1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/jiffies.h>
12 #include <linux/pci.h>
13 #include <linux/iommu.h>
14 #include <linux/iopoll.h>
15 #include <linux/irq.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/slab.h>
20 #include <linux/dmi.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/usb/xhci-sideband.h>
23
24 #include "xhci.h"
25 #include "xhci-trace.h"
26 #include "xhci-debugfs.h"
27 #include "xhci-dbgcap.h"
28
29 #define DRIVER_AUTHOR "Sarah Sharp"
30 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
31
32 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
33
34 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
35 static int link_quirk;
36 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
37 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
38
39 static unsigned long long quirks;
40 module_param(quirks, ullong, S_IRUGO);
41 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
42
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)43 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
44 {
45 struct xhci_segment *seg;
46
47 if (!td || !td->start_seg)
48 return false;
49
50 xhci_for_each_ring_seg(ring->first_seg, seg) {
51 if (seg == td->start_seg)
52 return true;
53 }
54
55 return false;
56 }
57
58 /*
59 * xhci_handshake - spin reading hc until handshake completes or fails
60 * @ptr: address of hc register to be read
61 * @mask: bits to look at in result of read
62 * @done: value of those bits when handshake succeeds
63 * @usec: timeout in microseconds
64 *
65 * Returns negative errno, or zero on success
66 *
67 * Success happens when the "mask" bits have the specified value (hardware
68 * handshake done). There are two failure modes: "usec" have passed (major
69 * hardware flakeout), or the register reads as all-ones (hardware removed).
70 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)71 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
72 {
73 u32 result;
74 int ret;
75
76 ret = readl_poll_timeout_atomic(ptr, result,
77 (result & mask) == done ||
78 result == U32_MAX,
79 1, timeout_us);
80 if (result == U32_MAX) /* card removed */
81 return -ENODEV;
82
83 return ret;
84 }
85
86 /*
87 * Disable interrupts and begin the xHCI halting process.
88 */
xhci_quiesce(struct xhci_hcd * xhci)89 void xhci_quiesce(struct xhci_hcd *xhci)
90 {
91 u32 halted;
92 u32 cmd;
93 u32 mask;
94
95 mask = ~(XHCI_IRQS);
96 halted = readl(&xhci->op_regs->status) & STS_HALT;
97 if (!halted)
98 mask &= ~CMD_RUN;
99
100 cmd = readl(&xhci->op_regs->command);
101 cmd &= mask;
102 writel(cmd, &xhci->op_regs->command);
103 }
104
105 /*
106 * Force HC into halt state.
107 *
108 * Disable any IRQs and clear the run/stop bit.
109 * HC will complete any current and actively pipelined transactions, and
110 * should halt within 16 ms of the run/stop bit being cleared.
111 * Read HC Halted bit in the status register to see when the HC is finished.
112 */
xhci_halt(struct xhci_hcd * xhci)113 int xhci_halt(struct xhci_hcd *xhci)
114 {
115 int ret;
116
117 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
118 xhci_quiesce(xhci);
119
120 ret = xhci_handshake(&xhci->op_regs->status,
121 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
122 if (ret) {
123 if (!(xhci->xhc_state & XHCI_STATE_DYING))
124 xhci_warn(xhci, "Host halt failed, %d\n", ret);
125 return ret;
126 }
127
128 xhci->xhc_state |= XHCI_STATE_HALTED;
129 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
130
131 return ret;
132 }
133
134 /*
135 * Set the run bit and wait for the host to be running.
136 */
xhci_start(struct xhci_hcd * xhci)137 int xhci_start(struct xhci_hcd *xhci)
138 {
139 u32 temp;
140 int ret;
141
142 temp = readl(&xhci->op_regs->command);
143 temp |= (CMD_RUN);
144 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
145 temp);
146 writel(temp, &xhci->op_regs->command);
147
148 /*
149 * Wait for the HCHalted Status bit to be 0 to indicate the host is
150 * running.
151 */
152 ret = xhci_handshake(&xhci->op_regs->status,
153 STS_HALT, 0, XHCI_MAX_HALT_USEC);
154 if (ret == -ETIMEDOUT)
155 xhci_err(xhci, "Host took too long to start, "
156 "waited %u microseconds.\n",
157 XHCI_MAX_HALT_USEC);
158 if (!ret) {
159 /* clear state flags. Including dying, halted or removing */
160 xhci->xhc_state = 0;
161 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
162 }
163
164 return ret;
165 }
166
167 /*
168 * Reset a halted HC.
169 *
170 * This resets pipelines, timers, counters, state machines, etc.
171 * Transactions will be terminated immediately, and operational registers
172 * will be set to their defaults.
173 */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)174 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
175 {
176 u32 command;
177 u32 state;
178 int ret;
179
180 state = readl(&xhci->op_regs->status);
181
182 if (state == ~(u32)0) {
183 if (!(xhci->xhc_state & XHCI_STATE_DYING))
184 xhci_warn(xhci, "Host not accessible, reset failed.\n");
185 return -ENODEV;
186 }
187
188 if ((state & STS_HALT) == 0) {
189 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
190 return 0;
191 }
192
193 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
194 command = readl(&xhci->op_regs->command);
195 command |= CMD_RESET;
196 writel(command, &xhci->op_regs->command);
197
198 /* Existing Intel xHCI controllers require a delay of 1 mS,
199 * after setting the CMD_RESET bit, and before accessing any
200 * HC registers. This allows the HC to complete the
201 * reset operation and be ready for HC register access.
202 * Without this delay, the subsequent HC register access,
203 * may result in a system hang very rarely.
204 */
205 if (xhci->quirks & XHCI_INTEL_HOST)
206 udelay(1000);
207
208 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
209 if (ret)
210 return ret;
211
212 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
213 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
214
215 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
216 "Wait for controller to be ready for doorbell rings");
217 /*
218 * xHCI cannot write to any doorbells or operational registers other
219 * than status until the "Controller Not Ready" flag is cleared.
220 */
221 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
222
223 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
224 xhci->usb2_rhub.bus_state.suspended_ports = 0;
225 xhci->usb2_rhub.bus_state.resuming_ports = 0;
226 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
227 xhci->usb3_rhub.bus_state.suspended_ports = 0;
228 xhci->usb3_rhub.bus_state.resuming_ports = 0;
229
230 return ret;
231 }
232
xhci_zero_64b_regs(struct xhci_hcd * xhci)233 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
234 {
235 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
236 struct iommu_domain *domain;
237 int err, i;
238 u64 val;
239 u32 intrs;
240
241 /*
242 * Some Renesas controllers get into a weird state if they are
243 * reset while programmed with 64bit addresses (they will preserve
244 * the top half of the address in internal, non visible
245 * registers). You end up with half the address coming from the
246 * kernel, and the other half coming from the firmware. Also,
247 * changing the programming leads to extra accesses even if the
248 * controller is supposed to be halted. The controller ends up with
249 * a fatal fault, and is then ripe for being properly reset.
250 *
251 * Special care is taken to only apply this if the device is behind
252 * an iommu. Doing anything when there is no iommu is definitely
253 * unsafe...
254 */
255 domain = iommu_get_domain_for_dev(dev);
256 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
257 domain->type == IOMMU_DOMAIN_IDENTITY)
258 return;
259
260 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
261
262 /* Clear HSEIE so that faults do not get signaled */
263 val = readl(&xhci->op_regs->command);
264 val &= ~CMD_HSEIE;
265 writel(val, &xhci->op_regs->command);
266
267 /* Clear HSE (aka FATAL) */
268 val = readl(&xhci->op_regs->status);
269 val |= STS_FATAL;
270 writel(val, &xhci->op_regs->status);
271
272 /* Now zero the registers, and brace for impact */
273 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
274 if (upper_32_bits(val))
275 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
276 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
277 if (upper_32_bits(val))
278 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
279
280 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
281 ARRAY_SIZE(xhci->run_regs->ir_set));
282
283 for (i = 0; i < intrs; i++) {
284 struct xhci_intr_reg __iomem *ir;
285
286 ir = &xhci->run_regs->ir_set[i];
287 val = xhci_read_64(xhci, &ir->erst_base);
288 if (upper_32_bits(val))
289 xhci_write_64(xhci, 0, &ir->erst_base);
290 val= xhci_read_64(xhci, &ir->erst_dequeue);
291 if (upper_32_bits(val))
292 xhci_write_64(xhci, 0, &ir->erst_dequeue);
293 }
294
295 /* Wait for the fault to appear. It will be cleared on reset */
296 err = xhci_handshake(&xhci->op_regs->status,
297 STS_FATAL, STS_FATAL,
298 XHCI_MAX_HALT_USEC);
299 if (!err)
300 xhci_info(xhci, "Fault detected\n");
301 }
302
xhci_enable_interrupter(struct xhci_interrupter * ir)303 int xhci_enable_interrupter(struct xhci_interrupter *ir)
304 {
305 u32 iman;
306
307 if (!ir || !ir->ir_set)
308 return -EINVAL;
309
310 iman = readl(&ir->ir_set->irq_pending);
311 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
312
313 return 0;
314 }
315
xhci_disable_interrupter(struct xhci_interrupter * ir)316 int xhci_disable_interrupter(struct xhci_interrupter *ir)
317 {
318 u32 iman;
319
320 if (!ir || !ir->ir_set)
321 return -EINVAL;
322
323 iman = readl(&ir->ir_set->irq_pending);
324 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
325
326 return 0;
327 }
328
329 /* interrupt moderation interval imod_interval in nanoseconds */
xhci_set_interrupter_moderation(struct xhci_interrupter * ir,u32 imod_interval)330 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
331 u32 imod_interval)
332 {
333 u32 imod;
334
335 if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
336 return -EINVAL;
337
338 imod = readl(&ir->ir_set->irq_control);
339 imod &= ~ER_IRQ_INTERVAL_MASK;
340 imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
341 writel(imod, &ir->ir_set->irq_control);
342
343 return 0;
344 }
345
compliance_mode_recovery(struct timer_list * t)346 static void compliance_mode_recovery(struct timer_list *t)
347 {
348 struct xhci_hcd *xhci;
349 struct usb_hcd *hcd;
350 struct xhci_hub *rhub;
351 u32 temp;
352 int i;
353
354 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
355 rhub = &xhci->usb3_rhub;
356 hcd = rhub->hcd;
357
358 if (!hcd)
359 return;
360
361 for (i = 0; i < rhub->num_ports; i++) {
362 temp = readl(rhub->ports[i]->addr);
363 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
364 /*
365 * Compliance Mode Detected. Letting USB Core
366 * handle the Warm Reset
367 */
368 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
369 "Compliance mode detected->port %d",
370 i + 1);
371 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
372 "Attempting compliance mode recovery");
373
374 if (hcd->state == HC_STATE_SUSPENDED)
375 usb_hcd_resume_root_hub(hcd);
376
377 usb_hcd_poll_rh_status(hcd);
378 }
379 }
380
381 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
382 mod_timer(&xhci->comp_mode_recovery_timer,
383 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
384 }
385
386 /*
387 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
388 * that causes ports behind that hardware to enter compliance mode sometimes.
389 * The quirk creates a timer that polls every 2 seconds the link state of
390 * each host controller's port and recovers it by issuing a Warm reset
391 * if Compliance mode is detected, otherwise the port will become "dead" (no
392 * device connections or disconnections will be detected anymore). Becasue no
393 * status event is generated when entering compliance mode (per xhci spec),
394 * this quirk is needed on systems that have the failing hardware installed.
395 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)396 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
397 {
398 xhci->port_status_u0 = 0;
399 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
400 0);
401 xhci->comp_mode_recovery_timer.expires = jiffies +
402 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
403
404 add_timer(&xhci->comp_mode_recovery_timer);
405 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
406 "Compliance mode recovery timer initialized");
407 }
408
409 /*
410 * This function identifies the systems that have installed the SN65LVPE502CP
411 * USB3.0 re-driver and that need the Compliance Mode Quirk.
412 * Systems:
413 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
414 */
xhci_compliance_mode_recovery_timer_quirk_check(void)415 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
416 {
417 const char *dmi_product_name, *dmi_sys_vendor;
418
419 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
420 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
421 if (!dmi_product_name || !dmi_sys_vendor)
422 return false;
423
424 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
425 return false;
426
427 if (strstr(dmi_product_name, "Z420") ||
428 strstr(dmi_product_name, "Z620") ||
429 strstr(dmi_product_name, "Z820") ||
430 strstr(dmi_product_name, "Z1 Workstation"))
431 return true;
432
433 return false;
434 }
435
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)436 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
437 {
438 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
439 }
440
441
442 /*
443 * Initialize memory for HCD and xHC (one-time init).
444 *
445 * Program the PAGESIZE register, initialize the device context array, create
446 * device contexts (?), set up a command ring segment (or two?), create event
447 * ring (one for now).
448 */
xhci_init(struct usb_hcd * hcd)449 static int xhci_init(struct usb_hcd *hcd)
450 {
451 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
452 int retval;
453
454 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
455 spin_lock_init(&xhci->lock);
456 if (xhci->hci_version == 0x95 && link_quirk) {
457 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
458 "QUIRK: Not clearing Link TRB chain bits.");
459 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
460 } else {
461 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
462 "xHCI doesn't need link TRB QUIRK");
463 }
464 retval = xhci_mem_init(xhci, GFP_KERNEL);
465 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
466
467 /* Initializing Compliance Mode Recovery Data If Needed */
468 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
469 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
470 compliance_mode_recovery_timer_init(xhci);
471 }
472
473 return retval;
474 }
475
476 /*-------------------------------------------------------------------------*/
477
xhci_run_finished(struct xhci_hcd * xhci)478 static int xhci_run_finished(struct xhci_hcd *xhci)
479 {
480 struct xhci_interrupter *ir = xhci->interrupters[0];
481 unsigned long flags;
482 u32 temp;
483
484 /*
485 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
486 * Protect the short window before host is running with a lock
487 */
488 spin_lock_irqsave(&xhci->lock, flags);
489
490 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
491 temp = readl(&xhci->op_regs->command);
492 temp |= (CMD_EIE);
493 writel(temp, &xhci->op_regs->command);
494
495 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
496 xhci_enable_interrupter(ir);
497
498 if (xhci_start(xhci)) {
499 xhci_halt(xhci);
500 spin_unlock_irqrestore(&xhci->lock, flags);
501 return -ENODEV;
502 }
503
504 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
505
506 if (xhci->quirks & XHCI_NEC_HOST)
507 xhci_ring_cmd_db(xhci);
508
509 spin_unlock_irqrestore(&xhci->lock, flags);
510
511 return 0;
512 }
513
514 /*
515 * Start the HC after it was halted.
516 *
517 * This function is called by the USB core when the HC driver is added.
518 * Its opposite is xhci_stop().
519 *
520 * xhci_init() must be called once before this function can be called.
521 * Reset the HC, enable device slot contexts, program DCBAAP, and
522 * set command ring pointer and event ring pointer.
523 *
524 * Setup MSI-X vectors and enable interrupts.
525 */
xhci_run(struct usb_hcd * hcd)526 int xhci_run(struct usb_hcd *hcd)
527 {
528 u64 temp_64;
529 int ret;
530 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531 struct xhci_interrupter *ir = xhci->interrupters[0];
532 /* Start the xHCI host controller running only after the USB 2.0 roothub
533 * is setup.
534 */
535
536 hcd->uses_new_polling = 1;
537 if (hcd->msi_enabled)
538 ir->ip_autoclear = true;
539
540 if (!usb_hcd_is_primary_hcd(hcd))
541 return xhci_run_finished(xhci);
542
543 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
544
545 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
546 temp_64 &= ERST_PTR_MASK;
547 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
548 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
549
550 xhci_set_interrupter_moderation(ir, xhci->imod_interval);
551
552 if (xhci->quirks & XHCI_NEC_HOST) {
553 struct xhci_command *command;
554
555 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
556 if (!command)
557 return -ENOMEM;
558
559 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
560 TRB_TYPE(TRB_NEC_GET_FW));
561 if (ret)
562 xhci_free_command(xhci, command);
563 }
564 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
565 "Finished %s for main hcd", __func__);
566
567 xhci_create_dbc_dev(xhci);
568
569 xhci_debugfs_init(xhci);
570
571 if (xhci_has_one_roothub(xhci))
572 return xhci_run_finished(xhci);
573
574 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
575
576 return 0;
577 }
578 EXPORT_SYMBOL_GPL(xhci_run);
579
580 /*
581 * Stop xHCI driver.
582 *
583 * This function is called by the USB core when the HC driver is removed.
584 * Its opposite is xhci_run().
585 *
586 * Disable device contexts, disable IRQs, and quiesce the HC.
587 * Reset the HC, finish any completed transactions, and cleanup memory.
588 */
xhci_stop(struct usb_hcd * hcd)589 void xhci_stop(struct usb_hcd *hcd)
590 {
591 u32 temp;
592 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593 struct xhci_interrupter *ir = xhci->interrupters[0];
594
595 mutex_lock(&xhci->mutex);
596
597 /* Only halt host and free memory after both hcds are removed */
598 if (!usb_hcd_is_primary_hcd(hcd)) {
599 mutex_unlock(&xhci->mutex);
600 return;
601 }
602
603 xhci_remove_dbc_dev(xhci);
604
605 spin_lock_irq(&xhci->lock);
606 xhci->xhc_state |= XHCI_STATE_HALTED;
607 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
608 xhci_halt(xhci);
609 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
610 spin_unlock_irq(&xhci->lock);
611
612 /* Deleting Compliance Mode Recovery Timer */
613 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
614 (!(xhci_all_ports_seen_u0(xhci)))) {
615 del_timer_sync(&xhci->comp_mode_recovery_timer);
616 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
617 "%s: compliance mode recovery timer deleted",
618 __func__);
619 }
620
621 if (xhci->quirks & XHCI_AMD_PLL_FIX)
622 usb_amd_dev_put();
623
624 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
625 "// Disabling event ring interrupts");
626 temp = readl(&xhci->op_regs->status);
627 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
628 xhci_disable_interrupter(ir);
629
630 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
631 xhci_mem_cleanup(xhci);
632 xhci_debugfs_exit(xhci);
633 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 "xhci_stop completed - status = %x",
635 readl(&xhci->op_regs->status));
636 mutex_unlock(&xhci->mutex);
637 }
638 EXPORT_SYMBOL_GPL(xhci_stop);
639
640 /*
641 * Shutdown HC (not bus-specific)
642 *
643 * This is called when the machine is rebooting or halting. We assume that the
644 * machine will be powered off, and the HC's internal state will be reset.
645 * Don't bother to free memory.
646 *
647 * This will only ever be called with the main usb_hcd (the USB3 roothub).
648 */
xhci_shutdown(struct usb_hcd * hcd)649 void xhci_shutdown(struct usb_hcd *hcd)
650 {
651 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
652
653 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
654 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
655
656 /* Don't poll the roothubs after shutdown. */
657 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
658 __func__, hcd->self.busnum);
659 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
660 del_timer_sync(&hcd->rh_timer);
661
662 if (xhci->shared_hcd) {
663 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
664 del_timer_sync(&xhci->shared_hcd->rh_timer);
665 }
666
667 spin_lock_irq(&xhci->lock);
668 xhci_halt(xhci);
669
670 /*
671 * Workaround for spurious wakeps at shutdown with HSW, and for boot
672 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
673 */
674 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
675 xhci->quirks & XHCI_RESET_TO_DEFAULT)
676 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
677
678 spin_unlock_irq(&xhci->lock);
679
680 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
681 "xhci_shutdown completed - status = %x",
682 readl(&xhci->op_regs->status));
683 }
684 EXPORT_SYMBOL_GPL(xhci_shutdown);
685
686 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)687 static void xhci_save_registers(struct xhci_hcd *xhci)
688 {
689 struct xhci_interrupter *ir;
690 unsigned int i;
691
692 xhci->s3.command = readl(&xhci->op_regs->command);
693 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
694 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
695 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
696
697 /* save both primary and all secondary interrupters */
698 /* fixme, shold we lock to prevent race with remove secondary interrupter? */
699 for (i = 0; i < xhci->max_interrupters; i++) {
700 ir = xhci->interrupters[i];
701 if (!ir)
702 continue;
703
704 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
705 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
706 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
707 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
708 ir->s3_irq_control = readl(&ir->ir_set->irq_control);
709 }
710 }
711
xhci_restore_registers(struct xhci_hcd * xhci)712 static void xhci_restore_registers(struct xhci_hcd *xhci)
713 {
714 struct xhci_interrupter *ir;
715 unsigned int i;
716
717 writel(xhci->s3.command, &xhci->op_regs->command);
718 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
719 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
720 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
721
722 /* FIXME should we lock to protect against freeing of interrupters */
723 for (i = 0; i < xhci->max_interrupters; i++) {
724 ir = xhci->interrupters[i];
725 if (!ir)
726 continue;
727
728 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
729 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
730 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
731 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
732 writel(ir->s3_irq_control, &ir->ir_set->irq_control);
733 }
734 }
735
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)736 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
737 {
738 u64 val_64;
739
740 /* step 2: initialize command ring buffer */
741 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
742 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
743 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
744 xhci->cmd_ring->dequeue) &
745 (u64) ~CMD_RING_RSVD_BITS) |
746 xhci->cmd_ring->cycle_state;
747 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
748 "// Setting command ring address to 0x%llx",
749 (long unsigned long) val_64);
750 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
751 }
752
753 /*
754 * The whole command ring must be cleared to zero when we suspend the host.
755 *
756 * The host doesn't save the command ring pointer in the suspend well, so we
757 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
758 * aligned, because of the reserved bits in the command ring dequeue pointer
759 * register. Therefore, we can't just set the dequeue pointer back in the
760 * middle of the ring (TRBs are 16-byte aligned).
761 */
xhci_clear_command_ring(struct xhci_hcd * xhci)762 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
763 {
764 struct xhci_ring *ring;
765 struct xhci_segment *seg;
766
767 ring = xhci->cmd_ring;
768 xhci_for_each_ring_seg(ring->deq_seg, seg) {
769 memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
770 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE);
771 }
772
773 xhci_initialize_ring_info(ring);
774 /*
775 * Reset the hardware dequeue pointer.
776 * Yes, this will need to be re-written after resume, but we're paranoid
777 * and want to make sure the hardware doesn't access bogus memory
778 * because, say, the BIOS or an SMI started the host without changing
779 * the command ring pointers.
780 */
781 xhci_set_cmd_ring_deq(xhci);
782 }
783
784 /*
785 * Disable port wake bits if do_wakeup is not set.
786 *
787 * Also clear a possible internal port wake state left hanging for ports that
788 * detected termination but never successfully enumerated (trained to 0U).
789 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
790 * at enumeration clears this wake, force one here as well for unconnected ports
791 */
792
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)793 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
794 struct xhci_hub *rhub,
795 bool do_wakeup)
796 {
797 unsigned long flags;
798 u32 t1, t2, portsc;
799 int i;
800
801 spin_lock_irqsave(&xhci->lock, flags);
802
803 for (i = 0; i < rhub->num_ports; i++) {
804 portsc = readl(rhub->ports[i]->addr);
805 t1 = xhci_port_state_to_neutral(portsc);
806 t2 = t1;
807
808 /* clear wake bits if do_wake is not set */
809 if (!do_wakeup)
810 t2 &= ~PORT_WAKE_BITS;
811
812 /* Don't touch csc bit if connected or connect change is set */
813 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
814 t2 |= PORT_CSC;
815
816 if (t1 != t2) {
817 writel(t2, rhub->ports[i]->addr);
818 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
819 rhub->hcd->self.busnum, i + 1, portsc, t2);
820 }
821 }
822 spin_unlock_irqrestore(&xhci->lock, flags);
823 }
824
xhci_pending_portevent(struct xhci_hcd * xhci)825 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
826 {
827 struct xhci_port **ports;
828 int port_index;
829 u32 status;
830 u32 portsc;
831
832 status = readl(&xhci->op_regs->status);
833 if (status & STS_EINT)
834 return true;
835 /*
836 * Checking STS_EINT is not enough as there is a lag between a change
837 * bit being set and the Port Status Change Event that it generated
838 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
839 */
840
841 port_index = xhci->usb2_rhub.num_ports;
842 ports = xhci->usb2_rhub.ports;
843 while (port_index--) {
844 portsc = readl(ports[port_index]->addr);
845 if (portsc & PORT_CHANGE_MASK ||
846 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
847 return true;
848 }
849 port_index = xhci->usb3_rhub.num_ports;
850 ports = xhci->usb3_rhub.ports;
851 while (port_index--) {
852 portsc = readl(ports[port_index]->addr);
853 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
854 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
855 return true;
856 }
857 return false;
858 }
859
860 /*
861 * Stop HC (not bus-specific)
862 *
863 * This is called when the machine transition into S3/S4 mode.
864 *
865 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)866 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
867 {
868 int rc = 0;
869 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
870 struct usb_hcd *hcd = xhci_to_hcd(xhci);
871 u32 command;
872 u32 res;
873
874 if (!hcd->state)
875 return 0;
876
877 if (hcd->state != HC_STATE_SUSPENDED ||
878 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
879 return -EINVAL;
880
881 /* Clear root port wake on bits if wakeup not allowed. */
882 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
883 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
884
885 if (!HCD_HW_ACCESSIBLE(hcd))
886 return 0;
887
888 xhci_dbc_suspend(xhci);
889
890 /* Don't poll the roothubs on bus suspend. */
891 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
892 __func__, hcd->self.busnum);
893 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
894 del_timer_sync(&hcd->rh_timer);
895 if (xhci->shared_hcd) {
896 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
897 del_timer_sync(&xhci->shared_hcd->rh_timer);
898 }
899
900 if (xhci->quirks & XHCI_SUSPEND_DELAY)
901 usleep_range(1000, 1500);
902
903 spin_lock_irq(&xhci->lock);
904 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
905 if (xhci->shared_hcd)
906 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
907 /* step 1: stop endpoint */
908 /* skipped assuming that port suspend has done */
909
910 /* step 2: clear Run/Stop bit */
911 command = readl(&xhci->op_regs->command);
912 command &= ~CMD_RUN;
913 writel(command, &xhci->op_regs->command);
914
915 /* Some chips from Fresco Logic need an extraordinary delay */
916 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
917
918 if (xhci_handshake(&xhci->op_regs->status,
919 STS_HALT, STS_HALT, delay)) {
920 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
921 spin_unlock_irq(&xhci->lock);
922 return -ETIMEDOUT;
923 }
924 xhci_clear_command_ring(xhci);
925
926 /* step 3: save registers */
927 xhci_save_registers(xhci);
928
929 /* step 4: set CSS flag */
930 command = readl(&xhci->op_regs->command);
931 command |= CMD_CSS;
932 writel(command, &xhci->op_regs->command);
933 xhci->broken_suspend = 0;
934 if (xhci_handshake(&xhci->op_regs->status,
935 STS_SAVE, 0, 20 * 1000)) {
936 /*
937 * AMD SNPS xHC 3.0 occasionally does not clear the
938 * SSS bit of USBSTS and when driver tries to poll
939 * to see if the xHC clears BIT(8) which never happens
940 * and driver assumes that controller is not responding
941 * and times out. To workaround this, its good to check
942 * if SRE and HCE bits are not set (as per xhci
943 * Section 5.4.2) and bypass the timeout.
944 */
945 res = readl(&xhci->op_regs->status);
946 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
947 (((res & STS_SRE) == 0) &&
948 ((res & STS_HCE) == 0))) {
949 xhci->broken_suspend = 1;
950 } else {
951 xhci_warn(xhci, "WARN: xHC save state timeout\n");
952 spin_unlock_irq(&xhci->lock);
953 return -ETIMEDOUT;
954 }
955 }
956 spin_unlock_irq(&xhci->lock);
957
958 /*
959 * Deleting Compliance Mode Recovery Timer because the xHCI Host
960 * is about to be suspended.
961 */
962 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
963 (!(xhci_all_ports_seen_u0(xhci)))) {
964 del_timer_sync(&xhci->comp_mode_recovery_timer);
965 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
966 "%s: compliance mode recovery timer deleted",
967 __func__);
968 }
969
970 return rc;
971 }
972 EXPORT_SYMBOL_GPL(xhci_suspend);
973
974 /*
975 * start xHC (not bus-specific)
976 *
977 * This is called when the machine transition from S3/S4 mode.
978 *
979 */
xhci_resume(struct xhci_hcd * xhci,pm_message_t msg)980 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
981 {
982 bool hibernated = (msg.event == PM_EVENT_RESTORE);
983 u32 command, temp = 0;
984 struct usb_hcd *hcd = xhci_to_hcd(xhci);
985 int retval = 0;
986 bool comp_timer_running = false;
987 bool pending_portevent = false;
988 bool suspended_usb3_devs = false;
989 bool reinit_xhc = false;
990
991 if (!hcd->state)
992 return 0;
993
994 /* Wait a bit if either of the roothubs need to settle from the
995 * transition into bus suspend.
996 */
997
998 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
999 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1000 msleep(100);
1001
1002 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1003 if (xhci->shared_hcd)
1004 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1005
1006 spin_lock_irq(&xhci->lock);
1007
1008 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1009 reinit_xhc = true;
1010
1011 if (!reinit_xhc) {
1012 /*
1013 * Some controllers might lose power during suspend, so wait
1014 * for controller not ready bit to clear, just as in xHC init.
1015 */
1016 retval = xhci_handshake(&xhci->op_regs->status,
1017 STS_CNR, 0, 10 * 1000 * 1000);
1018 if (retval) {
1019 xhci_warn(xhci, "Controller not ready at resume %d\n",
1020 retval);
1021 spin_unlock_irq(&xhci->lock);
1022 return retval;
1023 }
1024 /* step 1: restore register */
1025 xhci_restore_registers(xhci);
1026 /* step 2: initialize command ring buffer */
1027 xhci_set_cmd_ring_deq(xhci);
1028 /* step 3: restore state and start state*/
1029 /* step 3: set CRS flag */
1030 command = readl(&xhci->op_regs->command);
1031 command |= CMD_CRS;
1032 writel(command, &xhci->op_regs->command);
1033 /*
1034 * Some controllers take up to 55+ ms to complete the controller
1035 * restore so setting the timeout to 100ms. Xhci specification
1036 * doesn't mention any timeout value.
1037 */
1038 if (xhci_handshake(&xhci->op_regs->status,
1039 STS_RESTORE, 0, 100 * 1000)) {
1040 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1041 spin_unlock_irq(&xhci->lock);
1042 return -ETIMEDOUT;
1043 }
1044 }
1045
1046 temp = readl(&xhci->op_regs->status);
1047
1048 /* re-initialize the HC on Restore Error, or Host Controller Error */
1049 if ((temp & (STS_SRE | STS_HCE)) &&
1050 !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1051 reinit_xhc = true;
1052 if (!xhci->broken_suspend)
1053 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1054 }
1055
1056 if (reinit_xhc) {
1057 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1058 !(xhci_all_ports_seen_u0(xhci))) {
1059 del_timer_sync(&xhci->comp_mode_recovery_timer);
1060 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1061 "Compliance Mode Recovery Timer deleted!");
1062 }
1063
1064 /* Let the USB core know _both_ roothubs lost power. */
1065 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1066 if (xhci->shared_hcd)
1067 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1068
1069 xhci_dbg(xhci, "Stop HCD\n");
1070 xhci_halt(xhci);
1071 xhci_zero_64b_regs(xhci);
1072 if (xhci->xhc_state & XHCI_STATE_REMOVING)
1073 retval = -ENODEV;
1074 else
1075 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1076 spin_unlock_irq(&xhci->lock);
1077 if (retval)
1078 return retval;
1079
1080 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1081 temp = readl(&xhci->op_regs->status);
1082 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1083 xhci_disable_interrupter(xhci->interrupters[0]);
1084
1085 xhci_dbg(xhci, "cleaning up memory\n");
1086 xhci_mem_cleanup(xhci);
1087 xhci_debugfs_exit(xhci);
1088 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1089 readl(&xhci->op_regs->status));
1090
1091 /* USB core calls the PCI reinit and start functions twice:
1092 * first with the primary HCD, and then with the secondary HCD.
1093 * If we don't do the same, the host will never be started.
1094 */
1095 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1096 retval = xhci_init(hcd);
1097 if (retval)
1098 return retval;
1099 comp_timer_running = true;
1100
1101 xhci_dbg(xhci, "Start the primary HCD\n");
1102 retval = xhci_run(hcd);
1103 if (!retval && xhci->shared_hcd) {
1104 xhci_dbg(xhci, "Start the secondary HCD\n");
1105 retval = xhci_run(xhci->shared_hcd);
1106 }
1107 if (retval)
1108 return retval;
1109 /*
1110 * Resume roothubs unconditionally as PORTSC change bits are not
1111 * immediately visible after xHC reset
1112 */
1113 hcd->state = HC_STATE_SUSPENDED;
1114
1115 if (xhci->shared_hcd) {
1116 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1117 usb_hcd_resume_root_hub(xhci->shared_hcd);
1118 }
1119 usb_hcd_resume_root_hub(hcd);
1120
1121 goto done;
1122 }
1123
1124 /* step 4: set Run/Stop bit */
1125 command = readl(&xhci->op_regs->command);
1126 command |= CMD_RUN;
1127 writel(command, &xhci->op_regs->command);
1128 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1129 0, 250 * 1000);
1130
1131 /* step 5: walk topology and initialize portsc,
1132 * portpmsc and portli
1133 */
1134 /* this is done in bus_resume */
1135
1136 /* step 6: restart each of the previously
1137 * Running endpoints by ringing their doorbells
1138 */
1139
1140 spin_unlock_irq(&xhci->lock);
1141
1142 xhci_dbc_resume(xhci);
1143
1144 if (retval == 0) {
1145 /*
1146 * Resume roothubs only if there are pending events.
1147 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1148 * the first wake signalling failed, give it that chance if
1149 * there are suspended USB 3 devices.
1150 */
1151 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1152 xhci->usb3_rhub.bus_state.bus_suspended)
1153 suspended_usb3_devs = true;
1154
1155 pending_portevent = xhci_pending_portevent(xhci);
1156
1157 if (suspended_usb3_devs && !pending_portevent &&
1158 msg.event == PM_EVENT_AUTO_RESUME) {
1159 msleep(120);
1160 pending_portevent = xhci_pending_portevent(xhci);
1161 }
1162
1163 if (pending_portevent) {
1164 if (xhci->shared_hcd)
1165 usb_hcd_resume_root_hub(xhci->shared_hcd);
1166 usb_hcd_resume_root_hub(hcd);
1167 }
1168 }
1169 done:
1170 /*
1171 * If system is subject to the Quirk, Compliance Mode Timer needs to
1172 * be re-initialized Always after a system resume. Ports are subject
1173 * to suffer the Compliance Mode issue again. It doesn't matter if
1174 * ports have entered previously to U0 before system's suspension.
1175 */
1176 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1177 compliance_mode_recovery_timer_init(xhci);
1178
1179 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1180 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1181
1182 /* Re-enable port polling. */
1183 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1184 __func__, hcd->self.busnum);
1185 if (xhci->shared_hcd) {
1186 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1187 usb_hcd_poll_rh_status(xhci->shared_hcd);
1188 }
1189 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1190 usb_hcd_poll_rh_status(hcd);
1191
1192 return retval;
1193 }
1194 EXPORT_SYMBOL_GPL(xhci_resume);
1195 #endif /* CONFIG_PM */
1196
1197 /*-------------------------------------------------------------------------*/
1198
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1199 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1200 {
1201 void *temp;
1202 int ret = 0;
1203 unsigned int buf_len;
1204 enum dma_data_direction dir;
1205
1206 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1207 buf_len = urb->transfer_buffer_length;
1208
1209 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1210 dev_to_node(hcd->self.sysdev));
1211 if (!temp)
1212 return -ENOMEM;
1213
1214 if (usb_urb_dir_out(urb))
1215 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1216 temp, buf_len, 0);
1217
1218 urb->transfer_buffer = temp;
1219 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1220 urb->transfer_buffer,
1221 urb->transfer_buffer_length,
1222 dir);
1223
1224 if (dma_mapping_error(hcd->self.sysdev,
1225 urb->transfer_dma)) {
1226 ret = -EAGAIN;
1227 kfree(temp);
1228 } else {
1229 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1230 }
1231
1232 return ret;
1233 }
1234
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1235 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1236 struct urb *urb)
1237 {
1238 bool ret = false;
1239 unsigned int i;
1240 unsigned int len = 0;
1241 unsigned int trb_size;
1242 unsigned int max_pkt;
1243 struct scatterlist *sg;
1244 struct scatterlist *tail_sg;
1245
1246 tail_sg = urb->sg;
1247 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1248
1249 if (!urb->num_sgs)
1250 return ret;
1251
1252 if (urb->dev->speed >= USB_SPEED_SUPER)
1253 trb_size = TRB_CACHE_SIZE_SS;
1254 else
1255 trb_size = TRB_CACHE_SIZE_HS;
1256
1257 if (urb->transfer_buffer_length != 0 &&
1258 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1259 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1260 len = len + sg->length;
1261 if (i > trb_size - 2) {
1262 len = len - tail_sg->length;
1263 if (len < max_pkt) {
1264 ret = true;
1265 break;
1266 }
1267
1268 tail_sg = sg_next(tail_sg);
1269 }
1270 }
1271 }
1272 return ret;
1273 }
1274
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1275 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1276 {
1277 unsigned int len;
1278 unsigned int buf_len;
1279 enum dma_data_direction dir;
1280
1281 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1282
1283 buf_len = urb->transfer_buffer_length;
1284
1285 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1286 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1287 dma_unmap_single(hcd->self.sysdev,
1288 urb->transfer_dma,
1289 urb->transfer_buffer_length,
1290 dir);
1291
1292 if (usb_urb_dir_in(urb)) {
1293 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1294 urb->transfer_buffer,
1295 buf_len,
1296 0);
1297 if (len != buf_len) {
1298 xhci_dbg(hcd_to_xhci(hcd),
1299 "Copy from tmp buf to urb sg list failed\n");
1300 urb->actual_length = len;
1301 }
1302 }
1303 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1304 kfree(urb->transfer_buffer);
1305 urb->transfer_buffer = NULL;
1306 }
1307
1308 /*
1309 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1310 * we'll copy the actual data into the TRB address register. This is limited to
1311 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1312 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1313 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1314 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1315 gfp_t mem_flags)
1316 {
1317 struct xhci_hcd *xhci;
1318
1319 xhci = hcd_to_xhci(hcd);
1320
1321 if (xhci_urb_suitable_for_idt(urb))
1322 return 0;
1323
1324 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1325 if (xhci_urb_temp_buffer_required(hcd, urb))
1326 return xhci_map_temp_buffer(hcd, urb);
1327 }
1328 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1329 }
1330
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1331 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1332 {
1333 struct xhci_hcd *xhci;
1334 bool unmap_temp_buf = false;
1335
1336 xhci = hcd_to_xhci(hcd);
1337
1338 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1339 unmap_temp_buf = true;
1340
1341 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1342 xhci_unmap_temp_buf(hcd, urb);
1343 else
1344 usb_hcd_unmap_urb_for_dma(hcd, urb);
1345 }
1346
1347 /**
1348 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1349 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1350 * value to right shift 1 for the bitmask.
1351 *
1352 * Index = (epnum * 2) + direction - 1,
1353 * where direction = 0 for OUT, 1 for IN.
1354 * For control endpoints, the IN index is used (OUT index is unused), so
1355 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1356 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1357 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1358 {
1359 unsigned int index;
1360 if (usb_endpoint_xfer_control(desc))
1361 index = (unsigned int) (usb_endpoint_num(desc)*2);
1362 else
1363 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1364 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1365 return index;
1366 }
1367 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1368
1369 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1370 * address from the XHCI endpoint index.
1371 */
xhci_get_endpoint_address(unsigned int ep_index)1372 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1373 {
1374 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1375 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1376 return direction | number;
1377 }
1378
1379 /* Find the flag for this endpoint (for use in the control context). Use the
1380 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1381 * bit 1, etc.
1382 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1383 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1384 {
1385 return 1 << (xhci_get_endpoint_index(desc) + 1);
1386 }
1387
1388 /* Compute the last valid endpoint context index. Basically, this is the
1389 * endpoint index plus one. For slot contexts with more than valid endpoint,
1390 * we find the most significant bit set in the added contexts flags.
1391 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1392 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1393 */
xhci_last_valid_endpoint(u32 added_ctxs)1394 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1395 {
1396 return fls(added_ctxs) - 1;
1397 }
1398
1399 /* Returns 1 if the arguments are OK;
1400 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1401 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1402 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1403 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1404 const char *func) {
1405 struct xhci_hcd *xhci;
1406 struct xhci_virt_device *virt_dev;
1407
1408 if (!hcd || (check_ep && !ep) || !udev) {
1409 pr_debug("xHCI %s called with invalid args\n", func);
1410 return -EINVAL;
1411 }
1412 if (!udev->parent) {
1413 pr_debug("xHCI %s called for root hub\n", func);
1414 return 0;
1415 }
1416
1417 xhci = hcd_to_xhci(hcd);
1418 if (check_virt_dev) {
1419 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1420 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1421 func);
1422 return -EINVAL;
1423 }
1424
1425 virt_dev = xhci->devs[udev->slot_id];
1426 if (virt_dev->udev != udev) {
1427 xhci_dbg(xhci, "xHCI %s called with udev and "
1428 "virt_dev does not match\n", func);
1429 return -EINVAL;
1430 }
1431 }
1432
1433 if (xhci->xhc_state & XHCI_STATE_HALTED)
1434 return -ENODEV;
1435
1436 return 1;
1437 }
1438
1439 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1440 struct usb_device *udev, struct xhci_command *command,
1441 bool ctx_change, bool must_succeed);
1442
1443 /*
1444 * Full speed devices may have a max packet size greater than 8 bytes, but the
1445 * USB core doesn't know that until it reads the first 8 bytes of the
1446 * descriptor. If the usb_device's max packet size changes after that point,
1447 * we need to issue an evaluate context command and wait on it.
1448 */
xhci_check_ep0_maxpacket(struct xhci_hcd * xhci,struct xhci_virt_device * vdev)1449 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1450 {
1451 struct xhci_input_control_ctx *ctrl_ctx;
1452 struct xhci_ep_ctx *ep_ctx;
1453 struct xhci_command *command;
1454 int max_packet_size;
1455 int hw_max_packet_size;
1456 int ret = 0;
1457
1458 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1459 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1460 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1461
1462 if (hw_max_packet_size == max_packet_size)
1463 return 0;
1464
1465 switch (max_packet_size) {
1466 case 8: case 16: case 32: case 64: case 9:
1467 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1468 "Max Packet Size for ep 0 changed.");
1469 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1470 "Max packet size in usb_device = %d",
1471 max_packet_size);
1472 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1473 "Max packet size in xHCI HW = %d",
1474 hw_max_packet_size);
1475 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1476 "Issuing evaluate context command.");
1477
1478 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1479 if (!command)
1480 return -ENOMEM;
1481
1482 command->in_ctx = vdev->in_ctx;
1483 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1484 if (!ctrl_ctx) {
1485 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1486 __func__);
1487 ret = -ENOMEM;
1488 break;
1489 }
1490 /* Set up the modified control endpoint 0 */
1491 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1492
1493 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1494 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1495 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1496 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1497
1498 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1499 ctrl_ctx->drop_flags = 0;
1500
1501 ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1502 true, false);
1503 /* Clean up the input context for later use by bandwidth functions */
1504 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1505 break;
1506 default:
1507 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1508 max_packet_size);
1509 return -EINVAL;
1510 }
1511
1512 kfree(command->completion);
1513 kfree(command);
1514
1515 return ret;
1516 }
1517
1518 /*
1519 * non-error returns are a promise to giveback() the urb later
1520 * we drop ownership so next owner (or urb unlink) can get it
1521 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1522 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1523 {
1524 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1525 unsigned long flags;
1526 int ret = 0;
1527 unsigned int slot_id, ep_index;
1528 unsigned int *ep_state;
1529 struct urb_priv *urb_priv;
1530 int num_tds;
1531
1532 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1533
1534 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1535 num_tds = urb->number_of_packets;
1536 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1537 urb->transfer_buffer_length > 0 &&
1538 urb->transfer_flags & URB_ZERO_PACKET &&
1539 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1540 num_tds = 2;
1541 else
1542 num_tds = 1;
1543
1544 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1545 if (!urb_priv)
1546 return -ENOMEM;
1547
1548 urb_priv->num_tds = num_tds;
1549 urb_priv->num_tds_done = 0;
1550 urb->hcpriv = urb_priv;
1551
1552 trace_xhci_urb_enqueue(urb);
1553
1554 spin_lock_irqsave(&xhci->lock, flags);
1555
1556 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1557 true, true, __func__);
1558 if (ret <= 0) {
1559 ret = ret ? ret : -EINVAL;
1560 goto free_priv;
1561 }
1562
1563 slot_id = urb->dev->slot_id;
1564
1565 if (!HCD_HW_ACCESSIBLE(hcd)) {
1566 ret = -ESHUTDOWN;
1567 goto free_priv;
1568 }
1569
1570 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1571 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1572 ret = -ENODEV;
1573 goto free_priv;
1574 }
1575
1576 if (xhci->xhc_state & XHCI_STATE_DYING) {
1577 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1578 urb->ep->desc.bEndpointAddress, urb);
1579 ret = -ESHUTDOWN;
1580 goto free_priv;
1581 }
1582
1583 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1584
1585 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1586 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1587 *ep_state);
1588 ret = -EINVAL;
1589 goto free_priv;
1590 }
1591 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1592 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1593 ret = -EINVAL;
1594 goto free_priv;
1595 }
1596
1597 switch (usb_endpoint_type(&urb->ep->desc)) {
1598
1599 case USB_ENDPOINT_XFER_CONTROL:
1600 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1601 slot_id, ep_index);
1602 break;
1603 case USB_ENDPOINT_XFER_BULK:
1604 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1605 slot_id, ep_index);
1606 break;
1607 case USB_ENDPOINT_XFER_INT:
1608 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1609 slot_id, ep_index);
1610 break;
1611 case USB_ENDPOINT_XFER_ISOC:
1612 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1613 slot_id, ep_index);
1614 }
1615
1616 if (ret) {
1617 free_priv:
1618 xhci_urb_free_priv(urb_priv);
1619 urb->hcpriv = NULL;
1620 }
1621 spin_unlock_irqrestore(&xhci->lock, flags);
1622 return ret;
1623 }
1624
1625 /*
1626 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1627 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1628 * should pick up where it left off in the TD, unless a Set Transfer Ring
1629 * Dequeue Pointer is issued.
1630 *
1631 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1632 * the ring. Since the ring is a contiguous structure, they can't be physically
1633 * removed. Instead, there are two options:
1634 *
1635 * 1) If the HC is in the middle of processing the URB to be canceled, we
1636 * simply move the ring's dequeue pointer past those TRBs using the Set
1637 * Transfer Ring Dequeue Pointer command. This will be the common case,
1638 * when drivers timeout on the last submitted URB and attempt to cancel.
1639 *
1640 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1641 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1642 * HC will need to invalidate the any TRBs it has cached after the stop
1643 * endpoint command, as noted in the xHCI 0.95 errata.
1644 *
1645 * 3) The TD may have completed by the time the Stop Endpoint Command
1646 * completes, so software needs to handle that case too.
1647 *
1648 * This function should protect against the TD enqueueing code ringing the
1649 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1650 * It also needs to account for multiple cancellations on happening at the same
1651 * time for the same endpoint.
1652 *
1653 * Note that this function can be called in any context, or so says
1654 * usb_hcd_unlink_urb()
1655 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1656 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1657 {
1658 unsigned long flags;
1659 int ret, i;
1660 u32 temp;
1661 struct xhci_hcd *xhci;
1662 struct urb_priv *urb_priv;
1663 struct xhci_td *td;
1664 unsigned int ep_index;
1665 struct xhci_ring *ep_ring;
1666 struct xhci_virt_ep *ep;
1667 struct xhci_command *command;
1668 struct xhci_virt_device *vdev;
1669
1670 xhci = hcd_to_xhci(hcd);
1671 spin_lock_irqsave(&xhci->lock, flags);
1672
1673 trace_xhci_urb_dequeue(urb);
1674
1675 /* Make sure the URB hasn't completed or been unlinked already */
1676 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1677 if (ret)
1678 goto done;
1679
1680 /* give back URB now if we can't queue it for cancel */
1681 vdev = xhci->devs[urb->dev->slot_id];
1682 urb_priv = urb->hcpriv;
1683 if (!vdev || !urb_priv)
1684 goto err_giveback;
1685
1686 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1687 ep = &vdev->eps[ep_index];
1688 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1689 if (!ep || !ep_ring)
1690 goto err_giveback;
1691
1692 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1693 temp = readl(&xhci->op_regs->status);
1694 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1695 xhci_hc_died(xhci);
1696 goto done;
1697 }
1698
1699 /*
1700 * check ring is not re-allocated since URB was enqueued. If it is, then
1701 * make sure none of the ring related pointers in this URB private data
1702 * are touched, such as td_list, otherwise we overwrite freed data
1703 */
1704 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1705 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1706 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1707 td = &urb_priv->td[i];
1708 if (!list_empty(&td->cancelled_td_list))
1709 list_del_init(&td->cancelled_td_list);
1710 }
1711 goto err_giveback;
1712 }
1713
1714 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1715 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1716 "HC halted, freeing TD manually.");
1717 for (i = urb_priv->num_tds_done;
1718 i < urb_priv->num_tds;
1719 i++) {
1720 td = &urb_priv->td[i];
1721 if (!list_empty(&td->td_list))
1722 list_del_init(&td->td_list);
1723 if (!list_empty(&td->cancelled_td_list))
1724 list_del_init(&td->cancelled_td_list);
1725 }
1726 goto err_giveback;
1727 }
1728
1729 i = urb_priv->num_tds_done;
1730 if (i < urb_priv->num_tds)
1731 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1732 "Cancel URB %p, dev %s, ep 0x%x, "
1733 "starting at offset 0x%llx",
1734 urb, urb->dev->devpath,
1735 urb->ep->desc.bEndpointAddress,
1736 (unsigned long long) xhci_trb_virt_to_dma(
1737 urb_priv->td[i].start_seg,
1738 urb_priv->td[i].first_trb));
1739
1740 for (; i < urb_priv->num_tds; i++) {
1741 td = &urb_priv->td[i];
1742 /* TD can already be on cancelled list if ep halted on it */
1743 if (list_empty(&td->cancelled_td_list)) {
1744 td->cancel_status = TD_DIRTY;
1745 list_add_tail(&td->cancelled_td_list,
1746 &ep->cancelled_td_list);
1747 }
1748 }
1749
1750 /* These completion handlers will sort out cancelled TDs for us */
1751 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1752 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1753 urb->dev->slot_id, ep_index, ep->ep_state);
1754 goto done;
1755 }
1756
1757 /* In this case no commands are pending but the endpoint is stopped */
1758 if (ep->ep_state & EP_CLEARING_TT) {
1759 /* and cancelled TDs can be given back right away */
1760 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1761 urb->dev->slot_id, ep_index, ep->ep_state);
1762 xhci_process_cancelled_tds(ep);
1763 } else {
1764 /* Otherwise, queue a new Stop Endpoint command */
1765 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1766 if (!command) {
1767 ret = -ENOMEM;
1768 goto done;
1769 }
1770 ep->stop_time = jiffies;
1771 ep->ep_state |= EP_STOP_CMD_PENDING;
1772 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1773 ep_index, 0);
1774 xhci_ring_cmd_db(xhci);
1775 }
1776 done:
1777 spin_unlock_irqrestore(&xhci->lock, flags);
1778 return ret;
1779
1780 err_giveback:
1781 if (urb_priv)
1782 xhci_urb_free_priv(urb_priv);
1783 usb_hcd_unlink_urb_from_ep(hcd, urb);
1784 spin_unlock_irqrestore(&xhci->lock, flags);
1785 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1786 return ret;
1787 }
1788
1789 /* Drop an endpoint from a new bandwidth configuration for this device.
1790 * Only one call to this function is allowed per endpoint before
1791 * check_bandwidth() or reset_bandwidth() must be called.
1792 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1793 * add the endpoint to the schedule with possibly new parameters denoted by a
1794 * different endpoint descriptor in usb_host_endpoint.
1795 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1796 * not allowed.
1797 *
1798 * The USB core will not allow URBs to be queued to an endpoint that is being
1799 * disabled, so there's no need for mutual exclusion to protect
1800 * the xhci->devs[slot_id] structure.
1801 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1802 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1803 struct usb_host_endpoint *ep)
1804 {
1805 struct xhci_hcd *xhci;
1806 struct xhci_container_ctx *in_ctx, *out_ctx;
1807 struct xhci_input_control_ctx *ctrl_ctx;
1808 unsigned int ep_index;
1809 struct xhci_ep_ctx *ep_ctx;
1810 u32 drop_flag;
1811 u32 new_add_flags, new_drop_flags;
1812 int ret;
1813
1814 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1815 if (ret <= 0)
1816 return ret;
1817 xhci = hcd_to_xhci(hcd);
1818 if (xhci->xhc_state & XHCI_STATE_DYING)
1819 return -ENODEV;
1820
1821 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1822 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1823 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1824 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1825 __func__, drop_flag);
1826 return 0;
1827 }
1828
1829 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1830 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1831 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1832 if (!ctrl_ctx) {
1833 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1834 __func__);
1835 return 0;
1836 }
1837
1838 ep_index = xhci_get_endpoint_index(&ep->desc);
1839 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1840 /* If the HC already knows the endpoint is disabled,
1841 * or the HCD has noted it is disabled, ignore this request
1842 */
1843 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1844 le32_to_cpu(ctrl_ctx->drop_flags) &
1845 xhci_get_endpoint_flag(&ep->desc)) {
1846 /* Do not warn when called after a usb_device_reset */
1847 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1848 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1849 __func__, ep);
1850 return 0;
1851 }
1852
1853 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1854 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1855
1856 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1857 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1858
1859 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1860
1861 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1862
1863 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1864 (unsigned int) ep->desc.bEndpointAddress,
1865 udev->slot_id,
1866 (unsigned int) new_drop_flags,
1867 (unsigned int) new_add_flags);
1868 return 0;
1869 }
1870 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1871
1872 /* Add an endpoint to a new possible bandwidth configuration for this device.
1873 * Only one call to this function is allowed per endpoint before
1874 * check_bandwidth() or reset_bandwidth() must be called.
1875 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1876 * add the endpoint to the schedule with possibly new parameters denoted by a
1877 * different endpoint descriptor in usb_host_endpoint.
1878 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1879 * not allowed.
1880 *
1881 * The USB core will not allow URBs to be queued to an endpoint until the
1882 * configuration or alt setting is installed in the device, so there's no need
1883 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1884 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1885 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1886 struct usb_host_endpoint *ep)
1887 {
1888 struct xhci_hcd *xhci;
1889 struct xhci_container_ctx *in_ctx;
1890 unsigned int ep_index;
1891 struct xhci_input_control_ctx *ctrl_ctx;
1892 struct xhci_ep_ctx *ep_ctx;
1893 u32 added_ctxs;
1894 u32 new_add_flags, new_drop_flags;
1895 struct xhci_virt_device *virt_dev;
1896 int ret = 0;
1897
1898 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1899 if (ret <= 0) {
1900 /* So we won't queue a reset ep command for a root hub */
1901 ep->hcpriv = NULL;
1902 return ret;
1903 }
1904 xhci = hcd_to_xhci(hcd);
1905 if (xhci->xhc_state & XHCI_STATE_DYING)
1906 return -ENODEV;
1907
1908 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1909 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1910 /* FIXME when we have to issue an evaluate endpoint command to
1911 * deal with ep0 max packet size changing once we get the
1912 * descriptors
1913 */
1914 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1915 __func__, added_ctxs);
1916 return 0;
1917 }
1918
1919 virt_dev = xhci->devs[udev->slot_id];
1920 in_ctx = virt_dev->in_ctx;
1921 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1922 if (!ctrl_ctx) {
1923 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1924 __func__);
1925 return 0;
1926 }
1927
1928 ep_index = xhci_get_endpoint_index(&ep->desc);
1929 /* If this endpoint is already in use, and the upper layers are trying
1930 * to add it again without dropping it, reject the addition.
1931 */
1932 if (virt_dev->eps[ep_index].ring &&
1933 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1934 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1935 "without dropping it.\n",
1936 (unsigned int) ep->desc.bEndpointAddress);
1937 return -EINVAL;
1938 }
1939
1940 /* If the HCD has already noted the endpoint is enabled,
1941 * ignore this request.
1942 */
1943 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1944 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1945 __func__, ep);
1946 return 0;
1947 }
1948
1949 /*
1950 * Configuration and alternate setting changes must be done in
1951 * process context, not interrupt context (or so documenation
1952 * for usb_set_interface() and usb_set_configuration() claim).
1953 */
1954 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1955 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1956 __func__, ep->desc.bEndpointAddress);
1957 return -ENOMEM;
1958 }
1959
1960 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1961 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1962
1963 /* If xhci_endpoint_disable() was called for this endpoint, but the
1964 * xHC hasn't been notified yet through the check_bandwidth() call,
1965 * this re-adds a new state for the endpoint from the new endpoint
1966 * descriptors. We must drop and re-add this endpoint, so we leave the
1967 * drop flags alone.
1968 */
1969 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1970
1971 /* Store the usb_device pointer for later use */
1972 ep->hcpriv = udev;
1973
1974 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1975 trace_xhci_add_endpoint(ep_ctx);
1976
1977 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1978 (unsigned int) ep->desc.bEndpointAddress,
1979 udev->slot_id,
1980 (unsigned int) new_drop_flags,
1981 (unsigned int) new_add_flags);
1982 return 0;
1983 }
1984 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1985
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1986 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1987 {
1988 struct xhci_input_control_ctx *ctrl_ctx;
1989 struct xhci_ep_ctx *ep_ctx;
1990 struct xhci_slot_ctx *slot_ctx;
1991 int i;
1992
1993 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1994 if (!ctrl_ctx) {
1995 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1996 __func__);
1997 return;
1998 }
1999
2000 /* When a device's add flag and drop flag are zero, any subsequent
2001 * configure endpoint command will leave that endpoint's state
2002 * untouched. Make sure we don't leave any old state in the input
2003 * endpoint contexts.
2004 */
2005 ctrl_ctx->drop_flags = 0;
2006 ctrl_ctx->add_flags = 0;
2007 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2008 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2009 /* Endpoint 0 is always valid */
2010 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2011 for (i = 1; i < 31; i++) {
2012 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2013 ep_ctx->ep_info = 0;
2014 ep_ctx->ep_info2 = 0;
2015 ep_ctx->deq = 0;
2016 ep_ctx->tx_info = 0;
2017 }
2018 }
2019
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2020 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2021 struct usb_device *udev, u32 *cmd_status)
2022 {
2023 int ret;
2024
2025 switch (*cmd_status) {
2026 case COMP_COMMAND_ABORTED:
2027 case COMP_COMMAND_RING_STOPPED:
2028 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2029 ret = -ETIME;
2030 break;
2031 case COMP_RESOURCE_ERROR:
2032 dev_warn(&udev->dev,
2033 "Not enough host controller resources for new device state.\n");
2034 ret = -ENOMEM;
2035 /* FIXME: can we allocate more resources for the HC? */
2036 break;
2037 case COMP_BANDWIDTH_ERROR:
2038 case COMP_SECONDARY_BANDWIDTH_ERROR:
2039 dev_warn(&udev->dev,
2040 "Not enough bandwidth for new device state.\n");
2041 ret = -ENOSPC;
2042 /* FIXME: can we go back to the old state? */
2043 break;
2044 case COMP_TRB_ERROR:
2045 /* the HCD set up something wrong */
2046 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2047 "add flag = 1, "
2048 "and endpoint is not disabled.\n");
2049 ret = -EINVAL;
2050 break;
2051 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2052 dev_warn(&udev->dev,
2053 "ERROR: Incompatible device for endpoint configure command.\n");
2054 ret = -ENODEV;
2055 break;
2056 case COMP_SUCCESS:
2057 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2058 "Successful Endpoint Configure command");
2059 ret = 0;
2060 break;
2061 default:
2062 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2063 *cmd_status);
2064 ret = -EINVAL;
2065 break;
2066 }
2067 return ret;
2068 }
2069
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2070 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2071 struct usb_device *udev, u32 *cmd_status)
2072 {
2073 int ret;
2074
2075 switch (*cmd_status) {
2076 case COMP_COMMAND_ABORTED:
2077 case COMP_COMMAND_RING_STOPPED:
2078 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2079 ret = -ETIME;
2080 break;
2081 case COMP_PARAMETER_ERROR:
2082 dev_warn(&udev->dev,
2083 "WARN: xHCI driver setup invalid evaluate context command.\n");
2084 ret = -EINVAL;
2085 break;
2086 case COMP_SLOT_NOT_ENABLED_ERROR:
2087 dev_warn(&udev->dev,
2088 "WARN: slot not enabled for evaluate context command.\n");
2089 ret = -EINVAL;
2090 break;
2091 case COMP_CONTEXT_STATE_ERROR:
2092 dev_warn(&udev->dev,
2093 "WARN: invalid context state for evaluate context command.\n");
2094 ret = -EINVAL;
2095 break;
2096 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2097 dev_warn(&udev->dev,
2098 "ERROR: Incompatible device for evaluate context command.\n");
2099 ret = -ENODEV;
2100 break;
2101 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2102 /* Max Exit Latency too large error */
2103 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2104 ret = -EINVAL;
2105 break;
2106 case COMP_SUCCESS:
2107 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2108 "Successful evaluate context command");
2109 ret = 0;
2110 break;
2111 default:
2112 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2113 *cmd_status);
2114 ret = -EINVAL;
2115 break;
2116 }
2117 return ret;
2118 }
2119
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2120 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2121 struct xhci_input_control_ctx *ctrl_ctx)
2122 {
2123 u32 valid_add_flags;
2124 u32 valid_drop_flags;
2125
2126 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2127 * (bit 1). The default control endpoint is added during the Address
2128 * Device command and is never removed until the slot is disabled.
2129 */
2130 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2131 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2132
2133 /* Use hweight32 to count the number of ones in the add flags, or
2134 * number of endpoints added. Don't count endpoints that are changed
2135 * (both added and dropped).
2136 */
2137 return hweight32(valid_add_flags) -
2138 hweight32(valid_add_flags & valid_drop_flags);
2139 }
2140
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2141 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2142 struct xhci_input_control_ctx *ctrl_ctx)
2143 {
2144 u32 valid_add_flags;
2145 u32 valid_drop_flags;
2146
2147 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2148 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2149
2150 return hweight32(valid_drop_flags) -
2151 hweight32(valid_add_flags & valid_drop_flags);
2152 }
2153
2154 /*
2155 * We need to reserve the new number of endpoints before the configure endpoint
2156 * command completes. We can't subtract the dropped endpoints from the number
2157 * of active endpoints until the command completes because we can oversubscribe
2158 * the host in this case:
2159 *
2160 * - the first configure endpoint command drops more endpoints than it adds
2161 * - a second configure endpoint command that adds more endpoints is queued
2162 * - the first configure endpoint command fails, so the config is unchanged
2163 * - the second command may succeed, even though there isn't enough resources
2164 *
2165 * Must be called with xhci->lock held.
2166 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2167 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2168 struct xhci_input_control_ctx *ctrl_ctx)
2169 {
2170 u32 added_eps;
2171
2172 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2173 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2174 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2175 "Not enough ep ctxs: "
2176 "%u active, need to add %u, limit is %u.",
2177 xhci->num_active_eps, added_eps,
2178 xhci->limit_active_eps);
2179 return -ENOMEM;
2180 }
2181 xhci->num_active_eps += added_eps;
2182 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2183 "Adding %u ep ctxs, %u now active.", added_eps,
2184 xhci->num_active_eps);
2185 return 0;
2186 }
2187
2188 /*
2189 * The configure endpoint was failed by the xHC for some other reason, so we
2190 * need to revert the resources that failed configuration would have used.
2191 *
2192 * Must be called with xhci->lock held.
2193 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2194 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2195 struct xhci_input_control_ctx *ctrl_ctx)
2196 {
2197 u32 num_failed_eps;
2198
2199 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2200 xhci->num_active_eps -= num_failed_eps;
2201 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2202 "Removing %u failed ep ctxs, %u now active.",
2203 num_failed_eps,
2204 xhci->num_active_eps);
2205 }
2206
2207 /*
2208 * Now that the command has completed, clean up the active endpoint count by
2209 * subtracting out the endpoints that were dropped (but not changed).
2210 *
2211 * Must be called with xhci->lock held.
2212 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2213 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2214 struct xhci_input_control_ctx *ctrl_ctx)
2215 {
2216 u32 num_dropped_eps;
2217
2218 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2219 xhci->num_active_eps -= num_dropped_eps;
2220 if (num_dropped_eps)
2221 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2222 "Removing %u dropped ep ctxs, %u now active.",
2223 num_dropped_eps,
2224 xhci->num_active_eps);
2225 }
2226
xhci_get_block_size(struct usb_device * udev)2227 static unsigned int xhci_get_block_size(struct usb_device *udev)
2228 {
2229 switch (udev->speed) {
2230 case USB_SPEED_LOW:
2231 case USB_SPEED_FULL:
2232 return FS_BLOCK;
2233 case USB_SPEED_HIGH:
2234 return HS_BLOCK;
2235 case USB_SPEED_SUPER:
2236 case USB_SPEED_SUPER_PLUS:
2237 return SS_BLOCK;
2238 case USB_SPEED_UNKNOWN:
2239 default:
2240 /* Should never happen */
2241 return 1;
2242 }
2243 }
2244
2245 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2246 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2247 {
2248 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2249 return LS_OVERHEAD;
2250 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2251 return FS_OVERHEAD;
2252 return HS_OVERHEAD;
2253 }
2254
2255 /* If we are changing a LS/FS device under a HS hub,
2256 * make sure (if we are activating a new TT) that the HS bus has enough
2257 * bandwidth for this new TT.
2258 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2259 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2260 struct xhci_virt_device *virt_dev,
2261 int old_active_eps)
2262 {
2263 struct xhci_interval_bw_table *bw_table;
2264 struct xhci_tt_bw_info *tt_info;
2265
2266 /* Find the bandwidth table for the root port this TT is attached to. */
2267 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2268 tt_info = virt_dev->tt_info;
2269 /* If this TT already had active endpoints, the bandwidth for this TT
2270 * has already been added. Removing all periodic endpoints (and thus
2271 * making the TT enactive) will only decrease the bandwidth used.
2272 */
2273 if (old_active_eps)
2274 return 0;
2275 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2276 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2277 return -ENOMEM;
2278 return 0;
2279 }
2280 /* Not sure why we would have no new active endpoints...
2281 *
2282 * Maybe because of an Evaluate Context change for a hub update or a
2283 * control endpoint 0 max packet size change?
2284 * FIXME: skip the bandwidth calculation in that case.
2285 */
2286 return 0;
2287 }
2288
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2289 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2290 struct xhci_virt_device *virt_dev)
2291 {
2292 unsigned int bw_reserved;
2293
2294 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2295 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2296 return -ENOMEM;
2297
2298 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2299 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2300 return -ENOMEM;
2301
2302 return 0;
2303 }
2304
2305 /*
2306 * This algorithm is a very conservative estimate of the worst-case scheduling
2307 * scenario for any one interval. The hardware dynamically schedules the
2308 * packets, so we can't tell which microframe could be the limiting factor in
2309 * the bandwidth scheduling. This only takes into account periodic endpoints.
2310 *
2311 * Obviously, we can't solve an NP complete problem to find the minimum worst
2312 * case scenario. Instead, we come up with an estimate that is no less than
2313 * the worst case bandwidth used for any one microframe, but may be an
2314 * over-estimate.
2315 *
2316 * We walk the requirements for each endpoint by interval, starting with the
2317 * smallest interval, and place packets in the schedule where there is only one
2318 * possible way to schedule packets for that interval. In order to simplify
2319 * this algorithm, we record the largest max packet size for each interval, and
2320 * assume all packets will be that size.
2321 *
2322 * For interval 0, we obviously must schedule all packets for each interval.
2323 * The bandwidth for interval 0 is just the amount of data to be transmitted
2324 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2325 * the number of packets).
2326 *
2327 * For interval 1, we have two possible microframes to schedule those packets
2328 * in. For this algorithm, if we can schedule the same number of packets for
2329 * each possible scheduling opportunity (each microframe), we will do so. The
2330 * remaining number of packets will be saved to be transmitted in the gaps in
2331 * the next interval's scheduling sequence.
2332 *
2333 * As we move those remaining packets to be scheduled with interval 2 packets,
2334 * we have to double the number of remaining packets to transmit. This is
2335 * because the intervals are actually powers of 2, and we would be transmitting
2336 * the previous interval's packets twice in this interval. We also have to be
2337 * sure that when we look at the largest max packet size for this interval, we
2338 * also look at the largest max packet size for the remaining packets and take
2339 * the greater of the two.
2340 *
2341 * The algorithm continues to evenly distribute packets in each scheduling
2342 * opportunity, and push the remaining packets out, until we get to the last
2343 * interval. Then those packets and their associated overhead are just added
2344 * to the bandwidth used.
2345 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2346 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2347 struct xhci_virt_device *virt_dev,
2348 int old_active_eps)
2349 {
2350 unsigned int bw_reserved;
2351 unsigned int max_bandwidth;
2352 unsigned int bw_used;
2353 unsigned int block_size;
2354 struct xhci_interval_bw_table *bw_table;
2355 unsigned int packet_size = 0;
2356 unsigned int overhead = 0;
2357 unsigned int packets_transmitted = 0;
2358 unsigned int packets_remaining = 0;
2359 unsigned int i;
2360
2361 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2362 return xhci_check_ss_bw(xhci, virt_dev);
2363
2364 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2365 max_bandwidth = HS_BW_LIMIT;
2366 /* Convert percent of bus BW reserved to blocks reserved */
2367 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2368 } else {
2369 max_bandwidth = FS_BW_LIMIT;
2370 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2371 }
2372
2373 bw_table = virt_dev->bw_table;
2374 /* We need to translate the max packet size and max ESIT payloads into
2375 * the units the hardware uses.
2376 */
2377 block_size = xhci_get_block_size(virt_dev->udev);
2378
2379 /* If we are manipulating a LS/FS device under a HS hub, double check
2380 * that the HS bus has enough bandwidth if we are activing a new TT.
2381 */
2382 if (virt_dev->tt_info) {
2383 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2384 "Recalculating BW for rootport %u",
2385 virt_dev->rhub_port->hw_portnum + 1);
2386 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2387 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2388 "newly activated TT.\n");
2389 return -ENOMEM;
2390 }
2391 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2392 "Recalculating BW for TT slot %u port %u",
2393 virt_dev->tt_info->slot_id,
2394 virt_dev->tt_info->ttport);
2395 } else {
2396 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2397 "Recalculating BW for rootport %u",
2398 virt_dev->rhub_port->hw_portnum + 1);
2399 }
2400
2401 /* Add in how much bandwidth will be used for interval zero, or the
2402 * rounded max ESIT payload + number of packets * largest overhead.
2403 */
2404 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2405 bw_table->interval_bw[0].num_packets *
2406 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2407
2408 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2409 unsigned int bw_added;
2410 unsigned int largest_mps;
2411 unsigned int interval_overhead;
2412
2413 /*
2414 * How many packets could we transmit in this interval?
2415 * If packets didn't fit in the previous interval, we will need
2416 * to transmit that many packets twice within this interval.
2417 */
2418 packets_remaining = 2 * packets_remaining +
2419 bw_table->interval_bw[i].num_packets;
2420
2421 /* Find the largest max packet size of this or the previous
2422 * interval.
2423 */
2424 if (list_empty(&bw_table->interval_bw[i].endpoints))
2425 largest_mps = 0;
2426 else {
2427 struct xhci_virt_ep *virt_ep;
2428 struct list_head *ep_entry;
2429
2430 ep_entry = bw_table->interval_bw[i].endpoints.next;
2431 virt_ep = list_entry(ep_entry,
2432 struct xhci_virt_ep, bw_endpoint_list);
2433 /* Convert to blocks, rounding up */
2434 largest_mps = DIV_ROUND_UP(
2435 virt_ep->bw_info.max_packet_size,
2436 block_size);
2437 }
2438 if (largest_mps > packet_size)
2439 packet_size = largest_mps;
2440
2441 /* Use the larger overhead of this or the previous interval. */
2442 interval_overhead = xhci_get_largest_overhead(
2443 &bw_table->interval_bw[i]);
2444 if (interval_overhead > overhead)
2445 overhead = interval_overhead;
2446
2447 /* How many packets can we evenly distribute across
2448 * (1 << (i + 1)) possible scheduling opportunities?
2449 */
2450 packets_transmitted = packets_remaining >> (i + 1);
2451
2452 /* Add in the bandwidth used for those scheduled packets */
2453 bw_added = packets_transmitted * (overhead + packet_size);
2454
2455 /* How many packets do we have remaining to transmit? */
2456 packets_remaining = packets_remaining % (1 << (i + 1));
2457
2458 /* What largest max packet size should those packets have? */
2459 /* If we've transmitted all packets, don't carry over the
2460 * largest packet size.
2461 */
2462 if (packets_remaining == 0) {
2463 packet_size = 0;
2464 overhead = 0;
2465 } else if (packets_transmitted > 0) {
2466 /* Otherwise if we do have remaining packets, and we've
2467 * scheduled some packets in this interval, take the
2468 * largest max packet size from endpoints with this
2469 * interval.
2470 */
2471 packet_size = largest_mps;
2472 overhead = interval_overhead;
2473 }
2474 /* Otherwise carry over packet_size and overhead from the last
2475 * time we had a remainder.
2476 */
2477 bw_used += bw_added;
2478 if (bw_used > max_bandwidth) {
2479 xhci_warn(xhci, "Not enough bandwidth. "
2480 "Proposed: %u, Max: %u\n",
2481 bw_used, max_bandwidth);
2482 return -ENOMEM;
2483 }
2484 }
2485 /*
2486 * Ok, we know we have some packets left over after even-handedly
2487 * scheduling interval 15. We don't know which microframes they will
2488 * fit into, so we over-schedule and say they will be scheduled every
2489 * microframe.
2490 */
2491 if (packets_remaining > 0)
2492 bw_used += overhead + packet_size;
2493
2494 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2495 /* OK, we're manipulating a HS device attached to a
2496 * root port bandwidth domain. Include the number of active TTs
2497 * in the bandwidth used.
2498 */
2499 bw_used += TT_HS_OVERHEAD *
2500 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2501 }
2502
2503 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2504 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2505 "Available: %u " "percent",
2506 bw_used, max_bandwidth, bw_reserved,
2507 (max_bandwidth - bw_used - bw_reserved) * 100 /
2508 max_bandwidth);
2509
2510 bw_used += bw_reserved;
2511 if (bw_used > max_bandwidth) {
2512 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2513 bw_used, max_bandwidth);
2514 return -ENOMEM;
2515 }
2516
2517 bw_table->bw_used = bw_used;
2518 return 0;
2519 }
2520
xhci_is_async_ep(unsigned int ep_type)2521 static bool xhci_is_async_ep(unsigned int ep_type)
2522 {
2523 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2524 ep_type != ISOC_IN_EP &&
2525 ep_type != INT_IN_EP);
2526 }
2527
xhci_is_sync_in_ep(unsigned int ep_type)2528 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2529 {
2530 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2531 }
2532
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2533 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2534 {
2535 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2536
2537 if (ep_bw->ep_interval == 0)
2538 return SS_OVERHEAD_BURST +
2539 (ep_bw->mult * ep_bw->num_packets *
2540 (SS_OVERHEAD + mps));
2541 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2542 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2543 1 << ep_bw->ep_interval);
2544
2545 }
2546
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2547 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2548 struct xhci_bw_info *ep_bw,
2549 struct xhci_interval_bw_table *bw_table,
2550 struct usb_device *udev,
2551 struct xhci_virt_ep *virt_ep,
2552 struct xhci_tt_bw_info *tt_info)
2553 {
2554 struct xhci_interval_bw *interval_bw;
2555 int normalized_interval;
2556
2557 if (xhci_is_async_ep(ep_bw->type))
2558 return;
2559
2560 if (udev->speed >= USB_SPEED_SUPER) {
2561 if (xhci_is_sync_in_ep(ep_bw->type))
2562 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2563 xhci_get_ss_bw_consumed(ep_bw);
2564 else
2565 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2566 xhci_get_ss_bw_consumed(ep_bw);
2567 return;
2568 }
2569
2570 /* SuperSpeed endpoints never get added to intervals in the table, so
2571 * this check is only valid for HS/FS/LS devices.
2572 */
2573 if (list_empty(&virt_ep->bw_endpoint_list))
2574 return;
2575 /* For LS/FS devices, we need to translate the interval expressed in
2576 * microframes to frames.
2577 */
2578 if (udev->speed == USB_SPEED_HIGH)
2579 normalized_interval = ep_bw->ep_interval;
2580 else
2581 normalized_interval = ep_bw->ep_interval - 3;
2582
2583 if (normalized_interval == 0)
2584 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2585 interval_bw = &bw_table->interval_bw[normalized_interval];
2586 interval_bw->num_packets -= ep_bw->num_packets;
2587 switch (udev->speed) {
2588 case USB_SPEED_LOW:
2589 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2590 break;
2591 case USB_SPEED_FULL:
2592 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2593 break;
2594 case USB_SPEED_HIGH:
2595 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2596 break;
2597 default:
2598 /* Should never happen because only LS/FS/HS endpoints will get
2599 * added to the endpoint list.
2600 */
2601 return;
2602 }
2603 if (tt_info)
2604 tt_info->active_eps -= 1;
2605 list_del_init(&virt_ep->bw_endpoint_list);
2606 }
2607
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2608 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2609 struct xhci_bw_info *ep_bw,
2610 struct xhci_interval_bw_table *bw_table,
2611 struct usb_device *udev,
2612 struct xhci_virt_ep *virt_ep,
2613 struct xhci_tt_bw_info *tt_info)
2614 {
2615 struct xhci_interval_bw *interval_bw;
2616 struct xhci_virt_ep *smaller_ep;
2617 int normalized_interval;
2618
2619 if (xhci_is_async_ep(ep_bw->type))
2620 return;
2621
2622 if (udev->speed == USB_SPEED_SUPER) {
2623 if (xhci_is_sync_in_ep(ep_bw->type))
2624 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2625 xhci_get_ss_bw_consumed(ep_bw);
2626 else
2627 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2628 xhci_get_ss_bw_consumed(ep_bw);
2629 return;
2630 }
2631
2632 /* For LS/FS devices, we need to translate the interval expressed in
2633 * microframes to frames.
2634 */
2635 if (udev->speed == USB_SPEED_HIGH)
2636 normalized_interval = ep_bw->ep_interval;
2637 else
2638 normalized_interval = ep_bw->ep_interval - 3;
2639
2640 if (normalized_interval == 0)
2641 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2642 interval_bw = &bw_table->interval_bw[normalized_interval];
2643 interval_bw->num_packets += ep_bw->num_packets;
2644 switch (udev->speed) {
2645 case USB_SPEED_LOW:
2646 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2647 break;
2648 case USB_SPEED_FULL:
2649 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2650 break;
2651 case USB_SPEED_HIGH:
2652 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2653 break;
2654 default:
2655 /* Should never happen because only LS/FS/HS endpoints will get
2656 * added to the endpoint list.
2657 */
2658 return;
2659 }
2660
2661 if (tt_info)
2662 tt_info->active_eps += 1;
2663 /* Insert the endpoint into the list, largest max packet size first. */
2664 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2665 bw_endpoint_list) {
2666 if (ep_bw->max_packet_size >=
2667 smaller_ep->bw_info.max_packet_size) {
2668 /* Add the new ep before the smaller endpoint */
2669 list_add_tail(&virt_ep->bw_endpoint_list,
2670 &smaller_ep->bw_endpoint_list);
2671 return;
2672 }
2673 }
2674 /* Add the new endpoint at the end of the list. */
2675 list_add_tail(&virt_ep->bw_endpoint_list,
2676 &interval_bw->endpoints);
2677 }
2678
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2679 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2680 struct xhci_virt_device *virt_dev,
2681 int old_active_eps)
2682 {
2683 struct xhci_root_port_bw_info *rh_bw_info;
2684 if (!virt_dev->tt_info)
2685 return;
2686
2687 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2688 if (old_active_eps == 0 &&
2689 virt_dev->tt_info->active_eps != 0) {
2690 rh_bw_info->num_active_tts += 1;
2691 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2692 } else if (old_active_eps != 0 &&
2693 virt_dev->tt_info->active_eps == 0) {
2694 rh_bw_info->num_active_tts -= 1;
2695 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2696 }
2697 }
2698
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2699 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2700 struct xhci_virt_device *virt_dev,
2701 struct xhci_container_ctx *in_ctx)
2702 {
2703 struct xhci_bw_info ep_bw_info[31];
2704 int i;
2705 struct xhci_input_control_ctx *ctrl_ctx;
2706 int old_active_eps = 0;
2707
2708 if (virt_dev->tt_info)
2709 old_active_eps = virt_dev->tt_info->active_eps;
2710
2711 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2712 if (!ctrl_ctx) {
2713 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2714 __func__);
2715 return -ENOMEM;
2716 }
2717
2718 for (i = 0; i < 31; i++) {
2719 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2720 continue;
2721
2722 /* Make a copy of the BW info in case we need to revert this */
2723 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2724 sizeof(ep_bw_info[i]));
2725 /* Drop the endpoint from the interval table if the endpoint is
2726 * being dropped or changed.
2727 */
2728 if (EP_IS_DROPPED(ctrl_ctx, i))
2729 xhci_drop_ep_from_interval_table(xhci,
2730 &virt_dev->eps[i].bw_info,
2731 virt_dev->bw_table,
2732 virt_dev->udev,
2733 &virt_dev->eps[i],
2734 virt_dev->tt_info);
2735 }
2736 /* Overwrite the information stored in the endpoints' bw_info */
2737 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2738 for (i = 0; i < 31; i++) {
2739 /* Add any changed or added endpoints to the interval table */
2740 if (EP_IS_ADDED(ctrl_ctx, i))
2741 xhci_add_ep_to_interval_table(xhci,
2742 &virt_dev->eps[i].bw_info,
2743 virt_dev->bw_table,
2744 virt_dev->udev,
2745 &virt_dev->eps[i],
2746 virt_dev->tt_info);
2747 }
2748
2749 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2750 /* Ok, this fits in the bandwidth we have.
2751 * Update the number of active TTs.
2752 */
2753 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2754 return 0;
2755 }
2756
2757 /* We don't have enough bandwidth for this, revert the stored info. */
2758 for (i = 0; i < 31; i++) {
2759 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2760 continue;
2761
2762 /* Drop the new copies of any added or changed endpoints from
2763 * the interval table.
2764 */
2765 if (EP_IS_ADDED(ctrl_ctx, i)) {
2766 xhci_drop_ep_from_interval_table(xhci,
2767 &virt_dev->eps[i].bw_info,
2768 virt_dev->bw_table,
2769 virt_dev->udev,
2770 &virt_dev->eps[i],
2771 virt_dev->tt_info);
2772 }
2773 /* Revert the endpoint back to its old information */
2774 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2775 sizeof(ep_bw_info[i]));
2776 /* Add any changed or dropped endpoints back into the table */
2777 if (EP_IS_DROPPED(ctrl_ctx, i))
2778 xhci_add_ep_to_interval_table(xhci,
2779 &virt_dev->eps[i].bw_info,
2780 virt_dev->bw_table,
2781 virt_dev->udev,
2782 &virt_dev->eps[i],
2783 virt_dev->tt_info);
2784 }
2785 return -ENOMEM;
2786 }
2787
2788 /*
2789 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and
2790 * waits for the command completion before returning. This does not call
2791 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error'
2792 * cases, along with transfer ring cleanup.
2793 *
2794 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage
2795 * their own transfer ring, such as offload situations.
2796 */
xhci_stop_endpoint_sync(struct xhci_hcd * xhci,struct xhci_virt_ep * ep,int suspend,gfp_t gfp_flags)2797 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2798 gfp_t gfp_flags)
2799 {
2800 struct xhci_command *command;
2801 unsigned long flags;
2802 int ret;
2803
2804 command = xhci_alloc_command(xhci, true, gfp_flags);
2805 if (!command)
2806 return -ENOMEM;
2807
2808 spin_lock_irqsave(&xhci->lock, flags);
2809 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2810 ep->ep_index, suspend);
2811 if (ret < 0) {
2812 spin_unlock_irqrestore(&xhci->lock, flags);
2813 goto out;
2814 }
2815
2816 xhci_ring_cmd_db(xhci);
2817 spin_unlock_irqrestore(&xhci->lock, flags);
2818
2819 wait_for_completion(command->completion);
2820
2821 /* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/
2822 if (command->status == COMP_COMMAND_ABORTED ||
2823 command->status == COMP_COMMAND_RING_STOPPED) {
2824 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2825 ret = -ETIME;
2826 }
2827 out:
2828 xhci_free_command(xhci, command);
2829
2830 return ret;
2831 }
2832 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2833
2834 /* Issue a configure endpoint command or evaluate context command
2835 * and wait for it to finish.
2836 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2837 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2838 struct usb_device *udev,
2839 struct xhci_command *command,
2840 bool ctx_change, bool must_succeed)
2841 {
2842 int ret;
2843 unsigned long flags;
2844 struct xhci_input_control_ctx *ctrl_ctx;
2845 struct xhci_virt_device *virt_dev;
2846 struct xhci_slot_ctx *slot_ctx;
2847
2848 if (!command)
2849 return -EINVAL;
2850
2851 spin_lock_irqsave(&xhci->lock, flags);
2852
2853 if (xhci->xhc_state & XHCI_STATE_DYING) {
2854 spin_unlock_irqrestore(&xhci->lock, flags);
2855 return -ESHUTDOWN;
2856 }
2857
2858 virt_dev = xhci->devs[udev->slot_id];
2859
2860 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2861 if (!ctrl_ctx) {
2862 spin_unlock_irqrestore(&xhci->lock, flags);
2863 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2864 __func__);
2865 return -ENOMEM;
2866 }
2867
2868 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2869 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2870 spin_unlock_irqrestore(&xhci->lock, flags);
2871 xhci_warn(xhci, "Not enough host resources, "
2872 "active endpoint contexts = %u\n",
2873 xhci->num_active_eps);
2874 return -ENOMEM;
2875 }
2876 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2877 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2878 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2879 xhci_free_host_resources(xhci, ctrl_ctx);
2880 spin_unlock_irqrestore(&xhci->lock, flags);
2881 xhci_warn(xhci, "Not enough bandwidth\n");
2882 return -ENOMEM;
2883 }
2884
2885 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2886
2887 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2888 trace_xhci_configure_endpoint(slot_ctx);
2889
2890 if (!ctx_change)
2891 ret = xhci_queue_configure_endpoint(xhci, command,
2892 command->in_ctx->dma,
2893 udev->slot_id, must_succeed);
2894 else
2895 ret = xhci_queue_evaluate_context(xhci, command,
2896 command->in_ctx->dma,
2897 udev->slot_id, must_succeed);
2898 if (ret < 0) {
2899 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2900 xhci_free_host_resources(xhci, ctrl_ctx);
2901 spin_unlock_irqrestore(&xhci->lock, flags);
2902 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2903 "FIXME allocate a new ring segment");
2904 return -ENOMEM;
2905 }
2906 xhci_ring_cmd_db(xhci);
2907 spin_unlock_irqrestore(&xhci->lock, flags);
2908
2909 /* Wait for the configure endpoint command to complete */
2910 wait_for_completion(command->completion);
2911
2912 if (!ctx_change)
2913 ret = xhci_configure_endpoint_result(xhci, udev,
2914 &command->status);
2915 else
2916 ret = xhci_evaluate_context_result(xhci, udev,
2917 &command->status);
2918
2919 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2920 spin_lock_irqsave(&xhci->lock, flags);
2921 /* If the command failed, remove the reserved resources.
2922 * Otherwise, clean up the estimate to include dropped eps.
2923 */
2924 if (ret)
2925 xhci_free_host_resources(xhci, ctrl_ctx);
2926 else
2927 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2928 spin_unlock_irqrestore(&xhci->lock, flags);
2929 }
2930 return ret;
2931 }
2932
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2933 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2934 struct xhci_virt_device *vdev, int i)
2935 {
2936 struct xhci_virt_ep *ep = &vdev->eps[i];
2937
2938 if (ep->ep_state & EP_HAS_STREAMS) {
2939 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2940 xhci_get_endpoint_address(i));
2941 xhci_free_stream_info(xhci, ep->stream_info);
2942 ep->stream_info = NULL;
2943 ep->ep_state &= ~EP_HAS_STREAMS;
2944 }
2945 }
2946
2947 /* Called after one or more calls to xhci_add_endpoint() or
2948 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2949 * to call xhci_reset_bandwidth().
2950 *
2951 * Since we are in the middle of changing either configuration or
2952 * installing a new alt setting, the USB core won't allow URBs to be
2953 * enqueued for any endpoint on the old config or interface. Nothing
2954 * else should be touching the xhci->devs[slot_id] structure, so we
2955 * don't need to take the xhci->lock for manipulating that.
2956 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2957 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2958 {
2959 int i;
2960 int ret = 0;
2961 struct xhci_hcd *xhci;
2962 struct xhci_virt_device *virt_dev;
2963 struct xhci_input_control_ctx *ctrl_ctx;
2964 struct xhci_slot_ctx *slot_ctx;
2965 struct xhci_command *command;
2966
2967 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2968 if (ret <= 0)
2969 return ret;
2970 xhci = hcd_to_xhci(hcd);
2971 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2972 (xhci->xhc_state & XHCI_STATE_REMOVING))
2973 return -ENODEV;
2974
2975 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2976 virt_dev = xhci->devs[udev->slot_id];
2977
2978 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2979 if (!command)
2980 return -ENOMEM;
2981
2982 command->in_ctx = virt_dev->in_ctx;
2983
2984 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2985 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2986 if (!ctrl_ctx) {
2987 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2988 __func__);
2989 ret = -ENOMEM;
2990 goto command_cleanup;
2991 }
2992 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2993 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2994 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2995
2996 /* Don't issue the command if there's no endpoints to update. */
2997 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2998 ctrl_ctx->drop_flags == 0) {
2999 ret = 0;
3000 goto command_cleanup;
3001 }
3002 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3003 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3004 for (i = 31; i >= 1; i--) {
3005 __le32 le32 = cpu_to_le32(BIT(i));
3006
3007 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3008 || (ctrl_ctx->add_flags & le32) || i == 1) {
3009 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3010 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3011 break;
3012 }
3013 }
3014
3015 ret = xhci_configure_endpoint(xhci, udev, command,
3016 false, false);
3017 if (ret)
3018 /* Callee should call reset_bandwidth() */
3019 goto command_cleanup;
3020
3021 /* Free any rings that were dropped, but not changed. */
3022 for (i = 1; i < 31; i++) {
3023 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3024 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3025 xhci_free_endpoint_ring(xhci, virt_dev, i);
3026 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3027 }
3028 }
3029 xhci_zero_in_ctx(xhci, virt_dev);
3030 /*
3031 * Install any rings for completely new endpoints or changed endpoints,
3032 * and free any old rings from changed endpoints.
3033 */
3034 for (i = 1; i < 31; i++) {
3035 if (!virt_dev->eps[i].new_ring)
3036 continue;
3037 /* Only free the old ring if it exists.
3038 * It may not if this is the first add of an endpoint.
3039 */
3040 if (virt_dev->eps[i].ring) {
3041 xhci_free_endpoint_ring(xhci, virt_dev, i);
3042 }
3043 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3044 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3045 virt_dev->eps[i].new_ring = NULL;
3046 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3047 }
3048 command_cleanup:
3049 kfree(command->completion);
3050 kfree(command);
3051
3052 return ret;
3053 }
3054 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3055
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3056 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3057 {
3058 struct xhci_hcd *xhci;
3059 struct xhci_virt_device *virt_dev;
3060 int i, ret;
3061
3062 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3063 if (ret <= 0)
3064 return;
3065 xhci = hcd_to_xhci(hcd);
3066
3067 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3068 virt_dev = xhci->devs[udev->slot_id];
3069 /* Free any rings allocated for added endpoints */
3070 for (i = 0; i < 31; i++) {
3071 if (virt_dev->eps[i].new_ring) {
3072 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3073 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3074 virt_dev->eps[i].new_ring = NULL;
3075 }
3076 }
3077 xhci_zero_in_ctx(xhci, virt_dev);
3078 }
3079 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3080
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3081 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3082 struct xhci_container_ctx *in_ctx,
3083 struct xhci_container_ctx *out_ctx,
3084 struct xhci_input_control_ctx *ctrl_ctx,
3085 u32 add_flags, u32 drop_flags)
3086 {
3087 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3088 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3089 xhci_slot_copy(xhci, in_ctx, out_ctx);
3090 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3091 }
3092
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3093 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3094 struct usb_host_endpoint *host_ep)
3095 {
3096 struct xhci_hcd *xhci;
3097 struct xhci_virt_device *vdev;
3098 struct xhci_virt_ep *ep;
3099 struct usb_device *udev;
3100 unsigned long flags;
3101 unsigned int ep_index;
3102
3103 xhci = hcd_to_xhci(hcd);
3104 rescan:
3105 spin_lock_irqsave(&xhci->lock, flags);
3106
3107 udev = (struct usb_device *)host_ep->hcpriv;
3108 if (!udev || !udev->slot_id)
3109 goto done;
3110
3111 vdev = xhci->devs[udev->slot_id];
3112 if (!vdev)
3113 goto done;
3114
3115 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3116 ep = &vdev->eps[ep_index];
3117
3118 /* wait for hub_tt_work to finish clearing hub TT */
3119 if (ep->ep_state & EP_CLEARING_TT) {
3120 spin_unlock_irqrestore(&xhci->lock, flags);
3121 schedule_timeout_uninterruptible(1);
3122 goto rescan;
3123 }
3124
3125 if (ep->ep_state)
3126 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3127 ep->ep_state);
3128 done:
3129 host_ep->hcpriv = NULL;
3130 spin_unlock_irqrestore(&xhci->lock, flags);
3131 }
3132
3133 /*
3134 * Called after usb core issues a clear halt control message.
3135 * The host side of the halt should already be cleared by a reset endpoint
3136 * command issued when the STALL event was received.
3137 *
3138 * The reset endpoint command may only be issued to endpoints in the halted
3139 * state. For software that wishes to reset the data toggle or sequence number
3140 * of an endpoint that isn't in the halted state this function will issue a
3141 * configure endpoint command with the Drop and Add bits set for the target
3142 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3143 *
3144 * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3145 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3146 */
3147
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3148 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3149 struct usb_host_endpoint *host_ep)
3150 {
3151 struct xhci_hcd *xhci;
3152 struct usb_device *udev;
3153 struct xhci_virt_device *vdev;
3154 struct xhci_virt_ep *ep;
3155 struct xhci_input_control_ctx *ctrl_ctx;
3156 struct xhci_command *stop_cmd, *cfg_cmd;
3157 unsigned int ep_index;
3158 unsigned long flags;
3159 u32 ep_flag;
3160 int err;
3161
3162 xhci = hcd_to_xhci(hcd);
3163 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3164
3165 /*
3166 * Usb core assumes a max packet value for ep0 on FS devices until the
3167 * real value is read from the descriptor. Core resets Ep0 if values
3168 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3169 */
3170 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3171
3172 udev = container_of(host_ep, struct usb_device, ep0);
3173 if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3174 return;
3175
3176 vdev = xhci->devs[udev->slot_id];
3177 if (!vdev || vdev->udev != udev)
3178 return;
3179
3180 xhci_check_ep0_maxpacket(xhci, vdev);
3181
3182 /* Nothing else should be done here for ep0 during ep reset */
3183 return;
3184 }
3185
3186 if (!host_ep->hcpriv)
3187 return;
3188 udev = (struct usb_device *) host_ep->hcpriv;
3189 vdev = xhci->devs[udev->slot_id];
3190
3191 if (!udev->slot_id || !vdev)
3192 return;
3193
3194 ep = &vdev->eps[ep_index];
3195
3196 /* Bail out if toggle is already being cleared by a endpoint reset */
3197 spin_lock_irqsave(&xhci->lock, flags);
3198 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3199 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3200 spin_unlock_irqrestore(&xhci->lock, flags);
3201 return;
3202 }
3203 spin_unlock_irqrestore(&xhci->lock, flags);
3204 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3205 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3206 usb_endpoint_xfer_isoc(&host_ep->desc))
3207 return;
3208
3209 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3210
3211 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3212 return;
3213
3214 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3215 if (!stop_cmd)
3216 return;
3217
3218 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3219 if (!cfg_cmd)
3220 goto cleanup;
3221
3222 spin_lock_irqsave(&xhci->lock, flags);
3223
3224 /* block queuing new trbs and ringing ep doorbell */
3225 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3226
3227 /*
3228 * Make sure endpoint ring is empty before resetting the toggle/seq.
3229 * Driver is required to synchronously cancel all transfer request.
3230 * Stop the endpoint to force xHC to update the output context
3231 */
3232
3233 if (!list_empty(&ep->ring->td_list)) {
3234 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3235 spin_unlock_irqrestore(&xhci->lock, flags);
3236 xhci_free_command(xhci, cfg_cmd);
3237 goto cleanup;
3238 }
3239
3240 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3241 ep_index, 0);
3242 if (err < 0) {
3243 spin_unlock_irqrestore(&xhci->lock, flags);
3244 xhci_free_command(xhci, cfg_cmd);
3245 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3246 __func__, err);
3247 goto cleanup;
3248 }
3249
3250 xhci_ring_cmd_db(xhci);
3251 spin_unlock_irqrestore(&xhci->lock, flags);
3252
3253 wait_for_completion(stop_cmd->completion);
3254
3255 spin_lock_irqsave(&xhci->lock, flags);
3256
3257 /* config ep command clears toggle if add and drop ep flags are set */
3258 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3259 if (!ctrl_ctx) {
3260 spin_unlock_irqrestore(&xhci->lock, flags);
3261 xhci_free_command(xhci, cfg_cmd);
3262 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3263 __func__);
3264 goto cleanup;
3265 }
3266
3267 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3268 ctrl_ctx, ep_flag, ep_flag);
3269 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3270
3271 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3272 udev->slot_id, false);
3273 if (err < 0) {
3274 spin_unlock_irqrestore(&xhci->lock, flags);
3275 xhci_free_command(xhci, cfg_cmd);
3276 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3277 __func__, err);
3278 goto cleanup;
3279 }
3280
3281 xhci_ring_cmd_db(xhci);
3282 spin_unlock_irqrestore(&xhci->lock, flags);
3283
3284 wait_for_completion(cfg_cmd->completion);
3285
3286 xhci_free_command(xhci, cfg_cmd);
3287 cleanup:
3288 xhci_free_command(xhci, stop_cmd);
3289 spin_lock_irqsave(&xhci->lock, flags);
3290 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3291 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3292 spin_unlock_irqrestore(&xhci->lock, flags);
3293 }
3294
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3295 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3296 struct usb_device *udev, struct usb_host_endpoint *ep,
3297 unsigned int slot_id)
3298 {
3299 int ret;
3300 unsigned int ep_index;
3301 unsigned int ep_state;
3302
3303 if (!ep)
3304 return -EINVAL;
3305 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3306 if (ret <= 0)
3307 return ret ? ret : -EINVAL;
3308 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3309 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3310 " descriptor for ep 0x%x does not support streams\n",
3311 ep->desc.bEndpointAddress);
3312 return -EINVAL;
3313 }
3314
3315 ep_index = xhci_get_endpoint_index(&ep->desc);
3316 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3317 if (ep_state & EP_HAS_STREAMS ||
3318 ep_state & EP_GETTING_STREAMS) {
3319 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3320 "already has streams set up.\n",
3321 ep->desc.bEndpointAddress);
3322 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3323 "dynamic stream context array reallocation.\n");
3324 return -EINVAL;
3325 }
3326 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3327 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3328 "endpoint 0x%x; URBs are pending.\n",
3329 ep->desc.bEndpointAddress);
3330 return -EINVAL;
3331 }
3332 return 0;
3333 }
3334
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3335 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3336 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3337 {
3338 unsigned int max_streams;
3339
3340 /* The stream context array size must be a power of two */
3341 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3342 /*
3343 * Find out how many primary stream array entries the host controller
3344 * supports. Later we may use secondary stream arrays (similar to 2nd
3345 * level page entries), but that's an optional feature for xHCI host
3346 * controllers. xHCs must support at least 4 stream IDs.
3347 */
3348 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3349 if (*num_stream_ctxs > max_streams) {
3350 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3351 max_streams);
3352 *num_stream_ctxs = max_streams;
3353 *num_streams = max_streams;
3354 }
3355 }
3356
3357 /* Returns an error code if one of the endpoint already has streams.
3358 * This does not change any data structures, it only checks and gathers
3359 * information.
3360 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3361 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3362 struct usb_device *udev,
3363 struct usb_host_endpoint **eps, unsigned int num_eps,
3364 unsigned int *num_streams, u32 *changed_ep_bitmask)
3365 {
3366 unsigned int max_streams;
3367 unsigned int endpoint_flag;
3368 int i;
3369 int ret;
3370
3371 for (i = 0; i < num_eps; i++) {
3372 ret = xhci_check_streams_endpoint(xhci, udev,
3373 eps[i], udev->slot_id);
3374 if (ret < 0)
3375 return ret;
3376
3377 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3378 if (max_streams < (*num_streams - 1)) {
3379 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3380 eps[i]->desc.bEndpointAddress,
3381 max_streams);
3382 *num_streams = max_streams+1;
3383 }
3384
3385 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3386 if (*changed_ep_bitmask & endpoint_flag)
3387 return -EINVAL;
3388 *changed_ep_bitmask |= endpoint_flag;
3389 }
3390 return 0;
3391 }
3392
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3393 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3394 struct usb_device *udev,
3395 struct usb_host_endpoint **eps, unsigned int num_eps)
3396 {
3397 u32 changed_ep_bitmask = 0;
3398 unsigned int slot_id;
3399 unsigned int ep_index;
3400 unsigned int ep_state;
3401 int i;
3402
3403 slot_id = udev->slot_id;
3404 if (!xhci->devs[slot_id])
3405 return 0;
3406
3407 for (i = 0; i < num_eps; i++) {
3408 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3409 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3410 /* Are streams already being freed for the endpoint? */
3411 if (ep_state & EP_GETTING_NO_STREAMS) {
3412 xhci_warn(xhci, "WARN Can't disable streams for "
3413 "endpoint 0x%x, "
3414 "streams are being disabled already\n",
3415 eps[i]->desc.bEndpointAddress);
3416 return 0;
3417 }
3418 /* Are there actually any streams to free? */
3419 if (!(ep_state & EP_HAS_STREAMS) &&
3420 !(ep_state & EP_GETTING_STREAMS)) {
3421 xhci_warn(xhci, "WARN Can't disable streams for "
3422 "endpoint 0x%x, "
3423 "streams are already disabled!\n",
3424 eps[i]->desc.bEndpointAddress);
3425 xhci_warn(xhci, "WARN xhci_free_streams() called "
3426 "with non-streams endpoint\n");
3427 return 0;
3428 }
3429 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3430 }
3431 return changed_ep_bitmask;
3432 }
3433
3434 /*
3435 * The USB device drivers use this function (through the HCD interface in USB
3436 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3437 * coordinate mass storage command queueing across multiple endpoints (basically
3438 * a stream ID == a task ID).
3439 *
3440 * Setting up streams involves allocating the same size stream context array
3441 * for each endpoint and issuing a configure endpoint command for all endpoints.
3442 *
3443 * Don't allow the call to succeed if one endpoint only supports one stream
3444 * (which means it doesn't support streams at all).
3445 *
3446 * Drivers may get less stream IDs than they asked for, if the host controller
3447 * hardware or endpoints claim they can't support the number of requested
3448 * stream IDs.
3449 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3450 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3451 struct usb_host_endpoint **eps, unsigned int num_eps,
3452 unsigned int num_streams, gfp_t mem_flags)
3453 {
3454 int i, ret;
3455 struct xhci_hcd *xhci;
3456 struct xhci_virt_device *vdev;
3457 struct xhci_command *config_cmd;
3458 struct xhci_input_control_ctx *ctrl_ctx;
3459 unsigned int ep_index;
3460 unsigned int num_stream_ctxs;
3461 unsigned int max_packet;
3462 unsigned long flags;
3463 u32 changed_ep_bitmask = 0;
3464
3465 if (!eps)
3466 return -EINVAL;
3467
3468 /* Add one to the number of streams requested to account for
3469 * stream 0 that is reserved for xHCI usage.
3470 */
3471 num_streams += 1;
3472 xhci = hcd_to_xhci(hcd);
3473 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3474 num_streams);
3475
3476 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3477 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3478 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3479 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3480 return -ENOSYS;
3481 }
3482
3483 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3484 if (!config_cmd)
3485 return -ENOMEM;
3486
3487 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3488 if (!ctrl_ctx) {
3489 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3490 __func__);
3491 xhci_free_command(xhci, config_cmd);
3492 return -ENOMEM;
3493 }
3494
3495 /* Check to make sure all endpoints are not already configured for
3496 * streams. While we're at it, find the maximum number of streams that
3497 * all the endpoints will support and check for duplicate endpoints.
3498 */
3499 spin_lock_irqsave(&xhci->lock, flags);
3500 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3501 num_eps, &num_streams, &changed_ep_bitmask);
3502 if (ret < 0) {
3503 xhci_free_command(xhci, config_cmd);
3504 spin_unlock_irqrestore(&xhci->lock, flags);
3505 return ret;
3506 }
3507 if (num_streams <= 1) {
3508 xhci_warn(xhci, "WARN: endpoints can't handle "
3509 "more than one stream.\n");
3510 xhci_free_command(xhci, config_cmd);
3511 spin_unlock_irqrestore(&xhci->lock, flags);
3512 return -EINVAL;
3513 }
3514 vdev = xhci->devs[udev->slot_id];
3515 /* Mark each endpoint as being in transition, so
3516 * xhci_urb_enqueue() will reject all URBs.
3517 */
3518 for (i = 0; i < num_eps; i++) {
3519 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3520 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3521 }
3522 spin_unlock_irqrestore(&xhci->lock, flags);
3523
3524 /* Setup internal data structures and allocate HW data structures for
3525 * streams (but don't install the HW structures in the input context
3526 * until we're sure all memory allocation succeeded).
3527 */
3528 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3529 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3530 num_stream_ctxs, num_streams);
3531
3532 for (i = 0; i < num_eps; i++) {
3533 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3534 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3535 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3536 num_stream_ctxs,
3537 num_streams,
3538 max_packet, mem_flags);
3539 if (!vdev->eps[ep_index].stream_info)
3540 goto cleanup;
3541 /* Set maxPstreams in endpoint context and update deq ptr to
3542 * point to stream context array. FIXME
3543 */
3544 }
3545
3546 /* Set up the input context for a configure endpoint command. */
3547 for (i = 0; i < num_eps; i++) {
3548 struct xhci_ep_ctx *ep_ctx;
3549
3550 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3551 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3552
3553 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3554 vdev->out_ctx, ep_index);
3555 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3556 vdev->eps[ep_index].stream_info);
3557 }
3558 /* Tell the HW to drop its old copy of the endpoint context info
3559 * and add the updated copy from the input context.
3560 */
3561 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3562 vdev->out_ctx, ctrl_ctx,
3563 changed_ep_bitmask, changed_ep_bitmask);
3564
3565 /* Issue and wait for the configure endpoint command */
3566 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3567 false, false);
3568
3569 /* xHC rejected the configure endpoint command for some reason, so we
3570 * leave the old ring intact and free our internal streams data
3571 * structure.
3572 */
3573 if (ret < 0)
3574 goto cleanup;
3575
3576 spin_lock_irqsave(&xhci->lock, flags);
3577 for (i = 0; i < num_eps; i++) {
3578 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3579 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3580 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3581 udev->slot_id, ep_index);
3582 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3583 }
3584 xhci_free_command(xhci, config_cmd);
3585 spin_unlock_irqrestore(&xhci->lock, flags);
3586
3587 for (i = 0; i < num_eps; i++) {
3588 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3589 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3590 }
3591 /* Subtract 1 for stream 0, which drivers can't use */
3592 return num_streams - 1;
3593
3594 cleanup:
3595 /* If it didn't work, free the streams! */
3596 for (i = 0; i < num_eps; i++) {
3597 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3598 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3599 vdev->eps[ep_index].stream_info = NULL;
3600 /* FIXME Unset maxPstreams in endpoint context and
3601 * update deq ptr to point to normal string ring.
3602 */
3603 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3604 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3605 xhci_endpoint_zero(xhci, vdev, eps[i]);
3606 }
3607 xhci_free_command(xhci, config_cmd);
3608 return -ENOMEM;
3609 }
3610
3611 /* Transition the endpoint from using streams to being a "normal" endpoint
3612 * without streams.
3613 *
3614 * Modify the endpoint context state, submit a configure endpoint command,
3615 * and free all endpoint rings for streams if that completes successfully.
3616 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3617 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3618 struct usb_host_endpoint **eps, unsigned int num_eps,
3619 gfp_t mem_flags)
3620 {
3621 int i, ret;
3622 struct xhci_hcd *xhci;
3623 struct xhci_virt_device *vdev;
3624 struct xhci_command *command;
3625 struct xhci_input_control_ctx *ctrl_ctx;
3626 unsigned int ep_index;
3627 unsigned long flags;
3628 u32 changed_ep_bitmask;
3629
3630 xhci = hcd_to_xhci(hcd);
3631 vdev = xhci->devs[udev->slot_id];
3632
3633 /* Set up a configure endpoint command to remove the streams rings */
3634 spin_lock_irqsave(&xhci->lock, flags);
3635 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3636 udev, eps, num_eps);
3637 if (changed_ep_bitmask == 0) {
3638 spin_unlock_irqrestore(&xhci->lock, flags);
3639 return -EINVAL;
3640 }
3641
3642 /* Use the xhci_command structure from the first endpoint. We may have
3643 * allocated too many, but the driver may call xhci_free_streams() for
3644 * each endpoint it grouped into one call to xhci_alloc_streams().
3645 */
3646 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3647 command = vdev->eps[ep_index].stream_info->free_streams_command;
3648 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3649 if (!ctrl_ctx) {
3650 spin_unlock_irqrestore(&xhci->lock, flags);
3651 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3652 __func__);
3653 return -EINVAL;
3654 }
3655
3656 for (i = 0; i < num_eps; i++) {
3657 struct xhci_ep_ctx *ep_ctx;
3658
3659 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3660 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3661 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3662 EP_GETTING_NO_STREAMS;
3663
3664 xhci_endpoint_copy(xhci, command->in_ctx,
3665 vdev->out_ctx, ep_index);
3666 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3667 &vdev->eps[ep_index]);
3668 }
3669 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3670 vdev->out_ctx, ctrl_ctx,
3671 changed_ep_bitmask, changed_ep_bitmask);
3672 spin_unlock_irqrestore(&xhci->lock, flags);
3673
3674 /* Issue and wait for the configure endpoint command,
3675 * which must succeed.
3676 */
3677 ret = xhci_configure_endpoint(xhci, udev, command,
3678 false, true);
3679
3680 /* xHC rejected the configure endpoint command for some reason, so we
3681 * leave the streams rings intact.
3682 */
3683 if (ret < 0)
3684 return ret;
3685
3686 spin_lock_irqsave(&xhci->lock, flags);
3687 for (i = 0; i < num_eps; i++) {
3688 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3689 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3690 vdev->eps[ep_index].stream_info = NULL;
3691 /* FIXME Unset maxPstreams in endpoint context and
3692 * update deq ptr to point to normal string ring.
3693 */
3694 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3695 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3696 }
3697 spin_unlock_irqrestore(&xhci->lock, flags);
3698
3699 return 0;
3700 }
3701
3702 /*
3703 * Deletes endpoint resources for endpoints that were active before a Reset
3704 * Device command, or a Disable Slot command. The Reset Device command leaves
3705 * the control endpoint intact, whereas the Disable Slot command deletes it.
3706 *
3707 * Must be called with xhci->lock held.
3708 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3709 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3710 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3711 {
3712 int i;
3713 unsigned int num_dropped_eps = 0;
3714 unsigned int drop_flags = 0;
3715
3716 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3717 if (virt_dev->eps[i].ring) {
3718 drop_flags |= 1 << i;
3719 num_dropped_eps++;
3720 }
3721 }
3722 xhci->num_active_eps -= num_dropped_eps;
3723 if (num_dropped_eps)
3724 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3725 "Dropped %u ep ctxs, flags = 0x%x, "
3726 "%u now active.",
3727 num_dropped_eps, drop_flags,
3728 xhci->num_active_eps);
3729 }
3730
3731 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3732
3733 /*
3734 * This submits a Reset Device Command, which will set the device state to 0,
3735 * set the device address to 0, and disable all the endpoints except the default
3736 * control endpoint. The USB core should come back and call
3737 * xhci_address_device(), and then re-set up the configuration. If this is
3738 * called because of a usb_reset_and_verify_device(), then the old alternate
3739 * settings will be re-installed through the normal bandwidth allocation
3740 * functions.
3741 *
3742 * Wait for the Reset Device command to finish. Remove all structures
3743 * associated with the endpoints that were disabled. Clear the input device
3744 * structure? Reset the control endpoint 0 max packet size?
3745 *
3746 * If the virt_dev to be reset does not exist or does not match the udev,
3747 * it means the device is lost, possibly due to the xHC restore error and
3748 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3749 * re-allocate the device.
3750 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3751 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3752 struct usb_device *udev)
3753 {
3754 int ret, i;
3755 unsigned long flags;
3756 struct xhci_hcd *xhci;
3757 unsigned int slot_id;
3758 struct xhci_virt_device *virt_dev;
3759 struct xhci_command *reset_device_cmd;
3760 struct xhci_slot_ctx *slot_ctx;
3761 int old_active_eps = 0;
3762
3763 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3764 if (ret <= 0)
3765 return ret;
3766 xhci = hcd_to_xhci(hcd);
3767 slot_id = udev->slot_id;
3768 virt_dev = xhci->devs[slot_id];
3769 if (!virt_dev) {
3770 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3771 "not exist. Re-allocate the device\n", slot_id);
3772 ret = xhci_alloc_dev(hcd, udev);
3773 if (ret == 1)
3774 return 0;
3775 else
3776 return -EINVAL;
3777 }
3778
3779 if (virt_dev->tt_info)
3780 old_active_eps = virt_dev->tt_info->active_eps;
3781
3782 if (virt_dev->udev != udev) {
3783 /* If the virt_dev and the udev does not match, this virt_dev
3784 * may belong to another udev.
3785 * Re-allocate the device.
3786 */
3787 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3788 "not match the udev. Re-allocate the device\n",
3789 slot_id);
3790 ret = xhci_alloc_dev(hcd, udev);
3791 if (ret == 1)
3792 return 0;
3793 else
3794 return -EINVAL;
3795 }
3796
3797 /* If device is not setup, there is no point in resetting it */
3798 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3799 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3800 SLOT_STATE_DISABLED)
3801 return 0;
3802
3803 if (xhci->quirks & XHCI_ETRON_HOST) {
3804 /*
3805 * Obtaining a new device slot to inform the xHCI host that
3806 * the USB device has been reset.
3807 */
3808 ret = xhci_disable_and_free_slot(xhci, udev->slot_id);
3809 if (!ret) {
3810 ret = xhci_alloc_dev(hcd, udev);
3811 if (ret == 1)
3812 ret = 0;
3813 else
3814 ret = -EINVAL;
3815 }
3816 return ret;
3817 }
3818
3819 trace_xhci_discover_or_reset_device(slot_ctx);
3820
3821 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3822 /* Allocate the command structure that holds the struct completion.
3823 * Assume we're in process context, since the normal device reset
3824 * process has to wait for the device anyway. Storage devices are
3825 * reset as part of error handling, so use GFP_NOIO instead of
3826 * GFP_KERNEL.
3827 */
3828 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3829 if (!reset_device_cmd) {
3830 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3831 return -ENOMEM;
3832 }
3833
3834 /* Attempt to submit the Reset Device command to the command ring */
3835 spin_lock_irqsave(&xhci->lock, flags);
3836
3837 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3838 if (ret) {
3839 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3840 spin_unlock_irqrestore(&xhci->lock, flags);
3841 goto command_cleanup;
3842 }
3843 xhci_ring_cmd_db(xhci);
3844 spin_unlock_irqrestore(&xhci->lock, flags);
3845
3846 /* Wait for the Reset Device command to finish */
3847 wait_for_completion(reset_device_cmd->completion);
3848
3849 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3850 * unless we tried to reset a slot ID that wasn't enabled,
3851 * or the device wasn't in the addressed or configured state.
3852 */
3853 ret = reset_device_cmd->status;
3854 switch (ret) {
3855 case COMP_COMMAND_ABORTED:
3856 case COMP_COMMAND_RING_STOPPED:
3857 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3858 ret = -ETIME;
3859 goto command_cleanup;
3860 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3861 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3862 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3863 slot_id,
3864 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3865 xhci_dbg(xhci, "Not freeing device rings.\n");
3866 /* Don't treat this as an error. May change my mind later. */
3867 ret = 0;
3868 goto command_cleanup;
3869 case COMP_SUCCESS:
3870 xhci_dbg(xhci, "Successful reset device command.\n");
3871 break;
3872 default:
3873 if (xhci_is_vendor_info_code(xhci, ret))
3874 break;
3875 xhci_warn(xhci, "Unknown completion code %u for "
3876 "reset device command.\n", ret);
3877 ret = -EINVAL;
3878 goto command_cleanup;
3879 }
3880
3881 /* Free up host controller endpoint resources */
3882 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3883 spin_lock_irqsave(&xhci->lock, flags);
3884 /* Don't delete the default control endpoint resources */
3885 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3886 spin_unlock_irqrestore(&xhci->lock, flags);
3887 }
3888
3889 /* Everything but endpoint 0 is disabled, so free the rings. */
3890 for (i = 1; i < 31; i++) {
3891 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3892
3893 if (ep->ep_state & EP_HAS_STREAMS) {
3894 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3895 xhci_get_endpoint_address(i));
3896 xhci_free_stream_info(xhci, ep->stream_info);
3897 ep->stream_info = NULL;
3898 ep->ep_state &= ~EP_HAS_STREAMS;
3899 }
3900
3901 if (ep->ring) {
3902 if (ep->sideband)
3903 xhci_sideband_notify_ep_ring_free(ep->sideband, i);
3904 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3905 xhci_free_endpoint_ring(xhci, virt_dev, i);
3906 }
3907 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3908 xhci_drop_ep_from_interval_table(xhci,
3909 &virt_dev->eps[i].bw_info,
3910 virt_dev->bw_table,
3911 udev,
3912 &virt_dev->eps[i],
3913 virt_dev->tt_info);
3914 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3915 }
3916 /* If necessary, update the number of active TTs on this root port */
3917 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3918 virt_dev->flags = 0;
3919 ret = 0;
3920
3921 command_cleanup:
3922 xhci_free_command(xhci, reset_device_cmd);
3923 return ret;
3924 }
3925
3926 /*
3927 * At this point, the struct usb_device is about to go away, the device has
3928 * disconnected, and all traffic has been stopped and the endpoints have been
3929 * disabled. Free any HC data structures associated with that device.
3930 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3931 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3932 {
3933 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3934 struct xhci_virt_device *virt_dev;
3935 struct xhci_slot_ctx *slot_ctx;
3936 unsigned long flags;
3937 int i, ret;
3938
3939 /*
3940 * We called pm_runtime_get_noresume when the device was attached.
3941 * Decrement the counter here to allow controller to runtime suspend
3942 * if no devices remain.
3943 */
3944 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3945 pm_runtime_put_noidle(hcd->self.controller);
3946
3947 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3948 /* If the host is halted due to driver unload, we still need to free the
3949 * device.
3950 */
3951 if (ret <= 0 && ret != -ENODEV)
3952 return;
3953
3954 virt_dev = xhci->devs[udev->slot_id];
3955 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3956 trace_xhci_free_dev(slot_ctx);
3957
3958 /* Stop any wayward timer functions (which may grab the lock) */
3959 for (i = 0; i < 31; i++)
3960 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3961 virt_dev->udev = NULL;
3962 xhci_disable_slot(xhci, udev->slot_id);
3963
3964 spin_lock_irqsave(&xhci->lock, flags);
3965 xhci_free_virt_device(xhci, virt_dev, udev->slot_id);
3966 spin_unlock_irqrestore(&xhci->lock, flags);
3967
3968 }
3969
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3970 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3971 {
3972 struct xhci_command *command;
3973 unsigned long flags;
3974 u32 state;
3975 int ret;
3976
3977 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3978 if (!command)
3979 return -ENOMEM;
3980
3981 xhci_debugfs_remove_slot(xhci, slot_id);
3982
3983 spin_lock_irqsave(&xhci->lock, flags);
3984 /* Don't disable the slot if the host controller is dead. */
3985 state = readl(&xhci->op_regs->status);
3986 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3987 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3988 spin_unlock_irqrestore(&xhci->lock, flags);
3989 kfree(command);
3990 return -ENODEV;
3991 }
3992
3993 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3994 slot_id);
3995 if (ret) {
3996 spin_unlock_irqrestore(&xhci->lock, flags);
3997 kfree(command);
3998 return ret;
3999 }
4000 xhci_ring_cmd_db(xhci);
4001 spin_unlock_irqrestore(&xhci->lock, flags);
4002
4003 wait_for_completion(command->completion);
4004
4005 if (command->status != COMP_SUCCESS)
4006 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4007 slot_id, command->status);
4008
4009 xhci_free_command(xhci, command);
4010
4011 return 0;
4012 }
4013
xhci_disable_and_free_slot(struct xhci_hcd * xhci,u32 slot_id)4014 int xhci_disable_and_free_slot(struct xhci_hcd *xhci, u32 slot_id)
4015 {
4016 struct xhci_virt_device *vdev = xhci->devs[slot_id];
4017 int ret;
4018
4019 ret = xhci_disable_slot(xhci, slot_id);
4020 xhci_free_virt_device(xhci, vdev, slot_id);
4021 return ret;
4022 }
4023
4024 /*
4025 * Checks if we have enough host controller resources for the default control
4026 * endpoint.
4027 *
4028 * Must be called with xhci->lock held.
4029 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4030 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4031 {
4032 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4033 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4034 "Not enough ep ctxs: "
4035 "%u active, need to add 1, limit is %u.",
4036 xhci->num_active_eps, xhci->limit_active_eps);
4037 return -ENOMEM;
4038 }
4039 xhci->num_active_eps += 1;
4040 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4041 "Adding 1 ep ctx, %u now active.",
4042 xhci->num_active_eps);
4043 return 0;
4044 }
4045
4046
4047 /*
4048 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4049 * timed out, or allocating memory failed. Returns 1 on success.
4050 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4051 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4052 {
4053 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4054 struct xhci_virt_device *vdev;
4055 struct xhci_slot_ctx *slot_ctx;
4056 unsigned long flags;
4057 int ret, slot_id;
4058 struct xhci_command *command;
4059
4060 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4061 if (!command)
4062 return 0;
4063
4064 spin_lock_irqsave(&xhci->lock, flags);
4065 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4066 if (ret) {
4067 spin_unlock_irqrestore(&xhci->lock, flags);
4068 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4069 xhci_free_command(xhci, command);
4070 return 0;
4071 }
4072 xhci_ring_cmd_db(xhci);
4073 spin_unlock_irqrestore(&xhci->lock, flags);
4074
4075 wait_for_completion(command->completion);
4076 slot_id = command->slot_id;
4077
4078 if (!slot_id || command->status != COMP_SUCCESS) {
4079 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4080 xhci_trb_comp_code_string(command->status));
4081 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4082 HCS_MAX_SLOTS(
4083 readl(&xhci->cap_regs->hcs_params1)));
4084 xhci_free_command(xhci, command);
4085 return 0;
4086 }
4087
4088 xhci_free_command(xhci, command);
4089
4090 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4091 spin_lock_irqsave(&xhci->lock, flags);
4092 ret = xhci_reserve_host_control_ep_resources(xhci);
4093 if (ret) {
4094 spin_unlock_irqrestore(&xhci->lock, flags);
4095 xhci_warn(xhci, "Not enough host resources, "
4096 "active endpoint contexts = %u\n",
4097 xhci->num_active_eps);
4098 goto disable_slot;
4099 }
4100 spin_unlock_irqrestore(&xhci->lock, flags);
4101 }
4102 /* Use GFP_NOIO, since this function can be called from
4103 * xhci_discover_or_reset_device(), which may be called as part of
4104 * mass storage driver error handling.
4105 */
4106 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4107 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4108 goto disable_slot;
4109 }
4110 vdev = xhci->devs[slot_id];
4111 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4112 trace_xhci_alloc_dev(slot_ctx);
4113
4114 udev->slot_id = slot_id;
4115
4116 xhci_debugfs_create_slot(xhci, slot_id);
4117
4118 /*
4119 * If resetting upon resume, we can't put the controller into runtime
4120 * suspend if there is a device attached.
4121 */
4122 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4123 pm_runtime_get_noresume(hcd->self.controller);
4124
4125 /* Is this a LS or FS device under a HS hub? */
4126 /* Hub or peripherial? */
4127 return 1;
4128
4129 disable_slot:
4130 xhci_disable_and_free_slot(xhci, udev->slot_id);
4131
4132 return 0;
4133 }
4134
4135 /**
4136 * xhci_setup_device - issues an Address Device command to assign a unique
4137 * USB bus address.
4138 * @hcd: USB host controller data structure.
4139 * @udev: USB dev structure representing the connected device.
4140 * @setup: Enum specifying setup mode: address only or with context.
4141 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4142 *
4143 * Return: 0 if successful; otherwise, negative error code.
4144 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4145 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4146 enum xhci_setup_dev setup, unsigned int timeout_ms)
4147 {
4148 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4149 unsigned long flags;
4150 struct xhci_virt_device *virt_dev;
4151 int ret = 0;
4152 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4153 struct xhci_slot_ctx *slot_ctx;
4154 struct xhci_input_control_ctx *ctrl_ctx;
4155 u64 temp_64;
4156 struct xhci_command *command = NULL;
4157
4158 mutex_lock(&xhci->mutex);
4159
4160 if (xhci->xhc_state) { /* dying, removing or halted */
4161 ret = -ESHUTDOWN;
4162 goto out;
4163 }
4164
4165 if (!udev->slot_id) {
4166 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4167 "Bad Slot ID %d", udev->slot_id);
4168 ret = -EINVAL;
4169 goto out;
4170 }
4171
4172 virt_dev = xhci->devs[udev->slot_id];
4173
4174 if (WARN_ON(!virt_dev)) {
4175 /*
4176 * In plug/unplug torture test with an NEC controller,
4177 * a zero-dereference was observed once due to virt_dev = 0.
4178 * Print useful debug rather than crash if it is observed again!
4179 */
4180 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4181 udev->slot_id);
4182 ret = -EINVAL;
4183 goto out;
4184 }
4185 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4186 trace_xhci_setup_device_slot(slot_ctx);
4187
4188 if (setup == SETUP_CONTEXT_ONLY) {
4189 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4190 SLOT_STATE_DEFAULT) {
4191 xhci_dbg(xhci, "Slot already in default state\n");
4192 goto out;
4193 }
4194 }
4195
4196 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4197 if (!command) {
4198 ret = -ENOMEM;
4199 goto out;
4200 }
4201
4202 command->in_ctx = virt_dev->in_ctx;
4203 command->timeout_ms = timeout_ms;
4204
4205 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4206 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4207 if (!ctrl_ctx) {
4208 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4209 __func__);
4210 ret = -EINVAL;
4211 goto out;
4212 }
4213 /*
4214 * If this is the first Set Address since device plug-in or
4215 * virt_device realloaction after a resume with an xHCI power loss,
4216 * then set up the slot context.
4217 */
4218 if (!slot_ctx->dev_info)
4219 xhci_setup_addressable_virt_dev(xhci, udev);
4220 /* Otherwise, update the control endpoint ring enqueue pointer. */
4221 else
4222 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4223 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4224 ctrl_ctx->drop_flags = 0;
4225
4226 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4227 le32_to_cpu(slot_ctx->dev_info) >> 27);
4228
4229 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4230 spin_lock_irqsave(&xhci->lock, flags);
4231 trace_xhci_setup_device(virt_dev);
4232 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4233 udev->slot_id, setup);
4234 if (ret) {
4235 spin_unlock_irqrestore(&xhci->lock, flags);
4236 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4237 "FIXME: allocate a command ring segment");
4238 goto out;
4239 }
4240 xhci_ring_cmd_db(xhci);
4241 spin_unlock_irqrestore(&xhci->lock, flags);
4242
4243 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4244 wait_for_completion(command->completion);
4245
4246 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4247 * the SetAddress() "recovery interval" required by USB and aborting the
4248 * command on a timeout.
4249 */
4250 switch (command->status) {
4251 case COMP_COMMAND_ABORTED:
4252 case COMP_COMMAND_RING_STOPPED:
4253 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4254 ret = -ETIME;
4255 break;
4256 case COMP_CONTEXT_STATE_ERROR:
4257 case COMP_SLOT_NOT_ENABLED_ERROR:
4258 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4259 act, udev->slot_id);
4260 ret = -EINVAL;
4261 break;
4262 case COMP_USB_TRANSACTION_ERROR:
4263 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4264
4265 mutex_unlock(&xhci->mutex);
4266 ret = xhci_disable_and_free_slot(xhci, udev->slot_id);
4267 if (!ret) {
4268 if (xhci_alloc_dev(hcd, udev) == 1)
4269 xhci_setup_addressable_virt_dev(xhci, udev);
4270 }
4271 kfree(command->completion);
4272 kfree(command);
4273 return -EPROTO;
4274 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4275 dev_warn(&udev->dev,
4276 "ERROR: Incompatible device for setup %s command\n", act);
4277 ret = -ENODEV;
4278 break;
4279 case COMP_SUCCESS:
4280 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4281 "Successful setup %s command", act);
4282 break;
4283 default:
4284 xhci_err(xhci,
4285 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4286 act, command->status);
4287 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4288 ret = -EINVAL;
4289 break;
4290 }
4291 if (ret)
4292 goto out;
4293 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4294 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4295 "Op regs DCBAA ptr = %#016llx", temp_64);
4296 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4297 "Slot ID %d dcbaa entry @%p = %#016llx",
4298 udev->slot_id,
4299 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4300 (unsigned long long)
4301 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4302 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4303 "Output Context DMA address = %#08llx",
4304 (unsigned long long)virt_dev->out_ctx->dma);
4305 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4306 le32_to_cpu(slot_ctx->dev_info) >> 27);
4307 /*
4308 * USB core uses address 1 for the roothubs, so we add one to the
4309 * address given back to us by the HC.
4310 */
4311 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4312 le32_to_cpu(slot_ctx->dev_info) >> 27);
4313 /* Zero the input context control for later use */
4314 ctrl_ctx->add_flags = 0;
4315 ctrl_ctx->drop_flags = 0;
4316 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4317 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4318
4319 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4320 "Internal device address = %d",
4321 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4322 out:
4323 mutex_unlock(&xhci->mutex);
4324 if (command) {
4325 kfree(command->completion);
4326 kfree(command);
4327 }
4328 return ret;
4329 }
4330
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4331 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4332 unsigned int timeout_ms)
4333 {
4334 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4335 }
4336
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4337 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4338 {
4339 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4340 XHCI_CMD_DEFAULT_TIMEOUT);
4341 }
4342
4343 /*
4344 * Transfer the port index into real index in the HW port status
4345 * registers. Caculate offset between the port's PORTSC register
4346 * and port status base. Divide the number of per port register
4347 * to get the real index. The raw port number bases 1.
4348 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4349 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4350 {
4351 struct xhci_hub *rhub;
4352
4353 rhub = xhci_get_rhub(hcd);
4354 return rhub->ports[port1 - 1]->hw_portnum + 1;
4355 }
4356
4357 /*
4358 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4359 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4360 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4361 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4362 struct usb_device *udev, u16 max_exit_latency)
4363 {
4364 struct xhci_virt_device *virt_dev;
4365 struct xhci_command *command;
4366 struct xhci_input_control_ctx *ctrl_ctx;
4367 struct xhci_slot_ctx *slot_ctx;
4368 unsigned long flags;
4369 int ret;
4370
4371 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4372 if (!command)
4373 return -ENOMEM;
4374
4375 spin_lock_irqsave(&xhci->lock, flags);
4376
4377 virt_dev = xhci->devs[udev->slot_id];
4378
4379 /*
4380 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4381 * xHC was re-initialized. Exit latency will be set later after
4382 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4383 */
4384
4385 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4386 spin_unlock_irqrestore(&xhci->lock, flags);
4387 xhci_free_command(xhci, command);
4388 return 0;
4389 }
4390
4391 /* Attempt to issue an Evaluate Context command to change the MEL. */
4392 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4393 if (!ctrl_ctx) {
4394 spin_unlock_irqrestore(&xhci->lock, flags);
4395 xhci_free_command(xhci, command);
4396 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4397 __func__);
4398 return -ENOMEM;
4399 }
4400
4401 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4402 spin_unlock_irqrestore(&xhci->lock, flags);
4403
4404 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4405 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4406 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4407 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4408 slot_ctx->dev_state = 0;
4409
4410 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4411 "Set up evaluate context for LPM MEL change.");
4412
4413 /* Issue and wait for the evaluate context command. */
4414 ret = xhci_configure_endpoint(xhci, udev, command,
4415 true, true);
4416
4417 if (!ret) {
4418 spin_lock_irqsave(&xhci->lock, flags);
4419 virt_dev->current_mel = max_exit_latency;
4420 spin_unlock_irqrestore(&xhci->lock, flags);
4421 }
4422
4423 xhci_free_command(xhci, command);
4424
4425 return ret;
4426 }
4427
4428 #ifdef CONFIG_PM
4429
4430 /* BESL to HIRD Encoding array for USB2 LPM */
4431 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4432 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4433
4434 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4435 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4436 struct usb_device *udev)
4437 {
4438 int u2del, besl, besl_host;
4439 int besl_device = 0;
4440 u32 field;
4441
4442 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4443 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4444
4445 if (field & USB_BESL_SUPPORT) {
4446 for (besl_host = 0; besl_host < 16; besl_host++) {
4447 if (xhci_besl_encoding[besl_host] >= u2del)
4448 break;
4449 }
4450 /* Use baseline BESL value as default */
4451 if (field & USB_BESL_BASELINE_VALID)
4452 besl_device = USB_GET_BESL_BASELINE(field);
4453 else if (field & USB_BESL_DEEP_VALID)
4454 besl_device = USB_GET_BESL_DEEP(field);
4455 } else {
4456 if (u2del <= 50)
4457 besl_host = 0;
4458 else
4459 besl_host = (u2del - 51) / 75 + 1;
4460 }
4461
4462 besl = besl_host + besl_device;
4463 if (besl > 15)
4464 besl = 15;
4465
4466 return besl;
4467 }
4468
4469 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4470 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4471 {
4472 u32 field;
4473 int l1;
4474 int besld = 0;
4475 int hirdm = 0;
4476
4477 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4478
4479 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4480 l1 = udev->l1_params.timeout / 256;
4481
4482 /* device has preferred BESLD */
4483 if (field & USB_BESL_DEEP_VALID) {
4484 besld = USB_GET_BESL_DEEP(field);
4485 hirdm = 1;
4486 }
4487
4488 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4489 }
4490
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4491 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4492 struct usb_device *udev, int enable)
4493 {
4494 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4495 struct xhci_port **ports;
4496 __le32 __iomem *pm_addr, *hlpm_addr;
4497 u32 pm_val, hlpm_val, field;
4498 unsigned int port_num;
4499 unsigned long flags;
4500 int hird, exit_latency;
4501 int ret;
4502
4503 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4504 return -EPERM;
4505
4506 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4507 !udev->lpm_capable)
4508 return -EPERM;
4509
4510 if (!udev->parent || udev->parent->parent ||
4511 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4512 return -EPERM;
4513
4514 if (udev->usb2_hw_lpm_capable != 1)
4515 return -EPERM;
4516
4517 spin_lock_irqsave(&xhci->lock, flags);
4518
4519 ports = xhci->usb2_rhub.ports;
4520 port_num = udev->portnum - 1;
4521 pm_addr = ports[port_num]->addr + PORTPMSC;
4522 pm_val = readl(pm_addr);
4523 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4524
4525 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4526 enable ? "enable" : "disable", port_num + 1);
4527
4528 if (enable) {
4529 /* Host supports BESL timeout instead of HIRD */
4530 if (udev->usb2_hw_lpm_besl_capable) {
4531 /* if device doesn't have a preferred BESL value use a
4532 * default one which works with mixed HIRD and BESL
4533 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4534 */
4535 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4536 if ((field & USB_BESL_SUPPORT) &&
4537 (field & USB_BESL_BASELINE_VALID))
4538 hird = USB_GET_BESL_BASELINE(field);
4539 else
4540 hird = udev->l1_params.besl;
4541
4542 exit_latency = xhci_besl_encoding[hird];
4543 spin_unlock_irqrestore(&xhci->lock, flags);
4544
4545 ret = xhci_change_max_exit_latency(xhci, udev,
4546 exit_latency);
4547 if (ret < 0)
4548 return ret;
4549 spin_lock_irqsave(&xhci->lock, flags);
4550
4551 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4552 writel(hlpm_val, hlpm_addr);
4553 /* flush write */
4554 readl(hlpm_addr);
4555 } else {
4556 hird = xhci_calculate_hird_besl(xhci, udev);
4557 }
4558
4559 pm_val &= ~PORT_HIRD_MASK;
4560 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4561 writel(pm_val, pm_addr);
4562 pm_val = readl(pm_addr);
4563 pm_val |= PORT_HLE;
4564 writel(pm_val, pm_addr);
4565 /* flush write */
4566 readl(pm_addr);
4567 } else {
4568 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4569 writel(pm_val, pm_addr);
4570 /* flush write */
4571 readl(pm_addr);
4572 if (udev->usb2_hw_lpm_besl_capable) {
4573 spin_unlock_irqrestore(&xhci->lock, flags);
4574 xhci_change_max_exit_latency(xhci, udev, 0);
4575 readl_poll_timeout(ports[port_num]->addr, pm_val,
4576 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4577 100, 10000);
4578 return 0;
4579 }
4580 }
4581
4582 spin_unlock_irqrestore(&xhci->lock, flags);
4583 return 0;
4584 }
4585
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4586 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4587 {
4588 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4589 struct xhci_port *port;
4590 u32 capability;
4591
4592 /* Check if USB3 device at root port is tunneled over USB4 */
4593 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) {
4594 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4595
4596 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port);
4597 if (udev->tunnel_mode == USB_LINK_UNKNOWN)
4598 dev_dbg(&udev->dev, "link tunnel state unknown\n");
4599 else if (udev->tunnel_mode == USB_LINK_TUNNELED)
4600 dev_dbg(&udev->dev, "tunneled over USB4 link\n");
4601 else if (udev->tunnel_mode == USB_LINK_NATIVE)
4602 dev_dbg(&udev->dev, "native USB 3.x link\n");
4603 return 0;
4604 }
4605
4606 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4607 return 0;
4608
4609 /* we only support lpm for non-hub device connected to root hub yet */
4610 if (!udev->parent || udev->parent->parent ||
4611 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4612 return 0;
4613
4614 port = xhci->usb2_rhub.ports[udev->portnum - 1];
4615 capability = port->port_cap->protocol_caps;
4616
4617 if (capability & XHCI_HLC) {
4618 udev->usb2_hw_lpm_capable = 1;
4619 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4620 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4621 if (capability & XHCI_BLC)
4622 udev->usb2_hw_lpm_besl_capable = 1;
4623 }
4624
4625 return 0;
4626 }
4627
4628 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4629
4630 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4631 static unsigned long long xhci_service_interval_to_ns(
4632 struct usb_endpoint_descriptor *desc)
4633 {
4634 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4635 }
4636
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4637 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4638 enum usb3_link_state state)
4639 {
4640 unsigned long long sel;
4641 unsigned long long pel;
4642 unsigned int max_sel_pel;
4643 char *state_name;
4644
4645 switch (state) {
4646 case USB3_LPM_U1:
4647 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4648 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4649 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4650 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4651 state_name = "U1";
4652 break;
4653 case USB3_LPM_U2:
4654 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4655 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4656 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4657 state_name = "U2";
4658 break;
4659 default:
4660 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4661 __func__);
4662 return USB3_LPM_DISABLED;
4663 }
4664
4665 if (sel <= max_sel_pel && pel <= max_sel_pel)
4666 return USB3_LPM_DEVICE_INITIATED;
4667
4668 if (sel > max_sel_pel)
4669 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4670 "due to long SEL %llu ms\n",
4671 state_name, sel);
4672 else
4673 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4674 "due to long PEL %llu ms\n",
4675 state_name, pel);
4676 return USB3_LPM_DISABLED;
4677 }
4678
4679 /* The U1 timeout should be the maximum of the following values:
4680 * - For control endpoints, U1 system exit latency (SEL) * 3
4681 * - For bulk endpoints, U1 SEL * 5
4682 * - For interrupt endpoints:
4683 * - Notification EPs, U1 SEL * 3
4684 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4685 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4686 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4687 static unsigned long long xhci_calculate_intel_u1_timeout(
4688 struct usb_device *udev,
4689 struct usb_endpoint_descriptor *desc)
4690 {
4691 unsigned long long timeout_ns;
4692 int ep_type;
4693 int intr_type;
4694
4695 ep_type = usb_endpoint_type(desc);
4696 switch (ep_type) {
4697 case USB_ENDPOINT_XFER_CONTROL:
4698 timeout_ns = udev->u1_params.sel * 3;
4699 break;
4700 case USB_ENDPOINT_XFER_BULK:
4701 timeout_ns = udev->u1_params.sel * 5;
4702 break;
4703 case USB_ENDPOINT_XFER_INT:
4704 intr_type = usb_endpoint_interrupt_type(desc);
4705 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4706 timeout_ns = udev->u1_params.sel * 3;
4707 break;
4708 }
4709 /* Otherwise the calculation is the same as isoc eps */
4710 fallthrough;
4711 case USB_ENDPOINT_XFER_ISOC:
4712 timeout_ns = xhci_service_interval_to_ns(desc);
4713 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4714 if (timeout_ns < udev->u1_params.sel * 2)
4715 timeout_ns = udev->u1_params.sel * 2;
4716 break;
4717 default:
4718 return 0;
4719 }
4720
4721 return timeout_ns;
4722 }
4723
4724 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4725 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4726 struct usb_device *udev,
4727 struct usb_endpoint_descriptor *desc)
4728 {
4729 unsigned long long timeout_ns;
4730
4731 /* Prevent U1 if service interval is shorter than U1 exit latency */
4732 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4733 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4734 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4735 return USB3_LPM_DISABLED;
4736 }
4737 }
4738
4739 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4740 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4741 else
4742 timeout_ns = udev->u1_params.sel;
4743
4744 /* The U1 timeout is encoded in 1us intervals.
4745 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4746 */
4747 if (timeout_ns == USB3_LPM_DISABLED)
4748 timeout_ns = 1;
4749 else
4750 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4751
4752 /* If the necessary timeout value is bigger than what we can set in the
4753 * USB 3.0 hub, we have to disable hub-initiated U1.
4754 */
4755 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4756 return timeout_ns;
4757 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4758 "due to long timeout %llu ms\n", timeout_ns);
4759 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4760 }
4761
4762 /* The U2 timeout should be the maximum of:
4763 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4764 * - largest bInterval of any active periodic endpoint (to avoid going
4765 * into lower power link states between intervals).
4766 * - the U2 Exit Latency of the device
4767 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4768 static unsigned long long xhci_calculate_intel_u2_timeout(
4769 struct usb_device *udev,
4770 struct usb_endpoint_descriptor *desc)
4771 {
4772 unsigned long long timeout_ns;
4773 unsigned long long u2_del_ns;
4774
4775 timeout_ns = 10 * 1000 * 1000;
4776
4777 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4778 (xhci_service_interval_to_ns(desc) > timeout_ns))
4779 timeout_ns = xhci_service_interval_to_ns(desc);
4780
4781 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4782 if (u2_del_ns > timeout_ns)
4783 timeout_ns = u2_del_ns;
4784
4785 return timeout_ns;
4786 }
4787
4788 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4789 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4790 struct usb_device *udev,
4791 struct usb_endpoint_descriptor *desc)
4792 {
4793 unsigned long long timeout_ns;
4794
4795 /* Prevent U2 if service interval is shorter than U2 exit latency */
4796 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4797 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4798 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4799 return USB3_LPM_DISABLED;
4800 }
4801 }
4802
4803 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4804 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4805 else
4806 timeout_ns = udev->u2_params.sel;
4807
4808 /* The U2 timeout is encoded in 256us intervals */
4809 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4810 /* If the necessary timeout value is bigger than what we can set in the
4811 * USB 3.0 hub, we have to disable hub-initiated U2.
4812 */
4813 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4814 return timeout_ns;
4815 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4816 "due to long timeout %llu ms\n", timeout_ns);
4817 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4818 }
4819
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4820 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4821 struct usb_device *udev,
4822 struct usb_endpoint_descriptor *desc,
4823 enum usb3_link_state state,
4824 u16 *timeout)
4825 {
4826 if (state == USB3_LPM_U1)
4827 return xhci_calculate_u1_timeout(xhci, udev, desc);
4828 else if (state == USB3_LPM_U2)
4829 return xhci_calculate_u2_timeout(xhci, udev, desc);
4830
4831 return USB3_LPM_DISABLED;
4832 }
4833
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4834 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4835 struct usb_device *udev,
4836 struct usb_endpoint_descriptor *desc,
4837 enum usb3_link_state state,
4838 u16 *timeout)
4839 {
4840 u16 alt_timeout;
4841
4842 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4843 desc, state, timeout);
4844
4845 /* If we found we can't enable hub-initiated LPM, and
4846 * the U1 or U2 exit latency was too high to allow
4847 * device-initiated LPM as well, then we will disable LPM
4848 * for this device, so stop searching any further.
4849 */
4850 if (alt_timeout == USB3_LPM_DISABLED) {
4851 *timeout = alt_timeout;
4852 return -E2BIG;
4853 }
4854 if (alt_timeout > *timeout)
4855 *timeout = alt_timeout;
4856 return 0;
4857 }
4858
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4859 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4860 struct usb_device *udev,
4861 struct usb_host_interface *alt,
4862 enum usb3_link_state state,
4863 u16 *timeout)
4864 {
4865 int j;
4866
4867 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4868 if (xhci_update_timeout_for_endpoint(xhci, udev,
4869 &alt->endpoint[j].desc, state, timeout))
4870 return -E2BIG;
4871 }
4872 return 0;
4873 }
4874
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4875 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4876 struct usb_device *udev,
4877 enum usb3_link_state state)
4878 {
4879 struct usb_device *parent = udev->parent;
4880 int tier = 1; /* roothub is tier1 */
4881
4882 while (parent) {
4883 parent = parent->parent;
4884 tier++;
4885 }
4886
4887 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4888 goto fail;
4889 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4890 goto fail;
4891
4892 return 0;
4893 fail:
4894 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4895 tier);
4896 return -E2BIG;
4897 }
4898
4899 /* Returns the U1 or U2 timeout that should be enabled.
4900 * If the tier check or timeout setting functions return with a non-zero exit
4901 * code, that means the timeout value has been finalized and we shouldn't look
4902 * at any more endpoints.
4903 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4904 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4905 struct usb_device *udev, enum usb3_link_state state)
4906 {
4907 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4908 struct usb_host_config *config;
4909 char *state_name;
4910 int i;
4911 u16 timeout = USB3_LPM_DISABLED;
4912
4913 if (state == USB3_LPM_U1)
4914 state_name = "U1";
4915 else if (state == USB3_LPM_U2)
4916 state_name = "U2";
4917 else {
4918 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4919 state);
4920 return timeout;
4921 }
4922
4923 /* Gather some information about the currently installed configuration
4924 * and alternate interface settings.
4925 */
4926 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4927 state, &timeout))
4928 return timeout;
4929
4930 config = udev->actconfig;
4931 if (!config)
4932 return timeout;
4933
4934 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4935 struct usb_driver *driver;
4936 struct usb_interface *intf = config->interface[i];
4937
4938 if (!intf)
4939 continue;
4940
4941 /* Check if any currently bound drivers want hub-initiated LPM
4942 * disabled.
4943 */
4944 if (intf->dev.driver) {
4945 driver = to_usb_driver(intf->dev.driver);
4946 if (driver && driver->disable_hub_initiated_lpm) {
4947 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4948 state_name, driver->name);
4949 timeout = xhci_get_timeout_no_hub_lpm(udev,
4950 state);
4951 if (timeout == USB3_LPM_DISABLED)
4952 return timeout;
4953 }
4954 }
4955
4956 /* Not sure how this could happen... */
4957 if (!intf->cur_altsetting)
4958 continue;
4959
4960 if (xhci_update_timeout_for_interface(xhci, udev,
4961 intf->cur_altsetting,
4962 state, &timeout))
4963 return timeout;
4964 }
4965 return timeout;
4966 }
4967
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4968 static int calculate_max_exit_latency(struct usb_device *udev,
4969 enum usb3_link_state state_changed,
4970 u16 hub_encoded_timeout)
4971 {
4972 unsigned long long u1_mel_us = 0;
4973 unsigned long long u2_mel_us = 0;
4974 unsigned long long mel_us = 0;
4975 bool disabling_u1;
4976 bool disabling_u2;
4977 bool enabling_u1;
4978 bool enabling_u2;
4979
4980 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4981 hub_encoded_timeout == USB3_LPM_DISABLED);
4982 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4983 hub_encoded_timeout == USB3_LPM_DISABLED);
4984
4985 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4986 hub_encoded_timeout != USB3_LPM_DISABLED);
4987 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4988 hub_encoded_timeout != USB3_LPM_DISABLED);
4989
4990 /* If U1 was already enabled and we're not disabling it,
4991 * or we're going to enable U1, account for the U1 max exit latency.
4992 */
4993 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4994 enabling_u1)
4995 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4996 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4997 enabling_u2)
4998 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4999
5000 mel_us = max(u1_mel_us, u2_mel_us);
5001
5002 /* xHCI host controller max exit latency field is only 16 bits wide. */
5003 if (mel_us > MAX_EXIT) {
5004 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5005 "is too big.\n", mel_us);
5006 return -E2BIG;
5007 }
5008 return mel_us;
5009 }
5010
5011 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5012 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5013 struct usb_device *udev, enum usb3_link_state state)
5014 {
5015 struct xhci_hcd *xhci;
5016 struct xhci_port *port;
5017 u16 hub_encoded_timeout;
5018 int mel;
5019 int ret;
5020
5021 xhci = hcd_to_xhci(hcd);
5022 /* The LPM timeout values are pretty host-controller specific, so don't
5023 * enable hub-initiated timeouts unless the vendor has provided
5024 * information about their timeout algorithm.
5025 */
5026 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5027 !xhci->devs[udev->slot_id])
5028 return USB3_LPM_DISABLED;
5029
5030 if (xhci_check_tier_policy(xhci, udev, state) < 0)
5031 return USB3_LPM_DISABLED;
5032
5033 /* If connected to root port then check port can handle lpm */
5034 if (udev->parent && !udev->parent->parent) {
5035 port = xhci->usb3_rhub.ports[udev->portnum - 1];
5036 if (port->lpm_incapable)
5037 return USB3_LPM_DISABLED;
5038 }
5039
5040 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5041 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5042 if (mel < 0) {
5043 /* Max Exit Latency is too big, disable LPM. */
5044 hub_encoded_timeout = USB3_LPM_DISABLED;
5045 mel = 0;
5046 }
5047
5048 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5049 if (ret)
5050 return ret;
5051 return hub_encoded_timeout;
5052 }
5053
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5054 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5055 struct usb_device *udev, enum usb3_link_state state)
5056 {
5057 struct xhci_hcd *xhci;
5058 u16 mel;
5059
5060 xhci = hcd_to_xhci(hcd);
5061 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5062 !xhci->devs[udev->slot_id])
5063 return 0;
5064
5065 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5066 return xhci_change_max_exit_latency(xhci, udev, mel);
5067 }
5068 #else /* CONFIG_PM */
5069
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5070 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5071 struct usb_device *udev, int enable)
5072 {
5073 return 0;
5074 }
5075
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5076 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5077 {
5078 return 0;
5079 }
5080
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5081 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5082 struct usb_device *udev, enum usb3_link_state state)
5083 {
5084 return USB3_LPM_DISABLED;
5085 }
5086
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5087 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5088 struct usb_device *udev, enum usb3_link_state state)
5089 {
5090 return 0;
5091 }
5092 #endif /* CONFIG_PM */
5093
5094 /*-------------------------------------------------------------------------*/
5095
5096 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5097 * internal data structures for the device.
5098 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5099 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5100 struct usb_tt *tt, gfp_t mem_flags)
5101 {
5102 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5103 struct xhci_virt_device *vdev;
5104 struct xhci_command *config_cmd;
5105 struct xhci_input_control_ctx *ctrl_ctx;
5106 struct xhci_slot_ctx *slot_ctx;
5107 unsigned long flags;
5108 unsigned think_time;
5109 int ret;
5110
5111 /* Ignore root hubs */
5112 if (!hdev->parent)
5113 return 0;
5114
5115 vdev = xhci->devs[hdev->slot_id];
5116 if (!vdev) {
5117 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5118 return -EINVAL;
5119 }
5120
5121 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5122 if (!config_cmd)
5123 return -ENOMEM;
5124
5125 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5126 if (!ctrl_ctx) {
5127 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5128 __func__);
5129 xhci_free_command(xhci, config_cmd);
5130 return -ENOMEM;
5131 }
5132
5133 spin_lock_irqsave(&xhci->lock, flags);
5134 if (hdev->speed == USB_SPEED_HIGH &&
5135 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5136 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5137 xhci_free_command(xhci, config_cmd);
5138 spin_unlock_irqrestore(&xhci->lock, flags);
5139 return -ENOMEM;
5140 }
5141
5142 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5143 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5144 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5145 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5146 /*
5147 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5148 * but it may be already set to 1 when setup an xHCI virtual
5149 * device, so clear it anyway.
5150 */
5151 if (tt->multi)
5152 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5153 else if (hdev->speed == USB_SPEED_FULL)
5154 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5155
5156 if (xhci->hci_version > 0x95) {
5157 xhci_dbg(xhci, "xHCI version %x needs hub "
5158 "TT think time and number of ports\n",
5159 (unsigned int) xhci->hci_version);
5160 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5161 /* Set TT think time - convert from ns to FS bit times.
5162 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5163 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5164 *
5165 * xHCI 1.0: this field shall be 0 if the device is not a
5166 * High-spped hub.
5167 */
5168 think_time = tt->think_time;
5169 if (think_time != 0)
5170 think_time = (think_time / 666) - 1;
5171 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5172 slot_ctx->tt_info |=
5173 cpu_to_le32(TT_THINK_TIME(think_time));
5174 } else {
5175 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5176 "TT think time or number of ports\n",
5177 (unsigned int) xhci->hci_version);
5178 }
5179 slot_ctx->dev_state = 0;
5180 spin_unlock_irqrestore(&xhci->lock, flags);
5181
5182 xhci_dbg(xhci, "Set up %s for hub device.\n",
5183 (xhci->hci_version > 0x95) ?
5184 "configure endpoint" : "evaluate context");
5185
5186 /* Issue and wait for the configure endpoint or
5187 * evaluate context command.
5188 */
5189 if (xhci->hci_version > 0x95)
5190 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5191 false, false);
5192 else
5193 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5194 true, false);
5195
5196 xhci_free_command(xhci, config_cmd);
5197 return ret;
5198 }
5199 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5200
xhci_get_frame(struct usb_hcd * hcd)5201 static int xhci_get_frame(struct usb_hcd *hcd)
5202 {
5203 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5204 /* EHCI mods by the periodic size. Why? */
5205 return readl(&xhci->run_regs->microframe_index) >> 3;
5206 }
5207
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5208 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5209 {
5210 xhci->usb2_rhub.hcd = hcd;
5211 hcd->speed = HCD_USB2;
5212 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5213 /*
5214 * USB 2.0 roothub under xHCI has an integrated TT,
5215 * (rate matching hub) as opposed to having an OHCI/UHCI
5216 * companion controller.
5217 */
5218 hcd->has_tt = 1;
5219 }
5220
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5221 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5222 {
5223 unsigned int minor_rev;
5224
5225 /*
5226 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5227 * should return 0x31 for sbrn, or that the minor revision
5228 * is a two digit BCD containig minor and sub-minor numbers.
5229 * This was later clarified in xHCI 1.2.
5230 *
5231 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5232 * minor revision set to 0x1 instead of 0x10.
5233 */
5234 if (xhci->usb3_rhub.min_rev == 0x1)
5235 minor_rev = 1;
5236 else
5237 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5238
5239 switch (minor_rev) {
5240 case 2:
5241 hcd->speed = HCD_USB32;
5242 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5243 hcd->self.root_hub->rx_lanes = 2;
5244 hcd->self.root_hub->tx_lanes = 2;
5245 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5246 break;
5247 case 1:
5248 hcd->speed = HCD_USB31;
5249 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5250 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5251 break;
5252 }
5253 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5254 minor_rev, minor_rev ? "Enhanced " : "");
5255
5256 xhci->usb3_rhub.hcd = hcd;
5257 }
5258
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5259 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5260 {
5261 struct xhci_hcd *xhci;
5262 /*
5263 * TODO: Check with DWC3 clients for sysdev according to
5264 * quirks
5265 */
5266 struct device *dev = hcd->self.sysdev;
5267 int retval;
5268
5269 /* Accept arbitrarily long scatter-gather lists */
5270 hcd->self.sg_tablesize = ~0;
5271
5272 /* support to build packet from discontinuous buffers */
5273 hcd->self.no_sg_constraint = 1;
5274
5275 /* XHCI controllers don't stop the ep queue on short packets :| */
5276 hcd->self.no_stop_on_short = 1;
5277
5278 xhci = hcd_to_xhci(hcd);
5279
5280 if (!usb_hcd_is_primary_hcd(hcd)) {
5281 xhci_hcd_init_usb3_data(xhci, hcd);
5282 return 0;
5283 }
5284
5285 mutex_init(&xhci->mutex);
5286 xhci->main_hcd = hcd;
5287 xhci->cap_regs = hcd->regs;
5288 xhci->op_regs = hcd->regs +
5289 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5290 xhci->run_regs = hcd->regs +
5291 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5292 /* Cache read-only capability registers */
5293 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5294 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5295 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5296 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5297 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5298 if (xhci->hci_version > 0x100)
5299 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5300
5301 /* xhci-plat or xhci-pci might have set max_interrupters already */
5302 if ((!xhci->max_interrupters) ||
5303 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5304 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5305
5306 xhci->quirks |= quirks;
5307
5308 if (get_quirks)
5309 get_quirks(dev, xhci);
5310
5311 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5312 * success event after a short transfer. This quirk will ignore such
5313 * spurious event.
5314 */
5315 if (xhci->hci_version > 0x96)
5316 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5317
5318 /* Make sure the HC is halted. */
5319 retval = xhci_halt(xhci);
5320 if (retval)
5321 return retval;
5322
5323 xhci_zero_64b_regs(xhci);
5324
5325 xhci_dbg(xhci, "Resetting HCD\n");
5326 /* Reset the internal HC memory state and registers. */
5327 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5328 if (retval)
5329 return retval;
5330 xhci_dbg(xhci, "Reset complete\n");
5331
5332 /*
5333 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5334 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5335 * address memory pointers actually. So, this driver clears the AC64
5336 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5337 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5338 */
5339 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5340 xhci->hcc_params &= ~BIT(0);
5341
5342 /* Set dma_mask and coherent_dma_mask to 64-bits,
5343 * if xHC supports 64-bit addressing */
5344 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5345 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5346 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5347 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5348 } else {
5349 /*
5350 * This is to avoid error in cases where a 32-bit USB
5351 * controller is used on a 64-bit capable system.
5352 */
5353 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5354 if (retval)
5355 return retval;
5356 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5357 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5358 }
5359
5360 xhci_dbg(xhci, "Calling HCD init\n");
5361 /* Initialize HCD and host controller data structures. */
5362 retval = xhci_init(hcd);
5363 if (retval)
5364 return retval;
5365 xhci_dbg(xhci, "Called HCD init\n");
5366
5367 if (xhci_hcd_is_usb3(hcd))
5368 xhci_hcd_init_usb3_data(xhci, hcd);
5369 else
5370 xhci_hcd_init_usb2_data(xhci, hcd);
5371
5372 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5373 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5374
5375 return 0;
5376 }
5377 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5378
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5379 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5380 struct usb_host_endpoint *ep)
5381 {
5382 struct xhci_hcd *xhci;
5383 struct usb_device *udev;
5384 unsigned int slot_id;
5385 unsigned int ep_index;
5386 unsigned long flags;
5387
5388 xhci = hcd_to_xhci(hcd);
5389
5390 spin_lock_irqsave(&xhci->lock, flags);
5391 udev = (struct usb_device *)ep->hcpriv;
5392 slot_id = udev->slot_id;
5393 ep_index = xhci_get_endpoint_index(&ep->desc);
5394
5395 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5396 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5397 spin_unlock_irqrestore(&xhci->lock, flags);
5398 }
5399
5400 static const struct hc_driver xhci_hc_driver = {
5401 .description = "xhci-hcd",
5402 .product_desc = "xHCI Host Controller",
5403 .hcd_priv_size = sizeof(struct xhci_hcd),
5404
5405 /*
5406 * generic hardware linkage
5407 */
5408 .irq = xhci_irq,
5409 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5410 HCD_BH,
5411
5412 /*
5413 * basic lifecycle operations
5414 */
5415 .reset = NULL, /* set in xhci_init_driver() */
5416 .start = xhci_run,
5417 .stop = xhci_stop,
5418 .shutdown = xhci_shutdown,
5419
5420 /*
5421 * managing i/o requests and associated device resources
5422 */
5423 .map_urb_for_dma = xhci_map_urb_for_dma,
5424 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5425 .urb_enqueue = xhci_urb_enqueue,
5426 .urb_dequeue = xhci_urb_dequeue,
5427 .alloc_dev = xhci_alloc_dev,
5428 .free_dev = xhci_free_dev,
5429 .alloc_streams = xhci_alloc_streams,
5430 .free_streams = xhci_free_streams,
5431 .add_endpoint = xhci_add_endpoint,
5432 .drop_endpoint = xhci_drop_endpoint,
5433 .endpoint_disable = xhci_endpoint_disable,
5434 .endpoint_reset = xhci_endpoint_reset,
5435 .check_bandwidth = xhci_check_bandwidth,
5436 .reset_bandwidth = xhci_reset_bandwidth,
5437 .address_device = xhci_address_device,
5438 .enable_device = xhci_enable_device,
5439 .update_hub_device = xhci_update_hub_device,
5440 .reset_device = xhci_discover_or_reset_device,
5441
5442 /*
5443 * scheduling support
5444 */
5445 .get_frame_number = xhci_get_frame,
5446
5447 /*
5448 * root hub support
5449 */
5450 .hub_control = xhci_hub_control,
5451 .hub_status_data = xhci_hub_status_data,
5452 .bus_suspend = xhci_bus_suspend,
5453 .bus_resume = xhci_bus_resume,
5454 .get_resuming_ports = xhci_get_resuming_ports,
5455
5456 /*
5457 * call back when device connected and addressed
5458 */
5459 .update_device = xhci_update_device,
5460 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5461 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5462 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5463 .find_raw_port_number = xhci_find_raw_port_number,
5464 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5465 };
5466
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5467 void xhci_init_driver(struct hc_driver *drv,
5468 const struct xhci_driver_overrides *over)
5469 {
5470 BUG_ON(!over);
5471
5472 /* Copy the generic table to drv then apply the overrides */
5473 *drv = xhci_hc_driver;
5474
5475 if (over) {
5476 drv->hcd_priv_size += over->extra_priv_size;
5477 if (over->reset)
5478 drv->reset = over->reset;
5479 if (over->start)
5480 drv->start = over->start;
5481 if (over->add_endpoint)
5482 drv->add_endpoint = over->add_endpoint;
5483 if (over->drop_endpoint)
5484 drv->drop_endpoint = over->drop_endpoint;
5485 if (over->check_bandwidth)
5486 drv->check_bandwidth = over->check_bandwidth;
5487 if (over->reset_bandwidth)
5488 drv->reset_bandwidth = over->reset_bandwidth;
5489 if (over->update_hub_device)
5490 drv->update_hub_device = over->update_hub_device;
5491 if (over->hub_control)
5492 drv->hub_control = over->hub_control;
5493 }
5494 }
5495 EXPORT_SYMBOL_GPL(xhci_init_driver);
5496
5497 MODULE_DESCRIPTION(DRIVER_DESC);
5498 MODULE_AUTHOR(DRIVER_AUTHOR);
5499 MODULE_LICENSE("GPL");
5500
xhci_hcd_init(void)5501 static int __init xhci_hcd_init(void)
5502 {
5503 /*
5504 * Check the compiler generated sizes of structures that must be laid
5505 * out in specific ways for hardware access.
5506 */
5507 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5508 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5509 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5510 /* xhci_device_control has eight fields, and also
5511 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5512 */
5513 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5514 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5515 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5516 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5517 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5518 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5519 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5520
5521 if (usb_disabled())
5522 return -ENODEV;
5523
5524 xhci_debugfs_create_root();
5525 xhci_dbc_init();
5526
5527 return 0;
5528 }
5529
5530 /*
5531 * If an init function is provided, an exit function must also be provided
5532 * to allow module unload.
5533 */
xhci_hcd_fini(void)5534 static void __exit xhci_hcd_fini(void)
5535 {
5536 xhci_debugfs_remove_root();
5537 xhci_dbc_exit();
5538 }
5539
5540 module_init(xhci_hcd_init);
5541 module_exit(xhci_hcd_fini);
5542