1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10 
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16 #define RXRPC_TRACE_ONLY_DEFINE_ENUMS
17 #include <trace/events/rxrpc.h>
18 
19 struct workqueue_struct *afs_async_calls;
20 
21 static void afs_deferred_free_worker(struct work_struct *work);
22 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
24 static void afs_process_async_call(struct work_struct *);
25 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
26 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
27 static int afs_deliver_cm_op_id(struct afs_call *);
28 
29 /* asynchronous incoming call initial processing */
30 static const struct afs_call_type afs_RXCMxxxx = {
31 	.name		= "CB.xxxx",
32 	.deliver	= afs_deliver_cm_op_id,
33 };
34 
35 /*
36  * open an RxRPC socket and bind it to be a server for callback notifications
37  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
38  */
afs_open_socket(struct afs_net * net)39 int afs_open_socket(struct afs_net *net)
40 {
41 	struct sockaddr_rxrpc srx;
42 	struct socket *socket;
43 	int ret;
44 
45 	_enter("");
46 
47 	ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
48 	if (ret < 0)
49 		goto error_1;
50 
51 	socket->sk->sk_allocation = GFP_NOFS;
52 
53 	/* bind the callback manager's address to make this a server socket */
54 	memset(&srx, 0, sizeof(srx));
55 	srx.srx_family			= AF_RXRPC;
56 	srx.srx_service			= CM_SERVICE;
57 	srx.transport_type		= SOCK_DGRAM;
58 	srx.transport_len		= sizeof(srx.transport.sin6);
59 	srx.transport.sin6.sin6_family	= AF_INET6;
60 	srx.transport.sin6.sin6_port	= htons(AFS_CM_PORT);
61 
62 	ret = rxrpc_sock_set_min_security_level(socket->sk,
63 						RXRPC_SECURITY_ENCRYPT);
64 	if (ret < 0)
65 		goto error_2;
66 
67 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
68 	if (ret == -EADDRINUSE) {
69 		srx.transport.sin6.sin6_port = 0;
70 		ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
71 	}
72 	if (ret < 0)
73 		goto error_2;
74 
75 	srx.srx_service = YFS_CM_SERVICE;
76 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
77 	if (ret < 0)
78 		goto error_2;
79 
80 	/* Ideally, we'd turn on service upgrade here, but we can't because
81 	 * OpenAFS is buggy and leaks the userStatus field from packet to
82 	 * packet and between FS packets and CB packets - so if we try to do an
83 	 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
84 	 * it sends back to us.
85 	 */
86 
87 	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
88 					   afs_rx_discard_new_call);
89 
90 	ret = kernel_listen(socket, INT_MAX);
91 	if (ret < 0)
92 		goto error_2;
93 
94 	net->socket = socket;
95 	afs_charge_preallocation(&net->charge_preallocation_work);
96 	_leave(" = 0");
97 	return 0;
98 
99 error_2:
100 	sock_release(socket);
101 error_1:
102 	_leave(" = %d", ret);
103 	return ret;
104 }
105 
106 /*
107  * close the RxRPC socket AFS was using
108  */
afs_close_socket(struct afs_net * net)109 void afs_close_socket(struct afs_net *net)
110 {
111 	_enter("");
112 
113 	kernel_listen(net->socket, 0);
114 	flush_workqueue(afs_async_calls);
115 
116 	if (net->spare_incoming_call) {
117 		afs_put_call(net->spare_incoming_call);
118 		net->spare_incoming_call = NULL;
119 	}
120 
121 	_debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
122 	wait_var_event(&net->nr_outstanding_calls,
123 		       !atomic_read(&net->nr_outstanding_calls));
124 	_debug("no outstanding calls");
125 
126 	kernel_sock_shutdown(net->socket, SHUT_RDWR);
127 	flush_workqueue(afs_async_calls);
128 	sock_release(net->socket);
129 
130 	_debug("dework");
131 	_leave("");
132 }
133 
134 /*
135  * Allocate a call.
136  */
afs_alloc_call(struct afs_net * net,const struct afs_call_type * type,gfp_t gfp)137 static struct afs_call *afs_alloc_call(struct afs_net *net,
138 				       const struct afs_call_type *type,
139 				       gfp_t gfp)
140 {
141 	struct afs_call *call;
142 	int o;
143 
144 	call = kzalloc(sizeof(*call), gfp);
145 	if (!call)
146 		return NULL;
147 
148 	call->type = type;
149 	call->net = net;
150 	call->debug_id = atomic_inc_return(&rxrpc_debug_id);
151 	refcount_set(&call->ref, 1);
152 	INIT_WORK(&call->async_work, afs_process_async_call);
153 	INIT_WORK(&call->free_work, afs_deferred_free_worker);
154 	init_waitqueue_head(&call->waitq);
155 	spin_lock_init(&call->state_lock);
156 	call->iter = &call->def_iter;
157 
158 	o = atomic_inc_return(&net->nr_outstanding_calls);
159 	trace_afs_call(call->debug_id, afs_call_trace_alloc, 1, o,
160 		       __builtin_return_address(0));
161 	return call;
162 }
163 
afs_free_call(struct afs_call * call)164 static void afs_free_call(struct afs_call *call)
165 {
166 	struct afs_net *net = call->net;
167 	int o;
168 
169 	ASSERT(!work_pending(&call->async_work));
170 
171 	rxrpc_kernel_put_peer(call->peer);
172 
173 	if (call->rxcall) {
174 		rxrpc_kernel_shutdown_call(net->socket, call->rxcall);
175 		rxrpc_kernel_put_call(net->socket, call->rxcall);
176 		call->rxcall = NULL;
177 	}
178 	if (call->type->destructor)
179 		call->type->destructor(call);
180 
181 	afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
182 	kfree(call->request);
183 
184 	o = atomic_read(&net->nr_outstanding_calls);
185 	trace_afs_call(call->debug_id, afs_call_trace_free, 0, o,
186 		       __builtin_return_address(0));
187 	kfree(call);
188 
189 	o = atomic_dec_return(&net->nr_outstanding_calls);
190 	if (o == 0)
191 		wake_up_var(&net->nr_outstanding_calls);
192 }
193 
194 /*
195  * Dispose of a reference on a call.
196  */
afs_put_call(struct afs_call * call)197 void afs_put_call(struct afs_call *call)
198 {
199 	struct afs_net *net = call->net;
200 	unsigned int debug_id = call->debug_id;
201 	bool zero;
202 	int r, o;
203 
204 	zero = __refcount_dec_and_test(&call->ref, &r);
205 	o = atomic_read(&net->nr_outstanding_calls);
206 	trace_afs_call(debug_id, afs_call_trace_put, r - 1, o,
207 		       __builtin_return_address(0));
208 	if (zero)
209 		afs_free_call(call);
210 }
211 
afs_deferred_free_worker(struct work_struct * work)212 static void afs_deferred_free_worker(struct work_struct *work)
213 {
214 	struct afs_call *call = container_of(work, struct afs_call, free_work);
215 
216 	afs_free_call(call);
217 }
218 
219 /*
220  * Dispose of a reference on a call, deferring the cleanup to a workqueue
221  * to avoid lock recursion.
222  */
afs_deferred_put_call(struct afs_call * call)223 void afs_deferred_put_call(struct afs_call *call)
224 {
225 	struct afs_net *net = call->net;
226 	unsigned int debug_id = call->debug_id;
227 	bool zero;
228 	int r, o;
229 
230 	zero = __refcount_dec_and_test(&call->ref, &r);
231 	o = atomic_read(&net->nr_outstanding_calls);
232 	trace_afs_call(debug_id, afs_call_trace_put, r - 1, o,
233 		       __builtin_return_address(0));
234 	if (zero)
235 		schedule_work(&call->free_work);
236 }
237 
afs_get_call(struct afs_call * call,enum afs_call_trace why)238 static struct afs_call *afs_get_call(struct afs_call *call,
239 				     enum afs_call_trace why)
240 {
241 	int r;
242 
243 	__refcount_inc(&call->ref, &r);
244 
245 	trace_afs_call(call->debug_id, why, r + 1,
246 		       atomic_read(&call->net->nr_outstanding_calls),
247 		       __builtin_return_address(0));
248 	return call;
249 }
250 
251 /*
252  * Queue the call for actual work.
253  */
afs_queue_call_work(struct afs_call * call)254 static void afs_queue_call_work(struct afs_call *call)
255 {
256 	if (call->type->work) {
257 		INIT_WORK(&call->work, call->type->work);
258 
259 		afs_get_call(call, afs_call_trace_work);
260 		if (!queue_work(afs_wq, &call->work))
261 			afs_put_call(call);
262 	}
263 }
264 
265 /*
266  * allocate a call with flat request and reply buffers
267  */
afs_alloc_flat_call(struct afs_net * net,const struct afs_call_type * type,size_t request_size,size_t reply_max)268 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
269 				     const struct afs_call_type *type,
270 				     size_t request_size, size_t reply_max)
271 {
272 	struct afs_call *call;
273 
274 	call = afs_alloc_call(net, type, GFP_NOFS);
275 	if (!call)
276 		goto nomem_call;
277 
278 	if (request_size) {
279 		call->request_size = request_size;
280 		call->request = kmalloc(request_size, GFP_NOFS);
281 		if (!call->request)
282 			goto nomem_free;
283 	}
284 
285 	if (reply_max) {
286 		call->reply_max = reply_max;
287 		call->buffer = kmalloc(reply_max, GFP_NOFS);
288 		if (!call->buffer)
289 			goto nomem_free;
290 	}
291 
292 	afs_extract_to_buf(call, call->reply_max);
293 	call->operation_ID = type->op;
294 	init_waitqueue_head(&call->waitq);
295 	return call;
296 
297 nomem_free:
298 	afs_put_call(call);
299 nomem_call:
300 	return NULL;
301 }
302 
303 /*
304  * clean up a call with flat buffer
305  */
afs_flat_call_destructor(struct afs_call * call)306 void afs_flat_call_destructor(struct afs_call *call)
307 {
308 	_enter("");
309 
310 	kfree(call->request);
311 	call->request = NULL;
312 	kfree(call->buffer);
313 	call->buffer = NULL;
314 }
315 
316 /*
317  * Advance the AFS call state when the RxRPC call ends the transmit phase.
318  */
afs_notify_end_request_tx(struct sock * sock,struct rxrpc_call * rxcall,unsigned long call_user_ID)319 static void afs_notify_end_request_tx(struct sock *sock,
320 				      struct rxrpc_call *rxcall,
321 				      unsigned long call_user_ID)
322 {
323 	struct afs_call *call = (struct afs_call *)call_user_ID;
324 
325 	afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
326 }
327 
328 /*
329  * Initiate a call and synchronously queue up the parameters for dispatch.  Any
330  * error is stored into the call struct, which the caller must check for.
331  */
afs_make_call(struct afs_call * call,gfp_t gfp)332 void afs_make_call(struct afs_call *call, gfp_t gfp)
333 {
334 	struct rxrpc_call *rxcall;
335 	struct msghdr msg;
336 	struct kvec iov[1];
337 	size_t len;
338 	s64 tx_total_len;
339 	int ret;
340 
341 	_enter(",{%pISp+%u},", rxrpc_kernel_remote_addr(call->peer), call->service_id);
342 
343 	ASSERT(call->type != NULL);
344 	ASSERT(call->type->name != NULL);
345 
346 	_debug("____MAKE %p{%s,%x} [%d]____",
347 	       call, call->type->name, key_serial(call->key),
348 	       atomic_read(&call->net->nr_outstanding_calls));
349 
350 	trace_afs_make_call(call);
351 
352 	/* Work out the length we're going to transmit.  This is awkward for
353 	 * calls such as FS.StoreData where there's an extra injection of data
354 	 * after the initial fixed part.
355 	 */
356 	tx_total_len = call->request_size;
357 	if (call->write_iter)
358 		tx_total_len += iov_iter_count(call->write_iter);
359 
360 	/* If the call is going to be asynchronous, we need an extra ref for
361 	 * the call to hold itself so the caller need not hang on to its ref.
362 	 */
363 	if (call->async) {
364 		afs_get_call(call, afs_call_trace_get);
365 		call->drop_ref = true;
366 	}
367 
368 	/* create a call */
369 	rxcall = rxrpc_kernel_begin_call(call->net->socket, call->peer, call->key,
370 					 (unsigned long)call,
371 					 tx_total_len,
372 					 call->max_lifespan,
373 					 gfp,
374 					 (call->async ?
375 					  afs_wake_up_async_call :
376 					  afs_wake_up_call_waiter),
377 					 call->service_id,
378 					 call->upgrade,
379 					 (call->intr ? RXRPC_PREINTERRUPTIBLE :
380 					  RXRPC_UNINTERRUPTIBLE),
381 					 call->debug_id);
382 	if (IS_ERR(rxcall)) {
383 		ret = PTR_ERR(rxcall);
384 		call->error = ret;
385 		goto error_kill_call;
386 	}
387 
388 	call->rxcall = rxcall;
389 	call->issue_time = ktime_get_real();
390 
391 	/* send the request */
392 	iov[0].iov_base	= call->request;
393 	iov[0].iov_len	= call->request_size;
394 
395 	msg.msg_name		= NULL;
396 	msg.msg_namelen		= 0;
397 	iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, call->request_size);
398 	msg.msg_control		= NULL;
399 	msg.msg_controllen	= 0;
400 	msg.msg_flags		= MSG_WAITALL | (call->write_iter ? MSG_MORE : 0);
401 
402 	ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
403 				     &msg, call->request_size,
404 				     afs_notify_end_request_tx);
405 	if (ret < 0)
406 		goto error_do_abort;
407 
408 	if (call->write_iter) {
409 		msg.msg_iter = *call->write_iter;
410 		msg.msg_flags &= ~MSG_MORE;
411 		trace_afs_send_data(call, &msg);
412 
413 		ret = rxrpc_kernel_send_data(call->net->socket,
414 					     call->rxcall, &msg,
415 					     iov_iter_count(&msg.msg_iter),
416 					     afs_notify_end_request_tx);
417 		*call->write_iter = msg.msg_iter;
418 
419 		trace_afs_sent_data(call, &msg, ret);
420 		if (ret < 0)
421 			goto error_do_abort;
422 	}
423 
424 	/* Note that at this point, we may have received the reply or an abort
425 	 * - and an asynchronous call may already have completed.
426 	 *
427 	 * afs_wait_for_call_to_complete(call)
428 	 * must be called to synchronously clean up.
429 	 */
430 	return;
431 
432 error_do_abort:
433 	if (ret != -ECONNABORTED)
434 		rxrpc_kernel_abort_call(call->net->socket, rxcall,
435 					RX_USER_ABORT, ret,
436 					afs_abort_send_data_error);
437 	if (call->async) {
438 		afs_see_call(call, afs_call_trace_async_abort);
439 		return;
440 	}
441 
442 	if (ret == -ECONNABORTED) {
443 		len = 0;
444 		iov_iter_kvec(&msg.msg_iter, ITER_DEST, NULL, 0, 0);
445 		rxrpc_kernel_recv_data(call->net->socket, rxcall,
446 				       &msg.msg_iter, &len, false,
447 				       &call->abort_code, &call->service_id);
448 		call->responded = true;
449 	}
450 	call->error = ret;
451 	trace_afs_call_done(call);
452 error_kill_call:
453 	if (call->async)
454 		afs_see_call(call, afs_call_trace_async_kill);
455 	if (call->type->done)
456 		call->type->done(call);
457 
458 	/* We need to dispose of the extra ref we grabbed for an async call.
459 	 * The call, however, might be queued on afs_async_calls and we need to
460 	 * make sure we don't get any more notifications that might requeue it.
461 	 */
462 	if (call->rxcall)
463 		rxrpc_kernel_shutdown_call(call->net->socket, call->rxcall);
464 	if (call->async) {
465 		if (cancel_work_sync(&call->async_work))
466 			afs_put_call(call);
467 		afs_set_call_complete(call, ret, 0);
468 	}
469 
470 	call->error = ret;
471 	call->state = AFS_CALL_COMPLETE;
472 	_leave(" = %d", ret);
473 }
474 
475 /*
476  * Log remote abort codes that indicate that we have a protocol disagreement
477  * with the server.
478  */
afs_log_error(struct afs_call * call,s32 remote_abort)479 static void afs_log_error(struct afs_call *call, s32 remote_abort)
480 {
481 	static int max = 0;
482 	const char *msg;
483 	int m;
484 
485 	switch (remote_abort) {
486 	case RX_EOF:		 msg = "unexpected EOF";	break;
487 	case RXGEN_CC_MARSHAL:	 msg = "client marshalling";	break;
488 	case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling";	break;
489 	case RXGEN_SS_MARSHAL:	 msg = "server marshalling";	break;
490 	case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling";	break;
491 	case RXGEN_DECODE:	 msg = "opcode decode";		break;
492 	case RXGEN_SS_XDRFREE:	 msg = "server XDR cleanup";	break;
493 	case RXGEN_CC_XDRFREE:	 msg = "client XDR cleanup";	break;
494 	case -32:		 msg = "insufficient data";	break;
495 	default:
496 		return;
497 	}
498 
499 	m = max;
500 	if (m < 3) {
501 		max = m + 1;
502 		pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n",
503 			  msg, call->type->name,
504 			  rxrpc_kernel_remote_addr(call->peer));
505 	}
506 }
507 
508 /*
509  * deliver messages to a call
510  */
afs_deliver_to_call(struct afs_call * call)511 static void afs_deliver_to_call(struct afs_call *call)
512 {
513 	enum afs_call_state state;
514 	size_t len;
515 	u32 abort_code, remote_abort = 0;
516 	int ret;
517 
518 	_enter("%s", call->type->name);
519 
520 	while (state = READ_ONCE(call->state),
521 	       state == AFS_CALL_CL_AWAIT_REPLY ||
522 	       state == AFS_CALL_SV_AWAIT_OP_ID ||
523 	       state == AFS_CALL_SV_AWAIT_REQUEST ||
524 	       state == AFS_CALL_SV_AWAIT_ACK
525 	       ) {
526 		if (state == AFS_CALL_SV_AWAIT_ACK) {
527 			len = 0;
528 			iov_iter_kvec(&call->def_iter, ITER_DEST, NULL, 0, 0);
529 			ret = rxrpc_kernel_recv_data(call->net->socket,
530 						     call->rxcall, &call->def_iter,
531 						     &len, false, &remote_abort,
532 						     &call->service_id);
533 			trace_afs_receive_data(call, &call->def_iter, false, ret);
534 
535 			if (ret == -EINPROGRESS || ret == -EAGAIN)
536 				return;
537 			if (ret < 0 || ret == 1) {
538 				if (ret == 1)
539 					ret = 0;
540 				goto call_complete;
541 			}
542 			return;
543 		}
544 
545 		ret = call->type->deliver(call);
546 		state = READ_ONCE(call->state);
547 		if (ret == 0 && call->unmarshalling_error)
548 			ret = -EBADMSG;
549 		switch (ret) {
550 		case 0:
551 			call->responded = true;
552 			afs_queue_call_work(call);
553 			if (state == AFS_CALL_CL_PROC_REPLY) {
554 				if (call->op)
555 					set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
556 						&call->op->server->flags);
557 				goto call_complete;
558 			}
559 			ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
560 			goto done;
561 		case -EINPROGRESS:
562 		case -EAGAIN:
563 			goto out;
564 		case -ECONNABORTED:
565 			ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
566 			call->responded = true;
567 			afs_log_error(call, call->abort_code);
568 			goto done;
569 		case -ENOTSUPP:
570 			call->responded = true;
571 			abort_code = RXGEN_OPCODE;
572 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
573 						abort_code, ret,
574 						afs_abort_op_not_supported);
575 			goto local_abort;
576 		case -EIO:
577 			pr_err("kAFS: Call %u in bad state %u\n",
578 			       call->debug_id, state);
579 			fallthrough;
580 		case -ENODATA:
581 		case -EBADMSG:
582 		case -EMSGSIZE:
583 		case -ENOMEM:
584 		case -EFAULT:
585 			abort_code = RXGEN_CC_UNMARSHAL;
586 			if (state != AFS_CALL_CL_AWAIT_REPLY)
587 				abort_code = RXGEN_SS_UNMARSHAL;
588 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
589 						abort_code, ret,
590 						afs_abort_unmarshal_error);
591 			goto local_abort;
592 		default:
593 			abort_code = RX_CALL_DEAD;
594 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
595 						abort_code, ret,
596 						afs_abort_general_error);
597 			goto local_abort;
598 		}
599 	}
600 
601 done:
602 	if (call->type->done)
603 		call->type->done(call);
604 out:
605 	_leave("");
606 	return;
607 
608 local_abort:
609 	abort_code = 0;
610 call_complete:
611 	afs_set_call_complete(call, ret, remote_abort);
612 	goto done;
613 }
614 
615 /*
616  * Wait synchronously for a call to complete.
617  */
afs_wait_for_call_to_complete(struct afs_call * call)618 void afs_wait_for_call_to_complete(struct afs_call *call)
619 {
620 	bool rxrpc_complete = false;
621 
622 	_enter("");
623 
624 	if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
625 		DECLARE_WAITQUEUE(myself, current);
626 
627 		add_wait_queue(&call->waitq, &myself);
628 		for (;;) {
629 			set_current_state(TASK_UNINTERRUPTIBLE);
630 
631 			/* deliver any messages that are in the queue */
632 			if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
633 			    call->need_attention) {
634 				call->need_attention = false;
635 				__set_current_state(TASK_RUNNING);
636 				afs_deliver_to_call(call);
637 				continue;
638 			}
639 
640 			if (afs_check_call_state(call, AFS_CALL_COMPLETE))
641 				break;
642 
643 			if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
644 				/* rxrpc terminated the call. */
645 				rxrpc_complete = true;
646 				break;
647 			}
648 
649 			schedule();
650 		}
651 
652 		remove_wait_queue(&call->waitq, &myself);
653 		__set_current_state(TASK_RUNNING);
654 	}
655 
656 	if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
657 		if (rxrpc_complete) {
658 			afs_set_call_complete(call, call->error, call->abort_code);
659 		} else {
660 			/* Kill off the call if it's still live. */
661 			_debug("call interrupted");
662 			if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
663 						    RX_USER_ABORT, -EINTR,
664 						    afs_abort_interrupted))
665 				afs_set_call_complete(call, -EINTR, 0);
666 		}
667 	}
668 }
669 
670 /*
671  * wake up a waiting call
672  */
afs_wake_up_call_waiter(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)673 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
674 				    unsigned long call_user_ID)
675 {
676 	struct afs_call *call = (struct afs_call *)call_user_ID;
677 
678 	call->need_attention = true;
679 	wake_up(&call->waitq);
680 }
681 
682 /*
683  * Wake up an asynchronous call.  The caller is holding the call notify
684  * spinlock around this, so we can't call afs_put_call().
685  */
afs_wake_up_async_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)686 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
687 				   unsigned long call_user_ID)
688 {
689 	struct afs_call *call = (struct afs_call *)call_user_ID;
690 	int r;
691 
692 	trace_afs_notify_call(rxcall, call);
693 	call->need_attention = true;
694 
695 	if (__refcount_inc_not_zero(&call->ref, &r)) {
696 		trace_afs_call(call->debug_id, afs_call_trace_wake, r + 1,
697 			       atomic_read(&call->net->nr_outstanding_calls),
698 			       __builtin_return_address(0));
699 
700 		if (!queue_work(afs_async_calls, &call->async_work))
701 			afs_deferred_put_call(call);
702 	}
703 }
704 
705 /*
706  * Perform I/O processing on an asynchronous call.  The work item carries a ref
707  * to the call struct that we either need to release or to pass on.
708  */
afs_process_async_call(struct work_struct * work)709 static void afs_process_async_call(struct work_struct *work)
710 {
711 	struct afs_call *call = container_of(work, struct afs_call, async_work);
712 
713 	_enter("");
714 
715 	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
716 		call->need_attention = false;
717 		afs_deliver_to_call(call);
718 	}
719 
720 	afs_put_call(call);
721 	_leave("");
722 }
723 
afs_rx_attach(struct rxrpc_call * rxcall,unsigned long user_call_ID)724 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
725 {
726 	struct afs_call *call = (struct afs_call *)user_call_ID;
727 
728 	call->rxcall = rxcall;
729 }
730 
731 /*
732  * Charge the incoming call preallocation.
733  */
afs_charge_preallocation(struct work_struct * work)734 void afs_charge_preallocation(struct work_struct *work)
735 {
736 	struct afs_net *net =
737 		container_of(work, struct afs_net, charge_preallocation_work);
738 	struct afs_call *call = net->spare_incoming_call;
739 
740 	for (;;) {
741 		if (!call) {
742 			call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
743 			if (!call)
744 				break;
745 
746 			call->drop_ref = true;
747 			call->async = true;
748 			call->state = AFS_CALL_SV_AWAIT_OP_ID;
749 			init_waitqueue_head(&call->waitq);
750 			afs_extract_to_tmp(call);
751 		}
752 
753 		if (rxrpc_kernel_charge_accept(net->socket,
754 					       afs_wake_up_async_call,
755 					       afs_rx_attach,
756 					       (unsigned long)call,
757 					       GFP_KERNEL,
758 					       call->debug_id) < 0)
759 			break;
760 		call = NULL;
761 	}
762 	net->spare_incoming_call = call;
763 }
764 
765 /*
766  * Discard a preallocated call when a socket is shut down.
767  */
afs_rx_discard_new_call(struct rxrpc_call * rxcall,unsigned long user_call_ID)768 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
769 				    unsigned long user_call_ID)
770 {
771 	struct afs_call *call = (struct afs_call *)user_call_ID;
772 
773 	call->rxcall = NULL;
774 	afs_put_call(call);
775 }
776 
777 /*
778  * Notification of an incoming call.
779  */
afs_rx_new_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long user_call_ID)780 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
781 			    unsigned long user_call_ID)
782 {
783 	struct afs_net *net = afs_sock2net(sk);
784 
785 	queue_work(afs_wq, &net->charge_preallocation_work);
786 }
787 
788 /*
789  * Grab the operation ID from an incoming cache manager call.  The socket
790  * buffer is discarded on error or if we don't yet have sufficient data.
791  */
afs_deliver_cm_op_id(struct afs_call * call)792 static int afs_deliver_cm_op_id(struct afs_call *call)
793 {
794 	int ret;
795 
796 	_enter("{%zu}", iov_iter_count(call->iter));
797 
798 	/* the operation ID forms the first four bytes of the request data */
799 	ret = afs_extract_data(call, true);
800 	if (ret < 0)
801 		return ret;
802 
803 	call->operation_ID = ntohl(call->tmp);
804 	afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
805 
806 	/* ask the cache manager to route the call (it'll change the call type
807 	 * if successful) */
808 	if (!afs_cm_incoming_call(call))
809 		return -ENOTSUPP;
810 
811 	trace_afs_cb_call(call);
812 
813 	/* pass responsibility for the remainer of this message off to the
814 	 * cache manager op */
815 	return call->type->deliver(call);
816 }
817 
818 /*
819  * Advance the AFS call state when an RxRPC service call ends the transmit
820  * phase.
821  */
afs_notify_end_reply_tx(struct sock * sock,struct rxrpc_call * rxcall,unsigned long call_user_ID)822 static void afs_notify_end_reply_tx(struct sock *sock,
823 				    struct rxrpc_call *rxcall,
824 				    unsigned long call_user_ID)
825 {
826 	struct afs_call *call = (struct afs_call *)call_user_ID;
827 
828 	afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
829 }
830 
831 /*
832  * send an empty reply
833  */
afs_send_empty_reply(struct afs_call * call)834 void afs_send_empty_reply(struct afs_call *call)
835 {
836 	struct afs_net *net = call->net;
837 	struct msghdr msg;
838 
839 	_enter("");
840 
841 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
842 
843 	msg.msg_name		= NULL;
844 	msg.msg_namelen		= 0;
845 	iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, NULL, 0, 0);
846 	msg.msg_control		= NULL;
847 	msg.msg_controllen	= 0;
848 	msg.msg_flags		= 0;
849 
850 	switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
851 				       afs_notify_end_reply_tx)) {
852 	case 0:
853 		_leave(" [replied]");
854 		return;
855 
856 	case -ENOMEM:
857 		_debug("oom");
858 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
859 					RXGEN_SS_MARSHAL, -ENOMEM,
860 					afs_abort_oom);
861 		fallthrough;
862 	default:
863 		_leave(" [error]");
864 		return;
865 	}
866 }
867 
868 /*
869  * send a simple reply
870  */
afs_send_simple_reply(struct afs_call * call,const void * buf,size_t len)871 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
872 {
873 	struct afs_net *net = call->net;
874 	struct msghdr msg;
875 	struct kvec iov[1];
876 	int n;
877 
878 	_enter("");
879 
880 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
881 
882 	iov[0].iov_base		= (void *) buf;
883 	iov[0].iov_len		= len;
884 	msg.msg_name		= NULL;
885 	msg.msg_namelen		= 0;
886 	iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, len);
887 	msg.msg_control		= NULL;
888 	msg.msg_controllen	= 0;
889 	msg.msg_flags		= 0;
890 
891 	n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
892 				   afs_notify_end_reply_tx);
893 	if (n >= 0) {
894 		/* Success */
895 		_leave(" [replied]");
896 		return;
897 	}
898 
899 	if (n == -ENOMEM) {
900 		_debug("oom");
901 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
902 					RXGEN_SS_MARSHAL, -ENOMEM,
903 					afs_abort_oom);
904 	}
905 	_leave(" [error]");
906 }
907 
908 /*
909  * Extract a piece of data from the received data socket buffers.
910  */
afs_extract_data(struct afs_call * call,bool want_more)911 int afs_extract_data(struct afs_call *call, bool want_more)
912 {
913 	struct afs_net *net = call->net;
914 	struct iov_iter *iter = call->iter;
915 	enum afs_call_state state;
916 	u32 remote_abort = 0;
917 	int ret;
918 
919 	_enter("{%s,%zu,%zu},%d",
920 	       call->type->name, call->iov_len, iov_iter_count(iter), want_more);
921 
922 	ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
923 				     &call->iov_len, want_more, &remote_abort,
924 				     &call->service_id);
925 	trace_afs_receive_data(call, call->iter, want_more, ret);
926 	if (ret == 0 || ret == -EAGAIN)
927 		return ret;
928 
929 	state = READ_ONCE(call->state);
930 	if (ret == 1) {
931 		switch (state) {
932 		case AFS_CALL_CL_AWAIT_REPLY:
933 			afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
934 			break;
935 		case AFS_CALL_SV_AWAIT_REQUEST:
936 			afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
937 			break;
938 		case AFS_CALL_COMPLETE:
939 			kdebug("prem complete %d", call->error);
940 			return afs_io_error(call, afs_io_error_extract);
941 		default:
942 			break;
943 		}
944 		return 0;
945 	}
946 
947 	afs_set_call_complete(call, ret, remote_abort);
948 	return ret;
949 }
950 
951 /*
952  * Log protocol error production.
953  */
afs_protocol_error(struct afs_call * call,enum afs_eproto_cause cause)954 noinline int afs_protocol_error(struct afs_call *call,
955 				enum afs_eproto_cause cause)
956 {
957 	trace_afs_protocol_error(call, cause);
958 	if (call)
959 		call->unmarshalling_error = true;
960 	return -EBADMSG;
961 }
962