• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - ChipIdea UDC driver
4  *
5  * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
6  *
7  * Author: David Lopo
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmapool.h>
13 #include <linux/dma-direct.h>
14 #include <linux/err.h>
15 #include <linux/irqreturn.h>
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/pinctrl/consumer.h>
20 #include <linux/usb/ch9.h>
21 #include <linux/usb/gadget.h>
22 #include <linux/usb/otg-fsm.h>
23 #include <linux/usb/chipidea.h>
24 
25 #include "ci.h"
26 #include "udc.h"
27 #include "bits.h"
28 #include "otg.h"
29 #include "otg_fsm.h"
30 #include "trace.h"
31 
32 /* control endpoint description */
33 static const struct usb_endpoint_descriptor
34 ctrl_endpt_out_desc = {
35 	.bLength         = USB_DT_ENDPOINT_SIZE,
36 	.bDescriptorType = USB_DT_ENDPOINT,
37 
38 	.bEndpointAddress = USB_DIR_OUT,
39 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
40 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
41 };
42 
43 static const struct usb_endpoint_descriptor
44 ctrl_endpt_in_desc = {
45 	.bLength         = USB_DT_ENDPOINT_SIZE,
46 	.bDescriptorType = USB_DT_ENDPOINT,
47 
48 	.bEndpointAddress = USB_DIR_IN,
49 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
50 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
51 };
52 
53 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
54 		       struct td_node *node);
55 /**
56  * hw_ep_bit: calculates the bit number
57  * @num: endpoint number
58  * @dir: endpoint direction
59  *
60  * This function returns bit number
61  */
hw_ep_bit(int num,int dir)62 static inline int hw_ep_bit(int num, int dir)
63 {
64 	return num + ((dir == TX) ? 16 : 0);
65 }
66 
ep_to_bit(struct ci_hdrc * ci,int n)67 static inline int ep_to_bit(struct ci_hdrc *ci, int n)
68 {
69 	int fill = 16 - ci->hw_ep_max / 2;
70 
71 	if (n >= ci->hw_ep_max / 2)
72 		n += fill;
73 
74 	return n;
75 }
76 
77 /**
78  * hw_device_state: enables/disables interrupts (execute without interruption)
79  * @ci: the controller
80  * @dma: 0 => disable, !0 => enable and set dma engine
81  *
82  * This function returns an error code
83  */
hw_device_state(struct ci_hdrc * ci,u32 dma)84 static int hw_device_state(struct ci_hdrc *ci, u32 dma)
85 {
86 	if (dma) {
87 		hw_write(ci, OP_ENDPTLISTADDR, ~0, dma);
88 		/* interrupt, error, port change, reset, sleep/suspend */
89 		hw_write(ci, OP_USBINTR, ~0,
90 			     USBi_UI|USBi_UEI|USBi_PCI|USBi_URI);
91 	} else {
92 		hw_write(ci, OP_USBINTR, ~0, 0);
93 	}
94 	return 0;
95 }
96 
97 /**
98  * hw_ep_flush: flush endpoint fifo (execute without interruption)
99  * @ci: the controller
100  * @num: endpoint number
101  * @dir: endpoint direction
102  *
103  * This function returns an error code
104  */
hw_ep_flush(struct ci_hdrc * ci,int num,int dir)105 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir)
106 {
107 	int n = hw_ep_bit(num, dir);
108 
109 	do {
110 		/* flush any pending transfer */
111 		hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n));
112 		while (hw_read(ci, OP_ENDPTFLUSH, BIT(n)))
113 			cpu_relax();
114 	} while (hw_read(ci, OP_ENDPTSTAT, BIT(n)));
115 
116 	return 0;
117 }
118 
119 /**
120  * hw_ep_disable: disables endpoint (execute without interruption)
121  * @ci: the controller
122  * @num: endpoint number
123  * @dir: endpoint direction
124  *
125  * This function returns an error code
126  */
hw_ep_disable(struct ci_hdrc * ci,int num,int dir)127 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir)
128 {
129 	hw_write(ci, OP_ENDPTCTRL + num,
130 		 (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
131 	return 0;
132 }
133 
134 /**
135  * hw_ep_enable: enables endpoint (execute without interruption)
136  * @ci: the controller
137  * @num:  endpoint number
138  * @dir:  endpoint direction
139  * @type: endpoint type
140  *
141  * This function returns an error code
142  */
hw_ep_enable(struct ci_hdrc * ci,int num,int dir,int type)143 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type)
144 {
145 	u32 mask, data;
146 
147 	if (dir == TX) {
148 		mask  = ENDPTCTRL_TXT;  /* type    */
149 		data  = type << __ffs(mask);
150 
151 		mask |= ENDPTCTRL_TXS;  /* unstall */
152 		mask |= ENDPTCTRL_TXR;  /* reset data toggle */
153 		data |= ENDPTCTRL_TXR;
154 		mask |= ENDPTCTRL_TXE;  /* enable  */
155 		data |= ENDPTCTRL_TXE;
156 	} else {
157 		mask  = ENDPTCTRL_RXT;  /* type    */
158 		data  = type << __ffs(mask);
159 
160 		mask |= ENDPTCTRL_RXS;  /* unstall */
161 		mask |= ENDPTCTRL_RXR;  /* reset data toggle */
162 		data |= ENDPTCTRL_RXR;
163 		mask |= ENDPTCTRL_RXE;  /* enable  */
164 		data |= ENDPTCTRL_RXE;
165 	}
166 	hw_write(ci, OP_ENDPTCTRL + num, mask, data);
167 	return 0;
168 }
169 
170 /**
171  * hw_ep_get_halt: return endpoint halt status
172  * @ci: the controller
173  * @num: endpoint number
174  * @dir: endpoint direction
175  *
176  * This function returns 1 if endpoint halted
177  */
hw_ep_get_halt(struct ci_hdrc * ci,int num,int dir)178 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir)
179 {
180 	u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
181 
182 	return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0;
183 }
184 
185 /**
186  * hw_ep_prime: primes endpoint (execute without interruption)
187  * @ci: the controller
188  * @num:     endpoint number
189  * @dir:     endpoint direction
190  * @is_ctrl: true if control endpoint
191  *
192  * This function returns an error code
193  */
hw_ep_prime(struct ci_hdrc * ci,int num,int dir,int is_ctrl)194 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl)
195 {
196 	int n = hw_ep_bit(num, dir);
197 
198 	/* Synchronize before ep prime */
199 	wmb();
200 
201 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
202 		return -EAGAIN;
203 
204 	hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n));
205 
206 	while (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
207 		cpu_relax();
208 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
209 		return -EAGAIN;
210 
211 	/* status shoult be tested according with manual but it doesn't work */
212 	return 0;
213 }
214 
215 /**
216  * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
217  *                 without interruption)
218  * @ci: the controller
219  * @num:   endpoint number
220  * @dir:   endpoint direction
221  * @value: true => stall, false => unstall
222  *
223  * This function returns an error code
224  */
hw_ep_set_halt(struct ci_hdrc * ci,int num,int dir,int value)225 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value)
226 {
227 	if (value != 0 && value != 1)
228 		return -EINVAL;
229 
230 	do {
231 		enum ci_hw_regs reg = OP_ENDPTCTRL + num;
232 		u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
233 		u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
234 
235 		/* data toggle - reserved for EP0 but it's in ESS */
236 		hw_write(ci, reg, mask_xs|mask_xr,
237 			  value ? mask_xs : mask_xr);
238 	} while (value != hw_ep_get_halt(ci, num, dir));
239 
240 	return 0;
241 }
242 
243 /**
244  * hw_port_is_high_speed: test if port is high speed
245  * @ci: the controller
246  *
247  * This function returns true if high speed port
248  */
hw_port_is_high_speed(struct ci_hdrc * ci)249 static int hw_port_is_high_speed(struct ci_hdrc *ci)
250 {
251 	return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) :
252 		hw_read(ci, OP_PORTSC, PORTSC_HSP);
253 }
254 
255 /**
256  * hw_test_and_clear_complete: test & clear complete status (execute without
257  *                             interruption)
258  * @ci: the controller
259  * @n: endpoint number
260  *
261  * This function returns complete status
262  */
hw_test_and_clear_complete(struct ci_hdrc * ci,int n)263 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n)
264 {
265 	n = ep_to_bit(ci, n);
266 	return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n));
267 }
268 
269 /**
270  * hw_test_and_clear_intr_active: test & clear active interrupts (execute
271  *                                without interruption)
272  * @ci: the controller
273  *
274  * This function returns active interrutps
275  */
hw_test_and_clear_intr_active(struct ci_hdrc * ci)276 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci)
277 {
278 	u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci);
279 
280 	hw_write(ci, OP_USBSTS, ~0, reg);
281 	return reg;
282 }
283 
284 /**
285  * hw_test_and_clear_setup_guard: test & clear setup guard (execute without
286  *                                interruption)
287  * @ci: the controller
288  *
289  * This function returns guard value
290  */
hw_test_and_clear_setup_guard(struct ci_hdrc * ci)291 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci)
292 {
293 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0);
294 }
295 
296 /**
297  * hw_test_and_set_setup_guard: test & set setup guard (execute without
298  *                              interruption)
299  * @ci: the controller
300  *
301  * This function returns guard value
302  */
hw_test_and_set_setup_guard(struct ci_hdrc * ci)303 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci)
304 {
305 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
306 }
307 
308 /**
309  * hw_usb_set_address: configures USB address (execute without interruption)
310  * @ci: the controller
311  * @value: new USB address
312  *
313  * This function explicitly sets the address, without the "USBADRA" (advance)
314  * feature, which is not supported by older versions of the controller.
315  */
hw_usb_set_address(struct ci_hdrc * ci,u8 value)316 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value)
317 {
318 	hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR,
319 		 value << __ffs(DEVICEADDR_USBADR));
320 }
321 
322 /**
323  * hw_usb_reset: restart device after a bus reset (execute without
324  *               interruption)
325  * @ci: the controller
326  *
327  * This function returns an error code
328  */
hw_usb_reset(struct ci_hdrc * ci)329 static int hw_usb_reset(struct ci_hdrc *ci)
330 {
331 	hw_usb_set_address(ci, 0);
332 
333 	/* ESS flushes only at end?!? */
334 	hw_write(ci, OP_ENDPTFLUSH,    ~0, ~0);
335 
336 	/* clear setup token semaphores */
337 	hw_write(ci, OP_ENDPTSETUPSTAT, 0,  0);
338 
339 	/* clear complete status */
340 	hw_write(ci, OP_ENDPTCOMPLETE,  0,  0);
341 
342 	/* wait until all bits cleared */
343 	while (hw_read(ci, OP_ENDPTPRIME, ~0))
344 		udelay(10);             /* not RTOS friendly */
345 
346 	/* reset all endpoints ? */
347 
348 	/* reset internal status and wait for further instructions
349 	   no need to verify the port reset status (ESS does it) */
350 
351 	return 0;
352 }
353 
354 /******************************************************************************
355  * UTIL block
356  *****************************************************************************/
357 
add_td_to_list(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq,unsigned int length,struct scatterlist * s)358 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
359 			unsigned int length, struct scatterlist *s)
360 {
361 	int i;
362 	u32 temp;
363 	struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node),
364 						  GFP_ATOMIC);
365 
366 	if (node == NULL)
367 		return -ENOMEM;
368 
369 	node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma);
370 	if (node->ptr == NULL) {
371 		kfree(node);
372 		return -ENOMEM;
373 	}
374 
375 	node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES));
376 	node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES);
377 	node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE);
378 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) {
379 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
380 
381 		if (hwreq->req.length == 0
382 				|| hwreq->req.length % hwep->ep.maxpacket)
383 			mul++;
384 		node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO));
385 	}
386 
387 	if (s) {
388 		temp = (u32) (sg_dma_address(s) + hwreq->req.actual);
389 		node->td_remaining_size = CI_MAX_BUF_SIZE - length;
390 	} else {
391 		temp = (u32) (hwreq->req.dma + hwreq->req.actual);
392 	}
393 
394 	if (length) {
395 		node->ptr->page[0] = cpu_to_le32(temp);
396 		for (i = 1; i < TD_PAGE_COUNT; i++) {
397 			u32 page = temp + i * CI_HDRC_PAGE_SIZE;
398 			page &= ~TD_RESERVED_MASK;
399 			node->ptr->page[i] = cpu_to_le32(page);
400 		}
401 	}
402 
403 	hwreq->req.actual += length;
404 
405 	if (!list_empty(&hwreq->tds)) {
406 		/* get the last entry */
407 		lastnode = list_entry(hwreq->tds.prev,
408 				struct td_node, td);
409 		lastnode->ptr->next = cpu_to_le32(node->dma);
410 	}
411 
412 	INIT_LIST_HEAD(&node->td);
413 	list_add_tail(&node->td, &hwreq->tds);
414 
415 	return 0;
416 }
417 
418 /**
419  * _usb_addr: calculates endpoint address from direction & number
420  * @ep:  endpoint
421  */
_usb_addr(struct ci_hw_ep * ep)422 static inline u8 _usb_addr(struct ci_hw_ep *ep)
423 {
424 	return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
425 }
426 
prepare_td_for_non_sg(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq)427 static int prepare_td_for_non_sg(struct ci_hw_ep *hwep,
428 		struct ci_hw_req *hwreq)
429 {
430 	unsigned int rest = hwreq->req.length;
431 	int pages = TD_PAGE_COUNT;
432 	int ret = 0;
433 
434 	if (rest == 0) {
435 		ret = add_td_to_list(hwep, hwreq, 0, NULL);
436 		if (ret < 0)
437 			return ret;
438 	}
439 
440 	/*
441 	 * The first buffer could be not page aligned.
442 	 * In that case we have to span into one extra td.
443 	 */
444 	if (hwreq->req.dma % PAGE_SIZE)
445 		pages--;
446 
447 	while (rest > 0) {
448 		unsigned int count = min(hwreq->req.length - hwreq->req.actual,
449 			(unsigned int)(pages * CI_HDRC_PAGE_SIZE));
450 
451 		ret = add_td_to_list(hwep, hwreq, count, NULL);
452 		if (ret < 0)
453 			return ret;
454 
455 		rest -= count;
456 	}
457 
458 	if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX
459 	    && (hwreq->req.length % hwep->ep.maxpacket == 0)) {
460 		ret = add_td_to_list(hwep, hwreq, 0, NULL);
461 		if (ret < 0)
462 			return ret;
463 	}
464 
465 	return ret;
466 }
467 
prepare_td_per_sg(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq,struct scatterlist * s)468 static int prepare_td_per_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
469 		struct scatterlist *s)
470 {
471 	unsigned int rest = sg_dma_len(s);
472 	int ret = 0;
473 
474 	hwreq->req.actual = 0;
475 	while (rest > 0) {
476 		unsigned int count = min_t(unsigned int, rest,
477 				CI_MAX_BUF_SIZE);
478 
479 		ret = add_td_to_list(hwep, hwreq, count, s);
480 		if (ret < 0)
481 			return ret;
482 
483 		rest -= count;
484 	}
485 
486 	return ret;
487 }
488 
ci_add_buffer_entry(struct td_node * node,struct scatterlist * s)489 static void ci_add_buffer_entry(struct td_node *node, struct scatterlist *s)
490 {
491 	int empty_td_slot_index = (CI_MAX_BUF_SIZE - node->td_remaining_size)
492 			/ CI_HDRC_PAGE_SIZE;
493 	int i;
494 	u32 token;
495 
496 	token = le32_to_cpu(node->ptr->token) + (sg_dma_len(s) << __ffs(TD_TOTAL_BYTES));
497 	node->ptr->token = cpu_to_le32(token);
498 
499 	for (i = empty_td_slot_index; i < TD_PAGE_COUNT; i++) {
500 		u32 page = (u32) sg_dma_address(s) +
501 			(i - empty_td_slot_index) * CI_HDRC_PAGE_SIZE;
502 
503 		page &= ~TD_RESERVED_MASK;
504 		node->ptr->page[i] = cpu_to_le32(page);
505 	}
506 }
507 
prepare_td_for_sg(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq)508 static int prepare_td_for_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
509 {
510 	struct usb_request *req = &hwreq->req;
511 	struct scatterlist *s = req->sg;
512 	int ret = 0, i = 0;
513 	struct td_node *node = NULL;
514 
515 	if (!s || req->zero || req->length == 0) {
516 		dev_err(hwep->ci->dev, "not supported operation for sg\n");
517 		return -EINVAL;
518 	}
519 
520 	while (i++ < req->num_mapped_sgs) {
521 		if (sg_dma_address(s) % PAGE_SIZE) {
522 			dev_err(hwep->ci->dev, "not page aligned sg buffer\n");
523 			return -EINVAL;
524 		}
525 
526 		if (node && (node->td_remaining_size >= sg_dma_len(s))) {
527 			ci_add_buffer_entry(node, s);
528 			node->td_remaining_size -= sg_dma_len(s);
529 		} else {
530 			ret = prepare_td_per_sg(hwep, hwreq, s);
531 			if (ret)
532 				return ret;
533 
534 			node = list_entry(hwreq->tds.prev,
535 				struct td_node, td);
536 		}
537 
538 		s = sg_next(s);
539 	}
540 
541 	return ret;
542 }
543 
544 /*
545  * Verify if the scatterlist is valid by iterating each sg entry.
546  * Return invalid sg entry index which is less than num_sgs.
547  */
sglist_get_invalid_entry(struct device * dma_dev,u8 dir,struct usb_request * req)548 static int sglist_get_invalid_entry(struct device *dma_dev, u8 dir,
549 			struct usb_request *req)
550 {
551 	int i;
552 	struct scatterlist *s = req->sg;
553 
554 	if (req->num_sgs == 1)
555 		return 1;
556 
557 	dir = dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
558 
559 	for (i = 0; i < req->num_sgs; i++, s = sg_next(s)) {
560 		/* Only small sg (generally last sg) may be bounced. If
561 		 * that happens. we can't ensure the addr is page-aligned
562 		 * after dma map.
563 		 */
564 		if (dma_kmalloc_needs_bounce(dma_dev, s->length, dir))
565 			break;
566 
567 		/* Make sure each sg start address (except first sg) is
568 		 * page-aligned and end address (except last sg) is also
569 		 * page-aligned.
570 		 */
571 		if (i == 0) {
572 			if (!IS_ALIGNED(s->offset + s->length,
573 						CI_HDRC_PAGE_SIZE))
574 				break;
575 		} else {
576 			if (s->offset)
577 				break;
578 			if (!sg_is_last(s) && !IS_ALIGNED(s->length,
579 						CI_HDRC_PAGE_SIZE))
580 				break;
581 		}
582 	}
583 
584 	return i;
585 }
586 
sglist_do_bounce(struct ci_hw_req * hwreq,int index,bool copy,unsigned int * bounced)587 static int sglist_do_bounce(struct ci_hw_req *hwreq, int index,
588 			bool copy, unsigned int *bounced)
589 {
590 	void *buf;
591 	int i, ret, nents, num_sgs;
592 	unsigned int rest, rounded;
593 	struct scatterlist *sg, *src, *dst;
594 
595 	nents = index + 1;
596 	ret = sg_alloc_table(&hwreq->sgt, nents, GFP_KERNEL);
597 	if (ret)
598 		return ret;
599 
600 	sg = src = hwreq->req.sg;
601 	num_sgs = hwreq->req.num_sgs;
602 	rest = hwreq->req.length;
603 	dst = hwreq->sgt.sgl;
604 
605 	for (i = 0; i < index; i++) {
606 		memcpy(dst, src, sizeof(*src));
607 		rest -= src->length;
608 		src = sg_next(src);
609 		dst = sg_next(dst);
610 	}
611 
612 	/* create one bounce buffer */
613 	rounded = round_up(rest, CI_HDRC_PAGE_SIZE);
614 	buf = kmalloc(rounded, GFP_KERNEL);
615 	if (!buf) {
616 		sg_free_table(&hwreq->sgt);
617 		return -ENOMEM;
618 	}
619 
620 	sg_set_buf(dst, buf, rounded);
621 
622 	hwreq->req.sg = hwreq->sgt.sgl;
623 	hwreq->req.num_sgs = nents;
624 	hwreq->sgt.sgl = sg;
625 	hwreq->sgt.nents = num_sgs;
626 
627 	if (copy)
628 		sg_copy_to_buffer(src, num_sgs - index, buf, rest);
629 
630 	*bounced = rest;
631 
632 	return 0;
633 }
634 
sglist_do_debounce(struct ci_hw_req * hwreq,bool copy)635 static void sglist_do_debounce(struct ci_hw_req *hwreq, bool copy)
636 {
637 	void *buf;
638 	int i, nents, num_sgs;
639 	struct scatterlist *sg, *src, *dst;
640 
641 	sg = hwreq->req.sg;
642 	num_sgs = hwreq->req.num_sgs;
643 	src = sg_last(sg, num_sgs);
644 	buf = sg_virt(src);
645 
646 	if (copy) {
647 		dst = hwreq->sgt.sgl;
648 		for (i = 0; i < num_sgs - 1; i++)
649 			dst = sg_next(dst);
650 
651 		nents = hwreq->sgt.nents - num_sgs + 1;
652 		sg_copy_from_buffer(dst, nents, buf, sg_dma_len(src));
653 	}
654 
655 	hwreq->req.sg = hwreq->sgt.sgl;
656 	hwreq->req.num_sgs = hwreq->sgt.nents;
657 	hwreq->sgt.sgl = sg;
658 	hwreq->sgt.nents = num_sgs;
659 
660 	kfree(buf);
661 	sg_free_table(&hwreq->sgt);
662 }
663 
664 /**
665  * _hardware_enqueue: configures a request at hardware level
666  * @hwep:   endpoint
667  * @hwreq:  request
668  *
669  * This function returns an error code
670  */
_hardware_enqueue(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq)671 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
672 {
673 	struct ci_hdrc *ci = hwep->ci;
674 	int ret = 0;
675 	struct td_node *firstnode, *lastnode;
676 	unsigned int bounced_size;
677 	struct scatterlist *sg;
678 
679 	/* don't queue twice */
680 	if (hwreq->req.status == -EALREADY)
681 		return -EALREADY;
682 
683 	hwreq->req.status = -EALREADY;
684 
685 	if (hwreq->req.num_sgs && hwreq->req.length &&
686 		ci->has_short_pkt_limit) {
687 		ret = sglist_get_invalid_entry(ci->dev->parent, hwep->dir,
688 					&hwreq->req);
689 		if (ret < hwreq->req.num_sgs) {
690 			ret = sglist_do_bounce(hwreq, ret, hwep->dir == TX,
691 					&bounced_size);
692 			if (ret)
693 				return ret;
694 		}
695 	}
696 
697 	ret = usb_gadget_map_request_by_dev(ci->dev->parent,
698 					    &hwreq->req, hwep->dir);
699 	if (ret)
700 		return ret;
701 
702 	if (hwreq->sgt.sgl) {
703 		/* We've mapped a bigger buffer, now recover the actual size */
704 		sg = sg_last(hwreq->req.sg, hwreq->req.num_sgs);
705 		sg_dma_len(sg) = min(sg_dma_len(sg), bounced_size);
706 	}
707 
708 	if (hwreq->req.num_mapped_sgs)
709 		ret = prepare_td_for_sg(hwep, hwreq);
710 	else
711 		ret = prepare_td_for_non_sg(hwep, hwreq);
712 
713 	if (ret)
714 		return ret;
715 
716 	lastnode = list_entry(hwreq->tds.prev,
717 		struct td_node, td);
718 
719 	lastnode->ptr->next = cpu_to_le32(TD_TERMINATE);
720 	if (!hwreq->req.no_interrupt)
721 		lastnode->ptr->token |= cpu_to_le32(TD_IOC);
722 
723 	list_for_each_entry_safe(firstnode, lastnode, &hwreq->tds, td)
724 		trace_ci_prepare_td(hwep, hwreq, firstnode);
725 
726 	firstnode = list_first_entry(&hwreq->tds, struct td_node, td);
727 
728 	wmb();
729 
730 	hwreq->req.actual = 0;
731 	if (!list_empty(&hwep->qh.queue)) {
732 		struct ci_hw_req *hwreqprev;
733 		int n = hw_ep_bit(hwep->num, hwep->dir);
734 		int tmp_stat;
735 		struct td_node *prevlastnode;
736 		u32 next = firstnode->dma & TD_ADDR_MASK;
737 
738 		hwreqprev = list_entry(hwep->qh.queue.prev,
739 				struct ci_hw_req, queue);
740 		prevlastnode = list_entry(hwreqprev->tds.prev,
741 				struct td_node, td);
742 
743 		prevlastnode->ptr->next = cpu_to_le32(next);
744 		wmb();
745 
746 		if (ci->rev == CI_REVISION_22) {
747 			if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
748 				reprime_dtd(ci, hwep, prevlastnode);
749 		}
750 
751 		if (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
752 			goto done;
753 		do {
754 			hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
755 			tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n));
756 		} while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW));
757 		hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0);
758 		if (tmp_stat)
759 			goto done;
760 	}
761 
762 	/*  QH configuration */
763 	hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma);
764 	hwep->qh.ptr->td.token &=
765 		cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE));
766 
767 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) {
768 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
769 
770 		if (hwreq->req.length == 0
771 				|| hwreq->req.length % hwep->ep.maxpacket)
772 			mul++;
773 		hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT));
774 	}
775 
776 	ret = hw_ep_prime(ci, hwep->num, hwep->dir,
777 			   hwep->type == USB_ENDPOINT_XFER_CONTROL);
778 done:
779 	return ret;
780 }
781 
782 /**
783  * free_pending_td: remove a pending request for the endpoint
784  * @hwep: endpoint
785  */
free_pending_td(struct ci_hw_ep * hwep)786 static void free_pending_td(struct ci_hw_ep *hwep)
787 {
788 	struct td_node *pending = hwep->pending_td;
789 
790 	dma_pool_free(hwep->td_pool, pending->ptr, pending->dma);
791 	hwep->pending_td = NULL;
792 	kfree(pending);
793 }
794 
reprime_dtd(struct ci_hdrc * ci,struct ci_hw_ep * hwep,struct td_node * node)795 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
796 					   struct td_node *node)
797 {
798 	hwep->qh.ptr->td.next = cpu_to_le32(node->dma);
799 	hwep->qh.ptr->td.token &=
800 		cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE));
801 
802 	return hw_ep_prime(ci, hwep->num, hwep->dir,
803 				hwep->type == USB_ENDPOINT_XFER_CONTROL);
804 }
805 
806 /**
807  * _hardware_dequeue: handles a request at hardware level
808  * @hwep: endpoint
809  * @hwreq:  request
810  *
811  * This function returns an error code
812  */
_hardware_dequeue(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq)813 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
814 {
815 	u32 tmptoken;
816 	struct td_node *node, *tmpnode;
817 	unsigned remaining_length;
818 	unsigned actual = hwreq->req.length;
819 	struct ci_hdrc *ci = hwep->ci;
820 
821 	if (hwreq->req.status != -EALREADY)
822 		return -EINVAL;
823 
824 	hwreq->req.status = 0;
825 
826 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
827 		tmptoken = le32_to_cpu(node->ptr->token);
828 		trace_ci_complete_td(hwep, hwreq, node);
829 		if ((TD_STATUS_ACTIVE & tmptoken) != 0) {
830 			int n = hw_ep_bit(hwep->num, hwep->dir);
831 
832 			if (ci->rev == CI_REVISION_24 ||
833 			    ci->rev == CI_REVISION_22)
834 				if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
835 					reprime_dtd(ci, hwep, node);
836 			hwreq->req.status = -EALREADY;
837 			return -EBUSY;
838 		}
839 
840 		remaining_length = (tmptoken & TD_TOTAL_BYTES);
841 		remaining_length >>= __ffs(TD_TOTAL_BYTES);
842 		actual -= remaining_length;
843 
844 		hwreq->req.status = tmptoken & TD_STATUS;
845 		if ((TD_STATUS_HALTED & hwreq->req.status)) {
846 			hwreq->req.status = -EPIPE;
847 			break;
848 		} else if ((TD_STATUS_DT_ERR & hwreq->req.status)) {
849 			hwreq->req.status = -EPROTO;
850 			break;
851 		} else if ((TD_STATUS_TR_ERR & hwreq->req.status)) {
852 			hwreq->req.status = -EILSEQ;
853 			break;
854 		}
855 
856 		if (remaining_length) {
857 			if (hwep->dir == TX) {
858 				hwreq->req.status = -EPROTO;
859 				break;
860 			}
861 		}
862 		/*
863 		 * As the hardware could still address the freed td
864 		 * which will run the udc unusable, the cleanup of the
865 		 * td has to be delayed by one.
866 		 */
867 		if (hwep->pending_td)
868 			free_pending_td(hwep);
869 
870 		hwep->pending_td = node;
871 		list_del_init(&node->td);
872 	}
873 
874 	usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent,
875 					&hwreq->req, hwep->dir);
876 
877 	/* sglist bounced */
878 	if (hwreq->sgt.sgl)
879 		sglist_do_debounce(hwreq, hwep->dir == RX);
880 
881 	hwreq->req.actual += actual;
882 
883 	if (hwreq->req.status)
884 		return hwreq->req.status;
885 
886 	return hwreq->req.actual;
887 }
888 
889 /**
890  * _ep_nuke: dequeues all endpoint requests
891  * @hwep: endpoint
892  *
893  * This function returns an error code
894  * Caller must hold lock
895  */
_ep_nuke(struct ci_hw_ep * hwep)896 static int _ep_nuke(struct ci_hw_ep *hwep)
897 __releases(hwep->lock)
898 __acquires(hwep->lock)
899 {
900 	struct td_node *node, *tmpnode;
901 	if (hwep == NULL)
902 		return -EINVAL;
903 
904 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
905 
906 	while (!list_empty(&hwep->qh.queue)) {
907 
908 		/* pop oldest request */
909 		struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next,
910 						     struct ci_hw_req, queue);
911 
912 		list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
913 			dma_pool_free(hwep->td_pool, node->ptr, node->dma);
914 			list_del_init(&node->td);
915 			node->ptr = NULL;
916 			kfree(node);
917 		}
918 
919 		list_del_init(&hwreq->queue);
920 		hwreq->req.status = -ESHUTDOWN;
921 
922 		if (hwreq->req.complete != NULL) {
923 			spin_unlock(hwep->lock);
924 			usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
925 			spin_lock(hwep->lock);
926 		}
927 	}
928 
929 	if (hwep->pending_td)
930 		free_pending_td(hwep);
931 
932 	return 0;
933 }
934 
_ep_set_halt(struct usb_ep * ep,int value,bool check_transfer)935 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer)
936 {
937 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
938 	int direction, retval = 0;
939 	unsigned long flags;
940 
941 	if (ep == NULL || hwep->ep.desc == NULL)
942 		return -EINVAL;
943 
944 	if (usb_endpoint_xfer_isoc(hwep->ep.desc))
945 		return -EOPNOTSUPP;
946 
947 	spin_lock_irqsave(hwep->lock, flags);
948 
949 	if (value && hwep->dir == TX && check_transfer &&
950 		!list_empty(&hwep->qh.queue) &&
951 			!usb_endpoint_xfer_control(hwep->ep.desc)) {
952 		spin_unlock_irqrestore(hwep->lock, flags);
953 		return -EAGAIN;
954 	}
955 
956 	direction = hwep->dir;
957 	do {
958 		retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value);
959 
960 		if (!value)
961 			hwep->wedge = 0;
962 
963 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
964 			hwep->dir = (hwep->dir == TX) ? RX : TX;
965 
966 	} while (hwep->dir != direction);
967 
968 	spin_unlock_irqrestore(hwep->lock, flags);
969 	return retval;
970 }
971 
972 
973 /**
974  * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
975  * @gadget: gadget
976  *
977  * This function returns an error code
978  */
_gadget_stop_activity(struct usb_gadget * gadget)979 static int _gadget_stop_activity(struct usb_gadget *gadget)
980 {
981 	struct usb_ep *ep;
982 	struct ci_hdrc    *ci = container_of(gadget, struct ci_hdrc, gadget);
983 	unsigned long flags;
984 
985 	/* flush all endpoints */
986 	gadget_for_each_ep(ep, gadget) {
987 		usb_ep_fifo_flush(ep);
988 	}
989 	usb_ep_fifo_flush(&ci->ep0out->ep);
990 	usb_ep_fifo_flush(&ci->ep0in->ep);
991 
992 	/* make sure to disable all endpoints */
993 	gadget_for_each_ep(ep, gadget) {
994 		usb_ep_disable(ep);
995 	}
996 
997 	if (ci->status != NULL) {
998 		usb_ep_free_request(&ci->ep0in->ep, ci->status);
999 		ci->status = NULL;
1000 	}
1001 
1002 	spin_lock_irqsave(&ci->lock, flags);
1003 	ci->gadget.speed = USB_SPEED_UNKNOWN;
1004 	ci->remote_wakeup = 0;
1005 	ci->suspended = 0;
1006 	spin_unlock_irqrestore(&ci->lock, flags);
1007 
1008 	return 0;
1009 }
1010 
1011 /******************************************************************************
1012  * ISR block
1013  *****************************************************************************/
1014 /**
1015  * isr_reset_handler: USB reset interrupt handler
1016  * @ci: UDC device
1017  *
1018  * This function resets USB engine after a bus reset occurred
1019  */
isr_reset_handler(struct ci_hdrc * ci)1020 static void isr_reset_handler(struct ci_hdrc *ci)
1021 __releases(ci->lock)
1022 __acquires(ci->lock)
1023 {
1024 	int retval;
1025 	u32 intr;
1026 
1027 	spin_unlock(&ci->lock);
1028 	if (ci->gadget.speed != USB_SPEED_UNKNOWN)
1029 		usb_gadget_udc_reset(&ci->gadget, ci->driver);
1030 
1031 	retval = _gadget_stop_activity(&ci->gadget);
1032 	if (retval)
1033 		goto done;
1034 
1035 	retval = hw_usb_reset(ci);
1036 	if (retval)
1037 		goto done;
1038 
1039 	/* clear SLI */
1040 	hw_write(ci, OP_USBSTS, USBi_SLI, USBi_SLI);
1041 	intr = hw_read(ci, OP_USBINTR, ~0);
1042 	hw_write(ci, OP_USBINTR, ~0, intr | USBi_SLI);
1043 
1044 	ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC);
1045 	if (ci->status == NULL)
1046 		retval = -ENOMEM;
1047 
1048 done:
1049 	spin_lock(&ci->lock);
1050 
1051 	if (retval)
1052 		dev_err(ci->dev, "error: %i\n", retval);
1053 }
1054 
1055 /**
1056  * isr_get_status_complete: get_status request complete function
1057  * @ep:  endpoint
1058  * @req: request handled
1059  *
1060  * Caller must release lock
1061  */
isr_get_status_complete(struct usb_ep * ep,struct usb_request * req)1062 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
1063 {
1064 	if (ep == NULL || req == NULL)
1065 		return;
1066 
1067 	kfree(req->buf);
1068 	usb_ep_free_request(ep, req);
1069 }
1070 
1071 /**
1072  * _ep_queue: queues (submits) an I/O request to an endpoint
1073  * @ep:        endpoint
1074  * @req:       request
1075  * @gfp_flags: GFP flags (not used)
1076  *
1077  * Caller must hold lock
1078  * This function returns an error code
1079  */
_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t __maybe_unused gfp_flags)1080 static int _ep_queue(struct usb_ep *ep, struct usb_request *req,
1081 		    gfp_t __maybe_unused gfp_flags)
1082 {
1083 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1084 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1085 	struct ci_hdrc *ci = hwep->ci;
1086 	int retval = 0;
1087 
1088 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1089 		return -EINVAL;
1090 
1091 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1092 		if (req->length)
1093 			hwep = (ci->ep0_dir == RX) ?
1094 			       ci->ep0out : ci->ep0in;
1095 		if (!list_empty(&hwep->qh.queue)) {
1096 			_ep_nuke(hwep);
1097 			dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n",
1098 				 _usb_addr(hwep));
1099 		}
1100 	}
1101 
1102 	if (usb_endpoint_xfer_isoc(hwep->ep.desc) &&
1103 	    hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) {
1104 		dev_err(hwep->ci->dev, "request length too big for isochronous\n");
1105 		return -EMSGSIZE;
1106 	}
1107 
1108 	if (ci->has_short_pkt_limit &&
1109 		hwreq->req.length > CI_MAX_REQ_SIZE) {
1110 		dev_err(hwep->ci->dev, "request length too big (max 16KB)\n");
1111 		return -EMSGSIZE;
1112 	}
1113 
1114 	/* first nuke then test link, e.g. previous status has not sent */
1115 	if (!list_empty(&hwreq->queue)) {
1116 		dev_err(hwep->ci->dev, "request already in queue\n");
1117 		return -EBUSY;
1118 	}
1119 
1120 	/* push request */
1121 	hwreq->req.status = -EINPROGRESS;
1122 	hwreq->req.actual = 0;
1123 
1124 	retval = _hardware_enqueue(hwep, hwreq);
1125 
1126 	if (retval == -EALREADY)
1127 		retval = 0;
1128 	if (!retval)
1129 		list_add_tail(&hwreq->queue, &hwep->qh.queue);
1130 
1131 	return retval;
1132 }
1133 
1134 /**
1135  * isr_get_status_response: get_status request response
1136  * @ci: ci struct
1137  * @setup: setup request packet
1138  *
1139  * This function returns an error code
1140  */
isr_get_status_response(struct ci_hdrc * ci,struct usb_ctrlrequest * setup)1141 static int isr_get_status_response(struct ci_hdrc *ci,
1142 				   struct usb_ctrlrequest *setup)
1143 __releases(hwep->lock)
1144 __acquires(hwep->lock)
1145 {
1146 	struct ci_hw_ep *hwep = ci->ep0in;
1147 	struct usb_request *req = NULL;
1148 	gfp_t gfp_flags = GFP_ATOMIC;
1149 	int dir, num, retval;
1150 
1151 	if (hwep == NULL || setup == NULL)
1152 		return -EINVAL;
1153 
1154 	spin_unlock(hwep->lock);
1155 	req = usb_ep_alloc_request(&hwep->ep, gfp_flags);
1156 	spin_lock(hwep->lock);
1157 	if (req == NULL)
1158 		return -ENOMEM;
1159 
1160 	req->complete = isr_get_status_complete;
1161 	req->length   = 2;
1162 	req->buf      = kzalloc(req->length, gfp_flags);
1163 	if (req->buf == NULL) {
1164 		retval = -ENOMEM;
1165 		goto err_free_req;
1166 	}
1167 
1168 	if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1169 		*(u16 *)req->buf = (ci->remote_wakeup << 1) |
1170 			ci->gadget.is_selfpowered;
1171 	} else if ((setup->bRequestType & USB_RECIP_MASK) \
1172 		   == USB_RECIP_ENDPOINT) {
1173 		dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
1174 			TX : RX;
1175 		num =  le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
1176 		*(u16 *)req->buf = hw_ep_get_halt(ci, num, dir);
1177 	}
1178 	/* else do nothing; reserved for future use */
1179 
1180 	retval = _ep_queue(&hwep->ep, req, gfp_flags);
1181 	if (retval)
1182 		goto err_free_buf;
1183 
1184 	return 0;
1185 
1186  err_free_buf:
1187 	kfree(req->buf);
1188  err_free_req:
1189 	spin_unlock(hwep->lock);
1190 	usb_ep_free_request(&hwep->ep, req);
1191 	spin_lock(hwep->lock);
1192 	return retval;
1193 }
1194 
1195 /**
1196  * isr_setup_status_complete: setup_status request complete function
1197  * @ep:  endpoint
1198  * @req: request handled
1199  *
1200  * Caller must release lock. Put the port in test mode if test mode
1201  * feature is selected.
1202  */
1203 static void
isr_setup_status_complete(struct usb_ep * ep,struct usb_request * req)1204 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
1205 {
1206 	struct ci_hdrc *ci = req->context;
1207 	unsigned long flags;
1208 
1209 	if (req->status < 0)
1210 		return;
1211 
1212 	if (ci->setaddr) {
1213 		hw_usb_set_address(ci, ci->address);
1214 		ci->setaddr = false;
1215 		if (ci->address)
1216 			usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS);
1217 	}
1218 
1219 	spin_lock_irqsave(&ci->lock, flags);
1220 	if (ci->test_mode)
1221 		hw_port_test_set(ci, ci->test_mode);
1222 	spin_unlock_irqrestore(&ci->lock, flags);
1223 }
1224 
1225 /**
1226  * isr_setup_status_phase: queues the status phase of a setup transation
1227  * @ci: ci struct
1228  *
1229  * This function returns an error code
1230  */
isr_setup_status_phase(struct ci_hdrc * ci)1231 static int isr_setup_status_phase(struct ci_hdrc *ci)
1232 {
1233 	struct ci_hw_ep *hwep;
1234 
1235 	/*
1236 	 * Unexpected USB controller behavior, caused by bad signal integrity
1237 	 * or ground reference problems, can lead to isr_setup_status_phase
1238 	 * being called with ci->status equal to NULL.
1239 	 * If this situation occurs, you should review your USB hardware design.
1240 	 */
1241 	if (WARN_ON_ONCE(!ci->status))
1242 		return -EPIPE;
1243 
1244 	hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in;
1245 	ci->status->context = ci;
1246 	ci->status->complete = isr_setup_status_complete;
1247 
1248 	return _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC);
1249 }
1250 
1251 /**
1252  * isr_tr_complete_low: transaction complete low level handler
1253  * @hwep: endpoint
1254  *
1255  * This function returns an error code
1256  * Caller must hold lock
1257  */
isr_tr_complete_low(struct ci_hw_ep * hwep)1258 static int isr_tr_complete_low(struct ci_hw_ep *hwep)
1259 __releases(hwep->lock)
1260 __acquires(hwep->lock)
1261 {
1262 	struct ci_hw_req *hwreq, *hwreqtemp;
1263 	struct ci_hw_ep *hweptemp = hwep;
1264 	int retval = 0;
1265 
1266 	list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue,
1267 			queue) {
1268 		retval = _hardware_dequeue(hwep, hwreq);
1269 		if (retval < 0)
1270 			break;
1271 		list_del_init(&hwreq->queue);
1272 		if (hwreq->req.complete != NULL) {
1273 			spin_unlock(hwep->lock);
1274 			if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) &&
1275 					hwreq->req.length)
1276 				hweptemp = hwep->ci->ep0in;
1277 			usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req);
1278 			spin_lock(hwep->lock);
1279 		}
1280 	}
1281 
1282 	if (retval == -EBUSY)
1283 		retval = 0;
1284 
1285 	return retval;
1286 }
1287 
otg_a_alt_hnp_support(struct ci_hdrc * ci)1288 static int otg_a_alt_hnp_support(struct ci_hdrc *ci)
1289 {
1290 	dev_warn(&ci->gadget.dev,
1291 		"connect the device to an alternate port if you want HNP\n");
1292 	return isr_setup_status_phase(ci);
1293 }
1294 
1295 /**
1296  * isr_setup_packet_handler: setup packet handler
1297  * @ci: UDC descriptor
1298  *
1299  * This function handles setup packet
1300  */
isr_setup_packet_handler(struct ci_hdrc * ci)1301 static void isr_setup_packet_handler(struct ci_hdrc *ci)
1302 __releases(ci->lock)
1303 __acquires(ci->lock)
1304 {
1305 	struct ci_hw_ep *hwep = &ci->ci_hw_ep[0];
1306 	struct usb_ctrlrequest req;
1307 	int type, num, dir, err = -EINVAL;
1308 	u8 tmode = 0;
1309 
1310 	/*
1311 	 * Flush data and handshake transactions of previous
1312 	 * setup packet.
1313 	 */
1314 	_ep_nuke(ci->ep0out);
1315 	_ep_nuke(ci->ep0in);
1316 
1317 	/* read_setup_packet */
1318 	do {
1319 		hw_test_and_set_setup_guard(ci);
1320 		memcpy(&req, &hwep->qh.ptr->setup, sizeof(req));
1321 	} while (!hw_test_and_clear_setup_guard(ci));
1322 
1323 	type = req.bRequestType;
1324 
1325 	ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
1326 
1327 	switch (req.bRequest) {
1328 	case USB_REQ_CLEAR_FEATURE:
1329 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1330 				le16_to_cpu(req.wValue) ==
1331 				USB_ENDPOINT_HALT) {
1332 			if (req.wLength != 0)
1333 				break;
1334 			num  = le16_to_cpu(req.wIndex);
1335 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1336 			num &= USB_ENDPOINT_NUMBER_MASK;
1337 			if (dir == TX)
1338 				num += ci->hw_ep_max / 2;
1339 			if (!ci->ci_hw_ep[num].wedge) {
1340 				spin_unlock(&ci->lock);
1341 				err = usb_ep_clear_halt(
1342 					&ci->ci_hw_ep[num].ep);
1343 				spin_lock(&ci->lock);
1344 				if (err)
1345 					break;
1346 			}
1347 			err = isr_setup_status_phase(ci);
1348 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
1349 				le16_to_cpu(req.wValue) ==
1350 				USB_DEVICE_REMOTE_WAKEUP) {
1351 			if (req.wLength != 0)
1352 				break;
1353 			ci->remote_wakeup = 0;
1354 			err = isr_setup_status_phase(ci);
1355 		} else {
1356 			goto delegate;
1357 		}
1358 		break;
1359 	case USB_REQ_GET_STATUS:
1360 		if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) ||
1361 			le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) &&
1362 		    type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
1363 		    type != (USB_DIR_IN|USB_RECIP_INTERFACE))
1364 			goto delegate;
1365 		if (le16_to_cpu(req.wLength) != 2 ||
1366 		    le16_to_cpu(req.wValue)  != 0)
1367 			break;
1368 		err = isr_get_status_response(ci, &req);
1369 		break;
1370 	case USB_REQ_SET_ADDRESS:
1371 		if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
1372 			goto delegate;
1373 		if (le16_to_cpu(req.wLength) != 0 ||
1374 		    le16_to_cpu(req.wIndex)  != 0)
1375 			break;
1376 		ci->address = (u8)le16_to_cpu(req.wValue);
1377 		ci->setaddr = true;
1378 		err = isr_setup_status_phase(ci);
1379 		break;
1380 	case USB_REQ_SET_FEATURE:
1381 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1382 				le16_to_cpu(req.wValue) ==
1383 				USB_ENDPOINT_HALT) {
1384 			if (req.wLength != 0)
1385 				break;
1386 			num  = le16_to_cpu(req.wIndex);
1387 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1388 			num &= USB_ENDPOINT_NUMBER_MASK;
1389 			if (dir == TX)
1390 				num += ci->hw_ep_max / 2;
1391 
1392 			spin_unlock(&ci->lock);
1393 			err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false);
1394 			spin_lock(&ci->lock);
1395 			if (!err)
1396 				isr_setup_status_phase(ci);
1397 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
1398 			if (req.wLength != 0)
1399 				break;
1400 			switch (le16_to_cpu(req.wValue)) {
1401 			case USB_DEVICE_REMOTE_WAKEUP:
1402 				ci->remote_wakeup = 1;
1403 				err = isr_setup_status_phase(ci);
1404 				break;
1405 			case USB_DEVICE_TEST_MODE:
1406 				tmode = le16_to_cpu(req.wIndex) >> 8;
1407 				switch (tmode) {
1408 				case USB_TEST_J:
1409 				case USB_TEST_K:
1410 				case USB_TEST_SE0_NAK:
1411 				case USB_TEST_PACKET:
1412 				case USB_TEST_FORCE_ENABLE:
1413 					ci->test_mode = tmode;
1414 					err = isr_setup_status_phase(
1415 							ci);
1416 					break;
1417 				default:
1418 					break;
1419 				}
1420 				break;
1421 			case USB_DEVICE_B_HNP_ENABLE:
1422 				if (ci_otg_is_fsm_mode(ci)) {
1423 					ci->gadget.b_hnp_enable = 1;
1424 					err = isr_setup_status_phase(
1425 							ci);
1426 				}
1427 				break;
1428 			case USB_DEVICE_A_ALT_HNP_SUPPORT:
1429 				if (ci_otg_is_fsm_mode(ci))
1430 					err = otg_a_alt_hnp_support(ci);
1431 				break;
1432 			case USB_DEVICE_A_HNP_SUPPORT:
1433 				if (ci_otg_is_fsm_mode(ci)) {
1434 					ci->gadget.a_hnp_support = 1;
1435 					err = isr_setup_status_phase(
1436 							ci);
1437 				}
1438 				break;
1439 			default:
1440 				goto delegate;
1441 			}
1442 		} else {
1443 			goto delegate;
1444 		}
1445 		break;
1446 	default:
1447 delegate:
1448 		if (req.wLength == 0)   /* no data phase */
1449 			ci->ep0_dir = TX;
1450 
1451 		spin_unlock(&ci->lock);
1452 		err = ci->driver->setup(&ci->gadget, &req);
1453 		spin_lock(&ci->lock);
1454 		break;
1455 	}
1456 
1457 	if (err < 0) {
1458 		spin_unlock(&ci->lock);
1459 		if (_ep_set_halt(&hwep->ep, 1, false))
1460 			dev_err(ci->dev, "error: _ep_set_halt\n");
1461 		spin_lock(&ci->lock);
1462 	}
1463 }
1464 
1465 /**
1466  * isr_tr_complete_handler: transaction complete interrupt handler
1467  * @ci: UDC descriptor
1468  *
1469  * This function handles traffic events
1470  */
isr_tr_complete_handler(struct ci_hdrc * ci)1471 static void isr_tr_complete_handler(struct ci_hdrc *ci)
1472 __releases(ci->lock)
1473 __acquires(ci->lock)
1474 {
1475 	unsigned i;
1476 	int err;
1477 
1478 	for (i = 0; i < ci->hw_ep_max; i++) {
1479 		struct ci_hw_ep *hwep  = &ci->ci_hw_ep[i];
1480 
1481 		if (hwep->ep.desc == NULL)
1482 			continue;   /* not configured */
1483 
1484 		if (hw_test_and_clear_complete(ci, i)) {
1485 			err = isr_tr_complete_low(hwep);
1486 			if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1487 				if (err > 0)   /* needs status phase */
1488 					err = isr_setup_status_phase(ci);
1489 				if (err < 0) {
1490 					spin_unlock(&ci->lock);
1491 					if (_ep_set_halt(&hwep->ep, 1, false))
1492 						dev_err(ci->dev,
1493 						"error: _ep_set_halt\n");
1494 					spin_lock(&ci->lock);
1495 				}
1496 			}
1497 		}
1498 
1499 		/* Only handle setup packet below */
1500 		if (i == 0 &&
1501 			hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0)))
1502 			isr_setup_packet_handler(ci);
1503 	}
1504 }
1505 
1506 /******************************************************************************
1507  * ENDPT block
1508  *****************************************************************************/
1509 /*
1510  * ep_enable: configure endpoint, making it usable
1511  *
1512  * Check usb_ep_enable() at "usb_gadget.h" for details
1513  */
ep_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)1514 static int ep_enable(struct usb_ep *ep,
1515 		     const struct usb_endpoint_descriptor *desc)
1516 {
1517 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1518 	int retval = 0;
1519 	unsigned long flags;
1520 	u32 cap = 0;
1521 
1522 	if (ep == NULL || desc == NULL)
1523 		return -EINVAL;
1524 
1525 	spin_lock_irqsave(hwep->lock, flags);
1526 
1527 	/* only internal SW should enable ctrl endpts */
1528 
1529 	if (!list_empty(&hwep->qh.queue)) {
1530 		dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n");
1531 		spin_unlock_irqrestore(hwep->lock, flags);
1532 		return -EBUSY;
1533 	}
1534 
1535 	hwep->ep.desc = desc;
1536 
1537 	hwep->dir  = usb_endpoint_dir_in(desc) ? TX : RX;
1538 	hwep->num  = usb_endpoint_num(desc);
1539 	hwep->type = usb_endpoint_type(desc);
1540 
1541 	hwep->ep.maxpacket = usb_endpoint_maxp(desc);
1542 	hwep->ep.mult = usb_endpoint_maxp_mult(desc);
1543 
1544 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1545 		cap |= QH_IOS;
1546 
1547 	cap |= QH_ZLT;
1548 	cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT;
1549 	/*
1550 	 * For ISO-TX, we set mult at QH as the largest value, and use
1551 	 * MultO at TD as real mult value.
1552 	 */
1553 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX)
1554 		cap |= 3 << __ffs(QH_MULT);
1555 
1556 	hwep->qh.ptr->cap = cpu_to_le32(cap);
1557 
1558 	hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE);   /* needed? */
1559 
1560 	if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1561 		dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n");
1562 		retval = -EINVAL;
1563 	}
1564 
1565 	/*
1566 	 * Enable endpoints in the HW other than ep0 as ep0
1567 	 * is always enabled
1568 	 */
1569 	if (hwep->num)
1570 		retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir,
1571 				       hwep->type);
1572 
1573 	spin_unlock_irqrestore(hwep->lock, flags);
1574 	return retval;
1575 }
1576 
1577 /*
1578  * ep_disable: endpoint is no longer usable
1579  *
1580  * Check usb_ep_disable() at "usb_gadget.h" for details
1581  */
ep_disable(struct usb_ep * ep)1582 static int ep_disable(struct usb_ep *ep)
1583 {
1584 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1585 	int direction, retval = 0;
1586 	unsigned long flags;
1587 
1588 	if (ep == NULL)
1589 		return -EINVAL;
1590 	else if (hwep->ep.desc == NULL)
1591 		return -EBUSY;
1592 
1593 	spin_lock_irqsave(hwep->lock, flags);
1594 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1595 		spin_unlock_irqrestore(hwep->lock, flags);
1596 		return 0;
1597 	}
1598 
1599 	/* only internal SW should disable ctrl endpts */
1600 
1601 	direction = hwep->dir;
1602 	do {
1603 		retval |= _ep_nuke(hwep);
1604 		retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir);
1605 
1606 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1607 			hwep->dir = (hwep->dir == TX) ? RX : TX;
1608 
1609 	} while (hwep->dir != direction);
1610 
1611 	hwep->ep.desc = NULL;
1612 
1613 	spin_unlock_irqrestore(hwep->lock, flags);
1614 	return retval;
1615 }
1616 
1617 /*
1618  * ep_alloc_request: allocate a request object to use with this endpoint
1619  *
1620  * Check usb_ep_alloc_request() at "usb_gadget.h" for details
1621  */
ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)1622 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
1623 {
1624 	struct ci_hw_req *hwreq;
1625 
1626 	if (ep == NULL)
1627 		return NULL;
1628 
1629 	hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags);
1630 	if (hwreq != NULL) {
1631 		INIT_LIST_HEAD(&hwreq->queue);
1632 		INIT_LIST_HEAD(&hwreq->tds);
1633 	}
1634 
1635 	return (hwreq == NULL) ? NULL : &hwreq->req;
1636 }
1637 
1638 /*
1639  * ep_free_request: frees a request object
1640  *
1641  * Check usb_ep_free_request() at "usb_gadget.h" for details
1642  */
ep_free_request(struct usb_ep * ep,struct usb_request * req)1643 static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
1644 {
1645 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1646 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1647 	struct td_node *node, *tmpnode;
1648 	unsigned long flags;
1649 
1650 	if (ep == NULL || req == NULL) {
1651 		return;
1652 	} else if (!list_empty(&hwreq->queue)) {
1653 		dev_err(hwep->ci->dev, "freeing queued request\n");
1654 		return;
1655 	}
1656 
1657 	spin_lock_irqsave(hwep->lock, flags);
1658 
1659 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1660 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1661 		list_del_init(&node->td);
1662 		node->ptr = NULL;
1663 		kfree(node);
1664 	}
1665 
1666 	kfree(hwreq);
1667 
1668 	spin_unlock_irqrestore(hwep->lock, flags);
1669 }
1670 
1671 /*
1672  * ep_queue: queues (submits) an I/O request to an endpoint
1673  *
1674  * Check usb_ep_queue()* at usb_gadget.h" for details
1675  */
ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t __maybe_unused gfp_flags)1676 static int ep_queue(struct usb_ep *ep, struct usb_request *req,
1677 		    gfp_t __maybe_unused gfp_flags)
1678 {
1679 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1680 	int retval = 0;
1681 	unsigned long flags;
1682 
1683 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1684 		return -EINVAL;
1685 
1686 	spin_lock_irqsave(hwep->lock, flags);
1687 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1688 		spin_unlock_irqrestore(hwep->lock, flags);
1689 		return 0;
1690 	}
1691 	retval = _ep_queue(ep, req, gfp_flags);
1692 	spin_unlock_irqrestore(hwep->lock, flags);
1693 	return retval;
1694 }
1695 
1696 /*
1697  * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
1698  *
1699  * Check usb_ep_dequeue() at "usb_gadget.h" for details
1700  */
ep_dequeue(struct usb_ep * ep,struct usb_request * req)1701 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
1702 {
1703 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1704 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1705 	unsigned long flags;
1706 	struct td_node *node, *tmpnode;
1707 
1708 	if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY ||
1709 		hwep->ep.desc == NULL || list_empty(&hwreq->queue) ||
1710 		list_empty(&hwep->qh.queue))
1711 		return -EINVAL;
1712 
1713 	spin_lock_irqsave(hwep->lock, flags);
1714 	if (hwep->ci->gadget.speed != USB_SPEED_UNKNOWN)
1715 		hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1716 
1717 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1718 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1719 		list_del(&node->td);
1720 		kfree(node);
1721 	}
1722 
1723 	/* pop request */
1724 	list_del_init(&hwreq->queue);
1725 
1726 	usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir);
1727 
1728 	if (hwreq->sgt.sgl)
1729 		sglist_do_debounce(hwreq, false);
1730 
1731 	req->status = -ECONNRESET;
1732 
1733 	if (hwreq->req.complete != NULL) {
1734 		spin_unlock(hwep->lock);
1735 		usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
1736 		spin_lock(hwep->lock);
1737 	}
1738 
1739 	spin_unlock_irqrestore(hwep->lock, flags);
1740 	return 0;
1741 }
1742 
1743 /*
1744  * ep_set_halt: sets the endpoint halt feature
1745  *
1746  * Check usb_ep_set_halt() at "usb_gadget.h" for details
1747  */
ep_set_halt(struct usb_ep * ep,int value)1748 static int ep_set_halt(struct usb_ep *ep, int value)
1749 {
1750 	return _ep_set_halt(ep, value, true);
1751 }
1752 
1753 /*
1754  * ep_set_wedge: sets the halt feature and ignores clear requests
1755  *
1756  * Check usb_ep_set_wedge() at "usb_gadget.h" for details
1757  */
ep_set_wedge(struct usb_ep * ep)1758 static int ep_set_wedge(struct usb_ep *ep)
1759 {
1760 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1761 	unsigned long flags;
1762 
1763 	if (ep == NULL || hwep->ep.desc == NULL)
1764 		return -EINVAL;
1765 
1766 	spin_lock_irqsave(hwep->lock, flags);
1767 	hwep->wedge = 1;
1768 	spin_unlock_irqrestore(hwep->lock, flags);
1769 
1770 	return usb_ep_set_halt(ep);
1771 }
1772 
1773 /*
1774  * ep_fifo_flush: flushes contents of a fifo
1775  *
1776  * Check usb_ep_fifo_flush() at "usb_gadget.h" for details
1777  */
ep_fifo_flush(struct usb_ep * ep)1778 static void ep_fifo_flush(struct usb_ep *ep)
1779 {
1780 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1781 	unsigned long flags;
1782 
1783 	if (ep == NULL) {
1784 		dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep));
1785 		return;
1786 	}
1787 
1788 	spin_lock_irqsave(hwep->lock, flags);
1789 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1790 		spin_unlock_irqrestore(hwep->lock, flags);
1791 		return;
1792 	}
1793 
1794 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1795 
1796 	spin_unlock_irqrestore(hwep->lock, flags);
1797 }
1798 
1799 /*
1800  * Endpoint-specific part of the API to the USB controller hardware
1801  * Check "usb_gadget.h" for details
1802  */
1803 static const struct usb_ep_ops usb_ep_ops = {
1804 	.enable	       = ep_enable,
1805 	.disable       = ep_disable,
1806 	.alloc_request = ep_alloc_request,
1807 	.free_request  = ep_free_request,
1808 	.queue	       = ep_queue,
1809 	.dequeue       = ep_dequeue,
1810 	.set_halt      = ep_set_halt,
1811 	.set_wedge     = ep_set_wedge,
1812 	.fifo_flush    = ep_fifo_flush,
1813 };
1814 
1815 /******************************************************************************
1816  * GADGET block
1817  *****************************************************************************/
1818 
ci_udc_get_frame(struct usb_gadget * _gadget)1819 static int ci_udc_get_frame(struct usb_gadget *_gadget)
1820 {
1821 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1822 	unsigned long flags;
1823 	int ret;
1824 
1825 	spin_lock_irqsave(&ci->lock, flags);
1826 	ret = hw_read(ci, OP_FRINDEX, 0x3fff);
1827 	spin_unlock_irqrestore(&ci->lock, flags);
1828 	return ret >> 3;
1829 }
1830 
1831 /*
1832  * ci_hdrc_gadget_connect: caller makes sure gadget driver is binded
1833  */
ci_hdrc_gadget_connect(struct usb_gadget * _gadget,int is_active)1834 static void ci_hdrc_gadget_connect(struct usb_gadget *_gadget, int is_active)
1835 {
1836 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1837 
1838 	if (is_active) {
1839 		pm_runtime_get_sync(ci->dev);
1840 		hw_device_reset(ci);
1841 		spin_lock_irq(&ci->lock);
1842 		if (ci->driver) {
1843 			hw_device_state(ci, ci->ep0out->qh.dma);
1844 			usb_gadget_set_state(_gadget, USB_STATE_POWERED);
1845 			spin_unlock_irq(&ci->lock);
1846 			usb_udc_vbus_handler(_gadget, true);
1847 		} else {
1848 			spin_unlock_irq(&ci->lock);
1849 		}
1850 	} else {
1851 		usb_udc_vbus_handler(_gadget, false);
1852 		if (ci->driver)
1853 			ci->driver->disconnect(&ci->gadget);
1854 		hw_device_state(ci, 0);
1855 		if (ci->platdata->notify_event)
1856 			ci->platdata->notify_event(ci,
1857 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
1858 		_gadget_stop_activity(&ci->gadget);
1859 		pm_runtime_put_sync(ci->dev);
1860 		usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED);
1861 	}
1862 }
1863 
ci_udc_vbus_session(struct usb_gadget * _gadget,int is_active)1864 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1865 {
1866 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1867 	unsigned long flags;
1868 	int ret = 0;
1869 
1870 	spin_lock_irqsave(&ci->lock, flags);
1871 	ci->vbus_active = is_active;
1872 	spin_unlock_irqrestore(&ci->lock, flags);
1873 
1874 	if (ci->usb_phy)
1875 		usb_phy_set_charger_state(ci->usb_phy, is_active ?
1876 			USB_CHARGER_PRESENT : USB_CHARGER_ABSENT);
1877 
1878 	if (ci->platdata->notify_event)
1879 		ret = ci->platdata->notify_event(ci,
1880 				CI_HDRC_CONTROLLER_VBUS_EVENT);
1881 
1882 	if (ci->usb_phy) {
1883 		if (is_active)
1884 			usb_phy_set_event(ci->usb_phy, USB_EVENT_VBUS);
1885 		else
1886 			usb_phy_set_event(ci->usb_phy, USB_EVENT_NONE);
1887 	}
1888 
1889 	if (ci->driver)
1890 		ci_hdrc_gadget_connect(_gadget, is_active);
1891 
1892 	return ret;
1893 }
1894 
ci_udc_wakeup(struct usb_gadget * _gadget)1895 static int ci_udc_wakeup(struct usb_gadget *_gadget)
1896 {
1897 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1898 	unsigned long flags;
1899 	int ret = 0;
1900 
1901 	spin_lock_irqsave(&ci->lock, flags);
1902 	if (ci->gadget.speed == USB_SPEED_UNKNOWN) {
1903 		spin_unlock_irqrestore(&ci->lock, flags);
1904 		return 0;
1905 	}
1906 	if (!ci->remote_wakeup) {
1907 		ret = -EOPNOTSUPP;
1908 		goto out;
1909 	}
1910 	if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) {
1911 		ret = -EINVAL;
1912 		goto out;
1913 	}
1914 	hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
1915 out:
1916 	spin_unlock_irqrestore(&ci->lock, flags);
1917 	return ret;
1918 }
1919 
ci_udc_vbus_draw(struct usb_gadget * _gadget,unsigned ma)1920 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma)
1921 {
1922 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1923 
1924 	if (ci->usb_phy)
1925 		return usb_phy_set_power(ci->usb_phy, ma);
1926 	return -ENOTSUPP;
1927 }
1928 
ci_udc_selfpowered(struct usb_gadget * _gadget,int is_on)1929 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on)
1930 {
1931 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1932 	struct ci_hw_ep *hwep = ci->ep0in;
1933 	unsigned long flags;
1934 
1935 	spin_lock_irqsave(hwep->lock, flags);
1936 	_gadget->is_selfpowered = (is_on != 0);
1937 	spin_unlock_irqrestore(hwep->lock, flags);
1938 
1939 	return 0;
1940 }
1941 
1942 /* Change Data+ pullup status
1943  * this func is used by usb_gadget_connect/disconnect
1944  */
ci_udc_pullup(struct usb_gadget * _gadget,int is_on)1945 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on)
1946 {
1947 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1948 
1949 	/*
1950 	 * Data+ pullup controlled by OTG state machine in OTG fsm mode;
1951 	 * and don't touch Data+ in host mode for dual role config.
1952 	 */
1953 	if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST)
1954 		return 0;
1955 
1956 	pm_runtime_get_sync(ci->dev);
1957 	if (is_on)
1958 		hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
1959 	else
1960 		hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
1961 	pm_runtime_put_sync(ci->dev);
1962 
1963 	return 0;
1964 }
1965 
1966 static int ci_udc_start(struct usb_gadget *gadget,
1967 			 struct usb_gadget_driver *driver);
1968 static int ci_udc_stop(struct usb_gadget *gadget);
1969 
1970 /* Match ISOC IN from the highest endpoint */
ci_udc_match_ep(struct usb_gadget * gadget,struct usb_endpoint_descriptor * desc,struct usb_ss_ep_comp_descriptor * comp_desc)1971 static struct usb_ep *ci_udc_match_ep(struct usb_gadget *gadget,
1972 			      struct usb_endpoint_descriptor *desc,
1973 			      struct usb_ss_ep_comp_descriptor *comp_desc)
1974 {
1975 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1976 	struct usb_ep *ep;
1977 
1978 	if (usb_endpoint_xfer_isoc(desc) && usb_endpoint_dir_in(desc)) {
1979 		list_for_each_entry_reverse(ep, &ci->gadget.ep_list, ep_list) {
1980 			if (ep->caps.dir_in && !ep->claimed)
1981 				return ep;
1982 		}
1983 	}
1984 
1985 	return NULL;
1986 }
1987 
1988 /*
1989  * Device operations part of the API to the USB controller hardware,
1990  * which don't involve endpoints (or i/o)
1991  * Check  "usb_gadget.h" for details
1992  */
1993 static const struct usb_gadget_ops usb_gadget_ops = {
1994 	.get_frame	= ci_udc_get_frame,
1995 	.vbus_session	= ci_udc_vbus_session,
1996 	.wakeup		= ci_udc_wakeup,
1997 	.set_selfpowered	= ci_udc_selfpowered,
1998 	.pullup		= ci_udc_pullup,
1999 	.vbus_draw	= ci_udc_vbus_draw,
2000 	.udc_start	= ci_udc_start,
2001 	.udc_stop	= ci_udc_stop,
2002 	.match_ep 	= ci_udc_match_ep,
2003 };
2004 
init_eps(struct ci_hdrc * ci)2005 static int init_eps(struct ci_hdrc *ci)
2006 {
2007 	int retval = 0, i, j;
2008 
2009 	for (i = 0; i < ci->hw_ep_max/2; i++)
2010 		for (j = RX; j <= TX; j++) {
2011 			int k = i + j * ci->hw_ep_max/2;
2012 			struct ci_hw_ep *hwep = &ci->ci_hw_ep[k];
2013 
2014 			scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i,
2015 					(j == TX)  ? "in" : "out");
2016 
2017 			hwep->ci          = ci;
2018 			hwep->lock         = &ci->lock;
2019 			hwep->td_pool      = ci->td_pool;
2020 
2021 			hwep->ep.name      = hwep->name;
2022 			hwep->ep.ops       = &usb_ep_ops;
2023 
2024 			if (i == 0) {
2025 				hwep->ep.caps.type_control = true;
2026 			} else {
2027 				hwep->ep.caps.type_iso = true;
2028 				hwep->ep.caps.type_bulk = true;
2029 				hwep->ep.caps.type_int = true;
2030 			}
2031 
2032 			if (j == TX)
2033 				hwep->ep.caps.dir_in = true;
2034 			else
2035 				hwep->ep.caps.dir_out = true;
2036 
2037 			/*
2038 			 * for ep0: maxP defined in desc, for other
2039 			 * eps, maxP is set by epautoconfig() called
2040 			 * by gadget layer
2041 			 */
2042 			usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0);
2043 
2044 			INIT_LIST_HEAD(&hwep->qh.queue);
2045 			hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL,
2046 						       &hwep->qh.dma);
2047 			if (hwep->qh.ptr == NULL)
2048 				retval = -ENOMEM;
2049 
2050 			/*
2051 			 * set up shorthands for ep0 out and in endpoints,
2052 			 * don't add to gadget's ep_list
2053 			 */
2054 			if (i == 0) {
2055 				if (j == RX)
2056 					ci->ep0out = hwep;
2057 				else
2058 					ci->ep0in = hwep;
2059 
2060 				usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX);
2061 				continue;
2062 			}
2063 
2064 			list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list);
2065 		}
2066 
2067 	return retval;
2068 }
2069 
destroy_eps(struct ci_hdrc * ci)2070 static void destroy_eps(struct ci_hdrc *ci)
2071 {
2072 	int i;
2073 
2074 	for (i = 0; i < ci->hw_ep_max; i++) {
2075 		struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
2076 
2077 		if (hwep->pending_td)
2078 			free_pending_td(hwep);
2079 		dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma);
2080 	}
2081 }
2082 
2083 /**
2084  * ci_udc_start: register a gadget driver
2085  * @gadget: our gadget
2086  * @driver: the driver being registered
2087  *
2088  * Interrupts are enabled here.
2089  */
ci_udc_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)2090 static int ci_udc_start(struct usb_gadget *gadget,
2091 			 struct usb_gadget_driver *driver)
2092 {
2093 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
2094 	int retval;
2095 
2096 	if (driver->disconnect == NULL)
2097 		return -EINVAL;
2098 
2099 	ci->ep0out->ep.desc = &ctrl_endpt_out_desc;
2100 	retval = usb_ep_enable(&ci->ep0out->ep);
2101 	if (retval)
2102 		return retval;
2103 
2104 	ci->ep0in->ep.desc = &ctrl_endpt_in_desc;
2105 	retval = usb_ep_enable(&ci->ep0in->ep);
2106 	if (retval)
2107 		return retval;
2108 
2109 	ci->driver = driver;
2110 
2111 	/* Start otg fsm for B-device */
2112 	if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) {
2113 		ci_hdrc_otg_fsm_start(ci);
2114 		return retval;
2115 	}
2116 
2117 	if (ci->vbus_active)
2118 		ci_hdrc_gadget_connect(gadget, 1);
2119 	else
2120 		usb_udc_vbus_handler(&ci->gadget, false);
2121 
2122 	return retval;
2123 }
2124 
ci_udc_stop_for_otg_fsm(struct ci_hdrc * ci)2125 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci)
2126 {
2127 	if (!ci_otg_is_fsm_mode(ci))
2128 		return;
2129 
2130 	mutex_lock(&ci->fsm.lock);
2131 	if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
2132 		ci->fsm.a_bidl_adis_tmout = 1;
2133 		ci_hdrc_otg_fsm_start(ci);
2134 	} else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
2135 		ci->fsm.protocol = PROTO_UNDEF;
2136 		ci->fsm.otg->state = OTG_STATE_UNDEFINED;
2137 	}
2138 	mutex_unlock(&ci->fsm.lock);
2139 }
2140 
2141 /*
2142  * ci_udc_stop: unregister a gadget driver
2143  */
ci_udc_stop(struct usb_gadget * gadget)2144 static int ci_udc_stop(struct usb_gadget *gadget)
2145 {
2146 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
2147 	unsigned long flags;
2148 
2149 	spin_lock_irqsave(&ci->lock, flags);
2150 	ci->driver = NULL;
2151 
2152 	if (ci->vbus_active) {
2153 		hw_device_state(ci, 0);
2154 		spin_unlock_irqrestore(&ci->lock, flags);
2155 		if (ci->platdata->notify_event)
2156 			ci->platdata->notify_event(ci,
2157 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
2158 		_gadget_stop_activity(&ci->gadget);
2159 		spin_lock_irqsave(&ci->lock, flags);
2160 		pm_runtime_put(ci->dev);
2161 	}
2162 
2163 	spin_unlock_irqrestore(&ci->lock, flags);
2164 
2165 	ci_udc_stop_for_otg_fsm(ci);
2166 	return 0;
2167 }
2168 
2169 /******************************************************************************
2170  * BUS block
2171  *****************************************************************************/
2172 /*
2173  * udc_irq: ci interrupt handler
2174  *
2175  * This function returns IRQ_HANDLED if the IRQ has been handled
2176  * It locks access to registers
2177  */
udc_irq(struct ci_hdrc * ci)2178 static irqreturn_t udc_irq(struct ci_hdrc *ci)
2179 {
2180 	irqreturn_t retval;
2181 	u32 intr;
2182 
2183 	if (ci == NULL)
2184 		return IRQ_HANDLED;
2185 
2186 	spin_lock(&ci->lock);
2187 
2188 	if (ci->platdata->flags & CI_HDRC_REGS_SHARED) {
2189 		if (hw_read(ci, OP_USBMODE, USBMODE_CM) !=
2190 				USBMODE_CM_DC) {
2191 			spin_unlock(&ci->lock);
2192 			return IRQ_NONE;
2193 		}
2194 	}
2195 	intr = hw_test_and_clear_intr_active(ci);
2196 
2197 	if (intr) {
2198 		/* order defines priority - do NOT change it */
2199 		if (USBi_URI & intr)
2200 			isr_reset_handler(ci);
2201 
2202 		if (USBi_PCI & intr) {
2203 			ci->gadget.speed = hw_port_is_high_speed(ci) ?
2204 				USB_SPEED_HIGH : USB_SPEED_FULL;
2205 			if (ci->usb_phy)
2206 				usb_phy_set_event(ci->usb_phy,
2207 					USB_EVENT_ENUMERATED);
2208 			if (ci->suspended) {
2209 				if (ci->driver->resume) {
2210 					spin_unlock(&ci->lock);
2211 					ci->driver->resume(&ci->gadget);
2212 					spin_lock(&ci->lock);
2213 				}
2214 				ci->suspended = 0;
2215 				usb_gadget_set_state(&ci->gadget,
2216 						ci->resume_state);
2217 			}
2218 		}
2219 
2220 		if ((USBi_UI | USBi_UEI) & intr)
2221 			isr_tr_complete_handler(ci);
2222 
2223 		if ((USBi_SLI & intr) && !(ci->suspended)) {
2224 			ci->suspended = 1;
2225 			ci->resume_state = ci->gadget.state;
2226 			if (ci->gadget.speed != USB_SPEED_UNKNOWN &&
2227 			    ci->driver->suspend) {
2228 				spin_unlock(&ci->lock);
2229 				ci->driver->suspend(&ci->gadget);
2230 				spin_lock(&ci->lock);
2231 			}
2232 			usb_gadget_set_state(&ci->gadget,
2233 					USB_STATE_SUSPENDED);
2234 		}
2235 		retval = IRQ_HANDLED;
2236 	} else {
2237 		retval = IRQ_NONE;
2238 	}
2239 	spin_unlock(&ci->lock);
2240 
2241 	return retval;
2242 }
2243 
2244 /**
2245  * udc_start: initialize gadget role
2246  * @ci: chipidea controller
2247  */
udc_start(struct ci_hdrc * ci)2248 static int udc_start(struct ci_hdrc *ci)
2249 {
2250 	struct device *dev = ci->dev;
2251 	struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps;
2252 	int retval = 0;
2253 
2254 	ci->gadget.ops          = &usb_gadget_ops;
2255 	ci->gadget.speed        = USB_SPEED_UNKNOWN;
2256 	ci->gadget.max_speed    = USB_SPEED_HIGH;
2257 	ci->gadget.name         = ci->platdata->name;
2258 	ci->gadget.otg_caps	= otg_caps;
2259 	ci->gadget.sg_supported = 1;
2260 	ci->gadget.irq		= ci->irq;
2261 
2262 	if (ci->platdata->flags & CI_HDRC_REQUIRES_ALIGNED_DMA)
2263 		ci->gadget.quirk_avoids_skb_reserve = 1;
2264 
2265 	if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support ||
2266 						otg_caps->adp_support))
2267 		ci->gadget.is_otg = 1;
2268 
2269 	INIT_LIST_HEAD(&ci->gadget.ep_list);
2270 
2271 	/* alloc resources */
2272 	ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent,
2273 				       sizeof(struct ci_hw_qh),
2274 				       64, CI_HDRC_PAGE_SIZE);
2275 	if (ci->qh_pool == NULL)
2276 		return -ENOMEM;
2277 
2278 	ci->td_pool = dma_pool_create("ci_hw_td", dev->parent,
2279 				       sizeof(struct ci_hw_td),
2280 				       64, CI_HDRC_PAGE_SIZE);
2281 	if (ci->td_pool == NULL) {
2282 		retval = -ENOMEM;
2283 		goto free_qh_pool;
2284 	}
2285 
2286 	retval = init_eps(ci);
2287 	if (retval)
2288 		goto free_pools;
2289 
2290 	ci->gadget.ep0 = &ci->ep0in->ep;
2291 
2292 	retval = usb_add_gadget_udc(dev, &ci->gadget);
2293 	if (retval)
2294 		goto destroy_eps;
2295 
2296 	return retval;
2297 
2298 destroy_eps:
2299 	destroy_eps(ci);
2300 free_pools:
2301 	dma_pool_destroy(ci->td_pool);
2302 free_qh_pool:
2303 	dma_pool_destroy(ci->qh_pool);
2304 	return retval;
2305 }
2306 
2307 /*
2308  * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC
2309  *
2310  * No interrupts active, the IRQ has been released
2311  */
ci_hdrc_gadget_destroy(struct ci_hdrc * ci)2312 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci)
2313 {
2314 	if (!ci->roles[CI_ROLE_GADGET])
2315 		return;
2316 
2317 	usb_del_gadget_udc(&ci->gadget);
2318 
2319 	destroy_eps(ci);
2320 
2321 	dma_pool_destroy(ci->td_pool);
2322 	dma_pool_destroy(ci->qh_pool);
2323 }
2324 
udc_id_switch_for_device(struct ci_hdrc * ci)2325 static int udc_id_switch_for_device(struct ci_hdrc *ci)
2326 {
2327 	if (ci->platdata->pins_device)
2328 		pinctrl_select_state(ci->platdata->pctl,
2329 				     ci->platdata->pins_device);
2330 
2331 	if (ci->is_otg)
2332 		/* Clear and enable BSV irq */
2333 		hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2334 					OTGSC_BSVIS | OTGSC_BSVIE);
2335 
2336 	return 0;
2337 }
2338 
udc_id_switch_for_host(struct ci_hdrc * ci)2339 static void udc_id_switch_for_host(struct ci_hdrc *ci)
2340 {
2341 	/*
2342 	 * host doesn't care B_SESSION_VALID event
2343 	 * so clear and disable BSV irq
2344 	 */
2345 	if (ci->is_otg)
2346 		hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS);
2347 
2348 	ci->vbus_active = 0;
2349 
2350 	if (ci->platdata->pins_device && ci->platdata->pins_default)
2351 		pinctrl_select_state(ci->platdata->pctl,
2352 				     ci->platdata->pins_default);
2353 }
2354 
2355 #ifdef CONFIG_PM_SLEEP
udc_suspend(struct ci_hdrc * ci)2356 static void udc_suspend(struct ci_hdrc *ci)
2357 {
2358 	/*
2359 	 * Set OP_ENDPTLISTADDR to be non-zero for
2360 	 * checking if controller resume from power lost
2361 	 * in non-host mode.
2362 	 */
2363 	if (hw_read(ci, OP_ENDPTLISTADDR, ~0) == 0)
2364 		hw_write(ci, OP_ENDPTLISTADDR, ~0, ~0);
2365 
2366 	if (ci->gadget.connected &&
2367 	    (!ci->suspended || !device_may_wakeup(ci->dev)))
2368 		usb_gadget_disconnect(&ci->gadget);
2369 }
2370 
udc_resume(struct ci_hdrc * ci,bool power_lost)2371 static void udc_resume(struct ci_hdrc *ci, bool power_lost)
2372 {
2373 	if (power_lost) {
2374 		if (ci->is_otg)
2375 			hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2376 					OTGSC_BSVIS | OTGSC_BSVIE);
2377 		if (ci->vbus_active)
2378 			usb_gadget_vbus_disconnect(&ci->gadget);
2379 	} else if (ci->vbus_active && ci->driver &&
2380 		   !ci->gadget.connected) {
2381 		usb_gadget_connect(&ci->gadget);
2382 	}
2383 
2384 	/* Restore value 0 if it was set for power lost check */
2385 	if (hw_read(ci, OP_ENDPTLISTADDR, ~0) == 0xFFFFFFFF)
2386 		hw_write(ci, OP_ENDPTLISTADDR, ~0, 0);
2387 }
2388 #endif
2389 
2390 /**
2391  * ci_hdrc_gadget_init - initialize device related bits
2392  * @ci: the controller
2393  *
2394  * This function initializes the gadget, if the device is "device capable".
2395  */
ci_hdrc_gadget_init(struct ci_hdrc * ci)2396 int ci_hdrc_gadget_init(struct ci_hdrc *ci)
2397 {
2398 	struct ci_role_driver *rdrv;
2399 	int ret;
2400 
2401 	if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC))
2402 		return -ENXIO;
2403 
2404 	rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL);
2405 	if (!rdrv)
2406 		return -ENOMEM;
2407 
2408 	rdrv->start	= udc_id_switch_for_device;
2409 	rdrv->stop	= udc_id_switch_for_host;
2410 #ifdef CONFIG_PM_SLEEP
2411 	rdrv->suspend	= udc_suspend;
2412 	rdrv->resume	= udc_resume;
2413 #endif
2414 	rdrv->irq	= udc_irq;
2415 	rdrv->name	= "gadget";
2416 
2417 	ret = udc_start(ci);
2418 	if (!ret)
2419 		ci->roles[CI_ROLE_GADGET] = rdrv;
2420 
2421 	return ret;
2422 }
2423