• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include <linux/security.h>
31 #include <linux/fs_parser.h>
32 #include "messages.h"
33 #include "delayed-inode.h"
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "direct-io.h"
39 #include "props.h"
40 #include "xattr.h"
41 #include "bio.h"
42 #include "export.h"
43 #include "compression.h"
44 #include "dev-replace.h"
45 #include "free-space-cache.h"
46 #include "backref.h"
47 #include "space-info.h"
48 #include "sysfs.h"
49 #include "zoned.h"
50 #include "tests/btrfs-tests.h"
51 #include "block-group.h"
52 #include "discard.h"
53 #include "qgroup.h"
54 #include "raid56.h"
55 #include "fs.h"
56 #include "accessors.h"
57 #include "defrag.h"
58 #include "dir-item.h"
59 #include "ioctl.h"
60 #include "scrub.h"
61 #include "verity.h"
62 #include "super.h"
63 #include "extent-tree.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66 
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69 
btrfs_put_super(struct super_block * sb)70 static void btrfs_put_super(struct super_block *sb)
71 {
72 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
73 
74 	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
75 	close_ctree(fs_info);
76 }
77 
78 /* Store the mount options related information. */
79 struct btrfs_fs_context {
80 	char *subvol_name;
81 	u64 subvol_objectid;
82 	u64 max_inline;
83 	u32 commit_interval;
84 	u32 metadata_ratio;
85 	u32 thread_pool_size;
86 	unsigned long long mount_opt;
87 	unsigned long compress_type:4;
88 	unsigned int compress_level;
89 	refcount_t refs;
90 };
91 
92 static void btrfs_emit_options(struct btrfs_fs_info *info,
93 			       struct btrfs_fs_context *old);
94 
95 enum {
96 	Opt_acl,
97 	Opt_clear_cache,
98 	Opt_commit_interval,
99 	Opt_compress,
100 	Opt_compress_force,
101 	Opt_compress_force_type,
102 	Opt_compress_type,
103 	Opt_degraded,
104 	Opt_device,
105 	Opt_fatal_errors,
106 	Opt_flushoncommit,
107 	Opt_max_inline,
108 	Opt_barrier,
109 	Opt_datacow,
110 	Opt_datasum,
111 	Opt_defrag,
112 	Opt_discard,
113 	Opt_discard_mode,
114 	Opt_ratio,
115 	Opt_rescan_uuid_tree,
116 	Opt_skip_balance,
117 	Opt_space_cache,
118 	Opt_space_cache_version,
119 	Opt_ssd,
120 	Opt_ssd_spread,
121 	Opt_subvol,
122 	Opt_subvol_empty,
123 	Opt_subvolid,
124 	Opt_thread_pool,
125 	Opt_treelog,
126 	Opt_user_subvol_rm_allowed,
127 	Opt_norecovery,
128 
129 	/* Rescue options */
130 	Opt_rescue,
131 	Opt_usebackuproot,
132 	Opt_nologreplay,
133 
134 	/* Debugging options */
135 	Opt_enospc_debug,
136 #ifdef CONFIG_BTRFS_DEBUG
137 	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
138 #endif
139 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
140 	Opt_ref_verify,
141 #endif
142 	Opt_err,
143 };
144 
145 enum {
146 	Opt_fatal_errors_panic,
147 	Opt_fatal_errors_bug,
148 };
149 
150 static const struct constant_table btrfs_parameter_fatal_errors[] = {
151 	{ "panic", Opt_fatal_errors_panic },
152 	{ "bug", Opt_fatal_errors_bug },
153 	{}
154 };
155 
156 enum {
157 	Opt_discard_sync,
158 	Opt_discard_async,
159 };
160 
161 static const struct constant_table btrfs_parameter_discard[] = {
162 	{ "sync", Opt_discard_sync },
163 	{ "async", Opt_discard_async },
164 	{}
165 };
166 
167 enum {
168 	Opt_space_cache_v1,
169 	Opt_space_cache_v2,
170 };
171 
172 static const struct constant_table btrfs_parameter_space_cache[] = {
173 	{ "v1", Opt_space_cache_v1 },
174 	{ "v2", Opt_space_cache_v2 },
175 	{}
176 };
177 
178 enum {
179 	Opt_rescue_usebackuproot,
180 	Opt_rescue_nologreplay,
181 	Opt_rescue_ignorebadroots,
182 	Opt_rescue_ignoredatacsums,
183 	Opt_rescue_ignoremetacsums,
184 	Opt_rescue_ignoresuperflags,
185 	Opt_rescue_parameter_all,
186 };
187 
188 static const struct constant_table btrfs_parameter_rescue[] = {
189 	{ "usebackuproot", Opt_rescue_usebackuproot },
190 	{ "nologreplay", Opt_rescue_nologreplay },
191 	{ "ignorebadroots", Opt_rescue_ignorebadroots },
192 	{ "ibadroots", Opt_rescue_ignorebadroots },
193 	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
194 	{ "ignoremetacsums", Opt_rescue_ignoremetacsums},
195 	{ "ignoresuperflags", Opt_rescue_ignoresuperflags},
196 	{ "idatacsums", Opt_rescue_ignoredatacsums },
197 	{ "imetacsums", Opt_rescue_ignoremetacsums},
198 	{ "isuperflags", Opt_rescue_ignoresuperflags},
199 	{ "all", Opt_rescue_parameter_all },
200 	{}
201 };
202 
203 #ifdef CONFIG_BTRFS_DEBUG
204 enum {
205 	Opt_fragment_parameter_data,
206 	Opt_fragment_parameter_metadata,
207 	Opt_fragment_parameter_all,
208 };
209 
210 static const struct constant_table btrfs_parameter_fragment[] = {
211 	{ "data", Opt_fragment_parameter_data },
212 	{ "metadata", Opt_fragment_parameter_metadata },
213 	{ "all", Opt_fragment_parameter_all },
214 	{}
215 };
216 #endif
217 
218 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
219 	fsparam_flag_no("acl", Opt_acl),
220 	fsparam_flag_no("autodefrag", Opt_defrag),
221 	fsparam_flag_no("barrier", Opt_barrier),
222 	fsparam_flag("clear_cache", Opt_clear_cache),
223 	fsparam_u32("commit", Opt_commit_interval),
224 	fsparam_flag("compress", Opt_compress),
225 	fsparam_string("compress", Opt_compress_type),
226 	fsparam_flag("compress-force", Opt_compress_force),
227 	fsparam_string("compress-force", Opt_compress_force_type),
228 	fsparam_flag_no("datacow", Opt_datacow),
229 	fsparam_flag_no("datasum", Opt_datasum),
230 	fsparam_flag("degraded", Opt_degraded),
231 	fsparam_string("device", Opt_device),
232 	fsparam_flag_no("discard", Opt_discard),
233 	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
234 	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
235 	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
236 	fsparam_string("max_inline", Opt_max_inline),
237 	fsparam_u32("metadata_ratio", Opt_ratio),
238 	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
239 	fsparam_flag("skip_balance", Opt_skip_balance),
240 	fsparam_flag_no("space_cache", Opt_space_cache),
241 	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
242 	fsparam_flag_no("ssd", Opt_ssd),
243 	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
244 	fsparam_string("subvol", Opt_subvol),
245 	fsparam_flag("subvol=", Opt_subvol_empty),
246 	fsparam_u64("subvolid", Opt_subvolid),
247 	fsparam_u32("thread_pool", Opt_thread_pool),
248 	fsparam_flag_no("treelog", Opt_treelog),
249 	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
250 
251 	/* Rescue options. */
252 	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
253 	/* Deprecated, with alias rescue=nologreplay */
254 	__fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
255 	/* Deprecated, with alias rescue=usebackuproot */
256 	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
257 	/* For compatibility only, alias for "rescue=nologreplay". */
258 	fsparam_flag("norecovery", Opt_norecovery),
259 
260 	/* Debugging options. */
261 	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
262 #ifdef CONFIG_BTRFS_DEBUG
263 	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
264 #endif
265 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
266 	fsparam_flag("ref_verify", Opt_ref_verify),
267 #endif
268 	{}
269 };
270 
271 /* No support for restricting writes to btrfs devices yet... */
btrfs_open_mode(struct fs_context * fc)272 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
273 {
274 	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
275 }
276 
btrfs_parse_param(struct fs_context * fc,struct fs_parameter * param)277 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
278 {
279 	struct btrfs_fs_context *ctx = fc->fs_private;
280 	struct fs_parse_result result;
281 	int opt;
282 
283 	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
284 	if (opt < 0)
285 		return opt;
286 
287 	switch (opt) {
288 	case Opt_degraded:
289 		btrfs_set_opt(ctx->mount_opt, DEGRADED);
290 		break;
291 	case Opt_subvol_empty:
292 		/*
293 		 * This exists because we used to allow it on accident, so we're
294 		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
295 		 * empty subvol= again").
296 		 */
297 		break;
298 	case Opt_subvol:
299 		kfree(ctx->subvol_name);
300 		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
301 		if (!ctx->subvol_name)
302 			return -ENOMEM;
303 		break;
304 	case Opt_subvolid:
305 		ctx->subvol_objectid = result.uint_64;
306 
307 		/* subvolid=0 means give me the original fs_tree. */
308 		if (!ctx->subvol_objectid)
309 			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
310 		break;
311 	case Opt_device: {
312 		struct btrfs_device *device;
313 		blk_mode_t mode = btrfs_open_mode(fc);
314 
315 		mutex_lock(&uuid_mutex);
316 		device = btrfs_scan_one_device(param->string, mode, false);
317 		mutex_unlock(&uuid_mutex);
318 		if (IS_ERR(device))
319 			return PTR_ERR(device);
320 		break;
321 	}
322 	case Opt_datasum:
323 		if (result.negated) {
324 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
325 		} else {
326 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
327 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
328 		}
329 		break;
330 	case Opt_datacow:
331 		if (result.negated) {
332 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
333 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
334 			btrfs_set_opt(ctx->mount_opt, NODATACOW);
335 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
336 		} else {
337 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
338 		}
339 		break;
340 	case Opt_compress_force:
341 	case Opt_compress_force_type:
342 		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
343 		fallthrough;
344 	case Opt_compress:
345 	case Opt_compress_type:
346 		/*
347 		 * Provide the same semantics as older kernels that don't use fs
348 		 * context, specifying the "compress" option clears
349 		 * "force-compress" without the need to pass
350 		 * "compress-force=[no|none]" before specifying "compress".
351 		 */
352 		if (opt != Opt_compress_force && opt != Opt_compress_force_type)
353 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
354 
355 		if (opt == Opt_compress || opt == Opt_compress_force) {
356 			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
357 			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
358 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
359 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
360 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
361 		} else if (strncmp(param->string, "zlib", 4) == 0) {
362 			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
363 			ctx->compress_level =
364 				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
365 							 param->string + 4);
366 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
367 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
368 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
369 		} else if (strncmp(param->string, "lzo", 3) == 0) {
370 			ctx->compress_type = BTRFS_COMPRESS_LZO;
371 			ctx->compress_level = 0;
372 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
373 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
374 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
375 		} else if (strncmp(param->string, "zstd", 4) == 0) {
376 			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
377 			ctx->compress_level =
378 				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
379 							 param->string + 4);
380 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
381 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
382 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
383 		} else if (strncmp(param->string, "no", 2) == 0) {
384 			ctx->compress_level = 0;
385 			ctx->compress_type = 0;
386 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
387 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
388 		} else {
389 			btrfs_err(NULL, "unrecognized compression value %s",
390 				  param->string);
391 			return -EINVAL;
392 		}
393 		break;
394 	case Opt_ssd:
395 		if (result.negated) {
396 			btrfs_set_opt(ctx->mount_opt, NOSSD);
397 			btrfs_clear_opt(ctx->mount_opt, SSD);
398 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
399 		} else {
400 			btrfs_set_opt(ctx->mount_opt, SSD);
401 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
402 		}
403 		break;
404 	case Opt_ssd_spread:
405 		if (result.negated) {
406 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
407 		} else {
408 			btrfs_set_opt(ctx->mount_opt, SSD);
409 			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
410 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
411 		}
412 		break;
413 	case Opt_barrier:
414 		if (result.negated)
415 			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
416 		else
417 			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
418 		break;
419 	case Opt_thread_pool:
420 		if (result.uint_32 == 0) {
421 			btrfs_err(NULL, "invalid value 0 for thread_pool");
422 			return -EINVAL;
423 		}
424 		ctx->thread_pool_size = result.uint_32;
425 		break;
426 	case Opt_max_inline:
427 		ctx->max_inline = memparse(param->string, NULL);
428 		break;
429 	case Opt_acl:
430 		if (result.negated) {
431 			fc->sb_flags &= ~SB_POSIXACL;
432 		} else {
433 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
434 			fc->sb_flags |= SB_POSIXACL;
435 #else
436 			btrfs_err(NULL, "support for ACL not compiled in");
437 			return -EINVAL;
438 #endif
439 		}
440 		/*
441 		 * VFS limits the ability to toggle ACL on and off via remount,
442 		 * despite every file system allowing this.  This seems to be
443 		 * an oversight since we all do, but it'll fail if we're
444 		 * remounting.  So don't set the mask here, we'll check it in
445 		 * btrfs_reconfigure and do the toggling ourselves.
446 		 */
447 		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
448 			fc->sb_flags_mask |= SB_POSIXACL;
449 		break;
450 	case Opt_treelog:
451 		if (result.negated)
452 			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
453 		else
454 			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
455 		break;
456 	case Opt_nologreplay:
457 		btrfs_warn(NULL,
458 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
459 		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
460 		break;
461 	case Opt_norecovery:
462 		btrfs_info(NULL,
463 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
464 		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
465 		break;
466 	case Opt_flushoncommit:
467 		if (result.negated)
468 			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
469 		else
470 			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
471 		break;
472 	case Opt_ratio:
473 		ctx->metadata_ratio = result.uint_32;
474 		break;
475 	case Opt_discard:
476 		if (result.negated) {
477 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
478 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
479 			btrfs_set_opt(ctx->mount_opt, NODISCARD);
480 		} else {
481 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
482 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
483 		}
484 		break;
485 	case Opt_discard_mode:
486 		switch (result.uint_32) {
487 		case Opt_discard_sync:
488 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
489 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
490 			break;
491 		case Opt_discard_async:
492 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
493 			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
494 			break;
495 		default:
496 			btrfs_err(NULL, "unrecognized discard mode value %s",
497 				  param->key);
498 			return -EINVAL;
499 		}
500 		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
501 		break;
502 	case Opt_space_cache:
503 		if (result.negated) {
504 			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
505 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
506 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
507 		} else {
508 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
509 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
510 		}
511 		break;
512 	case Opt_space_cache_version:
513 		switch (result.uint_32) {
514 		case Opt_space_cache_v1:
515 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
516 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
517 			break;
518 		case Opt_space_cache_v2:
519 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
520 			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
521 			break;
522 		default:
523 			btrfs_err(NULL, "unrecognized space_cache value %s",
524 				  param->key);
525 			return -EINVAL;
526 		}
527 		break;
528 	case Opt_rescan_uuid_tree:
529 		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
530 		break;
531 	case Opt_clear_cache:
532 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
533 		break;
534 	case Opt_user_subvol_rm_allowed:
535 		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
536 		break;
537 	case Opt_enospc_debug:
538 		if (result.negated)
539 			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
540 		else
541 			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
542 		break;
543 	case Opt_defrag:
544 		if (result.negated)
545 			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
546 		else
547 			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
548 		break;
549 	case Opt_usebackuproot:
550 		btrfs_warn(NULL,
551 			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
552 		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
553 
554 		/* If we're loading the backup roots we can't trust the space cache. */
555 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
556 		break;
557 	case Opt_skip_balance:
558 		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
559 		break;
560 	case Opt_fatal_errors:
561 		switch (result.uint_32) {
562 		case Opt_fatal_errors_panic:
563 			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
564 			break;
565 		case Opt_fatal_errors_bug:
566 			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
567 			break;
568 		default:
569 			btrfs_err(NULL, "unrecognized fatal_errors value %s",
570 				  param->key);
571 			return -EINVAL;
572 		}
573 		break;
574 	case Opt_commit_interval:
575 		ctx->commit_interval = result.uint_32;
576 		if (ctx->commit_interval > BTRFS_WARNING_COMMIT_INTERVAL) {
577 			btrfs_warn(NULL, "excessive commit interval %u, use with care",
578 				   ctx->commit_interval);
579 		}
580 		if (ctx->commit_interval == 0)
581 			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
582 		break;
583 	case Opt_rescue:
584 		switch (result.uint_32) {
585 		case Opt_rescue_usebackuproot:
586 			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
587 			break;
588 		case Opt_rescue_nologreplay:
589 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
590 			break;
591 		case Opt_rescue_ignorebadroots:
592 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
593 			break;
594 		case Opt_rescue_ignoredatacsums:
595 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
596 			break;
597 		case Opt_rescue_ignoremetacsums:
598 			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
599 			break;
600 		case Opt_rescue_ignoresuperflags:
601 			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
602 			break;
603 		case Opt_rescue_parameter_all:
604 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
605 			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
606 			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
607 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
608 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
609 			break;
610 		default:
611 			btrfs_info(NULL, "unrecognized rescue option '%s'",
612 				   param->key);
613 			return -EINVAL;
614 		}
615 		break;
616 #ifdef CONFIG_BTRFS_DEBUG
617 	case Opt_fragment:
618 		switch (result.uint_32) {
619 		case Opt_fragment_parameter_all:
620 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
621 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
622 			break;
623 		case Opt_fragment_parameter_metadata:
624 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
625 			break;
626 		case Opt_fragment_parameter_data:
627 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
628 			break;
629 		default:
630 			btrfs_info(NULL, "unrecognized fragment option '%s'",
631 				   param->key);
632 			return -EINVAL;
633 		}
634 		break;
635 #endif
636 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
637 	case Opt_ref_verify:
638 		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
639 		break;
640 #endif
641 	default:
642 		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
643 		return -EINVAL;
644 	}
645 
646 	return 0;
647 }
648 
649 /*
650  * Some options only have meaning at mount time and shouldn't persist across
651  * remounts, or be displayed. Clear these at the end of mount and remount code
652  * paths.
653  */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)654 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
655 {
656 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
657 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
658 	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
659 }
660 
check_ro_option(const struct btrfs_fs_info * fs_info,unsigned long long mount_opt,unsigned long long opt,const char * opt_name)661 static bool check_ro_option(const struct btrfs_fs_info *fs_info,
662 			    unsigned long long mount_opt, unsigned long long opt,
663 			    const char *opt_name)
664 {
665 	if (mount_opt & opt) {
666 		btrfs_err(fs_info, "%s must be used with ro mount option",
667 			  opt_name);
668 		return true;
669 	}
670 	return false;
671 }
672 
btrfs_check_options(const struct btrfs_fs_info * info,unsigned long long * mount_opt,unsigned long flags)673 bool btrfs_check_options(const struct btrfs_fs_info *info,
674 			 unsigned long long *mount_opt,
675 			 unsigned long flags)
676 {
677 	bool ret = true;
678 
679 	if (!(flags & SB_RDONLY) &&
680 	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
681 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
682 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
683 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
684 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
685 		ret = false;
686 
687 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
688 	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
689 	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
690 		btrfs_err(info, "cannot disable free-space-tree");
691 		ret = false;
692 	}
693 	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
694 	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
695 		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
696 		ret = false;
697 	}
698 
699 	if (btrfs_check_mountopts_zoned(info, mount_opt))
700 		ret = false;
701 
702 	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
703 		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
704 			btrfs_warn(info,
705 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2");
706 		}
707 	}
708 
709 	return ret;
710 }
711 
712 /*
713  * This is subtle, we only call this during open_ctree().  We need to pre-load
714  * the mount options with the on-disk settings.  Before the new mount API took
715  * effect we would do this on mount and remount.  With the new mount API we'll
716  * only do this on the initial mount.
717  *
718  * This isn't a change in behavior, because we're using the current state of the
719  * file system to set the current mount options.  If you mounted with special
720  * options to disable these features and then remounted we wouldn't revert the
721  * settings, because mounting without these features cleared the on-disk
722  * settings, so this being called on re-mount is not needed.
723  */
btrfs_set_free_space_cache_settings(struct btrfs_fs_info * fs_info)724 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
725 {
726 	if (fs_info->sectorsize < PAGE_SIZE) {
727 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
728 		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
729 			btrfs_info(fs_info,
730 				   "forcing free space tree for sector size %u with page size %lu",
731 				   fs_info->sectorsize, PAGE_SIZE);
732 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
733 		}
734 	}
735 
736 	/*
737 	 * At this point our mount options are populated, so we only mess with
738 	 * these settings if we don't have any settings already.
739 	 */
740 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
741 		return;
742 
743 	if (btrfs_is_zoned(fs_info) &&
744 	    btrfs_free_space_cache_v1_active(fs_info)) {
745 		btrfs_info(fs_info, "zoned: clearing existing space cache");
746 		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
747 		return;
748 	}
749 
750 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
751 		return;
752 
753 	if (btrfs_test_opt(fs_info, NOSPACECACHE))
754 		return;
755 
756 	/*
757 	 * At this point we don't have explicit options set by the user, set
758 	 * them ourselves based on the state of the file system.
759 	 */
760 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
761 		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
762 	else if (btrfs_free_space_cache_v1_active(fs_info))
763 		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
764 }
765 
set_device_specific_options(struct btrfs_fs_info * fs_info)766 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
767 {
768 	if (!btrfs_test_opt(fs_info, NOSSD) &&
769 	    !fs_info->fs_devices->rotating)
770 		btrfs_set_opt(fs_info->mount_opt, SSD);
771 
772 	/*
773 	 * For devices supporting discard turn on discard=async automatically,
774 	 * unless it's already set or disabled. This could be turned off by
775 	 * nodiscard for the same mount.
776 	 *
777 	 * The zoned mode piggy backs on the discard functionality for
778 	 * resetting a zone. There is no reason to delay the zone reset as it is
779 	 * fast enough. So, do not enable async discard for zoned mode.
780 	 */
781 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
782 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
783 	      btrfs_test_opt(fs_info, NODISCARD)) &&
784 	    fs_info->fs_devices->discardable &&
785 	    !btrfs_is_zoned(fs_info))
786 		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
787 }
788 
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)789 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
790 					  u64 subvol_objectid)
791 {
792 	struct btrfs_root *root = fs_info->tree_root;
793 	struct btrfs_root *fs_root = NULL;
794 	struct btrfs_root_ref *root_ref;
795 	struct btrfs_inode_ref *inode_ref;
796 	struct btrfs_key key;
797 	struct btrfs_path *path = NULL;
798 	char *name = NULL, *ptr;
799 	u64 dirid;
800 	int len;
801 	int ret;
802 
803 	path = btrfs_alloc_path();
804 	if (!path) {
805 		ret = -ENOMEM;
806 		goto err;
807 	}
808 
809 	name = kmalloc(PATH_MAX, GFP_KERNEL);
810 	if (!name) {
811 		ret = -ENOMEM;
812 		goto err;
813 	}
814 	ptr = name + PATH_MAX - 1;
815 	ptr[0] = '\0';
816 
817 	/*
818 	 * Walk up the subvolume trees in the tree of tree roots by root
819 	 * backrefs until we hit the top-level subvolume.
820 	 */
821 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
822 		key.objectid = subvol_objectid;
823 		key.type = BTRFS_ROOT_BACKREF_KEY;
824 		key.offset = (u64)-1;
825 
826 		ret = btrfs_search_backwards(root, &key, path);
827 		if (ret < 0) {
828 			goto err;
829 		} else if (ret > 0) {
830 			ret = -ENOENT;
831 			goto err;
832 		}
833 
834 		subvol_objectid = key.offset;
835 
836 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
837 					  struct btrfs_root_ref);
838 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
839 		ptr -= len + 1;
840 		if (ptr < name) {
841 			ret = -ENAMETOOLONG;
842 			goto err;
843 		}
844 		read_extent_buffer(path->nodes[0], ptr + 1,
845 				   (unsigned long)(root_ref + 1), len);
846 		ptr[0] = '/';
847 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
848 		btrfs_release_path(path);
849 
850 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
851 		if (IS_ERR(fs_root)) {
852 			ret = PTR_ERR(fs_root);
853 			fs_root = NULL;
854 			goto err;
855 		}
856 
857 		/*
858 		 * Walk up the filesystem tree by inode refs until we hit the
859 		 * root directory.
860 		 */
861 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
862 			key.objectid = dirid;
863 			key.type = BTRFS_INODE_REF_KEY;
864 			key.offset = (u64)-1;
865 
866 			ret = btrfs_search_backwards(fs_root, &key, path);
867 			if (ret < 0) {
868 				goto err;
869 			} else if (ret > 0) {
870 				ret = -ENOENT;
871 				goto err;
872 			}
873 
874 			dirid = key.offset;
875 
876 			inode_ref = btrfs_item_ptr(path->nodes[0],
877 						   path->slots[0],
878 						   struct btrfs_inode_ref);
879 			len = btrfs_inode_ref_name_len(path->nodes[0],
880 						       inode_ref);
881 			ptr -= len + 1;
882 			if (ptr < name) {
883 				ret = -ENAMETOOLONG;
884 				goto err;
885 			}
886 			read_extent_buffer(path->nodes[0], ptr + 1,
887 					   (unsigned long)(inode_ref + 1), len);
888 			ptr[0] = '/';
889 			btrfs_release_path(path);
890 		}
891 		btrfs_put_root(fs_root);
892 		fs_root = NULL;
893 	}
894 
895 	btrfs_free_path(path);
896 	if (ptr == name + PATH_MAX - 1) {
897 		name[0] = '/';
898 		name[1] = '\0';
899 	} else {
900 		memmove(name, ptr, name + PATH_MAX - ptr);
901 	}
902 	return name;
903 
904 err:
905 	btrfs_put_root(fs_root);
906 	btrfs_free_path(path);
907 	kfree(name);
908 	return ERR_PTR(ret);
909 }
910 
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)911 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
912 {
913 	struct btrfs_root *root = fs_info->tree_root;
914 	struct btrfs_dir_item *di;
915 	struct btrfs_path *path;
916 	struct btrfs_key location;
917 	struct fscrypt_str name = FSTR_INIT("default", 7);
918 	u64 dir_id;
919 
920 	path = btrfs_alloc_path();
921 	if (!path)
922 		return -ENOMEM;
923 
924 	/*
925 	 * Find the "default" dir item which points to the root item that we
926 	 * will mount by default if we haven't been given a specific subvolume
927 	 * to mount.
928 	 */
929 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
930 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
931 	if (IS_ERR(di)) {
932 		btrfs_free_path(path);
933 		return PTR_ERR(di);
934 	}
935 	if (!di) {
936 		/*
937 		 * Ok the default dir item isn't there.  This is weird since
938 		 * it's always been there, but don't freak out, just try and
939 		 * mount the top-level subvolume.
940 		 */
941 		btrfs_free_path(path);
942 		*objectid = BTRFS_FS_TREE_OBJECTID;
943 		return 0;
944 	}
945 
946 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
947 	btrfs_free_path(path);
948 	*objectid = location.objectid;
949 	return 0;
950 }
951 
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices)952 static int btrfs_fill_super(struct super_block *sb,
953 			    struct btrfs_fs_devices *fs_devices)
954 {
955 	struct inode *inode;
956 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
957 	int err;
958 
959 	sb->s_maxbytes = MAX_LFS_FILESIZE;
960 	sb->s_magic = BTRFS_SUPER_MAGIC;
961 	sb->s_op = &btrfs_super_ops;
962 	sb->s_d_op = &btrfs_dentry_operations;
963 	sb->s_export_op = &btrfs_export_ops;
964 #ifdef CONFIG_FS_VERITY
965 	sb->s_vop = &btrfs_verityops;
966 #endif
967 	sb->s_xattr = btrfs_xattr_handlers;
968 	sb->s_time_gran = 1;
969 	sb->s_iflags |= SB_I_CGROUPWB;
970 
971 	err = super_setup_bdi(sb);
972 	if (err) {
973 		btrfs_err(fs_info, "super_setup_bdi failed");
974 		return err;
975 	}
976 
977 	err = open_ctree(sb, fs_devices);
978 	if (err) {
979 		btrfs_err(fs_info, "open_ctree failed: %d", err);
980 		return err;
981 	}
982 
983 	btrfs_emit_options(fs_info, NULL);
984 
985 	inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
986 	if (IS_ERR(inode)) {
987 		err = PTR_ERR(inode);
988 		btrfs_handle_fs_error(fs_info, err, NULL);
989 		goto fail_close;
990 	}
991 
992 	sb->s_root = d_make_root(inode);
993 	if (!sb->s_root) {
994 		err = -ENOMEM;
995 		goto fail_close;
996 	}
997 
998 	cleancache_init_fs(sb);
999 	sb->s_flags |= SB_ACTIVE;
1000 	return 0;
1001 
1002 fail_close:
1003 	close_ctree(fs_info);
1004 	return err;
1005 }
1006 
btrfs_sync_fs(struct super_block * sb,int wait)1007 int btrfs_sync_fs(struct super_block *sb, int wait)
1008 {
1009 	struct btrfs_trans_handle *trans;
1010 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1011 	struct btrfs_root *root = fs_info->tree_root;
1012 
1013 	trace_btrfs_sync_fs(fs_info, wait);
1014 
1015 	if (!wait) {
1016 		filemap_flush(fs_info->btree_inode->i_mapping);
1017 		return 0;
1018 	}
1019 
1020 	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
1021 
1022 	trans = btrfs_attach_transaction_barrier(root);
1023 	if (IS_ERR(trans)) {
1024 		/* no transaction, don't bother */
1025 		if (PTR_ERR(trans) == -ENOENT) {
1026 			/*
1027 			 * Exit unless we have some pending changes
1028 			 * that need to go through commit
1029 			 */
1030 			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1031 				      &fs_info->flags))
1032 				return 0;
1033 			/*
1034 			 * A non-blocking test if the fs is frozen. We must not
1035 			 * start a new transaction here otherwise a deadlock
1036 			 * happens. The pending operations are delayed to the
1037 			 * next commit after thawing.
1038 			 */
1039 			if (sb_start_write_trylock(sb))
1040 				sb_end_write(sb);
1041 			else
1042 				return 0;
1043 			trans = btrfs_start_transaction(root, 0);
1044 		}
1045 		if (IS_ERR(trans))
1046 			return PTR_ERR(trans);
1047 	}
1048 	return btrfs_commit_transaction(trans);
1049 }
1050 
print_rescue_option(struct seq_file * seq,const char * s,bool * printed)1051 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1052 {
1053 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1054 	*printed = true;
1055 }
1056 
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1057 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1058 {
1059 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1060 	const char *compress_type;
1061 	const char *subvol_name;
1062 	bool printed = false;
1063 
1064 	if (btrfs_test_opt(info, DEGRADED))
1065 		seq_puts(seq, ",degraded");
1066 	if (btrfs_test_opt(info, NODATASUM))
1067 		seq_puts(seq, ",nodatasum");
1068 	if (btrfs_test_opt(info, NODATACOW))
1069 		seq_puts(seq, ",nodatacow");
1070 	if (btrfs_test_opt(info, NOBARRIER))
1071 		seq_puts(seq, ",nobarrier");
1072 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1073 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1074 	if (info->thread_pool_size !=  min_t(unsigned long,
1075 					     num_online_cpus() + 2, 8))
1076 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1077 	if (btrfs_test_opt(info, COMPRESS)) {
1078 		compress_type = btrfs_compress_type2str(info->compress_type);
1079 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1080 			seq_printf(seq, ",compress-force=%s", compress_type);
1081 		else
1082 			seq_printf(seq, ",compress=%s", compress_type);
1083 		if (info->compress_level)
1084 			seq_printf(seq, ":%d", info->compress_level);
1085 	}
1086 	if (btrfs_test_opt(info, NOSSD))
1087 		seq_puts(seq, ",nossd");
1088 	if (btrfs_test_opt(info, SSD_SPREAD))
1089 		seq_puts(seq, ",ssd_spread");
1090 	else if (btrfs_test_opt(info, SSD))
1091 		seq_puts(seq, ",ssd");
1092 	if (btrfs_test_opt(info, NOTREELOG))
1093 		seq_puts(seq, ",notreelog");
1094 	if (btrfs_test_opt(info, NOLOGREPLAY))
1095 		print_rescue_option(seq, "nologreplay", &printed);
1096 	if (btrfs_test_opt(info, USEBACKUPROOT))
1097 		print_rescue_option(seq, "usebackuproot", &printed);
1098 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1099 		print_rescue_option(seq, "ignorebadroots", &printed);
1100 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1101 		print_rescue_option(seq, "ignoredatacsums", &printed);
1102 	if (btrfs_test_opt(info, IGNOREMETACSUMS))
1103 		print_rescue_option(seq, "ignoremetacsums", &printed);
1104 	if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1105 		print_rescue_option(seq, "ignoresuperflags", &printed);
1106 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1107 		seq_puts(seq, ",flushoncommit");
1108 	if (btrfs_test_opt(info, DISCARD_SYNC))
1109 		seq_puts(seq, ",discard");
1110 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1111 		seq_puts(seq, ",discard=async");
1112 	if (!(info->sb->s_flags & SB_POSIXACL))
1113 		seq_puts(seq, ",noacl");
1114 	if (btrfs_free_space_cache_v1_active(info))
1115 		seq_puts(seq, ",space_cache");
1116 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1117 		seq_puts(seq, ",space_cache=v2");
1118 	else
1119 		seq_puts(seq, ",nospace_cache");
1120 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1121 		seq_puts(seq, ",rescan_uuid_tree");
1122 	if (btrfs_test_opt(info, CLEAR_CACHE))
1123 		seq_puts(seq, ",clear_cache");
1124 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1125 		seq_puts(seq, ",user_subvol_rm_allowed");
1126 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1127 		seq_puts(seq, ",enospc_debug");
1128 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1129 		seq_puts(seq, ",autodefrag");
1130 	if (btrfs_test_opt(info, SKIP_BALANCE))
1131 		seq_puts(seq, ",skip_balance");
1132 	if (info->metadata_ratio)
1133 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1134 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1135 		seq_puts(seq, ",fatal_errors=panic");
1136 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1137 		seq_printf(seq, ",commit=%u", info->commit_interval);
1138 #ifdef CONFIG_BTRFS_DEBUG
1139 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1140 		seq_puts(seq, ",fragment=data");
1141 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1142 		seq_puts(seq, ",fragment=metadata");
1143 #endif
1144 	if (btrfs_test_opt(info, REF_VERIFY))
1145 		seq_puts(seq, ",ref_verify");
1146 	seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1147 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1148 			btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1149 	if (!IS_ERR(subvol_name)) {
1150 		seq_show_option(seq, "subvol", subvol_name);
1151 		kfree(subvol_name);
1152 	}
1153 	return 0;
1154 }
1155 
1156 /*
1157  * subvolumes are identified by ino 256
1158  */
is_subvolume_inode(struct inode * inode)1159 static inline int is_subvolume_inode(struct inode *inode)
1160 {
1161 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1162 		return 1;
1163 	return 0;
1164 }
1165 
mount_subvol(const char * subvol_name,u64 subvol_objectid,struct vfsmount * mnt)1166 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1167 				   struct vfsmount *mnt)
1168 {
1169 	struct dentry *root;
1170 	int ret;
1171 
1172 	if (!subvol_name) {
1173 		if (!subvol_objectid) {
1174 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1175 							  &subvol_objectid);
1176 			if (ret) {
1177 				root = ERR_PTR(ret);
1178 				goto out;
1179 			}
1180 		}
1181 		subvol_name = btrfs_get_subvol_name_from_objectid(
1182 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1183 		if (IS_ERR(subvol_name)) {
1184 			root = ERR_CAST(subvol_name);
1185 			subvol_name = NULL;
1186 			goto out;
1187 		}
1188 
1189 	}
1190 
1191 	root = mount_subtree(mnt, subvol_name);
1192 	/* mount_subtree() drops our reference on the vfsmount. */
1193 	mnt = NULL;
1194 
1195 	if (!IS_ERR(root)) {
1196 		struct super_block *s = root->d_sb;
1197 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1198 		struct inode *root_inode = d_inode(root);
1199 		u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1200 
1201 		ret = 0;
1202 		if (!is_subvolume_inode(root_inode)) {
1203 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1204 			       subvol_name);
1205 			ret = -EINVAL;
1206 		}
1207 		if (subvol_objectid && root_objectid != subvol_objectid) {
1208 			/*
1209 			 * This will also catch a race condition where a
1210 			 * subvolume which was passed by ID is renamed and
1211 			 * another subvolume is renamed over the old location.
1212 			 */
1213 			btrfs_err(fs_info,
1214 				  "subvol '%s' does not match subvolid %llu",
1215 				  subvol_name, subvol_objectid);
1216 			ret = -EINVAL;
1217 		}
1218 		if (ret) {
1219 			dput(root);
1220 			root = ERR_PTR(ret);
1221 			deactivate_locked_super(s);
1222 		}
1223 	}
1224 
1225 out:
1226 	mntput(mnt);
1227 	kfree(subvol_name);
1228 	return root;
1229 }
1230 
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1231 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1232 				     u32 new_pool_size, u32 old_pool_size)
1233 {
1234 	if (new_pool_size == old_pool_size)
1235 		return;
1236 
1237 	fs_info->thread_pool_size = new_pool_size;
1238 
1239 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1240 	       old_pool_size, new_pool_size);
1241 
1242 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1243 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1244 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1245 	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1246 	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1247 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1248 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1249 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1250 }
1251 
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long long old_opts,int flags)1252 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1253 				       unsigned long long old_opts, int flags)
1254 {
1255 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1256 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1257 	     (flags & SB_RDONLY))) {
1258 		/* wait for any defraggers to finish */
1259 		wait_event(fs_info->transaction_wait,
1260 			   (atomic_read(&fs_info->defrag_running) == 0));
1261 		if (flags & SB_RDONLY)
1262 			sync_filesystem(fs_info->sb);
1263 	}
1264 }
1265 
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long long old_opts)1266 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1267 					 unsigned long long old_opts)
1268 {
1269 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1270 
1271 	/*
1272 	 * We need to cleanup all defragable inodes if the autodefragment is
1273 	 * close or the filesystem is read only.
1274 	 */
1275 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1276 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1277 		btrfs_cleanup_defrag_inodes(fs_info);
1278 	}
1279 
1280 	/* If we toggled discard async */
1281 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1282 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1283 		btrfs_discard_resume(fs_info);
1284 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1285 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1286 		btrfs_discard_cleanup(fs_info);
1287 
1288 	/* If we toggled space cache */
1289 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1290 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1291 }
1292 
btrfs_remount_rw(struct btrfs_fs_info * fs_info)1293 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1294 {
1295 	int ret;
1296 
1297 	if (BTRFS_FS_ERROR(fs_info)) {
1298 		btrfs_err(fs_info,
1299 			  "remounting read-write after error is not allowed");
1300 		return -EINVAL;
1301 	}
1302 
1303 	if (fs_info->fs_devices->rw_devices == 0)
1304 		return -EACCES;
1305 
1306 	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1307 		btrfs_warn(fs_info,
1308 			   "too many missing devices, writable remount is not allowed");
1309 		return -EACCES;
1310 	}
1311 
1312 	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1313 		btrfs_warn(fs_info,
1314 			   "mount required to replay tree-log, cannot remount read-write");
1315 		return -EINVAL;
1316 	}
1317 
1318 	/*
1319 	 * NOTE: when remounting with a change that does writes, don't put it
1320 	 * anywhere above this point, as we are not sure to be safe to write
1321 	 * until we pass the above checks.
1322 	 */
1323 	ret = btrfs_start_pre_rw_mount(fs_info);
1324 	if (ret)
1325 		return ret;
1326 
1327 	btrfs_clear_sb_rdonly(fs_info->sb);
1328 
1329 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1330 
1331 	/*
1332 	 * If we've gone from readonly -> read-write, we need to get our
1333 	 * sync/async discard lists in the right state.
1334 	 */
1335 	btrfs_discard_resume(fs_info);
1336 
1337 	return 0;
1338 }
1339 
btrfs_remount_ro(struct btrfs_fs_info * fs_info)1340 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1341 {
1342 	/*
1343 	 * This also happens on 'umount -rf' or on shutdown, when the
1344 	 * filesystem is busy.
1345 	 */
1346 	cancel_work_sync(&fs_info->async_reclaim_work);
1347 	cancel_work_sync(&fs_info->async_data_reclaim_work);
1348 
1349 	btrfs_discard_cleanup(fs_info);
1350 
1351 	/* Wait for the uuid_scan task to finish */
1352 	down(&fs_info->uuid_tree_rescan_sem);
1353 	/* Avoid complains from lockdep et al. */
1354 	up(&fs_info->uuid_tree_rescan_sem);
1355 
1356 	btrfs_set_sb_rdonly(fs_info->sb);
1357 
1358 	/*
1359 	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1360 	 * loop if it's already active.  If it's already asleep, we'll leave
1361 	 * unused block groups on disk until we're mounted read-write again
1362 	 * unless we clean them up here.
1363 	 */
1364 	btrfs_delete_unused_bgs(fs_info);
1365 
1366 	/*
1367 	 * The cleaner task could be already running before we set the flag
1368 	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1369 	 * sure that after we finish the remount, i.e. after we call
1370 	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1371 	 * - either because it was dropping a dead root, running delayed iputs
1372 	 *   or deleting an unused block group (the cleaner picked a block
1373 	 *   group from the list of unused block groups before we were able to
1374 	 *   in the previous call to btrfs_delete_unused_bgs()).
1375 	 */
1376 	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1377 
1378 	/*
1379 	 * We've set the superblock to RO mode, so we might have made the
1380 	 * cleaner task sleep without running all pending delayed iputs. Go
1381 	 * through all the delayed iputs here, so that if an unmount happens
1382 	 * without remounting RW we don't end up at finishing close_ctree()
1383 	 * with a non-empty list of delayed iputs.
1384 	 */
1385 	btrfs_run_delayed_iputs(fs_info);
1386 
1387 	btrfs_dev_replace_suspend_for_unmount(fs_info);
1388 	btrfs_scrub_cancel(fs_info);
1389 	btrfs_pause_balance(fs_info);
1390 
1391 	/*
1392 	 * Pause the qgroup rescan worker if it is running. We don't want it to
1393 	 * be still running after we are in RO mode, as after that, by the time
1394 	 * we unmount, it might have left a transaction open, so we would leak
1395 	 * the transaction and/or crash.
1396 	 */
1397 	btrfs_qgroup_wait_for_completion(fs_info, false);
1398 
1399 	return btrfs_commit_super(fs_info);
1400 }
1401 
btrfs_ctx_to_info(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1402 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1403 {
1404 	fs_info->max_inline = ctx->max_inline;
1405 	fs_info->commit_interval = ctx->commit_interval;
1406 	fs_info->metadata_ratio = ctx->metadata_ratio;
1407 	fs_info->thread_pool_size = ctx->thread_pool_size;
1408 	fs_info->mount_opt = ctx->mount_opt;
1409 	fs_info->compress_type = ctx->compress_type;
1410 	fs_info->compress_level = ctx->compress_level;
1411 }
1412 
btrfs_info_to_ctx(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1413 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1414 {
1415 	ctx->max_inline = fs_info->max_inline;
1416 	ctx->commit_interval = fs_info->commit_interval;
1417 	ctx->metadata_ratio = fs_info->metadata_ratio;
1418 	ctx->thread_pool_size = fs_info->thread_pool_size;
1419 	ctx->mount_opt = fs_info->mount_opt;
1420 	ctx->compress_type = fs_info->compress_type;
1421 	ctx->compress_level = fs_info->compress_level;
1422 }
1423 
1424 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1425 do {										\
1426 	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1427 	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1428 		btrfs_info(fs_info, fmt, ##args);				\
1429 } while (0)
1430 
1431 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1432 do {									\
1433 	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1434 	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1435 		btrfs_info(fs_info, fmt, ##args);			\
1436 } while (0)
1437 
btrfs_emit_options(struct btrfs_fs_info * info,struct btrfs_fs_context * old)1438 static void btrfs_emit_options(struct btrfs_fs_info *info,
1439 			       struct btrfs_fs_context *old)
1440 {
1441 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1442 	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1443 	btrfs_info_if_set(info, old, NODATACOW, "setting nodatacow");
1444 	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1445 	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1446 	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1447 	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1448 	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1449 	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1450 	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1451 	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1452 	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1453 	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1454 	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1455 	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1456 	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1457 	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1458 	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1459 	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1460 	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1461 	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1462 	btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
1463 	btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
1464 
1465 	btrfs_info_if_unset(info, old, NODATASUM, "setting datasum");
1466 	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1467 	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1468 	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1469 	btrfs_info_if_unset(info, old, NOBARRIER, "turning on barriers");
1470 	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1471 	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1472 	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1473 	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1474 	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1475 
1476 	/* Did the compression settings change? */
1477 	if (btrfs_test_opt(info, COMPRESS) &&
1478 	    (!old ||
1479 	     old->compress_type != info->compress_type ||
1480 	     old->compress_level != info->compress_level ||
1481 	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1482 	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1483 		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1484 
1485 		btrfs_info(info, "%s %s compression, level %d",
1486 			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1487 			   compress_type, info->compress_level);
1488 	}
1489 
1490 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1491 		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1492 }
1493 
btrfs_reconfigure(struct fs_context * fc)1494 static int btrfs_reconfigure(struct fs_context *fc)
1495 {
1496 	struct super_block *sb = fc->root->d_sb;
1497 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1498 	struct btrfs_fs_context *ctx = fc->fs_private;
1499 	struct btrfs_fs_context old_ctx;
1500 	int ret = 0;
1501 	bool mount_reconfigure = (fc->s_fs_info != NULL);
1502 
1503 	btrfs_info_to_ctx(fs_info, &old_ctx);
1504 
1505 	/*
1506 	 * This is our "bind mount" trick, we don't want to allow the user to do
1507 	 * anything other than mount a different ro/rw and a different subvol,
1508 	 * all of the mount options should be maintained.
1509 	 */
1510 	if (mount_reconfigure)
1511 		ctx->mount_opt = old_ctx.mount_opt;
1512 
1513 	sync_filesystem(sb);
1514 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1515 
1516 	if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1517 		return -EINVAL;
1518 
1519 	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1520 	if (ret < 0)
1521 		return ret;
1522 
1523 	btrfs_ctx_to_info(fs_info, ctx);
1524 	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1525 	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1526 				 old_ctx.thread_pool_size);
1527 
1528 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1529 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1530 	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1531 		btrfs_warn(fs_info,
1532 		"remount supports changing free space tree only from RO to RW");
1533 		/* Make sure free space cache options match the state on disk. */
1534 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1535 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1536 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1537 		}
1538 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1539 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1540 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1541 		}
1542 	}
1543 
1544 	ret = 0;
1545 	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1546 		ret = btrfs_remount_ro(fs_info);
1547 	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1548 		ret = btrfs_remount_rw(fs_info);
1549 	if (ret)
1550 		goto restore;
1551 
1552 	/*
1553 	 * If we set the mask during the parameter parsing VFS would reject the
1554 	 * remount.  Here we can set the mask and the value will be updated
1555 	 * appropriately.
1556 	 */
1557 	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1558 		fc->sb_flags_mask |= SB_POSIXACL;
1559 
1560 	btrfs_emit_options(fs_info, &old_ctx);
1561 	wake_up_process(fs_info->transaction_kthread);
1562 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1563 	btrfs_clear_oneshot_options(fs_info);
1564 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1565 
1566 	return 0;
1567 restore:
1568 	btrfs_ctx_to_info(fs_info, &old_ctx);
1569 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1570 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1571 	return ret;
1572 }
1573 
1574 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * a,const void * b)1575 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1576 {
1577 	const struct btrfs_device_info *dev_info1 = a;
1578 	const struct btrfs_device_info *dev_info2 = b;
1579 
1580 	if (dev_info1->max_avail > dev_info2->max_avail)
1581 		return -1;
1582 	else if (dev_info1->max_avail < dev_info2->max_avail)
1583 		return 1;
1584 	return 0;
1585 }
1586 
1587 /*
1588  * sort the devices by max_avail, in which max free extent size of each device
1589  * is stored.(Descending Sort)
1590  */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)1591 static inline void btrfs_descending_sort_devices(
1592 					struct btrfs_device_info *devices,
1593 					size_t nr_devices)
1594 {
1595 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1596 	     btrfs_cmp_device_free_bytes, NULL);
1597 }
1598 
1599 /*
1600  * The helper to calc the free space on the devices that can be used to store
1601  * file data.
1602  */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)1603 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1604 					      u64 *free_bytes)
1605 {
1606 	struct btrfs_device_info *devices_info;
1607 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1608 	struct btrfs_device *device;
1609 	u64 type;
1610 	u64 avail_space;
1611 	u64 min_stripe_size;
1612 	int num_stripes = 1;
1613 	int i = 0, nr_devices;
1614 	const struct btrfs_raid_attr *rattr;
1615 
1616 	/*
1617 	 * We aren't under the device list lock, so this is racy-ish, but good
1618 	 * enough for our purposes.
1619 	 */
1620 	nr_devices = fs_info->fs_devices->open_devices;
1621 	if (!nr_devices) {
1622 		smp_mb();
1623 		nr_devices = fs_info->fs_devices->open_devices;
1624 		ASSERT(nr_devices);
1625 		if (!nr_devices) {
1626 			*free_bytes = 0;
1627 			return 0;
1628 		}
1629 	}
1630 
1631 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1632 			       GFP_KERNEL);
1633 	if (!devices_info)
1634 		return -ENOMEM;
1635 
1636 	/* calc min stripe number for data space allocation */
1637 	type = btrfs_data_alloc_profile(fs_info);
1638 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1639 
1640 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1641 		num_stripes = nr_devices;
1642 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1643 		num_stripes = rattr->ncopies;
1644 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1645 		num_stripes = 4;
1646 
1647 	/* Adjust for more than 1 stripe per device */
1648 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1649 
1650 	rcu_read_lock();
1651 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1652 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1653 						&device->dev_state) ||
1654 		    !device->bdev ||
1655 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1656 			continue;
1657 
1658 		if (i >= nr_devices)
1659 			break;
1660 
1661 		avail_space = device->total_bytes - device->bytes_used;
1662 
1663 		/* align with stripe_len */
1664 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1665 
1666 		/*
1667 		 * Ensure we have at least min_stripe_size on top of the
1668 		 * reserved space on the device.
1669 		 */
1670 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1671 			continue;
1672 
1673 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1674 
1675 		devices_info[i].dev = device;
1676 		devices_info[i].max_avail = avail_space;
1677 
1678 		i++;
1679 	}
1680 	rcu_read_unlock();
1681 
1682 	nr_devices = i;
1683 
1684 	btrfs_descending_sort_devices(devices_info, nr_devices);
1685 
1686 	i = nr_devices - 1;
1687 	avail_space = 0;
1688 	while (nr_devices >= rattr->devs_min) {
1689 		num_stripes = min(num_stripes, nr_devices);
1690 
1691 		if (devices_info[i].max_avail >= min_stripe_size) {
1692 			int j;
1693 			u64 alloc_size;
1694 
1695 			avail_space += devices_info[i].max_avail * num_stripes;
1696 			alloc_size = devices_info[i].max_avail;
1697 			for (j = i + 1 - num_stripes; j <= i; j++)
1698 				devices_info[j].max_avail -= alloc_size;
1699 		}
1700 		i--;
1701 		nr_devices--;
1702 	}
1703 
1704 	kfree(devices_info);
1705 	*free_bytes = avail_space;
1706 	return 0;
1707 }
1708 
1709 /*
1710  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1711  *
1712  * If there's a redundant raid level at DATA block groups, use the respective
1713  * multiplier to scale the sizes.
1714  *
1715  * Unused device space usage is based on simulating the chunk allocator
1716  * algorithm that respects the device sizes and order of allocations.  This is
1717  * a close approximation of the actual use but there are other factors that may
1718  * change the result (like a new metadata chunk).
1719  *
1720  * If metadata is exhausted, f_bavail will be 0.
1721  */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)1722 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1723 {
1724 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1725 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1726 	struct btrfs_space_info *found;
1727 	u64 total_used = 0;
1728 	u64 total_free_data = 0;
1729 	u64 total_free_meta = 0;
1730 	u32 bits = fs_info->sectorsize_bits;
1731 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1732 	unsigned factor = 1;
1733 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1734 	int ret;
1735 	u64 thresh = 0;
1736 	int mixed = 0;
1737 
1738 	list_for_each_entry(found, &fs_info->space_info, list) {
1739 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1740 			int i;
1741 
1742 			total_free_data += found->disk_total - found->disk_used;
1743 			total_free_data -=
1744 				btrfs_account_ro_block_groups_free_space(found);
1745 
1746 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1747 				if (!list_empty(&found->block_groups[i]))
1748 					factor = btrfs_bg_type_to_factor(
1749 						btrfs_raid_array[i].bg_flag);
1750 			}
1751 		}
1752 
1753 		/*
1754 		 * Metadata in mixed block group profiles are accounted in data
1755 		 */
1756 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1757 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1758 				mixed = 1;
1759 			else
1760 				total_free_meta += found->disk_total -
1761 					found->disk_used;
1762 		}
1763 
1764 		total_used += found->disk_used;
1765 	}
1766 
1767 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1768 	buf->f_blocks >>= bits;
1769 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1770 
1771 	/* Account global block reserve as used, it's in logical size already */
1772 	spin_lock(&block_rsv->lock);
1773 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1774 	if (buf->f_bfree >= block_rsv->size >> bits)
1775 		buf->f_bfree -= block_rsv->size >> bits;
1776 	else
1777 		buf->f_bfree = 0;
1778 	spin_unlock(&block_rsv->lock);
1779 
1780 	buf->f_bavail = div_u64(total_free_data, factor);
1781 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1782 	if (ret)
1783 		return ret;
1784 	buf->f_bavail += div_u64(total_free_data, factor);
1785 	buf->f_bavail = buf->f_bavail >> bits;
1786 
1787 	/*
1788 	 * We calculate the remaining metadata space minus global reserve. If
1789 	 * this is (supposedly) smaller than zero, there's no space. But this
1790 	 * does not hold in practice, the exhausted state happens where's still
1791 	 * some positive delta. So we apply some guesswork and compare the
1792 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1793 	 *
1794 	 * We probably cannot calculate the exact threshold value because this
1795 	 * depends on the internal reservations requested by various
1796 	 * operations, so some operations that consume a few metadata will
1797 	 * succeed even if the Avail is zero. But this is better than the other
1798 	 * way around.
1799 	 */
1800 	thresh = SZ_4M;
1801 
1802 	/*
1803 	 * We only want to claim there's no available space if we can no longer
1804 	 * allocate chunks for our metadata profile and our global reserve will
1805 	 * not fit in the free metadata space.  If we aren't ->full then we
1806 	 * still can allocate chunks and thus are fine using the currently
1807 	 * calculated f_bavail.
1808 	 */
1809 	if (!mixed && block_rsv->space_info->full &&
1810 	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1811 		buf->f_bavail = 0;
1812 
1813 	buf->f_type = BTRFS_SUPER_MAGIC;
1814 	buf->f_bsize = fs_info->sectorsize;
1815 	buf->f_namelen = BTRFS_NAME_LEN;
1816 
1817 	/* We treat it as constant endianness (it doesn't matter _which_)
1818 	   because we want the fsid to come out the same whether mounted
1819 	   on a big-endian or little-endian host */
1820 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1821 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1822 	/* Mask in the root object ID too, to disambiguate subvols */
1823 	buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1824 	buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1825 
1826 	return 0;
1827 }
1828 
btrfs_fc_test_super(struct super_block * sb,struct fs_context * fc)1829 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1830 {
1831 	struct btrfs_fs_info *p = fc->s_fs_info;
1832 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1833 
1834 	return fs_info->fs_devices == p->fs_devices;
1835 }
1836 
btrfs_get_tree_super(struct fs_context * fc)1837 static int btrfs_get_tree_super(struct fs_context *fc)
1838 {
1839 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1840 	struct btrfs_fs_context *ctx = fc->fs_private;
1841 	struct btrfs_fs_devices *fs_devices = NULL;
1842 	struct block_device *bdev;
1843 	struct btrfs_device *device;
1844 	struct super_block *sb;
1845 	blk_mode_t mode = btrfs_open_mode(fc);
1846 	int ret;
1847 
1848 	btrfs_ctx_to_info(fs_info, ctx);
1849 	mutex_lock(&uuid_mutex);
1850 
1851 	/*
1852 	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1853 	 * either a valid device or an error.
1854 	 */
1855 	device = btrfs_scan_one_device(fc->source, mode, true);
1856 	ASSERT(device != NULL);
1857 	if (IS_ERR(device)) {
1858 		mutex_unlock(&uuid_mutex);
1859 		return PTR_ERR(device);
1860 	}
1861 
1862 	fs_devices = device->fs_devices;
1863 	fs_info->fs_devices = fs_devices;
1864 
1865 	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1866 	mutex_unlock(&uuid_mutex);
1867 	if (ret)
1868 		return ret;
1869 
1870 	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1871 		ret = -EACCES;
1872 		goto error;
1873 	}
1874 
1875 	bdev = fs_devices->latest_dev->bdev;
1876 
1877 	/*
1878 	 * From now on the error handling is not straightforward.
1879 	 *
1880 	 * If successful, this will transfer the fs_info into the super block,
1881 	 * and fc->s_fs_info will be NULL.  However if there's an existing
1882 	 * super, we'll still have fc->s_fs_info populated.  If we error
1883 	 * completely out it'll be cleaned up when we drop the fs_context,
1884 	 * otherwise it's tied to the lifetime of the super_block.
1885 	 */
1886 	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1887 	if (IS_ERR(sb)) {
1888 		ret = PTR_ERR(sb);
1889 		goto error;
1890 	}
1891 
1892 	set_device_specific_options(fs_info);
1893 
1894 	if (sb->s_root) {
1895 		btrfs_close_devices(fs_devices);
1896 		/*
1897 		 * At this stage we may have RO flag mismatch between
1898 		 * fc->sb_flags and sb->s_flags.  Caller should detect such
1899 		 * mismatch and reconfigure with sb->s_umount rwsem held if
1900 		 * needed.
1901 		 */
1902 	} else {
1903 		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1904 		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1905 		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1906 		ret = btrfs_fill_super(sb, fs_devices);
1907 		if (ret) {
1908 			deactivate_locked_super(sb);
1909 			return ret;
1910 		}
1911 	}
1912 
1913 	btrfs_clear_oneshot_options(fs_info);
1914 
1915 	fc->root = dget(sb->s_root);
1916 	return 0;
1917 
1918 error:
1919 	btrfs_close_devices(fs_devices);
1920 	return ret;
1921 }
1922 
1923 /*
1924  * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1925  * with different ro/rw options") the following works:
1926  *
1927  *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1928  *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1929  *
1930  * which looks nice and innocent but is actually pretty intricate and deserves
1931  * a long comment.
1932  *
1933  * On another filesystem a subvolume mount is close to something like:
1934  *
1935  *	(iii) # create rw superblock + initial mount
1936  *	      mount -t xfs /dev/sdb /opt/
1937  *
1938  *	      # create ro bind mount
1939  *	      mount --bind -o ro /opt/foo /mnt/foo
1940  *
1941  *	      # unmount initial mount
1942  *	      umount /opt
1943  *
1944  * Of course, there's some special subvolume sauce and there's the fact that the
1945  * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1946  * it's very close and will help us understand the issue.
1947  *
1948  * The old mount API didn't cleanly distinguish between a mount being made ro
1949  * and a superblock being made ro.  The only way to change the ro state of
1950  * either object was by passing ms_rdonly. If a new mount was created via
1951  * mount(2) such as:
1952  *
1953  *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1954  *
1955  * the MS_RDONLY flag being specified had two effects:
1956  *
1957  * (1) MNT_READONLY was raised -> the resulting mount got
1958  *     @mnt->mnt_flags |= MNT_READONLY raised.
1959  *
1960  * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1961  *     made the superblock ro. Note, how SB_RDONLY has the same value as
1962  *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1963  *
1964  * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1965  * subtree mounted ro.
1966  *
1967  * But consider the effect on the old mount API on btrfs subvolume mounting
1968  * which combines the distinct step in (iii) into a single step.
1969  *
1970  * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1971  * is issued the superblock is ro and thus even if the mount created for (ii) is
1972  * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1973  * to rw for (ii) which it did using an internal remount call.
1974  *
1975  * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1976  * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1977  * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1978  * passed by mount(8) to mount(2).
1979  *
1980  * Enter the new mount API. The new mount API disambiguates making a mount ro
1981  * and making a superblock ro.
1982  *
1983  * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1984  *     fsmount() or mount_setattr() this is a pure VFS level change for a
1985  *     specific mount or mount tree that is never seen by the filesystem itself.
1986  *
1987  * (4) To turn a superblock ro the "ro" flag must be used with
1988  *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1989  *     in fc->sb_flags.
1990  *
1991  * But, currently the util-linux mount command already utilizes the new mount
1992  * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's
1993  * btrfs or not, setting the whole super block RO.  To make per-subvolume mounting
1994  * work with different options work we need to keep backward compatibility.
1995  */
btrfs_reconfigure_for_mount(struct fs_context * fc,struct vfsmount * mnt)1996 static int btrfs_reconfigure_for_mount(struct fs_context *fc, struct vfsmount *mnt)
1997 {
1998 	int ret = 0;
1999 
2000 	if (fc->sb_flags & SB_RDONLY)
2001 		return ret;
2002 
2003 	down_write(&mnt->mnt_sb->s_umount);
2004 	if (!(fc->sb_flags & SB_RDONLY) && (mnt->mnt_sb->s_flags & SB_RDONLY))
2005 		ret = btrfs_reconfigure(fc);
2006 	up_write(&mnt->mnt_sb->s_umount);
2007 	return ret;
2008 }
2009 
btrfs_get_tree_subvol(struct fs_context * fc)2010 static int btrfs_get_tree_subvol(struct fs_context *fc)
2011 {
2012 	struct btrfs_fs_info *fs_info = NULL;
2013 	struct btrfs_fs_context *ctx = fc->fs_private;
2014 	struct fs_context *dup_fc;
2015 	struct dentry *dentry;
2016 	struct vfsmount *mnt;
2017 	int ret = 0;
2018 
2019 	/*
2020 	 * Setup a dummy root and fs_info for test/set super.  This is because
2021 	 * we don't actually fill this stuff out until open_ctree, but we need
2022 	 * then open_ctree will properly initialize the file system specific
2023 	 * settings later.  btrfs_init_fs_info initializes the static elements
2024 	 * of the fs_info (locks and such) to make cleanup easier if we find a
2025 	 * superblock with our given fs_devices later on at sget() time.
2026 	 */
2027 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2028 	if (!fs_info)
2029 		return -ENOMEM;
2030 
2031 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2032 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2033 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2034 		btrfs_free_fs_info(fs_info);
2035 		return -ENOMEM;
2036 	}
2037 	btrfs_init_fs_info(fs_info);
2038 
2039 	dup_fc = vfs_dup_fs_context(fc);
2040 	if (IS_ERR(dup_fc)) {
2041 		btrfs_free_fs_info(fs_info);
2042 		return PTR_ERR(dup_fc);
2043 	}
2044 
2045 	/*
2046 	 * When we do the sget_fc this gets transferred to the sb, so we only
2047 	 * need to set it on the dup_fc as this is what creates the super block.
2048 	 */
2049 	dup_fc->s_fs_info = fs_info;
2050 
2051 	/*
2052 	 * We'll do the security settings in our btrfs_get_tree_super() mount
2053 	 * loop, they were duplicated into dup_fc, we can drop the originals
2054 	 * here.
2055 	 */
2056 	security_free_mnt_opts(&fc->security);
2057 	fc->security = NULL;
2058 
2059 	mnt = fc_mount(dup_fc);
2060 	if (IS_ERR(mnt)) {
2061 		put_fs_context(dup_fc);
2062 		return PTR_ERR(mnt);
2063 	}
2064 	ret = btrfs_reconfigure_for_mount(dup_fc, mnt);
2065 	put_fs_context(dup_fc);
2066 	if (ret) {
2067 		mntput(mnt);
2068 		return ret;
2069 	}
2070 
2071 	/*
2072 	 * This free's ->subvol_name, because if it isn't set we have to
2073 	 * allocate a buffer to hold the subvol_name, so we just drop our
2074 	 * reference to it here.
2075 	 */
2076 	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2077 	ctx->subvol_name = NULL;
2078 	if (IS_ERR(dentry))
2079 		return PTR_ERR(dentry);
2080 
2081 	fc->root = dentry;
2082 	return 0;
2083 }
2084 
btrfs_get_tree(struct fs_context * fc)2085 static int btrfs_get_tree(struct fs_context *fc)
2086 {
2087 	/*
2088 	 * Since we use mount_subtree to mount the default/specified subvol, we
2089 	 * have to do mounts in two steps.
2090 	 *
2091 	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2092 	 * wrapper around fc_mount() to call back into here again, and this time
2093 	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2094 	 * everything to open the devices and file system.  Then we return back
2095 	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2096 	 * from there we can do our mount_subvol() call, which will lookup
2097 	 * whichever subvol we're mounting and setup this fc with the
2098 	 * appropriate dentry for the subvol.
2099 	 */
2100 	if (fc->s_fs_info)
2101 		return btrfs_get_tree_super(fc);
2102 	return btrfs_get_tree_subvol(fc);
2103 }
2104 
btrfs_kill_super(struct super_block * sb)2105 static void btrfs_kill_super(struct super_block *sb)
2106 {
2107 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2108 	kill_anon_super(sb);
2109 	btrfs_free_fs_info(fs_info);
2110 }
2111 
btrfs_free_fs_context(struct fs_context * fc)2112 static void btrfs_free_fs_context(struct fs_context *fc)
2113 {
2114 	struct btrfs_fs_context *ctx = fc->fs_private;
2115 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2116 
2117 	if (fs_info)
2118 		btrfs_free_fs_info(fs_info);
2119 
2120 	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2121 		kfree(ctx->subvol_name);
2122 		kfree(ctx);
2123 	}
2124 }
2125 
btrfs_dup_fs_context(struct fs_context * fc,struct fs_context * src_fc)2126 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2127 {
2128 	struct btrfs_fs_context *ctx = src_fc->fs_private;
2129 
2130 	/*
2131 	 * Give a ref to our ctx to this dup, as we want to keep it around for
2132 	 * our original fc so we can have the subvolume name or objectid.
2133 	 *
2134 	 * We unset ->source in the original fc because the dup needs it for
2135 	 * mounting, and then once we free the dup it'll free ->source, so we
2136 	 * need to make sure we're only pointing to it in one fc.
2137 	 */
2138 	refcount_inc(&ctx->refs);
2139 	fc->fs_private = ctx;
2140 	fc->source = src_fc->source;
2141 	src_fc->source = NULL;
2142 	return 0;
2143 }
2144 
2145 static const struct fs_context_operations btrfs_fs_context_ops = {
2146 	.parse_param	= btrfs_parse_param,
2147 	.reconfigure	= btrfs_reconfigure,
2148 	.get_tree	= btrfs_get_tree,
2149 	.dup		= btrfs_dup_fs_context,
2150 	.free		= btrfs_free_fs_context,
2151 };
2152 
btrfs_init_fs_context(struct fs_context * fc)2153 static int btrfs_init_fs_context(struct fs_context *fc)
2154 {
2155 	struct btrfs_fs_context *ctx;
2156 
2157 	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2158 	if (!ctx)
2159 		return -ENOMEM;
2160 
2161 	refcount_set(&ctx->refs, 1);
2162 	fc->fs_private = ctx;
2163 	fc->ops = &btrfs_fs_context_ops;
2164 
2165 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2166 		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2167 	} else {
2168 		ctx->thread_pool_size =
2169 			min_t(unsigned long, num_online_cpus() + 2, 8);
2170 		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2171 		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2172 	}
2173 
2174 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2175 	fc->sb_flags |= SB_POSIXACL;
2176 #endif
2177 	fc->sb_flags |= SB_I_VERSION;
2178 
2179 	return 0;
2180 }
2181 
2182 static struct file_system_type btrfs_fs_type = {
2183 	.owner			= THIS_MODULE,
2184 	.name			= "btrfs",
2185 	.init_fs_context	= btrfs_init_fs_context,
2186 	.parameters		= btrfs_fs_parameters,
2187 	.kill_sb		= btrfs_kill_super,
2188 	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2189  };
2190 
2191 MODULE_ALIAS_FS("btrfs");
2192 
btrfs_control_open(struct inode * inode,struct file * file)2193 static int btrfs_control_open(struct inode *inode, struct file *file)
2194 {
2195 	/*
2196 	 * The control file's private_data is used to hold the
2197 	 * transaction when it is started and is used to keep
2198 	 * track of whether a transaction is already in progress.
2199 	 */
2200 	file->private_data = NULL;
2201 	return 0;
2202 }
2203 
2204 /*
2205  * Used by /dev/btrfs-control for devices ioctls.
2206  */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2207 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2208 				unsigned long arg)
2209 {
2210 	struct btrfs_ioctl_vol_args *vol;
2211 	struct btrfs_device *device = NULL;
2212 	dev_t devt = 0;
2213 	int ret = -ENOTTY;
2214 
2215 	if (!capable(CAP_SYS_ADMIN))
2216 		return -EPERM;
2217 
2218 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2219 	if (IS_ERR(vol))
2220 		return PTR_ERR(vol);
2221 	ret = btrfs_check_ioctl_vol_args_path(vol);
2222 	if (ret < 0)
2223 		goto out;
2224 
2225 	switch (cmd) {
2226 	case BTRFS_IOC_SCAN_DEV:
2227 		mutex_lock(&uuid_mutex);
2228 		/*
2229 		 * Scanning outside of mount can return NULL which would turn
2230 		 * into 0 error code.
2231 		 */
2232 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2233 		ret = PTR_ERR_OR_ZERO(device);
2234 		mutex_unlock(&uuid_mutex);
2235 		break;
2236 	case BTRFS_IOC_FORGET_DEV:
2237 		if (vol->name[0] != 0) {
2238 			ret = lookup_bdev(vol->name, &devt);
2239 			if (ret)
2240 				break;
2241 		}
2242 		ret = btrfs_forget_devices(devt);
2243 		break;
2244 	case BTRFS_IOC_DEVICES_READY:
2245 		mutex_lock(&uuid_mutex);
2246 		/*
2247 		 * Scanning outside of mount can return NULL which would turn
2248 		 * into 0 error code.
2249 		 */
2250 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2251 		if (IS_ERR_OR_NULL(device)) {
2252 			mutex_unlock(&uuid_mutex);
2253 			ret = PTR_ERR(device);
2254 			break;
2255 		}
2256 		ret = !(device->fs_devices->num_devices ==
2257 			device->fs_devices->total_devices);
2258 		mutex_unlock(&uuid_mutex);
2259 		break;
2260 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2261 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2262 		break;
2263 	}
2264 
2265 out:
2266 	kfree(vol);
2267 	return ret;
2268 }
2269 
btrfs_freeze(struct super_block * sb)2270 static int btrfs_freeze(struct super_block *sb)
2271 {
2272 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2273 
2274 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2275 	/*
2276 	 * We don't need a barrier here, we'll wait for any transaction that
2277 	 * could be in progress on other threads (and do delayed iputs that
2278 	 * we want to avoid on a frozen filesystem), or do the commit
2279 	 * ourselves.
2280 	 */
2281 	return btrfs_commit_current_transaction(fs_info->tree_root);
2282 }
2283 
check_dev_super(struct btrfs_device * dev)2284 static int check_dev_super(struct btrfs_device *dev)
2285 {
2286 	struct btrfs_fs_info *fs_info = dev->fs_info;
2287 	struct btrfs_super_block *sb;
2288 	u64 last_trans;
2289 	u16 csum_type;
2290 	int ret = 0;
2291 
2292 	/* This should be called with fs still frozen. */
2293 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2294 
2295 	/* Missing dev, no need to check. */
2296 	if (!dev->bdev)
2297 		return 0;
2298 
2299 	/* Only need to check the primary super block. */
2300 	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2301 	if (IS_ERR(sb))
2302 		return PTR_ERR(sb);
2303 
2304 	/* Verify the checksum. */
2305 	csum_type = btrfs_super_csum_type(sb);
2306 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2307 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2308 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2309 		ret = -EUCLEAN;
2310 		goto out;
2311 	}
2312 
2313 	if (btrfs_check_super_csum(fs_info, sb)) {
2314 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2315 		ret = -EUCLEAN;
2316 		goto out;
2317 	}
2318 
2319 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2320 	ret = btrfs_validate_super(fs_info, sb, 0);
2321 	if (ret < 0)
2322 		goto out;
2323 
2324 	last_trans = btrfs_get_last_trans_committed(fs_info);
2325 	if (btrfs_super_generation(sb) != last_trans) {
2326 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2327 			  btrfs_super_generation(sb), last_trans);
2328 		ret = -EUCLEAN;
2329 		goto out;
2330 	}
2331 out:
2332 	btrfs_release_disk_super(sb);
2333 	return ret;
2334 }
2335 
btrfs_unfreeze(struct super_block * sb)2336 static int btrfs_unfreeze(struct super_block *sb)
2337 {
2338 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2339 	struct btrfs_device *device;
2340 	int ret = 0;
2341 
2342 	/*
2343 	 * Make sure the fs is not changed by accident (like hibernation then
2344 	 * modified by other OS).
2345 	 * If we found anything wrong, we mark the fs error immediately.
2346 	 *
2347 	 * And since the fs is frozen, no one can modify the fs yet, thus
2348 	 * we don't need to hold device_list_mutex.
2349 	 */
2350 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2351 		ret = check_dev_super(device);
2352 		if (ret < 0) {
2353 			btrfs_handle_fs_error(fs_info, ret,
2354 				"super block on devid %llu got modified unexpectedly",
2355 				device->devid);
2356 			break;
2357 		}
2358 	}
2359 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2360 
2361 	/*
2362 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2363 	 * above checks failed. Since the fs is either fine or read-only, we're
2364 	 * safe to continue, without causing further damage.
2365 	 */
2366 	return 0;
2367 }
2368 
btrfs_show_devname(struct seq_file * m,struct dentry * root)2369 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2370 {
2371 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2372 
2373 	/*
2374 	 * There should be always a valid pointer in latest_dev, it may be stale
2375 	 * for a short moment in case it's being deleted but still valid until
2376 	 * the end of RCU grace period.
2377 	 */
2378 	rcu_read_lock();
2379 	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2380 	rcu_read_unlock();
2381 
2382 	return 0;
2383 }
2384 
btrfs_nr_cached_objects(struct super_block * sb,struct shrink_control * sc)2385 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2386 {
2387 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2388 	const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2389 
2390 	trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2391 
2392 	/*
2393 	 * Only report the real number for DEBUG builds, as there are reports of
2394 	 * serious performance degradation caused by too frequent shrinks.
2395 	 */
2396 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG))
2397 		return nr;
2398 	return 0;
2399 }
2400 
btrfs_free_cached_objects(struct super_block * sb,struct shrink_control * sc)2401 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2402 {
2403 	const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2404 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2405 
2406 	btrfs_free_extent_maps(fs_info, nr_to_scan);
2407 
2408 	/* The extent map shrinker runs asynchronously, so always return 0. */
2409 	return 0;
2410 }
2411 
2412 static const struct super_operations btrfs_super_ops = {
2413 	.drop_inode	= btrfs_drop_inode,
2414 	.evict_inode	= btrfs_evict_inode,
2415 	.put_super	= btrfs_put_super,
2416 	.sync_fs	= btrfs_sync_fs,
2417 	.show_options	= btrfs_show_options,
2418 	.show_devname	= btrfs_show_devname,
2419 	.alloc_inode	= btrfs_alloc_inode,
2420 	.destroy_inode	= btrfs_destroy_inode,
2421 	.free_inode	= btrfs_free_inode,
2422 	.statfs		= btrfs_statfs,
2423 	.freeze_fs	= btrfs_freeze,
2424 	.unfreeze_fs	= btrfs_unfreeze,
2425 	.nr_cached_objects = btrfs_nr_cached_objects,
2426 	.free_cached_objects = btrfs_free_cached_objects,
2427 };
2428 
2429 static const struct file_operations btrfs_ctl_fops = {
2430 	.open = btrfs_control_open,
2431 	.unlocked_ioctl	 = btrfs_control_ioctl,
2432 	.compat_ioctl = compat_ptr_ioctl,
2433 	.owner	 = THIS_MODULE,
2434 	.llseek = noop_llseek,
2435 };
2436 
2437 static struct miscdevice btrfs_misc = {
2438 	.minor		= BTRFS_MINOR,
2439 	.name		= "btrfs-control",
2440 	.fops		= &btrfs_ctl_fops
2441 };
2442 
2443 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2444 MODULE_ALIAS("devname:btrfs-control");
2445 
btrfs_interface_init(void)2446 static int __init btrfs_interface_init(void)
2447 {
2448 	return misc_register(&btrfs_misc);
2449 }
2450 
btrfs_interface_exit(void)2451 static __cold void btrfs_interface_exit(void)
2452 {
2453 	misc_deregister(&btrfs_misc);
2454 }
2455 
btrfs_print_mod_info(void)2456 static int __init btrfs_print_mod_info(void)
2457 {
2458 	static const char options[] = ""
2459 #ifdef CONFIG_BTRFS_DEBUG
2460 			", debug=on"
2461 #endif
2462 #ifdef CONFIG_BTRFS_ASSERT
2463 			", assert=on"
2464 #endif
2465 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2466 			", ref-verify=on"
2467 #endif
2468 #ifdef CONFIG_BLK_DEV_ZONED
2469 			", zoned=yes"
2470 #else
2471 			", zoned=no"
2472 #endif
2473 #ifdef CONFIG_FS_VERITY
2474 			", fsverity=yes"
2475 #else
2476 			", fsverity=no"
2477 #endif
2478 			;
2479 	pr_info("Btrfs loaded%s\n", options);
2480 	return 0;
2481 }
2482 
register_btrfs(void)2483 static int register_btrfs(void)
2484 {
2485 	return register_filesystem(&btrfs_fs_type);
2486 }
2487 
unregister_btrfs(void)2488 static void unregister_btrfs(void)
2489 {
2490 	unregister_filesystem(&btrfs_fs_type);
2491 }
2492 
2493 /* Helper structure for long init/exit functions. */
2494 struct init_sequence {
2495 	int (*init_func)(void);
2496 	/* Can be NULL if the init_func doesn't need cleanup. */
2497 	void (*exit_func)(void);
2498 };
2499 
2500 static const struct init_sequence mod_init_seq[] = {
2501 	{
2502 		.init_func = btrfs_props_init,
2503 		.exit_func = NULL,
2504 	}, {
2505 		.init_func = btrfs_init_sysfs,
2506 		.exit_func = btrfs_exit_sysfs,
2507 	}, {
2508 		.init_func = btrfs_init_compress,
2509 		.exit_func = btrfs_exit_compress,
2510 	}, {
2511 		.init_func = btrfs_init_cachep,
2512 		.exit_func = btrfs_destroy_cachep,
2513 	}, {
2514 		.init_func = btrfs_init_dio,
2515 		.exit_func = btrfs_destroy_dio,
2516 	}, {
2517 		.init_func = btrfs_transaction_init,
2518 		.exit_func = btrfs_transaction_exit,
2519 	}, {
2520 		.init_func = btrfs_ctree_init,
2521 		.exit_func = btrfs_ctree_exit,
2522 	}, {
2523 		.init_func = btrfs_free_space_init,
2524 		.exit_func = btrfs_free_space_exit,
2525 	}, {
2526 		.init_func = extent_state_init_cachep,
2527 		.exit_func = extent_state_free_cachep,
2528 	}, {
2529 		.init_func = extent_buffer_init_cachep,
2530 		.exit_func = extent_buffer_free_cachep,
2531 	}, {
2532 		.init_func = btrfs_bioset_init,
2533 		.exit_func = btrfs_bioset_exit,
2534 	}, {
2535 		.init_func = extent_map_init,
2536 		.exit_func = extent_map_exit,
2537 	}, {
2538 		.init_func = ordered_data_init,
2539 		.exit_func = ordered_data_exit,
2540 	}, {
2541 		.init_func = btrfs_delayed_inode_init,
2542 		.exit_func = btrfs_delayed_inode_exit,
2543 	}, {
2544 		.init_func = btrfs_auto_defrag_init,
2545 		.exit_func = btrfs_auto_defrag_exit,
2546 	}, {
2547 		.init_func = btrfs_delayed_ref_init,
2548 		.exit_func = btrfs_delayed_ref_exit,
2549 	}, {
2550 		.init_func = btrfs_prelim_ref_init,
2551 		.exit_func = btrfs_prelim_ref_exit,
2552 	}, {
2553 		.init_func = btrfs_interface_init,
2554 		.exit_func = btrfs_interface_exit,
2555 	}, {
2556 		.init_func = btrfs_print_mod_info,
2557 		.exit_func = NULL,
2558 	}, {
2559 		.init_func = btrfs_run_sanity_tests,
2560 		.exit_func = NULL,
2561 	}, {
2562 		.init_func = register_btrfs,
2563 		.exit_func = unregister_btrfs,
2564 	}
2565 };
2566 
2567 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2568 
btrfs_exit_btrfs_fs(void)2569 static __always_inline void btrfs_exit_btrfs_fs(void)
2570 {
2571 	int i;
2572 
2573 	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2574 		if (!mod_init_result[i])
2575 			continue;
2576 		if (mod_init_seq[i].exit_func)
2577 			mod_init_seq[i].exit_func();
2578 		mod_init_result[i] = false;
2579 	}
2580 }
2581 
exit_btrfs_fs(void)2582 static void __exit exit_btrfs_fs(void)
2583 {
2584 	btrfs_exit_btrfs_fs();
2585 	btrfs_cleanup_fs_uuids();
2586 }
2587 
init_btrfs_fs(void)2588 static int __init init_btrfs_fs(void)
2589 {
2590 	int ret;
2591 	int i;
2592 
2593 	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2594 		ASSERT(!mod_init_result[i]);
2595 		ret = mod_init_seq[i].init_func();
2596 		if (ret < 0) {
2597 			btrfs_exit_btrfs_fs();
2598 			return ret;
2599 		}
2600 		mod_init_result[i] = true;
2601 	}
2602 	return 0;
2603 }
2604 
2605 late_initcall(init_btrfs_fs);
2606 module_exit(exit_btrfs_fs)
2607 
2608 MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2609 MODULE_LICENSE("GPL");
2610 MODULE_SOFTDEP("pre: crc32c");
2611 MODULE_SOFTDEP("pre: xxhash64");
2612 MODULE_SOFTDEP("pre: sha256");
2613 MODULE_SOFTDEP("pre: blake2b-256");
2614