1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 * Santosh Yaraganavi <santosh.sy@samsung.com>
9 * Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <linux/unaligned.h>
40
41 #define CREATE_TRACE_POINTS
42 #include "ufs_trace.h"
43
44 #undef CREATE_TRACE_POINTS
45 #include <trace/hooks/ufshcd.h>
46
47 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
48 UTP_TASK_REQ_COMPL |\
49 UFSHCD_ERROR_MASK)
50
51 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\
52 UFSHCD_ERROR_MASK |\
53 MCQ_CQ_EVENT_STATUS)
54
55
56 /* UIC command timeout, unit: ms */
57 enum {
58 UIC_CMD_TIMEOUT_DEFAULT = 500,
59 UIC_CMD_TIMEOUT_MAX = 5000,
60 };
61 /* NOP OUT retries waiting for NOP IN response */
62 #define NOP_OUT_RETRIES 10
63 /* Timeout after 50 msecs if NOP OUT hangs without response */
64 #define NOP_OUT_TIMEOUT 50 /* msecs */
65
66 /* Query request retries */
67 #define QUERY_REQ_RETRIES 3
68 /* Query request timeout */
69 enum {
70 QUERY_REQ_TIMEOUT_MIN = 1,
71 QUERY_REQ_TIMEOUT_DEFAULT = 1500,
72 QUERY_REQ_TIMEOUT_MAX = 30000
73 };
74
75 /* Advanced RPMB request timeout */
76 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */
77
78 /* Task management command timeout */
79 #define TM_CMD_TIMEOUT 100 /* msecs */
80
81 /* maximum number of retries for a general UIC command */
82 #define UFS_UIC_COMMAND_RETRIES 3
83
84 /* maximum number of link-startup retries */
85 #define DME_LINKSTARTUP_RETRIES 3
86
87 /* maximum number of reset retries before giving up */
88 #define MAX_HOST_RESET_RETRIES 5
89
90 /* Maximum number of error handler retries before giving up */
91 #define MAX_ERR_HANDLER_RETRIES 5
92
93 /* Expose the flag value from utp_upiu_query.value */
94 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
95
96 /* Interrupt aggregation default timeout, unit: 40us */
97 #define INT_AGGR_DEF_TO 0x02
98
99 /* default delay of autosuspend: 2000 ms */
100 #define RPM_AUTOSUSPEND_DELAY_MS 2000
101
102 /* Default delay of RPM device flush delayed work */
103 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
104
105 /* Default value of wait time before gating device ref clock */
106 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
107
108 /* Polling time to wait for fDeviceInit */
109 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
110
111 /* Default RTC update every 10 seconds */
112 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
113
114 /* bMaxNumOfRTT is equal to two after device manufacturing */
115 #define DEFAULT_MAX_NUM_RTT 2
116
117 /* UFSHC 4.0 compliant HC support this mode. */
118 static bool use_mcq_mode = true;
119
is_mcq_supported(struct ufs_hba * hba)120 static bool is_mcq_supported(struct ufs_hba *hba)
121 {
122 return hba->mcq_sup && use_mcq_mode;
123 }
124
125 module_param(use_mcq_mode, bool, 0644);
126 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
127
128 EXPORT_TRACEPOINT_SYMBOL_GPL(ufshcd_profile_hibern8);
129 EXPORT_TRACEPOINT_SYMBOL_GPL(ufshcd_profile_clk_scaling);
130 EXPORT_TRACEPOINT_SYMBOL_GPL(ufshcd_profile_clk_gating);
131
132 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
133
uic_cmd_timeout_set(const char * val,const struct kernel_param * kp)134 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
135 {
136 return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
137 UIC_CMD_TIMEOUT_MAX);
138 }
139
140 static const struct kernel_param_ops uic_cmd_timeout_ops = {
141 .set = uic_cmd_timeout_set,
142 .get = param_get_uint,
143 };
144
145 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
146 MODULE_PARM_DESC(uic_cmd_timeout,
147 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 5 seconds inclusively");
148
149 static unsigned int dev_cmd_timeout = QUERY_REQ_TIMEOUT_DEFAULT;
150
dev_cmd_timeout_set(const char * val,const struct kernel_param * kp)151 static int dev_cmd_timeout_set(const char *val, const struct kernel_param *kp)
152 {
153 return param_set_uint_minmax(val, kp, QUERY_REQ_TIMEOUT_MIN,
154 QUERY_REQ_TIMEOUT_MAX);
155 }
156
157 static const struct kernel_param_ops dev_cmd_timeout_ops = {
158 .set = dev_cmd_timeout_set,
159 .get = param_get_uint,
160 };
161
162 module_param_cb(dev_cmd_timeout, &dev_cmd_timeout_ops, &dev_cmd_timeout, 0644);
163 MODULE_PARM_DESC(dev_cmd_timeout,
164 "UFS Device command timeout in milliseconds. Defaults to 1.5s. Supported values range from 1ms to 30 seconds inclusively");
165
166 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
167 ({ \
168 int _ret; \
169 if (_on) \
170 _ret = ufshcd_enable_vreg(_dev, _vreg); \
171 else \
172 _ret = ufshcd_disable_vreg(_dev, _vreg); \
173 _ret; \
174 })
175
176 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
177 size_t __len = (len); \
178 print_hex_dump(KERN_ERR, prefix_str, \
179 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
180 16, 4, buf, __len, false); \
181 } while (0)
182
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)183 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
184 const char *prefix)
185 {
186 u32 *regs;
187 size_t pos;
188
189 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
190 return -EINVAL;
191
192 regs = kzalloc(len, GFP_ATOMIC);
193 if (!regs)
194 return -ENOMEM;
195
196 for (pos = 0; pos < len; pos += 4) {
197 if (offset == 0 &&
198 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
199 pos <= REG_UIC_ERROR_CODE_DME)
200 continue;
201 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
202 }
203
204 ufshcd_hex_dump(prefix, regs, len);
205 kfree(regs);
206
207 return 0;
208 }
209 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
210
211 enum {
212 UFSHCD_MAX_CHANNEL = 0,
213 UFSHCD_MAX_ID = 1,
214 };
215
216 static const char *const ufshcd_state_name[] = {
217 [UFSHCD_STATE_RESET] = "reset",
218 [UFSHCD_STATE_OPERATIONAL] = "operational",
219 [UFSHCD_STATE_ERROR] = "error",
220 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal",
221 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal",
222 };
223
224 /* UFSHCD error handling flags */
225 enum {
226 UFSHCD_EH_IN_PROGRESS = (1 << 0),
227 };
228
229 /* UFSHCD UIC layer error flags */
230 enum {
231 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
232 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
233 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
234 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
235 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
236 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
237 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
238 };
239
240 #define ufshcd_set_eh_in_progress(h) \
241 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
242 #define ufshcd_eh_in_progress(h) \
243 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
244 #define ufshcd_clear_eh_in_progress(h) \
245 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
246
247 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
248 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
249 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
250 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
251 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
252 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
253 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
254 /*
255 * For DeepSleep, the link is first put in hibern8 and then off.
256 * Leaving the link in hibern8 is not supported.
257 */
258 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
259 };
260
261 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)262 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
263 {
264 return ufs_pm_lvl_states[lvl].dev_state;
265 }
266
267 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)268 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
269 {
270 return ufs_pm_lvl_states[lvl].link_state;
271 }
272
273 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)274 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
275 enum uic_link_state link_state)
276 {
277 enum ufs_pm_level lvl;
278
279 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
280 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
281 (ufs_pm_lvl_states[lvl].link_state == link_state))
282 return lvl;
283 }
284
285 /* if no match found, return the level 0 */
286 return UFS_PM_LVL_0;
287 }
288
ufshcd_has_pending_tasks(struct ufs_hba * hba)289 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
290 {
291 return hba->outstanding_tasks || hba->active_uic_cmd ||
292 hba->uic_async_done;
293 }
294
ufshcd_is_ufs_dev_busy(struct ufs_hba * hba)295 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
296 {
297 return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
298 }
299
300 static const struct ufs_dev_quirk ufs_fixups[] = {
301 /* UFS cards deviations table */
302 { .wmanufacturerid = UFS_VENDOR_MICRON,
303 .model = UFS_ANY_MODEL,
304 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
305 { .wmanufacturerid = UFS_VENDOR_SAMSUNG,
306 .model = UFS_ANY_MODEL,
307 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
308 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
309 UFS_DEVICE_QUIRK_PA_HIBER8TIME |
310 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
311 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
312 .model = UFS_ANY_MODEL,
313 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
314 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
315 .model = "hB8aL1" /*H28U62301AMR*/,
316 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
317 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
318 .model = UFS_ANY_MODEL,
319 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
320 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
321 .model = "THGLF2G9C8KBADG",
322 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
323 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
324 .model = "THGLF2G9D8KBADG",
325 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
326 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
327 .model = "THGJFJT1E45BATP",
328 .quirk = UFS_DEVICE_QUIRK_NO_TIMESTAMP_SUPPORT },
329 {}
330 };
331
332 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
333 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
334 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
335 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
336 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
337 static void ufshcd_hba_exit(struct ufs_hba *hba);
338 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
339 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
340 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
341 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
342 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
343 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
344 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
345 bool scale_up);
346 static irqreturn_t ufshcd_intr(int irq, void *__hba);
347 static int ufshcd_change_power_mode(struct ufs_hba *hba,
348 struct ufs_pa_layer_attr *pwr_mode);
349 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
350 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
351 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
352 struct ufs_vreg *vreg);
353 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
354 bool enable);
355 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
356 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
357
ufshcd_enable_irq(struct ufs_hba * hba)358 void ufshcd_enable_irq(struct ufs_hba *hba)
359 {
360 if (!hba->is_irq_enabled) {
361 enable_irq(hba->irq);
362 hba->is_irq_enabled = true;
363 }
364 }
365 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
366
ufshcd_disable_irq(struct ufs_hba * hba)367 void ufshcd_disable_irq(struct ufs_hba *hba)
368 {
369 if (hba->is_irq_enabled) {
370 disable_irq(hba->irq);
371 hba->is_irq_enabled = false;
372 }
373 }
374 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
375
ufshcd_configure_wb(struct ufs_hba * hba)376 static void ufshcd_configure_wb(struct ufs_hba *hba)
377 {
378 if (!ufshcd_is_wb_allowed(hba))
379 return;
380
381 ufshcd_wb_toggle(hba, true);
382
383 ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
384
385 if (ufshcd_is_wb_buf_flush_allowed(hba))
386 ufshcd_wb_toggle_buf_flush(hba, true);
387 }
388
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)389 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
390 {
391 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
392 scsi_unblock_requests(hba->host);
393 }
394
ufshcd_scsi_block_requests(struct ufs_hba * hba)395 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
396 {
397 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
398 scsi_block_requests(hba->host);
399 }
400
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)401 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
402 enum ufs_trace_str_t str_t)
403 {
404 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
405 struct utp_upiu_header *header;
406
407 if (!trace_ufshcd_upiu_enabled())
408 return;
409
410 if (str_t == UFS_CMD_SEND)
411 header = &rq->header;
412 else
413 header = &hba->lrb[tag].ucd_rsp_ptr->header;
414
415 trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb,
416 UFS_TSF_CDB);
417 }
418
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)419 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
420 enum ufs_trace_str_t str_t,
421 struct utp_upiu_req *rq_rsp)
422 {
423 if (!trace_ufshcd_upiu_enabled())
424 return;
425
426 trace_ufshcd_upiu(hba, str_t, &rq_rsp->header,
427 &rq_rsp->qr, UFS_TSF_OSF);
428 }
429
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)430 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
431 enum ufs_trace_str_t str_t)
432 {
433 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
434
435 trace_android_vh_ufs_send_tm_command(hba, tag, (int)str_t);
436
437 if (!trace_ufshcd_upiu_enabled())
438 return;
439
440 if (str_t == UFS_TM_SEND)
441 trace_ufshcd_upiu(hba, str_t,
442 &descp->upiu_req.req_header,
443 &descp->upiu_req.input_param1,
444 UFS_TSF_TM_INPUT);
445 else
446 trace_ufshcd_upiu(hba, str_t,
447 &descp->upiu_rsp.rsp_header,
448 &descp->upiu_rsp.output_param1,
449 UFS_TSF_TM_OUTPUT);
450 }
451
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)452 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
453 const struct uic_command *ucmd,
454 enum ufs_trace_str_t str_t)
455 {
456 u32 cmd;
457
458 trace_android_vh_ufs_send_uic_command(hba, ucmd, (int)str_t);
459
460 if (!trace_ufshcd_uic_command_enabled())
461 return;
462
463 if (str_t == UFS_CMD_SEND)
464 cmd = ucmd->command;
465 else
466 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
467
468 trace_ufshcd_uic_command(hba, str_t, cmd,
469 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
470 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
471 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
472 }
473
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)474 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
475 enum ufs_trace_str_t str_t)
476 {
477 u64 lba = 0;
478 u8 opcode = 0, group_id = 0;
479 u32 doorbell = 0;
480 u32 intr;
481 int hwq_id = -1;
482 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
483 struct scsi_cmnd *cmd = lrbp->cmd;
484 struct request *rq = scsi_cmd_to_rq(cmd);
485 int transfer_len = -1;
486
487 if (!cmd)
488 return;
489
490 /* trace UPIU also */
491 ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
492 if (!trace_ufshcd_command_enabled())
493 return;
494
495 opcode = cmd->cmnd[0];
496
497 if (opcode == READ_10 || opcode == WRITE_10 ||
498 opcode == READ_16 || opcode == WRITE_16) {
499 transfer_len =
500 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
501 lba = scsi_get_lba(cmd);
502 if (opcode == WRITE_10)
503 group_id = lrbp->cmd->cmnd[6];
504 if (opcode == WRITE_16)
505 group_id = lrbp->cmd->cmnd[14];
506 } else if (opcode == UNMAP) {
507 /*
508 * The number of Bytes to be unmapped beginning with the lba.
509 */
510 transfer_len = blk_rq_bytes(rq);
511 lba = scsi_get_lba(cmd);
512 }
513
514 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
515
516 if (hba->mcq_enabled) {
517 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
518
519 hwq_id = hwq->id;
520 } else {
521 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
522 }
523 trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id,
524 transfer_len, intr, lba, opcode, group_id);
525 }
526
ufshcd_print_clk_freqs(struct ufs_hba * hba)527 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
528 {
529 struct ufs_clk_info *clki;
530 struct list_head *head = &hba->clk_list_head;
531
532 if (list_empty(head))
533 return;
534
535 list_for_each_entry(clki, head, list) {
536 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
537 clki->max_freq)
538 dev_err(hba->dev, "clk: %s, rate: %u\n",
539 clki->name, clki->curr_freq);
540 }
541 }
542
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)543 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
544 const char *err_name)
545 {
546 int i;
547 bool found = false;
548 const struct ufs_event_hist *e;
549
550 if (id >= UFS_EVT_CNT)
551 return;
552
553 e = &hba->ufs_stats.event[id];
554
555 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
556 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
557
558 if (e->tstamp[p] == 0)
559 continue;
560 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
561 e->val[p], div_u64(e->tstamp[p], 1000));
562 found = true;
563 }
564
565 if (!found)
566 dev_err(hba->dev, "No record of %s\n", err_name);
567 else
568 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
569 }
570
ufshcd_print_evt_hist(struct ufs_hba * hba)571 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
572 {
573 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
574
575 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
576 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
577 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
578 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
579 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
580 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
581 "auto_hibern8_err");
582 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
583 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
584 "link_startup_fail");
585 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
586 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
587 "suspend_fail");
588 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
589 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
590 "wlun suspend_fail");
591 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
592 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
593 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
594
595 ufshcd_vops_dbg_register_dump(hba);
596 }
597
598 static
ufshcd_print_tr(struct ufs_hba * hba,int tag,bool pr_prdt)599 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
600 {
601 const struct ufshcd_lrb *lrbp;
602 int prdt_length;
603
604 lrbp = &hba->lrb[tag];
605
606 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
607 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
608 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
609 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
610 dev_err(hba->dev,
611 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
612 tag, (u64)lrbp->utrd_dma_addr);
613
614 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
615 sizeof(struct utp_transfer_req_desc));
616 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
617 (u64)lrbp->ucd_req_dma_addr);
618 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
619 sizeof(struct utp_upiu_req));
620 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
621 (u64)lrbp->ucd_rsp_dma_addr);
622 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
623 sizeof(struct utp_upiu_rsp));
624
625 prdt_length = le16_to_cpu(
626 lrbp->utr_descriptor_ptr->prd_table_length);
627 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
628 prdt_length /= ufshcd_sg_entry_size(hba);
629
630 dev_err(hba->dev,
631 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
632 tag, prdt_length,
633 (u64)lrbp->ucd_prdt_dma_addr);
634
635 if (pr_prdt)
636 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
637 ufshcd_sg_entry_size(hba) * prdt_length);
638 }
639
ufshcd_print_tr_iter(struct request * req,void * priv)640 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
641 {
642 struct scsi_device *sdev = req->q->queuedata;
643 struct Scsi_Host *shost = sdev->host;
644 struct ufs_hba *hba = shost_priv(shost);
645
646 ufshcd_print_tr(hba, req->tag, *(bool *)priv);
647
648 return true;
649 }
650
651 /**
652 * ufshcd_print_trs_all - print trs for all started requests.
653 * @hba: per-adapter instance.
654 * @pr_prdt: need to print prdt or not.
655 */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)656 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
657 {
658 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
659 }
660
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)661 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
662 {
663 int tag;
664
665 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
666 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
667
668 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
669 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
670 }
671 }
672
ufshcd_print_host_state(struct ufs_hba * hba)673 static void ufshcd_print_host_state(struct ufs_hba *hba)
674 {
675 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
676
677 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
678 dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
679 scsi_host_busy(hba->host), hba->outstanding_tasks);
680 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
681 hba->saved_err, hba->saved_uic_err);
682 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
683 hba->curr_dev_pwr_mode, hba->uic_link_state);
684 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
685 hba->pm_op_in_progress, hba->is_sys_suspended);
686 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
687 hba->auto_bkops_enabled, hba->host->host_self_blocked);
688 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
689 dev_err(hba->dev,
690 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
691 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
692 hba->ufs_stats.hibern8_exit_cnt);
693 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
694 div_u64(hba->ufs_stats.last_intr_ts, 1000),
695 hba->ufs_stats.last_intr_status);
696 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
697 hba->eh_flags, hba->req_abort_count);
698 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
699 hba->ufs_version, hba->capabilities, hba->caps);
700 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
701 hba->dev_quirks);
702 if (sdev_ufs)
703 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
704 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
705
706 ufshcd_print_clk_freqs(hba);
707 }
708
709 /**
710 * ufshcd_print_pwr_info - print power params as saved in hba
711 * power info
712 * @hba: per-adapter instance
713 */
ufshcd_print_pwr_info(struct ufs_hba * hba)714 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
715 {
716 static const char * const names[] = {
717 "INVALID MODE",
718 "FAST MODE",
719 "SLOW_MODE",
720 "INVALID MODE",
721 "FASTAUTO_MODE",
722 "SLOWAUTO_MODE",
723 "INVALID MODE",
724 };
725
726 /*
727 * Using dev_dbg to avoid messages during runtime PM to avoid
728 * never-ending cycles of messages written back to storage by user space
729 * causing runtime resume, causing more messages and so on.
730 */
731 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
732 __func__,
733 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
734 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
735 names[hba->pwr_info.pwr_rx],
736 names[hba->pwr_info.pwr_tx],
737 hba->pwr_info.hs_rate);
738 }
739
ufshcd_device_reset(struct ufs_hba * hba)740 static void ufshcd_device_reset(struct ufs_hba *hba)
741 {
742 int err;
743
744 err = ufshcd_vops_device_reset(hba);
745
746 if (!err) {
747 ufshcd_set_ufs_dev_active(hba);
748 if (ufshcd_is_wb_allowed(hba)) {
749 hba->dev_info.wb_enabled = false;
750 hba->dev_info.wb_buf_flush_enabled = false;
751 }
752 if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
753 hba->dev_info.rtc_time_baseline = 0;
754 }
755 if (err != -EOPNOTSUPP)
756 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
757 }
758
ufshcd_delay_us(unsigned long us,unsigned long tolerance)759 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
760 {
761 if (!us)
762 return;
763
764 if (us < 10)
765 udelay(us);
766 else
767 usleep_range(us, us + tolerance);
768 }
769 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
770
771 /**
772 * ufshcd_wait_for_register - wait for register value to change
773 * @hba: per-adapter interface
774 * @reg: mmio register offset
775 * @mask: mask to apply to the read register value
776 * @val: value to wait for
777 * @interval_us: polling interval in microseconds
778 * @timeout_ms: timeout in milliseconds
779 *
780 * Return: -ETIMEDOUT on error, zero on success.
781 */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)782 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
783 u32 val, unsigned long interval_us,
784 unsigned long timeout_ms)
785 {
786 int err = 0;
787 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
788
789 /* ignore bits that we don't intend to wait on */
790 val = val & mask;
791
792 while ((ufshcd_readl(hba, reg) & mask) != val) {
793 usleep_range(interval_us, interval_us + 50);
794 if (time_after(jiffies, timeout)) {
795 if ((ufshcd_readl(hba, reg) & mask) != val)
796 err = -ETIMEDOUT;
797 break;
798 }
799 }
800
801 return err;
802 }
803
804 /**
805 * ufshcd_get_intr_mask - Get the interrupt bit mask
806 * @hba: Pointer to adapter instance
807 *
808 * Return: interrupt bit mask per version
809 */
ufshcd_get_intr_mask(struct ufs_hba * hba)810 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
811 {
812 if (hba->ufs_version <= ufshci_version(2, 0))
813 return INTERRUPT_MASK_ALL_VER_11;
814
815 return INTERRUPT_MASK_ALL_VER_21;
816 }
817
818 /**
819 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
820 * @hba: Pointer to adapter instance
821 *
822 * Return: UFSHCI version supported by the controller
823 */
ufshcd_get_ufs_version(struct ufs_hba * hba)824 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
825 {
826 u32 ufshci_ver;
827
828 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
829 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
830 else
831 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
832
833 /*
834 * UFSHCI v1.x uses a different version scheme, in order
835 * to allow the use of comparisons with the ufshci_version
836 * function, we convert it to the same scheme as ufs 2.0+.
837 */
838 if (ufshci_ver & 0x00010000)
839 return ufshci_version(1, ufshci_ver & 0x00000100);
840
841 return ufshci_ver;
842 }
843
844 /**
845 * ufshcd_is_device_present - Check if any device connected to
846 * the host controller
847 * @hba: pointer to adapter instance
848 *
849 * Return: true if device present, false if no device detected
850 */
ufshcd_is_device_present(struct ufs_hba * hba)851 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
852 {
853 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
854 }
855
856 /**
857 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
858 * @lrbp: pointer to local command reference block
859 * @cqe: pointer to the completion queue entry
860 *
861 * This function is used to get the OCS field from UTRD
862 *
863 * Return: the OCS field in the UTRD.
864 */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)865 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
866 struct cq_entry *cqe)
867 {
868 if (cqe)
869 return le32_to_cpu(cqe->status) & MASK_OCS;
870
871 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
872 }
873
874 /**
875 * ufshcd_utrl_clear() - Clear requests from the controller request list.
876 * @hba: per adapter instance
877 * @mask: mask with one bit set for each request to be cleared
878 */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)879 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
880 {
881 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
882 mask = ~mask;
883 /*
884 * From the UFSHCI specification: "UTP Transfer Request List CLear
885 * Register (UTRLCLR): This field is bit significant. Each bit
886 * corresponds to a slot in the UTP Transfer Request List, where bit 0
887 * corresponds to request slot 0. A bit in this field is set to ‘0’
888 * by host software to indicate to the host controller that a transfer
889 * request slot is cleared. The host controller
890 * shall free up any resources associated to the request slot
891 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
892 * host software indicates no change to request slots by setting the
893 * associated bits in this field to ‘1’. Bits in this field shall only
894 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
895 */
896 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
897 }
898
899 /**
900 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
901 * @hba: per adapter instance
902 * @pos: position of the bit to be cleared
903 */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)904 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
905 {
906 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
907 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
908 else
909 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
910 }
911
912 /**
913 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
914 * @reg: Register value of host controller status
915 *
916 * Return: 0 on success; a positive value if failed.
917 */
ufshcd_get_lists_status(u32 reg)918 static inline int ufshcd_get_lists_status(u32 reg)
919 {
920 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
921 }
922
923 /**
924 * ufshcd_get_uic_cmd_result - Get the UIC command result
925 * @hba: Pointer to adapter instance
926 *
927 * This function gets the result of UIC command completion
928 *
929 * Return: 0 on success; non-zero value on error.
930 */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)931 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
932 {
933 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
934 MASK_UIC_COMMAND_RESULT;
935 }
936
937 /**
938 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
939 * @hba: Pointer to adapter instance
940 *
941 * This function gets UIC command argument3
942 *
943 * Return: 0 on success; non-zero value on error.
944 */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)945 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
946 {
947 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
948 }
949
950 /**
951 * ufshcd_get_req_rsp - returns the TR response transaction type
952 * @ucd_rsp_ptr: pointer to response UPIU
953 *
954 * Return: UPIU type.
955 */
956 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)957 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
958 {
959 return ucd_rsp_ptr->header.transaction_code;
960 }
961
962 /**
963 * ufshcd_is_exception_event - Check if the device raised an exception event
964 * @ucd_rsp_ptr: pointer to response UPIU
965 *
966 * The function checks if the device raised an exception event indicated in
967 * the Device Information field of response UPIU.
968 *
969 * Return: true if exception is raised, false otherwise.
970 */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)971 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
972 {
973 return ucd_rsp_ptr->header.device_information & 1;
974 }
975
976 /**
977 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
978 * @hba: per adapter instance
979 */
980 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)981 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
982 {
983 ufshcd_writel(hba, INT_AGGR_ENABLE |
984 INT_AGGR_COUNTER_AND_TIMER_RESET,
985 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
986 }
987
988 /**
989 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
990 * @hba: per adapter instance
991 * @cnt: Interrupt aggregation counter threshold
992 * @tmout: Interrupt aggregation timeout value
993 */
994 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)995 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
996 {
997 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
998 INT_AGGR_COUNTER_THLD_VAL(cnt) |
999 INT_AGGR_TIMEOUT_VAL(tmout),
1000 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
1001 }
1002
1003 /**
1004 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
1005 * @hba: per adapter instance
1006 */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)1007 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
1008 {
1009 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
1010 }
1011
1012 /**
1013 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
1014 * When run-stop registers are set to 1, it indicates the
1015 * host controller that it can process the requests
1016 * @hba: per adapter instance
1017 */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)1018 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
1019 {
1020 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
1021 REG_UTP_TASK_REQ_LIST_RUN_STOP);
1022 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
1023 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
1024 }
1025
1026 /**
1027 * ufshcd_hba_start - Start controller initialization sequence
1028 * @hba: per adapter instance
1029 */
ufshcd_hba_start(struct ufs_hba * hba)1030 static inline void ufshcd_hba_start(struct ufs_hba *hba)
1031 {
1032 u32 val = CONTROLLER_ENABLE;
1033
1034 if (ufshcd_crypto_enable(hba))
1035 val |= CRYPTO_GENERAL_ENABLE;
1036
1037 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
1038 }
1039
1040 /**
1041 * ufshcd_is_hba_active - Get controller state
1042 * @hba: per adapter instance
1043 *
1044 * Return: true if and only if the controller is active.
1045 */
ufshcd_is_hba_active(struct ufs_hba * hba)1046 bool ufshcd_is_hba_active(struct ufs_hba *hba)
1047 {
1048 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
1049 }
1050 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
1051
1052 /**
1053 * ufshcd_pm_qos_init - initialize PM QoS request
1054 * @hba: per adapter instance
1055 */
ufshcd_pm_qos_init(struct ufs_hba * hba)1056 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1057 {
1058 guard(mutex)(&to_hba_priv(hba)->pm_qos_mutex);
1059
1060 if (hba->pm_qos_enabled)
1061 return;
1062
1063 cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1064
1065 if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1066 hba->pm_qos_enabled = true;
1067 }
1068
1069 /**
1070 * ufshcd_pm_qos_exit - remove request from PM QoS
1071 * @hba: per adapter instance
1072 */
ufshcd_pm_qos_exit(struct ufs_hba * hba)1073 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1074 {
1075 guard(mutex)(&to_hba_priv(hba)->pm_qos_mutex);
1076
1077 if (!hba->pm_qos_enabled)
1078 return;
1079
1080 cpu_latency_qos_remove_request(&hba->pm_qos_req);
1081 hba->pm_qos_enabled = false;
1082 }
1083
1084 /**
1085 * ufshcd_pm_qos_update - update PM QoS request
1086 * @hba: per adapter instance
1087 * @on: If True, vote for perf PM QoS mode otherwise power save mode
1088 */
ufshcd_pm_qos_update(struct ufs_hba * hba,bool on)1089 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1090 {
1091 guard(mutex)(&to_hba_priv(hba)->pm_qos_mutex);
1092
1093 if (!hba->pm_qos_enabled)
1094 return;
1095
1096 cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1097 }
1098
1099 /**
1100 * ufshcd_set_clk_freq - set UFS controller clock frequencies
1101 * @hba: per adapter instance
1102 * @scale_up: If True, set max possible frequency othewise set low frequency
1103 *
1104 * Return: 0 if successful; < 0 upon failure.
1105 */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1106 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1107 {
1108 int ret = 0;
1109 struct ufs_clk_info *clki;
1110 struct list_head *head = &hba->clk_list_head;
1111
1112 if (list_empty(head))
1113 goto out;
1114
1115 list_for_each_entry(clki, head, list) {
1116 if (!IS_ERR_OR_NULL(clki->clk)) {
1117 if (scale_up && clki->max_freq) {
1118 if (clki->curr_freq == clki->max_freq)
1119 continue;
1120
1121 ret = clk_set_rate(clki->clk, clki->max_freq);
1122 if (ret) {
1123 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1124 __func__, clki->name,
1125 clki->max_freq, ret);
1126 break;
1127 }
1128 trace_ufshcd_clk_scaling(hba,
1129 "scaled up", clki->name,
1130 clki->curr_freq,
1131 clki->max_freq);
1132
1133 clki->curr_freq = clki->max_freq;
1134
1135 } else if (!scale_up && clki->min_freq) {
1136 if (clki->curr_freq == clki->min_freq)
1137 continue;
1138
1139 ret = clk_set_rate(clki->clk, clki->min_freq);
1140 if (ret) {
1141 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1142 __func__, clki->name,
1143 clki->min_freq, ret);
1144 break;
1145 }
1146 trace_ufshcd_clk_scaling(hba,
1147 "scaled down", clki->name,
1148 clki->curr_freq,
1149 clki->min_freq);
1150 clki->curr_freq = clki->min_freq;
1151 }
1152 }
1153 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1154 clki->name, clk_get_rate(clki->clk));
1155 }
1156
1157 out:
1158 return ret;
1159 }
1160
ufshcd_opp_config_clks(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)1161 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1162 struct dev_pm_opp *opp, void *data,
1163 bool scaling_down)
1164 {
1165 struct ufs_hba *hba = dev_get_drvdata(dev);
1166 struct list_head *head = &hba->clk_list_head;
1167 struct ufs_clk_info *clki;
1168 unsigned long freq;
1169 u8 idx = 0;
1170 int ret;
1171
1172 list_for_each_entry(clki, head, list) {
1173 if (!IS_ERR_OR_NULL(clki->clk)) {
1174 freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1175
1176 /* Do not set rate for clocks having frequency as 0 */
1177 if (!freq)
1178 continue;
1179
1180 ret = clk_set_rate(clki->clk, freq);
1181 if (ret) {
1182 dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1183 __func__, clki->name, freq, ret);
1184 return ret;
1185 }
1186
1187 trace_ufshcd_clk_scaling(hba,
1188 (scaling_down ? "scaled down" : "scaled up"),
1189 clki->name, hba->clk_scaling.target_freq, freq);
1190 }
1191 }
1192
1193 return 0;
1194 }
1195 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1196
ufshcd_opp_set_rate(struct ufs_hba * hba,unsigned long freq)1197 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1198 {
1199 struct dev_pm_opp *opp;
1200 int ret;
1201
1202 opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1203 &freq, 0);
1204 if (IS_ERR(opp))
1205 return PTR_ERR(opp);
1206
1207 ret = dev_pm_opp_set_opp(hba->dev, opp);
1208 dev_pm_opp_put(opp);
1209
1210 return ret;
1211 }
1212
1213 /**
1214 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1215 * @hba: per adapter instance
1216 * @freq: frequency to scale
1217 * @scale_up: True if scaling up and false if scaling down
1218 *
1219 * Return: 0 if successful; < 0 upon failure.
1220 */
ufshcd_scale_clks(struct ufs_hba * hba,unsigned long freq,bool scale_up)1221 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1222 bool scale_up)
1223 {
1224 int ret = 0;
1225 ktime_t start = ktime_get();
1226
1227 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE);
1228 if (ret)
1229 goto out;
1230
1231 if (hba->use_pm_opp)
1232 ret = ufshcd_opp_set_rate(hba, freq);
1233 else
1234 ret = ufshcd_set_clk_freq(hba, scale_up);
1235 if (ret)
1236 goto out;
1237
1238 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE);
1239 if (ret) {
1240 if (hba->use_pm_opp)
1241 ufshcd_opp_set_rate(hba,
1242 hba->devfreq->previous_freq);
1243 else
1244 ufshcd_set_clk_freq(hba, !scale_up);
1245 goto out;
1246 }
1247
1248 ufshcd_pm_qos_update(hba, scale_up);
1249
1250 out:
1251 trace_ufshcd_profile_clk_scaling(hba,
1252 (scale_up ? "up" : "down"),
1253 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1254 return ret;
1255 }
1256
1257 /**
1258 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1259 * @hba: per adapter instance
1260 * @freq: frequency to scale
1261 * @scale_up: True if scaling up and false if scaling down
1262 *
1263 * Return: true if scaling is required, false otherwise.
1264 */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,unsigned long freq,bool scale_up)1265 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1266 unsigned long freq, bool scale_up)
1267 {
1268 struct ufs_clk_info *clki;
1269 struct list_head *head = &hba->clk_list_head;
1270
1271 if (list_empty(head))
1272 return false;
1273
1274 if (hba->use_pm_opp)
1275 return freq != hba->clk_scaling.target_freq;
1276
1277 list_for_each_entry(clki, head, list) {
1278 if (!IS_ERR_OR_NULL(clki->clk)) {
1279 if (scale_up && clki->max_freq) {
1280 if (clki->curr_freq == clki->max_freq)
1281 continue;
1282 return true;
1283 } else if (!scale_up && clki->min_freq) {
1284 if (clki->curr_freq == clki->min_freq)
1285 continue;
1286 return true;
1287 }
1288 }
1289 }
1290
1291 return false;
1292 }
1293
1294 /*
1295 * Determine the number of pending commands by counting the bits in the SCSI
1296 * device budget maps. This approach has been selected because a bit is set in
1297 * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1298 * flag. The host_self_blocked flag can be modified by calling
1299 * scsi_block_requests() or scsi_unblock_requests().
1300 */
ufshcd_pending_cmds(struct ufs_hba * hba)1301 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1302 {
1303 const struct scsi_device *sdev;
1304 u32 pending = 0;
1305
1306 lockdep_assert_held(hba->host->host_lock);
1307 __shost_for_each_device(sdev, hba->host)
1308 pending += sbitmap_weight(&sdev->budget_map);
1309
1310 return pending;
1311 }
1312
1313 /*
1314 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1315 * has expired.
1316 *
1317 * Return: 0 upon success; -EBUSY upon timeout.
1318 */
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1319 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1320 u64 wait_timeout_us)
1321 {
1322 unsigned long flags;
1323 int ret = 0;
1324 u32 tm_doorbell;
1325 u32 tr_pending;
1326 bool timeout = false, do_last_check = false;
1327 ktime_t start;
1328
1329 ufshcd_hold(hba);
1330 spin_lock_irqsave(hba->host->host_lock, flags);
1331 /*
1332 * Wait for all the outstanding tasks/transfer requests.
1333 * Verify by checking the doorbell registers are clear.
1334 */
1335 start = ktime_get();
1336 do {
1337 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1338 ret = -EBUSY;
1339 goto out;
1340 }
1341
1342 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1343 tr_pending = ufshcd_pending_cmds(hba);
1344 if (!tm_doorbell && !tr_pending) {
1345 timeout = false;
1346 break;
1347 } else if (do_last_check) {
1348 break;
1349 }
1350
1351 spin_unlock_irqrestore(hba->host->host_lock, flags);
1352 io_schedule_timeout(msecs_to_jiffies(20));
1353 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1354 wait_timeout_us) {
1355 timeout = true;
1356 /*
1357 * We might have scheduled out for long time so make
1358 * sure to check if doorbells are cleared by this time
1359 * or not.
1360 */
1361 do_last_check = true;
1362 }
1363 spin_lock_irqsave(hba->host->host_lock, flags);
1364 } while (tm_doorbell || tr_pending);
1365
1366 if (timeout) {
1367 dev_err(hba->dev,
1368 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1369 __func__, tm_doorbell, tr_pending);
1370 ret = -EBUSY;
1371 }
1372 out:
1373 spin_unlock_irqrestore(hba->host->host_lock, flags);
1374 ufshcd_release(hba);
1375 return ret;
1376 }
1377
1378 /**
1379 * ufshcd_scale_gear - scale up/down UFS gear
1380 * @hba: per adapter instance
1381 * @target_gear: target gear to scale to
1382 * @scale_up: True for scaling up gear and false for scaling down
1383 *
1384 * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1385 * non-zero for any other errors.
1386 */
ufshcd_scale_gear(struct ufs_hba * hba,u32 target_gear,bool scale_up)1387 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up)
1388 {
1389 int ret = 0;
1390 struct ufs_pa_layer_attr new_pwr_info;
1391
1392 if (target_gear) {
1393 new_pwr_info = hba->pwr_info;
1394 new_pwr_info.gear_tx = target_gear;
1395 new_pwr_info.gear_rx = target_gear;
1396
1397 goto config_pwr_mode;
1398 }
1399
1400 /* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */
1401 if (scale_up) {
1402 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1403 sizeof(struct ufs_pa_layer_attr));
1404 } else {
1405 memcpy(&new_pwr_info, &hba->pwr_info,
1406 sizeof(struct ufs_pa_layer_attr));
1407
1408 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1409 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1410 /* save the current power mode */
1411 memcpy(&hba->clk_scaling.saved_pwr_info,
1412 &hba->pwr_info,
1413 sizeof(struct ufs_pa_layer_attr));
1414
1415 /* scale down gear */
1416 new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1417 new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1418 }
1419 }
1420
1421 config_pwr_mode:
1422 /* check if the power mode needs to be changed or not? */
1423 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1424 if (ret)
1425 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1426 __func__, ret,
1427 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1428 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1429
1430 return ret;
1431 }
1432
1433 /*
1434 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1435 * has expired.
1436 *
1437 * Return: 0 upon success; -EBUSY upon timeout.
1438 */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1439 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1440 {
1441 int ret = 0;
1442 /*
1443 * make sure that there are no outstanding requests when
1444 * clock scaling is in progress
1445 */
1446 if (!mutex_trylock(&hba->host->scan_mutex))
1447 return -EAGAIN;
1448
1449 blk_mq_quiesce_tagset(&hba->host->tag_set);
1450 mutex_lock(&hba->wb_mutex);
1451 down_write(&hba->clk_scaling_lock);
1452
1453 if (!hba->clk_scaling.is_allowed ||
1454 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1455 ret = -EBUSY;
1456 up_write(&hba->clk_scaling_lock);
1457 mutex_unlock(&hba->wb_mutex);
1458 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1459 mutex_unlock(&hba->host->scan_mutex);
1460 goto out;
1461 }
1462
1463 /* let's not get into low power until clock scaling is completed */
1464 ufshcd_hold(hba);
1465
1466 out:
1467 return ret;
1468 }
1469
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err)1470 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err)
1471 {
1472 up_write(&hba->clk_scaling_lock);
1473
1474 /* Enable Write Booster if current gear requires it else disable it */
1475 if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1476 ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear);
1477
1478 mutex_unlock(&hba->wb_mutex);
1479
1480 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1481 mutex_unlock(&hba->host->scan_mutex);
1482 ufshcd_release(hba);
1483 }
1484
1485 /**
1486 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1487 * @hba: per adapter instance
1488 * @freq: frequency to scale
1489 * @scale_up: True for scaling up and false for scalin down
1490 *
1491 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1492 * for any other errors.
1493 */
ufshcd_devfreq_scale(struct ufs_hba * hba,unsigned long freq,bool scale_up)1494 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1495 bool scale_up)
1496 {
1497 u32 old_gear = hba->pwr_info.gear_rx;
1498 u32 new_gear = 0;
1499 int ret = 0;
1500
1501 new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq);
1502
1503 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1504 if (ret)
1505 return ret;
1506
1507 /* scale down the gear before scaling down clocks */
1508 if (!scale_up) {
1509 ret = ufshcd_scale_gear(hba, new_gear, false);
1510 if (ret)
1511 goto out_unprepare;
1512 }
1513
1514 ret = ufshcd_scale_clks(hba, freq, scale_up);
1515 if (ret) {
1516 if (!scale_up)
1517 ufshcd_scale_gear(hba, old_gear, true);
1518 goto out_unprepare;
1519 }
1520
1521 /* scale up the gear after scaling up clocks */
1522 if (scale_up) {
1523 ret = ufshcd_scale_gear(hba, new_gear, true);
1524 if (ret) {
1525 ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1526 false);
1527 goto out_unprepare;
1528 }
1529 }
1530
1531 out_unprepare:
1532 ufshcd_clock_scaling_unprepare(hba, ret);
1533 return ret;
1534 }
1535
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1536 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1537 {
1538 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1539 clk_scaling.suspend_work);
1540 unsigned long irq_flags;
1541
1542 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1543 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1544 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1545 return;
1546 }
1547 hba->clk_scaling.is_suspended = true;
1548 hba->clk_scaling.window_start_t = 0;
1549 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1550
1551 devfreq_suspend_device(hba->devfreq);
1552 }
1553
ufshcd_clk_scaling_resume_work(struct work_struct * work)1554 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1555 {
1556 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1557 clk_scaling.resume_work);
1558 unsigned long irq_flags;
1559
1560 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1561 if (!hba->clk_scaling.is_suspended) {
1562 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1563 return;
1564 }
1565 hba->clk_scaling.is_suspended = false;
1566 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1567
1568 devfreq_resume_device(hba->devfreq);
1569 }
1570
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1571 static int ufshcd_devfreq_target(struct device *dev,
1572 unsigned long *freq, u32 flags)
1573 {
1574 int ret = 0;
1575 struct ufs_hba *hba = dev_get_drvdata(dev);
1576 ktime_t start;
1577 bool scale_up = false, sched_clk_scaling_suspend_work = false;
1578 struct list_head *clk_list = &hba->clk_list_head;
1579 struct ufs_clk_info *clki;
1580 unsigned long irq_flags;
1581
1582 if (!ufshcd_is_clkscaling_supported(hba))
1583 return -EINVAL;
1584
1585 if (hba->use_pm_opp) {
1586 struct dev_pm_opp *opp;
1587
1588 /* Get the recommended frequency from OPP framework */
1589 opp = devfreq_recommended_opp(dev, freq, flags);
1590 if (IS_ERR(opp))
1591 return PTR_ERR(opp);
1592
1593 dev_pm_opp_put(opp);
1594 } else {
1595 /* Override with the closest supported frequency */
1596 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1597 list);
1598 *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1599 }
1600
1601 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1602 if (ufshcd_eh_in_progress(hba)) {
1603 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1604 return 0;
1605 }
1606
1607 /* Skip scaling clock when clock scaling is suspended */
1608 if (hba->clk_scaling.is_suspended) {
1609 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1610 dev_warn(hba->dev, "clock scaling is suspended, skip");
1611 return 0;
1612 }
1613
1614 if (!hba->clk_scaling.active_reqs)
1615 sched_clk_scaling_suspend_work = true;
1616
1617 if (list_empty(clk_list)) {
1618 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1619 goto out;
1620 }
1621
1622 /* Decide based on the target or rounded-off frequency and update */
1623 if (hba->use_pm_opp)
1624 scale_up = *freq > hba->clk_scaling.target_freq;
1625 else
1626 scale_up = *freq == clki->max_freq;
1627
1628 if (!hba->use_pm_opp && !scale_up)
1629 *freq = clki->min_freq;
1630
1631 /* Update the frequency */
1632 if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1633 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1634 ret = 0;
1635 goto out; /* no state change required */
1636 }
1637 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1638
1639 start = ktime_get();
1640 ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1641 if (!ret)
1642 hba->clk_scaling.target_freq = *freq;
1643
1644 trace_ufshcd_profile_clk_scaling(hba,
1645 (scale_up ? "up" : "down"),
1646 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1647
1648 out:
1649 if (sched_clk_scaling_suspend_work &&
1650 (!scale_up || hba->clk_scaling.suspend_on_no_request))
1651 queue_work(hba->clk_scaling.workq,
1652 &hba->clk_scaling.suspend_work);
1653
1654 return ret;
1655 }
1656
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1657 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1658 struct devfreq_dev_status *stat)
1659 {
1660 struct ufs_hba *hba = dev_get_drvdata(dev);
1661 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1662 unsigned long flags;
1663 ktime_t curr_t;
1664
1665 if (!ufshcd_is_clkscaling_supported(hba))
1666 return -EINVAL;
1667
1668 memset(stat, 0, sizeof(*stat));
1669
1670 spin_lock_irqsave(hba->host->host_lock, flags);
1671 curr_t = ktime_get();
1672 if (!scaling->window_start_t)
1673 goto start_window;
1674
1675 /*
1676 * If current frequency is 0, then the ondemand governor considers
1677 * there's no initial frequency set. And it always requests to set
1678 * to max. frequency.
1679 */
1680 if (hba->use_pm_opp) {
1681 stat->current_frequency = hba->clk_scaling.target_freq;
1682 } else {
1683 struct list_head *clk_list = &hba->clk_list_head;
1684 struct ufs_clk_info *clki;
1685
1686 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1687 stat->current_frequency = clki->curr_freq;
1688 }
1689
1690 if (scaling->is_busy_started)
1691 scaling->tot_busy_t += ktime_us_delta(curr_t,
1692 scaling->busy_start_t);
1693 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1694 stat->busy_time = scaling->tot_busy_t;
1695 start_window:
1696 scaling->window_start_t = curr_t;
1697 scaling->tot_busy_t = 0;
1698
1699 if (scaling->active_reqs) {
1700 scaling->busy_start_t = curr_t;
1701 scaling->is_busy_started = true;
1702 } else {
1703 scaling->busy_start_t = 0;
1704 scaling->is_busy_started = false;
1705 }
1706 spin_unlock_irqrestore(hba->host->host_lock, flags);
1707 return 0;
1708 }
1709
ufshcd_devfreq_init(struct ufs_hba * hba)1710 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1711 {
1712 struct list_head *clk_list = &hba->clk_list_head;
1713 struct ufs_clk_info *clki;
1714 struct devfreq *devfreq;
1715 int ret;
1716
1717 /* Skip devfreq if we don't have any clocks in the list */
1718 if (list_empty(clk_list))
1719 return 0;
1720
1721 if (!hba->use_pm_opp) {
1722 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1723 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1724 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1725 }
1726
1727 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1728 &hba->vps->ondemand_data);
1729 devfreq = devfreq_add_device(hba->dev,
1730 &hba->vps->devfreq_profile,
1731 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1732 &hba->vps->ondemand_data);
1733 if (IS_ERR(devfreq)) {
1734 ret = PTR_ERR(devfreq);
1735 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1736
1737 if (!hba->use_pm_opp) {
1738 dev_pm_opp_remove(hba->dev, clki->min_freq);
1739 dev_pm_opp_remove(hba->dev, clki->max_freq);
1740 }
1741 return ret;
1742 }
1743
1744 hba->devfreq = devfreq;
1745
1746 return 0;
1747 }
1748
ufshcd_devfreq_remove(struct ufs_hba * hba)1749 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1750 {
1751 struct list_head *clk_list = &hba->clk_list_head;
1752
1753 if (!hba->devfreq)
1754 return;
1755
1756 devfreq_remove_device(hba->devfreq);
1757 hba->devfreq = NULL;
1758
1759 if (!hba->use_pm_opp) {
1760 struct ufs_clk_info *clki;
1761
1762 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1763 dev_pm_opp_remove(hba->dev, clki->min_freq);
1764 dev_pm_opp_remove(hba->dev, clki->max_freq);
1765 }
1766 }
1767
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1768 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1769 {
1770 unsigned long flags;
1771 bool suspend = false;
1772
1773 cancel_work_sync(&hba->clk_scaling.suspend_work);
1774 cancel_work_sync(&hba->clk_scaling.resume_work);
1775
1776 spin_lock_irqsave(hba->host->host_lock, flags);
1777 if (!hba->clk_scaling.is_suspended) {
1778 suspend = true;
1779 hba->clk_scaling.is_suspended = true;
1780 hba->clk_scaling.window_start_t = 0;
1781 }
1782 spin_unlock_irqrestore(hba->host->host_lock, flags);
1783
1784 if (suspend)
1785 devfreq_suspend_device(hba->devfreq);
1786 }
1787
ufshcd_resume_clkscaling(struct ufs_hba * hba)1788 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1789 {
1790 unsigned long flags;
1791 bool resume = false;
1792
1793 spin_lock_irqsave(hba->host->host_lock, flags);
1794 if (hba->clk_scaling.is_suspended) {
1795 resume = true;
1796 hba->clk_scaling.is_suspended = false;
1797 }
1798 spin_unlock_irqrestore(hba->host->host_lock, flags);
1799
1800 if (resume)
1801 devfreq_resume_device(hba->devfreq);
1802 }
1803
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1804 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1805 struct device_attribute *attr, char *buf)
1806 {
1807 struct ufs_hba *hba = dev_get_drvdata(dev);
1808
1809 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1810 }
1811
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1812 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1813 struct device_attribute *attr, const char *buf, size_t count)
1814 {
1815 struct ufs_hba *hba = dev_get_drvdata(dev);
1816 struct ufs_clk_info *clki;
1817 unsigned long freq;
1818 u32 value;
1819 int err = 0;
1820
1821 if (kstrtou32(buf, 0, &value))
1822 return -EINVAL;
1823
1824 down(&hba->host_sem);
1825 if (!ufshcd_is_user_access_allowed(hba)) {
1826 err = -EBUSY;
1827 goto out;
1828 }
1829
1830 value = !!value;
1831 if (value == hba->clk_scaling.is_enabled)
1832 goto out;
1833
1834 ufshcd_rpm_get_sync(hba);
1835 ufshcd_hold(hba);
1836
1837 hba->clk_scaling.is_enabled = value;
1838
1839 if (value) {
1840 ufshcd_resume_clkscaling(hba);
1841 goto out_rel;
1842 }
1843
1844 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1845 freq = clki->max_freq;
1846
1847 ufshcd_suspend_clkscaling(hba);
1848
1849 if (!ufshcd_is_devfreq_scaling_required(hba, freq, true))
1850 goto out_rel;
1851
1852 err = ufshcd_devfreq_scale(hba, freq, true);
1853 if (err)
1854 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1855 __func__, err);
1856 else
1857 hba->clk_scaling.target_freq = freq;
1858
1859 out_rel:
1860 ufshcd_release(hba);
1861 ufshcd_rpm_put_sync(hba);
1862 out:
1863 up(&hba->host_sem);
1864 return err ? err : count;
1865 }
1866
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1867 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1868 {
1869 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1870 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1871 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1872 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1873 hba->clk_scaling.enable_attr.attr.mode = 0644;
1874 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1875 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1876 }
1877
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1878 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1879 {
1880 if (hba->clk_scaling.enable_attr.attr.name)
1881 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1882 }
1883
ufshcd_init_clk_scaling(struct ufs_hba * hba)1884 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1885 {
1886 if (!ufshcd_is_clkscaling_supported(hba))
1887 return;
1888
1889 if (!hba->clk_scaling.min_gear)
1890 hba->clk_scaling.min_gear = UFS_HS_G1;
1891
1892 if (!hba->clk_scaling.wb_gear)
1893 /* Use intermediate gear speed HS_G3 as the default wb_gear */
1894 hba->clk_scaling.wb_gear = UFS_HS_G3;
1895
1896 INIT_WORK(&hba->clk_scaling.suspend_work,
1897 ufshcd_clk_scaling_suspend_work);
1898 INIT_WORK(&hba->clk_scaling.resume_work,
1899 ufshcd_clk_scaling_resume_work);
1900
1901 hba->clk_scaling.workq = alloc_ordered_workqueue(
1902 "ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1903
1904 hba->clk_scaling.is_initialized = true;
1905 }
1906
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1907 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1908 {
1909 if (!hba->clk_scaling.is_initialized)
1910 return;
1911
1912 ufshcd_remove_clk_scaling_sysfs(hba);
1913 destroy_workqueue(hba->clk_scaling.workq);
1914 ufshcd_devfreq_remove(hba);
1915 hba->clk_scaling.is_initialized = false;
1916 }
1917
ufshcd_ungate_work(struct work_struct * work)1918 static void ufshcd_ungate_work(struct work_struct *work)
1919 {
1920 int ret;
1921 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1922 clk_gating.ungate_work);
1923
1924 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1925
1926 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1927 if (hba->clk_gating.state == CLKS_ON)
1928 return;
1929 }
1930
1931 ufshcd_hba_vreg_set_hpm(hba);
1932 ufshcd_setup_clocks(hba, true);
1933
1934 ufshcd_enable_irq(hba);
1935
1936 /* Exit from hibern8 */
1937 if (ufshcd_can_hibern8_during_gating(hba)) {
1938 /* Prevent gating in this path */
1939 hba->clk_gating.is_suspended = true;
1940 if (ufshcd_is_link_hibern8(hba)) {
1941 ret = ufshcd_uic_hibern8_exit(hba);
1942 if (ret)
1943 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1944 __func__, ret);
1945 else
1946 ufshcd_set_link_active(hba);
1947 }
1948 hba->clk_gating.is_suspended = false;
1949 }
1950 }
1951
1952 /**
1953 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1954 * Also, exit from hibern8 mode and set the link as active.
1955 * @hba: per adapter instance
1956 */
ufshcd_hold(struct ufs_hba * hba)1957 void ufshcd_hold(struct ufs_hba *hba)
1958 {
1959 bool flush_result;
1960 unsigned long flags;
1961
1962 if (!ufshcd_is_clkgating_allowed(hba) ||
1963 !hba->clk_gating.is_initialized)
1964 return;
1965 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1966 hba->clk_gating.active_reqs++;
1967
1968 start:
1969 switch (hba->clk_gating.state) {
1970 case CLKS_ON:
1971 /*
1972 * Wait for the ungate work to complete if in progress.
1973 * Though the clocks may be in ON state, the link could
1974 * still be in hibner8 state if hibern8 is allowed
1975 * during clock gating.
1976 * Make sure we exit hibern8 state also in addition to
1977 * clocks being ON.
1978 */
1979 if (ufshcd_can_hibern8_during_gating(hba) &&
1980 ufshcd_is_link_hibern8(hba)) {
1981 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1982 flush_result = flush_work(&hba->clk_gating.ungate_work);
1983 if (hba->clk_gating.is_suspended && !flush_result)
1984 return;
1985 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1986 goto start;
1987 }
1988 break;
1989 case REQ_CLKS_OFF:
1990 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1991 hba->clk_gating.state = CLKS_ON;
1992 trace_ufshcd_clk_gating(hba,
1993 hba->clk_gating.state);
1994 break;
1995 }
1996 /*
1997 * If we are here, it means gating work is either done or
1998 * currently running. Hence, fall through to cancel gating
1999 * work and to enable clocks.
2000 */
2001 fallthrough;
2002 case CLKS_OFF:
2003 hba->clk_gating.state = REQ_CLKS_ON;
2004 trace_ufshcd_clk_gating(hba,
2005 hba->clk_gating.state);
2006 queue_work(hba->clk_gating.clk_gating_workq,
2007 &hba->clk_gating.ungate_work);
2008 /*
2009 * fall through to check if we should wait for this
2010 * work to be done or not.
2011 */
2012 fallthrough;
2013 case REQ_CLKS_ON:
2014 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
2015 flush_work(&hba->clk_gating.ungate_work);
2016 /* Make sure state is CLKS_ON before returning */
2017 spin_lock_irqsave(&hba->clk_gating.lock, flags);
2018 goto start;
2019 default:
2020 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
2021 __func__, hba->clk_gating.state);
2022 break;
2023 }
2024 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
2025 }
2026 EXPORT_SYMBOL_GPL(ufshcd_hold);
2027
ufshcd_gate_work(struct work_struct * work)2028 static void ufshcd_gate_work(struct work_struct *work)
2029 {
2030 struct ufs_hba *hba = container_of(work, struct ufs_hba,
2031 clk_gating.gate_work.work);
2032 int ret;
2033
2034 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
2035 /*
2036 * In case you are here to cancel this work the gating state
2037 * would be marked as REQ_CLKS_ON. In this case save time by
2038 * skipping the gating work and exit after changing the clock
2039 * state to CLKS_ON.
2040 */
2041 if (hba->clk_gating.is_suspended ||
2042 hba->clk_gating.state != REQ_CLKS_OFF) {
2043 hba->clk_gating.state = CLKS_ON;
2044 trace_ufshcd_clk_gating(hba,
2045 hba->clk_gating.state);
2046 return;
2047 }
2048
2049 if (hba->clk_gating.active_reqs)
2050 return;
2051 }
2052
2053 scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2054 if (ufshcd_is_ufs_dev_busy(hba) ||
2055 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2056 return;
2057 }
2058
2059 /* put the link into hibern8 mode before turning off clocks */
2060 if (ufshcd_can_hibern8_during_gating(hba)) {
2061 ret = ufshcd_uic_hibern8_enter(hba);
2062 if (ret) {
2063 hba->clk_gating.state = CLKS_ON;
2064 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
2065 __func__, ret);
2066 trace_ufshcd_clk_gating(hba,
2067 hba->clk_gating.state);
2068 return;
2069 }
2070 ufshcd_set_link_hibern8(hba);
2071 }
2072
2073 ufshcd_disable_irq(hba);
2074
2075 ufshcd_setup_clocks(hba, false);
2076
2077 /* Put the host controller in low power mode if possible */
2078 ufshcd_hba_vreg_set_lpm(hba);
2079 /*
2080 * In case you are here to cancel this work the gating state
2081 * would be marked as REQ_CLKS_ON. In this case keep the state
2082 * as REQ_CLKS_ON which would anyway imply that clocks are off
2083 * and a request to turn them on is pending. By doing this way,
2084 * we keep the state machine in tact and this would ultimately
2085 * prevent from doing cancel work multiple times when there are
2086 * new requests arriving before the current cancel work is done.
2087 */
2088 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2089 if (hba->clk_gating.state == REQ_CLKS_OFF) {
2090 hba->clk_gating.state = CLKS_OFF;
2091 trace_ufshcd_clk_gating(hba,
2092 hba->clk_gating.state);
2093 }
2094 }
2095
__ufshcd_release(struct ufs_hba * hba)2096 static void __ufshcd_release(struct ufs_hba *hba)
2097 {
2098 lockdep_assert_held(&hba->clk_gating.lock);
2099
2100 if (!ufshcd_is_clkgating_allowed(hba))
2101 return;
2102
2103 hba->clk_gating.active_reqs--;
2104
2105 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2106 !hba->clk_gating.is_initialized ||
2107 hba->clk_gating.state == CLKS_OFF)
2108 return;
2109
2110 scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2111 if (ufshcd_has_pending_tasks(hba) ||
2112 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2113 return;
2114 }
2115
2116 hba->clk_gating.state = REQ_CLKS_OFF;
2117 trace_ufshcd_clk_gating(hba, hba->clk_gating.state);
2118 queue_delayed_work(hba->clk_gating.clk_gating_workq,
2119 &hba->clk_gating.gate_work,
2120 msecs_to_jiffies(hba->clk_gating.delay_ms));
2121 }
2122
ufshcd_release(struct ufs_hba * hba)2123 void ufshcd_release(struct ufs_hba *hba)
2124 {
2125 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2126 __ufshcd_release(hba);
2127 }
2128 EXPORT_SYMBOL_GPL(ufshcd_release);
2129
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)2130 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2131 struct device_attribute *attr, char *buf)
2132 {
2133 struct ufs_hba *hba = dev_get_drvdata(dev);
2134
2135 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2136 }
2137
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)2138 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2139 {
2140 struct ufs_hba *hba = dev_get_drvdata(dev);
2141
2142 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2143 hba->clk_gating.delay_ms = value;
2144 }
2145 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2146
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2147 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2148 struct device_attribute *attr, const char *buf, size_t count)
2149 {
2150 unsigned long value;
2151
2152 if (kstrtoul(buf, 0, &value))
2153 return -EINVAL;
2154
2155 ufshcd_clkgate_delay_set(dev, value);
2156 return count;
2157 }
2158
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)2159 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2160 struct device_attribute *attr, char *buf)
2161 {
2162 struct ufs_hba *hba = dev_get_drvdata(dev);
2163
2164 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2165 }
2166
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2167 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2168 struct device_attribute *attr, const char *buf, size_t count)
2169 {
2170 struct ufs_hba *hba = dev_get_drvdata(dev);
2171 u32 value;
2172
2173 if (kstrtou32(buf, 0, &value))
2174 return -EINVAL;
2175
2176 value = !!value;
2177
2178 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2179
2180 if (value == hba->clk_gating.is_enabled)
2181 return count;
2182
2183 if (value)
2184 __ufshcd_release(hba);
2185 else
2186 hba->clk_gating.active_reqs++;
2187
2188 hba->clk_gating.is_enabled = value;
2189
2190 return count;
2191 }
2192
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)2193 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2194 {
2195 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2196 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2197 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2198 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2199 hba->clk_gating.delay_attr.attr.mode = 0644;
2200 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2201 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2202
2203 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2204 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2205 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2206 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2207 hba->clk_gating.enable_attr.attr.mode = 0644;
2208 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2209 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2210 }
2211
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2212 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2213 {
2214 if (hba->clk_gating.delay_attr.attr.name)
2215 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2216 if (hba->clk_gating.enable_attr.attr.name)
2217 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2218 }
2219
ufshcd_init_clk_gating(struct ufs_hba * hba)2220 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2221 {
2222 if (!ufshcd_is_clkgating_allowed(hba))
2223 return;
2224
2225 hba->clk_gating.state = CLKS_ON;
2226
2227 hba->clk_gating.delay_ms = 150;
2228 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2229 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2230
2231 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2232 "ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2233 hba->host->host_no);
2234
2235 ufshcd_init_clk_gating_sysfs(hba);
2236
2237 hba->clk_gating.is_enabled = true;
2238 hba->clk_gating.is_initialized = true;
2239 }
2240
ufshcd_exit_clk_gating(struct ufs_hba * hba)2241 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2242 {
2243 if (!hba->clk_gating.is_initialized)
2244 return;
2245
2246 ufshcd_remove_clk_gating_sysfs(hba);
2247
2248 /* Ungate the clock if necessary. */
2249 ufshcd_hold(hba);
2250 hba->clk_gating.is_initialized = false;
2251 ufshcd_release(hba);
2252
2253 destroy_workqueue(hba->clk_gating.clk_gating_workq);
2254 }
2255
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2256 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2257 {
2258 bool queue_resume_work = false;
2259 ktime_t curr_t = ktime_get();
2260 unsigned long flags;
2261
2262 if (!ufshcd_is_clkscaling_supported(hba))
2263 return;
2264
2265 spin_lock_irqsave(hba->host->host_lock, flags);
2266 if (!hba->clk_scaling.active_reqs++)
2267 queue_resume_work = true;
2268
2269 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2270 spin_unlock_irqrestore(hba->host->host_lock, flags);
2271 return;
2272 }
2273
2274 if (queue_resume_work)
2275 queue_work(hba->clk_scaling.workq,
2276 &hba->clk_scaling.resume_work);
2277
2278 if (!hba->clk_scaling.window_start_t) {
2279 hba->clk_scaling.window_start_t = curr_t;
2280 hba->clk_scaling.tot_busy_t = 0;
2281 hba->clk_scaling.is_busy_started = false;
2282 }
2283
2284 if (!hba->clk_scaling.is_busy_started) {
2285 hba->clk_scaling.busy_start_t = curr_t;
2286 hba->clk_scaling.is_busy_started = true;
2287 }
2288 spin_unlock_irqrestore(hba->host->host_lock, flags);
2289 }
2290
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2291 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2292 {
2293 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2294 unsigned long flags;
2295
2296 if (!ufshcd_is_clkscaling_supported(hba))
2297 return;
2298
2299 spin_lock_irqsave(hba->host->host_lock, flags);
2300 hba->clk_scaling.active_reqs--;
2301 if (!scaling->active_reqs && scaling->is_busy_started) {
2302 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2303 scaling->busy_start_t));
2304 scaling->busy_start_t = 0;
2305 scaling->is_busy_started = false;
2306 }
2307 spin_unlock_irqrestore(hba->host->host_lock, flags);
2308 }
2309
ufshcd_monitor_opcode2dir(u8 opcode)2310 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2311 {
2312 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2313 return READ;
2314 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2315 return WRITE;
2316 else
2317 return -EINVAL;
2318 }
2319
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2320 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2321 struct ufshcd_lrb *lrbp)
2322 {
2323 const struct ufs_hba_monitor *m = &hba->monitor;
2324
2325 return (m->enabled && lrbp && lrbp->cmd &&
2326 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2327 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2328 }
2329
ufshcd_start_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2330 static void ufshcd_start_monitor(struct ufs_hba *hba,
2331 const struct ufshcd_lrb *lrbp)
2332 {
2333 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2334 unsigned long flags;
2335
2336 spin_lock_irqsave(hba->host->host_lock, flags);
2337 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2338 hba->monitor.busy_start_ts[dir] = ktime_get();
2339 spin_unlock_irqrestore(hba->host->host_lock, flags);
2340 }
2341
ufshcd_update_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2342 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2343 {
2344 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2345 unsigned long flags;
2346
2347 spin_lock_irqsave(hba->host->host_lock, flags);
2348 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2349 const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2350 struct ufs_hba_monitor *m = &hba->monitor;
2351 ktime_t now, inc, lat;
2352
2353 now = lrbp->compl_time_stamp;
2354 inc = ktime_sub(now, m->busy_start_ts[dir]);
2355 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2356 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2357
2358 /* Update latencies */
2359 m->nr_req[dir]++;
2360 lat = ktime_sub(now, lrbp->issue_time_stamp);
2361 m->lat_sum[dir] += lat;
2362 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2363 m->lat_max[dir] = lat;
2364 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2365 m->lat_min[dir] = lat;
2366
2367 m->nr_queued[dir]--;
2368 /* Push forward the busy start of monitor */
2369 m->busy_start_ts[dir] = now;
2370 }
2371 spin_unlock_irqrestore(hba->host->host_lock, flags);
2372 }
2373
2374 /**
2375 * ufshcd_send_command - Send SCSI or device management commands
2376 * @hba: per adapter instance
2377 * @task_tag: Task tag of the command
2378 * @hwq: pointer to hardware queue instance
2379 */
2380 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag,struct ufs_hw_queue * hwq)2381 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2382 struct ufs_hw_queue *hwq)
2383 {
2384 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2385 unsigned long flags;
2386
2387 lrbp->issue_time_stamp = ktime_get();
2388 lrbp->issue_time_stamp_local_clock = local_clock();
2389 lrbp->compl_time_stamp = ktime_set(0, 0);
2390 lrbp->compl_time_stamp_local_clock = 0;
2391 trace_android_vh_ufs_send_command(hba, lrbp);
2392 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2393 if (lrbp->cmd)
2394 ufshcd_clk_scaling_start_busy(hba);
2395 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2396 ufshcd_start_monitor(hba, lrbp);
2397
2398 if (hba->mcq_enabled) {
2399 int utrd_size = sizeof(struct utp_transfer_req_desc);
2400 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2401 struct utp_transfer_req_desc *dest;
2402
2403 spin_lock(&hwq->sq_lock);
2404 dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2405 memcpy(dest, src, utrd_size);
2406 ufshcd_inc_sq_tail(hwq);
2407 spin_unlock(&hwq->sq_lock);
2408 } else {
2409 spin_lock_irqsave(&hba->outstanding_lock, flags);
2410 if (hba->vops && hba->vops->setup_xfer_req)
2411 hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2412 !!lrbp->cmd);
2413 __set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2414 ufshcd_writel(hba, 1 << lrbp->task_tag,
2415 REG_UTP_TRANSFER_REQ_DOOR_BELL);
2416 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2417 }
2418 }
2419
2420 /**
2421 * ufshcd_copy_sense_data - Copy sense data in case of check condition
2422 * @lrbp: pointer to local reference block
2423 */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2424 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2425 {
2426 u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2427 u16 resp_len;
2428 int len;
2429
2430 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2431 if (sense_buffer && resp_len) {
2432 int len_to_copy;
2433
2434 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2435 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2436
2437 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2438 len_to_copy);
2439 }
2440 }
2441
2442 /**
2443 * ufshcd_copy_query_response() - Copy the Query Response and the data
2444 * descriptor
2445 * @hba: per adapter instance
2446 * @lrbp: pointer to local reference block
2447 *
2448 * Return: 0 upon success; < 0 upon failure.
2449 */
2450 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2451 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2452 {
2453 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2454
2455 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2456
2457 /* Get the descriptor */
2458 if (hba->dev_cmd.query.descriptor &&
2459 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2460 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2461 GENERAL_UPIU_REQUEST_SIZE;
2462 u16 resp_len;
2463 u16 buf_len;
2464
2465 /* data segment length */
2466 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2467 .data_segment_length);
2468 buf_len = be16_to_cpu(
2469 hba->dev_cmd.query.request.upiu_req.length);
2470 if (likely(buf_len >= resp_len)) {
2471 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2472 } else {
2473 dev_warn(hba->dev,
2474 "%s: rsp size %d is bigger than buffer size %d",
2475 __func__, resp_len, buf_len);
2476 return -EINVAL;
2477 }
2478 }
2479
2480 return 0;
2481 }
2482
2483 /**
2484 * ufshcd_hba_capabilities - Read controller capabilities
2485 * @hba: per adapter instance
2486 *
2487 * Return: 0 on success, negative on error.
2488 */
ufshcd_hba_capabilities(struct ufs_hba * hba)2489 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2490 {
2491 int err;
2492
2493 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2494
2495 /* nutrs and nutmrs are 0 based values */
2496 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2497 hba->nutmrs =
2498 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2499 hba->reserved_slot = hba->nutrs - 1;
2500
2501 hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2502
2503 /* Read crypto capabilities */
2504 err = ufshcd_hba_init_crypto_capabilities(hba);
2505 if (err) {
2506 dev_err(hba->dev, "crypto setup failed\n");
2507 return err;
2508 }
2509
2510 /*
2511 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2512 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2513 * means we can simply read values regardless of version.
2514 */
2515 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2516 /*
2517 * 0h: legacy single doorbell support is available
2518 * 1h: indicate that legacy single doorbell support has been removed
2519 */
2520 if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2521 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2522 else
2523 hba->lsdb_sup = true;
2524
2525 if (!hba->mcq_sup)
2526 return 0;
2527
2528 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2529 hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2530 hba->mcq_capabilities);
2531
2532 return 0;
2533 }
2534
2535 /**
2536 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2537 * to accept UIC commands
2538 * @hba: per adapter instance
2539 *
2540 * Return: true on success, else false.
2541 */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2542 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2543 {
2544 u32 val;
2545 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2546 500, uic_cmd_timeout * 1000, false, hba,
2547 REG_CONTROLLER_STATUS);
2548 return ret == 0;
2549 }
2550
2551 /**
2552 * ufshcd_get_upmcrs - Get the power mode change request status
2553 * @hba: Pointer to adapter instance
2554 *
2555 * This function gets the UPMCRS field of HCS register
2556 *
2557 * Return: value of UPMCRS field.
2558 */
ufshcd_get_upmcrs(struct ufs_hba * hba)2559 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2560 {
2561 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2562 }
2563
2564 /**
2565 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2566 * @hba: per adapter instance
2567 * @uic_cmd: UIC command
2568 */
2569 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2570 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2571 {
2572 lockdep_assert_held(&hba->uic_cmd_mutex);
2573
2574 WARN_ON(hba->active_uic_cmd);
2575
2576 hba->active_uic_cmd = uic_cmd;
2577
2578 /* Write Args */
2579 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2580 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2581 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2582
2583 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2584
2585 /* Write UIC Cmd */
2586 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2587 REG_UIC_COMMAND);
2588 }
2589
2590 /**
2591 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2592 * @hba: per adapter instance
2593 * @uic_cmd: UIC command
2594 *
2595 * Return: 0 only if success.
2596 */
2597 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2598 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2599 {
2600 int ret;
2601 unsigned long flags;
2602
2603 lockdep_assert_held(&hba->uic_cmd_mutex);
2604
2605 if (wait_for_completion_timeout(&uic_cmd->done,
2606 msecs_to_jiffies(uic_cmd_timeout))) {
2607 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2608 } else {
2609 ret = -ETIMEDOUT;
2610 dev_err(hba->dev,
2611 "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2612 uic_cmd->command, uic_cmd->argument3);
2613
2614 if (!uic_cmd->cmd_active) {
2615 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2616 __func__);
2617 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2618 }
2619 }
2620
2621 spin_lock_irqsave(hba->host->host_lock, flags);
2622 hba->active_uic_cmd = NULL;
2623 spin_unlock_irqrestore(hba->host->host_lock, flags);
2624
2625 trace_android_vh_ufs_wait_for_uic_cmd(hba, uic_cmd, ret);
2626 return ret;
2627 }
2628
2629 /**
2630 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2631 * @hba: per adapter instance
2632 * @uic_cmd: UIC command
2633 *
2634 * Return: 0 only if success.
2635 */
2636 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2637 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2638 {
2639 lockdep_assert_held(&hba->uic_cmd_mutex);
2640
2641 if (!ufshcd_ready_for_uic_cmd(hba)) {
2642 dev_err(hba->dev,
2643 "Controller not ready to accept UIC commands\n");
2644 return -EIO;
2645 }
2646
2647 init_completion(&uic_cmd->done);
2648
2649 uic_cmd->cmd_active = 1;
2650 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2651
2652 return 0;
2653 }
2654
2655 /**
2656 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2657 * @hba: per adapter instance
2658 * @uic_cmd: UIC command
2659 *
2660 * Return: 0 only if success.
2661 */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2662 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2663 {
2664 int ret;
2665
2666 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2667 return 0;
2668
2669 ufshcd_hold(hba);
2670 mutex_lock(&hba->uic_cmd_mutex);
2671 ufshcd_add_delay_before_dme_cmd(hba);
2672
2673 ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2674 if (!ret)
2675 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2676
2677 mutex_unlock(&hba->uic_cmd_mutex);
2678
2679 ufshcd_release(hba);
2680 return ret;
2681 }
2682
2683 /**
2684 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2685 * @hba: per-adapter instance
2686 * @lrbp: pointer to local reference block
2687 * @sg_entries: The number of sg lists actually used
2688 * @sg_list: Pointer to SG list
2689 */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2690 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2691 struct scatterlist *sg_list)
2692 {
2693 struct ufshcd_sg_entry *prd;
2694 struct scatterlist *sg;
2695 int i;
2696
2697 if (sg_entries) {
2698
2699 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2700 lrbp->utr_descriptor_ptr->prd_table_length =
2701 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2702 else
2703 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2704
2705 prd = lrbp->ucd_prdt_ptr;
2706
2707 for_each_sg(sg_list, sg, sg_entries, i) {
2708 const unsigned int len = sg_dma_len(sg);
2709
2710 /*
2711 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2712 * based value that indicates the length, in bytes, of
2713 * the data block. A maximum of length of 256KB may
2714 * exist for any entry. Bits 1:0 of this field shall be
2715 * 11b to indicate Dword granularity. A value of '3'
2716 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2717 */
2718 WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2719 prd->size = cpu_to_le32(len - 1);
2720 prd->addr = cpu_to_le64(sg->dma_address);
2721 prd->reserved = 0;
2722 prd = (void *)prd + ufshcd_sg_entry_size(hba);
2723 }
2724 } else {
2725 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2726 }
2727 }
2728
2729 /**
2730 * ufshcd_map_sg - Map scatter-gather list to prdt
2731 * @hba: per adapter instance
2732 * @lrbp: pointer to local reference block
2733 *
2734 * Return: 0 in case of success, non-zero value in case of failure.
2735 */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2736 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2737 {
2738 struct scsi_cmnd *cmd = lrbp->cmd;
2739 int sg_segments = scsi_dma_map(cmd);
2740 int err;
2741
2742 if (sg_segments < 0)
2743 return sg_segments;
2744
2745 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2746
2747 /*
2748 * TODO(b/160883801): remove this vendor hook in favor of the upstream
2749 * variant op. This isn't possible yet because the upstream variant op
2750 * doesn't yet make it possible for the host driver to get the keyslot.
2751 */
2752 err = 0;
2753 trace_android_vh_ufs_fill_prdt(hba, lrbp, sg_segments, &err);
2754 if (err)
2755 return err;
2756 return ufshcd_crypto_fill_prdt(hba, lrbp);
2757 }
2758
2759 /**
2760 * ufshcd_enable_intr - enable interrupts
2761 * @hba: per adapter instance
2762 * @intrs: interrupt bits
2763 */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2764 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2765 {
2766 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2767
2768 set |= intrs;
2769 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2770 }
2771
2772 /**
2773 * ufshcd_disable_intr - disable interrupts
2774 * @hba: per adapter instance
2775 * @intrs: interrupt bits
2776 */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2777 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2778 {
2779 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2780
2781 set &= ~intrs;
2782 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2783 }
2784
2785 /**
2786 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2787 * descriptor according to request
2788 * @hba: per adapter instance
2789 * @lrbp: pointer to local reference block
2790 * @upiu_flags: flags required in the header
2791 * @cmd_dir: requests data direction
2792 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2793 */
2794 static void
ufshcd_prepare_req_desc_hdr(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2795 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2796 u8 *upiu_flags, enum dma_data_direction cmd_dir,
2797 int ehs_length)
2798 {
2799 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2800 struct request_desc_header *h = &req_desc->header;
2801 enum utp_data_direction data_direction;
2802
2803 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2804
2805 *h = (typeof(*h)){ };
2806
2807 if (cmd_dir == DMA_FROM_DEVICE) {
2808 data_direction = UTP_DEVICE_TO_HOST;
2809 *upiu_flags = UPIU_CMD_FLAGS_READ;
2810 } else if (cmd_dir == DMA_TO_DEVICE) {
2811 data_direction = UTP_HOST_TO_DEVICE;
2812 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2813 } else {
2814 data_direction = UTP_NO_DATA_TRANSFER;
2815 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2816 }
2817
2818 h->command_type = lrbp->command_type;
2819 h->data_direction = data_direction;
2820 h->ehs_length = ehs_length;
2821
2822 if (lrbp->intr_cmd)
2823 h->interrupt = 1;
2824
2825 /* Prepare crypto related dwords */
2826 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2827
2828 /*
2829 * assigning invalid value for command status. Controller
2830 * updates OCS on command completion, with the command
2831 * status
2832 */
2833 h->ocs = OCS_INVALID_COMMAND_STATUS;
2834
2835 req_desc->prd_table_length = 0;
2836 }
2837
2838 /**
2839 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2840 * for scsi commands
2841 * @lrbp: local reference block pointer
2842 * @upiu_flags: flags
2843 */
2844 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2845 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2846 {
2847 struct scsi_cmnd *cmd = lrbp->cmd;
2848 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2849 unsigned short cdb_len;
2850
2851 ucd_req_ptr->header = (struct utp_upiu_header){
2852 .transaction_code = UPIU_TRANSACTION_COMMAND,
2853 .flags = upiu_flags,
2854 .lun = lrbp->lun,
2855 .task_tag = lrbp->task_tag,
2856 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2857 };
2858
2859 WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2860
2861 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2862
2863 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2864 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2865 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2866
2867 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2868 }
2869
2870 /**
2871 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2872 * @hba: UFS hba
2873 * @lrbp: local reference block pointer
2874 * @upiu_flags: flags
2875 */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2876 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2877 struct ufshcd_lrb *lrbp, u8 upiu_flags)
2878 {
2879 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2880 struct ufs_query *query = &hba->dev_cmd.query;
2881 u16 len = be16_to_cpu(query->request.upiu_req.length);
2882
2883 /* Query request header */
2884 ucd_req_ptr->header = (struct utp_upiu_header){
2885 .transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2886 .flags = upiu_flags,
2887 .lun = lrbp->lun,
2888 .task_tag = lrbp->task_tag,
2889 .query_function = query->request.query_func,
2890 /* Data segment length only need for WRITE_DESC */
2891 .data_segment_length =
2892 query->request.upiu_req.opcode ==
2893 UPIU_QUERY_OPCODE_WRITE_DESC ?
2894 cpu_to_be16(len) :
2895 0,
2896 };
2897
2898 /* Copy the Query Request buffer as is */
2899 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2900 QUERY_OSF_SIZE);
2901
2902 /* Copy the Descriptor */
2903 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2904 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2905
2906 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2907 }
2908
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2909 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2910 {
2911 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2912
2913 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2914
2915 ucd_req_ptr->header = (struct utp_upiu_header){
2916 .transaction_code = UPIU_TRANSACTION_NOP_OUT,
2917 .task_tag = lrbp->task_tag,
2918 };
2919
2920 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2921 }
2922
2923 /**
2924 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2925 * for Device Management Purposes
2926 * @hba: per adapter instance
2927 * @lrbp: pointer to local reference block
2928 *
2929 * Return: 0 upon success; < 0 upon failure.
2930 */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2931 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2932 struct ufshcd_lrb *lrbp)
2933 {
2934 u8 upiu_flags;
2935 int ret = 0;
2936
2937 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2938
2939 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2940 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2941 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2942 ufshcd_prepare_utp_nop_upiu(lrbp);
2943 else
2944 ret = -EINVAL;
2945
2946 if (!ret && hba->android_quirks & UFSHCD_ANDROID_QUIRK_SET_IID_TO_ONE)
2947 lrbp->ucd_req_ptr->header.iid = 1;
2948
2949 return ret;
2950 }
2951
2952 /**
2953 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2954 * for SCSI Purposes
2955 * @hba: per adapter instance
2956 * @lrbp: pointer to local reference block
2957 */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2958 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2959 {
2960 struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2961 unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2962 u8 upiu_flags;
2963
2964 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2965 if (ioprio_class == IOPRIO_CLASS_RT)
2966 upiu_flags |= UPIU_CMD_FLAGS_CP;
2967 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2968
2969 if (hba->android_quirks & UFSHCD_ANDROID_QUIRK_SET_IID_TO_ONE)
2970 lrbp->ucd_req_ptr->header.iid = 1;
2971 }
2972
2973 /**
2974 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2975 * @upiu_wlun_id: UPIU W-LUN id
2976 *
2977 * Return: SCSI W-LUN id.
2978 */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2979 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2980 {
2981 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2982 }
2983
is_device_wlun(struct scsi_device * sdev)2984 static inline bool is_device_wlun(struct scsi_device *sdev)
2985 {
2986 return sdev->lun ==
2987 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2988 }
2989
2990 /*
2991 * Associate the UFS controller queue with the default and poll HCTX types.
2992 * Initialize the mq_map[] arrays.
2993 */
ufshcd_map_queues(struct Scsi_Host * shost)2994 static void ufshcd_map_queues(struct Scsi_Host *shost)
2995 {
2996 struct ufs_hba *hba = shost_priv(shost);
2997 int i, queue_offset = 0;
2998
2999 if (!is_mcq_supported(hba)) {
3000 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
3001 hba->nr_queues[HCTX_TYPE_READ] = 0;
3002 hba->nr_queues[HCTX_TYPE_POLL] = 1;
3003 hba->nr_hw_queues = 1;
3004 }
3005
3006 for (i = 0; i < shost->nr_maps; i++) {
3007 struct blk_mq_queue_map *map = &shost->tag_set.map[i];
3008
3009 map->nr_queues = hba->nr_queues[i];
3010 if (!map->nr_queues)
3011 continue;
3012 map->queue_offset = queue_offset;
3013 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
3014 map->queue_offset = 0;
3015
3016 blk_mq_map_queues(map);
3017 queue_offset += map->nr_queues;
3018 }
3019 }
3020
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)3021 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
3022 {
3023 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
3024 i * ufshcd_get_ucd_size(hba);
3025 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
3026 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
3027 i * ufshcd_get_ucd_size(hba);
3028 u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
3029 u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
3030
3031 lrb->utr_descriptor_ptr = utrdlp + i;
3032 lrb->utrd_dma_addr = hba->utrdl_dma_addr +
3033 i * sizeof(struct utp_transfer_req_desc);
3034 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
3035 lrb->ucd_req_dma_addr = cmd_desc_element_addr;
3036 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
3037 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
3038 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
3039 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
3040 }
3041
3042 /**
3043 * ufshcd_queuecommand - main entry point for SCSI requests
3044 * @host: SCSI host pointer
3045 * @cmd: command from SCSI Midlayer
3046 *
3047 * Return: 0 for success, non-zero in case of failure.
3048 */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)3049 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
3050 {
3051 struct ufs_hba *hba = shost_priv(host);
3052 int tag = scsi_cmd_to_rq(cmd)->tag;
3053 struct ufshcd_lrb *lrbp;
3054 int err = 0;
3055 struct ufs_hw_queue *hwq = NULL;
3056
3057 switch (hba->ufshcd_state) {
3058 case UFSHCD_STATE_OPERATIONAL:
3059 break;
3060 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
3061 /*
3062 * SCSI error handler can call ->queuecommand() while UFS error
3063 * handler is in progress. Error interrupts could change the
3064 * state from UFSHCD_STATE_RESET to
3065 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
3066 * being issued in that case.
3067 */
3068 if (ufshcd_eh_in_progress(hba)) {
3069 err = SCSI_MLQUEUE_HOST_BUSY;
3070 goto out;
3071 }
3072 break;
3073 case UFSHCD_STATE_EH_SCHEDULED_FATAL:
3074 /*
3075 * pm_runtime_get_sync() is used at error handling preparation
3076 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
3077 * PM ops, it can never be finished if we let SCSI layer keep
3078 * retrying it, which gets err handler stuck forever. Neither
3079 * can we let the scsi cmd pass through, because UFS is in bad
3080 * state, the scsi cmd may eventually time out, which will get
3081 * err handler blocked for too long. So, just fail the scsi cmd
3082 * sent from PM ops, err handler can recover PM error anyways.
3083 */
3084 if (hba->pm_op_in_progress) {
3085 hba->force_reset = true;
3086 set_host_byte(cmd, DID_BAD_TARGET);
3087 scsi_done(cmd);
3088 goto out;
3089 }
3090 fallthrough;
3091 case UFSHCD_STATE_RESET:
3092 err = SCSI_MLQUEUE_HOST_BUSY;
3093 goto out;
3094 case UFSHCD_STATE_ERROR:
3095 set_host_byte(cmd, DID_ERROR);
3096 scsi_done(cmd);
3097 goto out;
3098 }
3099
3100 hba->req_abort_count = 0;
3101
3102 ufshcd_hold(hba);
3103
3104 lrbp = &hba->lrb[tag];
3105 lrbp->cmd = cmd;
3106 lrbp->task_tag = tag;
3107 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
3108 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
3109
3110 ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
3111
3112 trace_android_vh_ufs_prepare_command(hba, scsi_cmd_to_rq(cmd), lrbp,
3113 &err);
3114 if (err) {
3115 lrbp->cmd = NULL;
3116 ufshcd_release(hba);
3117 goto out;
3118 }
3119
3120 lrbp->req_abort_skip = false;
3121
3122 ufshcd_comp_scsi_upiu(hba, lrbp);
3123
3124 err = ufshcd_map_sg(hba, lrbp);
3125 if (err) {
3126 ufshcd_release(hba);
3127 goto out;
3128 }
3129
3130 if (hba->mcq_enabled)
3131 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3132
3133 ufshcd_send_command(hba, tag, hwq);
3134
3135 out:
3136 if (ufs_trigger_eh(hba)) {
3137 unsigned long flags;
3138
3139 spin_lock_irqsave(hba->host->host_lock, flags);
3140 ufshcd_schedule_eh_work(hba);
3141 spin_unlock_irqrestore(hba->host->host_lock, flags);
3142 }
3143
3144 return err;
3145 }
3146
ufshcd_setup_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,u8 lun,int tag)3147 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3148 enum dev_cmd_type cmd_type, u8 lun, int tag)
3149 {
3150 lrbp->cmd = NULL;
3151 lrbp->task_tag = tag;
3152 lrbp->lun = lun;
3153 lrbp->intr_cmd = true; /* No interrupt aggregation */
3154 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
3155 hba->dev_cmd.type = cmd_type;
3156 }
3157
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)3158 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3159 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3160 {
3161 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3162
3163 return ufshcd_compose_devman_upiu(hba, lrbp);
3164 }
3165
3166 /*
3167 * Check with the block layer if the command is inflight
3168 * @cmd: command to check.
3169 *
3170 * Return: true if command is inflight; false if not.
3171 */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)3172 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3173 {
3174 return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3175 }
3176
3177 /*
3178 * Clear the pending command in the controller and wait until
3179 * the controller confirms that the command has been cleared.
3180 * @hba: per adapter instance
3181 * @task_tag: The tag number of the command to be cleared.
3182 */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)3183 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3184 {
3185 u32 mask;
3186 unsigned long flags;
3187 int err;
3188
3189 if (hba->mcq_enabled) {
3190 /*
3191 * MCQ mode. Clean up the MCQ resources similar to
3192 * what the ufshcd_utrl_clear() does for SDB mode.
3193 */
3194 err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3195 if (err) {
3196 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3197 __func__, task_tag, err);
3198 return err;
3199 }
3200 return 0;
3201 }
3202
3203 mask = 1U << task_tag;
3204
3205 /* clear outstanding transaction before retry */
3206 spin_lock_irqsave(hba->host->host_lock, flags);
3207 ufshcd_utrl_clear(hba, mask);
3208 spin_unlock_irqrestore(hba->host->host_lock, flags);
3209
3210 /*
3211 * wait for h/w to clear corresponding bit in door-bell.
3212 * max. wait is 1 sec.
3213 */
3214 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3215 mask, ~mask, 1000, 1000);
3216 }
3217
3218 /**
3219 * ufshcd_dev_cmd_completion() - handles device management command responses
3220 * @hba: per adapter instance
3221 * @lrbp: pointer to local reference block
3222 *
3223 * Return: 0 upon success; < 0 upon failure.
3224 */
3225 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3226 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3227 {
3228 enum upiu_response_transaction resp;
3229 int err = 0;
3230
3231 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3232 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3233
3234 switch (resp) {
3235 case UPIU_TRANSACTION_NOP_IN:
3236 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3237 err = -EINVAL;
3238 dev_err(hba->dev, "%s: unexpected response %x\n",
3239 __func__, resp);
3240 }
3241 break;
3242 case UPIU_TRANSACTION_QUERY_RSP: {
3243 u8 response = lrbp->ucd_rsp_ptr->header.response;
3244
3245 if (response == 0) {
3246 err = ufshcd_copy_query_response(hba, lrbp);
3247 } else {
3248 err = -EINVAL;
3249 dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3250 __func__, response);
3251 }
3252 break;
3253 }
3254 case UPIU_TRANSACTION_REJECT_UPIU:
3255 /* TODO: handle Reject UPIU Response */
3256 err = -EPERM;
3257 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3258 __func__);
3259 break;
3260 case UPIU_TRANSACTION_RESPONSE:
3261 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3262 err = -EINVAL;
3263 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3264 }
3265 break;
3266 default:
3267 err = -EINVAL;
3268 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3269 __func__, resp);
3270 break;
3271 }
3272 trace_android_vh_ufs_dev_cmd_completion(hba, lrbp, err);
3273 return err;
3274 }
3275
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3276 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3277 struct ufshcd_lrb *lrbp, int max_timeout)
3278 {
3279 unsigned long time_left = msecs_to_jiffies(max_timeout);
3280 unsigned long flags;
3281 bool pending;
3282 int err;
3283
3284 retry:
3285 time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3286 time_left);
3287
3288 if (likely(time_left)) {
3289 /*
3290 * The completion handler called complete() and the caller of
3291 * this function still owns the @lrbp tag so the code below does
3292 * not trigger any race conditions.
3293 */
3294 hba->dev_cmd.complete = NULL;
3295 err = ufshcd_get_tr_ocs(lrbp, NULL);
3296 if (!err)
3297 err = ufshcd_dev_cmd_completion(hba, lrbp);
3298 } else {
3299 err = -ETIMEDOUT;
3300 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3301 __func__, lrbp->task_tag);
3302
3303 /* MCQ mode */
3304 if (hba->mcq_enabled) {
3305 /* successfully cleared the command, retry if needed */
3306 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3307 err = -EAGAIN;
3308 hba->dev_cmd.complete = NULL;
3309 return err;
3310 }
3311
3312 /* SDB mode */
3313 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3314 /* successfully cleared the command, retry if needed */
3315 err = -EAGAIN;
3316 /*
3317 * Since clearing the command succeeded we also need to
3318 * clear the task tag bit from the outstanding_reqs
3319 * variable.
3320 */
3321 spin_lock_irqsave(&hba->outstanding_lock, flags);
3322 pending = test_bit(lrbp->task_tag,
3323 &hba->outstanding_reqs);
3324 if (pending) {
3325 hba->dev_cmd.complete = NULL;
3326 __clear_bit(lrbp->task_tag,
3327 &hba->outstanding_reqs);
3328 }
3329 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3330
3331 if (!pending) {
3332 /*
3333 * The completion handler ran while we tried to
3334 * clear the command.
3335 */
3336 time_left = 1;
3337 goto retry;
3338 }
3339 } else {
3340 dev_err(hba->dev, "%s: failed to clear tag %d\n",
3341 __func__, lrbp->task_tag);
3342
3343 spin_lock_irqsave(&hba->outstanding_lock, flags);
3344 pending = test_bit(lrbp->task_tag,
3345 &hba->outstanding_reqs);
3346 if (pending)
3347 hba->dev_cmd.complete = NULL;
3348 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3349
3350 if (!pending) {
3351 /*
3352 * The completion handler ran while we tried to
3353 * clear the command.
3354 */
3355 time_left = 1;
3356 goto retry;
3357 }
3358 }
3359 }
3360
3361 return err;
3362 }
3363
ufshcd_dev_man_lock(struct ufs_hba * hba)3364 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3365 {
3366 ufshcd_hold(hba);
3367 mutex_lock(&hba->dev_cmd.lock);
3368 down_read(&hba->clk_scaling_lock);
3369 }
3370
ufshcd_dev_man_unlock(struct ufs_hba * hba)3371 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3372 {
3373 up_read(&hba->clk_scaling_lock);
3374 mutex_unlock(&hba->dev_cmd.lock);
3375 ufshcd_release(hba);
3376 }
3377
ufshcd_issue_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,const u32 tag,int timeout)3378 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3379 const u32 tag, int timeout)
3380 {
3381 DECLARE_COMPLETION_ONSTACK(wait);
3382 int err;
3383
3384 hba->dev_cmd.complete = &wait;
3385
3386 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3387
3388 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3389 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3390
3391 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3392 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3393
3394 return err;
3395 }
3396
3397 /**
3398 * ufshcd_exec_dev_cmd - API for sending device management requests
3399 * @hba: UFS hba
3400 * @cmd_type: specifies the type (NOP, Query...)
3401 * @timeout: timeout in milliseconds
3402 *
3403 * Return: 0 upon success; < 0 upon failure.
3404 *
3405 * NOTE: Since there is only one available tag for device management commands,
3406 * it is expected you hold the hba->dev_cmd.lock mutex.
3407 */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3408 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3409 enum dev_cmd_type cmd_type, int timeout)
3410 {
3411 const u32 tag = hba->reserved_slot;
3412 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3413 int err;
3414
3415 /* Protects use of hba->reserved_slot. */
3416 lockdep_assert_held(&hba->dev_cmd.lock);
3417
3418 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3419 if (unlikely(err))
3420 return err;
3421
3422 return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3423 }
3424
3425 /**
3426 * ufshcd_init_query() - init the query response and request parameters
3427 * @hba: per-adapter instance
3428 * @request: address of the request pointer to be initialized
3429 * @response: address of the response pointer to be initialized
3430 * @opcode: operation to perform
3431 * @idn: flag idn to access
3432 * @index: LU number to access
3433 * @selector: query/flag/descriptor further identification
3434 */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3435 static inline void ufshcd_init_query(struct ufs_hba *hba,
3436 struct ufs_query_req **request, struct ufs_query_res **response,
3437 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3438 {
3439 *request = &hba->dev_cmd.query.request;
3440 *response = &hba->dev_cmd.query.response;
3441 memset(*request, 0, sizeof(struct ufs_query_req));
3442 memset(*response, 0, sizeof(struct ufs_query_res));
3443 (*request)->upiu_req.opcode = opcode;
3444 (*request)->upiu_req.idn = idn;
3445 (*request)->upiu_req.index = index;
3446 (*request)->upiu_req.selector = selector;
3447 }
3448
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3449 int ufshcd_query_flag_retry(struct ufs_hba *hba,
3450 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3451 {
3452 int ret;
3453 int retries;
3454
3455 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3456 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3457 if (ret)
3458 dev_dbg(hba->dev,
3459 "%s: failed with error %d, retries %d\n",
3460 __func__, ret, retries);
3461 else
3462 break;
3463 }
3464
3465 if (ret)
3466 dev_err(hba->dev,
3467 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3468 __func__, opcode, idn, ret, retries);
3469 return ret;
3470 }
3471 EXPORT_SYMBOL_GPL(ufshcd_query_flag_retry);
3472
3473 /**
3474 * ufshcd_query_flag() - API function for sending flag query requests
3475 * @hba: per-adapter instance
3476 * @opcode: flag query to perform
3477 * @idn: flag idn to access
3478 * @index: flag index to access
3479 * @flag_res: the flag value after the query request completes
3480 *
3481 * Return: 0 for success, non-zero in case of failure.
3482 */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3483 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3484 enum flag_idn idn, u8 index, bool *flag_res)
3485 {
3486 struct ufs_query_req *request = NULL;
3487 struct ufs_query_res *response = NULL;
3488 int err, selector = 0;
3489 int timeout = dev_cmd_timeout;
3490
3491 BUG_ON(!hba);
3492
3493 ufshcd_dev_man_lock(hba);
3494
3495 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3496 selector);
3497
3498 switch (opcode) {
3499 case UPIU_QUERY_OPCODE_SET_FLAG:
3500 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3501 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3502 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3503 break;
3504 case UPIU_QUERY_OPCODE_READ_FLAG:
3505 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3506 if (!flag_res) {
3507 /* No dummy reads */
3508 dev_err(hba->dev, "%s: Invalid argument for read request\n",
3509 __func__);
3510 err = -EINVAL;
3511 goto out_unlock;
3512 }
3513 break;
3514 default:
3515 dev_err(hba->dev,
3516 "%s: Expected query flag opcode but got = %d\n",
3517 __func__, opcode);
3518 err = -EINVAL;
3519 goto out_unlock;
3520 }
3521
3522 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3523
3524 if (err) {
3525 dev_err(hba->dev,
3526 "%s: Sending flag query for idn %d failed, err = %d\n",
3527 __func__, idn, err);
3528 goto out_unlock;
3529 }
3530
3531 if (flag_res)
3532 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3533 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3534
3535 out_unlock:
3536 ufshcd_dev_man_unlock(hba);
3537 return err;
3538 }
3539 EXPORT_SYMBOL_GPL(ufshcd_query_flag);
3540
3541 /**
3542 * ufshcd_query_attr - API function for sending attribute requests
3543 * @hba: per-adapter instance
3544 * @opcode: attribute opcode
3545 * @idn: attribute idn to access
3546 * @index: index field
3547 * @selector: selector field
3548 * @attr_val: the attribute value after the query request completes
3549 *
3550 * Return: 0 for success, non-zero in case of failure.
3551 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3552 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3553 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3554 {
3555 struct ufs_query_req *request = NULL;
3556 struct ufs_query_res *response = NULL;
3557 int err;
3558
3559 BUG_ON(!hba);
3560
3561 if (!attr_val) {
3562 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3563 __func__, opcode);
3564 return -EINVAL;
3565 }
3566
3567 ufshcd_dev_man_lock(hba);
3568
3569 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3570 selector);
3571
3572 switch (opcode) {
3573 case UPIU_QUERY_OPCODE_WRITE_ATTR:
3574 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3575 request->upiu_req.value = cpu_to_be32(*attr_val);
3576 break;
3577 case UPIU_QUERY_OPCODE_READ_ATTR:
3578 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3579 break;
3580 default:
3581 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3582 __func__, opcode);
3583 err = -EINVAL;
3584 goto out_unlock;
3585 }
3586
3587 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3588
3589 if (err) {
3590 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3591 __func__, opcode, idn, index, err);
3592 goto out_unlock;
3593 }
3594
3595 *attr_val = be32_to_cpu(response->upiu_res.value);
3596
3597 out_unlock:
3598 ufshcd_dev_man_unlock(hba);
3599 return err;
3600 }
3601 EXPORT_SYMBOL_GPL(ufshcd_query_attr);
3602
3603 /**
3604 * ufshcd_query_attr_retry() - API function for sending query
3605 * attribute with retries
3606 * @hba: per-adapter instance
3607 * @opcode: attribute opcode
3608 * @idn: attribute idn to access
3609 * @index: index field
3610 * @selector: selector field
3611 * @attr_val: the attribute value after the query request
3612 * completes
3613 *
3614 * Return: 0 for success, non-zero in case of failure.
3615 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3616 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3617 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3618 u32 *attr_val)
3619 {
3620 int ret = 0;
3621 u32 retries;
3622
3623 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3624 ret = ufshcd_query_attr(hba, opcode, idn, index,
3625 selector, attr_val);
3626 if (ret)
3627 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3628 __func__, ret, retries);
3629 else
3630 break;
3631 }
3632
3633 if (ret)
3634 dev_err(hba->dev,
3635 "%s: query attribute, idn %d, failed with error %d after %d retries\n",
3636 __func__, idn, ret, QUERY_REQ_RETRIES);
3637 return ret;
3638 }
3639 EXPORT_SYMBOL_GPL(ufshcd_query_attr_retry);
3640
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3641 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3642 enum query_opcode opcode, enum desc_idn idn, u8 index,
3643 u8 selector, u8 *desc_buf, int *buf_len)
3644 {
3645 struct ufs_query_req *request = NULL;
3646 struct ufs_query_res *response = NULL;
3647 int err;
3648
3649 BUG_ON(!hba);
3650
3651 if (!desc_buf) {
3652 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3653 __func__, opcode);
3654 return -EINVAL;
3655 }
3656
3657 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3658 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3659 __func__, *buf_len);
3660 return -EINVAL;
3661 }
3662
3663 ufshcd_dev_man_lock(hba);
3664
3665 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3666 selector);
3667 hba->dev_cmd.query.descriptor = desc_buf;
3668 request->upiu_req.length = cpu_to_be16(*buf_len);
3669
3670 switch (opcode) {
3671 case UPIU_QUERY_OPCODE_WRITE_DESC:
3672 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3673 break;
3674 case UPIU_QUERY_OPCODE_READ_DESC:
3675 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3676 break;
3677 default:
3678 dev_err(hba->dev,
3679 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3680 __func__, opcode);
3681 err = -EINVAL;
3682 goto out_unlock;
3683 }
3684
3685 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3686
3687 if (err) {
3688 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3689 __func__, opcode, idn, index, err);
3690 goto out_unlock;
3691 }
3692
3693 *buf_len = be16_to_cpu(response->upiu_res.length);
3694
3695 out_unlock:
3696 hba->dev_cmd.query.descriptor = NULL;
3697 ufshcd_dev_man_unlock(hba);
3698 return err;
3699 }
3700
3701 /**
3702 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3703 * @hba: per-adapter instance
3704 * @opcode: attribute opcode
3705 * @idn: attribute idn to access
3706 * @index: index field
3707 * @selector: selector field
3708 * @desc_buf: the buffer that contains the descriptor
3709 * @buf_len: length parameter passed to the device
3710 *
3711 * The buf_len parameter will contain, on return, the length parameter
3712 * received on the response.
3713 *
3714 * Return: 0 for success, non-zero in case of failure.
3715 */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3716 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3717 enum query_opcode opcode,
3718 enum desc_idn idn, u8 index,
3719 u8 selector,
3720 u8 *desc_buf, int *buf_len)
3721 {
3722 int err;
3723 int retries;
3724
3725 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3726 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3727 selector, desc_buf, buf_len);
3728 if (!err || err == -EINVAL)
3729 break;
3730 }
3731
3732 return err;
3733 }
3734 EXPORT_SYMBOL_GPL(ufshcd_query_descriptor_retry);
3735
3736 /**
3737 * ufshcd_read_desc_param - read the specified descriptor parameter
3738 * @hba: Pointer to adapter instance
3739 * @desc_id: descriptor idn value
3740 * @desc_index: descriptor index
3741 * @param_offset: offset of the parameter to read
3742 * @param_read_buf: pointer to buffer where parameter would be read
3743 * @param_size: sizeof(param_read_buf)
3744 *
3745 * Return: 0 in case of success, non-zero otherwise.
3746 */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3747 int ufshcd_read_desc_param(struct ufs_hba *hba,
3748 enum desc_idn desc_id,
3749 int desc_index,
3750 u8 param_offset,
3751 u8 *param_read_buf,
3752 u8 param_size)
3753 {
3754 int ret;
3755 u8 *desc_buf;
3756 int buff_len = QUERY_DESC_MAX_SIZE;
3757 bool is_kmalloc = true;
3758
3759 /* Safety check */
3760 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3761 return -EINVAL;
3762
3763 /* Check whether we need temp memory */
3764 if (param_offset != 0 || param_size < buff_len) {
3765 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3766 if (!desc_buf)
3767 return -ENOMEM;
3768 } else {
3769 desc_buf = param_read_buf;
3770 is_kmalloc = false;
3771 }
3772
3773 /* Request for full descriptor */
3774 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3775 desc_id, desc_index, 0,
3776 desc_buf, &buff_len);
3777 if (ret) {
3778 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3779 __func__, desc_id, desc_index, param_offset, ret);
3780 goto out;
3781 }
3782
3783 /* Update descriptor length */
3784 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3785
3786 if (param_offset >= buff_len) {
3787 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3788 __func__, param_offset, desc_id, buff_len);
3789 ret = -EINVAL;
3790 goto out;
3791 }
3792
3793 /* Sanity check */
3794 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3795 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3796 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3797 ret = -EINVAL;
3798 goto out;
3799 }
3800
3801 if (is_kmalloc) {
3802 /* Make sure we don't copy more data than available */
3803 if (param_offset >= buff_len)
3804 ret = -EINVAL;
3805 else
3806 memcpy(param_read_buf, &desc_buf[param_offset],
3807 min_t(u32, param_size, buff_len - param_offset));
3808 }
3809 out:
3810 if (is_kmalloc)
3811 kfree(desc_buf);
3812 return ret;
3813 }
3814 EXPORT_SYMBOL_GPL(ufshcd_read_desc_param);
3815
3816 /**
3817 * struct uc_string_id - unicode string
3818 *
3819 * @len: size of this descriptor inclusive
3820 * @type: descriptor type
3821 * @uc: unicode string character
3822 */
3823 struct uc_string_id {
3824 u8 len;
3825 u8 type;
3826 wchar_t uc[];
3827 } __packed;
3828
3829 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3830 static inline char ufshcd_remove_non_printable(u8 ch)
3831 {
3832 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3833 }
3834
3835 /**
3836 * ufshcd_read_string_desc - read string descriptor
3837 * @hba: pointer to adapter instance
3838 * @desc_index: descriptor index
3839 * @buf: pointer to buffer where descriptor would be read,
3840 * the caller should free the memory.
3841 * @ascii: if true convert from unicode to ascii characters
3842 * null terminated string.
3843 *
3844 * Return:
3845 * * string size on success.
3846 * * -ENOMEM: on allocation failure
3847 * * -EINVAL: on a wrong parameter
3848 */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3849 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3850 u8 **buf, bool ascii)
3851 {
3852 struct uc_string_id *uc_str;
3853 u8 *str;
3854 int ret;
3855
3856 if (!buf)
3857 return -EINVAL;
3858
3859 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3860 if (!uc_str)
3861 return -ENOMEM;
3862
3863 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3864 (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3865 if (ret < 0) {
3866 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3867 QUERY_REQ_RETRIES, ret);
3868 str = NULL;
3869 goto out;
3870 }
3871
3872 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3873 dev_dbg(hba->dev, "String Desc is of zero length\n");
3874 str = NULL;
3875 ret = 0;
3876 goto out;
3877 }
3878
3879 if (ascii) {
3880 ssize_t ascii_len;
3881 int i;
3882 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3883 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3884 str = kzalloc(ascii_len, GFP_KERNEL);
3885 if (!str) {
3886 ret = -ENOMEM;
3887 goto out;
3888 }
3889
3890 /*
3891 * the descriptor contains string in UTF16 format
3892 * we need to convert to utf-8 so it can be displayed
3893 */
3894 ret = utf16s_to_utf8s(uc_str->uc,
3895 uc_str->len - QUERY_DESC_HDR_SIZE,
3896 UTF16_BIG_ENDIAN, str, ascii_len - 1);
3897
3898 /* replace non-printable or non-ASCII characters with spaces */
3899 for (i = 0; i < ret; i++)
3900 str[i] = ufshcd_remove_non_printable(str[i]);
3901
3902 str[ret++] = '\0';
3903
3904 } else {
3905 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3906 if (!str) {
3907 ret = -ENOMEM;
3908 goto out;
3909 }
3910 ret = uc_str->len;
3911 }
3912 out:
3913 *buf = str;
3914 kfree(uc_str);
3915 return ret;
3916 }
3917
3918 /**
3919 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3920 * @hba: Pointer to adapter instance
3921 * @lun: lun id
3922 * @param_offset: offset of the parameter to read
3923 * @param_read_buf: pointer to buffer where parameter would be read
3924 * @param_size: sizeof(param_read_buf)
3925 *
3926 * Return: 0 in case of success, non-zero otherwise.
3927 */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3928 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3929 int lun,
3930 enum unit_desc_param param_offset,
3931 u8 *param_read_buf,
3932 u32 param_size)
3933 {
3934 /*
3935 * Unit descriptors are only available for general purpose LUs (LUN id
3936 * from 0 to 7) and RPMB Well known LU.
3937 */
3938 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3939 return -EOPNOTSUPP;
3940
3941 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3942 param_offset, param_read_buf, param_size);
3943 }
3944
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3945 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3946 {
3947 int err = 0;
3948 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3949
3950 if (hba->dev_info.wspecversion >= 0x300) {
3951 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3952 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3953 &gating_wait);
3954 if (err)
3955 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3956 err, gating_wait);
3957
3958 if (gating_wait == 0) {
3959 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3960 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3961 gating_wait);
3962 }
3963
3964 hba->dev_info.clk_gating_wait_us = gating_wait;
3965 }
3966
3967 return err;
3968 }
3969
3970 /**
3971 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3972 * @hba: per adapter instance
3973 *
3974 * 1. Allocate DMA memory for Command Descriptor array
3975 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3976 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3977 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3978 * (UTMRDL)
3979 * 4. Allocate memory for local reference block(lrb).
3980 *
3981 * Return: 0 for success, non-zero in case of failure.
3982 */
ufshcd_memory_alloc(struct ufs_hba * hba)3983 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3984 {
3985 size_t utmrdl_size, utrdl_size, ucdl_size;
3986
3987 /* Allocate memory for UTP command descriptors */
3988 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3989 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3990 ucdl_size,
3991 &hba->ucdl_dma_addr,
3992 GFP_KERNEL);
3993
3994 /*
3995 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3996 */
3997 if (!hba->ucdl_base_addr ||
3998 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3999 dev_err(hba->dev,
4000 "Command Descriptor Memory allocation failed\n");
4001 goto out;
4002 }
4003
4004 /*
4005 * Allocate memory for UTP Transfer descriptors
4006 * UFSHCI requires 1KB alignment of UTRD
4007 */
4008 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
4009 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
4010 utrdl_size,
4011 &hba->utrdl_dma_addr,
4012 GFP_KERNEL);
4013 if (!hba->utrdl_base_addr ||
4014 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
4015 dev_err(hba->dev,
4016 "Transfer Descriptor Memory allocation failed\n");
4017 goto out;
4018 }
4019
4020 /*
4021 * Skip utmrdl allocation; it may have been
4022 * allocated during first pass and not released during
4023 * MCQ memory allocation.
4024 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
4025 */
4026 if (hba->utmrdl_base_addr)
4027 goto skip_utmrdl;
4028 /*
4029 * Allocate memory for UTP Task Management descriptors
4030 * UFSHCI requires 1KB alignment of UTMRD
4031 */
4032 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
4033 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
4034 utmrdl_size,
4035 &hba->utmrdl_dma_addr,
4036 GFP_KERNEL);
4037 if (!hba->utmrdl_base_addr ||
4038 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
4039 dev_err(hba->dev,
4040 "Task Management Descriptor Memory allocation failed\n");
4041 goto out;
4042 }
4043
4044 skip_utmrdl:
4045 /* Allocate memory for local reference block */
4046 hba->lrb = devm_kcalloc(hba->dev,
4047 hba->nutrs, sizeof(struct ufshcd_lrb),
4048 GFP_KERNEL);
4049 if (!hba->lrb) {
4050 dev_err(hba->dev, "LRB Memory allocation failed\n");
4051 goto out;
4052 }
4053 return 0;
4054 out:
4055 return -ENOMEM;
4056 }
4057
4058 /**
4059 * ufshcd_host_memory_configure - configure local reference block with
4060 * memory offsets
4061 * @hba: per adapter instance
4062 *
4063 * Configure Host memory space
4064 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
4065 * address.
4066 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
4067 * and PRDT offset.
4068 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
4069 * into local reference block.
4070 */
ufshcd_host_memory_configure(struct ufs_hba * hba)4071 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
4072 {
4073 struct utp_transfer_req_desc *utrdlp;
4074 dma_addr_t cmd_desc_dma_addr;
4075 dma_addr_t cmd_desc_element_addr;
4076 u16 response_offset;
4077 u16 prdt_offset;
4078 int cmd_desc_size;
4079 int i;
4080
4081 utrdlp = hba->utrdl_base_addr;
4082
4083 response_offset =
4084 offsetof(struct utp_transfer_cmd_desc, response_upiu);
4085 prdt_offset =
4086 offsetof(struct utp_transfer_cmd_desc, prd_table);
4087
4088 cmd_desc_size = ufshcd_get_ucd_size(hba);
4089 cmd_desc_dma_addr = hba->ucdl_dma_addr;
4090
4091 for (i = 0; i < hba->nutrs; i++) {
4092 /* Configure UTRD with command descriptor base address */
4093 cmd_desc_element_addr =
4094 (cmd_desc_dma_addr + (cmd_desc_size * i));
4095 utrdlp[i].command_desc_base_addr =
4096 cpu_to_le64(cmd_desc_element_addr);
4097
4098 /* Response upiu and prdt offset should be in double words */
4099 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
4100 utrdlp[i].response_upiu_offset =
4101 cpu_to_le16(response_offset);
4102 utrdlp[i].prd_table_offset =
4103 cpu_to_le16(prdt_offset);
4104 utrdlp[i].response_upiu_length =
4105 cpu_to_le16(ALIGNED_UPIU_SIZE);
4106 } else {
4107 utrdlp[i].response_upiu_offset =
4108 cpu_to_le16(response_offset >> 2);
4109 utrdlp[i].prd_table_offset =
4110 cpu_to_le16(prdt_offset >> 2);
4111 utrdlp[i].response_upiu_length =
4112 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4113 }
4114
4115 ufshcd_init_lrb(hba, &hba->lrb[i], i);
4116 }
4117 }
4118
4119 /**
4120 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4121 * @hba: per adapter instance
4122 *
4123 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4124 * in order to initialize the Unipro link startup procedure.
4125 * Once the Unipro links are up, the device connected to the controller
4126 * is detected.
4127 *
4128 * Return: 0 on success, non-zero value on failure.
4129 */
ufshcd_dme_link_startup(struct ufs_hba * hba)4130 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4131 {
4132 struct uic_command uic_cmd = {
4133 .command = UIC_CMD_DME_LINK_STARTUP,
4134 };
4135 int ret;
4136
4137 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4138 if (ret)
4139 dev_dbg(hba->dev,
4140 "dme-link-startup: error code %d\n", ret);
4141 return ret;
4142 }
4143 /**
4144 * ufshcd_dme_reset - UIC command for DME_RESET
4145 * @hba: per adapter instance
4146 *
4147 * DME_RESET command is issued in order to reset UniPro stack.
4148 * This function now deals with cold reset.
4149 *
4150 * Return: 0 on success, non-zero value on failure.
4151 */
ufshcd_dme_reset(struct ufs_hba * hba)4152 static int ufshcd_dme_reset(struct ufs_hba *hba)
4153 {
4154 struct uic_command uic_cmd = {
4155 .command = UIC_CMD_DME_RESET,
4156 };
4157 int ret;
4158
4159 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4160 if (ret)
4161 dev_err(hba->dev,
4162 "dme-reset: error code %d\n", ret);
4163
4164 return ret;
4165 }
4166
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)4167 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4168 int agreed_gear,
4169 int adapt_val)
4170 {
4171 int ret;
4172
4173 if (agreed_gear < UFS_HS_G4)
4174 adapt_val = PA_NO_ADAPT;
4175
4176 ret = ufshcd_dme_set(hba,
4177 UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4178 adapt_val);
4179 return ret;
4180 }
4181 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4182
4183 /**
4184 * ufshcd_dme_enable - UIC command for DME_ENABLE
4185 * @hba: per adapter instance
4186 *
4187 * DME_ENABLE command is issued in order to enable UniPro stack.
4188 *
4189 * Return: 0 on success, non-zero value on failure.
4190 */
ufshcd_dme_enable(struct ufs_hba * hba)4191 static int ufshcd_dme_enable(struct ufs_hba *hba)
4192 {
4193 struct uic_command uic_cmd = {
4194 .command = UIC_CMD_DME_ENABLE,
4195 };
4196 int ret;
4197
4198 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4199 if (ret)
4200 dev_err(hba->dev,
4201 "dme-enable: error code %d\n", ret);
4202
4203 return ret;
4204 }
4205
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)4206 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4207 {
4208 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
4209 unsigned long min_sleep_time_us;
4210
4211 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4212 return;
4213
4214 /*
4215 * last_dme_cmd_tstamp will be 0 only for 1st call to
4216 * this function
4217 */
4218 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4219 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4220 } else {
4221 unsigned long delta =
4222 (unsigned long) ktime_to_us(
4223 ktime_sub(ktime_get(),
4224 hba->last_dme_cmd_tstamp));
4225
4226 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4227 min_sleep_time_us =
4228 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4229 else
4230 min_sleep_time_us = 0; /* no more delay required */
4231 }
4232
4233 if (min_sleep_time_us > 0) {
4234 /* allow sleep for extra 50us if needed */
4235 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4236 }
4237
4238 /* update the last_dme_cmd_tstamp */
4239 hba->last_dme_cmd_tstamp = ktime_get();
4240 }
4241
4242 /**
4243 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4244 * @hba: per adapter instance
4245 * @attr_sel: uic command argument1
4246 * @attr_set: attribute set type as uic command argument2
4247 * @mib_val: setting value as uic command argument3
4248 * @peer: indicate whether peer or local
4249 *
4250 * Return: 0 on success, non-zero value on failure.
4251 */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4252 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4253 u8 attr_set, u32 mib_val, u8 peer)
4254 {
4255 struct uic_command uic_cmd = {
4256 .command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4257 .argument1 = attr_sel,
4258 .argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4259 .argument3 = mib_val,
4260 };
4261 static const char *const action[] = {
4262 "dme-set",
4263 "dme-peer-set"
4264 };
4265 const char *set = action[!!peer];
4266 int ret;
4267 int retries = UFS_UIC_COMMAND_RETRIES;
4268
4269 do {
4270 /* for peer attributes we retry upon failure */
4271 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4272 if (ret)
4273 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4274 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4275 } while (ret && peer && --retries);
4276
4277 if (ret)
4278 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4279 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4280 UFS_UIC_COMMAND_RETRIES - retries);
4281
4282 return ret;
4283 }
4284 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4285
4286 /**
4287 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4288 * @hba: per adapter instance
4289 * @attr_sel: uic command argument1
4290 * @mib_val: the value of the attribute as returned by the UIC command
4291 * @peer: indicate whether peer or local
4292 *
4293 * Return: 0 on success, non-zero value on failure.
4294 */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4295 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4296 u32 *mib_val, u8 peer)
4297 {
4298 struct uic_command uic_cmd = {
4299 .command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4300 .argument1 = attr_sel,
4301 };
4302 static const char *const action[] = {
4303 "dme-get",
4304 "dme-peer-get"
4305 };
4306 const char *get = action[!!peer];
4307 int ret;
4308 int retries = UFS_UIC_COMMAND_RETRIES;
4309 struct ufs_pa_layer_attr orig_pwr_info;
4310 struct ufs_pa_layer_attr temp_pwr_info;
4311 bool pwr_mode_change = false;
4312
4313 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4314 orig_pwr_info = hba->pwr_info;
4315 temp_pwr_info = orig_pwr_info;
4316
4317 if (orig_pwr_info.pwr_tx == FAST_MODE ||
4318 orig_pwr_info.pwr_rx == FAST_MODE) {
4319 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4320 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4321 pwr_mode_change = true;
4322 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4323 orig_pwr_info.pwr_rx == SLOW_MODE) {
4324 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4325 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4326 pwr_mode_change = true;
4327 }
4328 if (pwr_mode_change) {
4329 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4330 if (ret)
4331 goto out;
4332 }
4333 }
4334
4335 do {
4336 /* for peer attributes we retry upon failure */
4337 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4338 if (ret)
4339 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4340 get, UIC_GET_ATTR_ID(attr_sel), ret);
4341 } while (ret && peer && --retries);
4342
4343 if (ret)
4344 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4345 get, UIC_GET_ATTR_ID(attr_sel),
4346 UFS_UIC_COMMAND_RETRIES - retries);
4347
4348 if (mib_val && !ret)
4349 *mib_val = uic_cmd.argument3;
4350
4351 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4352 && pwr_mode_change)
4353 ufshcd_change_power_mode(hba, &orig_pwr_info);
4354 out:
4355 return ret;
4356 }
4357 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4358
4359 /**
4360 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4361 * state) and waits for it to take effect.
4362 *
4363 * @hba: per adapter instance
4364 * @cmd: UIC command to execute
4365 *
4366 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4367 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4368 * and device UniPro link and hence it's final completion would be indicated by
4369 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4370 * addition to normal UIC command completion Status (UCCS). This function only
4371 * returns after the relevant status bits indicate the completion.
4372 *
4373 * Return: 0 on success, non-zero value on failure.
4374 */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4375 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4376 {
4377 DECLARE_COMPLETION_ONSTACK(uic_async_done);
4378 unsigned long flags;
4379 u8 status;
4380 int ret;
4381 bool reenable_intr = false;
4382
4383 mutex_lock(&hba->uic_cmd_mutex);
4384 ufshcd_add_delay_before_dme_cmd(hba);
4385
4386 spin_lock_irqsave(hba->host->host_lock, flags);
4387 if (ufshcd_is_link_broken(hba)) {
4388 ret = -ENOLINK;
4389 goto out_unlock;
4390 }
4391 hba->uic_async_done = &uic_async_done;
4392 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4393 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4394 /*
4395 * Make sure UIC command completion interrupt is disabled before
4396 * issuing UIC command.
4397 */
4398 ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4399 reenable_intr = true;
4400 }
4401 spin_unlock_irqrestore(hba->host->host_lock, flags);
4402 ret = __ufshcd_send_uic_cmd(hba, cmd);
4403 if (ret) {
4404 dev_err(hba->dev,
4405 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4406 cmd->command, cmd->argument3, ret);
4407 goto out;
4408 }
4409
4410 if (!wait_for_completion_timeout(hba->uic_async_done,
4411 msecs_to_jiffies(uic_cmd_timeout))) {
4412 dev_err(hba->dev,
4413 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4414 cmd->command, cmd->argument3);
4415
4416 if (!cmd->cmd_active) {
4417 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4418 __func__);
4419 goto check_upmcrs;
4420 }
4421
4422 ret = -ETIMEDOUT;
4423 goto out;
4424 }
4425
4426 check_upmcrs:
4427 status = ufshcd_get_upmcrs(hba);
4428 if (status != PWR_LOCAL) {
4429 dev_err(hba->dev,
4430 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4431 cmd->command, status);
4432 ret = (status != PWR_OK) ? status : -1;
4433 }
4434 out:
4435 if (ret) {
4436 ufshcd_print_host_state(hba);
4437 ufshcd_print_pwr_info(hba);
4438 ufshcd_print_evt_hist(hba);
4439 }
4440
4441 spin_lock_irqsave(hba->host->host_lock, flags);
4442 hba->active_uic_cmd = NULL;
4443 hba->uic_async_done = NULL;
4444 if (reenable_intr)
4445 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4446 if (ret && !hba->pm_op_in_progress) {
4447 ufshcd_set_link_broken(hba);
4448 ufshcd_schedule_eh_work(hba);
4449 }
4450 out_unlock:
4451 spin_unlock_irqrestore(hba->host->host_lock, flags);
4452 mutex_unlock(&hba->uic_cmd_mutex);
4453
4454 /*
4455 * If the h8 exit fails during the runtime resume process, it becomes
4456 * stuck and cannot be recovered through the error handler. To fix
4457 * this, use link recovery instead of the error handler.
4458 */
4459 if (ret && hba->pm_op_in_progress)
4460 ret = ufshcd_link_recovery(hba);
4461
4462 return ret;
4463 }
4464
4465 /**
4466 * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4467 * @hba: per adapter instance
4468 * @uic_cmd: UIC command
4469 *
4470 * Return: 0 only if success.
4471 */
ufshcd_send_bsg_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)4472 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4473 {
4474 int ret;
4475
4476 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4477 return 0;
4478
4479 ufshcd_hold(hba);
4480
4481 if (uic_cmd->argument1 == UIC_ARG_MIB(PA_PWRMODE) &&
4482 uic_cmd->command == UIC_CMD_DME_SET) {
4483 ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4484 goto out;
4485 }
4486
4487 mutex_lock(&hba->uic_cmd_mutex);
4488 ufshcd_add_delay_before_dme_cmd(hba);
4489
4490 ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
4491 if (!ret)
4492 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
4493
4494 mutex_unlock(&hba->uic_cmd_mutex);
4495
4496 out:
4497 ufshcd_release(hba);
4498 return ret;
4499 }
4500
4501 /**
4502 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4503 * using DME_SET primitives.
4504 * @hba: per adapter instance
4505 * @mode: powr mode value
4506 *
4507 * Return: 0 on success, non-zero value on failure.
4508 */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4509 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4510 {
4511 struct uic_command uic_cmd = {
4512 .command = UIC_CMD_DME_SET,
4513 .argument1 = UIC_ARG_MIB(PA_PWRMODE),
4514 .argument3 = mode,
4515 };
4516 int ret;
4517
4518 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4519 ret = ufshcd_dme_set(hba,
4520 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4521 if (ret) {
4522 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4523 __func__, ret);
4524 goto out;
4525 }
4526 }
4527
4528 ufshcd_hold(hba);
4529 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4530 ufshcd_release(hba);
4531
4532 out:
4533 return ret;
4534 }
4535 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4536
ufshcd_link_recovery(struct ufs_hba * hba)4537 int ufshcd_link_recovery(struct ufs_hba *hba)
4538 {
4539 int ret;
4540 unsigned long flags;
4541
4542 spin_lock_irqsave(hba->host->host_lock, flags);
4543 hba->ufshcd_state = UFSHCD_STATE_RESET;
4544 ufshcd_set_eh_in_progress(hba);
4545 spin_unlock_irqrestore(hba->host->host_lock, flags);
4546
4547 /* Reset the attached device */
4548 ufshcd_device_reset(hba);
4549
4550 ret = ufshcd_host_reset_and_restore(hba);
4551
4552 spin_lock_irqsave(hba->host->host_lock, flags);
4553 if (ret)
4554 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4555 ufshcd_clear_eh_in_progress(hba);
4556 spin_unlock_irqrestore(hba->host->host_lock, flags);
4557
4558 if (ret)
4559 dev_err(hba->dev, "%s: link recovery failed, err %d",
4560 __func__, ret);
4561
4562 return ret;
4563 }
4564 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4565
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4566 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4567 {
4568 struct uic_command uic_cmd = {
4569 .command = UIC_CMD_DME_HIBER_ENTER,
4570 };
4571 ktime_t start = ktime_get();
4572 int ret;
4573
4574 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4575
4576 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4577 trace_ufshcd_profile_hibern8(hba, "enter",
4578 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4579
4580 if (ret)
4581 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4582 __func__, ret);
4583 else
4584 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4585 POST_CHANGE);
4586
4587 return ret;
4588 }
4589 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4590
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4591 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4592 {
4593 struct uic_command uic_cmd = {
4594 .command = UIC_CMD_DME_HIBER_EXIT,
4595 };
4596 int ret;
4597 ktime_t start = ktime_get();
4598
4599 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4600
4601 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4602 trace_ufshcd_profile_hibern8(hba, "exit",
4603 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4604
4605 if (ret) {
4606 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4607 __func__, ret);
4608 } else {
4609 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4610 POST_CHANGE);
4611 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4612 hba->ufs_stats.hibern8_exit_cnt++;
4613 }
4614
4615 return ret;
4616 }
4617 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4618
ufshcd_configure_auto_hibern8(struct ufs_hba * hba)4619 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4620 {
4621 if (!ufshcd_is_auto_hibern8_supported(hba))
4622 return;
4623
4624 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4625 }
4626
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4627 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4628 {
4629 const u32 cur_ahit = READ_ONCE(hba->ahit);
4630
4631 if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4632 return;
4633
4634 WRITE_ONCE(hba->ahit, ahit);
4635 if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4636 ufshcd_rpm_get_sync(hba);
4637 ufshcd_hold(hba);
4638 ufshcd_configure_auto_hibern8(hba);
4639 ufshcd_release(hba);
4640 ufshcd_rpm_put_sync(hba);
4641 }
4642 }
4643 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4644
4645 /**
4646 * ufshcd_init_pwr_info - setting the POR (power on reset)
4647 * values in hba power info
4648 * @hba: per-adapter instance
4649 */
ufshcd_init_pwr_info(struct ufs_hba * hba)4650 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4651 {
4652 hba->pwr_info.gear_rx = UFS_PWM_G1;
4653 hba->pwr_info.gear_tx = UFS_PWM_G1;
4654 hba->pwr_info.lane_rx = UFS_LANE_1;
4655 hba->pwr_info.lane_tx = UFS_LANE_1;
4656 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4657 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4658 hba->pwr_info.hs_rate = 0;
4659 }
4660
4661 /**
4662 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4663 * @hba: per-adapter instance
4664 *
4665 * Return: 0 upon success; < 0 upon failure.
4666 */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4667 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4668 {
4669 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4670
4671 if (hba->max_pwr_info.is_valid)
4672 return 0;
4673
4674 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4675 pwr_info->pwr_tx = FASTAUTO_MODE;
4676 pwr_info->pwr_rx = FASTAUTO_MODE;
4677 } else {
4678 pwr_info->pwr_tx = FAST_MODE;
4679 pwr_info->pwr_rx = FAST_MODE;
4680 }
4681 pwr_info->hs_rate = PA_HS_MODE_B;
4682
4683 /* Get the connected lane count */
4684 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4685 &pwr_info->lane_rx);
4686 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4687 &pwr_info->lane_tx);
4688
4689 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4690 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4691 __func__,
4692 pwr_info->lane_rx,
4693 pwr_info->lane_tx);
4694 return -EINVAL;
4695 }
4696
4697 /*
4698 * First, get the maximum gears of HS speed.
4699 * If a zero value, it means there is no HSGEAR capability.
4700 * Then, get the maximum gears of PWM speed.
4701 */
4702 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4703 if (!pwr_info->gear_rx) {
4704 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4705 &pwr_info->gear_rx);
4706 if (!pwr_info->gear_rx) {
4707 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4708 __func__, pwr_info->gear_rx);
4709 return -EINVAL;
4710 }
4711 pwr_info->pwr_rx = SLOW_MODE;
4712 }
4713
4714 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4715 &pwr_info->gear_tx);
4716 if (!pwr_info->gear_tx) {
4717 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4718 &pwr_info->gear_tx);
4719 if (!pwr_info->gear_tx) {
4720 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4721 __func__, pwr_info->gear_tx);
4722 return -EINVAL;
4723 }
4724 pwr_info->pwr_tx = SLOW_MODE;
4725 }
4726
4727 hba->max_pwr_info.is_valid = true;
4728 return 0;
4729 }
4730
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4731 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4732 struct ufs_pa_layer_attr *pwr_mode)
4733 {
4734 int ret;
4735
4736 /* if already configured to the requested pwr_mode */
4737 if (!hba->force_pmc &&
4738 pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4739 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4740 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4741 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4742 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4743 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4744 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4745 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4746 return 0;
4747 }
4748
4749 /*
4750 * Configure attributes for power mode change with below.
4751 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4752 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4753 * - PA_HSSERIES
4754 */
4755 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4756 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4757 pwr_mode->lane_rx);
4758 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4759 pwr_mode->pwr_rx == FAST_MODE)
4760 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4761 else
4762 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4763
4764 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4765 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4766 pwr_mode->lane_tx);
4767 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4768 pwr_mode->pwr_tx == FAST_MODE)
4769 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4770 else
4771 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4772
4773 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4774 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4775 pwr_mode->pwr_rx == FAST_MODE ||
4776 pwr_mode->pwr_tx == FAST_MODE)
4777 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4778 pwr_mode->hs_rate);
4779
4780 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4781 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4782 DL_FC0ProtectionTimeOutVal_Default);
4783 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4784 DL_TC0ReplayTimeOutVal_Default);
4785 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4786 DL_AFC0ReqTimeOutVal_Default);
4787 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4788 DL_FC1ProtectionTimeOutVal_Default);
4789 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4790 DL_TC1ReplayTimeOutVal_Default);
4791 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4792 DL_AFC1ReqTimeOutVal_Default);
4793
4794 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4795 DL_FC0ProtectionTimeOutVal_Default);
4796 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4797 DL_TC0ReplayTimeOutVal_Default);
4798 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4799 DL_AFC0ReqTimeOutVal_Default);
4800 }
4801
4802 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4803 | pwr_mode->pwr_tx);
4804
4805 if (ret) {
4806 dev_err(hba->dev,
4807 "%s: power mode change failed %d\n", __func__, ret);
4808 } else {
4809 memcpy(&hba->pwr_info, pwr_mode,
4810 sizeof(struct ufs_pa_layer_attr));
4811 }
4812
4813 return ret;
4814 }
4815
4816 /**
4817 * ufshcd_config_pwr_mode - configure a new power mode
4818 * @hba: per-adapter instance
4819 * @desired_pwr_mode: desired power configuration
4820 *
4821 * Return: 0 upon success; < 0 upon failure.
4822 */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4823 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4824 struct ufs_pa_layer_attr *desired_pwr_mode)
4825 {
4826 struct ufs_pa_layer_attr final_params = { 0 };
4827 int ret;
4828
4829 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4830 desired_pwr_mode, &final_params);
4831
4832 if (ret)
4833 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4834
4835 ret = ufshcd_change_power_mode(hba, &final_params);
4836
4837 if (!ret)
4838 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4839 &final_params);
4840
4841 return ret;
4842 }
4843 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4844
4845 /**
4846 * ufshcd_complete_dev_init() - checks device readiness
4847 * @hba: per-adapter instance
4848 *
4849 * Set fDeviceInit flag and poll until device toggles it.
4850 *
4851 * Return: 0 upon success; < 0 upon failure.
4852 */
ufshcd_complete_dev_init(struct ufs_hba * hba)4853 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4854 {
4855 int err;
4856 bool flag_res = true;
4857 ktime_t timeout;
4858
4859 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4860 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4861 if (err) {
4862 dev_err(hba->dev,
4863 "%s: setting fDeviceInit flag failed with error %d\n",
4864 __func__, err);
4865 goto out;
4866 }
4867
4868 /* Poll fDeviceInit flag to be cleared */
4869 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4870 do {
4871 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4872 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4873 if (!flag_res)
4874 break;
4875 usleep_range(500, 1000);
4876 } while (ktime_before(ktime_get(), timeout));
4877
4878 if (err) {
4879 dev_err(hba->dev,
4880 "%s: reading fDeviceInit flag failed with error %d\n",
4881 __func__, err);
4882 } else if (flag_res) {
4883 dev_err(hba->dev,
4884 "%s: fDeviceInit was not cleared by the device\n",
4885 __func__);
4886 err = -EBUSY;
4887 }
4888 out:
4889 return err;
4890 }
4891
4892 /**
4893 * ufshcd_make_hba_operational - Make UFS controller operational
4894 * @hba: per adapter instance
4895 *
4896 * To bring UFS host controller to operational state,
4897 * 1. Enable required interrupts
4898 * 2. Configure interrupt aggregation
4899 * 3. Program UTRL and UTMRL base address
4900 * 4. Configure run-stop-registers
4901 *
4902 * Return: 0 on success, non-zero value on failure.
4903 */
ufshcd_make_hba_operational(struct ufs_hba * hba)4904 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4905 {
4906 int err = 0;
4907 u32 reg;
4908
4909 /* Enable required interrupts */
4910 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4911
4912 /* Configure interrupt aggregation */
4913 if (ufshcd_is_intr_aggr_allowed(hba))
4914 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4915 else
4916 ufshcd_disable_intr_aggr(hba);
4917
4918 /* Configure UTRL and UTMRL base address registers */
4919 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4920 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4921 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4922 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4923 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4924 REG_UTP_TASK_REQ_LIST_BASE_L);
4925 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4926 REG_UTP_TASK_REQ_LIST_BASE_H);
4927
4928 /*
4929 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4930 */
4931 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4932 if (!(ufshcd_get_lists_status(reg))) {
4933 ufshcd_enable_run_stop_reg(hba);
4934 } else {
4935 dev_err(hba->dev,
4936 "Host controller not ready to process requests");
4937 err = -EIO;
4938 }
4939
4940 return err;
4941 }
4942 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4943
4944 /**
4945 * ufshcd_hba_stop - Send controller to reset state
4946 * @hba: per adapter instance
4947 */
ufshcd_hba_stop(struct ufs_hba * hba)4948 void ufshcd_hba_stop(struct ufs_hba *hba)
4949 {
4950 unsigned long flags;
4951 int err;
4952
4953 /*
4954 * Obtain the host lock to prevent that the controller is disabled
4955 * while the UFS interrupt handler is active on another CPU.
4956 */
4957 spin_lock_irqsave(hba->host->host_lock, flags);
4958 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4959 spin_unlock_irqrestore(hba->host->host_lock, flags);
4960
4961 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4962 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4963 10, 1);
4964 if (err)
4965 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4966 }
4967 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4968
4969 /**
4970 * ufshcd_hba_execute_hce - initialize the controller
4971 * @hba: per adapter instance
4972 *
4973 * The controller resets itself and controller firmware initialization
4974 * sequence kicks off. When controller is ready it will set
4975 * the Host Controller Enable bit to 1.
4976 *
4977 * Return: 0 on success, non-zero value on failure.
4978 */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4979 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4980 {
4981 int retry_outer = 3;
4982 int retry_inner;
4983
4984 start:
4985 if (ufshcd_is_hba_active(hba))
4986 /* change controller state to "reset state" */
4987 ufshcd_hba_stop(hba);
4988
4989 /* UniPro link is disabled at this point */
4990 ufshcd_set_link_off(hba);
4991
4992 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4993
4994 /* start controller initialization sequence */
4995 ufshcd_hba_start(hba);
4996
4997 /*
4998 * To initialize a UFS host controller HCE bit must be set to 1.
4999 * During initialization the HCE bit value changes from 1->0->1.
5000 * When the host controller completes initialization sequence
5001 * it sets the value of HCE bit to 1. The same HCE bit is read back
5002 * to check if the controller has completed initialization sequence.
5003 * So without this delay the value HCE = 1, set in the previous
5004 * instruction might be read back.
5005 * This delay can be changed based on the controller.
5006 */
5007 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
5008
5009 /* wait for the host controller to complete initialization */
5010 retry_inner = 50;
5011 while (!ufshcd_is_hba_active(hba)) {
5012 if (retry_inner) {
5013 retry_inner--;
5014 } else {
5015 dev_err(hba->dev,
5016 "Controller enable failed\n");
5017 if (retry_outer) {
5018 retry_outer--;
5019 goto start;
5020 }
5021 return -EIO;
5022 }
5023 usleep_range(1000, 1100);
5024 }
5025
5026 /* enable UIC related interrupts */
5027 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
5028
5029 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
5030
5031 return 0;
5032 }
5033
ufshcd_hba_enable(struct ufs_hba * hba)5034 int ufshcd_hba_enable(struct ufs_hba *hba)
5035 {
5036 int ret;
5037
5038 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
5039 ufshcd_set_link_off(hba);
5040 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
5041
5042 /* enable UIC related interrupts */
5043 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
5044 ret = ufshcd_dme_reset(hba);
5045 if (ret) {
5046 dev_err(hba->dev, "DME_RESET failed\n");
5047 return ret;
5048 }
5049
5050 ret = ufshcd_dme_enable(hba);
5051 if (ret) {
5052 dev_err(hba->dev, "Enabling DME failed\n");
5053 return ret;
5054 }
5055
5056 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
5057 } else {
5058 ret = ufshcd_hba_execute_hce(hba);
5059 }
5060
5061 return ret;
5062 }
5063 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
5064
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)5065 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
5066 {
5067 int tx_lanes = 0, i, err = 0;
5068
5069 if (!peer)
5070 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
5071 &tx_lanes);
5072 else
5073 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
5074 &tx_lanes);
5075 for (i = 0; i < tx_lanes; i++) {
5076 if (!peer)
5077 err = ufshcd_dme_set(hba,
5078 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
5079 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5080 0);
5081 else
5082 err = ufshcd_dme_peer_set(hba,
5083 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
5084 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5085 0);
5086 if (err) {
5087 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
5088 __func__, peer, i, err);
5089 break;
5090 }
5091 }
5092
5093 return err;
5094 }
5095
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)5096 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
5097 {
5098 return ufshcd_disable_tx_lcc(hba, true);
5099 }
5100
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)5101 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
5102 {
5103 struct ufs_event_hist *e;
5104
5105 if (id >= UFS_EVT_CNT)
5106 return;
5107
5108 e = &hba->ufs_stats.event[id];
5109 e->val[e->pos] = val;
5110 e->tstamp[e->pos] = local_clock();
5111 e->cnt += 1;
5112 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
5113
5114 ufshcd_vops_event_notify(hba, id, &val);
5115 }
5116 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
5117
5118 /**
5119 * ufshcd_link_startup - Initialize unipro link startup
5120 * @hba: per adapter instance
5121 *
5122 * Return: 0 for success, non-zero in case of failure.
5123 */
ufshcd_link_startup(struct ufs_hba * hba)5124 static int ufshcd_link_startup(struct ufs_hba *hba)
5125 {
5126 int ret;
5127 int retries = DME_LINKSTARTUP_RETRIES;
5128 bool link_startup_again = false;
5129
5130 /*
5131 * If UFS device isn't active then we will have to issue link startup
5132 * 2 times to make sure the device state move to active.
5133 */
5134 if (!ufshcd_is_ufs_dev_active(hba))
5135 link_startup_again = true;
5136
5137 link_startup:
5138 do {
5139 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
5140
5141 ret = ufshcd_dme_link_startup(hba);
5142
5143 /* check if device is detected by inter-connect layer */
5144 if (!ret && !ufshcd_is_device_present(hba)) {
5145 ufshcd_update_evt_hist(hba,
5146 UFS_EVT_LINK_STARTUP_FAIL,
5147 0);
5148 dev_err(hba->dev, "%s: Device not present\n", __func__);
5149 ret = -ENXIO;
5150 goto out;
5151 }
5152
5153 /*
5154 * DME link lost indication is only received when link is up,
5155 * but we can't be sure if the link is up until link startup
5156 * succeeds. So reset the local Uni-Pro and try again.
5157 */
5158 if (ret && retries && ufshcd_hba_enable(hba)) {
5159 ufshcd_update_evt_hist(hba,
5160 UFS_EVT_LINK_STARTUP_FAIL,
5161 (u32)ret);
5162 goto out;
5163 }
5164 } while (ret && retries--);
5165
5166 if (ret) {
5167 /* failed to get the link up... retire */
5168 ufshcd_update_evt_hist(hba,
5169 UFS_EVT_LINK_STARTUP_FAIL,
5170 (u32)ret);
5171 goto out;
5172 }
5173
5174 if (link_startup_again) {
5175 link_startup_again = false;
5176 retries = DME_LINKSTARTUP_RETRIES;
5177 goto link_startup;
5178 }
5179
5180 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5181 ufshcd_init_pwr_info(hba);
5182 ufshcd_print_pwr_info(hba);
5183
5184 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5185 ret = ufshcd_disable_device_tx_lcc(hba);
5186 if (ret)
5187 goto out;
5188 }
5189
5190 /* Include any host controller configuration via UIC commands */
5191 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5192 if (ret)
5193 goto out;
5194
5195 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5196 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5197 ret = ufshcd_make_hba_operational(hba);
5198 out:
5199 if (ret) {
5200 dev_err(hba->dev, "link startup failed %d\n", ret);
5201 ufshcd_print_host_state(hba);
5202 ufshcd_print_pwr_info(hba);
5203 ufshcd_print_evt_hist(hba);
5204 }
5205 trace_android_vh_ufs_link_startup(hba, ret);
5206 return ret;
5207 }
5208
5209 /**
5210 * ufshcd_verify_dev_init() - Verify device initialization
5211 * @hba: per-adapter instance
5212 *
5213 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5214 * device Transport Protocol (UTP) layer is ready after a reset.
5215 * If the UTP layer at the device side is not initialized, it may
5216 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5217 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5218 *
5219 * Return: 0 upon success; < 0 upon failure.
5220 */
ufshcd_verify_dev_init(struct ufs_hba * hba)5221 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5222 {
5223 int err = 0;
5224 int retries;
5225
5226 ufshcd_dev_man_lock(hba);
5227
5228 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5229 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5230 hba->nop_out_timeout);
5231
5232 if (!err || err == -ETIMEDOUT)
5233 break;
5234
5235 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5236 }
5237
5238 ufshcd_dev_man_unlock(hba);
5239
5240 if (err)
5241 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5242 return err;
5243 }
5244
5245 /**
5246 * ufshcd_setup_links - associate link b/w device wlun and other luns
5247 * @sdev: pointer to SCSI device
5248 * @hba: pointer to ufs hba
5249 */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5250 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5251 {
5252 struct device_link *link;
5253
5254 /*
5255 * Device wlun is the supplier & rest of the luns are consumers.
5256 * This ensures that device wlun suspends after all other luns.
5257 */
5258 if (hba->ufs_device_wlun) {
5259 link = device_link_add(&sdev->sdev_gendev,
5260 &hba->ufs_device_wlun->sdev_gendev,
5261 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5262 if (!link) {
5263 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5264 dev_name(&hba->ufs_device_wlun->sdev_gendev));
5265 return;
5266 }
5267 hba->luns_avail--;
5268 /* Ignore REPORT_LUN wlun probing */
5269 if (hba->luns_avail == 1) {
5270 ufshcd_rpm_put(hba);
5271 return;
5272 }
5273 } else {
5274 /*
5275 * Device wlun is probed. The assumption is that WLUNs are
5276 * scanned before other LUNs.
5277 */
5278 hba->luns_avail--;
5279 }
5280 }
5281
5282 /**
5283 * ufshcd_lu_init - Initialize the relevant parameters of the LU
5284 * @hba: per-adapter instance
5285 * @sdev: pointer to SCSI device
5286 */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5287 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5288 {
5289 int len = QUERY_DESC_MAX_SIZE;
5290 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5291 u8 lun_qdepth = hba->nutrs;
5292 u8 *desc_buf;
5293 int ret;
5294
5295 desc_buf = kzalloc(len, GFP_KERNEL);
5296 if (!desc_buf)
5297 goto set_qdepth;
5298
5299 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5300 if (ret < 0) {
5301 if (ret == -EOPNOTSUPP)
5302 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5303 lun_qdepth = 1;
5304 kfree(desc_buf);
5305 goto set_qdepth;
5306 }
5307
5308 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5309 /*
5310 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5311 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5312 */
5313 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5314 }
5315 /*
5316 * According to UFS device specification, the write protection mode is only supported by
5317 * normal LU, not supported by WLUN.
5318 */
5319 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5320 !hba->dev_info.is_lu_power_on_wp &&
5321 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5322 hba->dev_info.is_lu_power_on_wp = true;
5323
5324 /* In case of RPMB LU, check if advanced RPMB mode is enabled */
5325 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5326 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5327 hba->dev_info.b_advanced_rpmb_en = true;
5328
5329
5330 kfree(desc_buf);
5331 set_qdepth:
5332 /*
5333 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5334 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5335 */
5336 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5337 scsi_change_queue_depth(sdev, lun_qdepth);
5338 }
5339
5340 /**
5341 * ufshcd_slave_alloc - handle initial SCSI device configurations
5342 * @sdev: pointer to SCSI device
5343 *
5344 * Return: success.
5345 */
ufshcd_slave_alloc(struct scsi_device * sdev)5346 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5347 {
5348 struct ufs_hba *hba;
5349
5350 hba = shost_priv(sdev->host);
5351
5352 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5353 sdev->use_10_for_ms = 1;
5354
5355 /* DBD field should be set to 1 in mode sense(10) */
5356 sdev->set_dbd_for_ms = 1;
5357
5358 /* allow SCSI layer to restart the device in case of errors */
5359 sdev->allow_restart = 1;
5360
5361 /* REPORT SUPPORTED OPERATION CODES is not supported */
5362 sdev->no_report_opcodes = 1;
5363
5364 /* WRITE_SAME command is not supported */
5365 sdev->no_write_same = 1;
5366
5367 ufshcd_lu_init(hba, sdev);
5368
5369 ufshcd_setup_links(hba, sdev);
5370
5371 trace_android_vh_ufs_update_sdev(sdev);
5372
5373 return 0;
5374 }
5375
5376 /**
5377 * ufshcd_change_queue_depth - change queue depth
5378 * @sdev: pointer to SCSI device
5379 * @depth: required depth to set
5380 *
5381 * Change queue depth and make sure the max. limits are not crossed.
5382 *
5383 * Return: new queue depth.
5384 */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5385 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5386 {
5387 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5388 }
5389
5390 /**
5391 * ufshcd_device_configure - adjust SCSI device configurations
5392 * @sdev: pointer to SCSI device
5393 * @lim: queue limits
5394 *
5395 * Return: 0 (success).
5396 */
ufshcd_device_configure(struct scsi_device * sdev,struct queue_limits * lim)5397 static int ufshcd_device_configure(struct scsi_device *sdev,
5398 struct queue_limits *lim)
5399 {
5400 struct ufs_hba *hba = shost_priv(sdev->host);
5401 struct request_queue *q = sdev->request_queue;
5402
5403 lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5404
5405 /*
5406 * Block runtime-pm until all consumers are added.
5407 * Refer ufshcd_setup_links().
5408 */
5409 if (is_device_wlun(sdev))
5410 pm_runtime_get_noresume(&sdev->sdev_gendev);
5411 else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5412 sdev->rpm_autosuspend = 1;
5413 /*
5414 * Do not print messages during runtime PM to avoid never-ending cycles
5415 * of messages written back to storage by user space causing runtime
5416 * resume, causing more messages and so on.
5417 */
5418 sdev->silence_suspend = 1;
5419
5420 if (hba->vops && hba->vops->config_scsi_dev)
5421 hba->vops->config_scsi_dev(sdev);
5422
5423 ufshcd_crypto_register(hba, q);
5424
5425 return 0;
5426 }
5427
5428 /**
5429 * ufshcd_slave_destroy - remove SCSI device configurations
5430 * @sdev: pointer to SCSI device
5431 */
ufshcd_slave_destroy(struct scsi_device * sdev)5432 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5433 {
5434 struct ufs_hba *hba;
5435 unsigned long flags;
5436
5437 hba = shost_priv(sdev->host);
5438
5439 /* Drop the reference as it won't be needed anymore */
5440 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5441 spin_lock_irqsave(hba->host->host_lock, flags);
5442 hba->ufs_device_wlun = NULL;
5443 spin_unlock_irqrestore(hba->host->host_lock, flags);
5444 } else if (hba->ufs_device_wlun) {
5445 struct device *supplier = NULL;
5446
5447 /* Ensure UFS Device WLUN exists and does not disappear */
5448 spin_lock_irqsave(hba->host->host_lock, flags);
5449 if (hba->ufs_device_wlun) {
5450 supplier = &hba->ufs_device_wlun->sdev_gendev;
5451 get_device(supplier);
5452 }
5453 spin_unlock_irqrestore(hba->host->host_lock, flags);
5454
5455 if (supplier) {
5456 /*
5457 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5458 * device will not have been registered but can still
5459 * have a device link holding a reference to the device.
5460 */
5461 device_link_remove(&sdev->sdev_gendev, supplier);
5462 put_device(supplier);
5463 }
5464 }
5465 }
5466
5467 /**
5468 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5469 * @lrbp: pointer to local reference block of completed command
5470 * @scsi_status: SCSI command status
5471 *
5472 * Return: value base on SCSI command status.
5473 */
5474 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5475 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5476 {
5477 int result = 0;
5478
5479 switch (scsi_status) {
5480 case SAM_STAT_CHECK_CONDITION:
5481 ufshcd_copy_sense_data(lrbp);
5482 fallthrough;
5483 case SAM_STAT_GOOD:
5484 result |= DID_OK << 16 | scsi_status;
5485 break;
5486 case SAM_STAT_TASK_SET_FULL:
5487 case SAM_STAT_BUSY:
5488 case SAM_STAT_TASK_ABORTED:
5489 ufshcd_copy_sense_data(lrbp);
5490 result |= scsi_status;
5491 break;
5492 default:
5493 result |= DID_ERROR << 16;
5494 break;
5495 } /* end of switch */
5496
5497 return result;
5498 }
5499
5500 /**
5501 * ufshcd_transfer_rsp_status - Get overall status of the response
5502 * @hba: per adapter instance
5503 * @lrbp: pointer to local reference block of completed command
5504 * @cqe: pointer to the completion queue entry
5505 *
5506 * Return: result of the command to notify SCSI midlayer.
5507 */
5508 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct cq_entry * cqe)5509 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5510 struct cq_entry *cqe)
5511 {
5512 int result = 0;
5513 int scsi_status;
5514 enum utp_ocs ocs;
5515 u8 upiu_flags;
5516 u32 resid;
5517
5518 upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5519 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5520 /*
5521 * Test !overflow instead of underflow to support UFS devices that do
5522 * not set either flag.
5523 */
5524 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5525 scsi_set_resid(lrbp->cmd, resid);
5526
5527 /* overall command status of utrd */
5528 ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5529
5530 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5531 if (lrbp->ucd_rsp_ptr->header.response ||
5532 lrbp->ucd_rsp_ptr->header.status)
5533 ocs = OCS_SUCCESS;
5534 }
5535
5536 switch (ocs) {
5537 case OCS_SUCCESS:
5538 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5539 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5540 case UPIU_TRANSACTION_RESPONSE:
5541 /*
5542 * get the result based on SCSI status response
5543 * to notify the SCSI midlayer of the command status
5544 */
5545 scsi_status = lrbp->ucd_rsp_ptr->header.status;
5546 result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5547
5548 /*
5549 * Currently we are only supporting BKOPs exception
5550 * events hence we can ignore BKOPs exception event
5551 * during power management callbacks. BKOPs exception
5552 * event is not expected to be raised in runtime suspend
5553 * callback as it allows the urgent bkops.
5554 * During system suspend, we are anyway forcefully
5555 * disabling the bkops and if urgent bkops is needed
5556 * it will be enabled on system resume. Long term
5557 * solution could be to abort the system suspend if
5558 * UFS device needs urgent BKOPs.
5559 */
5560 if (!hba->pm_op_in_progress &&
5561 !ufshcd_eh_in_progress(hba) &&
5562 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5563 /* Flushed in suspend */
5564 schedule_work(&hba->eeh_work);
5565 break;
5566 case UPIU_TRANSACTION_REJECT_UPIU:
5567 /* TODO: handle Reject UPIU Response */
5568 result = DID_ERROR << 16;
5569 dev_err(hba->dev,
5570 "Reject UPIU not fully implemented\n");
5571 break;
5572 default:
5573 dev_err(hba->dev,
5574 "Unexpected request response code = %x\n",
5575 result);
5576 result = DID_ERROR << 16;
5577 break;
5578 }
5579 break;
5580 case OCS_ABORTED:
5581 case OCS_INVALID_COMMAND_STATUS:
5582 result |= DID_REQUEUE << 16;
5583 dev_warn(hba->dev,
5584 "OCS %s from controller for tag %d\n",
5585 (ocs == OCS_ABORTED ? "aborted" : "invalid"),
5586 lrbp->task_tag);
5587 break;
5588 case OCS_INVALID_CMD_TABLE_ATTR:
5589 case OCS_INVALID_PRDT_ATTR:
5590 case OCS_MISMATCH_DATA_BUF_SIZE:
5591 case OCS_MISMATCH_RESP_UPIU_SIZE:
5592 case OCS_PEER_COMM_FAILURE:
5593 case OCS_FATAL_ERROR:
5594 case OCS_DEVICE_FATAL_ERROR:
5595 case OCS_INVALID_CRYPTO_CONFIG:
5596 case OCS_GENERAL_CRYPTO_ERROR:
5597 default:
5598 result |= DID_ERROR << 16;
5599 dev_err(hba->dev,
5600 "OCS error from controller = %x for tag %d\n",
5601 ocs, lrbp->task_tag);
5602 ufshcd_print_evt_hist(hba);
5603 ufshcd_print_host_state(hba);
5604 break;
5605 } /* end of switch */
5606
5607 if ((host_byte(result) != DID_OK) &&
5608 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5609 ufshcd_print_tr(hba, lrbp->task_tag, true);
5610
5611 trace_android_vh_ufs_transfer_rsp_status(hba, lrbp, cqe, result);
5612 return result;
5613 }
5614
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5615 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5616 u32 intr_mask)
5617 {
5618 if (!ufshcd_is_auto_hibern8_supported(hba) ||
5619 !ufshcd_is_auto_hibern8_enabled(hba))
5620 return false;
5621
5622 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5623 return false;
5624
5625 if (hba->active_uic_cmd &&
5626 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5627 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5628 return false;
5629
5630 return true;
5631 }
5632
5633 /**
5634 * ufshcd_uic_cmd_compl - handle completion of uic command
5635 * @hba: per adapter instance
5636 * @intr_status: interrupt status generated by the controller
5637 *
5638 * Return:
5639 * IRQ_HANDLED - If interrupt is valid
5640 * IRQ_NONE - If invalid interrupt
5641 */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5642 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5643 {
5644 irqreturn_t retval = IRQ_NONE;
5645
5646 spin_lock(hba->host->host_lock);
5647 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5648 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5649
5650 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5651 hba->active_uic_cmd->argument2 |=
5652 ufshcd_get_uic_cmd_result(hba);
5653 hba->active_uic_cmd->argument3 =
5654 ufshcd_get_dme_attr_val(hba);
5655 if (!hba->uic_async_done)
5656 hba->active_uic_cmd->cmd_active = 0;
5657 complete(&hba->active_uic_cmd->done);
5658 retval = IRQ_HANDLED;
5659 }
5660
5661 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5662 hba->active_uic_cmd->cmd_active = 0;
5663 complete(hba->uic_async_done);
5664 retval = IRQ_HANDLED;
5665 }
5666
5667 if (retval == IRQ_HANDLED)
5668 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5669 UFS_CMD_COMP);
5670 spin_unlock(hba->host->host_lock);
5671 return retval;
5672 }
5673
5674 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5675 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5676 struct ufshcd_lrb *lrbp)
5677 {
5678 struct scsi_cmnd *cmd = lrbp->cmd;
5679
5680 scsi_dma_unmap(cmd);
5681 ufshcd_crypto_clear_prdt(hba, lrbp);
5682 ufshcd_release(hba);
5683 ufshcd_clk_scaling_update_busy(hba);
5684 }
5685
5686 /**
5687 * ufshcd_compl_one_cqe - handle a completion queue entry
5688 * @hba: per adapter instance
5689 * @task_tag: the task tag of the request to be completed
5690 * @cqe: pointer to the completion queue entry
5691 */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5692 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5693 struct cq_entry *cqe)
5694 {
5695 struct ufshcd_lrb *lrbp;
5696 struct scsi_cmnd *cmd;
5697 enum utp_ocs ocs;
5698
5699 lrbp = &hba->lrb[task_tag];
5700 lrbp->compl_time_stamp = ktime_get();
5701 lrbp->compl_time_stamp_local_clock = local_clock();
5702 cmd = lrbp->cmd;
5703 if (cmd) {
5704 trace_android_vh_ufs_compl_command(hba, lrbp);
5705 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5706 ufshcd_update_monitor(hba, lrbp);
5707 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5708 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5709 ufshcd_release_scsi_cmd(hba, lrbp);
5710 /* Do not touch lrbp after scsi done */
5711 scsi_done(cmd);
5712 } else if (hba->dev_cmd.complete) {
5713 trace_android_vh_ufs_compl_command(hba, lrbp);
5714 if (cqe) {
5715 ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5716 lrbp->utr_descriptor_ptr->header.ocs = ocs;
5717 }
5718 complete(hba->dev_cmd.complete);
5719 }
5720 }
5721
5722 /**
5723 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5724 * @hba: per adapter instance
5725 * @completed_reqs: bitmask that indicates which requests to complete
5726 */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5727 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5728 unsigned long completed_reqs)
5729 {
5730 int tag;
5731
5732 for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5733 ufshcd_compl_one_cqe(hba, tag, NULL);
5734 }
5735
5736 /* Any value that is not an existing queue number is fine for this constant. */
5737 enum {
5738 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5739 };
5740
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5741 static void ufshcd_clear_polled(struct ufs_hba *hba,
5742 unsigned long *completed_reqs)
5743 {
5744 int tag;
5745
5746 for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5747 struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5748
5749 if (!cmd)
5750 continue;
5751 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5752 __clear_bit(tag, completed_reqs);
5753 }
5754 }
5755
5756 /*
5757 * Return: > 0 if one or more commands have been completed or 0 if no
5758 * requests have been completed.
5759 */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5760 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5761 {
5762 struct ufs_hba *hba = shost_priv(shost);
5763 unsigned long completed_reqs, flags;
5764 u32 tr_doorbell;
5765 struct ufs_hw_queue *hwq;
5766
5767 if (hba->mcq_enabled) {
5768 hwq = &hba->uhq[queue_num];
5769
5770 return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5771 }
5772
5773 spin_lock_irqsave(&hba->outstanding_lock, flags);
5774 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5775 completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5776 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5777 "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5778 hba->outstanding_reqs);
5779 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5780 /* Do not complete polled requests from interrupt context. */
5781 ufshcd_clear_polled(hba, &completed_reqs);
5782 }
5783 hba->outstanding_reqs &= ~completed_reqs;
5784 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5785
5786 if (completed_reqs)
5787 __ufshcd_transfer_req_compl(hba, completed_reqs);
5788
5789 return completed_reqs != 0;
5790 }
5791
5792 /**
5793 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5794 * invoked from the error handler context or ufshcd_host_reset_and_restore()
5795 * to complete the pending transfers and free the resources associated with
5796 * the scsi command.
5797 *
5798 * @hba: per adapter instance
5799 * @force_compl: This flag is set to true when invoked
5800 * from ufshcd_host_reset_and_restore() in which case it requires special
5801 * handling because the host controller has been reset by ufshcd_hba_stop().
5802 */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5803 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5804 bool force_compl)
5805 {
5806 struct ufs_hw_queue *hwq;
5807 struct ufshcd_lrb *lrbp;
5808 struct scsi_cmnd *cmd;
5809 unsigned long flags;
5810 int tag;
5811
5812 for (tag = 0; tag < hba->nutrs; tag++) {
5813 lrbp = &hba->lrb[tag];
5814 cmd = lrbp->cmd;
5815 if (!ufshcd_cmd_inflight(cmd) ||
5816 test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5817 continue;
5818
5819 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5820 if (!hwq)
5821 continue;
5822
5823 if (force_compl) {
5824 ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5825 /*
5826 * For those cmds of which the cqes are not present
5827 * in the cq, complete them explicitly.
5828 */
5829 spin_lock_irqsave(&hwq->cq_lock, flags);
5830 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5831 set_host_byte(cmd, DID_REQUEUE);
5832 ufshcd_release_scsi_cmd(hba, lrbp);
5833 scsi_done(cmd);
5834 }
5835 spin_unlock_irqrestore(&hwq->cq_lock, flags);
5836 } else {
5837 ufshcd_mcq_poll_cqe_lock(hba, hwq);
5838 }
5839 }
5840 }
5841
5842 /**
5843 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5844 * @hba: per adapter instance
5845 *
5846 * Return:
5847 * IRQ_HANDLED - If interrupt is valid
5848 * IRQ_NONE - If invalid interrupt
5849 */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5850 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5851 {
5852 /* Resetting interrupt aggregation counters first and reading the
5853 * DOOR_BELL afterward allows us to handle all the completed requests.
5854 * In order to prevent other interrupts starvation the DB is read once
5855 * after reset. The down side of this solution is the possibility of
5856 * false interrupt if device completes another request after resetting
5857 * aggregation and before reading the DB.
5858 */
5859 if (ufshcd_is_intr_aggr_allowed(hba) &&
5860 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5861 ufshcd_reset_intr_aggr(hba);
5862
5863 if (ufs_fail_completion(hba))
5864 return IRQ_HANDLED;
5865
5866 /*
5867 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5868 * do not want polling to trigger spurious interrupt complaints.
5869 */
5870 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5871
5872 return IRQ_HANDLED;
5873 }
5874
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5875 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5876 {
5877 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5878 QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5879 &ee_ctrl_mask);
5880 }
5881
ufshcd_write_ee_control(struct ufs_hba * hba)5882 int ufshcd_write_ee_control(struct ufs_hba *hba)
5883 {
5884 int err;
5885
5886 mutex_lock(&hba->ee_ctrl_mutex);
5887 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5888 mutex_unlock(&hba->ee_ctrl_mutex);
5889 if (err)
5890 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5891 __func__, err);
5892 return err;
5893 }
5894
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5895 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5896 const u16 *other_mask, u16 set, u16 clr)
5897 {
5898 u16 new_mask, ee_ctrl_mask;
5899 int err = 0;
5900
5901 mutex_lock(&hba->ee_ctrl_mutex);
5902 new_mask = (*mask & ~clr) | set;
5903 ee_ctrl_mask = new_mask | *other_mask;
5904 if (ee_ctrl_mask != hba->ee_ctrl_mask)
5905 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5906 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5907 if (!err) {
5908 hba->ee_ctrl_mask = ee_ctrl_mask;
5909 *mask = new_mask;
5910 }
5911 mutex_unlock(&hba->ee_ctrl_mutex);
5912 return err;
5913 }
5914
5915 /**
5916 * ufshcd_disable_ee - disable exception event
5917 * @hba: per-adapter instance
5918 * @mask: exception event to disable
5919 *
5920 * Disables exception event in the device so that the EVENT_ALERT
5921 * bit is not set.
5922 *
5923 * Return: zero on success, non-zero error value on failure.
5924 */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5925 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5926 {
5927 return ufshcd_update_ee_drv_mask(hba, 0, mask);
5928 }
5929
5930 /**
5931 * ufshcd_enable_ee - enable exception event
5932 * @hba: per-adapter instance
5933 * @mask: exception event to enable
5934 *
5935 * Enable corresponding exception event in the device to allow
5936 * device to alert host in critical scenarios.
5937 *
5938 * Return: zero on success, non-zero error value on failure.
5939 */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5940 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5941 {
5942 return ufshcd_update_ee_drv_mask(hba, mask, 0);
5943 }
5944
5945 /**
5946 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5947 * @hba: per-adapter instance
5948 *
5949 * Allow device to manage background operations on its own. Enabling
5950 * this might lead to inconsistent latencies during normal data transfers
5951 * as the device is allowed to manage its own way of handling background
5952 * operations.
5953 *
5954 * Return: zero on success, non-zero on failure.
5955 */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5956 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5957 {
5958 int err = 0;
5959
5960 if (hba->auto_bkops_enabled)
5961 goto out;
5962
5963 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5964 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5965 if (err) {
5966 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5967 __func__, err);
5968 goto out;
5969 }
5970
5971 hba->auto_bkops_enabled = true;
5972 trace_ufshcd_auto_bkops_state(hba, "Enabled");
5973
5974 /* No need of URGENT_BKOPS exception from the device */
5975 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5976 if (err)
5977 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5978 __func__, err);
5979 out:
5980 return err;
5981 }
5982
5983 /**
5984 * ufshcd_disable_auto_bkops - block device in doing background operations
5985 * @hba: per-adapter instance
5986 *
5987 * Disabling background operations improves command response latency but
5988 * has drawback of device moving into critical state where the device is
5989 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5990 * host is idle so that BKOPS are managed effectively without any negative
5991 * impacts.
5992 *
5993 * Return: zero on success, non-zero on failure.
5994 */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5995 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5996 {
5997 int err = 0;
5998
5999 if (!hba->auto_bkops_enabled)
6000 goto out;
6001
6002 /*
6003 * If host assisted BKOPs is to be enabled, make sure
6004 * urgent bkops exception is allowed.
6005 */
6006 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
6007 if (err) {
6008 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
6009 __func__, err);
6010 goto out;
6011 }
6012
6013 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
6014 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
6015 if (err) {
6016 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
6017 __func__, err);
6018 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
6019 goto out;
6020 }
6021
6022 hba->auto_bkops_enabled = false;
6023 trace_ufshcd_auto_bkops_state(hba, "Disabled");
6024 hba->is_urgent_bkops_lvl_checked = false;
6025 out:
6026 return err;
6027 }
6028
6029 /**
6030 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
6031 * @hba: per adapter instance
6032 *
6033 * After a device reset the device may toggle the BKOPS_EN flag
6034 * to default value. The s/w tracking variables should be updated
6035 * as well. This function would change the auto-bkops state based on
6036 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
6037 */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)6038 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
6039 {
6040 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
6041 hba->auto_bkops_enabled = false;
6042 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
6043 ufshcd_enable_auto_bkops(hba);
6044 } else {
6045 hba->auto_bkops_enabled = true;
6046 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
6047 ufshcd_disable_auto_bkops(hba);
6048 }
6049 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
6050 hba->is_urgent_bkops_lvl_checked = false;
6051 }
6052
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)6053 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
6054 {
6055 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6056 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
6057 }
6058
6059 /**
6060 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
6061 * @hba: per-adapter instance
6062 *
6063 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
6064 * flag in the device to permit background operations if the device
6065 * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
6066 * disable otherwise.
6067 *
6068 * Return: 0 for success, non-zero in case of failure.
6069 *
6070 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
6071 * to know whether auto bkops is enabled or disabled after this function
6072 * returns control to it.
6073 */
ufshcd_bkops_ctrl(struct ufs_hba * hba)6074 int ufshcd_bkops_ctrl(struct ufs_hba *hba)
6075 {
6076 enum bkops_status status = hba->urgent_bkops_lvl;
6077 u32 curr_status = 0;
6078 int err;
6079
6080 err = ufshcd_get_bkops_status(hba, &curr_status);
6081 if (err) {
6082 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6083 __func__, err);
6084 goto out;
6085 } else if (curr_status > BKOPS_STATUS_MAX) {
6086 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
6087 __func__, curr_status);
6088 err = -EINVAL;
6089 goto out;
6090 }
6091
6092 if (curr_status >= status)
6093 err = ufshcd_enable_auto_bkops(hba);
6094 else
6095 err = ufshcd_disable_auto_bkops(hba);
6096 out:
6097 return err;
6098 }
6099 EXPORT_SYMBOL_GPL(ufshcd_bkops_ctrl);
6100
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)6101 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
6102 {
6103 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6104 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
6105 }
6106
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)6107 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
6108 {
6109 int err;
6110 u32 curr_status = 0;
6111
6112 if (hba->is_urgent_bkops_lvl_checked)
6113 goto enable_auto_bkops;
6114
6115 err = ufshcd_get_bkops_status(hba, &curr_status);
6116 if (err) {
6117 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6118 __func__, err);
6119 goto out;
6120 }
6121
6122 /*
6123 * We are seeing that some devices are raising the urgent bkops
6124 * exception events even when BKOPS status doesn't indicate performace
6125 * impacted or critical. Handle these device by determining their urgent
6126 * bkops status at runtime.
6127 */
6128 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
6129 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
6130 __func__, curr_status);
6131 /* update the current status as the urgent bkops level */
6132 hba->urgent_bkops_lvl = curr_status;
6133 hba->is_urgent_bkops_lvl_checked = true;
6134 }
6135
6136 enable_auto_bkops:
6137 err = ufshcd_enable_auto_bkops(hba);
6138 out:
6139 if (err < 0)
6140 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
6141 __func__, err);
6142 }
6143
ufshcd_temp_exception_event_handler(struct ufs_hba * hba,u16 status)6144 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
6145 {
6146 u32 value;
6147
6148 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6149 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
6150 return;
6151
6152 dev_info(hba->dev, "exception Tcase %d\n", value - 80);
6153
6154 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6155
6156 /*
6157 * A placeholder for the platform vendors to add whatever additional
6158 * steps required
6159 */
6160 }
6161
ufshcd_read_device_lvl_exception_id(struct ufs_hba * hba,u64 * exception_id)6162 int ufshcd_read_device_lvl_exception_id(struct ufs_hba *hba, u64 *exception_id)
6163 {
6164 struct utp_upiu_query_v4_0 *upiu_resp;
6165 struct ufs_query_req *request = NULL;
6166 struct ufs_query_res *response = NULL;
6167 int err;
6168
6169 if (hba->dev_info.wspecversion < 0x410)
6170 return -EOPNOTSUPP;
6171
6172 ufshcd_hold(hba);
6173 mutex_lock(&hba->dev_cmd.lock);
6174
6175 ufshcd_init_query(hba, &request, &response,
6176 UPIU_QUERY_OPCODE_READ_ATTR,
6177 QUERY_ATTR_IDN_DEV_LVL_EXCEPTION_ID, 0, 0);
6178
6179 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
6180
6181 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
6182
6183 if (err) {
6184 dev_err(hba->dev, "%s: failed to read device level exception %d\n",
6185 __func__, err);
6186 goto out;
6187 }
6188
6189 upiu_resp = (struct utp_upiu_query_v4_0 *)response;
6190 *exception_id = get_unaligned_be64(&upiu_resp->osf3);
6191 out:
6192 mutex_unlock(&hba->dev_cmd.lock);
6193 ufshcd_release(hba);
6194
6195 return err;
6196 }
6197
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)6198 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6199 {
6200 u8 index;
6201 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6202 UPIU_QUERY_OPCODE_CLEAR_FLAG;
6203
6204 index = ufshcd_wb_get_query_index(hba);
6205 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6206 }
6207
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)6208 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6209 {
6210 int ret;
6211
6212 if (!ufshcd_is_wb_allowed(hba) ||
6213 hba->dev_info.wb_enabled == enable)
6214 return 0;
6215
6216 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6217 if (ret) {
6218 dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6219 __func__, enable ? "enabling" : "disabling", ret);
6220 return ret;
6221 }
6222
6223 hba->dev_info.wb_enabled = enable;
6224 dev_dbg(hba->dev, "%s: Write Booster %s\n",
6225 __func__, enable ? "enabled" : "disabled");
6226
6227 return ret;
6228 }
6229
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)6230 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6231 bool enable)
6232 {
6233 int ret;
6234
6235 ret = __ufshcd_wb_toggle(hba, enable,
6236 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6237 if (ret) {
6238 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6239 __func__, enable ? "enabling" : "disabling", ret);
6240 return;
6241 }
6242 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6243 __func__, enable ? "enabled" : "disabled");
6244 }
6245
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)6246 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6247 {
6248 int ret;
6249
6250 if (!ufshcd_is_wb_allowed(hba) ||
6251 hba->dev_info.wb_buf_flush_enabled == enable)
6252 return 0;
6253
6254 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6255 if (ret) {
6256 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6257 __func__, enable ? "enabling" : "disabling", ret);
6258 return ret;
6259 }
6260
6261 hba->dev_info.wb_buf_flush_enabled = enable;
6262 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6263 __func__, enable ? "enabled" : "disabled");
6264
6265 return ret;
6266 }
6267
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)6268 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6269 u32 avail_buf)
6270 {
6271 u32 cur_buf;
6272 int ret;
6273 u8 index;
6274
6275 index = ufshcd_wb_get_query_index(hba);
6276 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6277 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6278 index, 0, &cur_buf);
6279 if (ret) {
6280 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6281 __func__, ret);
6282 return false;
6283 }
6284
6285 if (!cur_buf) {
6286 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6287 cur_buf);
6288 return false;
6289 }
6290 /* Let it continue to flush when available buffer exceeds threshold */
6291 return avail_buf < hba->vps->wb_flush_threshold;
6292 }
6293
ufshcd_wb_force_disable(struct ufs_hba * hba)6294 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6295 {
6296 if (ufshcd_is_wb_buf_flush_allowed(hba))
6297 ufshcd_wb_toggle_buf_flush(hba, false);
6298
6299 ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6300 ufshcd_wb_toggle(hba, false);
6301 hba->caps &= ~UFSHCD_CAP_WB_EN;
6302
6303 dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6304 }
6305
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6306 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6307 {
6308 u32 lifetime;
6309 int ret;
6310 u8 index;
6311
6312 index = ufshcd_wb_get_query_index(hba);
6313 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6314 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6315 index, 0, &lifetime);
6316 if (ret) {
6317 dev_err(hba->dev,
6318 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6319 __func__, ret);
6320 return false;
6321 }
6322
6323 if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6324 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6325 __func__, lifetime);
6326 return false;
6327 }
6328
6329 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6330 __func__, lifetime);
6331
6332 return true;
6333 }
6334
ufshcd_wb_need_flush(struct ufs_hba * hba)6335 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6336 {
6337 int ret;
6338 u32 avail_buf;
6339 u8 index;
6340
6341 if (!ufshcd_is_wb_allowed(hba))
6342 return false;
6343
6344 if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6345 ufshcd_wb_force_disable(hba);
6346 return false;
6347 }
6348
6349 /*
6350 * The ufs device needs the vcc to be ON to flush.
6351 * With user-space reduction enabled, it's enough to enable flush
6352 * by checking only the available buffer. The threshold
6353 * defined here is > 90% full.
6354 * With user-space preserved enabled, the current-buffer
6355 * should be checked too because the wb buffer size can reduce
6356 * when disk tends to be full. This info is provided by current
6357 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6358 * keeping vcc on when current buffer is empty.
6359 */
6360 index = ufshcd_wb_get_query_index(hba);
6361 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6362 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6363 index, 0, &avail_buf);
6364 if (ret) {
6365 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6366 __func__, ret);
6367 return false;
6368 }
6369
6370 if (!hba->dev_info.b_presrv_uspc_en)
6371 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6372
6373 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6374 }
6375
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6376 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6377 {
6378 struct ufs_hba *hba = container_of(to_delayed_work(work),
6379 struct ufs_hba,
6380 rpm_dev_flush_recheck_work);
6381 /*
6382 * To prevent unnecessary VCC power drain after device finishes
6383 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6384 * after a certain delay to recheck the threshold by next runtime
6385 * suspend.
6386 */
6387 ufshcd_rpm_get_sync(hba);
6388 ufshcd_rpm_put_sync(hba);
6389 }
6390
6391 /**
6392 * ufshcd_exception_event_handler - handle exceptions raised by device
6393 * @work: pointer to work data
6394 *
6395 * Read bExceptionEventStatus attribute from the device and handle the
6396 * exception event accordingly.
6397 */
ufshcd_exception_event_handler(struct work_struct * work)6398 static void ufshcd_exception_event_handler(struct work_struct *work)
6399 {
6400 struct ufs_hba *hba;
6401 int err;
6402 u32 status = 0;
6403 hba = container_of(work, struct ufs_hba, eeh_work);
6404
6405 ufshcd_scsi_block_requests(hba);
6406 err = ufshcd_get_ee_status(hba, &status);
6407 if (err) {
6408 dev_err(hba->dev, "%s: failed to get exception status %d\n",
6409 __func__, err);
6410 goto out;
6411 }
6412
6413 trace_ufshcd_exception_event(hba, status);
6414
6415 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6416 ufshcd_bkops_exception_event_handler(hba);
6417
6418 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6419 ufshcd_temp_exception_event_handler(hba, status);
6420
6421 if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) {
6422 hba->critical_health_count++;
6423 sysfs_notify(&hba->dev->kobj, NULL, "critical_health");
6424 }
6425
6426 if (status & hba->ee_drv_mask & MASK_EE_DEV_LVL_EXCEPTION) {
6427 atomic_inc(&hba->dev_lvl_exception_count);
6428 sysfs_notify(&hba->dev->kobj, NULL, "device_lvl_exception_count");
6429 }
6430
6431 ufs_debugfs_exception_event(hba, status);
6432 out:
6433 ufshcd_scsi_unblock_requests(hba);
6434 }
6435
6436 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6437 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6438 {
6439 if (hba->mcq_enabled)
6440 ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6441 else
6442 ufshcd_transfer_req_compl(hba);
6443
6444 ufshcd_tmc_handler(hba);
6445 }
6446
6447 /**
6448 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6449 * to recover from the DL NAC errors or not.
6450 * @hba: per-adapter instance
6451 *
6452 * Return: true if error handling is required, false otherwise.
6453 */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6454 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6455 {
6456 unsigned long flags;
6457 bool err_handling = true;
6458
6459 spin_lock_irqsave(hba->host->host_lock, flags);
6460 /*
6461 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6462 * device fatal error and/or DL NAC & REPLAY timeout errors.
6463 */
6464 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6465 goto out;
6466
6467 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6468 ((hba->saved_err & UIC_ERROR) &&
6469 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6470 goto out;
6471
6472 if ((hba->saved_err & UIC_ERROR) &&
6473 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6474 int err;
6475 /*
6476 * wait for 50ms to see if we can get any other errors or not.
6477 */
6478 spin_unlock_irqrestore(hba->host->host_lock, flags);
6479 msleep(50);
6480 spin_lock_irqsave(hba->host->host_lock, flags);
6481
6482 /*
6483 * now check if we have got any other severe errors other than
6484 * DL NAC error?
6485 */
6486 if ((hba->saved_err & INT_FATAL_ERRORS) ||
6487 ((hba->saved_err & UIC_ERROR) &&
6488 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6489 goto out;
6490
6491 /*
6492 * As DL NAC is the only error received so far, send out NOP
6493 * command to confirm if link is still active or not.
6494 * - If we don't get any response then do error recovery.
6495 * - If we get response then clear the DL NAC error bit.
6496 */
6497
6498 spin_unlock_irqrestore(hba->host->host_lock, flags);
6499 err = ufshcd_verify_dev_init(hba);
6500 spin_lock_irqsave(hba->host->host_lock, flags);
6501
6502 if (err)
6503 goto out;
6504
6505 /* Link seems to be alive hence ignore the DL NAC errors */
6506 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6507 hba->saved_err &= ~UIC_ERROR;
6508 /* clear NAC error */
6509 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6510 if (!hba->saved_uic_err)
6511 err_handling = false;
6512 }
6513 out:
6514 spin_unlock_irqrestore(hba->host->host_lock, flags);
6515 return err_handling;
6516 }
6517
6518 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6519 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6520 {
6521 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6522 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6523 }
6524
ufshcd_schedule_eh_work(struct ufs_hba * hba)6525 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6526 {
6527 lockdep_assert_held(hba->host->host_lock);
6528
6529 /* handle fatal errors only when link is not in error state */
6530 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6531 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6532 ufshcd_is_saved_err_fatal(hba))
6533 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6534 else
6535 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6536 queue_work(hba->eh_wq, &hba->eh_work);
6537 }
6538 }
6539
ufshcd_force_error_recovery(struct ufs_hba * hba)6540 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6541 {
6542 spin_lock_irq(hba->host->host_lock);
6543 hba->force_reset = true;
6544 ufshcd_schedule_eh_work(hba);
6545 spin_unlock_irq(hba->host->host_lock);
6546 }
6547
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6548 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6549 {
6550 mutex_lock(&hba->wb_mutex);
6551 down_write(&hba->clk_scaling_lock);
6552 hba->clk_scaling.is_allowed = allow;
6553 up_write(&hba->clk_scaling_lock);
6554 mutex_unlock(&hba->wb_mutex);
6555 }
6556
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6557 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6558 {
6559 if (suspend) {
6560 if (hba->clk_scaling.is_enabled)
6561 ufshcd_suspend_clkscaling(hba);
6562 ufshcd_clk_scaling_allow(hba, false);
6563 } else {
6564 ufshcd_clk_scaling_allow(hba, true);
6565 if (hba->clk_scaling.is_enabled)
6566 ufshcd_resume_clkscaling(hba);
6567 }
6568 }
6569
ufshcd_err_handling_prepare(struct ufs_hba * hba)6570 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6571 {
6572 ufshcd_rpm_get_sync(hba);
6573 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6574 hba->is_sys_suspended) {
6575 enum ufs_pm_op pm_op;
6576
6577 /*
6578 * Don't assume anything of resume, if
6579 * resume fails, irq and clocks can be OFF, and powers
6580 * can be OFF or in LPM.
6581 */
6582 ufshcd_setup_hba_vreg(hba, true);
6583 ufshcd_enable_irq(hba);
6584 ufshcd_setup_vreg(hba, true);
6585 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6586 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6587 ufshcd_hold(hba);
6588 if (!ufshcd_is_clkgating_allowed(hba))
6589 ufshcd_setup_clocks(hba, true);
6590 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6591 ufshcd_vops_resume(hba, pm_op);
6592 } else {
6593 ufshcd_hold(hba);
6594 if (ufshcd_is_clkscaling_supported(hba) &&
6595 hba->clk_scaling.is_enabled)
6596 ufshcd_suspend_clkscaling(hba);
6597 ufshcd_clk_scaling_allow(hba, false);
6598 }
6599 ufshcd_scsi_block_requests(hba);
6600 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6601 blk_mq_wait_quiesce_done(&hba->host->tag_set);
6602 cancel_work_sync(&hba->eeh_work);
6603 }
6604
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6605 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6606 {
6607 ufshcd_scsi_unblock_requests(hba);
6608 ufshcd_release(hba);
6609 if (ufshcd_is_clkscaling_supported(hba))
6610 ufshcd_clk_scaling_suspend(hba, false);
6611 ufshcd_rpm_put(hba);
6612 }
6613
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6614 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6615 {
6616 return (!hba->is_powered || hba->shutting_down ||
6617 !hba->ufs_device_wlun ||
6618 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6619 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6620 ufshcd_is_link_broken(hba))));
6621 }
6622
6623 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6624 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6625 {
6626 struct Scsi_Host *shost = hba->host;
6627 struct scsi_device *sdev;
6628 struct request_queue *q;
6629 int ret;
6630
6631 hba->is_sys_suspended = false;
6632 /*
6633 * Set RPM status of wlun device to RPM_ACTIVE,
6634 * this also clears its runtime error.
6635 */
6636 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6637
6638 /* hba device might have a runtime error otherwise */
6639 if (ret)
6640 ret = pm_runtime_set_active(hba->dev);
6641 /*
6642 * If wlun device had runtime error, we also need to resume those
6643 * consumer scsi devices in case any of them has failed to be
6644 * resumed due to supplier runtime resume failure. This is to unblock
6645 * blk_queue_enter in case there are bios waiting inside it.
6646 */
6647 if (!ret) {
6648 shost_for_each_device(sdev, shost) {
6649 q = sdev->request_queue;
6650 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6651 q->rpm_status == RPM_SUSPENDING))
6652 pm_request_resume(q->dev);
6653 }
6654 }
6655 }
6656 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6657 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6658 {
6659 }
6660 #endif
6661
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6662 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6663 {
6664 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6665 u32 mode;
6666
6667 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6668
6669 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6670 return true;
6671
6672 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6673 return true;
6674
6675 return false;
6676 }
6677
ufshcd_abort_one(struct request * rq,void * priv)6678 static bool ufshcd_abort_one(struct request *rq, void *priv)
6679 {
6680 int *ret = priv;
6681 u32 tag = rq->tag;
6682 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6683 struct scsi_device *sdev = cmd->device;
6684 struct Scsi_Host *shost = sdev->host;
6685 struct ufs_hba *hba = shost_priv(shost);
6686
6687 *ret = ufshcd_try_to_abort_task(hba, tag);
6688 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6689 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6690 *ret ? "failed" : "succeeded");
6691
6692 return *ret == 0;
6693 }
6694
6695 /**
6696 * ufshcd_abort_all - Abort all pending commands.
6697 * @hba: Host bus adapter pointer.
6698 *
6699 * Return: true if and only if the host controller needs to be reset.
6700 */
ufshcd_abort_all(struct ufs_hba * hba)6701 static bool ufshcd_abort_all(struct ufs_hba *hba)
6702 {
6703 int tag, ret = 0;
6704
6705 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6706 if (ret)
6707 goto out;
6708
6709 /* Clear pending task management requests */
6710 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6711 ret = ufshcd_clear_tm_cmd(hba, tag);
6712 if (ret)
6713 goto out;
6714 }
6715
6716 out:
6717 /* Complete the requests that are cleared by s/w */
6718 ufshcd_complete_requests(hba, false);
6719
6720 return ret != 0;
6721 }
6722
6723 /**
6724 * ufshcd_err_handler - handle UFS errors that require s/w attention
6725 * @work: pointer to work structure
6726 */
ufshcd_err_handler(struct work_struct * work)6727 static void ufshcd_err_handler(struct work_struct *work)
6728 {
6729 int retries = MAX_ERR_HANDLER_RETRIES;
6730 struct ufs_hba *hba;
6731 unsigned long flags;
6732 bool needs_restore;
6733 bool needs_reset;
6734 int pmc_err;
6735
6736 hba = container_of(work, struct ufs_hba, eh_work);
6737
6738 dev_info(hba->dev,
6739 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6740 __func__, ufshcd_state_name[hba->ufshcd_state],
6741 hba->is_powered, hba->shutting_down, hba->saved_err,
6742 hba->saved_uic_err, hba->force_reset,
6743 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6744
6745 down(&hba->host_sem);
6746 spin_lock_irqsave(hba->host->host_lock, flags);
6747 if (ufshcd_err_handling_should_stop(hba)) {
6748 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6749 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6750 spin_unlock_irqrestore(hba->host->host_lock, flags);
6751 up(&hba->host_sem);
6752 return;
6753 }
6754 spin_unlock_irqrestore(hba->host->host_lock, flags);
6755
6756 ufshcd_err_handling_prepare(hba);
6757
6758 spin_lock_irqsave(hba->host->host_lock, flags);
6759 ufshcd_set_eh_in_progress(hba);
6760 spin_unlock_irqrestore(hba->host->host_lock, flags);
6761
6762 /* Complete requests that have door-bell cleared by h/w */
6763 ufshcd_complete_requests(hba, false);
6764 spin_lock_irqsave(hba->host->host_lock, flags);
6765 again:
6766 needs_restore = false;
6767 needs_reset = false;
6768
6769 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6770 hba->ufshcd_state = UFSHCD_STATE_RESET;
6771 /*
6772 * A full reset and restore might have happened after preparation
6773 * is finished, double check whether we should stop.
6774 */
6775 if (ufshcd_err_handling_should_stop(hba))
6776 goto skip_err_handling;
6777
6778 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6779 !hba->force_reset) {
6780 bool ret;
6781
6782 spin_unlock_irqrestore(hba->host->host_lock, flags);
6783 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6784 ret = ufshcd_quirk_dl_nac_errors(hba);
6785 spin_lock_irqsave(hba->host->host_lock, flags);
6786 if (!ret && ufshcd_err_handling_should_stop(hba))
6787 goto skip_err_handling;
6788 }
6789
6790 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6791 (hba->saved_uic_err &&
6792 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6793 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6794
6795 spin_unlock_irqrestore(hba->host->host_lock, flags);
6796 ufshcd_print_host_state(hba);
6797 ufshcd_print_pwr_info(hba);
6798 ufshcd_print_evt_hist(hba);
6799 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6800 ufshcd_print_trs_all(hba, pr_prdt);
6801 spin_lock_irqsave(hba->host->host_lock, flags);
6802 }
6803
6804 /*
6805 * if host reset is required then skip clearing the pending
6806 * transfers forcefully because they will get cleared during
6807 * host reset and restore
6808 */
6809 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6810 ufshcd_is_saved_err_fatal(hba) ||
6811 ((hba->saved_err & UIC_ERROR) &&
6812 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6813 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6814 needs_reset = true;
6815 goto do_reset;
6816 }
6817
6818 /*
6819 * If LINERESET was caught, UFS might have been put to PWM mode,
6820 * check if power mode restore is needed.
6821 */
6822 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6823 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6824 if (!hba->saved_uic_err)
6825 hba->saved_err &= ~UIC_ERROR;
6826 spin_unlock_irqrestore(hba->host->host_lock, flags);
6827 if (ufshcd_is_pwr_mode_restore_needed(hba))
6828 needs_restore = true;
6829 spin_lock_irqsave(hba->host->host_lock, flags);
6830 if (!hba->saved_err && !needs_restore)
6831 goto skip_err_handling;
6832 }
6833
6834 hba->silence_err_logs = true;
6835 /* release lock as clear command might sleep */
6836 spin_unlock_irqrestore(hba->host->host_lock, flags);
6837
6838 needs_reset = ufshcd_abort_all(hba);
6839
6840 spin_lock_irqsave(hba->host->host_lock, flags);
6841 hba->silence_err_logs = false;
6842 if (needs_reset)
6843 goto do_reset;
6844
6845 /*
6846 * After all reqs and tasks are cleared from doorbell,
6847 * now it is safe to retore power mode.
6848 */
6849 if (needs_restore) {
6850 spin_unlock_irqrestore(hba->host->host_lock, flags);
6851 /*
6852 * Hold the scaling lock just in case dev cmds
6853 * are sent via bsg and/or sysfs.
6854 */
6855 down_write(&hba->clk_scaling_lock);
6856 hba->force_pmc = true;
6857 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6858 if (pmc_err) {
6859 needs_reset = true;
6860 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6861 __func__, pmc_err);
6862 }
6863 hba->force_pmc = false;
6864 ufshcd_print_pwr_info(hba);
6865 up_write(&hba->clk_scaling_lock);
6866 spin_lock_irqsave(hba->host->host_lock, flags);
6867 }
6868
6869 do_reset:
6870 /* Fatal errors need reset */
6871 if (needs_reset) {
6872 int err;
6873
6874 hba->force_reset = false;
6875 spin_unlock_irqrestore(hba->host->host_lock, flags);
6876 err = ufshcd_reset_and_restore(hba);
6877 if (err)
6878 dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6879 __func__, err);
6880 else
6881 ufshcd_recover_pm_error(hba);
6882 spin_lock_irqsave(hba->host->host_lock, flags);
6883 }
6884
6885 skip_err_handling:
6886 if (!needs_reset) {
6887 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6888 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6889 if (hba->saved_err || hba->saved_uic_err)
6890 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6891 __func__, hba->saved_err, hba->saved_uic_err);
6892 }
6893 /* Exit in an operational state or dead */
6894 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6895 hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6896 if (--retries)
6897 goto again;
6898 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6899 }
6900 ufshcd_clear_eh_in_progress(hba);
6901 spin_unlock_irqrestore(hba->host->host_lock, flags);
6902 ufshcd_err_handling_unprepare(hba);
6903 up(&hba->host_sem);
6904
6905 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6906 ufshcd_state_name[hba->ufshcd_state]);
6907 }
6908
6909 /**
6910 * ufshcd_update_uic_error - check and set fatal UIC error flags.
6911 * @hba: per-adapter instance
6912 *
6913 * Return:
6914 * IRQ_HANDLED - If interrupt is valid
6915 * IRQ_NONE - If invalid interrupt
6916 */
ufshcd_update_uic_error(struct ufs_hba * hba)6917 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6918 {
6919 u32 reg;
6920 irqreturn_t retval = IRQ_NONE;
6921
6922 /* PHY layer error */
6923 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6924 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6925 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6926 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6927 /*
6928 * To know whether this error is fatal or not, DB timeout
6929 * must be checked but this error is handled separately.
6930 */
6931 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6932 dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6933 __func__);
6934
6935 /* Got a LINERESET indication. */
6936 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6937 struct uic_command *cmd = NULL;
6938
6939 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6940 if (hba->uic_async_done && hba->active_uic_cmd)
6941 cmd = hba->active_uic_cmd;
6942 /*
6943 * Ignore the LINERESET during power mode change
6944 * operation via DME_SET command.
6945 */
6946 if (cmd && (cmd->command == UIC_CMD_DME_SET))
6947 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6948 }
6949 retval |= IRQ_HANDLED;
6950 }
6951
6952 /* PA_INIT_ERROR is fatal and needs UIC reset */
6953 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6954 if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6955 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6956 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6957
6958 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6959 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6960 else if (hba->dev_quirks &
6961 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6962 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6963 hba->uic_error |=
6964 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6965 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6966 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6967 }
6968 retval |= IRQ_HANDLED;
6969 }
6970
6971 /* UIC NL/TL/DME errors needs software retry */
6972 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6973 if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6974 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6975 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6976 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6977 retval |= IRQ_HANDLED;
6978 }
6979
6980 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6981 if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6982 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6983 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6984 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6985 retval |= IRQ_HANDLED;
6986 }
6987
6988 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6989 if ((reg & UIC_DME_ERROR) &&
6990 (reg & UIC_DME_ERROR_CODE_MASK)) {
6991 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6992 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6993 retval |= IRQ_HANDLED;
6994 }
6995
6996 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6997 __func__, hba->uic_error);
6998 return retval;
6999 }
7000
7001 /**
7002 * ufshcd_check_errors - Check for errors that need s/w attention
7003 * @hba: per-adapter instance
7004 * @intr_status: interrupt status generated by the controller
7005 *
7006 * Return:
7007 * IRQ_HANDLED - If interrupt is valid
7008 * IRQ_NONE - If invalid interrupt
7009 */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)7010 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
7011 {
7012 bool queue_eh_work = false;
7013 irqreturn_t retval = IRQ_NONE;
7014
7015 spin_lock(hba->host->host_lock);
7016 hba->errors |= UFSHCD_ERROR_MASK & intr_status;
7017
7018 if (hba->errors & INT_FATAL_ERRORS) {
7019 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
7020 hba->errors);
7021 queue_eh_work = true;
7022 }
7023
7024 if (hba->errors & UIC_ERROR) {
7025 hba->uic_error = 0;
7026 retval = ufshcd_update_uic_error(hba);
7027 if (hba->uic_error)
7028 queue_eh_work = true;
7029 }
7030
7031 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
7032 dev_err(hba->dev,
7033 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
7034 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
7035 "Enter" : "Exit",
7036 hba->errors, ufshcd_get_upmcrs(hba));
7037 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
7038 hba->errors);
7039 ufshcd_set_link_broken(hba);
7040 queue_eh_work = true;
7041 }
7042
7043 trace_android_vh_ufs_check_int_errors(hba, queue_eh_work);
7044
7045 if (queue_eh_work) {
7046 /*
7047 * update the transfer error masks to sticky bits, let's do this
7048 * irrespective of current ufshcd_state.
7049 */
7050 hba->saved_err |= hba->errors;
7051 hba->saved_uic_err |= hba->uic_error;
7052
7053 /* dump controller state before resetting */
7054 if ((hba->saved_err &
7055 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
7056 (hba->saved_uic_err &&
7057 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
7058 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
7059 __func__, hba->saved_err,
7060 hba->saved_uic_err);
7061 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
7062 "host_regs: ");
7063 ufshcd_print_pwr_info(hba);
7064 }
7065 ufshcd_schedule_eh_work(hba);
7066 retval |= IRQ_HANDLED;
7067 }
7068 /*
7069 * if (!queue_eh_work) -
7070 * Other errors are either non-fatal where host recovers
7071 * itself without s/w intervention or errors that will be
7072 * handled by the SCSI core layer.
7073 */
7074 hba->errors = 0;
7075 hba->uic_error = 0;
7076 spin_unlock(hba->host->host_lock);
7077 return retval;
7078 }
7079
7080 /**
7081 * ufshcd_tmc_handler - handle task management function completion
7082 * @hba: per adapter instance
7083 *
7084 * Return:
7085 * IRQ_HANDLED - If interrupt is valid
7086 * IRQ_NONE - If invalid interrupt
7087 */
ufshcd_tmc_handler(struct ufs_hba * hba)7088 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
7089 {
7090 unsigned long flags, pending, issued;
7091 irqreturn_t ret = IRQ_NONE;
7092 int tag;
7093
7094 spin_lock_irqsave(hba->host->host_lock, flags);
7095 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
7096 issued = hba->outstanding_tasks & ~pending;
7097 for_each_set_bit(tag, &issued, hba->nutmrs) {
7098 struct request *req = hba->tmf_rqs[tag];
7099 struct completion *c = req->end_io_data;
7100
7101 complete(c);
7102 ret = IRQ_HANDLED;
7103 }
7104 spin_unlock_irqrestore(hba->host->host_lock, flags);
7105
7106 return ret;
7107 }
7108
7109 /**
7110 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
7111 * @hba: per adapter instance
7112 *
7113 * Return: IRQ_HANDLED if interrupt is handled.
7114 */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)7115 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
7116 {
7117 struct ufs_hw_queue *hwq;
7118 unsigned long outstanding_cqs;
7119 unsigned int nr_queues;
7120 int i, ret;
7121 u32 events;
7122
7123 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
7124 if (ret)
7125 outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
7126
7127 /* Exclude the poll queues */
7128 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
7129 for_each_set_bit(i, &outstanding_cqs, nr_queues) {
7130 hwq = &hba->uhq[i];
7131
7132 events = ufshcd_mcq_read_cqis(hba, i);
7133 if (events)
7134 ufshcd_mcq_write_cqis(hba, events, i);
7135
7136 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
7137 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7138 }
7139
7140 return IRQ_HANDLED;
7141 }
7142
7143 /**
7144 * ufshcd_sl_intr - Interrupt service routine
7145 * @hba: per adapter instance
7146 * @intr_status: contains interrupts generated by the controller
7147 *
7148 * Return:
7149 * IRQ_HANDLED - If interrupt is valid
7150 * IRQ_NONE - If invalid interrupt
7151 */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)7152 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
7153 {
7154 irqreturn_t retval = IRQ_NONE;
7155
7156 if (intr_status & UFSHCD_UIC_MASK)
7157 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
7158
7159 if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
7160 retval |= ufshcd_check_errors(hba, intr_status);
7161
7162 if (intr_status & UTP_TASK_REQ_COMPL)
7163 retval |= ufshcd_tmc_handler(hba);
7164
7165 if (intr_status & UTP_TRANSFER_REQ_COMPL)
7166 retval |= ufshcd_transfer_req_compl(hba);
7167
7168 if (intr_status & MCQ_CQ_EVENT_STATUS)
7169 retval |= ufshcd_handle_mcq_cq_events(hba);
7170
7171 return retval;
7172 }
7173
7174 /**
7175 * ufshcd_intr - Main interrupt service routine
7176 * @irq: irq number
7177 * @__hba: pointer to adapter instance
7178 *
7179 * Return:
7180 * IRQ_HANDLED - If interrupt is valid
7181 * IRQ_NONE - If invalid interrupt
7182 */
ufshcd_intr(int irq,void * __hba)7183 static irqreturn_t ufshcd_intr(int irq, void *__hba)
7184 {
7185 u32 intr_status, enabled_intr_status = 0;
7186 irqreturn_t retval = IRQ_NONE;
7187 struct ufs_hba *hba = __hba;
7188 int retries = hba->nutrs;
7189
7190 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7191 hba->ufs_stats.last_intr_status = intr_status;
7192 hba->ufs_stats.last_intr_ts = local_clock();
7193
7194 /*
7195 * There could be max of hba->nutrs reqs in flight and in worst case
7196 * if the reqs get finished 1 by 1 after the interrupt status is
7197 * read, make sure we handle them by checking the interrupt status
7198 * again in a loop until we process all of the reqs before returning.
7199 */
7200 while (intr_status && retries--) {
7201 enabled_intr_status =
7202 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7203 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7204 if (enabled_intr_status)
7205 retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7206
7207 if (hba->android_quirks &
7208 UFSHCD_ANDROID_QUIRK_NO_IS_READ_ON_H8 &&
7209 intr_status & UIC_HIBERNATE_ENTER)
7210 break;
7211
7212 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7213 }
7214
7215 if (enabled_intr_status && retval == IRQ_NONE &&
7216 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7217 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7218 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7219 __func__,
7220 intr_status,
7221 hba->ufs_stats.last_intr_status,
7222 enabled_intr_status);
7223 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7224 }
7225
7226 return retval;
7227 }
7228
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)7229 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7230 {
7231 int err = 0;
7232 u32 mask = 1 << tag;
7233 unsigned long flags;
7234
7235 if (!test_bit(tag, &hba->outstanding_tasks))
7236 goto out;
7237
7238 spin_lock_irqsave(hba->host->host_lock, flags);
7239 ufshcd_utmrl_clear(hba, tag);
7240 spin_unlock_irqrestore(hba->host->host_lock, flags);
7241
7242 /* poll for max. 1 sec to clear door bell register by h/w */
7243 err = ufshcd_wait_for_register(hba,
7244 REG_UTP_TASK_REQ_DOOR_BELL,
7245 mask, 0, 1000, 1000);
7246
7247 dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7248 tag, err < 0 ? "failed" : "succeeded");
7249
7250 out:
7251 return err;
7252 }
7253
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)7254 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7255 struct utp_task_req_desc *treq, u8 tm_function)
7256 {
7257 struct request_queue *q = hba->tmf_queue;
7258 struct Scsi_Host *host = hba->host;
7259 DECLARE_COMPLETION_ONSTACK(wait);
7260 struct request *req;
7261 unsigned long flags;
7262 int task_tag, err;
7263
7264 /*
7265 * blk_mq_alloc_request() is used here only to get a free tag.
7266 */
7267 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7268 if (IS_ERR(req))
7269 return PTR_ERR(req);
7270
7271 req->end_io_data = &wait;
7272 ufshcd_hold(hba);
7273
7274 spin_lock_irqsave(host->host_lock, flags);
7275
7276 task_tag = req->tag;
7277 hba->tmf_rqs[req->tag] = req;
7278 treq->upiu_req.req_header.task_tag = task_tag;
7279
7280 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7281 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7282
7283 /* send command to the controller */
7284 __set_bit(task_tag, &hba->outstanding_tasks);
7285 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7286
7287 spin_unlock_irqrestore(host->host_lock, flags);
7288
7289 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7290
7291 /* wait until the task management command is completed */
7292 err = wait_for_completion_io_timeout(&wait,
7293 msecs_to_jiffies(TM_CMD_TIMEOUT));
7294 if (!err) {
7295 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7296 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7297 __func__, tm_function);
7298 if (ufshcd_clear_tm_cmd(hba, task_tag))
7299 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7300 __func__, task_tag);
7301 err = -ETIMEDOUT;
7302 } else {
7303 err = 0;
7304 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7305
7306 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7307 }
7308
7309 spin_lock_irqsave(hba->host->host_lock, flags);
7310 hba->tmf_rqs[req->tag] = NULL;
7311 __clear_bit(task_tag, &hba->outstanding_tasks);
7312 spin_unlock_irqrestore(hba->host->host_lock, flags);
7313
7314 ufshcd_release(hba);
7315 blk_mq_free_request(req);
7316
7317 return err;
7318 }
7319
7320 /**
7321 * ufshcd_issue_tm_cmd - issues task management commands to controller
7322 * @hba: per adapter instance
7323 * @lun_id: LUN ID to which TM command is sent
7324 * @task_id: task ID to which the TM command is applicable
7325 * @tm_function: task management function opcode
7326 * @tm_response: task management service response return value
7327 *
7328 * Return: non-zero value on error, zero on success.
7329 */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7330 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7331 u8 tm_function, u8 *tm_response)
7332 {
7333 struct utp_task_req_desc treq = { };
7334 enum utp_ocs ocs_value;
7335 int err;
7336
7337 /* Configure task request descriptor */
7338 treq.header.interrupt = 1;
7339 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7340
7341 /* Configure task request UPIU */
7342 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7343 treq.upiu_req.req_header.lun = lun_id;
7344 treq.upiu_req.req_header.tm_function = tm_function;
7345
7346 /*
7347 * The host shall provide the same value for LUN field in the basic
7348 * header and for Input Parameter.
7349 */
7350 treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7351 treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7352
7353 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7354 if (err == -ETIMEDOUT)
7355 return err;
7356
7357 ocs_value = treq.header.ocs & MASK_OCS;
7358 if (ocs_value != OCS_SUCCESS)
7359 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7360 __func__, ocs_value);
7361 else if (tm_response)
7362 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7363 MASK_TM_SERVICE_RESP;
7364 return err;
7365 }
7366
7367 /**
7368 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7369 * @hba: per-adapter instance
7370 * @req_upiu: upiu request
7371 * @rsp_upiu: upiu reply
7372 * @desc_buff: pointer to descriptor buffer, NULL if NA
7373 * @buff_len: descriptor size, 0 if NA
7374 * @cmd_type: specifies the type (NOP, Query...)
7375 * @desc_op: descriptor operation
7376 *
7377 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7378 * Therefore, it "rides" the device management infrastructure: uses its tag and
7379 * tasks work queues.
7380 *
7381 * Since there is only one available tag for device management commands,
7382 * the caller is expected to hold the hba->dev_cmd.lock mutex.
7383 *
7384 * Return: 0 upon success; < 0 upon failure.
7385 */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7386 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7387 struct utp_upiu_req *req_upiu,
7388 struct utp_upiu_req *rsp_upiu,
7389 u8 *desc_buff, int *buff_len,
7390 enum dev_cmd_type cmd_type,
7391 enum query_opcode desc_op)
7392 {
7393 const u32 tag = hba->reserved_slot;
7394 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7395 int err = 0;
7396 u8 upiu_flags;
7397
7398 /* Protects use of hba->reserved_slot. */
7399 lockdep_assert_held(&hba->dev_cmd.lock);
7400
7401 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7402
7403 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7404
7405 /* update the task tag in the request upiu */
7406 req_upiu->header.task_tag = tag;
7407
7408 /* just copy the upiu request as it is */
7409 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7410 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7411 /* The Data Segment Area is optional depending upon the query
7412 * function value. for WRITE DESCRIPTOR, the data segment
7413 * follows right after the tsf.
7414 */
7415 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7416 *buff_len = 0;
7417 }
7418
7419 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7420
7421 /*
7422 * ignore the returning value here - ufshcd_check_query_response is
7423 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7424 * read the response directly ignoring all errors.
7425 */
7426 ufshcd_issue_dev_cmd(hba, lrbp, tag, dev_cmd_timeout);
7427
7428 /* just copy the upiu response as it is */
7429 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7430 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7431 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7432 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7433 .data_segment_length);
7434
7435 if (*buff_len >= resp_len) {
7436 memcpy(desc_buff, descp, resp_len);
7437 *buff_len = resp_len;
7438 } else {
7439 dev_warn(hba->dev,
7440 "%s: rsp size %d is bigger than buffer size %d",
7441 __func__, resp_len, *buff_len);
7442 *buff_len = 0;
7443 err = -EINVAL;
7444 }
7445 }
7446
7447 return err;
7448 }
7449
7450 /**
7451 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7452 * @hba: per-adapter instance
7453 * @req_upiu: upiu request
7454 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
7455 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
7456 * @desc_buff: pointer to descriptor buffer, NULL if NA
7457 * @buff_len: descriptor size, 0 if NA
7458 * @desc_op: descriptor operation
7459 *
7460 * Supports UTP Transfer requests (nop and query), and UTP Task
7461 * Management requests.
7462 * It is up to the caller to fill the upiu conent properly, as it will
7463 * be copied without any further input validations.
7464 *
7465 * Return: 0 upon success; < 0 upon failure.
7466 */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7467 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7468 struct utp_upiu_req *req_upiu,
7469 struct utp_upiu_req *rsp_upiu,
7470 enum upiu_request_transaction msgcode,
7471 u8 *desc_buff, int *buff_len,
7472 enum query_opcode desc_op)
7473 {
7474 int err;
7475 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7476 struct utp_task_req_desc treq = { };
7477 enum utp_ocs ocs_value;
7478 u8 tm_f = req_upiu->header.tm_function;
7479
7480 switch (msgcode) {
7481 case UPIU_TRANSACTION_NOP_OUT:
7482 cmd_type = DEV_CMD_TYPE_NOP;
7483 fallthrough;
7484 case UPIU_TRANSACTION_QUERY_REQ:
7485 ufshcd_dev_man_lock(hba);
7486 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7487 desc_buff, buff_len,
7488 cmd_type, desc_op);
7489 ufshcd_dev_man_unlock(hba);
7490
7491 break;
7492 case UPIU_TRANSACTION_TASK_REQ:
7493 treq.header.interrupt = 1;
7494 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7495
7496 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7497
7498 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7499 if (err == -ETIMEDOUT)
7500 break;
7501
7502 ocs_value = treq.header.ocs & MASK_OCS;
7503 if (ocs_value != OCS_SUCCESS) {
7504 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7505 ocs_value);
7506 break;
7507 }
7508
7509 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7510
7511 break;
7512 default:
7513 err = -EINVAL;
7514
7515 break;
7516 }
7517
7518 return err;
7519 }
7520
7521 /**
7522 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7523 * @hba: per adapter instance
7524 * @req_upiu: upiu request
7525 * @rsp_upiu: upiu reply
7526 * @req_ehs: EHS field which contains Advanced RPMB Request Message
7527 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message
7528 * @sg_cnt: The number of sg lists actually used
7529 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7530 * @dir: DMA direction
7531 *
7532 * Return: zero on success, non-zero on failure.
7533 */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7534 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7535 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7536 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7537 enum dma_data_direction dir)
7538 {
7539 const u32 tag = hba->reserved_slot;
7540 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7541 int err = 0;
7542 int result;
7543 u8 upiu_flags;
7544 u8 *ehs_data;
7545 u16 ehs_len;
7546 int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7547
7548 /* Protects use of hba->reserved_slot. */
7549 ufshcd_dev_man_lock(hba);
7550
7551 ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7552
7553 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7554
7555 /* update the task tag */
7556 req_upiu->header.task_tag = tag;
7557
7558 /* copy the UPIU(contains CDB) request as it is */
7559 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7560 /* Copy EHS, starting with byte32, immediately after the CDB package */
7561 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7562
7563 if (dir != DMA_NONE && sg_list)
7564 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7565
7566 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7567
7568 err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7569
7570 if (!err) {
7571 /* Just copy the upiu response as it is */
7572 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7573 /* Get the response UPIU result */
7574 result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7575 lrbp->ucd_rsp_ptr->header.status;
7576
7577 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7578 /*
7579 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7580 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7581 * Message is 02h
7582 */
7583 if (ehs_len == 2 && rsp_ehs) {
7584 /*
7585 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7586 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7587 */
7588 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7589 memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7590 }
7591 }
7592
7593 ufshcd_dev_man_unlock(hba);
7594
7595 return err ? : result;
7596 }
7597
7598 /**
7599 * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7600 * @cmd: SCSI command pointer
7601 *
7602 * Return: SUCCESS or FAILED.
7603 */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7604 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7605 {
7606 unsigned long flags, pending_reqs = 0, not_cleared = 0;
7607 struct Scsi_Host *host;
7608 struct ufs_hba *hba;
7609 struct ufs_hw_queue *hwq;
7610 struct ufshcd_lrb *lrbp;
7611 u32 pos, not_cleared_mask = 0;
7612 int err;
7613 u8 resp = 0xF, lun;
7614
7615 host = cmd->device->host;
7616 hba = shost_priv(host);
7617
7618 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7619 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7620 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7621 if (!err)
7622 err = resp;
7623 goto out;
7624 }
7625
7626 if (hba->mcq_enabled) {
7627 for (pos = 0; pos < hba->nutrs; pos++) {
7628 lrbp = &hba->lrb[pos];
7629 if (ufshcd_cmd_inflight(lrbp->cmd) &&
7630 lrbp->lun == lun) {
7631 ufshcd_clear_cmd(hba, pos);
7632 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7633 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7634 }
7635 }
7636 err = 0;
7637 goto out;
7638 }
7639
7640 /* clear the commands that were pending for corresponding LUN */
7641 spin_lock_irqsave(&hba->outstanding_lock, flags);
7642 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7643 if (hba->lrb[pos].lun == lun)
7644 __set_bit(pos, &pending_reqs);
7645 hba->outstanding_reqs &= ~pending_reqs;
7646 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7647
7648 for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7649 if (ufshcd_clear_cmd(hba, pos) < 0) {
7650 spin_lock_irqsave(&hba->outstanding_lock, flags);
7651 not_cleared = 1U << pos &
7652 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7653 hba->outstanding_reqs |= not_cleared;
7654 not_cleared_mask |= not_cleared;
7655 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7656
7657 dev_err(hba->dev, "%s: failed to clear request %d\n",
7658 __func__, pos);
7659 }
7660 }
7661 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7662
7663 out:
7664 hba->req_abort_count = 0;
7665 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7666 if (!err) {
7667 err = SUCCESS;
7668 } else {
7669 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7670 err = FAILED;
7671 }
7672 return err;
7673 }
7674
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7675 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7676 {
7677 struct ufshcd_lrb *lrbp;
7678 int tag;
7679
7680 for_each_set_bit(tag, &bitmap, hba->nutrs) {
7681 lrbp = &hba->lrb[tag];
7682 lrbp->req_abort_skip = true;
7683 }
7684 }
7685
7686 /**
7687 * ufshcd_try_to_abort_task - abort a specific task
7688 * @hba: Pointer to adapter instance
7689 * @tag: Task tag/index to be aborted
7690 *
7691 * Abort the pending command in device by sending UFS_ABORT_TASK task management
7692 * command, and in host controller by clearing the door-bell register. There can
7693 * be race between controller sending the command to the device while abort is
7694 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7695 * really issued and then try to abort it.
7696 *
7697 * Return: zero on success, non-zero on failure.
7698 */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7699 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7700 {
7701 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7702 int err = 0;
7703 int poll_cnt;
7704 u8 resp = 0xF;
7705 u32 reg;
7706
7707 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7708 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7709 UFS_QUERY_TASK, &resp);
7710 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7711 /* cmd pending in the device */
7712 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7713 __func__, tag);
7714 break;
7715 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7716 /*
7717 * cmd not pending in the device, check if it is
7718 * in transition.
7719 */
7720 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7721 __func__, tag);
7722 if (hba->mcq_enabled) {
7723 /* MCQ mode */
7724 if (ufshcd_cmd_inflight(lrbp->cmd)) {
7725 /* sleep for max. 200us same delay as in SDB mode */
7726 usleep_range(100, 200);
7727 continue;
7728 }
7729 /* command completed already */
7730 dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7731 __func__, tag);
7732 goto out;
7733 }
7734
7735 /* Single Doorbell Mode */
7736 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7737 if (reg & (1 << tag)) {
7738 /* sleep for max. 200us to stabilize */
7739 usleep_range(100, 200);
7740 continue;
7741 }
7742 /* command completed already */
7743 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7744 __func__, tag);
7745 goto out;
7746 } else {
7747 dev_err(hba->dev,
7748 "%s: no response from device. tag = %d, err %d\n",
7749 __func__, tag, err);
7750 if (!err)
7751 err = resp; /* service response error */
7752 goto out;
7753 }
7754 }
7755
7756 if (!poll_cnt) {
7757 err = -EBUSY;
7758 goto out;
7759 }
7760
7761 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7762 UFS_ABORT_TASK, &resp);
7763 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7764 if (!err) {
7765 err = resp; /* service response error */
7766 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7767 __func__, tag, err);
7768 }
7769 goto out;
7770 }
7771
7772 err = ufshcd_clear_cmd(hba, tag);
7773 if (err)
7774 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7775 __func__, tag, err);
7776
7777 out:
7778 return err;
7779 }
7780
7781 /**
7782 * ufshcd_abort - scsi host template eh_abort_handler callback
7783 * @cmd: SCSI command pointer
7784 *
7785 * Return: SUCCESS or FAILED.
7786 */
ufshcd_abort(struct scsi_cmnd * cmd)7787 static int ufshcd_abort(struct scsi_cmnd *cmd)
7788 {
7789 struct Scsi_Host *host = cmd->device->host;
7790 struct ufs_hba *hba = shost_priv(host);
7791 int tag = scsi_cmd_to_rq(cmd)->tag;
7792 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7793 unsigned long flags;
7794 int err = FAILED;
7795 bool outstanding;
7796 u32 reg;
7797
7798 ufshcd_hold(hba);
7799
7800 if (!hba->mcq_enabled) {
7801 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7802 if (!test_bit(tag, &hba->outstanding_reqs)) {
7803 /* If command is already aborted/completed, return FAILED. */
7804 dev_err(hba->dev,
7805 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7806 __func__, tag, hba->outstanding_reqs, reg);
7807 goto release;
7808 }
7809 }
7810
7811 /* Print Transfer Request of aborted task */
7812 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7813
7814 /*
7815 * Print detailed info about aborted request.
7816 * As more than one request might get aborted at the same time,
7817 * print full information only for the first aborted request in order
7818 * to reduce repeated printouts. For other aborted requests only print
7819 * basic details.
7820 */
7821 scsi_print_command(cmd);
7822 if (!hba->req_abort_count) {
7823 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7824 ufshcd_print_evt_hist(hba);
7825 ufshcd_print_host_state(hba);
7826 ufshcd_print_pwr_info(hba);
7827 ufshcd_print_tr(hba, tag, true);
7828 } else {
7829 ufshcd_print_tr(hba, tag, false);
7830 }
7831 hba->req_abort_count++;
7832
7833 if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7834 /* only execute this code in single doorbell mode */
7835 dev_err(hba->dev,
7836 "%s: cmd was completed, but without a notifying intr, tag = %d",
7837 __func__, tag);
7838 __ufshcd_transfer_req_compl(hba, 1UL << tag);
7839 goto release;
7840 }
7841
7842 /*
7843 * Task abort to the device W-LUN is illegal. When this command
7844 * will fail, due to spec violation, scsi err handling next step
7845 * will be to send LU reset which, again, is a spec violation.
7846 * To avoid these unnecessary/illegal steps, first we clean up
7847 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7848 * then queue the eh_work and bail.
7849 */
7850 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7851 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7852
7853 spin_lock_irqsave(host->host_lock, flags);
7854 hba->force_reset = true;
7855 ufshcd_schedule_eh_work(hba);
7856 spin_unlock_irqrestore(host->host_lock, flags);
7857 goto release;
7858 }
7859
7860 if (hba->mcq_enabled) {
7861 /* MCQ mode. Branch off to handle abort for mcq mode */
7862 err = ufshcd_mcq_abort(cmd);
7863 goto release;
7864 }
7865
7866 /* Skip task abort in case previous aborts failed and report failure */
7867 if (lrbp->req_abort_skip) {
7868 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7869 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7870 goto release;
7871 }
7872
7873 err = ufshcd_try_to_abort_task(hba, tag);
7874 if (err) {
7875 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7876 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7877 err = FAILED;
7878 goto release;
7879 }
7880
7881 /*
7882 * Clear the corresponding bit from outstanding_reqs since the command
7883 * has been aborted successfully.
7884 */
7885 spin_lock_irqsave(&hba->outstanding_lock, flags);
7886 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7887 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7888
7889 if (outstanding)
7890 ufshcd_release_scsi_cmd(hba, lrbp);
7891
7892 err = SUCCESS;
7893
7894 release:
7895 /* Matches the ufshcd_hold() call at the start of this function. */
7896 ufshcd_release(hba);
7897 return err;
7898 }
7899
7900 /**
7901 * ufshcd_host_reset_and_restore - reset and restore host controller
7902 * @hba: per-adapter instance
7903 *
7904 * Note that host controller reset may issue DME_RESET to
7905 * local and remote (device) Uni-Pro stack and the attributes
7906 * are reset to default state.
7907 *
7908 * Return: zero on success, non-zero on failure.
7909 */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7910 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7911 {
7912 int err;
7913
7914 /*
7915 * Stop the host controller and complete the requests
7916 * cleared by h/w
7917 */
7918 ufshcd_hba_stop(hba);
7919 hba->silence_err_logs = true;
7920 ufshcd_complete_requests(hba, true);
7921 hba->silence_err_logs = false;
7922
7923 /* scale up clocks to max frequency before full reinitialization */
7924 if (ufshcd_is_clkscaling_supported(hba))
7925 ufshcd_scale_clks(hba, ULONG_MAX, true);
7926
7927 err = ufshcd_hba_enable(hba);
7928
7929 /* Establish the link again and restore the device */
7930 if (!err)
7931 err = ufshcd_probe_hba(hba, false);
7932
7933 if (err)
7934 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7935 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7936 return err;
7937 }
7938
7939 /**
7940 * ufshcd_reset_and_restore - reset and re-initialize host/device
7941 * @hba: per-adapter instance
7942 *
7943 * Reset and recover device, host and re-establish link. This
7944 * is helpful to recover the communication in fatal error conditions.
7945 *
7946 * Return: zero on success, non-zero on failure.
7947 */
ufshcd_reset_and_restore(struct ufs_hba * hba)7948 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7949 {
7950 u32 saved_err = 0;
7951 u32 saved_uic_err = 0;
7952 int err = 0;
7953 unsigned long flags;
7954 int retries = MAX_HOST_RESET_RETRIES;
7955
7956 spin_lock_irqsave(hba->host->host_lock, flags);
7957 do {
7958 /*
7959 * This is a fresh start, cache and clear saved error first,
7960 * in case new error generated during reset and restore.
7961 */
7962 saved_err |= hba->saved_err;
7963 saved_uic_err |= hba->saved_uic_err;
7964 hba->saved_err = 0;
7965 hba->saved_uic_err = 0;
7966 hba->force_reset = false;
7967 hba->ufshcd_state = UFSHCD_STATE_RESET;
7968 spin_unlock_irqrestore(hba->host->host_lock, flags);
7969
7970 /* Reset the attached device */
7971 ufshcd_device_reset(hba);
7972
7973 err = ufshcd_host_reset_and_restore(hba);
7974
7975 spin_lock_irqsave(hba->host->host_lock, flags);
7976 if (err)
7977 continue;
7978 /* Do not exit unless operational or dead */
7979 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7980 hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7981 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7982 err = -EAGAIN;
7983 } while (err && --retries);
7984
7985 /*
7986 * Inform scsi mid-layer that we did reset and allow to handle
7987 * Unit Attention properly.
7988 */
7989 scsi_report_bus_reset(hba->host, 0);
7990 if (err) {
7991 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7992 hba->saved_err |= saved_err;
7993 hba->saved_uic_err |= saved_uic_err;
7994 }
7995 spin_unlock_irqrestore(hba->host->host_lock, flags);
7996
7997 return err;
7998 }
7999
8000 /**
8001 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
8002 * @cmd: SCSI command pointer
8003 *
8004 * Return: SUCCESS or FAILED.
8005 */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)8006 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
8007 {
8008 int err = SUCCESS;
8009 unsigned long flags;
8010 struct ufs_hba *hba;
8011
8012 hba = shost_priv(cmd->device->host);
8013
8014 /*
8015 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
8016 * stuck in this function waiting for flush_work(&hba->eh_work). And
8017 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
8018 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
8019 */
8020 if (hba->pm_op_in_progress) {
8021 if (ufshcd_link_recovery(hba))
8022 err = FAILED;
8023
8024 return err;
8025 }
8026
8027 spin_lock_irqsave(hba->host->host_lock, flags);
8028 hba->force_reset = true;
8029 ufshcd_schedule_eh_work(hba);
8030 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
8031 spin_unlock_irqrestore(hba->host->host_lock, flags);
8032
8033 flush_work(&hba->eh_work);
8034
8035 spin_lock_irqsave(hba->host->host_lock, flags);
8036 if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
8037 err = FAILED;
8038 spin_unlock_irqrestore(hba->host->host_lock, flags);
8039
8040 return err;
8041 }
8042
8043 /**
8044 * ufshcd_get_max_icc_level - calculate the ICC level
8045 * @sup_curr_uA: max. current supported by the regulator
8046 * @start_scan: row at the desc table to start scan from
8047 * @buff: power descriptor buffer
8048 *
8049 * Return: calculated max ICC level for specific regulator.
8050 */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)8051 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
8052 const char *buff)
8053 {
8054 int i;
8055 int curr_uA;
8056 u16 data;
8057 u16 unit;
8058
8059 for (i = start_scan; i >= 0; i--) {
8060 data = get_unaligned_be16(&buff[2 * i]);
8061 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
8062 ATTR_ICC_LVL_UNIT_OFFSET;
8063 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
8064 switch (unit) {
8065 case UFSHCD_NANO_AMP:
8066 curr_uA = curr_uA / 1000;
8067 break;
8068 case UFSHCD_MILI_AMP:
8069 curr_uA = curr_uA * 1000;
8070 break;
8071 case UFSHCD_AMP:
8072 curr_uA = curr_uA * 1000 * 1000;
8073 break;
8074 case UFSHCD_MICRO_AMP:
8075 default:
8076 break;
8077 }
8078 if (sup_curr_uA >= curr_uA)
8079 break;
8080 }
8081 if (i < 0) {
8082 i = 0;
8083 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
8084 }
8085
8086 return (u32)i;
8087 }
8088
8089 /**
8090 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
8091 * In case regulators are not initialized we'll return 0
8092 * @hba: per-adapter instance
8093 * @desc_buf: power descriptor buffer to extract ICC levels from.
8094 *
8095 * Return: calculated ICC level.
8096 */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)8097 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
8098 const u8 *desc_buf)
8099 {
8100 u32 icc_level = 0;
8101
8102 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
8103 !hba->vreg_info.vccq2) {
8104 /*
8105 * Using dev_dbg to avoid messages during runtime PM to avoid
8106 * never-ending cycles of messages written back to storage by
8107 * user space causing runtime resume, causing more messages and
8108 * so on.
8109 */
8110 dev_dbg(hba->dev,
8111 "%s: Regulator capability was not set, actvIccLevel=%d",
8112 __func__, icc_level);
8113 goto out;
8114 }
8115
8116 if (hba->vreg_info.vcc->max_uA)
8117 icc_level = ufshcd_get_max_icc_level(
8118 hba->vreg_info.vcc->max_uA,
8119 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
8120 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
8121
8122 if (hba->vreg_info.vccq->max_uA)
8123 icc_level = ufshcd_get_max_icc_level(
8124 hba->vreg_info.vccq->max_uA,
8125 icc_level,
8126 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
8127
8128 if (hba->vreg_info.vccq2->max_uA)
8129 icc_level = ufshcd_get_max_icc_level(
8130 hba->vreg_info.vccq2->max_uA,
8131 icc_level,
8132 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
8133 out:
8134 return icc_level;
8135 }
8136
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)8137 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
8138 {
8139 int ret;
8140 u8 *desc_buf;
8141 u32 icc_level;
8142
8143 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8144 if (!desc_buf)
8145 return;
8146
8147 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
8148 desc_buf, QUERY_DESC_MAX_SIZE);
8149 if (ret) {
8150 dev_err(hba->dev,
8151 "%s: Failed reading power descriptor ret = %d",
8152 __func__, ret);
8153 goto out;
8154 }
8155
8156 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
8157 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
8158
8159 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8160 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
8161
8162 if (ret)
8163 dev_err(hba->dev,
8164 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
8165 __func__, icc_level, ret);
8166
8167 out:
8168 kfree(desc_buf);
8169 }
8170
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)8171 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
8172 {
8173 struct Scsi_Host *shost = sdev->host;
8174
8175 scsi_autopm_get_device(sdev);
8176 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
8177 if (sdev->rpm_autosuspend)
8178 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
8179 shost->rpm_autosuspend_delay);
8180 scsi_autopm_put_device(sdev);
8181 }
8182
8183 /**
8184 * ufshcd_scsi_add_wlus - Adds required W-LUs
8185 * @hba: per-adapter instance
8186 *
8187 * UFS device specification requires the UFS devices to support 4 well known
8188 * logical units:
8189 * "REPORT_LUNS" (address: 01h)
8190 * "UFS Device" (address: 50h)
8191 * "RPMB" (address: 44h)
8192 * "BOOT" (address: 30h)
8193 * UFS device's power management needs to be controlled by "POWER CONDITION"
8194 * field of SSU (START STOP UNIT) command. But this "power condition" field
8195 * will take effect only when its sent to "UFS device" well known logical unit
8196 * hence we require the scsi_device instance to represent this logical unit in
8197 * order for the UFS host driver to send the SSU command for power management.
8198 *
8199 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8200 * Block) LU so user space process can control this LU. User space may also
8201 * want to have access to BOOT LU.
8202 *
8203 * This function adds scsi device instances for each of all well known LUs
8204 * (except "REPORT LUNS" LU).
8205 *
8206 * Return: zero on success (all required W-LUs are added successfully),
8207 * non-zero error value on failure (if failed to add any of the required W-LU).
8208 */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)8209 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8210 {
8211 int ret = 0;
8212 struct scsi_device *sdev_boot, *sdev_rpmb;
8213
8214 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8215 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8216 if (IS_ERR(hba->ufs_device_wlun)) {
8217 ret = PTR_ERR(hba->ufs_device_wlun);
8218 hba->ufs_device_wlun = NULL;
8219 goto out;
8220 }
8221 scsi_device_put(hba->ufs_device_wlun);
8222
8223 sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8224 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8225 if (IS_ERR(sdev_rpmb)) {
8226 ret = PTR_ERR(sdev_rpmb);
8227 goto remove_ufs_device_wlun;
8228 }
8229 ufshcd_blk_pm_runtime_init(sdev_rpmb);
8230 scsi_device_put(sdev_rpmb);
8231
8232 sdev_boot = __scsi_add_device(hba->host, 0, 0,
8233 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8234 if (IS_ERR(sdev_boot)) {
8235 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8236 } else {
8237 ufshcd_blk_pm_runtime_init(sdev_boot);
8238 scsi_device_put(sdev_boot);
8239 }
8240 goto out;
8241
8242 remove_ufs_device_wlun:
8243 scsi_remove_device(hba->ufs_device_wlun);
8244 out:
8245 return ret;
8246 }
8247
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8248 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8249 {
8250 struct ufs_dev_info *dev_info = &hba->dev_info;
8251 u8 lun;
8252 u32 d_lu_wb_buf_alloc;
8253 u32 ext_ufs_feature;
8254
8255 if (!ufshcd_is_wb_allowed(hba))
8256 return;
8257
8258 /*
8259 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8260 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8261 * enabled
8262 */
8263 if (!(dev_info->wspecversion >= 0x310 ||
8264 dev_info->wspecversion == 0x220 ||
8265 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8266 goto wb_disabled;
8267
8268 ext_ufs_feature = get_unaligned_be32(desc_buf +
8269 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8270
8271 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8272 goto wb_disabled;
8273
8274 /*
8275 * WB may be supported but not configured while provisioning. The spec
8276 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8277 * buffer configured.
8278 */
8279 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8280
8281 dev_info->b_presrv_uspc_en =
8282 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8283
8284 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8285 if (!get_unaligned_be32(desc_buf +
8286 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8287 goto wb_disabled;
8288 } else {
8289 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8290 d_lu_wb_buf_alloc = 0;
8291 ufshcd_read_unit_desc_param(hba,
8292 lun,
8293 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8294 (u8 *)&d_lu_wb_buf_alloc,
8295 sizeof(d_lu_wb_buf_alloc));
8296 if (d_lu_wb_buf_alloc) {
8297 dev_info->wb_dedicated_lu = lun;
8298 break;
8299 }
8300 }
8301
8302 if (!d_lu_wb_buf_alloc)
8303 goto wb_disabled;
8304 }
8305
8306 if (!ufshcd_is_wb_buf_lifetime_available(hba))
8307 goto wb_disabled;
8308
8309 return;
8310
8311 wb_disabled:
8312 hba->caps &= ~UFSHCD_CAP_WB_EN;
8313 }
8314
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8315 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8316 {
8317 struct ufs_dev_info *dev_info = &hba->dev_info;
8318 u32 ext_ufs_feature;
8319 u8 mask = 0;
8320
8321 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8322 return;
8323
8324 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8325
8326 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8327 mask |= MASK_EE_TOO_LOW_TEMP;
8328
8329 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8330 mask |= MASK_EE_TOO_HIGH_TEMP;
8331
8332 if (mask) {
8333 ufshcd_enable_ee(hba, mask);
8334 ufs_hwmon_probe(hba, mask);
8335 }
8336 }
8337
ufshcd_ext_iid_probe(struct ufs_hba * hba,u8 * desc_buf)8338 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8339 {
8340 struct ufs_dev_info *dev_info = &hba->dev_info;
8341 u32 ext_ufs_feature;
8342 u32 ext_iid_en = 0;
8343 int err;
8344
8345 /* Only UFS-4.0 and above may support EXT_IID */
8346 if (dev_info->wspecversion < 0x400)
8347 goto out;
8348
8349 ext_ufs_feature = get_unaligned_be32(desc_buf +
8350 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8351 if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8352 goto out;
8353
8354 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8355 QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8356 if (err)
8357 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8358
8359 out:
8360 dev_info->b_ext_iid_en = ext_iid_en;
8361 }
8362
ufshcd_device_lvl_exception_probe(struct ufs_hba * hba,u8 * desc_buf)8363 static void ufshcd_device_lvl_exception_probe(struct ufs_hba *hba, u8 *desc_buf)
8364 {
8365 u32 ext_ufs_feature;
8366
8367 if (hba->dev_info.wspecversion < 0x410)
8368 return;
8369
8370 ext_ufs_feature = get_unaligned_be32(desc_buf +
8371 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8372 if (!(ext_ufs_feature & UFS_DEV_LVL_EXCEPTION_SUP))
8373 return;
8374
8375 atomic_set(&hba->dev_lvl_exception_count, 0);
8376 ufshcd_enable_ee(hba, MASK_EE_DEV_LVL_EXCEPTION);
8377 }
8378
ufshcd_set_rtt(struct ufs_hba * hba)8379 static void ufshcd_set_rtt(struct ufs_hba *hba)
8380 {
8381 struct ufs_dev_info *dev_info = &hba->dev_info;
8382 u32 rtt = 0;
8383 u32 dev_rtt = 0;
8384 int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8385 hba->vops->max_num_rtt : hba->nortt;
8386
8387 /* RTT override makes sense only for UFS-4.0 and above */
8388 if (dev_info->wspecversion < 0x400)
8389 return;
8390
8391 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8392 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8393 dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8394 return;
8395 }
8396
8397 /* do not override if it was already written */
8398 if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8399 return;
8400
8401 rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8402
8403 if (rtt == dev_rtt)
8404 return;
8405
8406 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8407 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8408 dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8409 }
8410
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8411 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8412 const struct ufs_dev_quirk *fixups)
8413 {
8414 const struct ufs_dev_quirk *f;
8415 struct ufs_dev_info *dev_info = &hba->dev_info;
8416
8417 if (!fixups)
8418 return;
8419
8420 for (f = fixups; f->quirk; f++) {
8421 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8422 f->wmanufacturerid == UFS_ANY_VENDOR) &&
8423 ((dev_info->model &&
8424 STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8425 !strcmp(f->model, UFS_ANY_MODEL)))
8426 hba->dev_quirks |= f->quirk;
8427 }
8428 }
8429 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8430
ufs_fixup_device_setup(struct ufs_hba * hba)8431 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8432 {
8433 /* fix by general quirk table */
8434 ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8435
8436 /* allow vendors to fix quirks */
8437 ufshcd_vops_fixup_dev_quirks(hba);
8438 }
8439
ufshcd_update_rtc(struct ufs_hba * hba)8440 static void ufshcd_update_rtc(struct ufs_hba *hba)
8441 {
8442 struct timespec64 ts64;
8443 int err;
8444 u32 val;
8445
8446 ktime_get_real_ts64(&ts64);
8447
8448 if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8449 dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8450 return;
8451 }
8452
8453 /*
8454 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8455 * 2146 is required, it is recommended to choose the relative RTC mode.
8456 */
8457 val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8458
8459 /* Skip update RTC if RPM state is not RPM_ACTIVE */
8460 if (ufshcd_rpm_get_if_active(hba) <= 0)
8461 return;
8462
8463 err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8464 0, 0, &val);
8465 ufshcd_rpm_put(hba);
8466
8467 if (err)
8468 dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8469 else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8470 hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8471 }
8472
ufshcd_rtc_work(struct work_struct * work)8473 static void ufshcd_rtc_work(struct work_struct *work)
8474 {
8475 struct ufs_hba *hba;
8476
8477 hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8478
8479 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8480 if (!ufshcd_is_ufs_dev_busy(hba) &&
8481 hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8482 !hba->clk_gating.active_reqs)
8483 ufshcd_update_rtc(hba);
8484
8485 if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8486 schedule_delayed_work(&hba->ufs_rtc_update_work,
8487 msecs_to_jiffies(hba->dev_info.rtc_update_period));
8488 }
8489
ufs_init_rtc(struct ufs_hba * hba,u8 * desc_buf)8490 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8491 {
8492 u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8493 struct ufs_dev_info *dev_info = &hba->dev_info;
8494
8495 if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8496 dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8497
8498 /*
8499 * The concept of measuring time in Linux as the number of seconds elapsed since
8500 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8501 * 2010 00:00, here we need to adjust ABS baseline.
8502 */
8503 dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8504 mktime64(1970, 1, 1, 0, 0, 0);
8505 } else {
8506 dev_info->rtc_type = UFS_RTC_RELATIVE;
8507 dev_info->rtc_time_baseline = 0;
8508 }
8509
8510 /*
8511 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8512 * how to calculate the specific update period for each time unit. And we disable periodic
8513 * RTC update work, let user configure by sysfs node according to specific circumstance.
8514 */
8515 dev_info->rtc_update_period = 0;
8516 }
8517
ufs_get_device_desc(struct ufs_hba * hba)8518 static int ufs_get_device_desc(struct ufs_hba *hba)
8519 {
8520 int err;
8521 u8 model_index;
8522 u8 *desc_buf;
8523 struct ufs_dev_info *dev_info = &hba->dev_info;
8524
8525 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8526 if (!desc_buf) {
8527 err = -ENOMEM;
8528 goto out;
8529 }
8530
8531 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8532 QUERY_DESC_MAX_SIZE);
8533 if (err) {
8534 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8535 __func__, err);
8536 goto out;
8537 }
8538
8539 /*
8540 * getting vendor (manufacturerID) and Bank Index in big endian
8541 * format
8542 */
8543 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8544 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8545
8546 /* getting Specification Version in big endian format */
8547 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8548 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8549 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8550
8551 dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8552
8553 to_hba_priv(hba)->hid_sup = get_unaligned_be32(desc_buf +
8554 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP) &
8555 UFS_DEV_HID_SUPPORT;
8556
8557 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8558
8559 err = ufshcd_read_string_desc(hba, model_index,
8560 &dev_info->model, SD_ASCII_STD);
8561 if (err < 0) {
8562 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8563 __func__, err);
8564 goto out;
8565 }
8566
8567 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8568 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8569
8570 ufs_fixup_device_setup(hba);
8571
8572 ufshcd_wb_probe(hba, desc_buf);
8573
8574 ufshcd_temp_notif_probe(hba, desc_buf);
8575
8576 if (dev_info->wspecversion >= 0x410) {
8577 hba->critical_health_count = 0;
8578 ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL);
8579 }
8580
8581 ufs_init_rtc(hba, desc_buf);
8582
8583 if (hba->ext_iid_sup)
8584 ufshcd_ext_iid_probe(hba, desc_buf);
8585
8586 ufshcd_device_lvl_exception_probe(hba, desc_buf);
8587
8588 /*
8589 * ufshcd_read_string_desc returns size of the string
8590 * reset the error value
8591 */
8592 err = 0;
8593
8594 out:
8595 kfree(desc_buf);
8596 return err;
8597 }
8598
ufs_put_device_desc(struct ufs_hba * hba)8599 static void ufs_put_device_desc(struct ufs_hba *hba)
8600 {
8601 struct ufs_dev_info *dev_info = &hba->dev_info;
8602
8603 kfree(dev_info->model);
8604 dev_info->model = NULL;
8605 }
8606
8607 /**
8608 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8609 * less than device PA_TACTIVATE time.
8610 * @hba: per-adapter instance
8611 *
8612 * Some UFS devices require host PA_TACTIVATE to be lower than device
8613 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8614 * for such devices.
8615 *
8616 * Return: zero on success, non-zero error value on failure.
8617 */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8618 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8619 {
8620 int ret = 0;
8621 u32 granularity, peer_granularity;
8622 u32 pa_tactivate, peer_pa_tactivate;
8623 u32 pa_tactivate_us, peer_pa_tactivate_us;
8624 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8625
8626 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8627 &granularity);
8628 if (ret)
8629 goto out;
8630
8631 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8632 &peer_granularity);
8633 if (ret)
8634 goto out;
8635
8636 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8637 (granularity > PA_GRANULARITY_MAX_VAL)) {
8638 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8639 __func__, granularity);
8640 return -EINVAL;
8641 }
8642
8643 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8644 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8645 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8646 __func__, peer_granularity);
8647 return -EINVAL;
8648 }
8649
8650 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8651 if (ret)
8652 goto out;
8653
8654 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8655 &peer_pa_tactivate);
8656 if (ret)
8657 goto out;
8658
8659 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8660 peer_pa_tactivate_us = peer_pa_tactivate *
8661 gran_to_us_table[peer_granularity - 1];
8662
8663 if (pa_tactivate_us >= peer_pa_tactivate_us) {
8664 u32 new_peer_pa_tactivate;
8665
8666 new_peer_pa_tactivate = pa_tactivate_us /
8667 gran_to_us_table[peer_granularity - 1];
8668 new_peer_pa_tactivate++;
8669 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8670 new_peer_pa_tactivate);
8671 }
8672
8673 out:
8674 return ret;
8675 }
8676
8677 /**
8678 * ufshcd_quirk_override_pa_h8time - Ensures proper adjustment of PA_HIBERN8TIME.
8679 * @hba: per-adapter instance
8680 *
8681 * Some UFS devices require specific adjustments to the PA_HIBERN8TIME parameter
8682 * to ensure proper hibernation timing. This function retrieves the current
8683 * PA_HIBERN8TIME value and increments it by 100us.
8684 */
ufshcd_quirk_override_pa_h8time(struct ufs_hba * hba)8685 static void ufshcd_quirk_override_pa_h8time(struct ufs_hba *hba)
8686 {
8687 u32 pa_h8time;
8688 int ret;
8689
8690 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &pa_h8time);
8691 if (ret) {
8692 dev_err(hba->dev, "Failed to get PA_HIBERN8TIME: %d\n", ret);
8693 return;
8694 }
8695
8696 /* Increment by 1 to increase hibernation time by 100 µs */
8697 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), pa_h8time + 1);
8698 if (ret)
8699 dev_err(hba->dev, "Failed updating PA_HIBERN8TIME: %d\n", ret);
8700 }
8701
ufshcd_tune_unipro_params(struct ufs_hba * hba)8702 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8703 {
8704 ufshcd_vops_apply_dev_quirks(hba);
8705
8706 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8707 /* set 1ms timeout for PA_TACTIVATE */
8708 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8709
8710 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8711 ufshcd_quirk_tune_host_pa_tactivate(hba);
8712
8713 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_HIBER8TIME)
8714 ufshcd_quirk_override_pa_h8time(hba);
8715 }
8716
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8717 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8718 {
8719 hba->ufs_stats.hibern8_exit_cnt = 0;
8720 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8721 hba->req_abort_count = 0;
8722 }
8723
ufshcd_device_geo_params_init(struct ufs_hba * hba)8724 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8725 {
8726 int err;
8727 u8 *desc_buf;
8728
8729 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8730 if (!desc_buf) {
8731 err = -ENOMEM;
8732 goto out;
8733 }
8734
8735 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8736 desc_buf, QUERY_DESC_MAX_SIZE);
8737 if (err) {
8738 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8739 __func__, err);
8740 goto out;
8741 }
8742
8743 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8744 hba->dev_info.max_lu_supported = 32;
8745 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8746 hba->dev_info.max_lu_supported = 8;
8747
8748 out:
8749 kfree(desc_buf);
8750 return err;
8751 }
8752
8753 struct ufs_ref_clk {
8754 unsigned long freq_hz;
8755 enum ufs_ref_clk_freq val;
8756 };
8757
8758 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8759 {19200000, REF_CLK_FREQ_19_2_MHZ},
8760 {26000000, REF_CLK_FREQ_26_MHZ},
8761 {38400000, REF_CLK_FREQ_38_4_MHZ},
8762 {52000000, REF_CLK_FREQ_52_MHZ},
8763 {0, REF_CLK_FREQ_INVAL},
8764 };
8765
8766 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8767 ufs_get_bref_clk_from_hz(unsigned long freq)
8768 {
8769 int i;
8770
8771 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8772 if (ufs_ref_clk_freqs[i].freq_hz == freq)
8773 return ufs_ref_clk_freqs[i].val;
8774
8775 return REF_CLK_FREQ_INVAL;
8776 }
8777
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8778 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8779 {
8780 unsigned long freq;
8781
8782 freq = clk_get_rate(refclk);
8783
8784 hba->dev_ref_clk_freq =
8785 ufs_get_bref_clk_from_hz(freq);
8786
8787 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8788 dev_err(hba->dev,
8789 "invalid ref_clk setting = %ld\n", freq);
8790 }
8791
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8792 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8793 {
8794 int err;
8795 u32 ref_clk;
8796 u32 freq = hba->dev_ref_clk_freq;
8797
8798 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8799 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8800
8801 if (err) {
8802 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8803 err);
8804 goto out;
8805 }
8806
8807 if (ref_clk == freq)
8808 goto out; /* nothing to update */
8809
8810 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8811 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8812
8813 if (err) {
8814 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8815 ufs_ref_clk_freqs[freq].freq_hz);
8816 goto out;
8817 }
8818
8819 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8820 ufs_ref_clk_freqs[freq].freq_hz);
8821
8822 out:
8823 return err;
8824 }
8825
ufshcd_device_params_init(struct ufs_hba * hba)8826 static int ufshcd_device_params_init(struct ufs_hba *hba)
8827 {
8828 bool flag;
8829 int ret;
8830
8831 /* Init UFS geometry descriptor related parameters */
8832 ret = ufshcd_device_geo_params_init(hba);
8833 if (ret)
8834 goto out;
8835
8836 /* Check and apply UFS device quirks */
8837 ret = ufs_get_device_desc(hba);
8838 if (ret) {
8839 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8840 __func__, ret);
8841 goto out;
8842 }
8843
8844 ufshcd_set_rtt(hba);
8845
8846 ufshcd_get_ref_clk_gating_wait(hba);
8847
8848 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8849 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8850 hba->dev_info.f_power_on_wp_en = flag;
8851
8852 /* Probe maximum power mode co-supported by both UFS host and device */
8853 if (ufshcd_get_max_pwr_mode(hba))
8854 dev_err(hba->dev,
8855 "%s: Failed getting max supported power mode\n",
8856 __func__);
8857 out:
8858 return ret;
8859 }
8860
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8861 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8862 {
8863 int err;
8864 struct ufs_query_req *request = NULL;
8865 struct ufs_query_res *response = NULL;
8866 struct ufs_dev_info *dev_info = &hba->dev_info;
8867 struct utp_upiu_query_v4_0 *upiu_data;
8868
8869 if (dev_info->wspecversion < 0x400 ||
8870 hba->dev_quirks & UFS_DEVICE_QUIRK_NO_TIMESTAMP_SUPPORT)
8871 return;
8872
8873 ufshcd_dev_man_lock(hba);
8874
8875 ufshcd_init_query(hba, &request, &response,
8876 UPIU_QUERY_OPCODE_WRITE_ATTR,
8877 QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8878
8879 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8880
8881 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8882
8883 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8884
8885 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
8886
8887 if (err)
8888 dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8889 __func__, err);
8890
8891 ufshcd_dev_man_unlock(hba);
8892 }
8893
8894 /**
8895 * ufshcd_add_lus - probe and add UFS logical units
8896 * @hba: per-adapter instance
8897 *
8898 * Return: 0 upon success; < 0 upon failure.
8899 */
ufshcd_add_lus(struct ufs_hba * hba)8900 static int ufshcd_add_lus(struct ufs_hba *hba)
8901 {
8902 int ret;
8903
8904 /* Add required well known logical units to scsi mid layer */
8905 ret = ufshcd_scsi_add_wlus(hba);
8906 if (ret)
8907 goto out;
8908
8909 /* Initialize devfreq after UFS device is detected */
8910 if (ufshcd_is_clkscaling_supported(hba)) {
8911 memcpy(&hba->clk_scaling.saved_pwr_info,
8912 &hba->pwr_info,
8913 sizeof(struct ufs_pa_layer_attr));
8914 hba->clk_scaling.is_allowed = true;
8915
8916 ret = ufshcd_devfreq_init(hba);
8917 if (ret)
8918 goto out;
8919
8920 hba->clk_scaling.is_enabled = true;
8921 ufshcd_init_clk_scaling_sysfs(hba);
8922 }
8923
8924 /*
8925 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8926 * pointer and hence must only be started after the WLUN pointer has
8927 * been initialized by ufshcd_scsi_add_wlus().
8928 */
8929 schedule_delayed_work(&hba->ufs_rtc_update_work,
8930 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8931
8932 ufs_bsg_probe(hba);
8933 scsi_scan_host(hba->host);
8934
8935 out:
8936 return ret;
8937 }
8938
8939 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8940 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8941 {
8942 size_t ucdl_size, utrdl_size;
8943
8944 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8945 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8946 hba->ucdl_dma_addr);
8947
8948 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8949 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8950 hba->utrdl_dma_addr);
8951
8952 devm_kfree(hba->dev, hba->lrb);
8953 }
8954
ufshcd_alloc_mcq(struct ufs_hba * hba)8955 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8956 {
8957 int ret;
8958 int old_nutrs = hba->nutrs;
8959
8960 ret = ufshcd_mcq_decide_queue_depth(hba);
8961 if (ret < 0)
8962 return ret;
8963
8964 hba->nutrs = ret;
8965 ret = ufshcd_mcq_init(hba);
8966 if (ret)
8967 goto err;
8968
8969 /*
8970 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8971 * Number of supported tags in MCQ mode may be larger than SDB mode.
8972 */
8973 if (hba->nutrs != old_nutrs) {
8974 ufshcd_release_sdb_queue(hba, old_nutrs);
8975 ret = ufshcd_memory_alloc(hba);
8976 if (ret)
8977 goto err;
8978 ufshcd_host_memory_configure(hba);
8979 }
8980
8981 ret = ufshcd_mcq_memory_alloc(hba);
8982 if (ret)
8983 goto err;
8984
8985 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8986 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8987
8988 return 0;
8989 err:
8990 hba->nutrs = old_nutrs;
8991 return ret;
8992 }
8993
ufshcd_config_mcq(struct ufs_hba * hba)8994 static void ufshcd_config_mcq(struct ufs_hba *hba)
8995 {
8996 int ret;
8997 u32 intrs;
8998
8999 ret = ufshcd_mcq_vops_config_esi(hba);
9000 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
9001
9002 intrs = UFSHCD_ENABLE_MCQ_INTRS;
9003 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
9004 intrs &= ~MCQ_CQ_EVENT_STATUS;
9005 ufshcd_enable_intr(hba, intrs);
9006 ufshcd_mcq_make_queues_operational(hba);
9007 ufshcd_mcq_config_mac(hba, hba->nutrs);
9008
9009 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
9010 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
9011 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
9012 hba->nutrs);
9013 }
9014
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)9015 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
9016 {
9017 int ret;
9018 struct Scsi_Host *host = hba->host;
9019
9020 hba->ufshcd_state = UFSHCD_STATE_RESET;
9021
9022 ret = ufshcd_link_startup(hba);
9023 if (ret)
9024 return ret;
9025
9026 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
9027 return ret;
9028
9029 /* Debug counters initialization */
9030 ufshcd_clear_dbg_ufs_stats(hba);
9031
9032 /* UniPro link is active now */
9033 ufshcd_set_link_active(hba);
9034
9035 /* Reconfigure MCQ upon reset */
9036 if (hba->mcq_enabled && !init_dev_params) {
9037 ufshcd_config_mcq(hba);
9038 ufshcd_mcq_enable(hba);
9039 }
9040
9041 /* Verify device initialization by sending NOP OUT UPIU */
9042 ret = ufshcd_verify_dev_init(hba);
9043 if (ret)
9044 return ret;
9045
9046 /* Initiate UFS initialization, and waiting until completion */
9047 ret = ufshcd_complete_dev_init(hba);
9048 if (ret)
9049 return ret;
9050
9051 /*
9052 * Initialize UFS device parameters used by driver, these
9053 * parameters are associated with UFS descriptors.
9054 */
9055 if (init_dev_params) {
9056 ret = ufshcd_device_params_init(hba);
9057 if (ret)
9058 return ret;
9059 if (is_mcq_supported(hba) && !hba->scsi_host_added) {
9060 ufshcd_mcq_enable(hba);
9061 ret = ufshcd_alloc_mcq(hba);
9062 if (!ret) {
9063 ufshcd_config_mcq(hba);
9064 } else {
9065 /* Continue with SDB mode */
9066 ufshcd_mcq_disable(hba);
9067 use_mcq_mode = false;
9068 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
9069 ret);
9070 }
9071 ret = scsi_add_host(host, hba->dev);
9072 if (ret) {
9073 dev_err(hba->dev, "scsi_add_host failed\n");
9074 return ret;
9075 }
9076 hba->scsi_host_added = true;
9077 } else if (is_mcq_supported(hba)) {
9078 /* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
9079 ufshcd_config_mcq(hba);
9080 ufshcd_mcq_enable(hba);
9081 }
9082 }
9083
9084 ufshcd_tune_unipro_params(hba);
9085
9086 /* UFS device is also active now */
9087 ufshcd_set_ufs_dev_active(hba);
9088 ufshcd_force_reset_auto_bkops(hba);
9089
9090 ufshcd_set_timestamp_attr(hba);
9091
9092 /* Gear up to HS gear if supported */
9093 if (hba->max_pwr_info.is_valid) {
9094 /*
9095 * Set the right value to bRefClkFreq before attempting to
9096 * switch to HS gears.
9097 */
9098 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
9099 ufshcd_set_dev_ref_clk(hba);
9100 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
9101 if (ret) {
9102 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
9103 __func__, ret);
9104 return ret;
9105 }
9106 }
9107
9108 return 0;
9109 }
9110
9111 /**
9112 * ufshcd_probe_hba - probe hba to detect device and initialize it
9113 * @hba: per-adapter instance
9114 * @init_dev_params: whether or not to call ufshcd_device_params_init().
9115 *
9116 * Execute link-startup and verify device initialization
9117 *
9118 * Return: 0 upon success; < 0 upon failure.
9119 */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)9120 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
9121 {
9122 ktime_t start = ktime_get();
9123 unsigned long flags;
9124 int ret;
9125
9126 ret = ufshcd_device_init(hba, init_dev_params);
9127 if (ret)
9128 goto out;
9129
9130 if (!hba->pm_op_in_progress &&
9131 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
9132 /* Reset the device and controller before doing reinit */
9133 ufshcd_device_reset(hba);
9134 ufs_put_device_desc(hba);
9135 ufshcd_hba_stop(hba);
9136 ret = ufshcd_hba_enable(hba);
9137 if (ret) {
9138 dev_err(hba->dev, "Host controller enable failed\n");
9139 ufshcd_print_evt_hist(hba);
9140 ufshcd_print_host_state(hba);
9141 goto out;
9142 }
9143
9144 /* Reinit the device */
9145 ret = ufshcd_device_init(hba, init_dev_params);
9146 if (ret)
9147 goto out;
9148 }
9149
9150 ufshcd_print_pwr_info(hba);
9151
9152 /*
9153 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
9154 * and for removable UFS card as well, hence always set the parameter.
9155 * Note: Error handler may issue the device reset hence resetting
9156 * bActiveICCLevel as well so it is always safe to set this here.
9157 */
9158 ufshcd_set_active_icc_lvl(hba);
9159
9160 /* Enable UFS Write Booster if supported */
9161 ufshcd_configure_wb(hba);
9162
9163 if (hba->ee_usr_mask)
9164 ufshcd_write_ee_control(hba);
9165 ufshcd_configure_auto_hibern8(hba);
9166
9167 trace_android_rvh_ufs_complete_init(hba);
9168 out:
9169 spin_lock_irqsave(hba->host->host_lock, flags);
9170 if (ret)
9171 hba->ufshcd_state = UFSHCD_STATE_ERROR;
9172 else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
9173 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
9174 spin_unlock_irqrestore(hba->host->host_lock, flags);
9175
9176 trace_ufshcd_init(hba, ret,
9177 ktime_to_us(ktime_sub(ktime_get(), start)),
9178 hba->curr_dev_pwr_mode, hba->uic_link_state);
9179 return ret;
9180 }
9181
9182 /**
9183 * ufshcd_async_scan - asynchronous execution for probing hba
9184 * @data: data pointer to pass to this function
9185 * @cookie: cookie data
9186 */
ufshcd_async_scan(void * data,async_cookie_t cookie)9187 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
9188 {
9189 struct ufs_hba *hba = (struct ufs_hba *)data;
9190 int ret;
9191
9192 down(&hba->host_sem);
9193 /* Initialize hba, detect and initialize UFS device */
9194 ret = ufshcd_probe_hba(hba, true);
9195 up(&hba->host_sem);
9196 if (ret)
9197 goto out;
9198
9199 /* Probe and add UFS logical units */
9200 ret = ufshcd_add_lus(hba);
9201
9202 out:
9203 pm_runtime_put_sync(hba->dev);
9204
9205 if (ret)
9206 dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9207 }
9208
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)9209 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9210 {
9211 struct ufs_hba *hba = shost_priv(scmd->device->host);
9212
9213 if (!hba->system_suspending) {
9214 /* Activate the error handler in the SCSI core. */
9215 return SCSI_EH_NOT_HANDLED;
9216 }
9217
9218 /*
9219 * If we get here we know that no TMFs are outstanding and also that
9220 * the only pending command is a START STOP UNIT command. Handle the
9221 * timeout of that command directly to prevent a deadlock between
9222 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9223 */
9224 ufshcd_link_recovery(hba);
9225 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9226 __func__, hba->outstanding_tasks);
9227
9228 trace_android_vh_ufs_eh_timed_out(hba, scmd);
9229
9230 return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9231 }
9232
9233 static const struct attribute_group *ufshcd_driver_groups[] = {
9234 &ufs_sysfs_unit_descriptor_group,
9235 &ufs_sysfs_lun_attributes_group,
9236 NULL,
9237 };
9238
9239 static struct ufs_hba_variant_params ufs_hba_vps = {
9240 .hba_enable_delay_us = 1000,
9241 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
9242 .devfreq_profile.polling_ms = 100,
9243 .devfreq_profile.target = ufshcd_devfreq_target,
9244 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
9245 .ondemand_data.upthreshold = 70,
9246 .ondemand_data.downdifferential = 5,
9247 };
9248
9249 static const struct scsi_host_template ufshcd_driver_template = {
9250 .module = THIS_MODULE,
9251 .name = UFSHCD,
9252 .proc_name = UFSHCD,
9253 .map_queues = ufshcd_map_queues,
9254 .queuecommand = ufshcd_queuecommand,
9255 .mq_poll = ufshcd_poll,
9256 .slave_alloc = ufshcd_slave_alloc,
9257 .device_configure = ufshcd_device_configure,
9258 .slave_destroy = ufshcd_slave_destroy,
9259 .change_queue_depth = ufshcd_change_queue_depth,
9260 .eh_abort_handler = ufshcd_abort,
9261 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9262 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
9263 .eh_timed_out = ufshcd_eh_timed_out,
9264 .this_id = -1,
9265 .sg_tablesize = SG_ALL,
9266 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
9267 .max_sectors = SZ_1M / SECTOR_SIZE,
9268 .max_host_blocked = 1,
9269 .track_queue_depth = 1,
9270 .skip_settle_delay = 1,
9271 .sdev_groups = ufshcd_driver_groups,
9272 };
9273
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)9274 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9275 int ua)
9276 {
9277 int ret;
9278
9279 if (!vreg)
9280 return 0;
9281
9282 /*
9283 * "set_load" operation shall be required on those regulators
9284 * which specifically configured current limitation. Otherwise
9285 * zero max_uA may cause unexpected behavior when regulator is
9286 * enabled or set as high power mode.
9287 */
9288 if (!vreg->max_uA)
9289 return 0;
9290
9291 ret = regulator_set_load(vreg->reg, ua);
9292 if (ret < 0) {
9293 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9294 __func__, vreg->name, ua, ret);
9295 }
9296
9297 return ret;
9298 }
9299
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9300 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9301 struct ufs_vreg *vreg)
9302 {
9303 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9304 }
9305
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9306 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9307 struct ufs_vreg *vreg)
9308 {
9309 if (!vreg)
9310 return 0;
9311
9312 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9313 }
9314
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9315 static int ufshcd_config_vreg(struct device *dev,
9316 struct ufs_vreg *vreg, bool on)
9317 {
9318 if (regulator_count_voltages(vreg->reg) <= 0)
9319 return 0;
9320
9321 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9322 }
9323
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9324 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9325 {
9326 int ret = 0;
9327
9328 if (!vreg || vreg->enabled)
9329 goto out;
9330
9331 ret = ufshcd_config_vreg(dev, vreg, true);
9332 if (!ret)
9333 ret = regulator_enable(vreg->reg);
9334
9335 if (!ret)
9336 vreg->enabled = true;
9337 else
9338 dev_err(dev, "%s: %s enable failed, err=%d\n",
9339 __func__, vreg->name, ret);
9340 out:
9341 return ret;
9342 }
9343
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9344 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9345 {
9346 int ret = 0;
9347
9348 if (!vreg || !vreg->enabled || vreg->always_on)
9349 goto out;
9350
9351 ret = regulator_disable(vreg->reg);
9352
9353 if (!ret) {
9354 /* ignore errors on applying disable config */
9355 ufshcd_config_vreg(dev, vreg, false);
9356 vreg->enabled = false;
9357 } else {
9358 dev_err(dev, "%s: %s disable failed, err=%d\n",
9359 __func__, vreg->name, ret);
9360 }
9361 out:
9362 return ret;
9363 }
9364
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9365 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9366 {
9367 int ret = 0;
9368 struct device *dev = hba->dev;
9369 struct ufs_vreg_info *info = &hba->vreg_info;
9370
9371 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9372 if (ret)
9373 goto out;
9374
9375 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9376 if (ret)
9377 goto out;
9378
9379 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9380
9381 out:
9382 if (ret) {
9383 ufshcd_toggle_vreg(dev, info->vccq2, false);
9384 ufshcd_toggle_vreg(dev, info->vccq, false);
9385 ufshcd_toggle_vreg(dev, info->vcc, false);
9386 }
9387 return ret;
9388 }
9389
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9390 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9391 {
9392 struct ufs_vreg_info *info = &hba->vreg_info;
9393
9394 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9395 }
9396
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9397 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9398 {
9399 int ret = 0;
9400
9401 if (!vreg)
9402 goto out;
9403
9404 vreg->reg = devm_regulator_get(dev, vreg->name);
9405 if (IS_ERR(vreg->reg)) {
9406 ret = PTR_ERR(vreg->reg);
9407 dev_err(dev, "%s: %s get failed, err=%d\n",
9408 __func__, vreg->name, ret);
9409 }
9410 out:
9411 return ret;
9412 }
9413 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9414
ufshcd_init_vreg(struct ufs_hba * hba)9415 static int ufshcd_init_vreg(struct ufs_hba *hba)
9416 {
9417 int ret = 0;
9418 struct device *dev = hba->dev;
9419 struct ufs_vreg_info *info = &hba->vreg_info;
9420
9421 ret = ufshcd_get_vreg(dev, info->vcc);
9422 if (ret)
9423 goto out;
9424
9425 ret = ufshcd_get_vreg(dev, info->vccq);
9426 if (!ret)
9427 ret = ufshcd_get_vreg(dev, info->vccq2);
9428 out:
9429 return ret;
9430 }
9431
ufshcd_init_hba_vreg(struct ufs_hba * hba)9432 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9433 {
9434 struct ufs_vreg_info *info = &hba->vreg_info;
9435
9436 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9437 }
9438
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9439 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9440 {
9441 int ret = 0;
9442 struct ufs_clk_info *clki;
9443 struct list_head *head = &hba->clk_list_head;
9444 ktime_t start = ktime_get();
9445 bool clk_state_changed = false;
9446
9447 if (list_empty(head))
9448 goto out;
9449
9450 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9451 if (ret)
9452 return ret;
9453
9454 list_for_each_entry(clki, head, list) {
9455 if (!IS_ERR_OR_NULL(clki->clk)) {
9456 /*
9457 * Don't disable clocks which are needed
9458 * to keep the link active.
9459 */
9460 if (ufshcd_is_link_active(hba) &&
9461 clki->keep_link_active)
9462 continue;
9463
9464 clk_state_changed = on ^ clki->enabled;
9465 if (on && !clki->enabled) {
9466 ret = clk_prepare_enable(clki->clk);
9467 if (ret) {
9468 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9469 __func__, clki->name, ret);
9470 goto out;
9471 }
9472 } else if (!on && clki->enabled) {
9473 clk_disable_unprepare(clki->clk);
9474 }
9475 clki->enabled = on;
9476 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9477 clki->name, on ? "en" : "dis");
9478 }
9479 }
9480
9481 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9482 if (ret)
9483 return ret;
9484
9485 if (!ufshcd_is_clkscaling_supported(hba))
9486 ufshcd_pm_qos_update(hba, on);
9487 out:
9488 if (ret) {
9489 list_for_each_entry(clki, head, list) {
9490 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9491 clk_disable_unprepare(clki->clk);
9492 }
9493 } else if (!ret && on && hba->clk_gating.is_initialized) {
9494 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock)
9495 hba->clk_gating.state = CLKS_ON;
9496 trace_ufshcd_clk_gating(hba,
9497 hba->clk_gating.state);
9498 }
9499
9500 if (clk_state_changed)
9501 trace_ufshcd_profile_clk_gating(hba,
9502 (on ? "on" : "off"),
9503 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9504 return ret;
9505 }
9506
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9507 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9508 {
9509 u32 freq;
9510 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9511
9512 if (ret) {
9513 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9514 return REF_CLK_FREQ_INVAL;
9515 }
9516
9517 return ufs_get_bref_clk_from_hz(freq);
9518 }
9519
ufshcd_init_clocks(struct ufs_hba * hba)9520 static int ufshcd_init_clocks(struct ufs_hba *hba)
9521 {
9522 int ret = 0;
9523 struct ufs_clk_info *clki;
9524 struct device *dev = hba->dev;
9525 struct list_head *head = &hba->clk_list_head;
9526
9527 if (list_empty(head))
9528 goto out;
9529
9530 list_for_each_entry(clki, head, list) {
9531 if (!clki->name)
9532 continue;
9533
9534 clki->clk = devm_clk_get(dev, clki->name);
9535 if (IS_ERR(clki->clk)) {
9536 ret = PTR_ERR(clki->clk);
9537 dev_err(dev, "%s: %s clk get failed, %d\n",
9538 __func__, clki->name, ret);
9539 goto out;
9540 }
9541
9542 /*
9543 * Parse device ref clk freq as per device tree "ref_clk".
9544 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9545 * in ufshcd_alloc_host().
9546 */
9547 if (!strcmp(clki->name, "ref_clk"))
9548 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9549
9550 if (clki->max_freq) {
9551 ret = clk_set_rate(clki->clk, clki->max_freq);
9552 if (ret) {
9553 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9554 __func__, clki->name,
9555 clki->max_freq, ret);
9556 goto out;
9557 }
9558 clki->curr_freq = clki->max_freq;
9559 }
9560 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9561 clki->name, clk_get_rate(clki->clk));
9562 }
9563
9564 /* Set Max. frequency for all clocks */
9565 if (hba->use_pm_opp) {
9566 ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9567 if (ret) {
9568 dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9569 ret);
9570 goto out;
9571 }
9572 }
9573
9574 out:
9575 return ret;
9576 }
9577
ufshcd_variant_hba_init(struct ufs_hba * hba)9578 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9579 {
9580 int err = 0;
9581
9582 if (!hba->vops)
9583 goto out;
9584
9585 err = ufshcd_vops_init(hba);
9586 if (err)
9587 dev_err_probe(hba->dev, err,
9588 "%s: variant %s init failed with err %d\n",
9589 __func__, ufshcd_get_var_name(hba), err);
9590 out:
9591 return err;
9592 }
9593
ufshcd_variant_hba_exit(struct ufs_hba * hba)9594 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9595 {
9596 if (!hba->vops)
9597 return;
9598
9599 ufshcd_vops_exit(hba);
9600 }
9601
ufshcd_hba_init(struct ufs_hba * hba)9602 static int ufshcd_hba_init(struct ufs_hba *hba)
9603 {
9604 int err;
9605
9606 /*
9607 * Handle host controller power separately from the UFS device power
9608 * rails as it will help controlling the UFS host controller power
9609 * collapse easily which is different than UFS device power collapse.
9610 * Also, enable the host controller power before we go ahead with rest
9611 * of the initialization here.
9612 */
9613 err = ufshcd_init_hba_vreg(hba);
9614 if (err)
9615 goto out;
9616
9617 err = ufshcd_setup_hba_vreg(hba, true);
9618 if (err)
9619 goto out;
9620
9621 err = ufshcd_init_clocks(hba);
9622 if (err)
9623 goto out_disable_hba_vreg;
9624
9625 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9626 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9627
9628 err = ufshcd_setup_clocks(hba, true);
9629 if (err)
9630 goto out_disable_hba_vreg;
9631
9632 err = ufshcd_init_vreg(hba);
9633 if (err)
9634 goto out_disable_clks;
9635
9636 err = ufshcd_setup_vreg(hba, true);
9637 if (err)
9638 goto out_disable_clks;
9639
9640 err = ufshcd_variant_hba_init(hba);
9641 if (err)
9642 goto out_disable_vreg;
9643
9644 ufs_debugfs_hba_init(hba);
9645 ufs_fault_inject_hba_init(hba);
9646
9647 hba->is_powered = true;
9648 goto out;
9649
9650 out_disable_vreg:
9651 ufshcd_setup_vreg(hba, false);
9652 out_disable_clks:
9653 ufshcd_setup_clocks(hba, false);
9654 out_disable_hba_vreg:
9655 ufshcd_setup_hba_vreg(hba, false);
9656 out:
9657 return err;
9658 }
9659
ufshcd_hba_exit(struct ufs_hba * hba)9660 static void ufshcd_hba_exit(struct ufs_hba *hba)
9661 {
9662 if (hba->is_powered) {
9663 ufshcd_pm_qos_exit(hba);
9664 ufshcd_exit_clk_scaling(hba);
9665 ufshcd_exit_clk_gating(hba);
9666 if (hba->eh_wq)
9667 destroy_workqueue(hba->eh_wq);
9668 ufs_debugfs_hba_exit(hba);
9669 ufshcd_variant_hba_exit(hba);
9670 ufshcd_setup_vreg(hba, false);
9671 ufshcd_setup_clocks(hba, false);
9672 ufshcd_setup_hba_vreg(hba, false);
9673 hba->is_powered = false;
9674 ufs_put_device_desc(hba);
9675 }
9676 }
9677
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9678 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9679 enum ufs_dev_pwr_mode pwr_mode,
9680 struct scsi_sense_hdr *sshdr)
9681 {
9682 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9683 struct scsi_failure failure_defs[] = {
9684 {
9685 .allowed = 2,
9686 .result = SCMD_FAILURE_RESULT_ANY,
9687 },
9688 };
9689 struct scsi_failures failures = {
9690 .failure_definitions = failure_defs,
9691 };
9692 const struct scsi_exec_args args = {
9693 .failures = &failures,
9694 .sshdr = sshdr,
9695 .req_flags = BLK_MQ_REQ_PM,
9696 .scmd_flags = SCMD_FAIL_IF_RECOVERING,
9697 };
9698
9699 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9700 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9701 &args);
9702 }
9703
9704 /**
9705 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9706 * power mode
9707 * @hba: per adapter instance
9708 * @pwr_mode: device power mode to set
9709 *
9710 * Return: 0 if requested power mode is set successfully;
9711 * < 0 if failed to set the requested power mode.
9712 */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9713 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9714 enum ufs_dev_pwr_mode pwr_mode)
9715 {
9716 struct scsi_sense_hdr sshdr;
9717 struct scsi_device *sdp;
9718 unsigned long flags;
9719 int ret;
9720
9721 spin_lock_irqsave(hba->host->host_lock, flags);
9722 sdp = hba->ufs_device_wlun;
9723 if (sdp && scsi_device_online(sdp))
9724 ret = scsi_device_get(sdp);
9725 else
9726 ret = -ENODEV;
9727 spin_unlock_irqrestore(hba->host->host_lock, flags);
9728
9729 if (ret)
9730 return ret;
9731
9732 /*
9733 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9734 * handling, which would wait for host to be resumed. Since we know
9735 * we are functional while we are here, skip host resume in error
9736 * handling context.
9737 */
9738 hba->host->eh_noresume = 1;
9739
9740 /*
9741 * Current function would be generally called from the power management
9742 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9743 * already suspended childs.
9744 */
9745 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9746 if (ret) {
9747 sdev_printk(KERN_WARNING, sdp,
9748 "START_STOP failed for power mode: %d, result %x\n",
9749 pwr_mode, ret);
9750 if (ret > 0) {
9751 if (scsi_sense_valid(&sshdr))
9752 scsi_print_sense_hdr(sdp, NULL, &sshdr);
9753 ret = -EIO;
9754 }
9755 } else {
9756 hba->curr_dev_pwr_mode = pwr_mode;
9757 }
9758
9759 scsi_device_put(sdp);
9760 hba->host->eh_noresume = 0;
9761 return ret;
9762 }
9763
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9764 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9765 enum uic_link_state req_link_state,
9766 bool check_for_bkops)
9767 {
9768 int ret = 0;
9769
9770 if (req_link_state == hba->uic_link_state)
9771 return 0;
9772
9773 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9774 ret = ufshcd_uic_hibern8_enter(hba);
9775 if (!ret) {
9776 ufshcd_set_link_hibern8(hba);
9777 } else {
9778 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9779 __func__, ret);
9780 goto out;
9781 }
9782 }
9783 /*
9784 * If autobkops is enabled, link can't be turned off because
9785 * turning off the link would also turn off the device, except in the
9786 * case of DeepSleep where the device is expected to remain powered.
9787 */
9788 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9789 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9790 /*
9791 * Let's make sure that link is in low power mode, we are doing
9792 * this currently by putting the link in Hibern8. Otherway to
9793 * put the link in low power mode is to send the DME end point
9794 * to device and then send the DME reset command to local
9795 * unipro. But putting the link in hibern8 is much faster.
9796 *
9797 * Note also that putting the link in Hibern8 is a requirement
9798 * for entering DeepSleep.
9799 */
9800 ret = ufshcd_uic_hibern8_enter(hba);
9801 if (ret) {
9802 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9803 __func__, ret);
9804 goto out;
9805 }
9806 /*
9807 * Change controller state to "reset state" which
9808 * should also put the link in off/reset state
9809 */
9810 ufshcd_hba_stop(hba);
9811 /*
9812 * TODO: Check if we need any delay to make sure that
9813 * controller is reset
9814 */
9815 ufshcd_set_link_off(hba);
9816 }
9817
9818 out:
9819 return ret;
9820 }
9821
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9822 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9823 {
9824 bool vcc_off = false;
9825
9826 /*
9827 * It seems some UFS devices may keep drawing more than sleep current
9828 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9829 * To avoid this situation, add 2ms delay before putting these UFS
9830 * rails in LPM mode.
9831 */
9832 if (!ufshcd_is_link_active(hba) &&
9833 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9834 usleep_range(2000, 2100);
9835
9836 /*
9837 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9838 * power.
9839 *
9840 * If UFS device and link is in OFF state, all power supplies (VCC,
9841 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9842 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9843 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9844 *
9845 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9846 * in low power state which would save some power.
9847 *
9848 * If Write Booster is enabled and the device needs to flush the WB
9849 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9850 */
9851 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9852 !hba->dev_info.is_lu_power_on_wp) {
9853 ufshcd_setup_vreg(hba, false);
9854 vcc_off = true;
9855 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9856 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9857 vcc_off = true;
9858 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9859 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9860 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9861 }
9862 }
9863
9864 /*
9865 * Some UFS devices require delay after VCC power rail is turned-off.
9866 */
9867 if (vcc_off && hba->vreg_info.vcc &&
9868 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9869 usleep_range(5000, 5100);
9870 }
9871
9872 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9873 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9874 {
9875 int ret = 0;
9876
9877 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9878 !hba->dev_info.is_lu_power_on_wp) {
9879 ret = ufshcd_setup_vreg(hba, true);
9880 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9881 if (!ufshcd_is_link_active(hba)) {
9882 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9883 if (ret)
9884 goto vcc_disable;
9885 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9886 if (ret)
9887 goto vccq_lpm;
9888 }
9889 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9890 }
9891 goto out;
9892
9893 vccq_lpm:
9894 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9895 vcc_disable:
9896 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9897 out:
9898 return ret;
9899 }
9900 #endif /* CONFIG_PM */
9901
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9902 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9903 {
9904 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9905 ufshcd_setup_hba_vreg(hba, false);
9906 }
9907
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9908 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9909 {
9910 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9911 ufshcd_setup_hba_vreg(hba, true);
9912 }
9913
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9914 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9915 {
9916 int ret = 0;
9917 bool check_for_bkops;
9918 enum ufs_pm_level pm_lvl;
9919 enum ufs_dev_pwr_mode req_dev_pwr_mode;
9920 enum uic_link_state req_link_state;
9921
9922 hba->pm_op_in_progress = true;
9923 if (pm_op != UFS_SHUTDOWN_PM) {
9924 pm_lvl = pm_op == UFS_RUNTIME_PM ?
9925 hba->rpm_lvl : hba->spm_lvl;
9926 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9927 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9928 } else {
9929 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9930 req_link_state = UIC_LINK_OFF_STATE;
9931 }
9932
9933 /*
9934 * If we can't transition into any of the low power modes
9935 * just gate the clocks.
9936 */
9937 ufshcd_hold(hba);
9938 hba->clk_gating.is_suspended = true;
9939
9940 if (ufshcd_is_clkscaling_supported(hba))
9941 ufshcd_clk_scaling_suspend(hba, true);
9942
9943 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9944 req_link_state == UIC_LINK_ACTIVE_STATE) {
9945 goto vops_suspend;
9946 }
9947
9948 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9949 (req_link_state == hba->uic_link_state))
9950 goto enable_scaling;
9951
9952 /* UFS device & link must be active before we enter in this function */
9953 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9954 /* Wait err handler finish or trigger err recovery */
9955 if (!ufshcd_eh_in_progress(hba))
9956 ufshcd_force_error_recovery(hba);
9957 ret = -EBUSY;
9958 goto enable_scaling;
9959 }
9960
9961 if (pm_op == UFS_RUNTIME_PM) {
9962 if (ufshcd_can_autobkops_during_suspend(hba)) {
9963 /*
9964 * The device is idle with no requests in the queue,
9965 * allow background operations if bkops status shows
9966 * that performance might be impacted.
9967 */
9968 ret = ufshcd_bkops_ctrl(hba);
9969 if (ret) {
9970 /*
9971 * If return err in suspend flow, IO will hang.
9972 * Trigger error handler and break suspend for
9973 * error recovery.
9974 */
9975 ufshcd_force_error_recovery(hba);
9976 ret = -EBUSY;
9977 goto enable_scaling;
9978 }
9979 } else {
9980 /* make sure that auto bkops is disabled */
9981 ufshcd_disable_auto_bkops(hba);
9982 }
9983 /*
9984 * If device needs to do BKOP or WB buffer flush during
9985 * Hibern8, keep device power mode as "active power mode"
9986 * and VCC supply.
9987 */
9988 hba->dev_info.b_rpm_dev_flush_capable =
9989 hba->auto_bkops_enabled ||
9990 (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9991 ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9992 ufshcd_is_auto_hibern8_enabled(hba))) &&
9993 ufshcd_wb_need_flush(hba));
9994 }
9995
9996 flush_work(&hba->eeh_work);
9997
9998 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9999 if (ret)
10000 goto enable_scaling;
10001
10002 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
10003 if (pm_op != UFS_RUNTIME_PM)
10004 /* ensure that bkops is disabled */
10005 ufshcd_disable_auto_bkops(hba);
10006
10007 if (!hba->dev_info.b_rpm_dev_flush_capable) {
10008 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
10009 if (ret && pm_op != UFS_SHUTDOWN_PM) {
10010 /*
10011 * If return err in suspend flow, IO will hang.
10012 * Trigger error handler and break suspend for
10013 * error recovery.
10014 */
10015 ufshcd_force_error_recovery(hba);
10016 ret = -EBUSY;
10017 }
10018 if (ret)
10019 goto enable_scaling;
10020 }
10021 }
10022
10023 /*
10024 * In the case of DeepSleep, the device is expected to remain powered
10025 * with the link off, so do not check for bkops.
10026 */
10027 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
10028 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
10029 if (ret && pm_op != UFS_SHUTDOWN_PM) {
10030 /*
10031 * If return err in suspend flow, IO will hang.
10032 * Trigger error handler and break suspend for
10033 * error recovery.
10034 */
10035 ufshcd_force_error_recovery(hba);
10036 ret = -EBUSY;
10037 }
10038 if (ret)
10039 goto set_dev_active;
10040
10041 vops_suspend:
10042 /*
10043 * Call vendor specific suspend callback. As these callbacks may access
10044 * vendor specific host controller register space call them before the
10045 * host clocks are ON.
10046 */
10047 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10048 if (ret)
10049 goto set_link_active;
10050
10051 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10052 goto out;
10053
10054 set_link_active:
10055 /*
10056 * Device hardware reset is required to exit DeepSleep. Also, for
10057 * DeepSleep, the link is off so host reset and restore will be done
10058 * further below.
10059 */
10060 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
10061 ufshcd_device_reset(hba);
10062 WARN_ON(!ufshcd_is_link_off(hba));
10063 }
10064 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
10065 ufshcd_set_link_active(hba);
10066 else if (ufshcd_is_link_off(hba))
10067 ufshcd_host_reset_and_restore(hba);
10068 set_dev_active:
10069 /* Can also get here needing to exit DeepSleep */
10070 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
10071 ufshcd_device_reset(hba);
10072 ufshcd_host_reset_and_restore(hba);
10073 }
10074 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
10075 ufshcd_disable_auto_bkops(hba);
10076 enable_scaling:
10077 if (ufshcd_is_clkscaling_supported(hba))
10078 ufshcd_clk_scaling_suspend(hba, false);
10079
10080 hba->dev_info.b_rpm_dev_flush_capable = false;
10081 out:
10082 if (hba->dev_info.b_rpm_dev_flush_capable) {
10083 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
10084 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
10085 }
10086
10087 if (ret) {
10088 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
10089 hba->clk_gating.is_suspended = false;
10090 ufshcd_release(hba);
10091 }
10092 hba->pm_op_in_progress = false;
10093 return ret;
10094 }
10095
10096 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)10097 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
10098 {
10099 int ret;
10100 enum uic_link_state old_link_state = hba->uic_link_state;
10101
10102 hba->pm_op_in_progress = true;
10103
10104 /*
10105 * Call vendor specific resume callback. As these callbacks may access
10106 * vendor specific host controller register space call them when the
10107 * host clocks are ON.
10108 */
10109 ret = ufshcd_vops_resume(hba, pm_op);
10110 if (ret)
10111 goto out;
10112
10113 /* For DeepSleep, the only supported option is to have the link off */
10114 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
10115
10116 if (ufshcd_is_link_hibern8(hba)) {
10117 ret = ufshcd_uic_hibern8_exit(hba);
10118 if (!ret) {
10119 ufshcd_set_link_active(hba);
10120 } else {
10121 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
10122 __func__, ret);
10123 goto vendor_suspend;
10124 }
10125 } else if (ufshcd_is_link_off(hba)) {
10126 /*
10127 * A full initialization of the host and the device is
10128 * required since the link was put to off during suspend.
10129 * Note, in the case of DeepSleep, the device will exit
10130 * DeepSleep due to device reset.
10131 */
10132 ret = ufshcd_reset_and_restore(hba);
10133 /*
10134 * ufshcd_reset_and_restore() should have already
10135 * set the link state as active
10136 */
10137 if (ret || !ufshcd_is_link_active(hba))
10138 goto vendor_suspend;
10139 }
10140
10141 if (!ufshcd_is_ufs_dev_active(hba)) {
10142 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
10143 if (ret)
10144 goto set_old_link_state;
10145 ufshcd_set_timestamp_attr(hba);
10146 schedule_delayed_work(&hba->ufs_rtc_update_work,
10147 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
10148 }
10149
10150 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
10151 ufshcd_enable_auto_bkops(hba);
10152 else
10153 /*
10154 * If BKOPs operations are urgently needed at this moment then
10155 * keep auto-bkops enabled or else disable it.
10156 */
10157 ufshcd_bkops_ctrl(hba);
10158
10159 if (hba->ee_usr_mask)
10160 ufshcd_write_ee_control(hba);
10161
10162 if (ufshcd_is_clkscaling_supported(hba))
10163 ufshcd_clk_scaling_suspend(hba, false);
10164
10165 if (hba->dev_info.b_rpm_dev_flush_capable) {
10166 hba->dev_info.b_rpm_dev_flush_capable = false;
10167 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
10168 }
10169
10170 ufshcd_configure_auto_hibern8(hba);
10171
10172 goto out;
10173
10174 set_old_link_state:
10175 ufshcd_link_state_transition(hba, old_link_state, 0);
10176 vendor_suspend:
10177 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10178 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10179 out:
10180 if (ret)
10181 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
10182 hba->clk_gating.is_suspended = false;
10183 ufshcd_release(hba);
10184 hba->pm_op_in_progress = false;
10185 return ret;
10186 }
10187
ufshcd_wl_runtime_suspend(struct device * dev)10188 static int ufshcd_wl_runtime_suspend(struct device *dev)
10189 {
10190 struct scsi_device *sdev = to_scsi_device(dev);
10191 struct ufs_hba *hba;
10192 int ret;
10193 ktime_t start = ktime_get();
10194
10195 hba = shost_priv(sdev->host);
10196
10197 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
10198 if (ret)
10199 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10200
10201 trace_ufshcd_wl_runtime_suspend(hba, ret,
10202 ktime_to_us(ktime_sub(ktime_get(), start)),
10203 hba->curr_dev_pwr_mode, hba->uic_link_state);
10204
10205 return ret;
10206 }
10207
ufshcd_wl_runtime_resume(struct device * dev)10208 static int ufshcd_wl_runtime_resume(struct device *dev)
10209 {
10210 struct scsi_device *sdev = to_scsi_device(dev);
10211 struct ufs_hba *hba;
10212 int ret = 0;
10213 ktime_t start = ktime_get();
10214
10215 hba = shost_priv(sdev->host);
10216
10217 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10218 if (ret)
10219 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10220
10221 trace_ufshcd_wl_runtime_resume(hba, ret,
10222 ktime_to_us(ktime_sub(ktime_get(), start)),
10223 hba->curr_dev_pwr_mode, hba->uic_link_state);
10224
10225 return ret;
10226 }
10227 #endif
10228
10229 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)10230 static int ufshcd_wl_suspend(struct device *dev)
10231 {
10232 struct scsi_device *sdev = to_scsi_device(dev);
10233 struct ufs_hba *hba;
10234 int ret = 0;
10235 ktime_t start = ktime_get();
10236
10237 hba = shost_priv(sdev->host);
10238 down(&hba->host_sem);
10239 hba->system_suspending = true;
10240
10241 if (pm_runtime_suspended(dev))
10242 goto out;
10243
10244 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10245 if (ret) {
10246 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10247 up(&hba->host_sem);
10248 }
10249
10250 out:
10251 if (!ret)
10252 hba->is_sys_suspended = true;
10253 trace_ufshcd_wl_suspend(hba, ret,
10254 ktime_to_us(ktime_sub(ktime_get(), start)),
10255 hba->curr_dev_pwr_mode, hba->uic_link_state);
10256
10257 return ret;
10258 }
10259
ufshcd_wl_resume(struct device * dev)10260 static int ufshcd_wl_resume(struct device *dev)
10261 {
10262 struct scsi_device *sdev = to_scsi_device(dev);
10263 struct ufs_hba *hba;
10264 int ret = 0;
10265 ktime_t start = ktime_get();
10266
10267 hba = shost_priv(sdev->host);
10268
10269 if (pm_runtime_suspended(dev))
10270 goto out;
10271
10272 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10273 if (ret)
10274 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10275 out:
10276 trace_ufshcd_wl_resume(hba, ret,
10277 ktime_to_us(ktime_sub(ktime_get(), start)),
10278 hba->curr_dev_pwr_mode, hba->uic_link_state);
10279 if (!ret)
10280 hba->is_sys_suspended = false;
10281 hba->system_suspending = false;
10282 up(&hba->host_sem);
10283 return ret;
10284 }
10285 #endif
10286
10287 /**
10288 * ufshcd_suspend - helper function for suspend operations
10289 * @hba: per adapter instance
10290 *
10291 * This function will put disable irqs, turn off clocks
10292 * and set vreg and hba-vreg in lpm mode.
10293 *
10294 * Return: 0 upon success; < 0 upon failure.
10295 */
ufshcd_suspend(struct ufs_hba * hba)10296 static int ufshcd_suspend(struct ufs_hba *hba)
10297 {
10298 int ret;
10299
10300 if (!hba->is_powered)
10301 return 0;
10302 /*
10303 * Disable the host irq as host controller as there won't be any
10304 * host controller transaction expected till resume.
10305 */
10306 ufshcd_disable_irq(hba);
10307 ret = ufshcd_setup_clocks(hba, false);
10308 if (ret) {
10309 ufshcd_enable_irq(hba);
10310 return ret;
10311 }
10312 if (ufshcd_is_clkgating_allowed(hba)) {
10313 hba->clk_gating.state = CLKS_OFF;
10314 trace_ufshcd_clk_gating(hba,
10315 hba->clk_gating.state);
10316 }
10317
10318 ufshcd_vreg_set_lpm(hba);
10319 /* Put the host controller in low power mode if possible */
10320 ufshcd_hba_vreg_set_lpm(hba);
10321 ufshcd_pm_qos_update(hba, false);
10322 return ret;
10323 }
10324
10325 #ifdef CONFIG_PM
10326 /**
10327 * ufshcd_resume - helper function for resume operations
10328 * @hba: per adapter instance
10329 *
10330 * This function basically turns on the regulators, clocks and
10331 * irqs of the hba.
10332 *
10333 * Return: 0 for success and non-zero for failure.
10334 */
ufshcd_resume(struct ufs_hba * hba)10335 static int ufshcd_resume(struct ufs_hba *hba)
10336 {
10337 int ret;
10338
10339 if (!hba->is_powered)
10340 return 0;
10341
10342 ufshcd_hba_vreg_set_hpm(hba);
10343 ret = ufshcd_vreg_set_hpm(hba);
10344 if (ret)
10345 goto out;
10346
10347 /* Make sure clocks are enabled before accessing controller */
10348 ret = ufshcd_setup_clocks(hba, true);
10349 if (ret)
10350 goto disable_vreg;
10351
10352 /* enable the host irq as host controller would be active soon */
10353 ufshcd_enable_irq(hba);
10354
10355 goto out;
10356
10357 disable_vreg:
10358 ufshcd_vreg_set_lpm(hba);
10359 out:
10360 if (ret)
10361 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10362 return ret;
10363 }
10364 #endif /* CONFIG_PM */
10365
10366 #ifdef CONFIG_PM_SLEEP
10367 /**
10368 * ufshcd_system_suspend - system suspend callback
10369 * @dev: Device associated with the UFS controller.
10370 *
10371 * Executed before putting the system into a sleep state in which the contents
10372 * of main memory are preserved.
10373 *
10374 * Return: 0 for success and non-zero for failure.
10375 */
ufshcd_system_suspend(struct device * dev)10376 int ufshcd_system_suspend(struct device *dev)
10377 {
10378 struct ufs_hba *hba = dev_get_drvdata(dev);
10379 int ret = 0;
10380 ktime_t start = ktime_get();
10381
10382 if (pm_runtime_suspended(hba->dev))
10383 goto out;
10384
10385 ret = ufshcd_suspend(hba);
10386 out:
10387 trace_ufshcd_system_suspend(hba, ret,
10388 ktime_to_us(ktime_sub(ktime_get(), start)),
10389 hba->curr_dev_pwr_mode, hba->uic_link_state);
10390 return ret;
10391 }
10392 EXPORT_SYMBOL(ufshcd_system_suspend);
10393
10394 /**
10395 * ufshcd_system_resume - system resume callback
10396 * @dev: Device associated with the UFS controller.
10397 *
10398 * Executed after waking the system up from a sleep state in which the contents
10399 * of main memory were preserved.
10400 *
10401 * Return: 0 for success and non-zero for failure.
10402 */
ufshcd_system_resume(struct device * dev)10403 int ufshcd_system_resume(struct device *dev)
10404 {
10405 struct ufs_hba *hba = dev_get_drvdata(dev);
10406 ktime_t start = ktime_get();
10407 int ret = 0;
10408
10409 if (pm_runtime_suspended(hba->dev))
10410 goto out;
10411
10412 ret = ufshcd_resume(hba);
10413
10414 out:
10415 trace_ufshcd_system_resume(hba, ret,
10416 ktime_to_us(ktime_sub(ktime_get(), start)),
10417 hba->curr_dev_pwr_mode, hba->uic_link_state);
10418
10419 return ret;
10420 }
10421 EXPORT_SYMBOL(ufshcd_system_resume);
10422 #endif /* CONFIG_PM_SLEEP */
10423
10424 #ifdef CONFIG_PM
10425 /**
10426 * ufshcd_runtime_suspend - runtime suspend callback
10427 * @dev: Device associated with the UFS controller.
10428 *
10429 * Check the description of ufshcd_suspend() function for more details.
10430 *
10431 * Return: 0 for success and non-zero for failure.
10432 */
ufshcd_runtime_suspend(struct device * dev)10433 int ufshcd_runtime_suspend(struct device *dev)
10434 {
10435 struct ufs_hba *hba = dev_get_drvdata(dev);
10436 int ret;
10437 ktime_t start = ktime_get();
10438
10439 ret = ufshcd_suspend(hba);
10440
10441 trace_ufshcd_runtime_suspend(hba, ret,
10442 ktime_to_us(ktime_sub(ktime_get(), start)),
10443 hba->curr_dev_pwr_mode, hba->uic_link_state);
10444 return ret;
10445 }
10446 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10447
10448 /**
10449 * ufshcd_runtime_resume - runtime resume routine
10450 * @dev: Device associated with the UFS controller.
10451 *
10452 * This function basically brings controller
10453 * to active state. Following operations are done in this function:
10454 *
10455 * 1. Turn on all the controller related clocks
10456 * 2. Turn ON VCC rail
10457 *
10458 * Return: 0 upon success; < 0 upon failure.
10459 */
ufshcd_runtime_resume(struct device * dev)10460 int ufshcd_runtime_resume(struct device *dev)
10461 {
10462 struct ufs_hba *hba = dev_get_drvdata(dev);
10463 int ret;
10464 ktime_t start = ktime_get();
10465
10466 ret = ufshcd_resume(hba);
10467
10468 trace_ufshcd_runtime_resume(hba, ret,
10469 ktime_to_us(ktime_sub(ktime_get(), start)),
10470 hba->curr_dev_pwr_mode, hba->uic_link_state);
10471 return ret;
10472 }
10473 EXPORT_SYMBOL(ufshcd_runtime_resume);
10474 #endif /* CONFIG_PM */
10475
ufshcd_wl_shutdown(struct device * dev)10476 static void ufshcd_wl_shutdown(struct device *dev)
10477 {
10478 struct scsi_device *sdev = to_scsi_device(dev);
10479 struct ufs_hba *hba = shost_priv(sdev->host);
10480
10481 down(&hba->host_sem);
10482 hba->shutting_down = true;
10483 up(&hba->host_sem);
10484
10485 /* Turn on everything while shutting down */
10486 ufshcd_rpm_get_sync(hba);
10487 scsi_device_quiesce(sdev);
10488 shost_for_each_device(sdev, hba->host) {
10489 if (sdev == hba->ufs_device_wlun)
10490 continue;
10491 mutex_lock(&sdev->state_mutex);
10492 scsi_device_set_state(sdev, SDEV_OFFLINE);
10493 mutex_unlock(&sdev->state_mutex);
10494 }
10495 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10496
10497 /*
10498 * Next, turn off the UFS controller and the UFS regulators. Disable
10499 * clocks.
10500 */
10501 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10502 ufshcd_suspend(hba);
10503
10504 hba->is_powered = false;
10505 }
10506
10507 /**
10508 * ufshcd_remove - de-allocate SCSI host and host memory space
10509 * data structure memory
10510 * @hba: per adapter instance
10511 */
ufshcd_remove(struct ufs_hba * hba)10512 void ufshcd_remove(struct ufs_hba *hba)
10513 {
10514 if (hba->ufs_device_wlun)
10515 ufshcd_rpm_get_sync(hba);
10516 ufs_hwmon_remove(hba);
10517 ufs_bsg_remove(hba);
10518 ufs_sysfs_remove_nodes(hba->dev);
10519 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10520 blk_mq_destroy_queue(hba->tmf_queue);
10521 blk_put_queue(hba->tmf_queue);
10522 blk_mq_free_tag_set(&hba->tmf_tag_set);
10523 if (hba->scsi_host_added)
10524 scsi_remove_host(hba->host);
10525 /* disable interrupts */
10526 ufshcd_disable_intr(hba, hba->intr_mask);
10527 ufshcd_hba_stop(hba);
10528 ufshcd_hba_exit(hba);
10529 }
10530 EXPORT_SYMBOL_GPL(ufshcd_remove);
10531
10532 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10533 int ufshcd_system_freeze(struct device *dev)
10534 {
10535
10536 return ufshcd_system_suspend(dev);
10537
10538 }
10539 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10540
ufshcd_system_restore(struct device * dev)10541 int ufshcd_system_restore(struct device *dev)
10542 {
10543
10544 struct ufs_hba *hba = dev_get_drvdata(dev);
10545 int ret;
10546
10547 ret = ufshcd_system_resume(dev);
10548 if (ret)
10549 return ret;
10550
10551 /* Configure UTRL and UTMRL base address registers */
10552 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10553 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10554 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10555 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10556 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10557 REG_UTP_TASK_REQ_LIST_BASE_L);
10558 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10559 REG_UTP_TASK_REQ_LIST_BASE_H);
10560 /*
10561 * Make sure that UTRL and UTMRL base address registers
10562 * are updated with the latest queue addresses. Only after
10563 * updating these addresses, we can queue the new commands.
10564 */
10565 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10566
10567 return 0;
10568
10569 }
10570 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10571
ufshcd_system_thaw(struct device * dev)10572 int ufshcd_system_thaw(struct device *dev)
10573 {
10574 return ufshcd_system_resume(dev);
10575 }
10576 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10577 #endif /* CONFIG_PM_SLEEP */
10578
10579 /**
10580 * ufshcd_set_dma_mask - Set dma mask based on the controller
10581 * addressing capability
10582 * @hba: per adapter instance
10583 *
10584 * Return: 0 for success, non-zero for failure.
10585 */
ufshcd_set_dma_mask(struct ufs_hba * hba)10586 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10587 {
10588 if (hba->vops && hba->vops->set_dma_mask)
10589 return hba->vops->set_dma_mask(hba);
10590 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10591 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10592 return 0;
10593 }
10594 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10595 }
10596
10597 /**
10598 * ufshcd_devres_release - devres cleanup handler, invoked during release of
10599 * hba->dev
10600 * @host: pointer to SCSI host
10601 */
ufshcd_devres_release(void * host)10602 static void ufshcd_devres_release(void *host)
10603 {
10604 scsi_host_put(host);
10605 }
10606
10607 /**
10608 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10609 * @dev: pointer to device handle
10610 * @hba_handle: driver private handle
10611 *
10612 * Return: 0 on success, non-zero value on failure.
10613 *
10614 * NOTE: There is no corresponding ufshcd_dealloc_host() because this function
10615 * keeps track of its allocations using devres and deallocates everything on
10616 * device removal automatically.
10617 */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10618 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10619 {
10620 struct Scsi_Host *host;
10621 struct ufs_hba *hba;
10622 int err = 0;
10623
10624 if (!dev) {
10625 dev_err(dev,
10626 "Invalid memory reference for dev is NULL\n");
10627 err = -ENODEV;
10628 goto out_error;
10629 }
10630
10631 host = scsi_host_alloc(&ufshcd_driver_template,
10632 sizeof(struct ufs_hba_priv));
10633 if (!host) {
10634 dev_err(dev, "scsi_host_alloc failed\n");
10635 err = -ENOMEM;
10636 goto out_error;
10637 }
10638
10639 err = devm_add_action_or_reset(dev, ufshcd_devres_release,
10640 host);
10641 if (err)
10642 return dev_err_probe(dev, err,
10643 "failed to add ufshcd dealloc action\n");
10644
10645 host->nr_maps = HCTX_TYPE_POLL + 1;
10646 hba = shost_priv(host);
10647 hba->host = host;
10648 hba->dev = dev;
10649 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10650 hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10651 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10652 INIT_LIST_HEAD(&hba->clk_list_head);
10653 spin_lock_init(&hba->outstanding_lock);
10654
10655 *hba_handle = hba;
10656
10657 out_error:
10658 return err;
10659 }
10660 EXPORT_SYMBOL(ufshcd_alloc_host);
10661
10662 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10663 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10664 const struct blk_mq_queue_data *qd)
10665 {
10666 WARN_ON_ONCE(true);
10667 return BLK_STS_NOTSUPP;
10668 }
10669
10670 static const struct blk_mq_ops ufshcd_tmf_ops = {
10671 .queue_rq = ufshcd_queue_tmf,
10672 };
10673
10674 /**
10675 * ufshcd_init - Driver initialization routine
10676 * @hba: per-adapter instance
10677 * @mmio_base: base register address
10678 * @irq: Interrupt line of device
10679 *
10680 * Return: 0 on success, non-zero value on failure.
10681 */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10682 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10683 {
10684 int err;
10685 struct Scsi_Host *host = hba->host;
10686 struct device *dev = hba->dev;
10687
10688 /*
10689 * dev_set_drvdata() must be called before any callbacks are registered
10690 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10691 * sysfs).
10692 */
10693 dev_set_drvdata(dev, hba);
10694
10695 if (!mmio_base) {
10696 dev_err(hba->dev,
10697 "Invalid memory reference for mmio_base is NULL\n");
10698 err = -ENODEV;
10699 goto out_error;
10700 }
10701
10702 hba->mmio_base = mmio_base;
10703 hba->irq = irq;
10704 hba->vps = &ufs_hba_vps;
10705
10706 /*
10707 * Initialize clk_gating.lock early since it is being used in
10708 * ufshcd_setup_clocks()
10709 */
10710 spin_lock_init(&hba->clk_gating.lock);
10711
10712 /*
10713 * Set the default power management level for runtime and system PM.
10714 * Host controller drivers can override them in their
10715 * 'ufs_hba_variant_ops::init' callback.
10716 *
10717 * Default power saving mode is to keep UFS link in Hibern8 state
10718 * and UFS device in sleep state.
10719 */
10720 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10721 UFS_SLEEP_PWR_MODE,
10722 UIC_LINK_HIBERN8_STATE);
10723 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10724 UFS_SLEEP_PWR_MODE,
10725 UIC_LINK_HIBERN8_STATE);
10726
10727 err = ufshcd_hba_init(hba);
10728 if (err)
10729 goto out_error;
10730
10731 /* Read capabilities registers */
10732 err = ufshcd_hba_capabilities(hba);
10733 if (err)
10734 goto out_disable;
10735
10736 /* Get UFS version supported by the controller */
10737 hba->ufs_version = ufshcd_get_ufs_version(hba);
10738
10739 /* Get Interrupt bit mask per version */
10740 hba->intr_mask = ufshcd_get_intr_mask(hba);
10741
10742 err = ufshcd_set_dma_mask(hba);
10743 if (err) {
10744 dev_err(hba->dev, "set dma mask failed\n");
10745 goto out_disable;
10746 }
10747
10748 /* Allocate memory for host memory space */
10749 err = ufshcd_memory_alloc(hba);
10750 if (err) {
10751 dev_err(hba->dev, "Memory allocation failed\n");
10752 goto out_disable;
10753 }
10754
10755 /* Configure LRB */
10756 ufshcd_host_memory_configure(hba);
10757
10758 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10759 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10760 host->max_id = UFSHCD_MAX_ID;
10761 host->max_lun = UFS_MAX_LUNS;
10762 host->max_channel = UFSHCD_MAX_CHANNEL;
10763 host->unique_id = host->host_no;
10764 host->max_cmd_len = UFS_CDB_SIZE;
10765 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10766
10767 /* Use default RPM delay if host not set */
10768 if (host->rpm_autosuspend_delay == 0)
10769 host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10770
10771 hba->max_pwr_info.is_valid = false;
10772
10773 /* Initialize work queues */
10774 hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10775 hba->host->host_no);
10776 if (!hba->eh_wq) {
10777 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10778 __func__);
10779 err = -ENOMEM;
10780 goto out_disable;
10781 }
10782 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10783 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10784
10785 sema_init(&hba->host_sem, 1);
10786
10787 /* Initialize UIC command mutex */
10788 mutex_init(&hba->uic_cmd_mutex);
10789
10790 /* Initialize mutex for device management commands */
10791 mutex_init(&hba->dev_cmd.lock);
10792
10793 /* Initialize mutex for exception event control */
10794 mutex_init(&hba->ee_ctrl_mutex);
10795
10796 mutex_init(&hba->wb_mutex);
10797
10798 /* Initialize mutex for PM QoS request synchronization */
10799 mutex_init(&to_hba_priv(hba)->pm_qos_mutex);
10800
10801 init_rwsem(&hba->clk_scaling_lock);
10802
10803 ufshcd_init_clk_gating(hba);
10804
10805 ufshcd_init_clk_scaling(hba);
10806
10807 /*
10808 * In order to avoid any spurious interrupt immediately after
10809 * registering UFS controller interrupt handler, clear any pending UFS
10810 * interrupt status and disable all the UFS interrupts.
10811 */
10812 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10813 REG_INTERRUPT_STATUS);
10814 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10815 /*
10816 * Make sure that UFS interrupts are disabled and any pending interrupt
10817 * status is cleared before registering UFS interrupt handler.
10818 */
10819 ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10820
10821 /* IRQ registration */
10822 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10823 if (err) {
10824 dev_err(hba->dev, "request irq failed\n");
10825 goto out_disable;
10826 } else {
10827 hba->is_irq_enabled = true;
10828 }
10829
10830 if (!is_mcq_supported(hba)) {
10831 if (!hba->lsdb_sup) {
10832 dev_err(hba->dev, "%s: failed to initialize (legacy doorbell mode not supported)\n",
10833 __func__);
10834 err = -EINVAL;
10835 goto out_disable;
10836 }
10837 err = scsi_add_host(host, hba->dev);
10838 if (err) {
10839 dev_err(hba->dev, "scsi_add_host failed\n");
10840 goto out_disable;
10841 }
10842 hba->scsi_host_added = true;
10843 }
10844
10845 hba->tmf_tag_set = (struct blk_mq_tag_set) {
10846 .nr_hw_queues = 1,
10847 .queue_depth = hba->nutmrs,
10848 .ops = &ufshcd_tmf_ops,
10849 .flags = BLK_MQ_F_NO_SCHED,
10850 };
10851 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10852 if (err < 0)
10853 goto out_remove_scsi_host;
10854 hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10855 if (IS_ERR(hba->tmf_queue)) {
10856 err = PTR_ERR(hba->tmf_queue);
10857 goto free_tmf_tag_set;
10858 }
10859 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10860 sizeof(*hba->tmf_rqs), GFP_KERNEL);
10861 if (!hba->tmf_rqs) {
10862 err = -ENOMEM;
10863 goto free_tmf_queue;
10864 }
10865
10866 /* Reset the attached device */
10867 ufshcd_device_reset(hba);
10868
10869 ufshcd_init_crypto(hba);
10870
10871 /* Host controller enable */
10872 err = ufshcd_hba_enable(hba);
10873 if (err) {
10874 dev_err(hba->dev, "Host controller enable failed\n");
10875 ufshcd_print_evt_hist(hba);
10876 ufshcd_print_host_state(hba);
10877 goto free_tmf_queue;
10878 }
10879
10880 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10881 INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10882
10883 /* Set the default auto-hiberate idle timer value to 150 ms */
10884 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10885 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10886 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10887 }
10888
10889 /* Hold auto suspend until async scan completes */
10890 pm_runtime_get_sync(dev);
10891 atomic_set(&hba->scsi_block_reqs_cnt, 0);
10892 /*
10893 * We are assuming that device wasn't put in sleep/power-down
10894 * state exclusively during the boot stage before kernel.
10895 * This assumption helps avoid doing link startup twice during
10896 * ufshcd_probe_hba().
10897 */
10898 ufshcd_set_ufs_dev_active(hba);
10899
10900 async_schedule(ufshcd_async_scan, hba);
10901 ufs_sysfs_add_nodes(dev);
10902 trace_android_vh_ufs_update_sysfs(hba);
10903
10904 device_enable_async_suspend(dev);
10905 ufshcd_pm_qos_init(hba);
10906 return 0;
10907
10908 free_tmf_queue:
10909 blk_mq_destroy_queue(hba->tmf_queue);
10910 blk_put_queue(hba->tmf_queue);
10911 free_tmf_tag_set:
10912 blk_mq_free_tag_set(&hba->tmf_tag_set);
10913 out_remove_scsi_host:
10914 if (hba->scsi_host_added)
10915 scsi_remove_host(hba->host);
10916 out_disable:
10917 hba->is_irq_enabled = false;
10918 ufshcd_hba_exit(hba);
10919 out_error:
10920 return err;
10921 }
10922 EXPORT_SYMBOL_GPL(ufshcd_init);
10923
ufshcd_resume_complete(struct device * dev)10924 void ufshcd_resume_complete(struct device *dev)
10925 {
10926 struct ufs_hba *hba = dev_get_drvdata(dev);
10927
10928 if (hba->complete_put) {
10929 ufshcd_rpm_put(hba);
10930 hba->complete_put = false;
10931 }
10932 }
10933 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10934
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10935 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10936 {
10937 struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10938 enum ufs_dev_pwr_mode dev_pwr_mode;
10939 enum uic_link_state link_state;
10940 unsigned long flags;
10941 bool res;
10942
10943 spin_lock_irqsave(&dev->power.lock, flags);
10944 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10945 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10946 res = pm_runtime_suspended(dev) &&
10947 hba->curr_dev_pwr_mode == dev_pwr_mode &&
10948 hba->uic_link_state == link_state &&
10949 !hba->dev_info.b_rpm_dev_flush_capable;
10950 spin_unlock_irqrestore(&dev->power.lock, flags);
10951
10952 return res;
10953 }
10954
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10955 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10956 {
10957 struct ufs_hba *hba = dev_get_drvdata(dev);
10958 int ret;
10959
10960 /*
10961 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10962 * are same. And it doesn't wake up the device for system-suspend
10963 * if it's runtime suspended. But ufs doesn't follow that.
10964 * Refer ufshcd_resume_complete()
10965 */
10966 if (hba->ufs_device_wlun) {
10967 /* Prevent runtime suspend */
10968 ufshcd_rpm_get_noresume(hba);
10969 /*
10970 * Check if already runtime suspended in same state as system
10971 * suspend would be.
10972 */
10973 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10974 /* RPM state is not ok for SPM, so runtime resume */
10975 ret = ufshcd_rpm_resume(hba);
10976 if (ret < 0 && ret != -EACCES) {
10977 ufshcd_rpm_put(hba);
10978 return ret;
10979 }
10980 }
10981 hba->complete_put = true;
10982 }
10983 return 0;
10984 }
10985 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10986
ufshcd_suspend_prepare(struct device * dev)10987 int ufshcd_suspend_prepare(struct device *dev)
10988 {
10989 return __ufshcd_suspend_prepare(dev, true);
10990 }
10991 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10992
10993 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10994 static int ufshcd_wl_poweroff(struct device *dev)
10995 {
10996 struct scsi_device *sdev = to_scsi_device(dev);
10997 struct ufs_hba *hba = shost_priv(sdev->host);
10998
10999 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
11000 return 0;
11001 }
11002 #endif
11003
ufshcd_wl_probe(struct device * dev)11004 static int ufshcd_wl_probe(struct device *dev)
11005 {
11006 struct scsi_device *sdev = to_scsi_device(dev);
11007
11008 if (!is_device_wlun(sdev))
11009 return -ENODEV;
11010
11011 blk_pm_runtime_init(sdev->request_queue, dev);
11012 pm_runtime_set_autosuspend_delay(dev, 0);
11013 pm_runtime_allow(dev);
11014
11015 return 0;
11016 }
11017
ufshcd_wl_remove(struct device * dev)11018 static int ufshcd_wl_remove(struct device *dev)
11019 {
11020 pm_runtime_forbid(dev);
11021 return 0;
11022 }
11023
11024 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
11025 #ifdef CONFIG_PM_SLEEP
11026 .suspend = ufshcd_wl_suspend,
11027 .resume = ufshcd_wl_resume,
11028 .freeze = ufshcd_wl_suspend,
11029 .thaw = ufshcd_wl_resume,
11030 .poweroff = ufshcd_wl_poweroff,
11031 .restore = ufshcd_wl_resume,
11032 #endif
11033 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
11034 };
11035
ufshcd_check_header_layout(void)11036 static void ufshcd_check_header_layout(void)
11037 {
11038 /*
11039 * gcc compilers before version 10 cannot do constant-folding for
11040 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
11041 * before.
11042 */
11043 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
11044 return;
11045
11046 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11047 .cci = 3})[0] != 3);
11048
11049 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11050 .ehs_length = 2})[1] != 2);
11051
11052 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11053 .enable_crypto = 1})[2]
11054 != 0x80);
11055
11056 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
11057 .command_type = 5,
11058 .data_direction = 3,
11059 .interrupt = 1,
11060 })[3]) != ((5 << 4) | (3 << 1) | 1));
11061
11062 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11063 .dunl = cpu_to_le32(0xdeadbeef)})[1] !=
11064 cpu_to_le32(0xdeadbeef));
11065
11066 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11067 .ocs = 4})[8] != 4);
11068
11069 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11070 .cds = 5})[9] != 5);
11071
11072 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11073 .dunu = cpu_to_le32(0xbadcafe)})[3] !=
11074 cpu_to_le32(0xbadcafe));
11075
11076 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11077 .iid = 0xf })[4] != 0xf0);
11078
11079 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11080 .command_set_type = 0xf })[4] != 0xf);
11081 }
11082
11083 /*
11084 * ufs_dev_wlun_template - describes ufs device wlun
11085 * ufs-device wlun - used to send pm commands
11086 * All luns are consumers of ufs-device wlun.
11087 *
11088 * Currently, no sd driver is present for wluns.
11089 * Hence the no specific pm operations are performed.
11090 * With ufs design, SSU should be sent to ufs-device wlun.
11091 * Hence register a scsi driver for ufs wluns only.
11092 */
11093 static struct scsi_driver ufs_dev_wlun_template = {
11094 .gendrv = {
11095 .name = "ufs_device_wlun",
11096 .probe = ufshcd_wl_probe,
11097 .remove = ufshcd_wl_remove,
11098 .pm = &ufshcd_wl_pm_ops,
11099 .shutdown = ufshcd_wl_shutdown,
11100 },
11101 };
11102
ufshcd_core_init(void)11103 static int __init ufshcd_core_init(void)
11104 {
11105 int ret;
11106
11107 ufshcd_check_header_layout();
11108
11109 ufs_debugfs_init();
11110
11111 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
11112 if (ret)
11113 ufs_debugfs_exit();
11114 return ret;
11115 }
11116
ufshcd_core_exit(void)11117 static void __exit ufshcd_core_exit(void)
11118 {
11119 ufs_debugfs_exit();
11120 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
11121 }
11122
11123 module_init(ufshcd_core_init);
11124 module_exit(ufshcd_core_exit);
11125
11126 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
11127 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
11128 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
11129 MODULE_SOFTDEP("pre: governor_simpleondemand");
11130 MODULE_LICENSE("GPL");
11131