• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <linux/capability.h>
41 #include <net/busy_poll.h>
42 
43 /*
44  * LOCKING:
45  * There are three level of locking required by epoll :
46  *
47  * 1) epnested_mutex (mutex)
48  * 2) ep->mtx (mutex)
49  * 3) ep->lock (rwlock)
50  *
51  * The acquire order is the one listed above, from 1 to 3.
52  * We need a rwlock (ep->lock) because we manipulate objects
53  * from inside the poll callback, that might be triggered from
54  * a wake_up() that in turn might be called from IRQ context.
55  * So we can't sleep inside the poll callback and hence we need
56  * a spinlock. During the event transfer loop (from kernel to
57  * user space) we could end up sleeping due a copy_to_user(), so
58  * we need a lock that will allow us to sleep. This lock is a
59  * mutex (ep->mtx). It is acquired during the event transfer loop,
60  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61  * The epnested_mutex is acquired when inserting an epoll fd onto another
62  * epoll fd. We do this so that we walk the epoll tree and ensure that this
63  * insertion does not create a cycle of epoll file descriptors, which
64  * could lead to deadlock. We need a global mutex to prevent two
65  * simultaneous inserts (A into B and B into A) from racing and
66  * constructing a cycle without either insert observing that it is
67  * going to.
68  * It is necessary to acquire multiple "ep->mtx"es at once in the
69  * case when one epoll fd is added to another. In this case, we
70  * always acquire the locks in the order of nesting (i.e. after
71  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
72  * before e2->mtx). Since we disallow cycles of epoll file
73  * descriptors, this ensures that the mutexes are well-ordered. In
74  * order to communicate this nesting to lockdep, when walking a tree
75  * of epoll file descriptors, we use the current recursion depth as
76  * the lockdep subkey.
77  * It is possible to drop the "ep->mtx" and to use the global
78  * mutex "epnested_mutex" (together with "ep->lock") to have it working,
79  * but having "ep->mtx" will make the interface more scalable.
80  * Events that require holding "epnested_mutex" are very rare, while for
81  * normal operations the epoll private "ep->mtx" will guarantee
82  * a better scalability.
83  */
84 
85 /* Epoll private bits inside the event mask */
86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
87 
88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
89 
90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
91 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
92 
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
95 
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97 
98 #define EP_UNACTIVE_PTR ((void *) -1L)
99 
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101 
102 struct epoll_filefd {
103 	struct file *file;
104 	int fd;
105 } __packed;
106 
107 /* Wait structure used by the poll hooks */
108 struct eppoll_entry {
109 	/* List header used to link this structure to the "struct epitem" */
110 	struct eppoll_entry *next;
111 
112 	/* The "base" pointer is set to the container "struct epitem" */
113 	struct epitem *base;
114 
115 	/*
116 	 * Wait queue item that will be linked to the target file wait
117 	 * queue head.
118 	 */
119 	wait_queue_entry_t wait;
120 
121 	/* The wait queue head that linked the "wait" wait queue item */
122 	wait_queue_head_t *whead;
123 };
124 
125 /*
126  * Each file descriptor added to the eventpoll interface will
127  * have an entry of this type linked to the "rbr" RB tree.
128  * Avoid increasing the size of this struct, there can be many thousands
129  * of these on a server and we do not want this to take another cache line.
130  */
131 struct epitem {
132 	union {
133 		/* RB tree node links this structure to the eventpoll RB tree */
134 		struct rb_node rbn;
135 		/* Used to free the struct epitem */
136 		struct rcu_head rcu;
137 	};
138 
139 	/* List header used to link this structure to the eventpoll ready list */
140 	struct list_head rdllink;
141 
142 	/*
143 	 * Works together "struct eventpoll"->ovflist in keeping the
144 	 * single linked chain of items.
145 	 */
146 	struct epitem *next;
147 
148 	/* The file descriptor information this item refers to */
149 	struct epoll_filefd ffd;
150 
151 	/*
152 	 * Protected by file->f_lock, true for to-be-released epitem already
153 	 * removed from the "struct file" items list; together with
154 	 * eventpoll->refcount orchestrates "struct eventpoll" disposal
155 	 */
156 	bool dying;
157 
158 	/* List containing poll wait queues */
159 	struct eppoll_entry *pwqlist;
160 
161 	/* The "container" of this item */
162 	struct eventpoll *ep;
163 
164 	/* List header used to link this item to the "struct file" items list */
165 	struct hlist_node fllink;
166 
167 	/* wakeup_source used when EPOLLWAKEUP is set */
168 	struct wakeup_source __rcu *ws;
169 
170 	/* The structure that describe the interested events and the source fd */
171 	struct epoll_event event;
172 };
173 
174 /*
175  * This structure is stored inside the "private_data" member of the file
176  * structure and represents the main data structure for the eventpoll
177  * interface.
178  */
179 struct eventpoll {
180 	/*
181 	 * This mutex is used to ensure that files are not removed
182 	 * while epoll is using them. This is held during the event
183 	 * collection loop, the file cleanup path, the epoll file exit
184 	 * code and the ctl operations.
185 	 */
186 	struct mutex mtx;
187 
188 	/* Wait queue used by sys_epoll_wait() */
189 	wait_queue_head_t wq;
190 
191 	/* Wait queue used by file->poll() */
192 	wait_queue_head_t poll_wait;
193 
194 	/* List of ready file descriptors */
195 	struct list_head rdllist;
196 
197 	/* Lock which protects rdllist and ovflist */
198 	rwlock_t lock;
199 
200 	/* RB tree root used to store monitored fd structs */
201 	struct rb_root_cached rbr;
202 
203 	/*
204 	 * This is a single linked list that chains all the "struct epitem" that
205 	 * happened while transferring ready events to userspace w/out
206 	 * holding ->lock.
207 	 */
208 	struct epitem *ovflist;
209 
210 	/* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */
211 	struct wakeup_source *ws;
212 
213 	/* The user that created the eventpoll descriptor */
214 	struct user_struct *user;
215 
216 	struct file *file;
217 
218 	/* used to optimize loop detection check */
219 	u64 gen;
220 	struct hlist_head refs;
221 	u8 loop_check_depth;
222 
223 	/*
224 	 * usage count, used together with epitem->dying to
225 	 * orchestrate the disposal of this struct
226 	 */
227 	refcount_t refcount;
228 
229 #ifdef CONFIG_NET_RX_BUSY_POLL
230 	/* used to track busy poll napi_id */
231 	unsigned int napi_id;
232 	/* busy poll timeout */
233 	u32 busy_poll_usecs;
234 	/* busy poll packet budget */
235 	u16 busy_poll_budget;
236 	bool prefer_busy_poll;
237 #endif
238 
239 #ifdef CONFIG_DEBUG_LOCK_ALLOC
240 	/* tracks wakeup nests for lockdep validation */
241 	u8 nests;
242 #endif
243 };
244 
245 /* Wrapper struct used by poll queueing */
246 struct ep_pqueue {
247 	poll_table pt;
248 	struct epitem *epi;
249 };
250 
251 /*
252  * Configuration options available inside /proc/sys/fs/epoll/
253  */
254 /* Maximum number of epoll watched descriptors, per user */
255 static long max_user_watches __read_mostly;
256 
257 /* Used for cycles detection */
258 static DEFINE_MUTEX(epnested_mutex);
259 
260 static u64 loop_check_gen = 0;
261 
262 /* Used to check for epoll file descriptor inclusion loops */
263 static struct eventpoll *inserting_into;
264 
265 /* Slab cache used to allocate "struct epitem" */
266 static struct kmem_cache *epi_cache __ro_after_init;
267 
268 /* Slab cache used to allocate "struct eppoll_entry" */
269 static struct kmem_cache *pwq_cache __ro_after_init;
270 
271 /*
272  * List of files with newly added links, where we may need to limit the number
273  * of emanating paths. Protected by the epnested_mutex.
274  */
275 struct epitems_head {
276 	struct hlist_head epitems;
277 	struct epitems_head *next;
278 };
279 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
280 
281 static struct kmem_cache *ephead_cache __ro_after_init;
282 
free_ephead(struct epitems_head * head)283 static inline void free_ephead(struct epitems_head *head)
284 {
285 	if (head)
286 		kmem_cache_free(ephead_cache, head);
287 }
288 
list_file(struct file * file)289 static void list_file(struct file *file)
290 {
291 	struct epitems_head *head;
292 
293 	head = container_of(file->f_ep, struct epitems_head, epitems);
294 	if (!head->next) {
295 		head->next = tfile_check_list;
296 		tfile_check_list = head;
297 	}
298 }
299 
unlist_file(struct epitems_head * head)300 static void unlist_file(struct epitems_head *head)
301 {
302 	struct epitems_head *to_free = head;
303 	struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
304 	if (p) {
305 		struct epitem *epi= container_of(p, struct epitem, fllink);
306 		spin_lock(&epi->ffd.file->f_lock);
307 		if (!hlist_empty(&head->epitems))
308 			to_free = NULL;
309 		head->next = NULL;
310 		spin_unlock(&epi->ffd.file->f_lock);
311 	}
312 	free_ephead(to_free);
313 }
314 
315 #ifdef CONFIG_SYSCTL
316 
317 #include <linux/sysctl.h>
318 
319 static long long_zero;
320 static long long_max = LONG_MAX;
321 
322 static struct ctl_table epoll_table[] = {
323 	{
324 		.procname	= "max_user_watches",
325 		.data		= &max_user_watches,
326 		.maxlen		= sizeof(max_user_watches),
327 		.mode		= 0644,
328 		.proc_handler	= proc_doulongvec_minmax,
329 		.extra1		= &long_zero,
330 		.extra2		= &long_max,
331 	},
332 };
333 
epoll_sysctls_init(void)334 static void __init epoll_sysctls_init(void)
335 {
336 	register_sysctl("fs/epoll", epoll_table);
337 }
338 #else
339 #define epoll_sysctls_init() do { } while (0)
340 #endif /* CONFIG_SYSCTL */
341 
342 static const struct file_operations eventpoll_fops;
343 
is_file_epoll(struct file * f)344 static inline int is_file_epoll(struct file *f)
345 {
346 	return f->f_op == &eventpoll_fops;
347 }
348 
349 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)350 static inline void ep_set_ffd(struct epoll_filefd *ffd,
351 			      struct file *file, int fd)
352 {
353 	ffd->file = file;
354 	ffd->fd = fd;
355 }
356 
357 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)358 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
359 			     struct epoll_filefd *p2)
360 {
361 	return (p1->file > p2->file ? +1:
362 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
363 }
364 
365 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)366 static inline int ep_is_linked(struct epitem *epi)
367 {
368 	return !list_empty(&epi->rdllink);
369 }
370 
ep_pwq_from_wait(wait_queue_entry_t * p)371 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
372 {
373 	return container_of(p, struct eppoll_entry, wait);
374 }
375 
376 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)377 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
378 {
379 	return container_of(p, struct eppoll_entry, wait)->base;
380 }
381 
382 /**
383  * ep_events_available - Checks if ready events might be available.
384  *
385  * @ep: Pointer to the eventpoll context.
386  *
387  * Return: a value different than %zero if ready events are available,
388  *          or %zero otherwise.
389  */
ep_events_available(struct eventpoll * ep)390 static inline int ep_events_available(struct eventpoll *ep)
391 {
392 	return !list_empty_careful(&ep->rdllist) ||
393 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
394 }
395 
396 #ifdef CONFIG_NET_RX_BUSY_POLL
397 /**
398  * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value
399  * from the epoll instance ep is preferred, but if it is not set fallback to
400  * the system-wide global via busy_loop_timeout.
401  *
402  * @start_time: The start time used to compute the remaining time until timeout.
403  * @ep: Pointer to the eventpoll context.
404  *
405  * Return: true if the timeout has expired, false otherwise.
406  */
busy_loop_ep_timeout(unsigned long start_time,struct eventpoll * ep)407 static bool busy_loop_ep_timeout(unsigned long start_time,
408 				 struct eventpoll *ep)
409 {
410 	unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs);
411 
412 	if (bp_usec) {
413 		unsigned long end_time = start_time + bp_usec;
414 		unsigned long now = busy_loop_current_time();
415 
416 		return time_after(now, end_time);
417 	} else {
418 		return busy_loop_timeout(start_time);
419 	}
420 }
421 
ep_busy_loop_on(struct eventpoll * ep)422 static bool ep_busy_loop_on(struct eventpoll *ep)
423 {
424 	return !!READ_ONCE(ep->busy_poll_usecs) || net_busy_loop_on();
425 }
426 
ep_busy_loop_end(void * p,unsigned long start_time)427 static bool ep_busy_loop_end(void *p, unsigned long start_time)
428 {
429 	struct eventpoll *ep = p;
430 
431 	return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep);
432 }
433 
434 /*
435  * Busy poll if globally on and supporting sockets found && no events,
436  * busy loop will return if need_resched or ep_events_available.
437  *
438  * we must do our busy polling with irqs enabled
439  */
ep_busy_loop(struct eventpoll * ep,int nonblock)440 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
441 {
442 	unsigned int napi_id = READ_ONCE(ep->napi_id);
443 	u16 budget = READ_ONCE(ep->busy_poll_budget);
444 	bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
445 
446 	if (!budget)
447 		budget = BUSY_POLL_BUDGET;
448 
449 	if (napi_id >= MIN_NAPI_ID && ep_busy_loop_on(ep)) {
450 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end,
451 			       ep, prefer_busy_poll, budget);
452 		if (ep_events_available(ep))
453 			return true;
454 		/*
455 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
456 		 * it back in when we have moved a socket with a valid NAPI
457 		 * ID onto the ready list.
458 		 */
459 		ep->napi_id = 0;
460 		return false;
461 	}
462 	return false;
463 }
464 
465 /*
466  * Set epoll busy poll NAPI ID from sk.
467  */
ep_set_busy_poll_napi_id(struct epitem * epi)468 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
469 {
470 	struct eventpoll *ep = epi->ep;
471 	unsigned int napi_id;
472 	struct socket *sock;
473 	struct sock *sk;
474 
475 	if (!ep_busy_loop_on(ep))
476 		return;
477 
478 	sock = sock_from_file(epi->ffd.file);
479 	if (!sock)
480 		return;
481 
482 	sk = sock->sk;
483 	if (!sk)
484 		return;
485 
486 	napi_id = READ_ONCE(sk->sk_napi_id);
487 
488 	/* Non-NAPI IDs can be rejected
489 	 *	or
490 	 * Nothing to do if we already have this ID
491 	 */
492 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
493 		return;
494 
495 	/* record NAPI ID for use in next busy poll */
496 	ep->napi_id = napi_id;
497 }
498 
ep_eventpoll_bp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)499 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
500 				  unsigned long arg)
501 {
502 	struct eventpoll *ep = file->private_data;
503 	void __user *uarg = (void __user *)arg;
504 	struct epoll_params epoll_params;
505 
506 	switch (cmd) {
507 	case EPIOCSPARAMS:
508 		if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params)))
509 			return -EFAULT;
510 
511 		/* pad byte must be zero */
512 		if (epoll_params.__pad)
513 			return -EINVAL;
514 
515 		if (epoll_params.busy_poll_usecs > S32_MAX)
516 			return -EINVAL;
517 
518 		if (epoll_params.prefer_busy_poll > 1)
519 			return -EINVAL;
520 
521 		if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT &&
522 		    !capable(CAP_NET_ADMIN))
523 			return -EPERM;
524 
525 		WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs);
526 		WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget);
527 		WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll);
528 		return 0;
529 	case EPIOCGPARAMS:
530 		memset(&epoll_params, 0, sizeof(epoll_params));
531 		epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs);
532 		epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget);
533 		epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
534 		if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params)))
535 			return -EFAULT;
536 		return 0;
537 	default:
538 		return -ENOIOCTLCMD;
539 	}
540 }
541 
542 #else
543 
ep_busy_loop(struct eventpoll * ep,int nonblock)544 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
545 {
546 	return false;
547 }
548 
ep_set_busy_poll_napi_id(struct epitem * epi)549 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
550 {
551 }
552 
ep_eventpoll_bp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)553 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
554 				  unsigned long arg)
555 {
556 	return -EOPNOTSUPP;
557 }
558 
559 #endif /* CONFIG_NET_RX_BUSY_POLL */
560 
561 /*
562  * As described in commit 0ccf831cb lockdep: annotate epoll
563  * the use of wait queues used by epoll is done in a very controlled
564  * manner. Wake ups can nest inside each other, but are never done
565  * with the same locking. For example:
566  *
567  *   dfd = socket(...);
568  *   efd1 = epoll_create();
569  *   efd2 = epoll_create();
570  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
571  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
572  *
573  * When a packet arrives to the device underneath "dfd", the net code will
574  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
575  * callback wakeup entry on that queue, and the wake_up() performed by the
576  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
577  * (efd1) notices that it may have some event ready, so it needs to wake up
578  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
579  * that ends up in another wake_up(), after having checked about the
580  * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
581  * stack blasting.
582  *
583  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
584  * this special case of epoll.
585  */
586 #ifdef CONFIG_DEBUG_LOCK_ALLOC
587 
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)588 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
589 			     unsigned pollflags)
590 {
591 	struct eventpoll *ep_src;
592 	unsigned long flags;
593 	u8 nests = 0;
594 
595 	/*
596 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
597 	 * it might be natural to create a per-cpu nest count. However, since
598 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
599 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
600 	 * protected. Thus, we are introducing a per eventpoll nest field.
601 	 * If we are not being call from ep_poll_callback(), epi is NULL and
602 	 * we are at the first level of nesting, 0. Otherwise, we are being
603 	 * called from ep_poll_callback() and if a previous wakeup source is
604 	 * not an epoll file itself, we are at depth 1 since the wakeup source
605 	 * is depth 0. If the wakeup source is a previous epoll file in the
606 	 * wakeup chain then we use its nests value and record ours as
607 	 * nests + 1. The previous epoll file nests value is stable since its
608 	 * already holding its own poll_wait.lock.
609 	 */
610 	if (epi) {
611 		if ((is_file_epoll(epi->ffd.file))) {
612 			ep_src = epi->ffd.file->private_data;
613 			nests = ep_src->nests;
614 		} else {
615 			nests = 1;
616 		}
617 	}
618 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
619 	ep->nests = nests + 1;
620 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
621 	ep->nests = 0;
622 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
623 }
624 
625 #else
626 
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,__poll_t pollflags)627 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
628 			     __poll_t pollflags)
629 {
630 	wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
631 }
632 
633 #endif
634 
ep_remove_wait_queue(struct eppoll_entry * pwq)635 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
636 {
637 	wait_queue_head_t *whead;
638 
639 	rcu_read_lock();
640 	/*
641 	 * If it is cleared by POLLFREE, it should be rcu-safe.
642 	 * If we read NULL we need a barrier paired with
643 	 * smp_store_release() in ep_poll_callback(), otherwise
644 	 * we rely on whead->lock.
645 	 */
646 	whead = smp_load_acquire(&pwq->whead);
647 	if (whead)
648 		remove_wait_queue(whead, &pwq->wait);
649 	rcu_read_unlock();
650 }
651 
652 /*
653  * This function unregisters poll callbacks from the associated file
654  * descriptor.  Must be called with "mtx" held.
655  */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)656 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
657 {
658 	struct eppoll_entry **p = &epi->pwqlist;
659 	struct eppoll_entry *pwq;
660 
661 	while ((pwq = *p) != NULL) {
662 		*p = pwq->next;
663 		ep_remove_wait_queue(pwq);
664 		kmem_cache_free(pwq_cache, pwq);
665 	}
666 }
667 
668 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)669 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
670 {
671 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
672 }
673 
674 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)675 static inline void ep_pm_stay_awake(struct epitem *epi)
676 {
677 	struct wakeup_source *ws = ep_wakeup_source(epi);
678 
679 	if (ws)
680 		__pm_stay_awake(ws);
681 }
682 
ep_has_wakeup_source(struct epitem * epi)683 static inline bool ep_has_wakeup_source(struct epitem *epi)
684 {
685 	return rcu_access_pointer(epi->ws) ? true : false;
686 }
687 
688 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)689 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
690 {
691 	struct wakeup_source *ws;
692 
693 	rcu_read_lock();
694 	ws = rcu_dereference(epi->ws);
695 	if (ws)
696 		__pm_stay_awake(ws);
697 	rcu_read_unlock();
698 }
699 
700 
701 /*
702  * ep->mutex needs to be held because we could be hit by
703  * eventpoll_release_file() and epoll_ctl().
704  */
ep_start_scan(struct eventpoll * ep,struct list_head * txlist)705 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
706 {
707 	/*
708 	 * Steal the ready list, and re-init the original one to the
709 	 * empty list. Also, set ep->ovflist to NULL so that events
710 	 * happening while looping w/out locks, are not lost. We cannot
711 	 * have the poll callback to queue directly on ep->rdllist,
712 	 * because we want the "sproc" callback to be able to do it
713 	 * in a lockless way.
714 	 */
715 	lockdep_assert_irqs_enabled();
716 	write_lock_irq(&ep->lock);
717 	list_splice_init(&ep->rdllist, txlist);
718 	WRITE_ONCE(ep->ovflist, NULL);
719 	write_unlock_irq(&ep->lock);
720 }
721 
ep_done_scan(struct eventpoll * ep,struct list_head * txlist)722 static void ep_done_scan(struct eventpoll *ep,
723 			 struct list_head *txlist)
724 {
725 	struct epitem *epi, *nepi;
726 
727 	write_lock_irq(&ep->lock);
728 	/*
729 	 * During the time we spent inside the "sproc" callback, some
730 	 * other events might have been queued by the poll callback.
731 	 * We re-insert them inside the main ready-list here.
732 	 */
733 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
734 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
735 		/*
736 		 * We need to check if the item is already in the list.
737 		 * During the "sproc" callback execution time, items are
738 		 * queued into ->ovflist but the "txlist" might already
739 		 * contain them, and the list_splice() below takes care of them.
740 		 */
741 		if (!ep_is_linked(epi)) {
742 			/*
743 			 * ->ovflist is LIFO, so we have to reverse it in order
744 			 * to keep in FIFO.
745 			 */
746 			list_add(&epi->rdllink, &ep->rdllist);
747 			ep_pm_stay_awake(epi);
748 		}
749 	}
750 	/*
751 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
752 	 * releasing the lock, events will be queued in the normal way inside
753 	 * ep->rdllist.
754 	 */
755 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
756 
757 	/*
758 	 * Quickly re-inject items left on "txlist".
759 	 */
760 	list_splice(txlist, &ep->rdllist);
761 	__pm_relax(ep->ws);
762 
763 	if (!list_empty(&ep->rdllist)) {
764 		if (waitqueue_active(&ep->wq))
765 			wake_up(&ep->wq);
766 	}
767 
768 	write_unlock_irq(&ep->lock);
769 }
770 
ep_get(struct eventpoll * ep)771 static void ep_get(struct eventpoll *ep)
772 {
773 	refcount_inc(&ep->refcount);
774 }
775 
776 /*
777  * Returns true if the event poll can be disposed
778  */
ep_refcount_dec_and_test(struct eventpoll * ep)779 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
780 {
781 	if (!refcount_dec_and_test(&ep->refcount))
782 		return false;
783 
784 	WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
785 	return true;
786 }
787 
ep_free(struct eventpoll * ep)788 static void ep_free(struct eventpoll *ep)
789 {
790 	mutex_destroy(&ep->mtx);
791 	free_uid(ep->user);
792 	wakeup_source_unregister(ep->ws);
793 	kfree(ep);
794 }
795 
796 /*
797  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
798  * all the associated resources. Must be called with "mtx" held.
799  * If the dying flag is set, do the removal only if force is true.
800  * This prevents ep_clear_and_put() from dropping all the ep references
801  * while running concurrently with eventpoll_release_file().
802  * Returns true if the eventpoll can be disposed.
803  */
__ep_remove(struct eventpoll * ep,struct epitem * epi,bool force)804 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
805 {
806 	struct file *file = epi->ffd.file;
807 	struct epitems_head *to_free;
808 	struct hlist_head *head;
809 
810 	lockdep_assert_irqs_enabled();
811 
812 	/*
813 	 * Removes poll wait queue hooks.
814 	 */
815 	ep_unregister_pollwait(ep, epi);
816 
817 	/* Remove the current item from the list of epoll hooks */
818 	spin_lock(&file->f_lock);
819 	if (epi->dying && !force) {
820 		spin_unlock(&file->f_lock);
821 		return false;
822 	}
823 
824 	to_free = NULL;
825 	head = file->f_ep;
826 	if (head->first == &epi->fllink && !epi->fllink.next) {
827 		/* See eventpoll_release() for details. */
828 		WRITE_ONCE(file->f_ep, NULL);
829 		if (!is_file_epoll(file)) {
830 			struct epitems_head *v;
831 			v = container_of(head, struct epitems_head, epitems);
832 			if (!smp_load_acquire(&v->next))
833 				to_free = v;
834 		}
835 	}
836 	hlist_del_rcu(&epi->fllink);
837 	spin_unlock(&file->f_lock);
838 	free_ephead(to_free);
839 
840 	rb_erase_cached(&epi->rbn, &ep->rbr);
841 
842 	write_lock_irq(&ep->lock);
843 	if (ep_is_linked(epi))
844 		list_del_init(&epi->rdllink);
845 	write_unlock_irq(&ep->lock);
846 
847 	wakeup_source_unregister(ep_wakeup_source(epi));
848 	/*
849 	 * At this point it is safe to free the eventpoll item. Use the union
850 	 * field epi->rcu, since we are trying to minimize the size of
851 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
852 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
853 	 * use of the rbn field.
854 	 */
855 	kfree_rcu(epi, rcu);
856 
857 	percpu_counter_dec(&ep->user->epoll_watches);
858 	return true;
859 }
860 
861 /*
862  * ep_remove variant for callers owing an additional reference to the ep
863  */
ep_remove_safe(struct eventpoll * ep,struct epitem * epi)864 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
865 {
866 	if (__ep_remove(ep, epi, false))
867 		WARN_ON_ONCE(ep_refcount_dec_and_test(ep));
868 }
869 
ep_clear_and_put(struct eventpoll * ep)870 static void ep_clear_and_put(struct eventpoll *ep)
871 {
872 	struct rb_node *rbp, *next;
873 	struct epitem *epi;
874 
875 	/* We need to release all tasks waiting for these file */
876 	if (waitqueue_active(&ep->poll_wait))
877 		ep_poll_safewake(ep, NULL, 0);
878 
879 	mutex_lock(&ep->mtx);
880 
881 	/*
882 	 * Walks through the whole tree by unregistering poll callbacks.
883 	 */
884 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
885 		epi = rb_entry(rbp, struct epitem, rbn);
886 
887 		ep_unregister_pollwait(ep, epi);
888 		cond_resched();
889 	}
890 
891 	/*
892 	 * Walks through the whole tree and try to free each "struct epitem".
893 	 * Note that ep_remove_safe() will not remove the epitem in case of a
894 	 * racing eventpoll_release_file(); the latter will do the removal.
895 	 * At this point we are sure no poll callbacks will be lingering around.
896 	 * Since we still own a reference to the eventpoll struct, the loop can't
897 	 * dispose it.
898 	 */
899 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
900 		next = rb_next(rbp);
901 		epi = rb_entry(rbp, struct epitem, rbn);
902 		ep_remove_safe(ep, epi);
903 		cond_resched();
904 	}
905 
906 	mutex_unlock(&ep->mtx);
907 	if (ep_refcount_dec_and_test(ep))
908 		ep_free(ep);
909 }
910 
ep_eventpoll_ioctl(struct file * file,unsigned int cmd,unsigned long arg)911 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd,
912 			       unsigned long arg)
913 {
914 	int ret;
915 
916 	if (!is_file_epoll(file))
917 		return -EINVAL;
918 
919 	switch (cmd) {
920 	case EPIOCSPARAMS:
921 	case EPIOCGPARAMS:
922 		ret = ep_eventpoll_bp_ioctl(file, cmd, arg);
923 		break;
924 	default:
925 		ret = -EINVAL;
926 		break;
927 	}
928 
929 	return ret;
930 }
931 
ep_eventpoll_release(struct inode * inode,struct file * file)932 static int ep_eventpoll_release(struct inode *inode, struct file *file)
933 {
934 	struct eventpoll *ep = file->private_data;
935 
936 	if (ep)
937 		ep_clear_and_put(ep);
938 
939 	return 0;
940 }
941 
942 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
943 
__ep_eventpoll_poll(struct file * file,poll_table * wait,int depth)944 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
945 {
946 	struct eventpoll *ep = file->private_data;
947 	LIST_HEAD(txlist);
948 	struct epitem *epi, *tmp;
949 	poll_table pt;
950 	__poll_t res = 0;
951 
952 	init_poll_funcptr(&pt, NULL);
953 
954 	/* Insert inside our poll wait queue */
955 	poll_wait(file, &ep->poll_wait, wait);
956 
957 	/*
958 	 * Proceed to find out if wanted events are really available inside
959 	 * the ready list.
960 	 */
961 	mutex_lock_nested(&ep->mtx, depth);
962 	ep_start_scan(ep, &txlist);
963 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
964 		if (ep_item_poll(epi, &pt, depth + 1)) {
965 			res = EPOLLIN | EPOLLRDNORM;
966 			break;
967 		} else {
968 			/*
969 			 * Item has been dropped into the ready list by the poll
970 			 * callback, but it's not actually ready, as far as
971 			 * caller requested events goes. We can remove it here.
972 			 */
973 			__pm_relax(ep_wakeup_source(epi));
974 			list_del_init(&epi->rdllink);
975 		}
976 	}
977 	ep_done_scan(ep, &txlist);
978 	mutex_unlock(&ep->mtx);
979 	return res;
980 }
981 
982 /*
983  * The ffd.file pointer may be in the process of being torn down due to
984  * being closed, but we may not have finished eventpoll_release() yet.
985  *
986  * Normally, even with the atomic_long_inc_not_zero, the file may have
987  * been free'd and then gotten re-allocated to something else (since
988  * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
989  *
990  * But for epoll, users hold the ep->mtx mutex, and as such any file in
991  * the process of being free'd will block in eventpoll_release_file()
992  * and thus the underlying file allocation will not be free'd, and the
993  * file re-use cannot happen.
994  *
995  * For the same reason we can avoid a rcu_read_lock() around the
996  * operation - 'ffd.file' cannot go away even if the refcount has
997  * reached zero (but we must still not call out to ->poll() functions
998  * etc).
999  */
epi_fget(const struct epitem * epi)1000 static struct file *epi_fget(const struct epitem *epi)
1001 {
1002 	struct file *file;
1003 
1004 	file = epi->ffd.file;
1005 	if (!atomic_long_inc_not_zero(&file->f_count))
1006 		file = NULL;
1007 	return file;
1008 }
1009 
1010 /*
1011  * Differs from ep_eventpoll_poll() in that internal callers already have
1012  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
1013  * is correctly annotated.
1014  */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)1015 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
1016 				 int depth)
1017 {
1018 	struct file *file = epi_fget(epi);
1019 	__poll_t res;
1020 
1021 	/*
1022 	 * We could return EPOLLERR | EPOLLHUP or something, but let's
1023 	 * treat this more as "file doesn't exist, poll didn't happen".
1024 	 */
1025 	if (!file)
1026 		return 0;
1027 
1028 	pt->_key = epi->event.events;
1029 	if (!is_file_epoll(file))
1030 		res = vfs_poll(file, pt);
1031 	else
1032 		res = __ep_eventpoll_poll(file, pt, depth);
1033 	fput(file);
1034 	return res & epi->event.events;
1035 }
1036 
ep_eventpoll_poll(struct file * file,poll_table * wait)1037 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
1038 {
1039 	return __ep_eventpoll_poll(file, wait, 0);
1040 }
1041 
1042 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)1043 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
1044 {
1045 	struct eventpoll *ep = f->private_data;
1046 	struct rb_node *rbp;
1047 
1048 	mutex_lock(&ep->mtx);
1049 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1050 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
1051 		struct inode *inode = file_inode(epi->ffd.file);
1052 
1053 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
1054 			   " pos:%lli ino:%lx sdev:%x\n",
1055 			   epi->ffd.fd, epi->event.events,
1056 			   (long long)epi->event.data,
1057 			   (long long)epi->ffd.file->f_pos,
1058 			   inode->i_ino, inode->i_sb->s_dev);
1059 		if (seq_has_overflowed(m))
1060 			break;
1061 	}
1062 	mutex_unlock(&ep->mtx);
1063 }
1064 #endif
1065 
1066 /* File callbacks that implement the eventpoll file behaviour */
1067 static const struct file_operations eventpoll_fops = {
1068 #ifdef CONFIG_PROC_FS
1069 	.show_fdinfo	= ep_show_fdinfo,
1070 #endif
1071 	.release	= ep_eventpoll_release,
1072 	.poll		= ep_eventpoll_poll,
1073 	.llseek		= noop_llseek,
1074 	.unlocked_ioctl	= ep_eventpoll_ioctl,
1075 	.compat_ioctl   = compat_ptr_ioctl,
1076 };
1077 
1078 /*
1079  * This is called from eventpoll_release() to unlink files from the eventpoll
1080  * interface. We need to have this facility to cleanup correctly files that are
1081  * closed without being removed from the eventpoll interface.
1082  */
eventpoll_release_file(struct file * file)1083 void eventpoll_release_file(struct file *file)
1084 {
1085 	struct eventpoll *ep;
1086 	struct epitem *epi;
1087 	bool dispose;
1088 
1089 	/*
1090 	 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
1091 	 * touching the epitems list before eventpoll_release_file() can access
1092 	 * the ep->mtx.
1093 	 */
1094 again:
1095 	spin_lock(&file->f_lock);
1096 	if (file->f_ep && file->f_ep->first) {
1097 		epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
1098 		epi->dying = true;
1099 		spin_unlock(&file->f_lock);
1100 
1101 		/*
1102 		 * ep access is safe as we still own a reference to the ep
1103 		 * struct
1104 		 */
1105 		ep = epi->ep;
1106 		mutex_lock(&ep->mtx);
1107 		dispose = __ep_remove(ep, epi, true);
1108 		mutex_unlock(&ep->mtx);
1109 
1110 		if (dispose && ep_refcount_dec_and_test(ep))
1111 			ep_free(ep);
1112 		goto again;
1113 	}
1114 	spin_unlock(&file->f_lock);
1115 }
1116 
ep_alloc(struct eventpoll ** pep)1117 static int ep_alloc(struct eventpoll **pep)
1118 {
1119 	struct eventpoll *ep;
1120 
1121 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1122 	if (unlikely(!ep))
1123 		return -ENOMEM;
1124 
1125 	mutex_init(&ep->mtx);
1126 	rwlock_init(&ep->lock);
1127 	init_waitqueue_head(&ep->wq);
1128 	init_waitqueue_head(&ep->poll_wait);
1129 	INIT_LIST_HEAD(&ep->rdllist);
1130 	ep->rbr = RB_ROOT_CACHED;
1131 	ep->ovflist = EP_UNACTIVE_PTR;
1132 	ep->user = get_current_user();
1133 	refcount_set(&ep->refcount, 1);
1134 
1135 	*pep = ep;
1136 
1137 	return 0;
1138 }
1139 
1140 /*
1141  * Search the file inside the eventpoll tree. The RB tree operations
1142  * are protected by the "mtx" mutex, and ep_find() must be called with
1143  * "mtx" held.
1144  */
ep_find(struct eventpoll * ep,struct file * file,int fd)1145 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1146 {
1147 	int kcmp;
1148 	struct rb_node *rbp;
1149 	struct epitem *epi, *epir = NULL;
1150 	struct epoll_filefd ffd;
1151 
1152 	ep_set_ffd(&ffd, file, fd);
1153 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1154 		epi = rb_entry(rbp, struct epitem, rbn);
1155 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1156 		if (kcmp > 0)
1157 			rbp = rbp->rb_right;
1158 		else if (kcmp < 0)
1159 			rbp = rbp->rb_left;
1160 		else {
1161 			epir = epi;
1162 			break;
1163 		}
1164 	}
1165 
1166 	return epir;
1167 }
1168 
1169 #ifdef CONFIG_KCMP
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1170 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1171 {
1172 	struct rb_node *rbp;
1173 	struct epitem *epi;
1174 
1175 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1176 		epi = rb_entry(rbp, struct epitem, rbn);
1177 		if (epi->ffd.fd == tfd) {
1178 			if (toff == 0)
1179 				return epi;
1180 			else
1181 				toff--;
1182 		}
1183 		cond_resched();
1184 	}
1185 
1186 	return NULL;
1187 }
1188 
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1189 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1190 				     unsigned long toff)
1191 {
1192 	struct file *file_raw;
1193 	struct eventpoll *ep;
1194 	struct epitem *epi;
1195 
1196 	if (!is_file_epoll(file))
1197 		return ERR_PTR(-EINVAL);
1198 
1199 	ep = file->private_data;
1200 
1201 	mutex_lock(&ep->mtx);
1202 	epi = ep_find_tfd(ep, tfd, toff);
1203 	if (epi)
1204 		file_raw = epi->ffd.file;
1205 	else
1206 		file_raw = ERR_PTR(-ENOENT);
1207 	mutex_unlock(&ep->mtx);
1208 
1209 	return file_raw;
1210 }
1211 #endif /* CONFIG_KCMP */
1212 
1213 /*
1214  * Adds a new entry to the tail of the list in a lockless way, i.e.
1215  * multiple CPUs are allowed to call this function concurrently.
1216  *
1217  * Beware: it is necessary to prevent any other modifications of the
1218  *         existing list until all changes are completed, in other words
1219  *         concurrent list_add_tail_lockless() calls should be protected
1220  *         with a read lock, where write lock acts as a barrier which
1221  *         makes sure all list_add_tail_lockless() calls are fully
1222  *         completed.
1223  *
1224  *        Also an element can be locklessly added to the list only in one
1225  *        direction i.e. either to the tail or to the head, otherwise
1226  *        concurrent access will corrupt the list.
1227  *
1228  * Return: %false if element has been already added to the list, %true
1229  * otherwise.
1230  */
list_add_tail_lockless(struct list_head * new,struct list_head * head)1231 static inline bool list_add_tail_lockless(struct list_head *new,
1232 					  struct list_head *head)
1233 {
1234 	struct list_head *prev;
1235 
1236 	/*
1237 	 * This is simple 'new->next = head' operation, but cmpxchg()
1238 	 * is used in order to detect that same element has been just
1239 	 * added to the list from another CPU: the winner observes
1240 	 * new->next == new.
1241 	 */
1242 	if (!try_cmpxchg(&new->next, &new, head))
1243 		return false;
1244 
1245 	/*
1246 	 * Initially ->next of a new element must be updated with the head
1247 	 * (we are inserting to the tail) and only then pointers are atomically
1248 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1249 	 * updated before pointers are actually swapped and pointers are
1250 	 * swapped before prev->next is updated.
1251 	 */
1252 
1253 	prev = xchg(&head->prev, new);
1254 
1255 	/*
1256 	 * It is safe to modify prev->next and new->prev, because a new element
1257 	 * is added only to the tail and new->next is updated before XCHG.
1258 	 */
1259 
1260 	prev->next = new;
1261 	new->prev = prev;
1262 
1263 	return true;
1264 }
1265 
1266 /*
1267  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1268  * i.e. multiple CPUs are allowed to call this function concurrently.
1269  *
1270  * Return: %false if epi element has been already chained, %true otherwise.
1271  */
chain_epi_lockless(struct epitem * epi)1272 static inline bool chain_epi_lockless(struct epitem *epi)
1273 {
1274 	struct eventpoll *ep = epi->ep;
1275 
1276 	/* Fast preliminary check */
1277 	if (epi->next != EP_UNACTIVE_PTR)
1278 		return false;
1279 
1280 	/* Check that the same epi has not been just chained from another CPU */
1281 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1282 		return false;
1283 
1284 	/* Atomically exchange tail */
1285 	epi->next = xchg(&ep->ovflist, epi);
1286 
1287 	return true;
1288 }
1289 
1290 /*
1291  * This is the callback that is passed to the wait queue wakeup
1292  * mechanism. It is called by the stored file descriptors when they
1293  * have events to report.
1294  *
1295  * This callback takes a read lock in order not to contend with concurrent
1296  * events from another file descriptor, thus all modifications to ->rdllist
1297  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1298  * ep_start/done_scan(), which stops all list modifications and guarantees
1299  * that lists state is seen correctly.
1300  *
1301  * Another thing worth to mention is that ep_poll_callback() can be called
1302  * concurrently for the same @epi from different CPUs if poll table was inited
1303  * with several wait queues entries.  Plural wakeup from different CPUs of a
1304  * single wait queue is serialized by wq.lock, but the case when multiple wait
1305  * queues are used should be detected accordingly.  This is detected using
1306  * cmpxchg() operation.
1307  */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1308 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1309 {
1310 	int pwake = 0;
1311 	struct epitem *epi = ep_item_from_wait(wait);
1312 	struct eventpoll *ep = epi->ep;
1313 	__poll_t pollflags = key_to_poll(key);
1314 	unsigned long flags;
1315 	int ewake = 0;
1316 
1317 	read_lock_irqsave(&ep->lock, flags);
1318 
1319 	ep_set_busy_poll_napi_id(epi);
1320 
1321 	/*
1322 	 * If the event mask does not contain any poll(2) event, we consider the
1323 	 * descriptor to be disabled. This condition is likely the effect of the
1324 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1325 	 * until the next EPOLL_CTL_MOD will be issued.
1326 	 */
1327 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1328 		goto out_unlock;
1329 
1330 	/*
1331 	 * Check the events coming with the callback. At this stage, not
1332 	 * every device reports the events in the "key" parameter of the
1333 	 * callback. We need to be able to handle both cases here, hence the
1334 	 * test for "key" != NULL before the event match test.
1335 	 */
1336 	if (pollflags && !(pollflags & epi->event.events))
1337 		goto out_unlock;
1338 
1339 	/*
1340 	 * If we are transferring events to userspace, we can hold no locks
1341 	 * (because we're accessing user memory, and because of linux f_op->poll()
1342 	 * semantics). All the events that happen during that period of time are
1343 	 * chained in ep->ovflist and requeued later on.
1344 	 */
1345 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1346 		if (chain_epi_lockless(epi))
1347 			ep_pm_stay_awake_rcu(epi);
1348 	} else if (!ep_is_linked(epi)) {
1349 		/* In the usual case, add event to ready list. */
1350 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1351 			ep_pm_stay_awake_rcu(epi);
1352 	}
1353 
1354 	/*
1355 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1356 	 * wait list.
1357 	 */
1358 	if (waitqueue_active(&ep->wq)) {
1359 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1360 					!(pollflags & POLLFREE)) {
1361 			switch (pollflags & EPOLLINOUT_BITS) {
1362 			case EPOLLIN:
1363 				if (epi->event.events & EPOLLIN)
1364 					ewake = 1;
1365 				break;
1366 			case EPOLLOUT:
1367 				if (epi->event.events & EPOLLOUT)
1368 					ewake = 1;
1369 				break;
1370 			case 0:
1371 				ewake = 1;
1372 				break;
1373 			}
1374 		}
1375 		if (sync)
1376 			wake_up_sync(&ep->wq);
1377 		else
1378 			wake_up(&ep->wq);
1379 	}
1380 	if (waitqueue_active(&ep->poll_wait))
1381 		pwake++;
1382 
1383 out_unlock:
1384 	read_unlock_irqrestore(&ep->lock, flags);
1385 
1386 	/* We have to call this outside the lock */
1387 	if (pwake)
1388 		ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1389 
1390 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1391 		ewake = 1;
1392 
1393 	if (pollflags & POLLFREE) {
1394 		/*
1395 		 * If we race with ep_remove_wait_queue() it can miss
1396 		 * ->whead = NULL and do another remove_wait_queue() after
1397 		 * us, so we can't use __remove_wait_queue().
1398 		 */
1399 		list_del_init(&wait->entry);
1400 		/*
1401 		 * ->whead != NULL protects us from the race with
1402 		 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1403 		 * takes whead->lock held by the caller. Once we nullify it,
1404 		 * nothing protects ep/epi or even wait.
1405 		 */
1406 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1407 	}
1408 
1409 	return ewake;
1410 }
1411 
1412 /*
1413  * This is the callback that is used to add our wait queue to the
1414  * target file wakeup lists.
1415  */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1416 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1417 				 poll_table *pt)
1418 {
1419 	struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1420 	struct epitem *epi = epq->epi;
1421 	struct eppoll_entry *pwq;
1422 
1423 	if (unlikely(!epi))	// an earlier allocation has failed
1424 		return;
1425 
1426 	pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1427 	if (unlikely(!pwq)) {
1428 		epq->epi = NULL;
1429 		return;
1430 	}
1431 
1432 	init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1433 	pwq->whead = whead;
1434 	pwq->base = epi;
1435 	if (epi->event.events & EPOLLEXCLUSIVE)
1436 		add_wait_queue_exclusive(whead, &pwq->wait);
1437 	else
1438 		add_wait_queue(whead, &pwq->wait);
1439 	pwq->next = epi->pwqlist;
1440 	epi->pwqlist = pwq;
1441 }
1442 
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1443 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1444 {
1445 	int kcmp;
1446 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1447 	struct epitem *epic;
1448 	bool leftmost = true;
1449 
1450 	while (*p) {
1451 		parent = *p;
1452 		epic = rb_entry(parent, struct epitem, rbn);
1453 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1454 		if (kcmp > 0) {
1455 			p = &parent->rb_right;
1456 			leftmost = false;
1457 		} else
1458 			p = &parent->rb_left;
1459 	}
1460 	rb_link_node(&epi->rbn, parent, p);
1461 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1462 }
1463 
1464 
1465 
1466 #define PATH_ARR_SIZE 5
1467 /*
1468  * These are the number paths of length 1 to 5, that we are allowing to emanate
1469  * from a single file of interest. For example, we allow 1000 paths of length
1470  * 1, to emanate from each file of interest. This essentially represents the
1471  * potential wakeup paths, which need to be limited in order to avoid massive
1472  * uncontrolled wakeup storms. The common use case should be a single ep which
1473  * is connected to n file sources. In this case each file source has 1 path
1474  * of length 1. Thus, the numbers below should be more than sufficient. These
1475  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1476  * and delete can't add additional paths. Protected by the epnested_mutex.
1477  */
1478 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1479 static int path_count[PATH_ARR_SIZE];
1480 
path_count_inc(int nests)1481 static int path_count_inc(int nests)
1482 {
1483 	/* Allow an arbitrary number of depth 1 paths */
1484 	if (nests == 0)
1485 		return 0;
1486 
1487 	if (++path_count[nests] > path_limits[nests])
1488 		return -1;
1489 	return 0;
1490 }
1491 
path_count_init(void)1492 static void path_count_init(void)
1493 {
1494 	int i;
1495 
1496 	for (i = 0; i < PATH_ARR_SIZE; i++)
1497 		path_count[i] = 0;
1498 }
1499 
reverse_path_check_proc(struct hlist_head * refs,int depth)1500 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1501 {
1502 	int error = 0;
1503 	struct epitem *epi;
1504 
1505 	if (depth > EP_MAX_NESTS) /* too deep nesting */
1506 		return -1;
1507 
1508 	/* CTL_DEL can remove links here, but that can't increase our count */
1509 	hlist_for_each_entry_rcu(epi, refs, fllink) {
1510 		struct hlist_head *refs = &epi->ep->refs;
1511 		if (hlist_empty(refs))
1512 			error = path_count_inc(depth);
1513 		else
1514 			error = reverse_path_check_proc(refs, depth + 1);
1515 		if (error != 0)
1516 			break;
1517 	}
1518 	return error;
1519 }
1520 
1521 /**
1522  * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1523  *                      links that are proposed to be newly added. We need to
1524  *                      make sure that those added links don't add too many
1525  *                      paths such that we will spend all our time waking up
1526  *                      eventpoll objects.
1527  *
1528  * Return: %zero if the proposed links don't create too many paths,
1529  *	    %-1 otherwise.
1530  */
reverse_path_check(void)1531 static int reverse_path_check(void)
1532 {
1533 	struct epitems_head *p;
1534 
1535 	for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1536 		int error;
1537 		path_count_init();
1538 		rcu_read_lock();
1539 		error = reverse_path_check_proc(&p->epitems, 0);
1540 		rcu_read_unlock();
1541 		if (error)
1542 			return error;
1543 	}
1544 	return 0;
1545 }
1546 
ep_create_wakeup_source(struct epitem * epi)1547 static int ep_create_wakeup_source(struct epitem *epi)
1548 {
1549 	struct name_snapshot n;
1550 	struct wakeup_source *ws;
1551 
1552 	if (!epi->ep->ws) {
1553 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1554 		if (!epi->ep->ws)
1555 			return -ENOMEM;
1556 	}
1557 
1558 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1559 	ws = wakeup_source_register(NULL, n.name.name);
1560 	release_dentry_name_snapshot(&n);
1561 
1562 	if (!ws)
1563 		return -ENOMEM;
1564 	rcu_assign_pointer(epi->ws, ws);
1565 
1566 	return 0;
1567 }
1568 
1569 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1570 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1571 {
1572 	struct wakeup_source *ws = ep_wakeup_source(epi);
1573 
1574 	RCU_INIT_POINTER(epi->ws, NULL);
1575 
1576 	/*
1577 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1578 	 * used internally by wakeup_source_remove, too (called by
1579 	 * wakeup_source_unregister), so we cannot use call_rcu
1580 	 */
1581 	synchronize_rcu();
1582 	wakeup_source_unregister(ws);
1583 }
1584 
attach_epitem(struct file * file,struct epitem * epi)1585 static int attach_epitem(struct file *file, struct epitem *epi)
1586 {
1587 	struct epitems_head *to_free = NULL;
1588 	struct hlist_head *head = NULL;
1589 	struct eventpoll *ep = NULL;
1590 
1591 	if (is_file_epoll(file))
1592 		ep = file->private_data;
1593 
1594 	if (ep) {
1595 		head = &ep->refs;
1596 	} else if (!READ_ONCE(file->f_ep)) {
1597 allocate:
1598 		to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1599 		if (!to_free)
1600 			return -ENOMEM;
1601 		head = &to_free->epitems;
1602 	}
1603 	spin_lock(&file->f_lock);
1604 	if (!file->f_ep) {
1605 		if (unlikely(!head)) {
1606 			spin_unlock(&file->f_lock);
1607 			goto allocate;
1608 		}
1609 		/* See eventpoll_release() for details. */
1610 		WRITE_ONCE(file->f_ep, head);
1611 		to_free = NULL;
1612 	}
1613 	hlist_add_head_rcu(&epi->fllink, file->f_ep);
1614 	spin_unlock(&file->f_lock);
1615 	free_ephead(to_free);
1616 	return 0;
1617 }
1618 
1619 /*
1620  * Must be called with "mtx" held.
1621  */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1622 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1623 		     struct file *tfile, int fd, int full_check)
1624 {
1625 	int error, pwake = 0;
1626 	__poll_t revents;
1627 	struct epitem *epi;
1628 	struct ep_pqueue epq;
1629 	struct eventpoll *tep = NULL;
1630 
1631 	if (is_file_epoll(tfile))
1632 		tep = tfile->private_data;
1633 
1634 	lockdep_assert_irqs_enabled();
1635 
1636 	if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1637 					    max_user_watches) >= 0))
1638 		return -ENOSPC;
1639 	percpu_counter_inc(&ep->user->epoll_watches);
1640 
1641 	if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1642 		percpu_counter_dec(&ep->user->epoll_watches);
1643 		return -ENOMEM;
1644 	}
1645 
1646 	/* Item initialization follow here ... */
1647 	INIT_LIST_HEAD(&epi->rdllink);
1648 	epi->ep = ep;
1649 	ep_set_ffd(&epi->ffd, tfile, fd);
1650 	epi->event = *event;
1651 	epi->next = EP_UNACTIVE_PTR;
1652 
1653 	if (tep)
1654 		mutex_lock_nested(&tep->mtx, 1);
1655 	/* Add the current item to the list of active epoll hook for this file */
1656 	if (unlikely(attach_epitem(tfile, epi) < 0)) {
1657 		if (tep)
1658 			mutex_unlock(&tep->mtx);
1659 		kmem_cache_free(epi_cache, epi);
1660 		percpu_counter_dec(&ep->user->epoll_watches);
1661 		return -ENOMEM;
1662 	}
1663 
1664 	if (full_check && !tep)
1665 		list_file(tfile);
1666 
1667 	/*
1668 	 * Add the current item to the RB tree. All RB tree operations are
1669 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1670 	 */
1671 	ep_rbtree_insert(ep, epi);
1672 	if (tep)
1673 		mutex_unlock(&tep->mtx);
1674 
1675 	/*
1676 	 * ep_remove_safe() calls in the later error paths can't lead to
1677 	 * ep_free() as the ep file itself still holds an ep reference.
1678 	 */
1679 	ep_get(ep);
1680 
1681 	/* now check if we've created too many backpaths */
1682 	if (unlikely(full_check && reverse_path_check())) {
1683 		ep_remove_safe(ep, epi);
1684 		return -EINVAL;
1685 	}
1686 
1687 	if (epi->event.events & EPOLLWAKEUP) {
1688 		error = ep_create_wakeup_source(epi);
1689 		if (error) {
1690 			ep_remove_safe(ep, epi);
1691 			return error;
1692 		}
1693 	}
1694 
1695 	/* Initialize the poll table using the queue callback */
1696 	epq.epi = epi;
1697 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1698 
1699 	/*
1700 	 * Attach the item to the poll hooks and get current event bits.
1701 	 * We can safely use the file* here because its usage count has
1702 	 * been increased by the caller of this function. Note that after
1703 	 * this operation completes, the poll callback can start hitting
1704 	 * the new item.
1705 	 */
1706 	revents = ep_item_poll(epi, &epq.pt, 1);
1707 
1708 	/*
1709 	 * We have to check if something went wrong during the poll wait queue
1710 	 * install process. Namely an allocation for a wait queue failed due
1711 	 * high memory pressure.
1712 	 */
1713 	if (unlikely(!epq.epi)) {
1714 		ep_remove_safe(ep, epi);
1715 		return -ENOMEM;
1716 	}
1717 
1718 	/* We have to drop the new item inside our item list to keep track of it */
1719 	write_lock_irq(&ep->lock);
1720 
1721 	/* record NAPI ID of new item if present */
1722 	ep_set_busy_poll_napi_id(epi);
1723 
1724 	/* If the file is already "ready" we drop it inside the ready list */
1725 	if (revents && !ep_is_linked(epi)) {
1726 		list_add_tail(&epi->rdllink, &ep->rdllist);
1727 		ep_pm_stay_awake(epi);
1728 
1729 		/* Notify waiting tasks that events are available */
1730 		if (waitqueue_active(&ep->wq))
1731 			wake_up(&ep->wq);
1732 		if (waitqueue_active(&ep->poll_wait))
1733 			pwake++;
1734 	}
1735 
1736 	write_unlock_irq(&ep->lock);
1737 
1738 	/* We have to call this outside the lock */
1739 	if (pwake)
1740 		ep_poll_safewake(ep, NULL, 0);
1741 
1742 	return 0;
1743 }
1744 
1745 /*
1746  * Modify the interest event mask by dropping an event if the new mask
1747  * has a match in the current file status. Must be called with "mtx" held.
1748  */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1749 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1750 		     const struct epoll_event *event)
1751 {
1752 	int pwake = 0;
1753 	poll_table pt;
1754 
1755 	lockdep_assert_irqs_enabled();
1756 
1757 	init_poll_funcptr(&pt, NULL);
1758 
1759 	/*
1760 	 * Set the new event interest mask before calling f_op->poll();
1761 	 * otherwise we might miss an event that happens between the
1762 	 * f_op->poll() call and the new event set registering.
1763 	 */
1764 	epi->event.events = event->events; /* need barrier below */
1765 	epi->event.data = event->data; /* protected by mtx */
1766 	if (epi->event.events & EPOLLWAKEUP) {
1767 		if (!ep_has_wakeup_source(epi))
1768 			ep_create_wakeup_source(epi);
1769 	} else if (ep_has_wakeup_source(epi)) {
1770 		ep_destroy_wakeup_source(epi);
1771 	}
1772 
1773 	/*
1774 	 * The following barrier has two effects:
1775 	 *
1776 	 * 1) Flush epi changes above to other CPUs.  This ensures
1777 	 *    we do not miss events from ep_poll_callback if an
1778 	 *    event occurs immediately after we call f_op->poll().
1779 	 *    We need this because we did not take ep->lock while
1780 	 *    changing epi above (but ep_poll_callback does take
1781 	 *    ep->lock).
1782 	 *
1783 	 * 2) We also need to ensure we do not miss _past_ events
1784 	 *    when calling f_op->poll().  This barrier also
1785 	 *    pairs with the barrier in wq_has_sleeper (see
1786 	 *    comments for wq_has_sleeper).
1787 	 *
1788 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1789 	 * (or both) will notice the readiness of an item.
1790 	 */
1791 	smp_mb();
1792 
1793 	/*
1794 	 * Get current event bits. We can safely use the file* here because
1795 	 * its usage count has been increased by the caller of this function.
1796 	 * If the item is "hot" and it is not registered inside the ready
1797 	 * list, push it inside.
1798 	 */
1799 	if (ep_item_poll(epi, &pt, 1)) {
1800 		write_lock_irq(&ep->lock);
1801 		if (!ep_is_linked(epi)) {
1802 			list_add_tail(&epi->rdllink, &ep->rdllist);
1803 			ep_pm_stay_awake(epi);
1804 
1805 			/* Notify waiting tasks that events are available */
1806 			if (waitqueue_active(&ep->wq))
1807 				wake_up(&ep->wq);
1808 			if (waitqueue_active(&ep->poll_wait))
1809 				pwake++;
1810 		}
1811 		write_unlock_irq(&ep->lock);
1812 	}
1813 
1814 	/* We have to call this outside the lock */
1815 	if (pwake)
1816 		ep_poll_safewake(ep, NULL, 0);
1817 
1818 	return 0;
1819 }
1820 
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1821 static int ep_send_events(struct eventpoll *ep,
1822 			  struct epoll_event __user *events, int maxevents)
1823 {
1824 	struct epitem *epi, *tmp;
1825 	LIST_HEAD(txlist);
1826 	poll_table pt;
1827 	int res = 0;
1828 
1829 	/*
1830 	 * Always short-circuit for fatal signals to allow threads to make a
1831 	 * timely exit without the chance of finding more events available and
1832 	 * fetching repeatedly.
1833 	 */
1834 	if (fatal_signal_pending(current))
1835 		return -EINTR;
1836 
1837 	init_poll_funcptr(&pt, NULL);
1838 
1839 	mutex_lock(&ep->mtx);
1840 	ep_start_scan(ep, &txlist);
1841 
1842 	/*
1843 	 * We can loop without lock because we are passed a task private list.
1844 	 * Items cannot vanish during the loop we are holding ep->mtx.
1845 	 */
1846 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1847 		struct wakeup_source *ws;
1848 		__poll_t revents;
1849 
1850 		if (res >= maxevents)
1851 			break;
1852 
1853 		/*
1854 		 * Activate ep->ws before deactivating epi->ws to prevent
1855 		 * triggering auto-suspend here (in case we reactive epi->ws
1856 		 * below).
1857 		 *
1858 		 * This could be rearranged to delay the deactivation of epi->ws
1859 		 * instead, but then epi->ws would temporarily be out of sync
1860 		 * with ep_is_linked().
1861 		 */
1862 		ws = ep_wakeup_source(epi);
1863 		if (ws) {
1864 			if (ws->active)
1865 				__pm_stay_awake(ep->ws);
1866 			__pm_relax(ws);
1867 		}
1868 
1869 		list_del_init(&epi->rdllink);
1870 
1871 		/*
1872 		 * If the event mask intersect the caller-requested one,
1873 		 * deliver the event to userspace. Again, we are holding ep->mtx,
1874 		 * so no operations coming from userspace can change the item.
1875 		 */
1876 		revents = ep_item_poll(epi, &pt, 1);
1877 		if (!revents)
1878 			continue;
1879 
1880 		events = epoll_put_uevent(revents, epi->event.data, events);
1881 		if (!events) {
1882 			list_add(&epi->rdllink, &txlist);
1883 			ep_pm_stay_awake(epi);
1884 			if (!res)
1885 				res = -EFAULT;
1886 			break;
1887 		}
1888 		res++;
1889 		if (epi->event.events & EPOLLONESHOT)
1890 			epi->event.events &= EP_PRIVATE_BITS;
1891 		else if (!(epi->event.events & EPOLLET)) {
1892 			/*
1893 			 * If this file has been added with Level
1894 			 * Trigger mode, we need to insert back inside
1895 			 * the ready list, so that the next call to
1896 			 * epoll_wait() will check again the events
1897 			 * availability. At this point, no one can insert
1898 			 * into ep->rdllist besides us. The epoll_ctl()
1899 			 * callers are locked out by
1900 			 * ep_send_events() holding "mtx" and the
1901 			 * poll callback will queue them in ep->ovflist.
1902 			 */
1903 			list_add_tail(&epi->rdllink, &ep->rdllist);
1904 			ep_pm_stay_awake(epi);
1905 		}
1906 	}
1907 	ep_done_scan(ep, &txlist);
1908 	mutex_unlock(&ep->mtx);
1909 
1910 	return res;
1911 }
1912 
ep_timeout_to_timespec(struct timespec64 * to,long ms)1913 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1914 {
1915 	struct timespec64 now;
1916 
1917 	if (ms < 0)
1918 		return NULL;
1919 
1920 	if (!ms) {
1921 		to->tv_sec = 0;
1922 		to->tv_nsec = 0;
1923 		return to;
1924 	}
1925 
1926 	to->tv_sec = ms / MSEC_PER_SEC;
1927 	to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1928 
1929 	ktime_get_ts64(&now);
1930 	*to = timespec64_add_safe(now, *to);
1931 	return to;
1932 }
1933 
1934 /*
1935  * autoremove_wake_function, but remove even on failure to wake up, because we
1936  * know that default_wake_function/ttwu will only fail if the thread is already
1937  * woken, and in that case the ep_poll loop will remove the entry anyways, not
1938  * try to reuse it.
1939  */
ep_autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned int mode,int sync,void * key)1940 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1941 				       unsigned int mode, int sync, void *key)
1942 {
1943 	int ret = default_wake_function(wq_entry, mode, sync, key);
1944 
1945 	/*
1946 	 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1947 	 * iterations see the cause of this wakeup.
1948 	 */
1949 	list_del_init_careful(&wq_entry->entry);
1950 	return ret;
1951 }
1952 
1953 /**
1954  * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1955  *           event buffer.
1956  *
1957  * @ep: Pointer to the eventpoll context.
1958  * @events: Pointer to the userspace buffer where the ready events should be
1959  *          stored.
1960  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1961  * @timeout: Maximum timeout for the ready events fetch operation, in
1962  *           timespec. If the timeout is zero, the function will not block,
1963  *           while if the @timeout ptr is NULL, the function will block
1964  *           until at least one event has been retrieved (or an error
1965  *           occurred).
1966  *
1967  * Return: the number of ready events which have been fetched, or an
1968  *          error code, in case of error.
1969  */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout)1970 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1971 		   int maxevents, struct timespec64 *timeout)
1972 {
1973 	int res, eavail, timed_out = 0;
1974 	u64 slack = 0;
1975 	wait_queue_entry_t wait;
1976 	ktime_t expires, *to = NULL;
1977 
1978 	lockdep_assert_irqs_enabled();
1979 
1980 	if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1981 		slack = select_estimate_accuracy(timeout);
1982 		to = &expires;
1983 		*to = timespec64_to_ktime(*timeout);
1984 	} else if (timeout) {
1985 		/*
1986 		 * Avoid the unnecessary trip to the wait queue loop, if the
1987 		 * caller specified a non blocking operation.
1988 		 */
1989 		timed_out = 1;
1990 	}
1991 
1992 	/*
1993 	 * This call is racy: We may or may not see events that are being added
1994 	 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1995 	 * with a non-zero timeout, this thread will check the ready list under
1996 	 * lock and will add to the wait queue.  For cases with a zero
1997 	 * timeout, the user by definition should not care and will have to
1998 	 * recheck again.
1999 	 */
2000 	eavail = ep_events_available(ep);
2001 
2002 	while (1) {
2003 		if (eavail) {
2004 			/*
2005 			 * Try to transfer events to user space. In case we get
2006 			 * 0 events and there's still timeout left over, we go
2007 			 * trying again in search of more luck.
2008 			 */
2009 			res = ep_send_events(ep, events, maxevents);
2010 			if (res)
2011 				return res;
2012 		}
2013 
2014 		if (timed_out)
2015 			return 0;
2016 
2017 		eavail = ep_busy_loop(ep, timed_out);
2018 		if (eavail)
2019 			continue;
2020 
2021 		if (signal_pending(current))
2022 			return -EINTR;
2023 
2024 		/*
2025 		 * Internally init_wait() uses autoremove_wake_function(),
2026 		 * thus wait entry is removed from the wait queue on each
2027 		 * wakeup. Why it is important? In case of several waiters
2028 		 * each new wakeup will hit the next waiter, giving it the
2029 		 * chance to harvest new event. Otherwise wakeup can be
2030 		 * lost. This is also good performance-wise, because on
2031 		 * normal wakeup path no need to call __remove_wait_queue()
2032 		 * explicitly, thus ep->lock is not taken, which halts the
2033 		 * event delivery.
2034 		 *
2035 		 * In fact, we now use an even more aggressive function that
2036 		 * unconditionally removes, because we don't reuse the wait
2037 		 * entry between loop iterations. This lets us also avoid the
2038 		 * performance issue if a process is killed, causing all of its
2039 		 * threads to wake up without being removed normally.
2040 		 */
2041 		init_wait(&wait);
2042 		wait.func = ep_autoremove_wake_function;
2043 
2044 		write_lock_irq(&ep->lock);
2045 		/*
2046 		 * Barrierless variant, waitqueue_active() is called under
2047 		 * the same lock on wakeup ep_poll_callback() side, so it
2048 		 * is safe to avoid an explicit barrier.
2049 		 */
2050 		__set_current_state(TASK_INTERRUPTIBLE);
2051 
2052 		/*
2053 		 * Do the final check under the lock. ep_start/done_scan()
2054 		 * plays with two lists (->rdllist and ->ovflist) and there
2055 		 * is always a race when both lists are empty for short
2056 		 * period of time although events are pending, so lock is
2057 		 * important.
2058 		 */
2059 		eavail = ep_events_available(ep);
2060 		if (!eavail)
2061 			__add_wait_queue_exclusive(&ep->wq, &wait);
2062 
2063 		write_unlock_irq(&ep->lock);
2064 
2065 		if (!eavail)
2066 			timed_out = !schedule_hrtimeout_range(to, slack,
2067 							      HRTIMER_MODE_ABS);
2068 		__set_current_state(TASK_RUNNING);
2069 
2070 		/*
2071 		 * We were woken up, thus go and try to harvest some events.
2072 		 * If timed out and still on the wait queue, recheck eavail
2073 		 * carefully under lock, below.
2074 		 */
2075 		eavail = 1;
2076 
2077 		if (!list_empty_careful(&wait.entry)) {
2078 			write_lock_irq(&ep->lock);
2079 			/*
2080 			 * If the thread timed out and is not on the wait queue,
2081 			 * it means that the thread was woken up after its
2082 			 * timeout expired before it could reacquire the lock.
2083 			 * Thus, when wait.entry is empty, it needs to harvest
2084 			 * events.
2085 			 */
2086 			if (timed_out)
2087 				eavail = list_empty(&wait.entry);
2088 			__remove_wait_queue(&ep->wq, &wait);
2089 			write_unlock_irq(&ep->lock);
2090 		}
2091 	}
2092 }
2093 
2094 /**
2095  * ep_loop_check_proc - verify that adding an epoll file @ep inside another
2096  *                      epoll file does not create closed loops, and
2097  *                      determine the depth of the subtree starting at @ep
2098  *
2099  * @ep: the &struct eventpoll to be currently checked.
2100  * @depth: Current depth of the path being checked.
2101  *
2102  * Return: depth of the subtree, or INT_MAX if we found a loop or went too deep.
2103  */
ep_loop_check_proc(struct eventpoll * ep,int depth)2104 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
2105 {
2106 	int result = 0;
2107 	struct rb_node *rbp;
2108 	struct epitem *epi;
2109 
2110 	if (ep->gen == loop_check_gen)
2111 		return ep->loop_check_depth;
2112 
2113 	mutex_lock_nested(&ep->mtx, depth + 1);
2114 	ep->gen = loop_check_gen;
2115 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2116 		epi = rb_entry(rbp, struct epitem, rbn);
2117 		if (unlikely(is_file_epoll(epi->ffd.file))) {
2118 			struct eventpoll *ep_tovisit;
2119 			ep_tovisit = epi->ffd.file->private_data;
2120 			if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
2121 				result = INT_MAX;
2122 			else
2123 				result = max(result, ep_loop_check_proc(ep_tovisit, depth + 1) + 1);
2124 			if (result > EP_MAX_NESTS)
2125 				break;
2126 		} else {
2127 			/*
2128 			 * If we've reached a file that is not associated with
2129 			 * an ep, then we need to check if the newly added
2130 			 * links are going to add too many wakeup paths. We do
2131 			 * this by adding it to the tfile_check_list, if it's
2132 			 * not already there, and calling reverse_path_check()
2133 			 * during ep_insert().
2134 			 */
2135 			list_file(epi->ffd.file);
2136 		}
2137 	}
2138 	ep->loop_check_depth = result;
2139 	mutex_unlock(&ep->mtx);
2140 
2141 	return result;
2142 }
2143 
2144 /**
2145  * ep_get_upwards_depth_proc - determine depth of @ep when traversed upwards
2146  */
ep_get_upwards_depth_proc(struct eventpoll * ep,int depth)2147 static int ep_get_upwards_depth_proc(struct eventpoll *ep, int depth)
2148 {
2149 	int result = 0;
2150 	struct epitem *epi;
2151 
2152 	if (ep->gen == loop_check_gen)
2153 		return ep->loop_check_depth;
2154 	hlist_for_each_entry_rcu(epi, &ep->refs, fllink)
2155 		result = max(result, ep_get_upwards_depth_proc(epi->ep, depth + 1) + 1);
2156 	ep->gen = loop_check_gen;
2157 	ep->loop_check_depth = result;
2158 	return result;
2159 }
2160 
2161 /**
2162  * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2163  *                 into another epoll file (represented by @ep) does not create
2164  *                 closed loops or too deep chains.
2165  *
2166  * @ep: Pointer to the epoll we are inserting into.
2167  * @to: Pointer to the epoll to be inserted.
2168  *
2169  * Return: %zero if adding the epoll @to inside the epoll @from
2170  * does not violate the constraints, or %-1 otherwise.
2171  */
ep_loop_check(struct eventpoll * ep,struct eventpoll * to)2172 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2173 {
2174 	int depth, upwards_depth;
2175 
2176 	inserting_into = ep;
2177 	/*
2178 	 * Check how deep down we can get from @to, and whether it is possible
2179 	 * to loop up to @ep.
2180 	 */
2181 	depth = ep_loop_check_proc(to, 0);
2182 	if (depth > EP_MAX_NESTS)
2183 		return -1;
2184 	/* Check how far up we can go from @ep. */
2185 	rcu_read_lock();
2186 	upwards_depth = ep_get_upwards_depth_proc(ep, 0);
2187 	rcu_read_unlock();
2188 
2189 	return (depth+1+upwards_depth > EP_MAX_NESTS) ? -1 : 0;
2190 }
2191 
clear_tfile_check_list(void)2192 static void clear_tfile_check_list(void)
2193 {
2194 	rcu_read_lock();
2195 	while (tfile_check_list != EP_UNACTIVE_PTR) {
2196 		struct epitems_head *head = tfile_check_list;
2197 		tfile_check_list = head->next;
2198 		unlist_file(head);
2199 	}
2200 	rcu_read_unlock();
2201 }
2202 
2203 /*
2204  * Open an eventpoll file descriptor.
2205  */
do_epoll_create(int flags)2206 static int do_epoll_create(int flags)
2207 {
2208 	int error, fd;
2209 	struct eventpoll *ep = NULL;
2210 	struct file *file;
2211 
2212 	/* Check the EPOLL_* constant for consistency.  */
2213 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2214 
2215 	if (flags & ~EPOLL_CLOEXEC)
2216 		return -EINVAL;
2217 	/*
2218 	 * Create the internal data structure ("struct eventpoll").
2219 	 */
2220 	error = ep_alloc(&ep);
2221 	if (error < 0)
2222 		return error;
2223 	/*
2224 	 * Creates all the items needed to setup an eventpoll file. That is,
2225 	 * a file structure and a free file descriptor.
2226 	 */
2227 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2228 	if (fd < 0) {
2229 		error = fd;
2230 		goto out_free_ep;
2231 	}
2232 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2233 				 O_RDWR | (flags & O_CLOEXEC));
2234 	if (IS_ERR(file)) {
2235 		error = PTR_ERR(file);
2236 		goto out_free_fd;
2237 	}
2238 	ep->file = file;
2239 	fd_install(fd, file);
2240 	return fd;
2241 
2242 out_free_fd:
2243 	put_unused_fd(fd);
2244 out_free_ep:
2245 	ep_clear_and_put(ep);
2246 	return error;
2247 }
2248 
SYSCALL_DEFINE1(epoll_create1,int,flags)2249 SYSCALL_DEFINE1(epoll_create1, int, flags)
2250 {
2251 	return do_epoll_create(flags);
2252 }
2253 
SYSCALL_DEFINE1(epoll_create,int,size)2254 SYSCALL_DEFINE1(epoll_create, int, size)
2255 {
2256 	if (size <= 0)
2257 		return -EINVAL;
2258 
2259 	return do_epoll_create(0);
2260 }
2261 
2262 #ifdef CONFIG_PM_SLEEP
ep_take_care_of_epollwakeup(struct epoll_event * epev)2263 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2264 {
2265 	if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2266 		epev->events &= ~EPOLLWAKEUP;
2267 }
2268 #else
ep_take_care_of_epollwakeup(struct epoll_event * epev)2269 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2270 {
2271 	epev->events &= ~EPOLLWAKEUP;
2272 }
2273 #endif
2274 
epoll_mutex_lock(struct mutex * mutex,int depth,bool nonblock)2275 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2276 				   bool nonblock)
2277 {
2278 	if (!nonblock) {
2279 		mutex_lock_nested(mutex, depth);
2280 		return 0;
2281 	}
2282 	if (mutex_trylock(mutex))
2283 		return 0;
2284 	return -EAGAIN;
2285 }
2286 
do_epoll_ctl(int epfd,int op,int fd,struct epoll_event * epds,bool nonblock)2287 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2288 		 bool nonblock)
2289 {
2290 	int error;
2291 	int full_check = 0;
2292 	struct fd f, tf;
2293 	struct eventpoll *ep;
2294 	struct epitem *epi;
2295 	struct eventpoll *tep = NULL;
2296 
2297 	error = -EBADF;
2298 	f = fdget(epfd);
2299 	if (!fd_file(f))
2300 		goto error_return;
2301 
2302 	/* Get the "struct file *" for the target file */
2303 	tf = fdget(fd);
2304 	if (!fd_file(tf))
2305 		goto error_fput;
2306 
2307 	/* The target file descriptor must support poll */
2308 	error = -EPERM;
2309 	if (!file_can_poll(fd_file(tf)))
2310 		goto error_tgt_fput;
2311 
2312 	/* Check if EPOLLWAKEUP is allowed */
2313 	if (ep_op_has_event(op))
2314 		ep_take_care_of_epollwakeup(epds);
2315 
2316 	/*
2317 	 * We have to check that the file structure underneath the file descriptor
2318 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2319 	 * adding an epoll file descriptor inside itself.
2320 	 */
2321 	error = -EINVAL;
2322 	if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f)))
2323 		goto error_tgt_fput;
2324 
2325 	/*
2326 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2327 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2328 	 * Also, we do not currently supported nested exclusive wakeups.
2329 	 */
2330 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2331 		if (op == EPOLL_CTL_MOD)
2332 			goto error_tgt_fput;
2333 		if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) ||
2334 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2335 			goto error_tgt_fput;
2336 	}
2337 
2338 	/*
2339 	 * At this point it is safe to assume that the "private_data" contains
2340 	 * our own data structure.
2341 	 */
2342 	ep = fd_file(f)->private_data;
2343 
2344 	/*
2345 	 * When we insert an epoll file descriptor inside another epoll file
2346 	 * descriptor, there is the chance of creating closed loops, which are
2347 	 * better be handled here, than in more critical paths. While we are
2348 	 * checking for loops we also determine the list of files reachable
2349 	 * and hang them on the tfile_check_list, so we can check that we
2350 	 * haven't created too many possible wakeup paths.
2351 	 *
2352 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2353 	 * the epoll file descriptor is attaching directly to a wakeup source,
2354 	 * unless the epoll file descriptor is nested. The purpose of taking the
2355 	 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2356 	 * deep wakeup paths from forming in parallel through multiple
2357 	 * EPOLL_CTL_ADD operations.
2358 	 */
2359 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2360 	if (error)
2361 		goto error_tgt_fput;
2362 	if (op == EPOLL_CTL_ADD) {
2363 		if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen ||
2364 		    is_file_epoll(fd_file(tf))) {
2365 			mutex_unlock(&ep->mtx);
2366 			error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2367 			if (error)
2368 				goto error_tgt_fput;
2369 			loop_check_gen++;
2370 			full_check = 1;
2371 			if (is_file_epoll(fd_file(tf))) {
2372 				tep = fd_file(tf)->private_data;
2373 				error = -ELOOP;
2374 				if (ep_loop_check(ep, tep) != 0)
2375 					goto error_tgt_fput;
2376 			}
2377 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2378 			if (error)
2379 				goto error_tgt_fput;
2380 		}
2381 	}
2382 
2383 	/*
2384 	 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2385 	 * above, we can be sure to be able to use the item looked up by
2386 	 * ep_find() till we release the mutex.
2387 	 */
2388 	epi = ep_find(ep, fd_file(tf), fd);
2389 
2390 	error = -EINVAL;
2391 	switch (op) {
2392 	case EPOLL_CTL_ADD:
2393 		if (!epi) {
2394 			epds->events |= EPOLLERR | EPOLLHUP;
2395 			error = ep_insert(ep, epds, fd_file(tf), fd, full_check);
2396 		} else
2397 			error = -EEXIST;
2398 		break;
2399 	case EPOLL_CTL_DEL:
2400 		if (epi) {
2401 			/*
2402 			 * The eventpoll itself is still alive: the refcount
2403 			 * can't go to zero here.
2404 			 */
2405 			ep_remove_safe(ep, epi);
2406 			error = 0;
2407 		} else {
2408 			error = -ENOENT;
2409 		}
2410 		break;
2411 	case EPOLL_CTL_MOD:
2412 		if (epi) {
2413 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2414 				epds->events |= EPOLLERR | EPOLLHUP;
2415 				error = ep_modify(ep, epi, epds);
2416 			}
2417 		} else
2418 			error = -ENOENT;
2419 		break;
2420 	}
2421 	mutex_unlock(&ep->mtx);
2422 
2423 error_tgt_fput:
2424 	if (full_check) {
2425 		clear_tfile_check_list();
2426 		loop_check_gen++;
2427 		mutex_unlock(&epnested_mutex);
2428 	}
2429 
2430 	fdput(tf);
2431 error_fput:
2432 	fdput(f);
2433 error_return:
2434 
2435 	return error;
2436 }
2437 
2438 /*
2439  * The following function implements the controller interface for
2440  * the eventpoll file that enables the insertion/removal/change of
2441  * file descriptors inside the interest set.
2442  */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2443 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2444 		struct epoll_event __user *, event)
2445 {
2446 	struct epoll_event epds;
2447 
2448 	if (ep_op_has_event(op) &&
2449 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2450 		return -EFAULT;
2451 
2452 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2453 }
2454 
2455 /*
2456  * Implement the event wait interface for the eventpoll file. It is the kernel
2457  * part of the user space epoll_wait(2).
2458  */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to)2459 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2460 			 int maxevents, struct timespec64 *to)
2461 {
2462 	int error;
2463 	struct fd f;
2464 	struct eventpoll *ep;
2465 
2466 	/* The maximum number of event must be greater than zero */
2467 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2468 		return -EINVAL;
2469 
2470 	/* Verify that the area passed by the user is writeable */
2471 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2472 		return -EFAULT;
2473 
2474 	/* Get the "struct file *" for the eventpoll file */
2475 	f = fdget(epfd);
2476 	if (!fd_file(f))
2477 		return -EBADF;
2478 
2479 	/*
2480 	 * We have to check that the file structure underneath the fd
2481 	 * the user passed to us _is_ an eventpoll file.
2482 	 */
2483 	error = -EINVAL;
2484 	if (!is_file_epoll(fd_file(f)))
2485 		goto error_fput;
2486 
2487 	/*
2488 	 * At this point it is safe to assume that the "private_data" contains
2489 	 * our own data structure.
2490 	 */
2491 	ep = fd_file(f)->private_data;
2492 
2493 	/* Time to fish for events ... */
2494 	error = ep_poll(ep, events, maxevents, to);
2495 
2496 error_fput:
2497 	fdput(f);
2498 	return error;
2499 }
2500 
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2501 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2502 		int, maxevents, int, timeout)
2503 {
2504 	struct timespec64 to;
2505 
2506 	return do_epoll_wait(epfd, events, maxevents,
2507 			     ep_timeout_to_timespec(&to, timeout));
2508 }
2509 
2510 /*
2511  * Implement the event wait interface for the eventpoll file. It is the kernel
2512  * part of the user space epoll_pwait(2).
2513  */
do_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to,const sigset_t __user * sigmask,size_t sigsetsize)2514 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2515 			  int maxevents, struct timespec64 *to,
2516 			  const sigset_t __user *sigmask, size_t sigsetsize)
2517 {
2518 	int error;
2519 
2520 	/*
2521 	 * If the caller wants a certain signal mask to be set during the wait,
2522 	 * we apply it here.
2523 	 */
2524 	error = set_user_sigmask(sigmask, sigsetsize);
2525 	if (error)
2526 		return error;
2527 
2528 	error = do_epoll_wait(epfd, events, maxevents, to);
2529 
2530 	restore_saved_sigmask_unless(error == -EINTR);
2531 
2532 	return error;
2533 }
2534 
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2535 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2536 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2537 		size_t, sigsetsize)
2538 {
2539 	struct timespec64 to;
2540 
2541 	return do_epoll_pwait(epfd, events, maxevents,
2542 			      ep_timeout_to_timespec(&to, timeout),
2543 			      sigmask, sigsetsize);
2544 }
2545 
SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2546 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2547 		int, maxevents, const struct __kernel_timespec __user *, timeout,
2548 		const sigset_t __user *, sigmask, size_t, sigsetsize)
2549 {
2550 	struct timespec64 ts, *to = NULL;
2551 
2552 	if (timeout) {
2553 		if (get_timespec64(&ts, timeout))
2554 			return -EFAULT;
2555 		to = &ts;
2556 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2557 			return -EINVAL;
2558 	}
2559 
2560 	return do_epoll_pwait(epfd, events, maxevents, to,
2561 			      sigmask, sigsetsize);
2562 }
2563 
2564 #ifdef CONFIG_COMPAT
do_compat_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout,const compat_sigset_t __user * sigmask,compat_size_t sigsetsize)2565 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2566 				 int maxevents, struct timespec64 *timeout,
2567 				 const compat_sigset_t __user *sigmask,
2568 				 compat_size_t sigsetsize)
2569 {
2570 	long err;
2571 
2572 	/*
2573 	 * If the caller wants a certain signal mask to be set during the wait,
2574 	 * we apply it here.
2575 	 */
2576 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2577 	if (err)
2578 		return err;
2579 
2580 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2581 
2582 	restore_saved_sigmask_unless(err == -EINTR);
2583 
2584 	return err;
2585 }
2586 
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2587 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2588 		       struct epoll_event __user *, events,
2589 		       int, maxevents, int, timeout,
2590 		       const compat_sigset_t __user *, sigmask,
2591 		       compat_size_t, sigsetsize)
2592 {
2593 	struct timespec64 to;
2594 
2595 	return do_compat_epoll_pwait(epfd, events, maxevents,
2596 				     ep_timeout_to_timespec(&to, timeout),
2597 				     sigmask, sigsetsize);
2598 }
2599 
COMPAT_SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2600 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2601 		       struct epoll_event __user *, events,
2602 		       int, maxevents,
2603 		       const struct __kernel_timespec __user *, timeout,
2604 		       const compat_sigset_t __user *, sigmask,
2605 		       compat_size_t, sigsetsize)
2606 {
2607 	struct timespec64 ts, *to = NULL;
2608 
2609 	if (timeout) {
2610 		if (get_timespec64(&ts, timeout))
2611 			return -EFAULT;
2612 		to = &ts;
2613 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2614 			return -EINVAL;
2615 	}
2616 
2617 	return do_compat_epoll_pwait(epfd, events, maxevents, to,
2618 				     sigmask, sigsetsize);
2619 }
2620 
2621 #endif
2622 
eventpoll_init(void)2623 static int __init eventpoll_init(void)
2624 {
2625 	struct sysinfo si;
2626 
2627 	si_meminfo(&si);
2628 	/*
2629 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2630 	 */
2631 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2632 		EP_ITEM_COST;
2633 	BUG_ON(max_user_watches < 0);
2634 
2635 	/*
2636 	 * We can have many thousands of epitems, so prevent this from
2637 	 * using an extra cache line on 64-bit (and smaller) CPUs
2638 	 */
2639 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2640 
2641 	/* Allocates slab cache used to allocate "struct epitem" items */
2642 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2643 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2644 
2645 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2646 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2647 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2648 	epoll_sysctls_init();
2649 
2650 	ephead_cache = kmem_cache_create("ep_head",
2651 		sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2652 
2653 	return 0;
2654 }
2655 fs_initcall(eventpoll_init);
2656