1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "raid56.h"
20 #include "block-group.h"
21 #include "zoned.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "file-item.h"
25 #include "scrub.h"
26 #include "raid-stripe-tree.h"
27
28 /*
29 * This is only the first step towards a full-features scrub. It reads all
30 * extent and super block and verifies the checksums. In case a bad checksum
31 * is found or the extent cannot be read, good data will be written back if
32 * any can be found.
33 *
34 * Future enhancements:
35 * - In case an unrepairable extent is encountered, track which files are
36 * affected and report them
37 * - track and record media errors, throw out bad devices
38 * - add a mode to also read unallocated space
39 */
40
41 struct scrub_ctx;
42
43 /*
44 * The following value only influences the performance.
45 *
46 * This determines how many stripes would be submitted in one go,
47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48 */
49 #define SCRUB_STRIPES_PER_GROUP 8
50
51 /*
52 * How many groups we have for each sctx.
53 *
54 * This would be 8M per device, the same value as the old scrub in-flight bios
55 * size limit.
56 */
57 #define SCRUB_GROUPS_PER_SCTX 16
58
59 #define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60
61 /*
62 * The following value times PAGE_SIZE needs to be large enough to match the
63 * largest node/leaf/sector size that shall be supported.
64 */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69 bool is_metadata;
70
71 union {
72 /*
73 * Csum pointer for data csum verification. Should point to a
74 * sector csum inside scrub_stripe::csums.
75 *
76 * NULL if this data sector has no csum.
77 */
78 u8 *csum;
79
80 /*
81 * Extra info for metadata verification. All sectors inside a
82 * tree block share the same generation.
83 */
84 u64 generation;
85 };
86 };
87
88 enum scrub_stripe_flags {
89 /* Set when @mirror_num, @dev, @physical and @logical are set. */
90 SCRUB_STRIPE_FLAG_INITIALIZED,
91
92 /* Set when the read-repair is finished. */
93 SCRUB_STRIPE_FLAG_REPAIR_DONE,
94
95 /*
96 * Set for data stripes if it's triggered from P/Q stripe.
97 * During such scrub, we should not report errors in data stripes, nor
98 * update the accounting.
99 */
100 SCRUB_STRIPE_FLAG_NO_REPORT,
101 };
102
103 #define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE)
104
105 /*
106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107 */
108 struct scrub_stripe {
109 struct scrub_ctx *sctx;
110 struct btrfs_block_group *bg;
111
112 struct page *pages[SCRUB_STRIPE_PAGES];
113 struct scrub_sector_verification *sectors;
114
115 struct btrfs_device *dev;
116 u64 logical;
117 u64 physical;
118
119 u16 mirror_num;
120
121 /* Should be BTRFS_STRIPE_LEN / sectorsize. */
122 u16 nr_sectors;
123
124 /*
125 * How many data/meta extents are in this stripe. Only for scrub status
126 * reporting purposes.
127 */
128 u16 nr_data_extents;
129 u16 nr_meta_extents;
130
131 atomic_t pending_io;
132 wait_queue_head_t io_wait;
133 wait_queue_head_t repair_wait;
134
135 /*
136 * Indicate the states of the stripe. Bits are defined in
137 * scrub_stripe_flags enum.
138 */
139 unsigned long state;
140
141 /* Indicate which sectors are covered by extent items. */
142 unsigned long extent_sector_bitmap;
143
144 /*
145 * The errors hit during the initial read of the stripe.
146 *
147 * Would be utilized for error reporting and repair.
148 *
149 * The remaining init_nr_* records the number of errors hit, only used
150 * by error reporting.
151 */
152 unsigned long init_error_bitmap;
153 unsigned int init_nr_io_errors;
154 unsigned int init_nr_csum_errors;
155 unsigned int init_nr_meta_errors;
156 unsigned int init_nr_meta_gen_errors;
157
158 /*
159 * The following error bitmaps are all for the current status.
160 * Every time we submit a new read, these bitmaps may be updated.
161 *
162 * error_bitmap = io_error_bitmap | csum_error_bitmap |
163 * meta_error_bitmap | meta_generation_bitmap;
164 *
165 * IO and csum errors can happen for both metadata and data.
166 */
167 unsigned long error_bitmap;
168 unsigned long io_error_bitmap;
169 unsigned long csum_error_bitmap;
170 unsigned long meta_error_bitmap;
171 unsigned long meta_gen_error_bitmap;
172
173 /* For writeback (repair or replace) error reporting. */
174 unsigned long write_error_bitmap;
175
176 /* Writeback can be concurrent, thus we need to protect the bitmap. */
177 spinlock_t write_error_lock;
178
179 /*
180 * Checksum for the whole stripe if this stripe is inside a data block
181 * group.
182 */
183 u8 *csums;
184
185 struct work_struct work;
186 };
187
188 struct scrub_ctx {
189 struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES];
190 struct scrub_stripe *raid56_data_stripes;
191 struct btrfs_fs_info *fs_info;
192 struct btrfs_path extent_path;
193 struct btrfs_path csum_path;
194 int first_free;
195 int cur_stripe;
196 atomic_t cancel_req;
197 int readonly;
198
199 /* State of IO submission throttling affecting the associated device */
200 ktime_t throttle_deadline;
201 u64 throttle_sent;
202
203 int is_dev_replace;
204 u64 write_pointer;
205
206 struct mutex wr_lock;
207 struct btrfs_device *wr_tgtdev;
208
209 /*
210 * statistics
211 */
212 struct btrfs_scrub_progress stat;
213 spinlock_t stat_lock;
214
215 /*
216 * Use a ref counter to avoid use-after-free issues. Scrub workers
217 * decrement bios_in_flight and workers_pending and then do a wakeup
218 * on the list_wait wait queue. We must ensure the main scrub task
219 * doesn't free the scrub context before or while the workers are
220 * doing the wakeup() call.
221 */
222 refcount_t refs;
223 };
224
225 struct scrub_warning {
226 struct btrfs_path *path;
227 u64 extent_item_size;
228 const char *errstr;
229 u64 physical;
230 u64 logical;
231 struct btrfs_device *dev;
232 };
233
release_scrub_stripe(struct scrub_stripe * stripe)234 static void release_scrub_stripe(struct scrub_stripe *stripe)
235 {
236 if (!stripe)
237 return;
238
239 for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
240 if (stripe->pages[i])
241 __free_page(stripe->pages[i]);
242 stripe->pages[i] = NULL;
243 }
244 kfree(stripe->sectors);
245 kfree(stripe->csums);
246 stripe->sectors = NULL;
247 stripe->csums = NULL;
248 stripe->sctx = NULL;
249 stripe->state = 0;
250 }
251
init_scrub_stripe(struct btrfs_fs_info * fs_info,struct scrub_stripe * stripe)252 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
253 struct scrub_stripe *stripe)
254 {
255 int ret;
256
257 memset(stripe, 0, sizeof(*stripe));
258
259 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
260 stripe->state = 0;
261
262 init_waitqueue_head(&stripe->io_wait);
263 init_waitqueue_head(&stripe->repair_wait);
264 atomic_set(&stripe->pending_io, 0);
265 spin_lock_init(&stripe->write_error_lock);
266
267 ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, false);
268 if (ret < 0)
269 goto error;
270
271 stripe->sectors = kcalloc(stripe->nr_sectors,
272 sizeof(struct scrub_sector_verification),
273 GFP_KERNEL);
274 if (!stripe->sectors)
275 goto error;
276
277 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
278 fs_info->csum_size, GFP_KERNEL);
279 if (!stripe->csums)
280 goto error;
281 return 0;
282 error:
283 release_scrub_stripe(stripe);
284 return -ENOMEM;
285 }
286
wait_scrub_stripe_io(struct scrub_stripe * stripe)287 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
288 {
289 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
290 }
291
292 static void scrub_put_ctx(struct scrub_ctx *sctx);
293
__scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)294 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
295 {
296 while (atomic_read(&fs_info->scrub_pause_req)) {
297 mutex_unlock(&fs_info->scrub_lock);
298 wait_event(fs_info->scrub_pause_wait,
299 atomic_read(&fs_info->scrub_pause_req) == 0);
300 mutex_lock(&fs_info->scrub_lock);
301 }
302 }
303
scrub_pause_on(struct btrfs_fs_info * fs_info)304 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
305 {
306 atomic_inc(&fs_info->scrubs_paused);
307 wake_up(&fs_info->scrub_pause_wait);
308 }
309
scrub_pause_off(struct btrfs_fs_info * fs_info)310 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
311 {
312 mutex_lock(&fs_info->scrub_lock);
313 __scrub_blocked_if_needed(fs_info);
314 atomic_dec(&fs_info->scrubs_paused);
315 mutex_unlock(&fs_info->scrub_lock);
316
317 wake_up(&fs_info->scrub_pause_wait);
318 }
319
scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)320 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
321 {
322 scrub_pause_on(fs_info);
323 scrub_pause_off(fs_info);
324 }
325
scrub_free_ctx(struct scrub_ctx * sctx)326 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
327 {
328 int i;
329
330 if (!sctx)
331 return;
332
333 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
334 release_scrub_stripe(&sctx->stripes[i]);
335
336 kvfree(sctx);
337 }
338
scrub_put_ctx(struct scrub_ctx * sctx)339 static void scrub_put_ctx(struct scrub_ctx *sctx)
340 {
341 if (refcount_dec_and_test(&sctx->refs))
342 scrub_free_ctx(sctx);
343 }
344
scrub_setup_ctx(struct btrfs_fs_info * fs_info,int is_dev_replace)345 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
346 struct btrfs_fs_info *fs_info, int is_dev_replace)
347 {
348 struct scrub_ctx *sctx;
349 int i;
350
351 /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use
352 * kvzalloc().
353 */
354 sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
355 if (!sctx)
356 goto nomem;
357 refcount_set(&sctx->refs, 1);
358 sctx->is_dev_replace = is_dev_replace;
359 sctx->fs_info = fs_info;
360 sctx->extent_path.search_commit_root = 1;
361 sctx->extent_path.skip_locking = 1;
362 sctx->csum_path.search_commit_root = 1;
363 sctx->csum_path.skip_locking = 1;
364 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
365 int ret;
366
367 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
368 if (ret < 0)
369 goto nomem;
370 sctx->stripes[i].sctx = sctx;
371 }
372 sctx->first_free = 0;
373 atomic_set(&sctx->cancel_req, 0);
374
375 spin_lock_init(&sctx->stat_lock);
376 sctx->throttle_deadline = 0;
377
378 mutex_init(&sctx->wr_lock);
379 if (is_dev_replace) {
380 WARN_ON(!fs_info->dev_replace.tgtdev);
381 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
382 }
383
384 return sctx;
385
386 nomem:
387 scrub_free_ctx(sctx);
388 return ERR_PTR(-ENOMEM);
389 }
390
scrub_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)391 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
392 u64 root, void *warn_ctx)
393 {
394 u32 nlink;
395 int ret;
396 int i;
397 unsigned nofs_flag;
398 struct extent_buffer *eb;
399 struct btrfs_inode_item *inode_item;
400 struct scrub_warning *swarn = warn_ctx;
401 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
402 struct inode_fs_paths *ipath = NULL;
403 struct btrfs_root *local_root;
404 struct btrfs_key key;
405
406 local_root = btrfs_get_fs_root(fs_info, root, true);
407 if (IS_ERR(local_root)) {
408 ret = PTR_ERR(local_root);
409 goto err;
410 }
411
412 /*
413 * this makes the path point to (inum INODE_ITEM ioff)
414 */
415 key.objectid = inum;
416 key.type = BTRFS_INODE_ITEM_KEY;
417 key.offset = 0;
418
419 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
420 if (ret) {
421 btrfs_put_root(local_root);
422 btrfs_release_path(swarn->path);
423 goto err;
424 }
425
426 eb = swarn->path->nodes[0];
427 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
428 struct btrfs_inode_item);
429 nlink = btrfs_inode_nlink(eb, inode_item);
430 btrfs_release_path(swarn->path);
431
432 /*
433 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
434 * uses GFP_NOFS in this context, so we keep it consistent but it does
435 * not seem to be strictly necessary.
436 */
437 nofs_flag = memalloc_nofs_save();
438 ipath = init_ipath(4096, local_root, swarn->path);
439 memalloc_nofs_restore(nofs_flag);
440 if (IS_ERR(ipath)) {
441 btrfs_put_root(local_root);
442 ret = PTR_ERR(ipath);
443 ipath = NULL;
444 goto err;
445 }
446 ret = paths_from_inode(inum, ipath);
447
448 if (ret < 0)
449 goto err;
450
451 /*
452 * we deliberately ignore the bit ipath might have been too small to
453 * hold all of the paths here
454 */
455 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
456 btrfs_warn_in_rcu(fs_info,
457 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
458 swarn->errstr, swarn->logical,
459 btrfs_dev_name(swarn->dev),
460 swarn->physical,
461 root, inum, offset,
462 fs_info->sectorsize, nlink,
463 (char *)(unsigned long)ipath->fspath->val[i]);
464
465 btrfs_put_root(local_root);
466 free_ipath(ipath);
467 return 0;
468
469 err:
470 btrfs_warn_in_rcu(fs_info,
471 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
472 swarn->errstr, swarn->logical,
473 btrfs_dev_name(swarn->dev),
474 swarn->physical,
475 root, inum, offset, ret);
476
477 free_ipath(ipath);
478 return 0;
479 }
480
scrub_print_common_warning(const char * errstr,struct btrfs_device * dev,bool is_super,u64 logical,u64 physical)481 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
482 bool is_super, u64 logical, u64 physical)
483 {
484 struct btrfs_fs_info *fs_info = dev->fs_info;
485 struct btrfs_path *path;
486 struct btrfs_key found_key;
487 struct extent_buffer *eb;
488 struct btrfs_extent_item *ei;
489 struct scrub_warning swarn;
490 u64 flags = 0;
491 u32 item_size;
492 int ret;
493
494 /* Super block error, no need to search extent tree. */
495 if (is_super) {
496 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
497 errstr, btrfs_dev_name(dev), physical);
498 return;
499 }
500 path = btrfs_alloc_path();
501 if (!path)
502 return;
503
504 swarn.physical = physical;
505 swarn.logical = logical;
506 swarn.errstr = errstr;
507 swarn.dev = NULL;
508
509 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
510 &flags);
511 if (ret < 0)
512 goto out;
513
514 swarn.extent_item_size = found_key.offset;
515
516 eb = path->nodes[0];
517 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
518 item_size = btrfs_item_size(eb, path->slots[0]);
519
520 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
521 unsigned long ptr = 0;
522 u8 ref_level;
523 u64 ref_root;
524
525 while (true) {
526 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
527 item_size, &ref_root,
528 &ref_level);
529 if (ret < 0) {
530 btrfs_warn(fs_info,
531 "failed to resolve tree backref for logical %llu: %d",
532 swarn.logical, ret);
533 break;
534 }
535 if (ret > 0)
536 break;
537 btrfs_warn_in_rcu(fs_info,
538 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
539 errstr, swarn.logical, btrfs_dev_name(dev),
540 swarn.physical, (ref_level ? "node" : "leaf"),
541 ref_level, ref_root);
542 }
543 btrfs_release_path(path);
544 } else {
545 struct btrfs_backref_walk_ctx ctx = { 0 };
546
547 btrfs_release_path(path);
548
549 ctx.bytenr = found_key.objectid;
550 ctx.extent_item_pos = swarn.logical - found_key.objectid;
551 ctx.fs_info = fs_info;
552
553 swarn.path = path;
554 swarn.dev = dev;
555
556 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
557 }
558
559 out:
560 btrfs_free_path(path);
561 }
562
fill_writer_pointer_gap(struct scrub_ctx * sctx,u64 physical)563 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
564 {
565 int ret = 0;
566 u64 length;
567
568 if (!btrfs_is_zoned(sctx->fs_info))
569 return 0;
570
571 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
572 return 0;
573
574 if (sctx->write_pointer < physical) {
575 length = physical - sctx->write_pointer;
576
577 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
578 sctx->write_pointer, length);
579 if (!ret)
580 sctx->write_pointer = physical;
581 }
582 return ret;
583 }
584
scrub_stripe_get_page(struct scrub_stripe * stripe,int sector_nr)585 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
586 {
587 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
588 int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
589
590 return stripe->pages[page_index];
591 }
592
scrub_stripe_get_page_offset(struct scrub_stripe * stripe,int sector_nr)593 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
594 int sector_nr)
595 {
596 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
597
598 return offset_in_page(sector_nr << fs_info->sectorsize_bits);
599 }
600
scrub_verify_one_metadata(struct scrub_stripe * stripe,int sector_nr)601 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
602 {
603 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
604 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
605 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
606 const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
607 const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
608 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
609 u8 on_disk_csum[BTRFS_CSUM_SIZE];
610 u8 calculated_csum[BTRFS_CSUM_SIZE];
611 struct btrfs_header *header;
612
613 /*
614 * Here we don't have a good way to attach the pages (and subpages)
615 * to a dummy extent buffer, thus we have to directly grab the members
616 * from pages.
617 */
618 header = (struct btrfs_header *)(page_address(first_page) + first_off);
619 memcpy(on_disk_csum, header->csum, fs_info->csum_size);
620
621 if (logical != btrfs_stack_header_bytenr(header)) {
622 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
623 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
624 btrfs_warn_rl(fs_info,
625 "tree block %llu mirror %u has bad bytenr, has %llu want %llu",
626 logical, stripe->mirror_num,
627 btrfs_stack_header_bytenr(header), logical);
628 return;
629 }
630 if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
631 BTRFS_FSID_SIZE) != 0) {
632 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
633 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
634 btrfs_warn_rl(fs_info,
635 "tree block %llu mirror %u has bad fsid, has %pU want %pU",
636 logical, stripe->mirror_num,
637 header->fsid, fs_info->fs_devices->fsid);
638 return;
639 }
640 if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
641 BTRFS_UUID_SIZE) != 0) {
642 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
643 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
644 btrfs_warn_rl(fs_info,
645 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
646 logical, stripe->mirror_num,
647 header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
648 return;
649 }
650
651 /* Now check tree block csum. */
652 shash->tfm = fs_info->csum_shash;
653 crypto_shash_init(shash);
654 crypto_shash_update(shash, page_address(first_page) + first_off +
655 BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
656
657 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
658 struct page *page = scrub_stripe_get_page(stripe, i);
659 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
660
661 crypto_shash_update(shash, page_address(page) + page_off,
662 fs_info->sectorsize);
663 }
664
665 crypto_shash_final(shash, calculated_csum);
666 if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
667 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
668 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
669 btrfs_warn_rl(fs_info,
670 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
671 logical, stripe->mirror_num,
672 CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
673 CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
674 return;
675 }
676 if (stripe->sectors[sector_nr].generation !=
677 btrfs_stack_header_generation(header)) {
678 bitmap_set(&stripe->meta_gen_error_bitmap, sector_nr, sectors_per_tree);
679 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
680 btrfs_warn_rl(fs_info,
681 "tree block %llu mirror %u has bad generation, has %llu want %llu",
682 logical, stripe->mirror_num,
683 btrfs_stack_header_generation(header),
684 stripe->sectors[sector_nr].generation);
685 return;
686 }
687 bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
688 bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
689 bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
690 bitmap_clear(&stripe->meta_gen_error_bitmap, sector_nr, sectors_per_tree);
691 }
692
scrub_verify_one_sector(struct scrub_stripe * stripe,int sector_nr)693 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
694 {
695 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
696 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
697 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
698 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
699 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
700 u8 csum_buf[BTRFS_CSUM_SIZE];
701 int ret;
702
703 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
704
705 /* Sector not utilized, skip it. */
706 if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
707 return;
708
709 /* IO error, no need to check. */
710 if (test_bit(sector_nr, &stripe->io_error_bitmap))
711 return;
712
713 /* Metadata, verify the full tree block. */
714 if (sector->is_metadata) {
715 /*
716 * Check if the tree block crosses the stripe boundary. If
717 * crossed the boundary, we cannot verify it but only give a
718 * warning.
719 *
720 * This can only happen on a very old filesystem where chunks
721 * are not ensured to be stripe aligned.
722 */
723 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
724 btrfs_warn_rl(fs_info,
725 "tree block at %llu crosses stripe boundary %llu",
726 stripe->logical +
727 (sector_nr << fs_info->sectorsize_bits),
728 stripe->logical);
729 return;
730 }
731 scrub_verify_one_metadata(stripe, sector_nr);
732 return;
733 }
734
735 /*
736 * Data is easier, we just verify the data csum (if we have it). For
737 * cases without csum, we have no other choice but to trust it.
738 */
739 if (!sector->csum) {
740 clear_bit(sector_nr, &stripe->error_bitmap);
741 return;
742 }
743
744 ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
745 if (ret < 0) {
746 set_bit(sector_nr, &stripe->csum_error_bitmap);
747 set_bit(sector_nr, &stripe->error_bitmap);
748 } else {
749 clear_bit(sector_nr, &stripe->csum_error_bitmap);
750 clear_bit(sector_nr, &stripe->error_bitmap);
751 }
752 }
753
754 /* Verify specified sectors of a stripe. */
scrub_verify_one_stripe(struct scrub_stripe * stripe,unsigned long bitmap)755 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
756 {
757 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
758 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
759 int sector_nr;
760
761 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
762 scrub_verify_one_sector(stripe, sector_nr);
763 if (stripe->sectors[sector_nr].is_metadata)
764 sector_nr += sectors_per_tree - 1;
765 }
766 }
767
calc_sector_number(struct scrub_stripe * stripe,struct bio_vec * first_bvec)768 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
769 {
770 int i;
771
772 for (i = 0; i < stripe->nr_sectors; i++) {
773 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
774 scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
775 break;
776 }
777 ASSERT(i < stripe->nr_sectors);
778 return i;
779 }
780
781 /*
782 * Repair read is different to the regular read:
783 *
784 * - Only reads the failed sectors
785 * - May have extra blocksize limits
786 */
scrub_repair_read_endio(struct btrfs_bio * bbio)787 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
788 {
789 struct scrub_stripe *stripe = bbio->private;
790 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
791 struct bio_vec *bvec;
792 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
793 u32 bio_size = 0;
794 int i;
795
796 ASSERT(sector_nr < stripe->nr_sectors);
797
798 bio_for_each_bvec_all(bvec, &bbio->bio, i)
799 bio_size += bvec->bv_len;
800
801 if (bbio->bio.bi_status) {
802 bitmap_set(&stripe->io_error_bitmap, sector_nr,
803 bio_size >> fs_info->sectorsize_bits);
804 bitmap_set(&stripe->error_bitmap, sector_nr,
805 bio_size >> fs_info->sectorsize_bits);
806 } else {
807 bitmap_clear(&stripe->io_error_bitmap, sector_nr,
808 bio_size >> fs_info->sectorsize_bits);
809 }
810 bio_put(&bbio->bio);
811 if (atomic_dec_and_test(&stripe->pending_io))
812 wake_up(&stripe->io_wait);
813 }
814
calc_next_mirror(int mirror,int num_copies)815 static int calc_next_mirror(int mirror, int num_copies)
816 {
817 ASSERT(mirror <= num_copies);
818 return (mirror + 1 > num_copies) ? 1 : mirror + 1;
819 }
820
scrub_stripe_submit_repair_read(struct scrub_stripe * stripe,int mirror,int blocksize,bool wait)821 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
822 int mirror, int blocksize, bool wait)
823 {
824 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
825 struct btrfs_bio *bbio = NULL;
826 const unsigned long old_error_bitmap = stripe->error_bitmap;
827 int i;
828
829 ASSERT(stripe->mirror_num >= 1);
830 ASSERT(atomic_read(&stripe->pending_io) == 0);
831
832 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
833 struct page *page;
834 int pgoff;
835 int ret;
836
837 page = scrub_stripe_get_page(stripe, i);
838 pgoff = scrub_stripe_get_page_offset(stripe, i);
839
840 /* The current sector cannot be merged, submit the bio. */
841 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
842 bbio->bio.bi_iter.bi_size >= blocksize)) {
843 ASSERT(bbio->bio.bi_iter.bi_size);
844 atomic_inc(&stripe->pending_io);
845 btrfs_submit_bbio(bbio, mirror);
846 if (wait)
847 wait_scrub_stripe_io(stripe);
848 bbio = NULL;
849 }
850
851 if (!bbio) {
852 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
853 fs_info, scrub_repair_read_endio, stripe);
854 bbio->bio.bi_iter.bi_sector = (stripe->logical +
855 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
856 }
857
858 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
859 ASSERT(ret == fs_info->sectorsize);
860 }
861 if (bbio) {
862 ASSERT(bbio->bio.bi_iter.bi_size);
863 atomic_inc(&stripe->pending_io);
864 btrfs_submit_bbio(bbio, mirror);
865 if (wait)
866 wait_scrub_stripe_io(stripe);
867 }
868 }
869
scrub_stripe_report_errors(struct scrub_ctx * sctx,struct scrub_stripe * stripe)870 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
871 struct scrub_stripe *stripe)
872 {
873 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
874 DEFAULT_RATELIMIT_BURST);
875 struct btrfs_fs_info *fs_info = sctx->fs_info;
876 struct btrfs_device *dev = NULL;
877 u64 physical = 0;
878 int nr_data_sectors = 0;
879 int nr_meta_sectors = 0;
880 int nr_nodatacsum_sectors = 0;
881 int nr_repaired_sectors = 0;
882 int sector_nr;
883
884 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
885 return;
886
887 /*
888 * Init needed infos for error reporting.
889 *
890 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
891 * thus no need for dev/physical, error reporting still needs dev and physical.
892 */
893 if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
894 u64 mapped_len = fs_info->sectorsize;
895 struct btrfs_io_context *bioc = NULL;
896 int stripe_index = stripe->mirror_num - 1;
897 int ret;
898
899 /* For scrub, our mirror_num should always start at 1. */
900 ASSERT(stripe->mirror_num >= 1);
901 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
902 stripe->logical, &mapped_len, &bioc,
903 NULL, NULL);
904 /*
905 * If we failed, dev will be NULL, and later detailed reports
906 * will just be skipped.
907 */
908 if (ret < 0)
909 goto skip;
910 physical = bioc->stripes[stripe_index].physical;
911 dev = bioc->stripes[stripe_index].dev;
912 btrfs_put_bioc(bioc);
913 }
914
915 skip:
916 for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
917 bool repaired = false;
918
919 if (stripe->sectors[sector_nr].is_metadata) {
920 nr_meta_sectors++;
921 } else {
922 nr_data_sectors++;
923 if (!stripe->sectors[sector_nr].csum)
924 nr_nodatacsum_sectors++;
925 }
926
927 if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
928 !test_bit(sector_nr, &stripe->error_bitmap)) {
929 nr_repaired_sectors++;
930 repaired = true;
931 }
932
933 /* Good sector from the beginning, nothing need to be done. */
934 if (!test_bit(sector_nr, &stripe->init_error_bitmap))
935 continue;
936
937 /*
938 * Report error for the corrupted sectors. If repaired, just
939 * output the message of repaired message.
940 */
941 if (repaired) {
942 if (dev) {
943 btrfs_err_rl_in_rcu(fs_info,
944 "fixed up error at logical %llu on dev %s physical %llu",
945 stripe->logical, btrfs_dev_name(dev),
946 physical);
947 } else {
948 btrfs_err_rl_in_rcu(fs_info,
949 "fixed up error at logical %llu on mirror %u",
950 stripe->logical, stripe->mirror_num);
951 }
952 continue;
953 }
954
955 /* The remaining are all for unrepaired. */
956 if (dev) {
957 btrfs_err_rl_in_rcu(fs_info,
958 "unable to fixup (regular) error at logical %llu on dev %s physical %llu",
959 stripe->logical, btrfs_dev_name(dev),
960 physical);
961 } else {
962 btrfs_err_rl_in_rcu(fs_info,
963 "unable to fixup (regular) error at logical %llu on mirror %u",
964 stripe->logical, stripe->mirror_num);
965 }
966
967 if (test_bit(sector_nr, &stripe->io_error_bitmap))
968 if (__ratelimit(&rs) && dev)
969 scrub_print_common_warning("i/o error", dev, false,
970 stripe->logical, physical);
971 if (test_bit(sector_nr, &stripe->csum_error_bitmap))
972 if (__ratelimit(&rs) && dev)
973 scrub_print_common_warning("checksum error", dev, false,
974 stripe->logical, physical);
975 if (test_bit(sector_nr, &stripe->meta_error_bitmap))
976 if (__ratelimit(&rs) && dev)
977 scrub_print_common_warning("header error", dev, false,
978 stripe->logical, physical);
979 if (test_bit(sector_nr, &stripe->meta_gen_error_bitmap))
980 if (__ratelimit(&rs) && dev)
981 scrub_print_common_warning("generation error", dev, false,
982 stripe->logical, physical);
983 }
984
985 /* Update the device stats. */
986 for (int i = 0; i < stripe->init_nr_io_errors; i++)
987 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_READ_ERRS);
988 for (int i = 0; i < stripe->init_nr_csum_errors; i++)
989 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
990 /* Generation mismatch error is based on each metadata, not each block. */
991 for (int i = 0; i < stripe->init_nr_meta_gen_errors;
992 i += (fs_info->nodesize >> fs_info->sectorsize_bits))
993 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_GENERATION_ERRS);
994
995 spin_lock(&sctx->stat_lock);
996 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
997 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
998 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
999 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
1000 sctx->stat.no_csum += nr_nodatacsum_sectors;
1001 sctx->stat.read_errors += stripe->init_nr_io_errors;
1002 sctx->stat.csum_errors += stripe->init_nr_csum_errors;
1003 sctx->stat.verify_errors += stripe->init_nr_meta_errors +
1004 stripe->init_nr_meta_gen_errors;
1005 sctx->stat.uncorrectable_errors +=
1006 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
1007 sctx->stat.corrected_errors += nr_repaired_sectors;
1008 spin_unlock(&sctx->stat_lock);
1009 }
1010
1011 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1012 unsigned long write_bitmap, bool dev_replace);
1013
1014 /*
1015 * The main entrance for all read related scrub work, including:
1016 *
1017 * - Wait for the initial read to finish
1018 * - Verify and locate any bad sectors
1019 * - Go through the remaining mirrors and try to read as large blocksize as
1020 * possible
1021 * - Go through all mirrors (including the failed mirror) sector-by-sector
1022 * - Submit writeback for repaired sectors
1023 *
1024 * Writeback for dev-replace does not happen here, it needs extra
1025 * synchronization for zoned devices.
1026 */
scrub_stripe_read_repair_worker(struct work_struct * work)1027 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1028 {
1029 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1030 struct scrub_ctx *sctx = stripe->sctx;
1031 struct btrfs_fs_info *fs_info = sctx->fs_info;
1032 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1033 stripe->bg->length);
1034 unsigned long repaired;
1035 int mirror;
1036 int i;
1037
1038 ASSERT(stripe->mirror_num > 0);
1039
1040 wait_scrub_stripe_io(stripe);
1041 scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1042 /* Save the initial failed bitmap for later repair and report usage. */
1043 stripe->init_error_bitmap = stripe->error_bitmap;
1044 stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1045 stripe->nr_sectors);
1046 stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1047 stripe->nr_sectors);
1048 stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1049 stripe->nr_sectors);
1050 stripe->init_nr_meta_gen_errors = bitmap_weight(&stripe->meta_gen_error_bitmap,
1051 stripe->nr_sectors);
1052
1053 if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1054 goto out;
1055
1056 /*
1057 * Try all remaining mirrors.
1058 *
1059 * Here we still try to read as large block as possible, as this is
1060 * faster and we have extra safety nets to rely on.
1061 */
1062 for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1063 mirror != stripe->mirror_num;
1064 mirror = calc_next_mirror(mirror, num_copies)) {
1065 const unsigned long old_error_bitmap = stripe->error_bitmap;
1066
1067 scrub_stripe_submit_repair_read(stripe, mirror,
1068 BTRFS_STRIPE_LEN, false);
1069 wait_scrub_stripe_io(stripe);
1070 scrub_verify_one_stripe(stripe, old_error_bitmap);
1071 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1072 goto out;
1073 }
1074
1075 /*
1076 * Last safety net, try re-checking all mirrors, including the failed
1077 * one, sector-by-sector.
1078 *
1079 * As if one sector failed the drive's internal csum, the whole read
1080 * containing the offending sector would be marked as error.
1081 * Thus here we do sector-by-sector read.
1082 *
1083 * This can be slow, thus we only try it as the last resort.
1084 */
1085
1086 for (i = 0, mirror = stripe->mirror_num;
1087 i < num_copies;
1088 i++, mirror = calc_next_mirror(mirror, num_copies)) {
1089 const unsigned long old_error_bitmap = stripe->error_bitmap;
1090
1091 scrub_stripe_submit_repair_read(stripe, mirror,
1092 fs_info->sectorsize, true);
1093 wait_scrub_stripe_io(stripe);
1094 scrub_verify_one_stripe(stripe, old_error_bitmap);
1095 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1096 goto out;
1097 }
1098 out:
1099 /*
1100 * Submit the repaired sectors. For zoned case, we cannot do repair
1101 * in-place, but queue the bg to be relocated.
1102 */
1103 bitmap_andnot(&repaired, &stripe->init_error_bitmap, &stripe->error_bitmap,
1104 stripe->nr_sectors);
1105 if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
1106 if (btrfs_is_zoned(fs_info)) {
1107 btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1108 } else {
1109 scrub_write_sectors(sctx, stripe, repaired, false);
1110 wait_scrub_stripe_io(stripe);
1111 }
1112 }
1113
1114 scrub_stripe_report_errors(sctx, stripe);
1115 set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1116 wake_up(&stripe->repair_wait);
1117 }
1118
scrub_read_endio(struct btrfs_bio * bbio)1119 static void scrub_read_endio(struct btrfs_bio *bbio)
1120 {
1121 struct scrub_stripe *stripe = bbio->private;
1122 struct bio_vec *bvec;
1123 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1124 int num_sectors;
1125 u32 bio_size = 0;
1126 int i;
1127
1128 ASSERT(sector_nr < stripe->nr_sectors);
1129 bio_for_each_bvec_all(bvec, &bbio->bio, i)
1130 bio_size += bvec->bv_len;
1131 num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1132
1133 if (bbio->bio.bi_status) {
1134 bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1135 bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1136 } else {
1137 bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1138 }
1139 bio_put(&bbio->bio);
1140 if (atomic_dec_and_test(&stripe->pending_io)) {
1141 wake_up(&stripe->io_wait);
1142 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1143 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1144 }
1145 }
1146
scrub_write_endio(struct btrfs_bio * bbio)1147 static void scrub_write_endio(struct btrfs_bio *bbio)
1148 {
1149 struct scrub_stripe *stripe = bbio->private;
1150 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1151 struct bio_vec *bvec;
1152 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1153 u32 bio_size = 0;
1154 int i;
1155
1156 bio_for_each_bvec_all(bvec, &bbio->bio, i)
1157 bio_size += bvec->bv_len;
1158
1159 if (bbio->bio.bi_status) {
1160 unsigned long flags;
1161
1162 spin_lock_irqsave(&stripe->write_error_lock, flags);
1163 bitmap_set(&stripe->write_error_bitmap, sector_nr,
1164 bio_size >> fs_info->sectorsize_bits);
1165 spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1166 for (int i = 0; i < (bio_size >> fs_info->sectorsize_bits); i++)
1167 btrfs_dev_stat_inc_and_print(stripe->dev,
1168 BTRFS_DEV_STAT_WRITE_ERRS);
1169 }
1170 bio_put(&bbio->bio);
1171
1172 if (atomic_dec_and_test(&stripe->pending_io))
1173 wake_up(&stripe->io_wait);
1174 }
1175
scrub_submit_write_bio(struct scrub_ctx * sctx,struct scrub_stripe * stripe,struct btrfs_bio * bbio,bool dev_replace)1176 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1177 struct scrub_stripe *stripe,
1178 struct btrfs_bio *bbio, bool dev_replace)
1179 {
1180 struct btrfs_fs_info *fs_info = sctx->fs_info;
1181 u32 bio_len = bbio->bio.bi_iter.bi_size;
1182 u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1183 stripe->logical;
1184
1185 fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1186 atomic_inc(&stripe->pending_io);
1187 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1188 if (!btrfs_is_zoned(fs_info))
1189 return;
1190 /*
1191 * For zoned writeback, queue depth must be 1, thus we must wait for
1192 * the write to finish before the next write.
1193 */
1194 wait_scrub_stripe_io(stripe);
1195
1196 /*
1197 * And also need to update the write pointer if write finished
1198 * successfully.
1199 */
1200 if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1201 &stripe->write_error_bitmap))
1202 sctx->write_pointer += bio_len;
1203 }
1204
1205 /*
1206 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1207 *
1208 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1209 *
1210 * - Only needs logical bytenr and mirror_num
1211 * Just like the scrub read path
1212 *
1213 * - Would only result in writes to the specified mirror
1214 * Unlike the regular writeback path, which would write back to all stripes
1215 *
1216 * - Handle dev-replace and read-repair writeback differently
1217 */
scrub_write_sectors(struct scrub_ctx * sctx,struct scrub_stripe * stripe,unsigned long write_bitmap,bool dev_replace)1218 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1219 unsigned long write_bitmap, bool dev_replace)
1220 {
1221 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1222 struct btrfs_bio *bbio = NULL;
1223 int sector_nr;
1224
1225 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1226 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1227 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1228 int ret;
1229
1230 /* We should only writeback sectors covered by an extent. */
1231 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1232
1233 /* Cannot merge with previous sector, submit the current one. */
1234 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1235 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1236 bbio = NULL;
1237 }
1238 if (!bbio) {
1239 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1240 fs_info, scrub_write_endio, stripe);
1241 bbio->bio.bi_iter.bi_sector = (stripe->logical +
1242 (sector_nr << fs_info->sectorsize_bits)) >>
1243 SECTOR_SHIFT;
1244 }
1245 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1246 ASSERT(ret == fs_info->sectorsize);
1247 }
1248 if (bbio)
1249 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1250 }
1251
1252 /*
1253 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1254 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1255 */
scrub_throttle_dev_io(struct scrub_ctx * sctx,struct btrfs_device * device,unsigned int bio_size)1256 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1257 unsigned int bio_size)
1258 {
1259 const int time_slice = 1000;
1260 s64 delta;
1261 ktime_t now;
1262 u32 div;
1263 u64 bwlimit;
1264
1265 bwlimit = READ_ONCE(device->scrub_speed_max);
1266 if (bwlimit == 0)
1267 return;
1268
1269 /*
1270 * Slice is divided into intervals when the IO is submitted, adjust by
1271 * bwlimit and maximum of 64 intervals.
1272 */
1273 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1274 div = min_t(u32, 64, div);
1275
1276 /* Start new epoch, set deadline */
1277 now = ktime_get();
1278 if (sctx->throttle_deadline == 0) {
1279 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1280 sctx->throttle_sent = 0;
1281 }
1282
1283 /* Still in the time to send? */
1284 if (ktime_before(now, sctx->throttle_deadline)) {
1285 /* If current bio is within the limit, send it */
1286 sctx->throttle_sent += bio_size;
1287 if (sctx->throttle_sent <= div_u64(bwlimit, div))
1288 return;
1289
1290 /* We're over the limit, sleep until the rest of the slice */
1291 delta = ktime_ms_delta(sctx->throttle_deadline, now);
1292 } else {
1293 /* New request after deadline, start new epoch */
1294 delta = 0;
1295 }
1296
1297 if (delta) {
1298 long timeout;
1299
1300 timeout = div_u64(delta * HZ, 1000);
1301 schedule_timeout_interruptible(timeout);
1302 }
1303
1304 /* Next call will start the deadline period */
1305 sctx->throttle_deadline = 0;
1306 }
1307
1308 /*
1309 * Given a physical address, this will calculate it's
1310 * logical offset. if this is a parity stripe, it will return
1311 * the most left data stripe's logical offset.
1312 *
1313 * return 0 if it is a data stripe, 1 means parity stripe.
1314 */
get_raid56_logic_offset(u64 physical,int num,struct btrfs_chunk_map * map,u64 * offset,u64 * stripe_start)1315 static int get_raid56_logic_offset(u64 physical, int num,
1316 struct btrfs_chunk_map *map, u64 *offset,
1317 u64 *stripe_start)
1318 {
1319 int i;
1320 int j = 0;
1321 u64 last_offset;
1322 const int data_stripes = nr_data_stripes(map);
1323
1324 last_offset = (physical - map->stripes[num].physical) * data_stripes;
1325 if (stripe_start)
1326 *stripe_start = last_offset;
1327
1328 *offset = last_offset;
1329 for (i = 0; i < data_stripes; i++) {
1330 u32 stripe_nr;
1331 u32 stripe_index;
1332 u32 rot;
1333
1334 *offset = last_offset + btrfs_stripe_nr_to_offset(i);
1335
1336 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1337
1338 /* Work out the disk rotation on this stripe-set */
1339 rot = stripe_nr % map->num_stripes;
1340 /* calculate which stripe this data locates */
1341 rot += i;
1342 stripe_index = rot % map->num_stripes;
1343 if (stripe_index == num)
1344 return 0;
1345 if (stripe_index < num)
1346 j++;
1347 }
1348 *offset = last_offset + btrfs_stripe_nr_to_offset(j);
1349 return 1;
1350 }
1351
1352 /*
1353 * Return 0 if the extent item range covers any byte of the range.
1354 * Return <0 if the extent item is before @search_start.
1355 * Return >0 if the extent item is after @start_start + @search_len.
1356 */
compare_extent_item_range(struct btrfs_path * path,u64 search_start,u64 search_len)1357 static int compare_extent_item_range(struct btrfs_path *path,
1358 u64 search_start, u64 search_len)
1359 {
1360 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1361 u64 len;
1362 struct btrfs_key key;
1363
1364 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1365 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1366 key.type == BTRFS_METADATA_ITEM_KEY);
1367 if (key.type == BTRFS_METADATA_ITEM_KEY)
1368 len = fs_info->nodesize;
1369 else
1370 len = key.offset;
1371
1372 if (key.objectid + len <= search_start)
1373 return -1;
1374 if (key.objectid >= search_start + search_len)
1375 return 1;
1376 return 0;
1377 }
1378
1379 /*
1380 * Locate one extent item which covers any byte in range
1381 * [@search_start, @search_start + @search_length)
1382 *
1383 * If the path is not initialized, we will initialize the search by doing
1384 * a btrfs_search_slot().
1385 * If the path is already initialized, we will use the path as the initial
1386 * slot, to avoid duplicated btrfs_search_slot() calls.
1387 *
1388 * NOTE: If an extent item starts before @search_start, we will still
1389 * return the extent item. This is for data extent crossing stripe boundary.
1390 *
1391 * Return 0 if we found such extent item, and @path will point to the extent item.
1392 * Return >0 if no such extent item can be found, and @path will be released.
1393 * Return <0 if hit fatal error, and @path will be released.
1394 */
find_first_extent_item(struct btrfs_root * extent_root,struct btrfs_path * path,u64 search_start,u64 search_len)1395 static int find_first_extent_item(struct btrfs_root *extent_root,
1396 struct btrfs_path *path,
1397 u64 search_start, u64 search_len)
1398 {
1399 struct btrfs_fs_info *fs_info = extent_root->fs_info;
1400 struct btrfs_key key;
1401 int ret;
1402
1403 /* Continue using the existing path */
1404 if (path->nodes[0])
1405 goto search_forward;
1406
1407 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1408 key.type = BTRFS_METADATA_ITEM_KEY;
1409 else
1410 key.type = BTRFS_EXTENT_ITEM_KEY;
1411 key.objectid = search_start;
1412 key.offset = (u64)-1;
1413
1414 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1415 if (ret < 0)
1416 return ret;
1417 if (ret == 0) {
1418 /*
1419 * Key with offset -1 found, there would have to exist an extent
1420 * item with such offset, but this is out of the valid range.
1421 */
1422 btrfs_release_path(path);
1423 return -EUCLEAN;
1424 }
1425
1426 /*
1427 * Here we intentionally pass 0 as @min_objectid, as there could be
1428 * an extent item starting before @search_start.
1429 */
1430 ret = btrfs_previous_extent_item(extent_root, path, 0);
1431 if (ret < 0)
1432 return ret;
1433 /*
1434 * No matter whether we have found an extent item, the next loop will
1435 * properly do every check on the key.
1436 */
1437 search_forward:
1438 while (true) {
1439 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1440 if (key.objectid >= search_start + search_len)
1441 break;
1442 if (key.type != BTRFS_METADATA_ITEM_KEY &&
1443 key.type != BTRFS_EXTENT_ITEM_KEY)
1444 goto next;
1445
1446 ret = compare_extent_item_range(path, search_start, search_len);
1447 if (ret == 0)
1448 return ret;
1449 if (ret > 0)
1450 break;
1451 next:
1452 ret = btrfs_next_item(extent_root, path);
1453 if (ret) {
1454 /* Either no more items or a fatal error. */
1455 btrfs_release_path(path);
1456 return ret;
1457 }
1458 }
1459 btrfs_release_path(path);
1460 return 1;
1461 }
1462
get_extent_info(struct btrfs_path * path,u64 * extent_start_ret,u64 * size_ret,u64 * flags_ret,u64 * generation_ret)1463 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1464 u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1465 {
1466 struct btrfs_key key;
1467 struct btrfs_extent_item *ei;
1468
1469 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1470 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1471 key.type == BTRFS_EXTENT_ITEM_KEY);
1472 *extent_start_ret = key.objectid;
1473 if (key.type == BTRFS_METADATA_ITEM_KEY)
1474 *size_ret = path->nodes[0]->fs_info->nodesize;
1475 else
1476 *size_ret = key.offset;
1477 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1478 *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1479 *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1480 }
1481
sync_write_pointer_for_zoned(struct scrub_ctx * sctx,u64 logical,u64 physical,u64 physical_end)1482 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1483 u64 physical, u64 physical_end)
1484 {
1485 struct btrfs_fs_info *fs_info = sctx->fs_info;
1486 int ret = 0;
1487
1488 if (!btrfs_is_zoned(fs_info))
1489 return 0;
1490
1491 mutex_lock(&sctx->wr_lock);
1492 if (sctx->write_pointer < physical_end) {
1493 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1494 physical,
1495 sctx->write_pointer);
1496 if (ret)
1497 btrfs_err(fs_info,
1498 "zoned: failed to recover write pointer");
1499 }
1500 mutex_unlock(&sctx->wr_lock);
1501 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1502
1503 return ret;
1504 }
1505
fill_one_extent_info(struct btrfs_fs_info * fs_info,struct scrub_stripe * stripe,u64 extent_start,u64 extent_len,u64 extent_flags,u64 extent_gen)1506 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1507 struct scrub_stripe *stripe,
1508 u64 extent_start, u64 extent_len,
1509 u64 extent_flags, u64 extent_gen)
1510 {
1511 for (u64 cur_logical = max(stripe->logical, extent_start);
1512 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1513 extent_start + extent_len);
1514 cur_logical += fs_info->sectorsize) {
1515 const int nr_sector = (cur_logical - stripe->logical) >>
1516 fs_info->sectorsize_bits;
1517 struct scrub_sector_verification *sector =
1518 &stripe->sectors[nr_sector];
1519
1520 set_bit(nr_sector, &stripe->extent_sector_bitmap);
1521 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1522 sector->is_metadata = true;
1523 sector->generation = extent_gen;
1524 }
1525 }
1526 }
1527
scrub_stripe_reset_bitmaps(struct scrub_stripe * stripe)1528 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1529 {
1530 stripe->extent_sector_bitmap = 0;
1531 stripe->init_error_bitmap = 0;
1532 stripe->init_nr_io_errors = 0;
1533 stripe->init_nr_csum_errors = 0;
1534 stripe->init_nr_meta_errors = 0;
1535 stripe->init_nr_meta_gen_errors = 0;
1536 stripe->error_bitmap = 0;
1537 stripe->io_error_bitmap = 0;
1538 stripe->csum_error_bitmap = 0;
1539 stripe->meta_error_bitmap = 0;
1540 stripe->meta_gen_error_bitmap = 0;
1541 }
1542
1543 /*
1544 * Locate one stripe which has at least one extent in its range.
1545 *
1546 * Return 0 if found such stripe, and store its info into @stripe.
1547 * Return >0 if there is no such stripe in the specified range.
1548 * Return <0 for error.
1549 */
scrub_find_fill_first_stripe(struct btrfs_block_group * bg,struct btrfs_path * extent_path,struct btrfs_path * csum_path,struct btrfs_device * dev,u64 physical,int mirror_num,u64 logical_start,u32 logical_len,struct scrub_stripe * stripe)1550 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1551 struct btrfs_path *extent_path,
1552 struct btrfs_path *csum_path,
1553 struct btrfs_device *dev, u64 physical,
1554 int mirror_num, u64 logical_start,
1555 u32 logical_len,
1556 struct scrub_stripe *stripe)
1557 {
1558 struct btrfs_fs_info *fs_info = bg->fs_info;
1559 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1560 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1561 const u64 logical_end = logical_start + logical_len;
1562 u64 cur_logical = logical_start;
1563 u64 stripe_end;
1564 u64 extent_start;
1565 u64 extent_len;
1566 u64 extent_flags;
1567 u64 extent_gen;
1568 int ret;
1569
1570 if (unlikely(!extent_root || !csum_root)) {
1571 btrfs_err(fs_info, "no valid extent or csum root for scrub");
1572 return -EUCLEAN;
1573 }
1574 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1575 stripe->nr_sectors);
1576 scrub_stripe_reset_bitmaps(stripe);
1577
1578 /* The range must be inside the bg. */
1579 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1580
1581 ret = find_first_extent_item(extent_root, extent_path, logical_start,
1582 logical_len);
1583 /* Either error or not found. */
1584 if (ret)
1585 goto out;
1586 get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1587 &extent_gen);
1588 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1589 stripe->nr_meta_extents++;
1590 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1591 stripe->nr_data_extents++;
1592 cur_logical = max(extent_start, cur_logical);
1593
1594 /*
1595 * Round down to stripe boundary.
1596 *
1597 * The extra calculation against bg->start is to handle block groups
1598 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1599 */
1600 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1601 bg->start;
1602 stripe->physical = physical + stripe->logical - logical_start;
1603 stripe->dev = dev;
1604 stripe->bg = bg;
1605 stripe->mirror_num = mirror_num;
1606 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1607
1608 /* Fill the first extent info into stripe->sectors[] array. */
1609 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1610 extent_flags, extent_gen);
1611 cur_logical = extent_start + extent_len;
1612
1613 /* Fill the extent info for the remaining sectors. */
1614 while (cur_logical <= stripe_end) {
1615 ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1616 stripe_end - cur_logical + 1);
1617 if (ret < 0)
1618 goto out;
1619 if (ret > 0) {
1620 ret = 0;
1621 break;
1622 }
1623 get_extent_info(extent_path, &extent_start, &extent_len,
1624 &extent_flags, &extent_gen);
1625 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1626 stripe->nr_meta_extents++;
1627 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1628 stripe->nr_data_extents++;
1629 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1630 extent_flags, extent_gen);
1631 cur_logical = extent_start + extent_len;
1632 }
1633
1634 /* Now fill the data csum. */
1635 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1636 int sector_nr;
1637 unsigned long csum_bitmap = 0;
1638
1639 /* Csum space should have already been allocated. */
1640 ASSERT(stripe->csums);
1641
1642 /*
1643 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1644 * should contain at most 16 sectors.
1645 */
1646 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1647
1648 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1649 stripe->logical, stripe_end,
1650 stripe->csums, &csum_bitmap);
1651 if (ret < 0)
1652 goto out;
1653 if (ret > 0)
1654 ret = 0;
1655
1656 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1657 stripe->sectors[sector_nr].csum = stripe->csums +
1658 sector_nr * fs_info->csum_size;
1659 }
1660 }
1661 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1662 out:
1663 return ret;
1664 }
1665
scrub_reset_stripe(struct scrub_stripe * stripe)1666 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1667 {
1668 scrub_stripe_reset_bitmaps(stripe);
1669
1670 stripe->nr_meta_extents = 0;
1671 stripe->nr_data_extents = 0;
1672 stripe->state = 0;
1673
1674 for (int i = 0; i < stripe->nr_sectors; i++) {
1675 stripe->sectors[i].is_metadata = false;
1676 stripe->sectors[i].csum = NULL;
1677 stripe->sectors[i].generation = 0;
1678 }
1679 }
1680
stripe_length(const struct scrub_stripe * stripe)1681 static u32 stripe_length(const struct scrub_stripe *stripe)
1682 {
1683 ASSERT(stripe->bg);
1684
1685 return min(BTRFS_STRIPE_LEN,
1686 stripe->bg->start + stripe->bg->length - stripe->logical);
1687 }
1688
scrub_submit_extent_sector_read(struct scrub_ctx * sctx,struct scrub_stripe * stripe)1689 static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1690 struct scrub_stripe *stripe)
1691 {
1692 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1693 struct btrfs_bio *bbio = NULL;
1694 unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1695 u64 stripe_len = BTRFS_STRIPE_LEN;
1696 int mirror = stripe->mirror_num;
1697 int i;
1698
1699 atomic_inc(&stripe->pending_io);
1700
1701 for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1702 struct page *page = scrub_stripe_get_page(stripe, i);
1703 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1704
1705 /* We're beyond the chunk boundary, no need to read anymore. */
1706 if (i >= nr_sectors)
1707 break;
1708
1709 /* The current sector cannot be merged, submit the bio. */
1710 if (bbio &&
1711 ((i > 0 &&
1712 !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1713 bbio->bio.bi_iter.bi_size >= stripe_len)) {
1714 ASSERT(bbio->bio.bi_iter.bi_size);
1715 atomic_inc(&stripe->pending_io);
1716 btrfs_submit_bbio(bbio, mirror);
1717 bbio = NULL;
1718 }
1719
1720 if (!bbio) {
1721 struct btrfs_io_stripe io_stripe = {};
1722 struct btrfs_io_context *bioc = NULL;
1723 const u64 logical = stripe->logical +
1724 (i << fs_info->sectorsize_bits);
1725 int err;
1726
1727 io_stripe.rst_search_commit_root = true;
1728 stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits;
1729 /*
1730 * For RST cases, we need to manually split the bbio to
1731 * follow the RST boundary.
1732 */
1733 err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1734 &stripe_len, &bioc, &io_stripe, &mirror);
1735 btrfs_put_bioc(bioc);
1736 if (err < 0) {
1737 set_bit(i, &stripe->io_error_bitmap);
1738 set_bit(i, &stripe->error_bitmap);
1739 continue;
1740 }
1741
1742 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1743 fs_info, scrub_read_endio, stripe);
1744 bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1745 }
1746
1747 __bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1748 }
1749
1750 if (bbio) {
1751 ASSERT(bbio->bio.bi_iter.bi_size);
1752 atomic_inc(&stripe->pending_io);
1753 btrfs_submit_bbio(bbio, mirror);
1754 }
1755
1756 if (atomic_dec_and_test(&stripe->pending_io)) {
1757 wake_up(&stripe->io_wait);
1758 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1759 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1760 }
1761 }
1762
scrub_submit_initial_read(struct scrub_ctx * sctx,struct scrub_stripe * stripe)1763 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1764 struct scrub_stripe *stripe)
1765 {
1766 struct btrfs_fs_info *fs_info = sctx->fs_info;
1767 struct btrfs_bio *bbio;
1768 unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1769 int mirror = stripe->mirror_num;
1770
1771 ASSERT(stripe->bg);
1772 ASSERT(stripe->mirror_num > 0);
1773 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1774
1775 if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1776 scrub_submit_extent_sector_read(sctx, stripe);
1777 return;
1778 }
1779
1780 bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1781 scrub_read_endio, stripe);
1782
1783 bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1784 /* Read the whole range inside the chunk boundary. */
1785 for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1786 struct page *page = scrub_stripe_get_page(stripe, cur);
1787 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1788 int ret;
1789
1790 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1791 /* We should have allocated enough bio vectors. */
1792 ASSERT(ret == fs_info->sectorsize);
1793 }
1794 atomic_inc(&stripe->pending_io);
1795
1796 /*
1797 * For dev-replace, either user asks to avoid the source dev, or
1798 * the device is missing, we try the next mirror instead.
1799 */
1800 if (sctx->is_dev_replace &&
1801 (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1802 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1803 !stripe->dev->bdev)) {
1804 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1805 stripe->bg->length);
1806
1807 mirror = calc_next_mirror(mirror, num_copies);
1808 }
1809 btrfs_submit_bbio(bbio, mirror);
1810 }
1811
stripe_has_metadata_error(struct scrub_stripe * stripe)1812 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1813 {
1814 int i;
1815
1816 for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1817 if (stripe->sectors[i].is_metadata) {
1818 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1819
1820 btrfs_err(fs_info,
1821 "stripe %llu has unrepaired metadata sector at %llu",
1822 stripe->logical,
1823 stripe->logical + (i << fs_info->sectorsize_bits));
1824 return true;
1825 }
1826 }
1827 return false;
1828 }
1829
submit_initial_group_read(struct scrub_ctx * sctx,unsigned int first_slot,unsigned int nr_stripes)1830 static void submit_initial_group_read(struct scrub_ctx *sctx,
1831 unsigned int first_slot,
1832 unsigned int nr_stripes)
1833 {
1834 struct blk_plug plug;
1835
1836 ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1837 ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1838
1839 scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1840 btrfs_stripe_nr_to_offset(nr_stripes));
1841 blk_start_plug(&plug);
1842 for (int i = 0; i < nr_stripes; i++) {
1843 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1844
1845 /* Those stripes should be initialized. */
1846 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1847 scrub_submit_initial_read(sctx, stripe);
1848 }
1849 blk_finish_plug(&plug);
1850 }
1851
flush_scrub_stripes(struct scrub_ctx * sctx)1852 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1853 {
1854 struct btrfs_fs_info *fs_info = sctx->fs_info;
1855 struct scrub_stripe *stripe;
1856 const int nr_stripes = sctx->cur_stripe;
1857 int ret = 0;
1858
1859 if (!nr_stripes)
1860 return 0;
1861
1862 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1863
1864 /* Submit the stripes which are populated but not submitted. */
1865 if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1866 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1867
1868 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1869 }
1870
1871 for (int i = 0; i < nr_stripes; i++) {
1872 stripe = &sctx->stripes[i];
1873
1874 wait_event(stripe->repair_wait,
1875 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1876 }
1877
1878 /* Submit for dev-replace. */
1879 if (sctx->is_dev_replace) {
1880 /*
1881 * For dev-replace, if we know there is something wrong with
1882 * metadata, we should immediately abort.
1883 */
1884 for (int i = 0; i < nr_stripes; i++) {
1885 if (stripe_has_metadata_error(&sctx->stripes[i])) {
1886 ret = -EIO;
1887 goto out;
1888 }
1889 }
1890 for (int i = 0; i < nr_stripes; i++) {
1891 unsigned long good;
1892
1893 stripe = &sctx->stripes[i];
1894
1895 ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1896
1897 bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1898 &stripe->error_bitmap, stripe->nr_sectors);
1899 scrub_write_sectors(sctx, stripe, good, true);
1900 }
1901 }
1902
1903 /* Wait for the above writebacks to finish. */
1904 for (int i = 0; i < nr_stripes; i++) {
1905 stripe = &sctx->stripes[i];
1906
1907 wait_scrub_stripe_io(stripe);
1908 spin_lock(&sctx->stat_lock);
1909 sctx->stat.last_physical = stripe->physical + stripe_length(stripe);
1910 spin_unlock(&sctx->stat_lock);
1911 scrub_reset_stripe(stripe);
1912 }
1913 out:
1914 sctx->cur_stripe = 0;
1915 return ret;
1916 }
1917
raid56_scrub_wait_endio(struct bio * bio)1918 static void raid56_scrub_wait_endio(struct bio *bio)
1919 {
1920 complete(bio->bi_private);
1921 }
1922
queue_scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * dev,int mirror_num,u64 logical,u32 length,u64 physical,u64 * found_logical_ret)1923 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1924 struct btrfs_device *dev, int mirror_num,
1925 u64 logical, u32 length, u64 physical,
1926 u64 *found_logical_ret)
1927 {
1928 struct scrub_stripe *stripe;
1929 int ret;
1930
1931 /*
1932 * There should always be one slot left, as caller filling the last
1933 * slot should flush them all.
1934 */
1935 ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1936
1937 /* @found_logical_ret must be specified. */
1938 ASSERT(found_logical_ret);
1939
1940 stripe = &sctx->stripes[sctx->cur_stripe];
1941 scrub_reset_stripe(stripe);
1942 ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1943 &sctx->csum_path, dev, physical,
1944 mirror_num, logical, length, stripe);
1945 /* Either >0 as no more extents or <0 for error. */
1946 if (ret)
1947 return ret;
1948 *found_logical_ret = stripe->logical;
1949 sctx->cur_stripe++;
1950
1951 /* We filled one group, submit it. */
1952 if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1953 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1954
1955 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1956 }
1957
1958 /* Last slot used, flush them all. */
1959 if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1960 return flush_scrub_stripes(sctx);
1961 return 0;
1962 }
1963
scrub_raid56_parity_stripe(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,u64 full_stripe_start)1964 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1965 struct btrfs_device *scrub_dev,
1966 struct btrfs_block_group *bg,
1967 struct btrfs_chunk_map *map,
1968 u64 full_stripe_start)
1969 {
1970 DECLARE_COMPLETION_ONSTACK(io_done);
1971 struct btrfs_fs_info *fs_info = sctx->fs_info;
1972 struct btrfs_raid_bio *rbio;
1973 struct btrfs_io_context *bioc = NULL;
1974 struct btrfs_path extent_path = { 0 };
1975 struct btrfs_path csum_path = { 0 };
1976 struct bio *bio;
1977 struct scrub_stripe *stripe;
1978 bool all_empty = true;
1979 const int data_stripes = nr_data_stripes(map);
1980 unsigned long extent_bitmap = 0;
1981 u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1982 int ret;
1983
1984 ASSERT(sctx->raid56_data_stripes);
1985
1986 /*
1987 * For data stripe search, we cannot re-use the same extent/csum paths,
1988 * as the data stripe bytenr may be smaller than previous extent. Thus
1989 * we have to use our own extent/csum paths.
1990 */
1991 extent_path.search_commit_root = 1;
1992 extent_path.skip_locking = 1;
1993 csum_path.search_commit_root = 1;
1994 csum_path.skip_locking = 1;
1995
1996 for (int i = 0; i < data_stripes; i++) {
1997 int stripe_index;
1998 int rot;
1999 u64 physical;
2000
2001 stripe = &sctx->raid56_data_stripes[i];
2002 rot = div_u64(full_stripe_start - bg->start,
2003 data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
2004 stripe_index = (i + rot) % map->num_stripes;
2005 physical = map->stripes[stripe_index].physical +
2006 btrfs_stripe_nr_to_offset(rot);
2007
2008 scrub_reset_stripe(stripe);
2009 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
2010 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
2011 map->stripes[stripe_index].dev, physical, 1,
2012 full_stripe_start + btrfs_stripe_nr_to_offset(i),
2013 BTRFS_STRIPE_LEN, stripe);
2014 if (ret < 0)
2015 goto out;
2016 /*
2017 * No extent in this data stripe, need to manually mark them
2018 * initialized to make later read submission happy.
2019 */
2020 if (ret > 0) {
2021 stripe->logical = full_stripe_start +
2022 btrfs_stripe_nr_to_offset(i);
2023 stripe->dev = map->stripes[stripe_index].dev;
2024 stripe->mirror_num = 1;
2025 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
2026 }
2027 }
2028
2029 /* Check if all data stripes are empty. */
2030 for (int i = 0; i < data_stripes; i++) {
2031 stripe = &sctx->raid56_data_stripes[i];
2032 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
2033 all_empty = false;
2034 break;
2035 }
2036 }
2037 if (all_empty) {
2038 ret = 0;
2039 goto out;
2040 }
2041
2042 for (int i = 0; i < data_stripes; i++) {
2043 stripe = &sctx->raid56_data_stripes[i];
2044 scrub_submit_initial_read(sctx, stripe);
2045 }
2046 for (int i = 0; i < data_stripes; i++) {
2047 stripe = &sctx->raid56_data_stripes[i];
2048
2049 wait_event(stripe->repair_wait,
2050 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
2051 }
2052 /* For now, no zoned support for RAID56. */
2053 ASSERT(!btrfs_is_zoned(sctx->fs_info));
2054
2055 /*
2056 * Now all data stripes are properly verified. Check if we have any
2057 * unrepaired, if so abort immediately or we could further corrupt the
2058 * P/Q stripes.
2059 *
2060 * During the loop, also populate extent_bitmap.
2061 */
2062 for (int i = 0; i < data_stripes; i++) {
2063 unsigned long error;
2064
2065 stripe = &sctx->raid56_data_stripes[i];
2066
2067 /*
2068 * We should only check the errors where there is an extent.
2069 * As we may hit an empty data stripe while it's missing.
2070 */
2071 bitmap_and(&error, &stripe->error_bitmap,
2072 &stripe->extent_sector_bitmap, stripe->nr_sectors);
2073 if (!bitmap_empty(&error, stripe->nr_sectors)) {
2074 btrfs_err(fs_info,
2075 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2076 full_stripe_start, i, stripe->nr_sectors,
2077 &error);
2078 ret = -EIO;
2079 goto out;
2080 }
2081 bitmap_or(&extent_bitmap, &extent_bitmap,
2082 &stripe->extent_sector_bitmap, stripe->nr_sectors);
2083 }
2084
2085 /* Now we can check and regenerate the P/Q stripe. */
2086 bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2087 bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2088 bio->bi_private = &io_done;
2089 bio->bi_end_io = raid56_scrub_wait_endio;
2090
2091 btrfs_bio_counter_inc_blocked(fs_info);
2092 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2093 &length, &bioc, NULL, NULL);
2094 if (ret < 0) {
2095 btrfs_put_bioc(bioc);
2096 btrfs_bio_counter_dec(fs_info);
2097 goto out;
2098 }
2099 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2100 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2101 btrfs_put_bioc(bioc);
2102 if (!rbio) {
2103 ret = -ENOMEM;
2104 btrfs_bio_counter_dec(fs_info);
2105 goto out;
2106 }
2107 /* Use the recovered stripes as cache to avoid read them from disk again. */
2108 for (int i = 0; i < data_stripes; i++) {
2109 stripe = &sctx->raid56_data_stripes[i];
2110
2111 raid56_parity_cache_data_pages(rbio, stripe->pages,
2112 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2113 }
2114 raid56_parity_submit_scrub_rbio(rbio);
2115 wait_for_completion_io(&io_done);
2116 ret = blk_status_to_errno(bio->bi_status);
2117 bio_put(bio);
2118 btrfs_bio_counter_dec(fs_info);
2119
2120 btrfs_release_path(&extent_path);
2121 btrfs_release_path(&csum_path);
2122 out:
2123 return ret;
2124 }
2125
2126 /*
2127 * Scrub one range which can only has simple mirror based profile.
2128 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2129 * RAID0/RAID10).
2130 *
2131 * Since we may need to handle a subset of block group, we need @logical_start
2132 * and @logical_length parameter.
2133 */
scrub_simple_mirror(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,u64 logical_start,u64 logical_length,struct btrfs_device * device,u64 physical,int mirror_num)2134 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2135 struct btrfs_block_group *bg,
2136 struct btrfs_chunk_map *map,
2137 u64 logical_start, u64 logical_length,
2138 struct btrfs_device *device,
2139 u64 physical, int mirror_num)
2140 {
2141 struct btrfs_fs_info *fs_info = sctx->fs_info;
2142 const u64 logical_end = logical_start + logical_length;
2143 u64 cur_logical = logical_start;
2144 int ret = 0;
2145
2146 /* The range must be inside the bg */
2147 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2148
2149 /* Go through each extent items inside the logical range */
2150 while (cur_logical < logical_end) {
2151 u64 found_logical = U64_MAX;
2152 u64 cur_physical = physical + cur_logical - logical_start;
2153
2154 /* Canceled? */
2155 if (atomic_read(&fs_info->scrub_cancel_req) ||
2156 atomic_read(&sctx->cancel_req)) {
2157 ret = -ECANCELED;
2158 break;
2159 }
2160 /* Paused? */
2161 if (atomic_read(&fs_info->scrub_pause_req)) {
2162 /* Push queued extents */
2163 scrub_blocked_if_needed(fs_info);
2164 }
2165 /* Block group removed? */
2166 spin_lock(&bg->lock);
2167 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2168 spin_unlock(&bg->lock);
2169 ret = 0;
2170 break;
2171 }
2172 spin_unlock(&bg->lock);
2173
2174 ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2175 cur_logical, logical_end - cur_logical,
2176 cur_physical, &found_logical);
2177 if (ret > 0) {
2178 /* No more extent, just update the accounting */
2179 spin_lock(&sctx->stat_lock);
2180 sctx->stat.last_physical = physical + logical_length;
2181 spin_unlock(&sctx->stat_lock);
2182 ret = 0;
2183 break;
2184 }
2185 if (ret < 0)
2186 break;
2187
2188 /* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2189 ASSERT(found_logical != U64_MAX);
2190 cur_logical = found_logical + BTRFS_STRIPE_LEN;
2191
2192 /* Don't hold CPU for too long time */
2193 cond_resched();
2194 }
2195 return ret;
2196 }
2197
2198 /* Calculate the full stripe length for simple stripe based profiles */
simple_stripe_full_stripe_len(const struct btrfs_chunk_map * map)2199 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2200 {
2201 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2202 BTRFS_BLOCK_GROUP_RAID10));
2203
2204 return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2205 }
2206
2207 /* Get the logical bytenr for the stripe */
simple_stripe_get_logical(struct btrfs_chunk_map * map,struct btrfs_block_group * bg,int stripe_index)2208 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2209 struct btrfs_block_group *bg,
2210 int stripe_index)
2211 {
2212 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2213 BTRFS_BLOCK_GROUP_RAID10));
2214 ASSERT(stripe_index < map->num_stripes);
2215
2216 /*
2217 * (stripe_index / sub_stripes) gives how many data stripes we need to
2218 * skip.
2219 */
2220 return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2221 bg->start;
2222 }
2223
2224 /* Get the mirror number for the stripe */
simple_stripe_mirror_num(struct btrfs_chunk_map * map,int stripe_index)2225 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2226 {
2227 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2228 BTRFS_BLOCK_GROUP_RAID10));
2229 ASSERT(stripe_index < map->num_stripes);
2230
2231 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2232 return stripe_index % map->sub_stripes + 1;
2233 }
2234
scrub_simple_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct btrfs_device * device,int stripe_index)2235 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2236 struct btrfs_block_group *bg,
2237 struct btrfs_chunk_map *map,
2238 struct btrfs_device *device,
2239 int stripe_index)
2240 {
2241 const u64 logical_increment = simple_stripe_full_stripe_len(map);
2242 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2243 const u64 orig_physical = map->stripes[stripe_index].physical;
2244 const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2245 u64 cur_logical = orig_logical;
2246 u64 cur_physical = orig_physical;
2247 int ret = 0;
2248
2249 while (cur_logical < bg->start + bg->length) {
2250 /*
2251 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2252 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2253 * this stripe.
2254 */
2255 ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2256 BTRFS_STRIPE_LEN, device, cur_physical,
2257 mirror_num);
2258 if (ret)
2259 return ret;
2260 /* Skip to next stripe which belongs to the target device */
2261 cur_logical += logical_increment;
2262 /* For physical offset, we just go to next stripe */
2263 cur_physical += BTRFS_STRIPE_LEN;
2264 }
2265 return ret;
2266 }
2267
scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct btrfs_device * scrub_dev,int stripe_index)2268 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2269 struct btrfs_block_group *bg,
2270 struct btrfs_chunk_map *map,
2271 struct btrfs_device *scrub_dev,
2272 int stripe_index)
2273 {
2274 struct btrfs_fs_info *fs_info = sctx->fs_info;
2275 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2276 const u64 chunk_logical = bg->start;
2277 int ret;
2278 int ret2;
2279 u64 physical = map->stripes[stripe_index].physical;
2280 const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2281 const u64 physical_end = physical + dev_stripe_len;
2282 u64 logical;
2283 u64 logic_end;
2284 /* The logical increment after finishing one stripe */
2285 u64 increment;
2286 /* Offset inside the chunk */
2287 u64 offset;
2288 u64 stripe_logical;
2289 int stop_loop = 0;
2290
2291 /* Extent_path should be released by now. */
2292 ASSERT(sctx->extent_path.nodes[0] == NULL);
2293
2294 scrub_blocked_if_needed(fs_info);
2295
2296 if (sctx->is_dev_replace &&
2297 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2298 mutex_lock(&sctx->wr_lock);
2299 sctx->write_pointer = physical;
2300 mutex_unlock(&sctx->wr_lock);
2301 }
2302
2303 /* Prepare the extra data stripes used by RAID56. */
2304 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2305 ASSERT(sctx->raid56_data_stripes == NULL);
2306
2307 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2308 sizeof(struct scrub_stripe),
2309 GFP_KERNEL);
2310 if (!sctx->raid56_data_stripes) {
2311 ret = -ENOMEM;
2312 goto out;
2313 }
2314 for (int i = 0; i < nr_data_stripes(map); i++) {
2315 ret = init_scrub_stripe(fs_info,
2316 &sctx->raid56_data_stripes[i]);
2317 if (ret < 0)
2318 goto out;
2319 sctx->raid56_data_stripes[i].bg = bg;
2320 sctx->raid56_data_stripes[i].sctx = sctx;
2321 }
2322 }
2323 /*
2324 * There used to be a big double loop to handle all profiles using the
2325 * same routine, which grows larger and more gross over time.
2326 *
2327 * So here we handle each profile differently, so simpler profiles
2328 * have simpler scrubbing function.
2329 */
2330 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2331 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2332 /*
2333 * Above check rules out all complex profile, the remaining
2334 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2335 * mirrored duplication without stripe.
2336 *
2337 * Only @physical and @mirror_num needs to calculated using
2338 * @stripe_index.
2339 */
2340 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2341 scrub_dev, map->stripes[stripe_index].physical,
2342 stripe_index + 1);
2343 offset = 0;
2344 goto out;
2345 }
2346 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2347 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2348 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2349 goto out;
2350 }
2351
2352 /* Only RAID56 goes through the old code */
2353 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2354 ret = 0;
2355
2356 /* Calculate the logical end of the stripe */
2357 get_raid56_logic_offset(physical_end, stripe_index,
2358 map, &logic_end, NULL);
2359 logic_end += chunk_logical;
2360
2361 /* Initialize @offset in case we need to go to out: label */
2362 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2363 increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2364
2365 /*
2366 * Due to the rotation, for RAID56 it's better to iterate each stripe
2367 * using their physical offset.
2368 */
2369 while (physical < physical_end) {
2370 ret = get_raid56_logic_offset(physical, stripe_index, map,
2371 &logical, &stripe_logical);
2372 logical += chunk_logical;
2373 if (ret) {
2374 /* it is parity strip */
2375 stripe_logical += chunk_logical;
2376 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2377 map, stripe_logical);
2378 spin_lock(&sctx->stat_lock);
2379 sctx->stat.last_physical = min(physical + BTRFS_STRIPE_LEN,
2380 physical_end);
2381 spin_unlock(&sctx->stat_lock);
2382 if (ret)
2383 goto out;
2384 goto next;
2385 }
2386
2387 /*
2388 * Now we're at a data stripe, scrub each extents in the range.
2389 *
2390 * At this stage, if we ignore the repair part, inside each data
2391 * stripe it is no different than SINGLE profile.
2392 * We can reuse scrub_simple_mirror() here, as the repair part
2393 * is still based on @mirror_num.
2394 */
2395 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2396 scrub_dev, physical, 1);
2397 if (ret < 0)
2398 goto out;
2399 next:
2400 logical += increment;
2401 physical += BTRFS_STRIPE_LEN;
2402 spin_lock(&sctx->stat_lock);
2403 if (stop_loop)
2404 sctx->stat.last_physical =
2405 map->stripes[stripe_index].physical + dev_stripe_len;
2406 else
2407 sctx->stat.last_physical = physical;
2408 spin_unlock(&sctx->stat_lock);
2409 if (stop_loop)
2410 break;
2411 }
2412 out:
2413 ret2 = flush_scrub_stripes(sctx);
2414 if (!ret)
2415 ret = ret2;
2416 btrfs_release_path(&sctx->extent_path);
2417 btrfs_release_path(&sctx->csum_path);
2418
2419 if (sctx->raid56_data_stripes) {
2420 for (int i = 0; i < nr_data_stripes(map); i++)
2421 release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2422 kfree(sctx->raid56_data_stripes);
2423 sctx->raid56_data_stripes = NULL;
2424 }
2425
2426 if (sctx->is_dev_replace && ret >= 0) {
2427 int ret2;
2428
2429 ret2 = sync_write_pointer_for_zoned(sctx,
2430 chunk_logical + offset,
2431 map->stripes[stripe_index].physical,
2432 physical_end);
2433 if (ret2)
2434 ret = ret2;
2435 }
2436
2437 return ret < 0 ? ret : 0;
2438 }
2439
scrub_chunk(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * scrub_dev,u64 dev_offset,u64 dev_extent_len)2440 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2441 struct btrfs_block_group *bg,
2442 struct btrfs_device *scrub_dev,
2443 u64 dev_offset,
2444 u64 dev_extent_len)
2445 {
2446 struct btrfs_fs_info *fs_info = sctx->fs_info;
2447 struct btrfs_chunk_map *map;
2448 int i;
2449 int ret = 0;
2450
2451 map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2452 if (!map) {
2453 /*
2454 * Might have been an unused block group deleted by the cleaner
2455 * kthread or relocation.
2456 */
2457 spin_lock(&bg->lock);
2458 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2459 ret = -EINVAL;
2460 spin_unlock(&bg->lock);
2461
2462 return ret;
2463 }
2464 if (map->start != bg->start)
2465 goto out;
2466 if (map->chunk_len < dev_extent_len)
2467 goto out;
2468
2469 for (i = 0; i < map->num_stripes; ++i) {
2470 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2471 map->stripes[i].physical == dev_offset) {
2472 ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
2473 if (ret)
2474 goto out;
2475 }
2476 }
2477 out:
2478 btrfs_free_chunk_map(map);
2479
2480 return ret;
2481 }
2482
finish_extent_writes_for_zoned(struct btrfs_root * root,struct btrfs_block_group * cache)2483 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2484 struct btrfs_block_group *cache)
2485 {
2486 struct btrfs_fs_info *fs_info = cache->fs_info;
2487
2488 if (!btrfs_is_zoned(fs_info))
2489 return 0;
2490
2491 btrfs_wait_block_group_reservations(cache);
2492 btrfs_wait_nocow_writers(cache);
2493 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2494
2495 return btrfs_commit_current_transaction(root);
2496 }
2497
2498 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 start,u64 end)2499 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2500 struct btrfs_device *scrub_dev, u64 start, u64 end)
2501 {
2502 struct btrfs_dev_extent *dev_extent = NULL;
2503 struct btrfs_path *path;
2504 struct btrfs_fs_info *fs_info = sctx->fs_info;
2505 struct btrfs_root *root = fs_info->dev_root;
2506 u64 chunk_offset;
2507 int ret = 0;
2508 int ro_set;
2509 int slot;
2510 struct extent_buffer *l;
2511 struct btrfs_key key;
2512 struct btrfs_key found_key;
2513 struct btrfs_block_group *cache;
2514 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2515
2516 path = btrfs_alloc_path();
2517 if (!path)
2518 return -ENOMEM;
2519
2520 path->reada = READA_FORWARD;
2521 path->search_commit_root = 1;
2522 path->skip_locking = 1;
2523
2524 key.objectid = scrub_dev->devid;
2525 key.offset = 0ull;
2526 key.type = BTRFS_DEV_EXTENT_KEY;
2527
2528 while (1) {
2529 u64 dev_extent_len;
2530
2531 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2532 if (ret < 0)
2533 break;
2534 if (ret > 0) {
2535 if (path->slots[0] >=
2536 btrfs_header_nritems(path->nodes[0])) {
2537 ret = btrfs_next_leaf(root, path);
2538 if (ret < 0)
2539 break;
2540 if (ret > 0) {
2541 ret = 0;
2542 break;
2543 }
2544 } else {
2545 ret = 0;
2546 }
2547 }
2548
2549 l = path->nodes[0];
2550 slot = path->slots[0];
2551
2552 btrfs_item_key_to_cpu(l, &found_key, slot);
2553
2554 if (found_key.objectid != scrub_dev->devid)
2555 break;
2556
2557 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2558 break;
2559
2560 if (found_key.offset >= end)
2561 break;
2562
2563 if (found_key.offset < key.offset)
2564 break;
2565
2566 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2567 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2568
2569 if (found_key.offset + dev_extent_len <= start)
2570 goto skip;
2571
2572 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2573
2574 /*
2575 * get a reference on the corresponding block group to prevent
2576 * the chunk from going away while we scrub it
2577 */
2578 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2579
2580 /* some chunks are removed but not committed to disk yet,
2581 * continue scrubbing */
2582 if (!cache)
2583 goto skip;
2584
2585 ASSERT(cache->start <= chunk_offset);
2586 /*
2587 * We are using the commit root to search for device extents, so
2588 * that means we could have found a device extent item from a
2589 * block group that was deleted in the current transaction. The
2590 * logical start offset of the deleted block group, stored at
2591 * @chunk_offset, might be part of the logical address range of
2592 * a new block group (which uses different physical extents).
2593 * In this case btrfs_lookup_block_group() has returned the new
2594 * block group, and its start address is less than @chunk_offset.
2595 *
2596 * We skip such new block groups, because it's pointless to
2597 * process them, as we won't find their extents because we search
2598 * for them using the commit root of the extent tree. For a device
2599 * replace it's also fine to skip it, we won't miss copying them
2600 * to the target device because we have the write duplication
2601 * setup through the regular write path (by btrfs_map_block()),
2602 * and we have committed a transaction when we started the device
2603 * replace, right after setting up the device replace state.
2604 */
2605 if (cache->start < chunk_offset) {
2606 btrfs_put_block_group(cache);
2607 goto skip;
2608 }
2609
2610 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2611 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2612 btrfs_put_block_group(cache);
2613 goto skip;
2614 }
2615 }
2616
2617 /*
2618 * Make sure that while we are scrubbing the corresponding block
2619 * group doesn't get its logical address and its device extents
2620 * reused for another block group, which can possibly be of a
2621 * different type and different profile. We do this to prevent
2622 * false error detections and crashes due to bogus attempts to
2623 * repair extents.
2624 */
2625 spin_lock(&cache->lock);
2626 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2627 spin_unlock(&cache->lock);
2628 btrfs_put_block_group(cache);
2629 goto skip;
2630 }
2631 btrfs_freeze_block_group(cache);
2632 spin_unlock(&cache->lock);
2633
2634 /*
2635 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2636 * to avoid deadlock caused by:
2637 * btrfs_inc_block_group_ro()
2638 * -> btrfs_wait_for_commit()
2639 * -> btrfs_commit_transaction()
2640 * -> btrfs_scrub_pause()
2641 */
2642 scrub_pause_on(fs_info);
2643
2644 /*
2645 * Don't do chunk preallocation for scrub.
2646 *
2647 * This is especially important for SYSTEM bgs, or we can hit
2648 * -EFBIG from btrfs_finish_chunk_alloc() like:
2649 * 1. The only SYSTEM bg is marked RO.
2650 * Since SYSTEM bg is small, that's pretty common.
2651 * 2. New SYSTEM bg will be allocated
2652 * Due to regular version will allocate new chunk.
2653 * 3. New SYSTEM bg is empty and will get cleaned up
2654 * Before cleanup really happens, it's marked RO again.
2655 * 4. Empty SYSTEM bg get scrubbed
2656 * We go back to 2.
2657 *
2658 * This can easily boost the amount of SYSTEM chunks if cleaner
2659 * thread can't be triggered fast enough, and use up all space
2660 * of btrfs_super_block::sys_chunk_array
2661 *
2662 * While for dev replace, we need to try our best to mark block
2663 * group RO, to prevent race between:
2664 * - Write duplication
2665 * Contains latest data
2666 * - Scrub copy
2667 * Contains data from commit tree
2668 *
2669 * If target block group is not marked RO, nocow writes can
2670 * be overwritten by scrub copy, causing data corruption.
2671 * So for dev-replace, it's not allowed to continue if a block
2672 * group is not RO.
2673 */
2674 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2675 if (!ret && sctx->is_dev_replace) {
2676 ret = finish_extent_writes_for_zoned(root, cache);
2677 if (ret) {
2678 btrfs_dec_block_group_ro(cache);
2679 scrub_pause_off(fs_info);
2680 btrfs_put_block_group(cache);
2681 break;
2682 }
2683 }
2684
2685 if (ret == 0) {
2686 ro_set = 1;
2687 } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2688 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2689 /*
2690 * btrfs_inc_block_group_ro return -ENOSPC when it
2691 * failed in creating new chunk for metadata.
2692 * It is not a problem for scrub, because
2693 * metadata are always cowed, and our scrub paused
2694 * commit_transactions.
2695 *
2696 * For RAID56 chunks, we have to mark them read-only
2697 * for scrub, as later we would use our own cache
2698 * out of RAID56 realm.
2699 * Thus we want the RAID56 bg to be marked RO to
2700 * prevent RMW from screwing up out cache.
2701 */
2702 ro_set = 0;
2703 } else if (ret == -ETXTBSY) {
2704 btrfs_warn(fs_info,
2705 "skipping scrub of block group %llu due to active swapfile",
2706 cache->start);
2707 scrub_pause_off(fs_info);
2708 ret = 0;
2709 goto skip_unfreeze;
2710 } else {
2711 btrfs_warn(fs_info,
2712 "failed setting block group ro: %d", ret);
2713 btrfs_unfreeze_block_group(cache);
2714 btrfs_put_block_group(cache);
2715 scrub_pause_off(fs_info);
2716 break;
2717 }
2718
2719 /*
2720 * Now the target block is marked RO, wait for nocow writes to
2721 * finish before dev-replace.
2722 * COW is fine, as COW never overwrites extents in commit tree.
2723 */
2724 if (sctx->is_dev_replace) {
2725 btrfs_wait_nocow_writers(cache);
2726 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2727 }
2728
2729 scrub_pause_off(fs_info);
2730 down_write(&dev_replace->rwsem);
2731 dev_replace->cursor_right = found_key.offset + dev_extent_len;
2732 dev_replace->cursor_left = found_key.offset;
2733 dev_replace->item_needs_writeback = 1;
2734 up_write(&dev_replace->rwsem);
2735
2736 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2737 dev_extent_len);
2738 if (sctx->is_dev_replace &&
2739 !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2740 cache, found_key.offset))
2741 ro_set = 0;
2742
2743 down_write(&dev_replace->rwsem);
2744 dev_replace->cursor_left = dev_replace->cursor_right;
2745 dev_replace->item_needs_writeback = 1;
2746 up_write(&dev_replace->rwsem);
2747
2748 if (ro_set)
2749 btrfs_dec_block_group_ro(cache);
2750
2751 /*
2752 * We might have prevented the cleaner kthread from deleting
2753 * this block group if it was already unused because we raced
2754 * and set it to RO mode first. So add it back to the unused
2755 * list, otherwise it might not ever be deleted unless a manual
2756 * balance is triggered or it becomes used and unused again.
2757 */
2758 spin_lock(&cache->lock);
2759 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2760 !cache->ro && cache->reserved == 0 && cache->used == 0) {
2761 spin_unlock(&cache->lock);
2762 if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2763 btrfs_discard_queue_work(&fs_info->discard_ctl,
2764 cache);
2765 else
2766 btrfs_mark_bg_unused(cache);
2767 } else {
2768 spin_unlock(&cache->lock);
2769 }
2770 skip_unfreeze:
2771 btrfs_unfreeze_block_group(cache);
2772 btrfs_put_block_group(cache);
2773 if (ret)
2774 break;
2775 if (sctx->is_dev_replace &&
2776 atomic64_read(&dev_replace->num_write_errors) > 0) {
2777 ret = -EIO;
2778 break;
2779 }
2780 if (sctx->stat.malloc_errors > 0) {
2781 ret = -ENOMEM;
2782 break;
2783 }
2784 skip:
2785 key.offset = found_key.offset + dev_extent_len;
2786 btrfs_release_path(path);
2787 }
2788
2789 btrfs_free_path(path);
2790
2791 return ret;
2792 }
2793
scrub_one_super(struct scrub_ctx * sctx,struct btrfs_device * dev,struct page * page,u64 physical,u64 generation)2794 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2795 struct page *page, u64 physical, u64 generation)
2796 {
2797 struct btrfs_fs_info *fs_info = sctx->fs_info;
2798 struct bio_vec bvec;
2799 struct bio bio;
2800 struct btrfs_super_block *sb = page_address(page);
2801 int ret;
2802
2803 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2804 bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2805 __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2806 ret = submit_bio_wait(&bio);
2807 bio_uninit(&bio);
2808
2809 if (ret < 0)
2810 return ret;
2811 ret = btrfs_check_super_csum(fs_info, sb);
2812 if (ret != 0) {
2813 btrfs_err_rl(fs_info,
2814 "super block at physical %llu devid %llu has bad csum",
2815 physical, dev->devid);
2816 return -EIO;
2817 }
2818 if (btrfs_super_generation(sb) != generation) {
2819 btrfs_err_rl(fs_info,
2820 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2821 physical, dev->devid,
2822 btrfs_super_generation(sb), generation);
2823 return -EUCLEAN;
2824 }
2825
2826 return btrfs_validate_super(fs_info, sb, -1);
2827 }
2828
scrub_supers(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev)2829 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2830 struct btrfs_device *scrub_dev)
2831 {
2832 int i;
2833 u64 bytenr;
2834 u64 gen;
2835 int ret = 0;
2836 struct page *page;
2837 struct btrfs_fs_info *fs_info = sctx->fs_info;
2838
2839 if (BTRFS_FS_ERROR(fs_info))
2840 return -EROFS;
2841
2842 page = alloc_page(GFP_KERNEL);
2843 if (!page) {
2844 spin_lock(&sctx->stat_lock);
2845 sctx->stat.malloc_errors++;
2846 spin_unlock(&sctx->stat_lock);
2847 return -ENOMEM;
2848 }
2849
2850 /* Seed devices of a new filesystem has their own generation. */
2851 if (scrub_dev->fs_devices != fs_info->fs_devices)
2852 gen = scrub_dev->generation;
2853 else
2854 gen = btrfs_get_last_trans_committed(fs_info);
2855
2856 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2857 ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
2858 if (ret == -ENOENT)
2859 break;
2860
2861 if (ret) {
2862 spin_lock(&sctx->stat_lock);
2863 sctx->stat.super_errors++;
2864 spin_unlock(&sctx->stat_lock);
2865 continue;
2866 }
2867
2868 if (bytenr + BTRFS_SUPER_INFO_SIZE >
2869 scrub_dev->commit_total_bytes)
2870 break;
2871 if (!btrfs_check_super_location(scrub_dev, bytenr))
2872 continue;
2873
2874 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2875 if (ret) {
2876 spin_lock(&sctx->stat_lock);
2877 sctx->stat.super_errors++;
2878 spin_unlock(&sctx->stat_lock);
2879 }
2880 }
2881 __free_page(page);
2882 return 0;
2883 }
2884
scrub_workers_put(struct btrfs_fs_info * fs_info)2885 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2886 {
2887 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2888 &fs_info->scrub_lock)) {
2889 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2890
2891 fs_info->scrub_workers = NULL;
2892 mutex_unlock(&fs_info->scrub_lock);
2893
2894 if (scrub_workers)
2895 destroy_workqueue(scrub_workers);
2896 }
2897 }
2898
2899 /*
2900 * get a reference count on fs_info->scrub_workers. start worker if necessary
2901 */
scrub_workers_get(struct btrfs_fs_info * fs_info)2902 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2903 {
2904 struct workqueue_struct *scrub_workers = NULL;
2905 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2906 int max_active = fs_info->thread_pool_size;
2907 int ret = -ENOMEM;
2908
2909 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2910 return 0;
2911
2912 scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2913 if (!scrub_workers)
2914 return -ENOMEM;
2915
2916 mutex_lock(&fs_info->scrub_lock);
2917 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2918 ASSERT(fs_info->scrub_workers == NULL);
2919 fs_info->scrub_workers = scrub_workers;
2920 refcount_set(&fs_info->scrub_workers_refcnt, 1);
2921 mutex_unlock(&fs_info->scrub_lock);
2922 return 0;
2923 }
2924 /* Other thread raced in and created the workers for us */
2925 refcount_inc(&fs_info->scrub_workers_refcnt);
2926 mutex_unlock(&fs_info->scrub_lock);
2927
2928 ret = 0;
2929
2930 destroy_workqueue(scrub_workers);
2931 return ret;
2932 }
2933
btrfs_scrub_dev(struct btrfs_fs_info * fs_info,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,int readonly,int is_dev_replace)2934 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2935 u64 end, struct btrfs_scrub_progress *progress,
2936 int readonly, int is_dev_replace)
2937 {
2938 struct btrfs_dev_lookup_args args = { .devid = devid };
2939 struct scrub_ctx *sctx;
2940 int ret;
2941 struct btrfs_device *dev;
2942 unsigned int nofs_flag;
2943 bool need_commit = false;
2944
2945 if (btrfs_fs_closing(fs_info))
2946 return -EAGAIN;
2947
2948 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2949 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2950
2951 /*
2952 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2953 * value (max nodesize / min sectorsize), thus nodesize should always
2954 * be fine.
2955 */
2956 ASSERT(fs_info->nodesize <=
2957 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2958
2959 /* Allocate outside of device_list_mutex */
2960 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2961 if (IS_ERR(sctx))
2962 return PTR_ERR(sctx);
2963
2964 ret = scrub_workers_get(fs_info);
2965 if (ret)
2966 goto out_free_ctx;
2967
2968 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2969 dev = btrfs_find_device(fs_info->fs_devices, &args);
2970 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2971 !is_dev_replace)) {
2972 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2973 ret = -ENODEV;
2974 goto out;
2975 }
2976
2977 if (!is_dev_replace && !readonly &&
2978 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2979 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2980 btrfs_err_in_rcu(fs_info,
2981 "scrub on devid %llu: filesystem on %s is not writable",
2982 devid, btrfs_dev_name(dev));
2983 ret = -EROFS;
2984 goto out;
2985 }
2986
2987 mutex_lock(&fs_info->scrub_lock);
2988 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2989 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2990 mutex_unlock(&fs_info->scrub_lock);
2991 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2992 ret = -EIO;
2993 goto out;
2994 }
2995
2996 down_read(&fs_info->dev_replace.rwsem);
2997 if (dev->scrub_ctx ||
2998 (!is_dev_replace &&
2999 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3000 up_read(&fs_info->dev_replace.rwsem);
3001 mutex_unlock(&fs_info->scrub_lock);
3002 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3003 ret = -EINPROGRESS;
3004 goto out;
3005 }
3006 up_read(&fs_info->dev_replace.rwsem);
3007
3008 sctx->readonly = readonly;
3009 dev->scrub_ctx = sctx;
3010 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3011
3012 /*
3013 * checking @scrub_pause_req here, we can avoid
3014 * race between committing transaction and scrubbing.
3015 */
3016 __scrub_blocked_if_needed(fs_info);
3017 atomic_inc(&fs_info->scrubs_running);
3018 mutex_unlock(&fs_info->scrub_lock);
3019
3020 /*
3021 * In order to avoid deadlock with reclaim when there is a transaction
3022 * trying to pause scrub, make sure we use GFP_NOFS for all the
3023 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
3024 * invoked by our callees. The pausing request is done when the
3025 * transaction commit starts, and it blocks the transaction until scrub
3026 * is paused (done at specific points at scrub_stripe() or right above
3027 * before incrementing fs_info->scrubs_running).
3028 */
3029 nofs_flag = memalloc_nofs_save();
3030 if (!is_dev_replace) {
3031 u64 old_super_errors;
3032
3033 spin_lock(&sctx->stat_lock);
3034 old_super_errors = sctx->stat.super_errors;
3035 spin_unlock(&sctx->stat_lock);
3036
3037 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3038 /*
3039 * by holding device list mutex, we can
3040 * kick off writing super in log tree sync.
3041 */
3042 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3043 ret = scrub_supers(sctx, dev);
3044 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3045
3046 spin_lock(&sctx->stat_lock);
3047 /*
3048 * Super block errors found, but we can not commit transaction
3049 * at current context, since btrfs_commit_transaction() needs
3050 * to pause the current running scrub (hold by ourselves).
3051 */
3052 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
3053 need_commit = true;
3054 spin_unlock(&sctx->stat_lock);
3055 }
3056
3057 if (!ret)
3058 ret = scrub_enumerate_chunks(sctx, dev, start, end);
3059 memalloc_nofs_restore(nofs_flag);
3060
3061 atomic_dec(&fs_info->scrubs_running);
3062 wake_up(&fs_info->scrub_pause_wait);
3063
3064 if (progress)
3065 memcpy(progress, &sctx->stat, sizeof(*progress));
3066
3067 if (!is_dev_replace)
3068 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3069 ret ? "not finished" : "finished", devid, ret);
3070
3071 mutex_lock(&fs_info->scrub_lock);
3072 dev->scrub_ctx = NULL;
3073 mutex_unlock(&fs_info->scrub_lock);
3074
3075 scrub_workers_put(fs_info);
3076 scrub_put_ctx(sctx);
3077
3078 /*
3079 * We found some super block errors before, now try to force a
3080 * transaction commit, as scrub has finished.
3081 */
3082 if (need_commit) {
3083 struct btrfs_trans_handle *trans;
3084
3085 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3086 if (IS_ERR(trans)) {
3087 ret = PTR_ERR(trans);
3088 btrfs_err(fs_info,
3089 "scrub: failed to start transaction to fix super block errors: %d", ret);
3090 return ret;
3091 }
3092 ret = btrfs_commit_transaction(trans);
3093 if (ret < 0)
3094 btrfs_err(fs_info,
3095 "scrub: failed to commit transaction to fix super block errors: %d", ret);
3096 }
3097 return ret;
3098 out:
3099 scrub_workers_put(fs_info);
3100 out_free_ctx:
3101 scrub_free_ctx(sctx);
3102
3103 return ret;
3104 }
3105
btrfs_scrub_pause(struct btrfs_fs_info * fs_info)3106 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3107 {
3108 mutex_lock(&fs_info->scrub_lock);
3109 atomic_inc(&fs_info->scrub_pause_req);
3110 while (atomic_read(&fs_info->scrubs_paused) !=
3111 atomic_read(&fs_info->scrubs_running)) {
3112 mutex_unlock(&fs_info->scrub_lock);
3113 wait_event(fs_info->scrub_pause_wait,
3114 atomic_read(&fs_info->scrubs_paused) ==
3115 atomic_read(&fs_info->scrubs_running));
3116 mutex_lock(&fs_info->scrub_lock);
3117 }
3118 mutex_unlock(&fs_info->scrub_lock);
3119 }
3120
btrfs_scrub_continue(struct btrfs_fs_info * fs_info)3121 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3122 {
3123 atomic_dec(&fs_info->scrub_pause_req);
3124 wake_up(&fs_info->scrub_pause_wait);
3125 }
3126
btrfs_scrub_cancel(struct btrfs_fs_info * fs_info)3127 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3128 {
3129 mutex_lock(&fs_info->scrub_lock);
3130 if (!atomic_read(&fs_info->scrubs_running)) {
3131 mutex_unlock(&fs_info->scrub_lock);
3132 return -ENOTCONN;
3133 }
3134
3135 atomic_inc(&fs_info->scrub_cancel_req);
3136 while (atomic_read(&fs_info->scrubs_running)) {
3137 mutex_unlock(&fs_info->scrub_lock);
3138 wait_event(fs_info->scrub_pause_wait,
3139 atomic_read(&fs_info->scrubs_running) == 0);
3140 mutex_lock(&fs_info->scrub_lock);
3141 }
3142 atomic_dec(&fs_info->scrub_cancel_req);
3143 mutex_unlock(&fs_info->scrub_lock);
3144
3145 return 0;
3146 }
3147
btrfs_scrub_cancel_dev(struct btrfs_device * dev)3148 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3149 {
3150 struct btrfs_fs_info *fs_info = dev->fs_info;
3151 struct scrub_ctx *sctx;
3152
3153 mutex_lock(&fs_info->scrub_lock);
3154 sctx = dev->scrub_ctx;
3155 if (!sctx) {
3156 mutex_unlock(&fs_info->scrub_lock);
3157 return -ENOTCONN;
3158 }
3159 atomic_inc(&sctx->cancel_req);
3160 while (dev->scrub_ctx) {
3161 mutex_unlock(&fs_info->scrub_lock);
3162 wait_event(fs_info->scrub_pause_wait,
3163 dev->scrub_ctx == NULL);
3164 mutex_lock(&fs_info->scrub_lock);
3165 }
3166 mutex_unlock(&fs_info->scrub_lock);
3167
3168 return 0;
3169 }
3170
btrfs_scrub_progress(struct btrfs_fs_info * fs_info,u64 devid,struct btrfs_scrub_progress * progress)3171 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3172 struct btrfs_scrub_progress *progress)
3173 {
3174 struct btrfs_dev_lookup_args args = { .devid = devid };
3175 struct btrfs_device *dev;
3176 struct scrub_ctx *sctx = NULL;
3177
3178 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3179 dev = btrfs_find_device(fs_info->fs_devices, &args);
3180 if (dev)
3181 sctx = dev->scrub_ctx;
3182 if (sctx)
3183 memcpy(progress, &sctx->stat, sizeof(*progress));
3184 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3185
3186 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3187 }
3188