icount.rx += w_bytes;
1247 		}
1248 	} else	{
1249 		WARN_ON(rx_ring->head > sg_dma_len(sgl));
1250 		WARN_ON(rx_ring->head <= rx_ring->tail);
1251 	}
1252 
1253 	if (w_bytes) {
1254 		tty_flip_buffer_push(port);
1255 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1256 	}
1257 }
1258 
imx_uart_start_rx_dma(struct imx_port * sport)1259 static int imx_uart_start_rx_dma(struct imx_port *sport)
1260 {
1261 	struct scatterlist *sgl = &sport->rx_sgl;
1262 	struct dma_chan	*chan = sport->dma_chan_rx;
1263 	struct device *dev = sport->port.dev;
1264 	struct dma_async_tx_descriptor *desc;
1265 	int ret;
1266 
1267 	sport->rx_ring.head = 0;
1268 	sport->rx_ring.tail = 0;
1269 
1270 	sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size);
1271 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1272 	if (ret == 0) {
1273 		dev_err(dev, "DMA mapping error for RX.\n");
1274 		return -EINVAL;
1275 	}
1276 
1277 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1278 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1279 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1280 
1281 	if (!desc) {
1282 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1283 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1284 		return -EINVAL;
1285 	}
1286 	desc->callback = imx_uart_dma_rx_callback;
1287 	desc->callback_param = sport;
1288 
1289 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1290 	sport->dma_is_rxing = 1;
1291 	sport->rx_cookie = dmaengine_submit(desc);
1292 	dma_async_issue_pending(chan);
1293 	return 0;
1294 }
1295 
imx_uart_clear_rx_errors(struct imx_port * sport)1296 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1297 {
1298 	struct tty_port *port = &sport->port.state->port;
1299 	u32 usr1, usr2;
1300 
1301 	usr1 = imx_uart_readl(sport, USR1);
1302 	usr2 = imx_uart_readl(sport, USR2);
1303 
1304 	if (usr2 & USR2_BRCD) {
1305 		sport->port.icount.brk++;
1306 		imx_uart_writel(sport, USR2_BRCD, USR2);
1307 		uart_handle_break(&sport->port);
1308 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1309 			sport->port.icount.buf_overrun++;
1310 		tty_flip_buffer_push(port);
1311 	} else {
1312 		if (usr1 & USR1_FRAMERR) {
1313 			sport->port.icount.frame++;
1314 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1315 		} else if (usr1 & USR1_PARITYERR) {
1316 			sport->port.icount.parity++;
1317 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1318 		}
1319 	}
1320 
1321 	if (usr2 & USR2_ORE) {
1322 		sport->port.icount.overrun++;
1323 		imx_uart_writel(sport, USR2_ORE, USR2);
1324 	}
1325 
1326 	sport->idle_counter = 0;
1327 
1328 }
1329 
1330 #define TXTL_DEFAULT 8
1331 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */
1332 #define RXTL_CONSOLE_DEFAULT 1
1333 #define TXTL_DMA 8 /* DMA burst setting */
1334 #define RXTL_DMA 9 /* DMA burst setting */
1335 
imx_uart_setup_ufcr(struct imx_port * sport,unsigned char txwl,unsigned char rxwl)1336 static void imx_uart_setup_ufcr(struct imx_port *sport,
1337 				unsigned char txwl, unsigned char rxwl)
1338 {
1339 	unsigned int val;
1340 
1341 	/* set receiver / transmitter trigger level */
1342 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1343 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1344 	imx_uart_writel(sport, val, UFCR);
1345 }
1346 
imx_uart_dma_exit(struct imx_port * sport)1347 static void imx_uart_dma_exit(struct imx_port *sport)
1348 {
1349 	if (sport->dma_chan_rx) {
1350 		dmaengine_terminate_sync(sport->dma_chan_rx);
1351 		dma_release_channel(sport->dma_chan_rx);
1352 		sport->dma_chan_rx = NULL;
1353 		sport->rx_cookie = -EINVAL;
1354 		kfree(sport->rx_buf);
1355 		sport->rx_buf = NULL;
1356 	}
1357 
1358 	if (sport->dma_chan_tx) {
1359 		dmaengine_terminate_sync(sport->dma_chan_tx);
1360 		dma_release_channel(sport->dma_chan_tx);
1361 		sport->dma_chan_tx = NULL;
1362 	}
1363 }
1364 
imx_uart_dma_init(struct imx_port * sport)1365 static int imx_uart_dma_init(struct imx_port *sport)
1366 {
1367 	struct dma_slave_config slave_config = {};
1368 	struct device *dev = sport->port.dev;
1369 	struct dma_chan *chan;
1370 	int ret;
1371 
1372 	/* Prepare for RX : */
1373 	chan = dma_request_chan(dev, "rx");
1374 	if (IS_ERR(chan)) {
1375 		dev_dbg(dev, "cannot get the DMA channel.\n");
1376 		sport->dma_chan_rx = NULL;
1377 		ret = PTR_ERR(chan);
1378 		goto err;
1379 	}
1380 	sport->dma_chan_rx = chan;
1381 
1382 	slave_config.direction = DMA_DEV_TO_MEM;
1383 	slave_config.src_addr = sport->port.mapbase + URXD0;
1384 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1385 	/* one byte less than the watermark level to enable the aging timer */
1386 	slave_config.src_maxburst = RXTL_DMA - 1;
1387 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1388 	if (ret) {
1389 		dev_err(dev, "error in RX dma configuration.\n");
1390 		goto err;
1391 	}
1392 
1393 	sport->rx_buf_size = sport->rx_period_length * sport->rx_periods;
1394 	sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL);
1395 	if (!sport->rx_buf) {
1396 		ret = -ENOMEM;
1397 		goto err;
1398 	}
1399 	sport->rx_ring.buf = sport->rx_buf;
1400 
1401 	/* Prepare for TX : */
1402 	chan = dma_request_chan(dev, "tx");
1403 	if (IS_ERR(chan)) {
1404 		dev_err(dev, "cannot get the TX DMA channel!\n");
1405 		sport->dma_chan_tx = NULL;
1406 		ret = PTR_ERR(chan);
1407 		goto err;
1408 	}
1409 	sport->dma_chan_tx = chan;
1410 
1411 	slave_config.direction = DMA_MEM_TO_DEV;
1412 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1413 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1414 	slave_config.dst_maxburst = TXTL_DMA;
1415 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1416 	if (ret) {
1417 		dev_err(dev, "error in TX dma configuration.");
1418 		goto err;
1419 	}
1420 
1421 	return 0;
1422 err:
1423 	imx_uart_dma_exit(sport);
1424 	return ret;
1425 }
1426 
imx_uart_enable_dma(struct imx_port * sport)1427 static void imx_uart_enable_dma(struct imx_port *sport)
1428 {
1429 	u32 ucr1;
1430 
1431 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1432 
1433 	/* set UCR1 */
1434 	ucr1 = imx_uart_readl(sport, UCR1);
1435 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1436 	imx_uart_writel(sport, ucr1, UCR1);
1437 
1438 	sport->dma_is_enabled = 1;
1439 }
1440 
imx_uart_disable_dma(struct imx_port * sport)1441 static void imx_uart_disable_dma(struct imx_port *sport)
1442 {
1443 	u32 ucr1;
1444 
1445 	/* clear UCR1 */
1446 	ucr1 = imx_uart_readl(sport, UCR1);
1447 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1448 	imx_uart_writel(sport, ucr1, UCR1);
1449 
1450 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, sport->rxtl);
1451 
1452 	sport->dma_is_enabled = 0;
1453 }
1454 
1455 /* half the RX buffer size */
1456 #define CTSTL 16
1457 
imx_uart_startup(struct uart_port * port)1458 static int imx_uart_startup(struct uart_port *port)
1459 {
1460 	struct imx_port *sport = to_imx_port(port);
1461 	int retval;
1462 	unsigned long flags;
1463 	int dma_is_inited = 0;
1464 	u32 ucr1, ucr2, ucr3, ucr4;
1465 
1466 	retval = clk_prepare_enable(sport->clk_per);
1467 	if (retval)
1468 		return retval;
1469 	retval = clk_prepare_enable(sport->clk_ipg);
1470 	if (retval) {
1471 		clk_disable_unprepare(sport->clk_per);
1472 		return retval;
1473 	}
1474 
1475 	if (uart_console(&sport->port))
1476 		sport->rxtl = RXTL_CONSOLE_DEFAULT;
1477 	else
1478 		sport->rxtl = RXTL_DEFAULT;
1479 
1480 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, sport->rxtl);
1481 
1482 	/* disable the DREN bit (Data Ready interrupt enable) before
1483 	 * requesting IRQs
1484 	 */
1485 	ucr4 = imx_uart_readl(sport, UCR4);
1486 
1487 	/* set the trigger level for CTS */
1488 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1489 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1490 
1491 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1492 
1493 	/* Can we enable the DMA support? */
1494 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0) {
1495 		lockdep_set_subclass(&port->lock, 1);
1496 		dma_is_inited = 1;
1497 	}
1498 
1499 	uart_port_lock_irqsave(&sport->port, &flags);
1500 
1501 	/* Reset fifo's and state machines */
1502 	imx_uart_soft_reset(sport);
1503 
1504 	/*
1505 	 * Finally, clear and enable interrupts
1506 	 */
1507 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1508 	imx_uart_writel(sport, USR2_ORE, USR2);
1509 
1510 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1511 	ucr1 |= UCR1_UARTEN;
1512 	if (sport->have_rtscts)
1513 		ucr1 |= UCR1_RTSDEN;
1514 
1515 	imx_uart_writel(sport, ucr1, UCR1);
1516 
1517 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1518 	if (!dma_is_inited)
1519 		ucr4 |= UCR4_OREN;
1520 	if (sport->inverted_rx)
1521 		ucr4 |= UCR4_INVR;
1522 	imx_uart_writel(sport, ucr4, UCR4);
1523 
1524 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1525 	/*
1526 	 * configure tx polarity before enabling tx
1527 	 */
1528 	if (sport->inverted_tx)
1529 		ucr3 |= UCR3_INVT;
1530 
1531 	if (!imx_uart_is_imx1(sport)) {
1532 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1533 
1534 		if (sport->dte_mode)
1535 			/* disable broken interrupts */
1536 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1537 	}
1538 	imx_uart_writel(sport, ucr3, UCR3);
1539 
1540 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1541 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1542 	if (!sport->have_rtscts)
1543 		ucr2 |= UCR2_IRTS;
1544 	/*
1545 	 * make sure the edge sensitive RTS-irq is disabled,
1546 	 * we're using RTSD instead.
1547 	 */
1548 	if (!imx_uart_is_imx1(sport))
1549 		ucr2 &= ~UCR2_RTSEN;
1550 	imx_uart_writel(sport, ucr2, UCR2);
1551 
1552 	/*
1553 	 * Enable modem status interrupts
1554 	 */
1555 	imx_uart_enable_ms(&sport->port);
1556 
1557 	if (dma_is_inited) {
1558 		imx_uart_enable_dma(sport);
1559 		imx_uart_start_rx_dma(sport);
1560 	} else {
1561 		ucr1 = imx_uart_readl(sport, UCR1);
1562 		ucr1 |= UCR1_RRDYEN;
1563 		imx_uart_writel(sport, ucr1, UCR1);
1564 
1565 		ucr2 = imx_uart_readl(sport, UCR2);
1566 		ucr2 |= UCR2_ATEN;
1567 		imx_uart_writel(sport, ucr2, UCR2);
1568 	}
1569 
1570 	imx_uart_disable_loopback_rs485(sport);
1571 
1572 	uart_port_unlock_irqrestore(&sport->port, flags);
1573 
1574 	return 0;
1575 }
1576 
imx_uart_shutdown(struct uart_port * port)1577 static void imx_uart_shutdown(struct uart_port *port)
1578 {
1579 	struct imx_port *sport = to_imx_port(port);
1580 	unsigned long flags;
1581 	u32 ucr1, ucr2, ucr4, uts;
1582 	int loops;
1583 
1584 	if (sport->dma_is_enabled) {
1585 		dmaengine_terminate_sync(sport->dma_chan_tx);
1586 		if (sport->dma_is_txing) {
1587 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1588 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1589 			sport->dma_is_txing = 0;
1590 		}
1591 		dmaengine_terminate_sync(sport->dma_chan_rx);
1592 		if (sport->dma_is_rxing) {
1593 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1594 				     1, DMA_FROM_DEVICE);
1595 			sport->dma_is_rxing = 0;
1596 		}
1597 
1598 		uart_port_lock_irqsave(&sport->port, &flags);
1599 		imx_uart_stop_tx(port);
1600 		imx_uart_stop_rx(port);
1601 		imx_uart_disable_dma(sport);
1602 		uart_port_unlock_irqrestore(&sport->port, flags);
1603 		imx_uart_dma_exit(sport);
1604 	}
1605 
1606 	mctrl_gpio_disable_ms(sport->gpios);
1607 
1608 	uart_port_lock_irqsave(&sport->port, &flags);
1609 	ucr2 = imx_uart_readl(sport, UCR2);
1610 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1611 	imx_uart_writel(sport, ucr2, UCR2);
1612 	uart_port_unlock_irqrestore(&sport->port, flags);
1613 
1614 	/*
1615 	 * Stop our timer.
1616 	 */
1617 	del_timer_sync(&sport->timer);
1618 
1619 	/*
1620 	 * Disable all interrupts, port and break condition.
1621 	 */
1622 
1623 	uart_port_lock_irqsave(&sport->port, &flags);
1624 
1625 	ucr1 = imx_uart_readl(sport, UCR1);
1626 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN |
1627 		  UCR1_ATDMAEN | UCR1_SNDBRK);
1628 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
1629 	if (port->rs485.flags & SER_RS485_ENABLED &&
1630 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
1631 	    sport->have_rtscts && !sport->have_rtsgpio) {
1632 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
1633 		uts |= UTS_LOOP;
1634 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1635 		ucr1 |= UCR1_UARTEN;
1636 	} else {
1637 		ucr1 &= ~UCR1_UARTEN;
1638 	}
1639 	imx_uart_writel(sport, ucr1, UCR1);
1640 
1641 	ucr4 = imx_uart_readl(sport, UCR4);
1642 	ucr4 &= ~UCR4_TCEN;
1643 	imx_uart_writel(sport, ucr4, UCR4);
1644 
1645 	/*
1646 	 * We have to ensure the tx state machine ends up in OFF. This
1647 	 * is especially important for rs485 where we must not leave
1648 	 * the RTS signal high, blocking the bus indefinitely.
1649 	 *
1650 	 * All interrupts are now disabled, so imx_uart_stop_tx() will
1651 	 * no longer be called from imx_uart_transmit_buffer(). It may
1652 	 * still be called via the hrtimers, and if those are in play,
1653 	 * we have to honour the delays.
1654 	 */
1655 	if (sport->tx_state == WAIT_AFTER_RTS || sport->tx_state == SEND)
1656 		imx_uart_stop_tx(port);
1657 
1658 	/*
1659 	 * In many cases (rs232 mode, or if tx_state was
1660 	 * WAIT_AFTER_RTS, or if tx_state was SEND and there is no
1661 	 * delay_rts_after_send), this will have moved directly to
1662 	 * OFF. In rs485 mode, tx_state might already have been
1663 	 * WAIT_AFTER_SEND and the hrtimer thus already started, or
1664 	 * the above imx_uart_stop_tx() call could have started it. In
1665 	 * those cases, we have to wait for the hrtimer to fire and
1666 	 * complete the transition to OFF.
1667 	 */
1668 	loops = port->rs485.flags & SER_RS485_ENABLED ?
1669 		port->rs485.delay_rts_after_send : 0;
1670 	while (sport->tx_state != OFF && loops--) {
1671 		uart_port_unlock_irqrestore(&sport->port, flags);
1672 		msleep(1);
1673 		uart_port_lock_irqsave(&sport->port, &flags);
1674 	}
1675 
1676 	if (sport->tx_state != OFF) {
1677 		dev_warn(sport->port.dev, "unexpected tx_state %d\n",
1678 			 sport->tx_state);
1679 		/*
1680 		 * This machine may be busted, but ensure the RTS
1681 		 * signal is inactive in order not to block other
1682 		 * devices.
1683 		 */
1684 		if (port->rs485.flags & SER_RS485_ENABLED) {
1685 			ucr2 = imx_uart_readl(sport, UCR2);
1686 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1687 				imx_uart_rts_active(sport, &ucr2);
1688 			else
1689 				imx_uart_rts_inactive(sport, &ucr2);
1690 			imx_uart_writel(sport, ucr2, UCR2);
1691 		}
1692 		sport->tx_state = OFF;
1693 	}
1694 
1695 	uart_port_unlock_irqrestore(&sport->port, flags);
1696 
1697 	clk_disable_unprepare(sport->clk_per);
1698 	clk_disable_unprepare(sport->clk_ipg);
1699 }
1700 
1701 /* called with port.lock taken and irqs off */
imx_uart_flush_buffer(struct uart_port * port)1702 static void imx_uart_flush_buffer(struct uart_port *port)
1703 {
1704 	struct imx_port *sport = to_imx_port(port);
1705 	struct scatterlist *sgl = &sport->tx_sgl[0];
1706 
1707 	if (!sport->dma_chan_tx)
1708 		return;
1709 
1710 	sport->tx_bytes = 0;
1711 	dmaengine_terminate_all(sport->dma_chan_tx);
1712 	if (sport->dma_is_txing) {
1713 		u32 ucr1;
1714 
1715 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1716 			     DMA_TO_DEVICE);
1717 		ucr1 = imx_uart_readl(sport, UCR1);
1718 		ucr1 &= ~UCR1_TXDMAEN;
1719 		imx_uart_writel(sport, ucr1, UCR1);
1720 		sport->dma_is_txing = 0;
1721 	}
1722 
1723 	imx_uart_soft_reset(sport);
1724 
1725 }
1726 
1727 static void
imx_uart_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)1728 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1729 		     const struct ktermios *old)
1730 {
1731 	struct imx_port *sport = to_imx_port(port);
1732 	unsigned long flags;
1733 	u32 ucr2, old_ucr2, ufcr;
1734 	unsigned int baud, quot;
1735 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1736 	unsigned long div;
1737 	unsigned long num, denom, old_ubir, old_ubmr;
1738 	uint64_t tdiv64;
1739 
1740 	/*
1741 	 * We only support CS7 and CS8.
1742 	 */
1743 	while ((termios->c_cflag & CSIZE) != CS7 &&
1744 	       (termios->c_cflag & CSIZE) != CS8) {
1745 		termios->c_cflag &= ~CSIZE;
1746 		termios->c_cflag |= old_csize;
1747 		old_csize = CS8;
1748 	}
1749 
1750 	del_timer_sync(&sport->timer);
1751 
1752 	/*
1753 	 * Ask the core to calculate the divisor for us.
1754 	 */
1755 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1756 	quot = uart_get_divisor(port, baud);
1757 
1758 	uart_port_lock_irqsave(&sport->port, &flags);
1759 
1760 	/*
1761 	 * Read current UCR2 and save it for future use, then clear all the bits
1762 	 * except those we will or may need to preserve.
1763 	 */
1764 	old_ucr2 = imx_uart_readl(sport, UCR2);
1765 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1766 
1767 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1768 	if ((termios->c_cflag & CSIZE) == CS8)
1769 		ucr2 |= UCR2_WS;
1770 
1771 	if (!sport->have_rtscts)
1772 		termios->c_cflag &= ~CRTSCTS;
1773 
1774 	if (port->rs485.flags & SER_RS485_ENABLED) {
1775 		/*
1776 		 * RTS is mandatory for rs485 operation, so keep
1777 		 * it under manual control and keep transmitter
1778 		 * disabled.
1779 		 */
1780 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1781 			imx_uart_rts_active(sport, &ucr2);
1782 		else
1783 			imx_uart_rts_inactive(sport, &ucr2);
1784 
1785 	} else if (termios->c_cflag & CRTSCTS) {
1786 		/*
1787 		 * Only let receiver control RTS output if we were not requested
1788 		 * to have RTS inactive (which then should take precedence).
1789 		 */
1790 		if (ucr2 & UCR2_CTS)
1791 			ucr2 |= UCR2_CTSC;
1792 	}
1793 
1794 	if (termios->c_cflag & CRTSCTS)
1795 		ucr2 &= ~UCR2_IRTS;
1796 	if (termios->c_cflag & CSTOPB)
1797 		ucr2 |= UCR2_STPB;
1798 	if (termios->c_cflag & PARENB) {
1799 		ucr2 |= UCR2_PREN;
1800 		if (termios->c_cflag & PARODD)
1801 			ucr2 |= UCR2_PROE;
1802 	}
1803 
1804 	sport->port.read_status_mask = 0;
1805 	if (termios->c_iflag & INPCK)
1806 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1807 	if (termios->c_iflag & (BRKINT | PARMRK))
1808 		sport->port.read_status_mask |= URXD_BRK;
1809 
1810 	/*
1811 	 * Characters to ignore
1812 	 */
1813 	sport->port.ignore_status_mask = 0;
1814 	if (termios->c_iflag & IGNPAR)
1815 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1816 	if (termios->c_iflag & IGNBRK) {
1817 		sport->port.ignore_status_mask |= URXD_BRK;
1818 		/*
1819 		 * If we're ignoring parity and break indicators,
1820 		 * ignore overruns too (for real raw support).
1821 		 */
1822 		if (termios->c_iflag & IGNPAR)
1823 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1824 	}
1825 
1826 	if ((termios->c_cflag & CREAD) == 0)
1827 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1828 
1829 	/*
1830 	 * Update the per-port timeout.
1831 	 */
1832 	uart_update_timeout(port, termios->c_cflag, baud);
1833 
1834 	/* custom-baudrate handling */
1835 	div = sport->port.uartclk / (baud * 16);
1836 	if (baud == 38400 && quot != div)
1837 		baud = sport->port.uartclk / (quot * 16);
1838 
1839 	div = sport->port.uartclk / (baud * 16);
1840 	if (div > 7)
1841 		div = 7;
1842 	if (!div)
1843 		div = 1;
1844 
1845 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1846 		1 << 16, 1 << 16, &num, &denom);
1847 
1848 	tdiv64 = sport->port.uartclk;
1849 	tdiv64 *= num;
1850 	do_div(tdiv64, denom * 16 * div);
1851 	tty_termios_encode_baud_rate(termios,
1852 				(speed_t)tdiv64, (speed_t)tdiv64);
1853 
1854 	num -= 1;
1855 	denom -= 1;
1856 
1857 	ufcr = imx_uart_readl(sport, UFCR);
1858 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1859 	imx_uart_writel(sport, ufcr, UFCR);
1860 
1861 	/*
1862 	 *  Two registers below should always be written both and in this
1863 	 *  particular order. One consequence is that we need to check if any of
1864 	 *  them changes and then update both. We do need the check for change
1865 	 *  as even writing the same values seem to "restart"
1866 	 *  transmission/receiving logic in the hardware, that leads to data
1867 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1868 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1869 	 */
1870 	old_ubir = imx_uart_readl(sport, UBIR);
1871 	old_ubmr = imx_uart_readl(sport, UBMR);
1872 	if (old_ubir != num || old_ubmr != denom) {
1873 		imx_uart_writel(sport, num, UBIR);
1874 		imx_uart_writel(sport, denom, UBMR);
1875 	}
1876 
1877 	if (!imx_uart_is_imx1(sport))
1878 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1879 				IMX21_ONEMS);
1880 
1881 	imx_uart_writel(sport, ucr2, UCR2);
1882 
1883 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1884 		imx_uart_enable_ms(&sport->port);
1885 
1886 	uart_port_unlock_irqrestore(&sport->port, flags);
1887 }
1888 
imx_uart_type(struct uart_port * port)1889 static const char *imx_uart_type(struct uart_port *port)
1890 {
1891 	return port->type == PORT_IMX ? "IMX" : NULL;
1892 }
1893 
1894 /*
1895  * Configure/autoconfigure the port.
1896  */
imx_uart_config_port(struct uart_port * port,int flags)1897 static void imx_uart_config_port(struct uart_port *port, int flags)
1898 {
1899 	if (flags & UART_CONFIG_TYPE)
1900 		port->type = PORT_IMX;
1901 }
1902 
1903 /*
1904  * Verify the new serial_struct (for TIOCSSERIAL).
1905  * The only change we allow are to the flags and type, and
1906  * even then only between PORT_IMX and PORT_UNKNOWN
1907  */
1908 static int
imx_uart_verify_port(struct uart_port * port,struct serial_struct * ser)1909 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1910 {
1911 	int ret = 0;
1912 
1913 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1914 		ret = -EINVAL;
1915 	if (port->irq != ser->irq)
1916 		ret = -EINVAL;
1917 	if (ser->io_type != UPIO_MEM)
1918 		ret = -EINVAL;
1919 	if (port->uartclk / 16 != ser->baud_base)
1920 		ret = -EINVAL;
1921 	if (port->mapbase != (unsigned long)ser->iomem_base)
1922 		ret = -EINVAL;
1923 	if (port->iobase != ser->port)
1924 		ret = -EINVAL;
1925 	if (ser->hub6 != 0)
1926 		ret = -EINVAL;
1927 	return ret;
1928 }
1929 
1930 #if defined(CONFIG_CONSOLE_POLL)
1931 
imx_uart_poll_init(struct uart_port * port)1932 static int imx_uart_poll_init(struct uart_port *port)
1933 {
1934 	struct imx_port *sport = to_imx_port(port);
1935 	unsigned long flags;
1936 	u32 ucr1, ucr2;
1937 	int retval;
1938 
1939 	retval = clk_prepare_enable(sport->clk_ipg);
1940 	if (retval)
1941 		return retval;
1942 	retval = clk_prepare_enable(sport->clk_per);
1943 	if (retval)
1944 		clk_disable_unprepare(sport->clk_ipg);
1945 
1946 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, sport->rxtl);
1947 
1948 	uart_port_lock_irqsave(&sport->port, &flags);
1949 
1950 	/*
1951 	 * Be careful about the order of enabling bits here. First enable the
1952 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1953 	 * This prevents that a character that already sits in the RX fifo is
1954 	 * triggering an irq but the try to fetch it from there results in an
1955 	 * exception because UARTEN or RXEN is still off.
1956 	 */
1957 	ucr1 = imx_uart_readl(sport, UCR1);
1958 	ucr2 = imx_uart_readl(sport, UCR2);
1959 
1960 	if (imx_uart_is_imx1(sport))
1961 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1962 
1963 	ucr1 |= UCR1_UARTEN;
1964 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1965 
1966 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1967 	ucr2 &= ~UCR2_ATEN;
1968 
1969 	imx_uart_writel(sport, ucr1, UCR1);
1970 	imx_uart_writel(sport, ucr2, UCR2);
1971 
1972 	/* now enable irqs */
1973 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1974 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1975 
1976 	uart_port_unlock_irqrestore(&sport->port, flags);
1977 
1978 	return 0;
1979 }
1980 
imx_uart_poll_get_char(struct uart_port * port)1981 static int imx_uart_poll_get_char(struct uart_port *port)
1982 {
1983 	struct imx_port *sport = to_imx_port(port);
1984 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1985 		return NO_POLL_CHAR;
1986 
1987 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1988 }
1989 
imx_uart_poll_put_char(struct uart_port * port,unsigned char c)1990 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1991 {
1992 	struct imx_port *sport = to_imx_port(port);
1993 	unsigned int status;
1994 
1995 	/* drain */
1996 	do {
1997 		status = imx_uart_readl(sport, USR1);
1998 	} while (~status & USR1_TRDY);
1999 
2000 	/* write */
2001 	imx_uart_writel(sport, c, URTX0);
2002 
2003 	/* flush */
2004 	do {
2005 		status = imx_uart_readl(sport, USR2);
2006 	} while (~status & USR2_TXDC);
2007 }
2008 #endif
2009 
2010 /* called with port.lock taken and irqs off or from .probe without locking */
imx_uart_rs485_config(struct uart_port * port,struct ktermios * termios,struct serial_rs485 * rs485conf)2011 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios,
2012 				 struct serial_rs485 *rs485conf)
2013 {
2014 	struct imx_port *sport = to_imx_port(port);
2015 	u32 ucr2, ufcr;
2016 
2017 	if (rs485conf->flags & SER_RS485_ENABLED) {
2018 		/* Enable receiver if low-active RTS signal is requested */
2019 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
2020 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
2021 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
2022 
2023 		/* disable transmitter */
2024 		ucr2 = imx_uart_readl(sport, UCR2);
2025 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
2026 			imx_uart_rts_active(sport, &ucr2);
2027 		else
2028 			imx_uart_rts_inactive(sport, &ucr2);
2029 		imx_uart_writel(sport, ucr2, UCR2);
2030 	}
2031 
2032 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
2033 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
2034 	    rs485conf->flags & SER_RS485_RX_DURING_TX) {
2035 		/* If the receiver trigger is 0, set it to a default value */
2036 		ufcr = imx_uart_readl(sport, UFCR);
2037 		if ((ufcr & UFCR_RXTL_MASK) == 0)
2038 			imx_uart_setup_ufcr(sport, TXTL_DEFAULT, sport->rxtl);
2039 		imx_uart_start_rx(port);
2040 	}
2041 
2042 	return 0;
2043 }
2044 
2045 static const struct uart_ops imx_uart_pops = {
2046 	.tx_empty	= imx_uart_tx_empty,
2047 	.set_mctrl	= imx_uart_set_mctrl,
2048 	.get_mctrl	= imx_uart_get_mctrl,
2049 	.stop_tx	= imx_uart_stop_tx,
2050 	.start_tx	= imx_uart_start_tx,
2051 	.stop_rx	= imx_uart_stop_rx,
2052 	.enable_ms	= imx_uart_enable_ms,
2053 	.break_ctl	= imx_uart_break_ctl,
2054 	.startup	= imx_uart_startup,
2055 	.shutdown	= imx_uart_shutdown,
2056 	.flush_buffer	= imx_uart_flush_buffer,
2057 	.set_termios	= imx_uart_set_termios,
2058 	.type		= imx_uart_type,
2059 	.config_port	= imx_uart_config_port,
2060 	.verify_port	= imx_uart_verify_port,
2061 #if defined(CONFIG_CONSOLE_POLL)
2062 	.poll_init      = imx_uart_poll_init,
2063 	.poll_get_char  = imx_uart_poll_get_char,
2064 	.poll_put_char  = imx_uart_poll_put_char,
2065 #endif
2066 };
2067 
2068 static struct imx_port *imx_uart_ports[UART_NR];
2069 
2070 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
imx_uart_console_putchar(struct uart_port * port,unsigned char ch)2071 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch)
2072 {
2073 	struct imx_port *sport = to_imx_port(port);
2074 
2075 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
2076 		barrier();
2077 
2078 	imx_uart_writel(sport, ch, URTX0);
2079 }
2080 
2081 /*
2082  * Interrupts are disabled on entering
2083  */
2084 static void
imx_uart_console_write(struct console * co,const char * s,unsigned int count)2085 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
2086 {
2087 	struct imx_port *sport = imx_uart_ports[co->index];
2088 	struct imx_port_ucrs old_ucr;
2089 	unsigned long flags;
2090 	unsigned int ucr1, usr2;
2091 	int locked = 1;
2092 
2093 	if (sport->port.sysrq)
2094 		locked = 0;
2095 	else if (oops_in_progress)
2096 		locked = uart_port_trylock_irqsave(&sport->port, &flags);
2097 	else
2098 		uart_port_lock_irqsave(&sport->port, &flags);
2099 
2100 	/*
2101 	 *	First, save UCR1/2/3 and then disable interrupts
2102 	 */
2103 	imx_uart_ucrs_save(sport, &old_ucr);
2104 	ucr1 = old_ucr.ucr1;
2105 
2106 	if (imx_uart_is_imx1(sport))
2107 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2108 	ucr1 |= UCR1_UARTEN;
2109 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2110 
2111 	imx_uart_writel(sport, ucr1, UCR1);
2112 
2113 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2114 
2115 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2116 
2117 	/*
2118 	 *	Finally, wait for transmitter to become empty
2119 	 *	and restore UCR1/2/3
2120 	 */
2121 	read_poll_timeout_atomic(imx_uart_readl, usr2, usr2 & USR2_TXDC,
2122 				 0, USEC_PER_SEC, false, sport, USR2);
2123 	imx_uart_ucrs_restore(sport, &old_ucr);
2124 
2125 	if (locked)
2126 		uart_port_unlock_irqrestore(&sport->port, flags);
2127 }
2128 
2129 /*
2130  * If the port was already initialised (eg, by a boot loader),
2131  * try to determine the current setup.
2132  */
2133 static void
imx_uart_console_get_options(struct imx_port * sport,int * baud,int * parity,int * bits)2134 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2135 			     int *parity, int *bits)
2136 {
2137 
2138 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2139 		/* ok, the port was enabled */
2140 		unsigned int ucr2, ubir, ubmr, uartclk;
2141 		unsigned int baud_raw;
2142 		unsigned int ucfr_rfdiv;
2143 
2144 		ucr2 = imx_uart_readl(sport, UCR2);
2145 
2146 		*parity = 'n';
2147 		if (ucr2 & UCR2_PREN) {
2148 			if (ucr2 & UCR2_PROE)
2149 				*parity = 'o';
2150 			else
2151 				*parity = 'e';
2152 		}
2153 
2154 		if (ucr2 & UCR2_WS)
2155 			*bits = 8;
2156 		else
2157 			*bits = 7;
2158 
2159 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2160 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2161 
2162 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2163 		if (ucfr_rfdiv == 6)
2164 			ucfr_rfdiv = 7;
2165 		else
2166 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2167 
2168 		uartclk = clk_get_rate(sport->clk_per);
2169 		uartclk /= ucfr_rfdiv;
2170 
2171 		{	/*
2172 			 * The next code provides exact computation of
2173 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2174 			 * without need of float support or long long division,
2175 			 * which would be required to prevent 32bit arithmetic overflow
2176 			 */
2177 			unsigned int mul = ubir + 1;
2178 			unsigned int div = 16 * (ubmr + 1);
2179 			unsigned int rem = uartclk % div;
2180 
2181 			baud_raw = (uartclk / div) * mul;
2182 			baud_raw += (rem * mul + div / 2) / div;
2183 			*baud = (baud_raw + 50) / 100 * 100;
2184 		}
2185 
2186 		if (*baud != baud_raw)
2187 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2188 				baud_raw, *baud);
2189 	}
2190 }
2191 
2192 static int
imx_uart_console_setup(struct console * co,char * options)2193 imx_uart_console_setup(struct console *co, char *options)
2194 {
2195 	struct imx_port *sport;
2196 	int baud = 9600;
2197 	int bits = 8;
2198 	int parity = 'n';
2199 	int flow = 'n';
2200 	int retval;
2201 
2202 	/*
2203 	 * Check whether an invalid uart number has been specified, and
2204 	 * if so, search for the first available port that does have
2205 	 * console support.
2206 	 */
2207 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2208 		co->index = 0;
2209 	sport = imx_uart_ports[co->index];
2210 	if (sport == NULL)
2211 		return -ENODEV;
2212 
2213 	/* For setting the registers, we only need to enable the ipg clock. */
2214 	retval = clk_prepare_enable(sport->clk_ipg);
2215 	if (retval)
2216 		goto error_console;
2217 
2218 	if (options)
2219 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2220 	else
2221 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2222 
2223 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, sport->rxtl);
2224 
2225 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2226 
2227 	if (retval) {
2228 		clk_disable_unprepare(sport->clk_ipg);
2229 		goto error_console;
2230 	}
2231 
2232 	retval = clk_prepare_enable(sport->clk_per);
2233 	if (retval)
2234 		clk_disable_unprepare(sport->clk_ipg);
2235 
2236 error_console:
2237 	return retval;
2238 }
2239 
2240 static int
imx_uart_console_exit(struct console * co)2241 imx_uart_console_exit(struct console *co)
2242 {
2243 	struct imx_port *sport = imx_uart_ports[co->index];
2244 
2245 	clk_disable_unprepare(sport->clk_per);
2246 	clk_disable_unprepare(sport->clk_ipg);
2247 
2248 	return 0;
2249 }
2250 
2251 static struct uart_driver imx_uart_uart_driver;
2252 static struct console imx_uart_console = {
2253 	.name		= DEV_NAME,
2254 	.write		= imx_uart_console_write,
2255 	.device		= uart_console_device,
2256 	.setup		= imx_uart_console_setup,
2257 	.exit		= imx_uart_console_exit,
2258 	.flags		= CON_PRINTBUFFER,
2259 	.index		= -1,
2260 	.data		= &imx_uart_uart_driver,
2261 };
2262 
2263 #define IMX_CONSOLE	&imx_uart_console
2264 
2265 #else
2266 #define IMX_CONSOLE	NULL
2267 #endif
2268 
2269 static struct uart_driver imx_uart_uart_driver = {
2270 	.owner          = THIS_MODULE,
2271 	.driver_name    = DRIVER_NAME,
2272 	.dev_name       = DEV_NAME,
2273 	.major          = SERIAL_IMX_MAJOR,
2274 	.minor          = MINOR_START,
2275 	.nr             = ARRAY_SIZE(imx_uart_ports),
2276 	.cons           = IMX_CONSOLE,
2277 };
2278 
imx_trigger_start_tx(struct hrtimer * t)2279 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2280 {
2281 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2282 	unsigned long flags;
2283 
2284 	uart_port_lock_irqsave(&sport->port, &flags);
2285 	if (sport->tx_state == WAIT_AFTER_RTS)
2286 		imx_uart_start_tx(&sport->port);
2287 	uart_port_unlock_irqrestore(&sport->port, flags);
2288 
2289 	return HRTIMER_NORESTART;
2290 }
2291 
imx_trigger_stop_tx(struct hrtimer * t)2292 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2293 {
2294 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2295 	unsigned long flags;
2296 
2297 	uart_port_lock_irqsave(&sport->port, &flags);
2298 	if (sport->tx_state == WAIT_AFTER_SEND)
2299 		imx_uart_stop_tx(&sport->port);
2300 	uart_port_unlock_irqrestore(&sport->port, flags);
2301 
2302 	return HRTIMER_NORESTART;
2303 }
2304 
2305 static const struct serial_rs485 imx_rs485_supported = {
2306 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2307 		 SER_RS485_RX_DURING_TX,
2308 	.delay_rts_before_send = 1,
2309 	.delay_rts_after_send = 1,
2310 };
2311 
2312 /* Default RX DMA buffer configuration */
2313 #define RX_DMA_PERIODS		16
2314 #define RX_DMA_PERIOD_LEN	(PAGE_SIZE / 4)
2315 
imx_uart_probe(struct platform_device * pdev)2316 static int imx_uart_probe(struct platform_device *pdev)
2317 {
2318 	struct device_node *np = pdev->dev.of_node;
2319 	struct imx_port *sport;
2320 	void __iomem *base;
2321 	u32 dma_buf_conf[2];
2322 	int ret = 0;
2323 	u32 ucr1, ucr2, uts;
2324 	struct resource *res;
2325 	int txirq, rxirq, rtsirq;
2326 
2327 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2328 	if (!sport)
2329 		return -ENOMEM;
2330 
2331 	sport->devdata = of_device_get_match_data(&pdev->dev);
2332 
2333 	ret = of_alias_get_id(np, "serial");
2334 	if (ret < 0) {
2335 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2336 		return ret;
2337 	}
2338 	sport->port.line = ret;
2339 
2340 	sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") ||
2341 		of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */
2342 
2343 	sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode");
2344 
2345 	sport->have_rtsgpio = of_property_present(np, "rts-gpios");
2346 
2347 	sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx");
2348 
2349 	sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx");
2350 
2351 	if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) {
2352 		sport->rx_period_length = dma_buf_conf[0];
2353 		sport->rx_periods = dma_buf_conf[1];
2354 	} else {
2355 		sport->rx_period_length = RX_DMA_PERIOD_LEN;
2356 		sport->rx_periods = RX_DMA_PERIODS;
2357 	}
2358 
2359 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2360 		dev_err(&pdev->dev, "serial%d out of range\n",
2361 			sport->port.line);
2362 		return -EINVAL;
2363 	}
2364 
2365 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2366 	if (IS_ERR(base))
2367 		return PTR_ERR(base);
2368 
2369 	rxirq = platform_get_irq(pdev, 0);
2370 	if (rxirq < 0)
2371 		return rxirq;
2372 	txirq = platform_get_irq_optional(pdev, 1);
2373 	rtsirq = platform_get_irq_optional(pdev, 2);
2374 
2375 	sport->port.dev = &pdev->dev;
2376 	sport->port.mapbase = res->start;
2377 	sport->port.membase = base;
2378 	sport->port.type = PORT_IMX;
2379 	sport->port.iotype = UPIO_MEM;
2380 	sport->port.irq = rxirq;
2381 	sport->port.fifosize = 32;
2382 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2383 	sport->port.ops = &imx_uart_pops;
2384 	sport->port.rs485_config = imx_uart_rs485_config;
2385 	/* RTS is required to control the RS485 transmitter */
2386 	if (sport->have_rtscts || sport->have_rtsgpio)
2387 		sport->port.rs485_supported = imx_rs485_supported;
2388 	sport->port.flags = UPF_BOOT_AUTOCONF;
2389 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2390 
2391 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2392 	if (IS_ERR(sport->gpios))
2393 		return PTR_ERR(sport->gpios);
2394 
2395 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2396 	if (IS_ERR(sport->clk_ipg)) {
2397 		ret = PTR_ERR(sport->clk_ipg);
2398 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2399 		return ret;
2400 	}
2401 
2402 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2403 	if (IS_ERR(sport->clk_per)) {
2404 		ret = PTR_ERR(sport->clk_per);
2405 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2406 		return ret;
2407 	}
2408 
2409 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2410 
2411 	/* For register access, we only need to enable the ipg clock. */
2412 	ret = clk_prepare_enable(sport->clk_ipg);
2413 	if (ret) {
2414 		dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret);
2415 		return ret;
2416 	}
2417 
2418 	ret = uart_get_rs485_mode(&sport->port);
2419 	if (ret)
2420 		goto err_clk;
2421 
2422 	/*
2423 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2424 	 * signal cannot be set low during transmission in case the
2425 	 * receiver is off (limitation of the i.MX UART IP).
2426 	 */
2427 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2428 	    sport->have_rtscts && !sport->have_rtsgpio &&
2429 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2430 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2431 		dev_err(&pdev->dev,
2432 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2433 
2434 	/* Disable interrupts before requesting them */
2435 	ucr1 = imx_uart_readl(sport, UCR1);
2436 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2437 	imx_uart_writel(sport, ucr1, UCR1);
2438 
2439 	/* Disable Ageing Timer interrupt */
2440 	ucr2 = imx_uart_readl(sport, UCR2);
2441 	ucr2 &= ~UCR2_ATEN;
2442 	imx_uart_writel(sport, ucr2, UCR2);
2443 
2444 	/*
2445 	 * In case RS485 is enabled without GPIO RTS control, the UART IP
2446 	 * is used to control CTS signal. Keep both the UART and Receiver
2447 	 * enabled, otherwise the UART IP pulls CTS signal always HIGH no
2448 	 * matter how the UCR2 CTSC and CTS bits are set. To prevent any
2449 	 * data from being fed into the RX FIFO, enable loopback mode in
2450 	 * UTS register, which disconnects the RX path from external RXD
2451 	 * pin and connects it to the Transceiver, which is disabled, so
2452 	 * no data can be fed to the RX FIFO that way.
2453 	 */
2454 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2455 	    sport->have_rtscts && !sport->have_rtsgpio) {
2456 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
2457 		uts |= UTS_LOOP;
2458 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
2459 
2460 		ucr1 = imx_uart_readl(sport, UCR1);
2461 		ucr1 |= UCR1_UARTEN;
2462 		imx_uart_writel(sport, ucr1, UCR1);
2463 
2464 		ucr2 = imx_uart_readl(sport, UCR2);
2465 		ucr2 |= UCR2_RXEN;
2466 		imx_uart_writel(sport, ucr2, UCR2);
2467 	}
2468 
2469 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2470 		/*
2471 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2472 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2473 		 * and DCD (when they are outputs) or enables the respective
2474 		 * irqs. So set this bit early, i.e. before requesting irqs.
2475 		 */
2476 		u32 ufcr = imx_uart_readl(sport, UFCR);
2477 		if (!(ufcr & UFCR_DCEDTE))
2478 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2479 
2480 		/*
2481 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2482 		 * enabled later because they cannot be cleared
2483 		 * (confirmed on i.MX25) which makes them unusable.
2484 		 */
2485 		imx_uart_writel(sport,
2486 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2487 				UCR3);
2488 
2489 	} else {
2490 		u32 ucr3 = UCR3_DSR;
2491 		u32 ufcr = imx_uart_readl(sport, UFCR);
2492 		if (ufcr & UFCR_DCEDTE)
2493 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2494 
2495 		if (!imx_uart_is_imx1(sport))
2496 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2497 		imx_uart_writel(sport, ucr3, UCR3);
2498 	}
2499 
2500 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2501 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2502 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2503 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2504 
2505 	/*
2506 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2507 	 * chips only have one interrupt.
2508 	 */
2509 	if (txirq > 0) {
2510 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2511 				       dev_name(&pdev->dev), sport);
2512 		if (ret) {
2513 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2514 				ret);
2515 			goto err_clk;
2516 		}
2517 
2518 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2519 				       dev_name(&pdev->dev), sport);
2520 		if (ret) {
2521 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2522 				ret);
2523 			goto err_clk;
2524 		}
2525 
2526 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2527 				       dev_name(&pdev->dev), sport);
2528 		if (ret) {
2529 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2530 				ret);
2531 			goto err_clk;
2532 		}
2533 	} else {
2534 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2535 				       dev_name(&pdev->dev), sport);
2536 		if (ret) {
2537 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2538 			goto err_clk;
2539 		}
2540 	}
2541 
2542 	imx_uart_ports[sport->port.line] = sport;
2543 
2544 	platform_set_drvdata(pdev, sport);
2545 
2546 	ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2547 
2548 err_clk:
2549 	clk_disable_unprepare(sport->clk_ipg);
2550 
2551 	return ret;
2552 }
2553 
imx_uart_remove(struct platform_device * pdev)2554 static void imx_uart_remove(struct platform_device *pdev)
2555 {
2556 	struct imx_port *sport = platform_get_drvdata(pdev);
2557 
2558 	uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2559 }
2560 
imx_uart_restore_context(struct imx_port * sport)2561 static void imx_uart_restore_context(struct imx_port *sport)
2562 {
2563 	unsigned long flags;
2564 
2565 	uart_port_lock_irqsave(&sport->port, &flags);
2566 	if (!sport->context_saved) {
2567 		uart_port_unlock_irqrestore(&sport->port, flags);
2568 		return;
2569 	}
2570 
2571 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2572 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2573 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2574 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2575 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2576 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2577 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2578 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2579 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2580 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2581 	sport->context_saved = false;
2582 	uart_port_unlock_irqrestore(&sport->port, flags);
2583 }
2584 
imx_uart_save_context(struct imx_port * sport)2585 static void imx_uart_save_context(struct imx_port *sport)
2586 {
2587 	unsigned long flags;
2588 
2589 	/* Save necessary regs */
2590 	uart_port_lock_irqsave(&sport->port, &flags);
2591 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2592 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2593 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2594 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2595 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2596 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2597 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2598 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2599 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2600 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2601 	sport->context_saved = true;
2602 	uart_port_unlock_irqrestore(&sport->port, flags);
2603 }
2604 
imx_uart_enable_wakeup(struct imx_port * sport,bool on)2605 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2606 {
2607 	u32 ucr3;
2608 
2609 	ucr3 = imx_uart_readl(sport, UCR3);
2610 	if (on) {
2611 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2612 		ucr3 |= UCR3_AWAKEN;
2613 	} else {
2614 		ucr3 &= ~UCR3_AWAKEN;
2615 	}
2616 	imx_uart_writel(sport, ucr3, UCR3);
2617 
2618 	if (sport->have_rtscts) {
2619 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2620 		if (on) {
2621 			imx_uart_writel(sport, USR1_RTSD, USR1);
2622 			ucr1 |= UCR1_RTSDEN;
2623 		} else {
2624 			ucr1 &= ~UCR1_RTSDEN;
2625 		}
2626 		imx_uart_writel(sport, ucr1, UCR1);
2627 	}
2628 }
2629 
imx_uart_suspend_noirq(struct device * dev)2630 static int imx_uart_suspend_noirq(struct device *dev)
2631 {
2632 	struct imx_port *sport = dev_get_drvdata(dev);
2633 
2634 	imx_uart_save_context(sport);
2635 
2636 	clk_disable(sport->clk_ipg);
2637 
2638 	pinctrl_pm_select_sleep_state(dev);
2639 
2640 	return 0;
2641 }
2642 
imx_uart_resume_noirq(struct device * dev)2643 static int imx_uart_resume_noirq(struct device *dev)
2644 {
2645 	struct imx_port *sport = dev_get_drvdata(dev);
2646 	int ret;
2647 
2648 	pinctrl_pm_select_default_state(dev);
2649 
2650 	ret = clk_enable(sport->clk_ipg);
2651 	if (ret)
2652 		return ret;
2653 
2654 	imx_uart_restore_context(sport);
2655 
2656 	return 0;
2657 }
2658 
imx_uart_suspend(struct device * dev)2659 static int imx_uart_suspend(struct device *dev)
2660 {
2661 	struct imx_port *sport = dev_get_drvdata(dev);
2662 	int ret;
2663 
2664 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2665 	disable_irq(sport->port.irq);
2666 
2667 	ret = clk_prepare_enable(sport->clk_ipg);
2668 	if (ret)
2669 		return ret;
2670 
2671 	/* enable wakeup from i.MX UART */
2672 	imx_uart_enable_wakeup(sport, true);
2673 
2674 	return 0;
2675 }
2676 
imx_uart_resume(struct device * dev)2677 static int imx_uart_resume(struct device *dev)
2678 {
2679 	struct imx_port *sport = dev_get_drvdata(dev);
2680 
2681 	/* disable wakeup from i.MX UART */
2682 	imx_uart_enable_wakeup(sport, false);
2683 
2684 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2685 	enable_irq(sport->port.irq);
2686 
2687 	clk_disable_unprepare(sport->clk_ipg);
2688 
2689 	return 0;
2690 }
2691 
imx_uart_freeze(struct device * dev)2692 static int imx_uart_freeze(struct device *dev)
2693 {
2694 	struct imx_port *sport = dev_get_drvdata(dev);
2695 
2696 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2697 
2698 	return clk_prepare_enable(sport->clk_ipg);
2699 }
2700 
imx_uart_thaw(struct device * dev)2701 static int imx_uart_thaw(struct device *dev)
2702 {
2703 	struct imx_port *sport = dev_get_drvdata(dev);
2704 
2705 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2706 
2707 	clk_disable_unprepare(sport->clk_ipg);
2708 
2709 	return 0;
2710 }
2711 
2712 static const struct dev_pm_ops imx_uart_pm_ops = {
2713 	.suspend_noirq = imx_uart_suspend_noirq,
2714 	.resume_noirq = imx_uart_resume_noirq,
2715 	.freeze_noirq = imx_uart_suspend_noirq,
2716 	.thaw_noirq = imx_uart_resume_noirq,
2717 	.restore_noirq = imx_uart_resume_noirq,
2718 	.suspend = imx_uart_suspend,
2719 	.resume = imx_uart_resume,
2720 	.freeze = imx_uart_freeze,
2721 	.thaw = imx_uart_thaw,
2722 	.restore = imx_uart_thaw,
2723 };
2724 
2725 static struct platform_driver imx_uart_platform_driver = {
2726 	.probe = imx_uart_probe,
2727 	.remove_new = imx_uart_remove,
2728 
2729 	.driver = {
2730 		.name = "imx-uart",
2731 		.of_match_table = imx_uart_dt_ids,
2732 		.pm = &imx_uart_pm_ops,
2733 	},
2734 };
2735 
imx_uart_init(void)2736 static int __init imx_uart_init(void)
2737 {
2738 	int ret = uart_register_driver(&imx_uart_uart_driver);
2739 
2740 	if (ret)
2741 		return ret;
2742 
2743 	ret = platform_driver_register(&imx_uart_platform_driver);
2744 	if (ret != 0)
2745 		uart_unregister_driver(&imx_uart_uart_driver);
2746 
2747 	return ret;
2748 }
2749 
imx_uart_exit(void)2750 static void __exit imx_uart_exit(void)
2751 {
2752 	platform_driver_unregister(&imx_uart_platform_driver);
2753 	uart_unregister_driver(&imx_uart_uart_driver);
2754 }
2755 
2756 module_init(imx_uart_init);
2757 module_exit(imx_uart_exit);
2758 
2759 MODULE_AUTHOR("Sascha Hauer");
2760 MODULE_DESCRIPTION("IMX generic serial port driver");
2761 MODULE_LICENSE("GPL");
2762 MODULE_ALIAS("platform:imx-uart");
2763