1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <linux/capability.h>
41 #include <net/busy_poll.h>
42
43 /*
44 * LOCKING:
45 * There are three level of locking required by epoll :
46 *
47 * 1) epnested_mutex (mutex)
48 * 2) ep->mtx (mutex)
49 * 3) ep->lock (rwlock)
50 *
51 * The acquire order is the one listed above, from 1 to 3.
52 * We need a rwlock (ep->lock) because we manipulate objects
53 * from inside the poll callback, that might be triggered from
54 * a wake_up() that in turn might be called from IRQ context.
55 * So we can't sleep inside the poll callback and hence we need
56 * a spinlock. During the event transfer loop (from kernel to
57 * user space) we could end up sleeping due a copy_to_user(), so
58 * we need a lock that will allow us to sleep. This lock is a
59 * mutex (ep->mtx). It is acquired during the event transfer loop,
60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61 * The epnested_mutex is acquired when inserting an epoll fd onto another
62 * epoll fd. We do this so that we walk the epoll tree and ensure that this
63 * insertion does not create a cycle of epoll file descriptors, which
64 * could lead to deadlock. We need a global mutex to prevent two
65 * simultaneous inserts (A into B and B into A) from racing and
66 * constructing a cycle without either insert observing that it is
67 * going to.
68 * It is necessary to acquire multiple "ep->mtx"es at once in the
69 * case when one epoll fd is added to another. In this case, we
70 * always acquire the locks in the order of nesting (i.e. after
71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
72 * before e2->mtx). Since we disallow cycles of epoll file
73 * descriptors, this ensures that the mutexes are well-ordered. In
74 * order to communicate this nesting to lockdep, when walking a tree
75 * of epoll file descriptors, we use the current recursion depth as
76 * the lockdep subkey.
77 * It is possible to drop the "ep->mtx" and to use the global
78 * mutex "epnested_mutex" (together with "ep->lock") to have it working,
79 * but having "ep->mtx" will make the interface more scalable.
80 * Events that require holding "epnested_mutex" are very rare, while for
81 * normal operations the epoll private "ep->mtx" will guarantee
82 * a better scalability.
83 */
84
85 /* Epoll private bits inside the event mask */
86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
87
88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
89
90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
91 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
92
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
95
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97
98 #define EP_UNACTIVE_PTR ((void *) -1L)
99
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101
102 struct epoll_filefd {
103 struct file *file;
104 int fd;
105 } __packed;
106
107 /* Wait structure used by the poll hooks */
108 struct eppoll_entry {
109 /* List header used to link this structure to the "struct epitem" */
110 struct eppoll_entry *next;
111
112 /* The "base" pointer is set to the container "struct epitem" */
113 struct epitem *base;
114
115 /*
116 * Wait queue item that will be linked to the target file wait
117 * queue head.
118 */
119 wait_queue_entry_t wait;
120
121 /* The wait queue head that linked the "wait" wait queue item */
122 wait_queue_head_t *whead;
123 };
124
125 /*
126 * Each file descriptor added to the eventpoll interface will
127 * have an entry of this type linked to the "rbr" RB tree.
128 * Avoid increasing the size of this struct, there can be many thousands
129 * of these on a server and we do not want this to take another cache line.
130 */
131 struct epitem {
132 union {
133 /* RB tree node links this structure to the eventpoll RB tree */
134 struct rb_node rbn;
135 /* Used to free the struct epitem */
136 struct rcu_head rcu;
137 };
138
139 /* List header used to link this structure to the eventpoll ready list */
140 struct list_head rdllink;
141
142 /*
143 * Works together "struct eventpoll"->ovflist in keeping the
144 * single linked chain of items.
145 */
146 struct epitem *next;
147
148 /* The file descriptor information this item refers to */
149 struct epoll_filefd ffd;
150
151 /*
152 * Protected by file->f_lock, true for to-be-released epitem already
153 * removed from the "struct file" items list; together with
154 * eventpoll->refcount orchestrates "struct eventpoll" disposal
155 */
156 bool dying;
157
158 /* List containing poll wait queues */
159 struct eppoll_entry *pwqlist;
160
161 /* The "container" of this item */
162 struct eventpoll *ep;
163
164 /* List header used to link this item to the "struct file" items list */
165 struct hlist_node fllink;
166
167 /* wakeup_source used when EPOLLWAKEUP is set */
168 struct wakeup_source __rcu *ws;
169
170 /* The structure that describe the interested events and the source fd */
171 struct epoll_event event;
172 };
173
174 /*
175 * This structure is stored inside the "private_data" member of the file
176 * structure and represents the main data structure for the eventpoll
177 * interface.
178 */
179 struct eventpoll {
180 /*
181 * This mutex is used to ensure that files are not removed
182 * while epoll is using them. This is held during the event
183 * collection loop, the file cleanup path, the epoll file exit
184 * code and the ctl operations.
185 */
186 struct mutex mtx;
187
188 /* Wait queue used by sys_epoll_wait() */
189 wait_queue_head_t wq;
190
191 /* Wait queue used by file->poll() */
192 wait_queue_head_t poll_wait;
193
194 /* List of ready file descriptors */
195 struct list_head rdllist;
196
197 /* Lock which protects rdllist and ovflist */
198 rwlock_t lock;
199
200 /* RB tree root used to store monitored fd structs */
201 struct rb_root_cached rbr;
202
203 /*
204 * This is a single linked list that chains all the "struct epitem" that
205 * happened while transferring ready events to userspace w/out
206 * holding ->lock.
207 */
208 struct epitem *ovflist;
209
210 /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */
211 struct wakeup_source *ws;
212
213 /* The user that created the eventpoll descriptor */
214 struct user_struct *user;
215
216 struct file *file;
217
218 /* used to optimize loop detection check */
219 u64 gen;
220 struct hlist_head refs;
221 u8 loop_check_depth;
222
223 /*
224 * usage count, used together with epitem->dying to
225 * orchestrate the disposal of this struct
226 */
227 refcount_t refcount;
228
229 #ifdef CONFIG_NET_RX_BUSY_POLL
230 /* used to track busy poll napi_id */
231 unsigned int napi_id;
232 /* busy poll timeout */
233 u32 busy_poll_usecs;
234 /* busy poll packet budget */
235 u16 busy_poll_budget;
236 bool prefer_busy_poll;
237 #endif
238
239 #ifdef CONFIG_DEBUG_LOCK_ALLOC
240 /* tracks wakeup nests for lockdep validation */
241 u8 nests;
242 #endif
243 };
244
245 /* Wrapper struct used by poll queueing */
246 struct ep_pqueue {
247 poll_table pt;
248 struct epitem *epi;
249 };
250
251 /*
252 * Configuration options available inside /proc/sys/fs/epoll/
253 */
254 /* Maximum number of epoll watched descriptors, per user */
255 static long max_user_watches __read_mostly;
256
257 /* Used for cycles detection */
258 static DEFINE_MUTEX(epnested_mutex);
259
260 static u64 loop_check_gen = 0;
261
262 /* Used to check for epoll file descriptor inclusion loops */
263 static struct eventpoll *inserting_into;
264
265 /* Slab cache used to allocate "struct epitem" */
266 static struct kmem_cache *epi_cache __ro_after_init;
267
268 /* Slab cache used to allocate "struct eppoll_entry" */
269 static struct kmem_cache *pwq_cache __ro_after_init;
270
271 /*
272 * List of files with newly added links, where we may need to limit the number
273 * of emanating paths. Protected by the epnested_mutex.
274 */
275 struct epitems_head {
276 struct hlist_head epitems;
277 struct epitems_head *next;
278 };
279 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
280
281 static struct kmem_cache *ephead_cache __ro_after_init;
282
free_ephead(struct epitems_head * head)283 static inline void free_ephead(struct epitems_head *head)
284 {
285 if (head)
286 kmem_cache_free(ephead_cache, head);
287 }
288
list_file(struct file * file)289 static void list_file(struct file *file)
290 {
291 struct epitems_head *head;
292
293 head = container_of(file->f_ep, struct epitems_head, epitems);
294 if (!head->next) {
295 head->next = tfile_check_list;
296 tfile_check_list = head;
297 }
298 }
299
unlist_file(struct epitems_head * head)300 static void unlist_file(struct epitems_head *head)
301 {
302 struct epitems_head *to_free = head;
303 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
304 if (p) {
305 struct epitem *epi= container_of(p, struct epitem, fllink);
306 spin_lock(&epi->ffd.file->f_lock);
307 if (!hlist_empty(&head->epitems))
308 to_free = NULL;
309 head->next = NULL;
310 spin_unlock(&epi->ffd.file->f_lock);
311 }
312 free_ephead(to_free);
313 }
314
315 #ifdef CONFIG_SYSCTL
316
317 #include <linux/sysctl.h>
318
319 static long long_zero;
320 static long long_max = LONG_MAX;
321
322 static struct ctl_table epoll_table[] = {
323 {
324 .procname = "max_user_watches",
325 .data = &max_user_watches,
326 .maxlen = sizeof(max_user_watches),
327 .mode = 0644,
328 .proc_handler = proc_doulongvec_minmax,
329 .extra1 = &long_zero,
330 .extra2 = &long_max,
331 },
332 };
333
epoll_sysctls_init(void)334 static void __init epoll_sysctls_init(void)
335 {
336 register_sysctl("fs/epoll", epoll_table);
337 }
338 #else
339 #define epoll_sysctls_init() do { } while (0)
340 #endif /* CONFIG_SYSCTL */
341
342 static const struct file_operations eventpoll_fops;
343
is_file_epoll(struct file * f)344 static inline int is_file_epoll(struct file *f)
345 {
346 return f->f_op == &eventpoll_fops;
347 }
348
349 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)350 static inline void ep_set_ffd(struct epoll_filefd *ffd,
351 struct file *file, int fd)
352 {
353 ffd->file = file;
354 ffd->fd = fd;
355 }
356
357 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)358 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
359 struct epoll_filefd *p2)
360 {
361 return (p1->file > p2->file ? +1:
362 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
363 }
364
365 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)366 static inline int ep_is_linked(struct epitem *epi)
367 {
368 return !list_empty(&epi->rdllink);
369 }
370
ep_pwq_from_wait(wait_queue_entry_t * p)371 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
372 {
373 return container_of(p, struct eppoll_entry, wait);
374 }
375
376 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)377 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
378 {
379 return container_of(p, struct eppoll_entry, wait)->base;
380 }
381
382 /**
383 * ep_events_available - Checks if ready events might be available.
384 *
385 * @ep: Pointer to the eventpoll context.
386 *
387 * Return: a value different than %zero if ready events are available,
388 * or %zero otherwise.
389 */
ep_events_available(struct eventpoll * ep)390 static inline int ep_events_available(struct eventpoll *ep)
391 {
392 return !list_empty_careful(&ep->rdllist) ||
393 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
394 }
395
396 #ifdef CONFIG_NET_RX_BUSY_POLL
397 /**
398 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value
399 * from the epoll instance ep is preferred, but if it is not set fallback to
400 * the system-wide global via busy_loop_timeout.
401 *
402 * @start_time: The start time used to compute the remaining time until timeout.
403 * @ep: Pointer to the eventpoll context.
404 *
405 * Return: true if the timeout has expired, false otherwise.
406 */
busy_loop_ep_timeout(unsigned long start_time,struct eventpoll * ep)407 static bool busy_loop_ep_timeout(unsigned long start_time,
408 struct eventpoll *ep)
409 {
410 unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs);
411
412 if (bp_usec) {
413 unsigned long end_time = start_time + bp_usec;
414 unsigned long now = busy_loop_current_time();
415
416 return time_after(now, end_time);
417 } else {
418 return busy_loop_timeout(start_time);
419 }
420 }
421
ep_busy_loop_on(struct eventpoll * ep)422 static bool ep_busy_loop_on(struct eventpoll *ep)
423 {
424 return !!READ_ONCE(ep->busy_poll_usecs) || net_busy_loop_on();
425 }
426
ep_busy_loop_end(void * p,unsigned long start_time)427 static bool ep_busy_loop_end(void *p, unsigned long start_time)
428 {
429 struct eventpoll *ep = p;
430
431 return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep);
432 }
433
434 /*
435 * Busy poll if globally on and supporting sockets found && no events,
436 * busy loop will return if need_resched or ep_events_available.
437 *
438 * we must do our busy polling with irqs enabled
439 */
ep_busy_loop(struct eventpoll * ep,int nonblock)440 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
441 {
442 unsigned int napi_id = READ_ONCE(ep->napi_id);
443 u16 budget = READ_ONCE(ep->busy_poll_budget);
444 bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
445
446 if (!budget)
447 budget = BUSY_POLL_BUDGET;
448
449 if (napi_id >= MIN_NAPI_ID && ep_busy_loop_on(ep)) {
450 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end,
451 ep, prefer_busy_poll, budget);
452 if (ep_events_available(ep))
453 return true;
454 /*
455 * Busy poll timed out. Drop NAPI ID for now, we can add
456 * it back in when we have moved a socket with a valid NAPI
457 * ID onto the ready list.
458 */
459 ep->napi_id = 0;
460 return false;
461 }
462 return false;
463 }
464
465 /*
466 * Set epoll busy poll NAPI ID from sk.
467 */
ep_set_busy_poll_napi_id(struct epitem * epi)468 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
469 {
470 struct eventpoll *ep = epi->ep;
471 unsigned int napi_id;
472 struct socket *sock;
473 struct sock *sk;
474
475 if (!ep_busy_loop_on(ep))
476 return;
477
478 sock = sock_from_file(epi->ffd.file);
479 if (!sock)
480 return;
481
482 sk = sock->sk;
483 if (!sk)
484 return;
485
486 napi_id = READ_ONCE(sk->sk_napi_id);
487
488 /* Non-NAPI IDs can be rejected
489 * or
490 * Nothing to do if we already have this ID
491 */
492 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
493 return;
494
495 /* record NAPI ID for use in next busy poll */
496 ep->napi_id = napi_id;
497 }
498
ep_eventpoll_bp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)499 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
500 unsigned long arg)
501 {
502 struct eventpoll *ep = file->private_data;
503 void __user *uarg = (void __user *)arg;
504 struct epoll_params epoll_params;
505
506 switch (cmd) {
507 case EPIOCSPARAMS:
508 if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params)))
509 return -EFAULT;
510
511 /* pad byte must be zero */
512 if (epoll_params.__pad)
513 return -EINVAL;
514
515 if (epoll_params.busy_poll_usecs > S32_MAX)
516 return -EINVAL;
517
518 if (epoll_params.prefer_busy_poll > 1)
519 return -EINVAL;
520
521 if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT &&
522 !capable(CAP_NET_ADMIN))
523 return -EPERM;
524
525 WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs);
526 WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget);
527 WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll);
528 return 0;
529 case EPIOCGPARAMS:
530 memset(&epoll_params, 0, sizeof(epoll_params));
531 epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs);
532 epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget);
533 epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
534 if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params)))
535 return -EFAULT;
536 return 0;
537 default:
538 return -ENOIOCTLCMD;
539 }
540 }
541
542 #else
543
ep_busy_loop(struct eventpoll * ep,int nonblock)544 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
545 {
546 return false;
547 }
548
ep_set_busy_poll_napi_id(struct epitem * epi)549 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
550 {
551 }
552
ep_eventpoll_bp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)553 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
554 unsigned long arg)
555 {
556 return -EOPNOTSUPP;
557 }
558
559 #endif /* CONFIG_NET_RX_BUSY_POLL */
560
561 /*
562 * As described in commit 0ccf831cb lockdep: annotate epoll
563 * the use of wait queues used by epoll is done in a very controlled
564 * manner. Wake ups can nest inside each other, but are never done
565 * with the same locking. For example:
566 *
567 * dfd = socket(...);
568 * efd1 = epoll_create();
569 * efd2 = epoll_create();
570 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
571 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
572 *
573 * When a packet arrives to the device underneath "dfd", the net code will
574 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
575 * callback wakeup entry on that queue, and the wake_up() performed by the
576 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
577 * (efd1) notices that it may have some event ready, so it needs to wake up
578 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
579 * that ends up in another wake_up(), after having checked about the
580 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
581 * stack blasting.
582 *
583 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
584 * this special case of epoll.
585 */
586 #ifdef CONFIG_DEBUG_LOCK_ALLOC
587
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)588 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
589 unsigned pollflags)
590 {
591 struct eventpoll *ep_src;
592 unsigned long flags;
593 u8 nests = 0;
594
595 /*
596 * To set the subclass or nesting level for spin_lock_irqsave_nested()
597 * it might be natural to create a per-cpu nest count. However, since
598 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
599 * schedule() in the -rt kernel, the per-cpu variable are no longer
600 * protected. Thus, we are introducing a per eventpoll nest field.
601 * If we are not being call from ep_poll_callback(), epi is NULL and
602 * we are at the first level of nesting, 0. Otherwise, we are being
603 * called from ep_poll_callback() and if a previous wakeup source is
604 * not an epoll file itself, we are at depth 1 since the wakeup source
605 * is depth 0. If the wakeup source is a previous epoll file in the
606 * wakeup chain then we use its nests value and record ours as
607 * nests + 1. The previous epoll file nests value is stable since its
608 * already holding its own poll_wait.lock.
609 */
610 if (epi) {
611 if ((is_file_epoll(epi->ffd.file))) {
612 ep_src = epi->ffd.file->private_data;
613 nests = ep_src->nests;
614 } else {
615 nests = 1;
616 }
617 }
618 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
619 ep->nests = nests + 1;
620 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
621 ep->nests = 0;
622 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
623 }
624
625 #else
626
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,__poll_t pollflags)627 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
628 __poll_t pollflags)
629 {
630 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
631 }
632
633 #endif
634
ep_remove_wait_queue(struct eppoll_entry * pwq)635 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
636 {
637 wait_queue_head_t *whead;
638
639 rcu_read_lock();
640 /*
641 * If it is cleared by POLLFREE, it should be rcu-safe.
642 * If we read NULL we need a barrier paired with
643 * smp_store_release() in ep_poll_callback(), otherwise
644 * we rely on whead->lock.
645 */
646 whead = smp_load_acquire(&pwq->whead);
647 if (whead)
648 remove_wait_queue(whead, &pwq->wait);
649 rcu_read_unlock();
650 }
651
652 /*
653 * This function unregisters poll callbacks from the associated file
654 * descriptor. Must be called with "mtx" held.
655 */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)656 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
657 {
658 struct eppoll_entry **p = &epi->pwqlist;
659 struct eppoll_entry *pwq;
660
661 while ((pwq = *p) != NULL) {
662 *p = pwq->next;
663 ep_remove_wait_queue(pwq);
664 kmem_cache_free(pwq_cache, pwq);
665 }
666 }
667
668 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)669 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
670 {
671 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
672 }
673
674 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)675 static inline void ep_pm_stay_awake(struct epitem *epi)
676 {
677 struct wakeup_source *ws = ep_wakeup_source(epi);
678
679 if (ws)
680 __pm_stay_awake(ws);
681 }
682
ep_has_wakeup_source(struct epitem * epi)683 static inline bool ep_has_wakeup_source(struct epitem *epi)
684 {
685 return rcu_access_pointer(epi->ws) ? true : false;
686 }
687
688 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)689 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
690 {
691 struct wakeup_source *ws;
692
693 rcu_read_lock();
694 ws = rcu_dereference(epi->ws);
695 if (ws)
696 __pm_stay_awake(ws);
697 rcu_read_unlock();
698 }
699
700
701 /*
702 * ep->mutex needs to be held because we could be hit by
703 * eventpoll_release_file() and epoll_ctl().
704 */
ep_start_scan(struct eventpoll * ep,struct list_head * txlist)705 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
706 {
707 /*
708 * Steal the ready list, and re-init the original one to the
709 * empty list. Also, set ep->ovflist to NULL so that events
710 * happening while looping w/out locks, are not lost. We cannot
711 * have the poll callback to queue directly on ep->rdllist,
712 * because we want the "sproc" callback to be able to do it
713 * in a lockless way.
714 */
715 lockdep_assert_irqs_enabled();
716 write_lock_irq(&ep->lock);
717 list_splice_init(&ep->rdllist, txlist);
718 WRITE_ONCE(ep->ovflist, NULL);
719 write_unlock_irq(&ep->lock);
720 }
721
ep_done_scan(struct eventpoll * ep,struct list_head * txlist)722 static void ep_done_scan(struct eventpoll *ep,
723 struct list_head *txlist)
724 {
725 struct epitem *epi, *nepi;
726
727 write_lock_irq(&ep->lock);
728 /*
729 * During the time we spent inside the "sproc" callback, some
730 * other events might have been queued by the poll callback.
731 * We re-insert them inside the main ready-list here.
732 */
733 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
734 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
735 /*
736 * We need to check if the item is already in the list.
737 * During the "sproc" callback execution time, items are
738 * queued into ->ovflist but the "txlist" might already
739 * contain them, and the list_splice() below takes care of them.
740 */
741 if (!ep_is_linked(epi)) {
742 /*
743 * ->ovflist is LIFO, so we have to reverse it in order
744 * to keep in FIFO.
745 */
746 list_add(&epi->rdllink, &ep->rdllist);
747 ep_pm_stay_awake(epi);
748 }
749 }
750 /*
751 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
752 * releasing the lock, events will be queued in the normal way inside
753 * ep->rdllist.
754 */
755 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
756
757 /*
758 * Quickly re-inject items left on "txlist".
759 */
760 list_splice(txlist, &ep->rdllist);
761 __pm_relax(ep->ws);
762
763 if (!list_empty(&ep->rdllist)) {
764 if (waitqueue_active(&ep->wq))
765 wake_up(&ep->wq);
766 }
767
768 write_unlock_irq(&ep->lock);
769 }
770
ep_get(struct eventpoll * ep)771 static void ep_get(struct eventpoll *ep)
772 {
773 refcount_inc(&ep->refcount);
774 }
775
776 /*
777 * Returns true if the event poll can be disposed
778 */
ep_refcount_dec_and_test(struct eventpoll * ep)779 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
780 {
781 if (!refcount_dec_and_test(&ep->refcount))
782 return false;
783
784 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
785 return true;
786 }
787
ep_free(struct eventpoll * ep)788 static void ep_free(struct eventpoll *ep)
789 {
790 mutex_destroy(&ep->mtx);
791 free_uid(ep->user);
792 wakeup_source_unregister(ep->ws);
793 kfree(ep);
794 }
795
796 /*
797 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
798 * all the associated resources. Must be called with "mtx" held.
799 * If the dying flag is set, do the removal only if force is true.
800 * This prevents ep_clear_and_put() from dropping all the ep references
801 * while running concurrently with eventpoll_release_file().
802 * Returns true if the eventpoll can be disposed.
803 */
__ep_remove(struct eventpoll * ep,struct epitem * epi,bool force)804 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
805 {
806 struct file *file = epi->ffd.file;
807 struct epitems_head *to_free;
808 struct hlist_head *head;
809
810 lockdep_assert_irqs_enabled();
811
812 /*
813 * Removes poll wait queue hooks.
814 */
815 ep_unregister_pollwait(ep, epi);
816
817 /* Remove the current item from the list of epoll hooks */
818 spin_lock(&file->f_lock);
819 if (epi->dying && !force) {
820 spin_unlock(&file->f_lock);
821 return false;
822 }
823
824 to_free = NULL;
825 head = file->f_ep;
826 if (head->first == &epi->fllink && !epi->fllink.next) {
827 /* See eventpoll_release() for details. */
828 WRITE_ONCE(file->f_ep, NULL);
829 if (!is_file_epoll(file)) {
830 struct epitems_head *v;
831 v = container_of(head, struct epitems_head, epitems);
832 if (!smp_load_acquire(&v->next))
833 to_free = v;
834 }
835 }
836 hlist_del_rcu(&epi->fllink);
837 spin_unlock(&file->f_lock);
838 free_ephead(to_free);
839
840 rb_erase_cached(&epi->rbn, &ep->rbr);
841
842 write_lock_irq(&ep->lock);
843 if (ep_is_linked(epi))
844 list_del_init(&epi->rdllink);
845 write_unlock_irq(&ep->lock);
846
847 wakeup_source_unregister(ep_wakeup_source(epi));
848 /*
849 * At this point it is safe to free the eventpoll item. Use the union
850 * field epi->rcu, since we are trying to minimize the size of
851 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
852 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
853 * use of the rbn field.
854 */
855 kfree_rcu(epi, rcu);
856
857 percpu_counter_dec(&ep->user->epoll_watches);
858 return true;
859 }
860
861 /*
862 * ep_remove variant for callers owing an additional reference to the ep
863 */
ep_remove_safe(struct eventpoll * ep,struct epitem * epi)864 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
865 {
866 if (__ep_remove(ep, epi, false))
867 WARN_ON_ONCE(ep_refcount_dec_and_test(ep));
868 }
869
ep_clear_and_put(struct eventpoll * ep)870 static void ep_clear_and_put(struct eventpoll *ep)
871 {
872 struct rb_node *rbp, *next;
873 struct epitem *epi;
874
875 /* We need to release all tasks waiting for these file */
876 if (waitqueue_active(&ep->poll_wait))
877 ep_poll_safewake(ep, NULL, 0);
878
879 mutex_lock(&ep->mtx);
880
881 /*
882 * Walks through the whole tree by unregistering poll callbacks.
883 */
884 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
885 epi = rb_entry(rbp, struct epitem, rbn);
886
887 ep_unregister_pollwait(ep, epi);
888 cond_resched();
889 }
890
891 /*
892 * Walks through the whole tree and try to free each "struct epitem".
893 * Note that ep_remove_safe() will not remove the epitem in case of a
894 * racing eventpoll_release_file(); the latter will do the removal.
895 * At this point we are sure no poll callbacks will be lingering around.
896 * Since we still own a reference to the eventpoll struct, the loop can't
897 * dispose it.
898 */
899 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
900 next = rb_next(rbp);
901 epi = rb_entry(rbp, struct epitem, rbn);
902 ep_remove_safe(ep, epi);
903 cond_resched();
904 }
905
906 mutex_unlock(&ep->mtx);
907 if (ep_refcount_dec_and_test(ep))
908 ep_free(ep);
909 }
910
ep_eventpoll_ioctl(struct file * file,unsigned int cmd,unsigned long arg)911 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd,
912 unsigned long arg)
913 {
914 int ret;
915
916 if (!is_file_epoll(file))
917 return -EINVAL;
918
919 switch (cmd) {
920 case EPIOCSPARAMS:
921 case EPIOCGPARAMS:
922 ret = ep_eventpoll_bp_ioctl(file, cmd, arg);
923 break;
924 default:
925 ret = -EINVAL;
926 break;
927 }
928
929 return ret;
930 }
931
ep_eventpoll_release(struct inode * inode,struct file * file)932 static int ep_eventpoll_release(struct inode *inode, struct file *file)
933 {
934 struct eventpoll *ep = file->private_data;
935
936 if (ep)
937 ep_clear_and_put(ep);
938
939 return 0;
940 }
941
942 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
943
__ep_eventpoll_poll(struct file * file,poll_table * wait,int depth)944 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
945 {
946 struct eventpoll *ep = file->private_data;
947 LIST_HEAD(txlist);
948 struct epitem *epi, *tmp;
949 poll_table pt;
950 __poll_t res = 0;
951
952 init_poll_funcptr(&pt, NULL);
953
954 /* Insert inside our poll wait queue */
955 poll_wait(file, &ep->poll_wait, wait);
956
957 /*
958 * Proceed to find out if wanted events are really available inside
959 * the ready list.
960 */
961 mutex_lock_nested(&ep->mtx, depth);
962 ep_start_scan(ep, &txlist);
963 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
964 if (ep_item_poll(epi, &pt, depth + 1)) {
965 res = EPOLLIN | EPOLLRDNORM;
966 break;
967 } else {
968 /*
969 * Item has been dropped into the ready list by the poll
970 * callback, but it's not actually ready, as far as
971 * caller requested events goes. We can remove it here.
972 */
973 __pm_relax(ep_wakeup_source(epi));
974 list_del_init(&epi->rdllink);
975 }
976 }
977 ep_done_scan(ep, &txlist);
978 mutex_unlock(&ep->mtx);
979 return res;
980 }
981
982 /*
983 * The ffd.file pointer may be in the process of being torn down due to
984 * being closed, but we may not have finished eventpoll_release() yet.
985 *
986 * Normally, even with the atomic_long_inc_not_zero, the file may have
987 * been free'd and then gotten re-allocated to something else (since
988 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
989 *
990 * But for epoll, users hold the ep->mtx mutex, and as such any file in
991 * the process of being free'd will block in eventpoll_release_file()
992 * and thus the underlying file allocation will not be free'd, and the
993 * file re-use cannot happen.
994 *
995 * For the same reason we can avoid a rcu_read_lock() around the
996 * operation - 'ffd.file' cannot go away even if the refcount has
997 * reached zero (but we must still not call out to ->poll() functions
998 * etc).
999 */
epi_fget(const struct epitem * epi)1000 static struct file *epi_fget(const struct epitem *epi)
1001 {
1002 struct file *file;
1003
1004 file = epi->ffd.file;
1005 if (!atomic_long_inc_not_zero(&file->f_count))
1006 file = NULL;
1007 return file;
1008 }
1009
1010 /*
1011 * Differs from ep_eventpoll_poll() in that internal callers already have
1012 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
1013 * is correctly annotated.
1014 */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)1015 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
1016 int depth)
1017 {
1018 struct file *file = epi_fget(epi);
1019 __poll_t res;
1020
1021 /*
1022 * We could return EPOLLERR | EPOLLHUP or something, but let's
1023 * treat this more as "file doesn't exist, poll didn't happen".
1024 */
1025 if (!file)
1026 return 0;
1027
1028 pt->_key = epi->event.events;
1029 if (!is_file_epoll(file))
1030 res = vfs_poll(file, pt);
1031 else
1032 res = __ep_eventpoll_poll(file, pt, depth);
1033 fput(file);
1034 return res & epi->event.events;
1035 }
1036
ep_eventpoll_poll(struct file * file,poll_table * wait)1037 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
1038 {
1039 return __ep_eventpoll_poll(file, wait, 0);
1040 }
1041
1042 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)1043 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
1044 {
1045 struct eventpoll *ep = f->private_data;
1046 struct rb_node *rbp;
1047
1048 mutex_lock(&ep->mtx);
1049 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1050 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
1051 struct inode *inode = file_inode(epi->ffd.file);
1052
1053 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
1054 " pos:%lli ino:%lx sdev:%x\n",
1055 epi->ffd.fd, epi->event.events,
1056 (long long)epi->event.data,
1057 (long long)epi->ffd.file->f_pos,
1058 inode->i_ino, inode->i_sb->s_dev);
1059 if (seq_has_overflowed(m))
1060 break;
1061 }
1062 mutex_unlock(&ep->mtx);
1063 }
1064 #endif
1065
1066 /* File callbacks that implement the eventpoll file behaviour */
1067 static const struct file_operations eventpoll_fops = {
1068 #ifdef CONFIG_PROC_FS
1069 .show_fdinfo = ep_show_fdinfo,
1070 #endif
1071 .release = ep_eventpoll_release,
1072 .poll = ep_eventpoll_poll,
1073 .llseek = noop_llseek,
1074 .unlocked_ioctl = ep_eventpoll_ioctl,
1075 .compat_ioctl = compat_ptr_ioctl,
1076 };
1077
1078 /*
1079 * This is called from eventpoll_release() to unlink files from the eventpoll
1080 * interface. We need to have this facility to cleanup correctly files that are
1081 * closed without being removed from the eventpoll interface.
1082 */
eventpoll_release_file(struct file * file)1083 void eventpoll_release_file(struct file *file)
1084 {
1085 struct eventpoll *ep;
1086 struct epitem *epi;
1087 bool dispose;
1088
1089 /*
1090 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
1091 * touching the epitems list before eventpoll_release_file() can access
1092 * the ep->mtx.
1093 */
1094 again:
1095 spin_lock(&file->f_lock);
1096 if (file->f_ep && file->f_ep->first) {
1097 epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
1098 epi->dying = true;
1099 spin_unlock(&file->f_lock);
1100
1101 /*
1102 * ep access is safe as we still own a reference to the ep
1103 * struct
1104 */
1105 ep = epi->ep;
1106 mutex_lock(&ep->mtx);
1107 dispose = __ep_remove(ep, epi, true);
1108 mutex_unlock(&ep->mtx);
1109
1110 if (dispose && ep_refcount_dec_and_test(ep))
1111 ep_free(ep);
1112 goto again;
1113 }
1114 spin_unlock(&file->f_lock);
1115 }
1116
ep_alloc(struct eventpoll ** pep)1117 static int ep_alloc(struct eventpoll **pep)
1118 {
1119 struct eventpoll *ep;
1120
1121 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1122 if (unlikely(!ep))
1123 return -ENOMEM;
1124
1125 mutex_init(&ep->mtx);
1126 rwlock_init(&ep->lock);
1127 init_waitqueue_head(&ep->wq);
1128 init_waitqueue_head(&ep->poll_wait);
1129 INIT_LIST_HEAD(&ep->rdllist);
1130 ep->rbr = RB_ROOT_CACHED;
1131 ep->ovflist = EP_UNACTIVE_PTR;
1132 ep->user = get_current_user();
1133 refcount_set(&ep->refcount, 1);
1134
1135 *pep = ep;
1136
1137 return 0;
1138 }
1139
1140 /*
1141 * Search the file inside the eventpoll tree. The RB tree operations
1142 * are protected by the "mtx" mutex, and ep_find() must be called with
1143 * "mtx" held.
1144 */
ep_find(struct eventpoll * ep,struct file * file,int fd)1145 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1146 {
1147 int kcmp;
1148 struct rb_node *rbp;
1149 struct epitem *epi, *epir = NULL;
1150 struct epoll_filefd ffd;
1151
1152 ep_set_ffd(&ffd, file, fd);
1153 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1154 epi = rb_entry(rbp, struct epitem, rbn);
1155 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1156 if (kcmp > 0)
1157 rbp = rbp->rb_right;
1158 else if (kcmp < 0)
1159 rbp = rbp->rb_left;
1160 else {
1161 epir = epi;
1162 break;
1163 }
1164 }
1165
1166 return epir;
1167 }
1168
1169 #ifdef CONFIG_KCMP
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1170 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1171 {
1172 struct rb_node *rbp;
1173 struct epitem *epi;
1174
1175 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1176 epi = rb_entry(rbp, struct epitem, rbn);
1177 if (epi->ffd.fd == tfd) {
1178 if (toff == 0)
1179 return epi;
1180 else
1181 toff--;
1182 }
1183 cond_resched();
1184 }
1185
1186 return NULL;
1187 }
1188
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1189 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1190 unsigned long toff)
1191 {
1192 struct file *file_raw;
1193 struct eventpoll *ep;
1194 struct epitem *epi;
1195
1196 if (!is_file_epoll(file))
1197 return ERR_PTR(-EINVAL);
1198
1199 ep = file->private_data;
1200
1201 mutex_lock(&ep->mtx);
1202 epi = ep_find_tfd(ep, tfd, toff);
1203 if (epi)
1204 file_raw = epi->ffd.file;
1205 else
1206 file_raw = ERR_PTR(-ENOENT);
1207 mutex_unlock(&ep->mtx);
1208
1209 return file_raw;
1210 }
1211 #endif /* CONFIG_KCMP */
1212
1213 /*
1214 * Adds a new entry to the tail of the list in a lockless way, i.e.
1215 * multiple CPUs are allowed to call this function concurrently.
1216 *
1217 * Beware: it is necessary to prevent any other modifications of the
1218 * existing list until all changes are completed, in other words
1219 * concurrent list_add_tail_lockless() calls should be protected
1220 * with a read lock, where write lock acts as a barrier which
1221 * makes sure all list_add_tail_lockless() calls are fully
1222 * completed.
1223 *
1224 * Also an element can be locklessly added to the list only in one
1225 * direction i.e. either to the tail or to the head, otherwise
1226 * concurrent access will corrupt the list.
1227 *
1228 * Return: %false if element has been already added to the list, %true
1229 * otherwise.
1230 */
list_add_tail_lockless(struct list_head * new,struct list_head * head)1231 static inline bool list_add_tail_lockless(struct list_head *new,
1232 struct list_head *head)
1233 {
1234 struct list_head *prev;
1235
1236 /*
1237 * This is simple 'new->next = head' operation, but cmpxchg()
1238 * is used in order to detect that same element has been just
1239 * added to the list from another CPU: the winner observes
1240 * new->next == new.
1241 */
1242 if (!try_cmpxchg(&new->next, &new, head))
1243 return false;
1244
1245 /*
1246 * Initially ->next of a new element must be updated with the head
1247 * (we are inserting to the tail) and only then pointers are atomically
1248 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1249 * updated before pointers are actually swapped and pointers are
1250 * swapped before prev->next is updated.
1251 */
1252
1253 prev = xchg(&head->prev, new);
1254
1255 /*
1256 * It is safe to modify prev->next and new->prev, because a new element
1257 * is added only to the tail and new->next is updated before XCHG.
1258 */
1259
1260 prev->next = new;
1261 new->prev = prev;
1262
1263 return true;
1264 }
1265
1266 /*
1267 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1268 * i.e. multiple CPUs are allowed to call this function concurrently.
1269 *
1270 * Return: %false if epi element has been already chained, %true otherwise.
1271 */
chain_epi_lockless(struct epitem * epi)1272 static inline bool chain_epi_lockless(struct epitem *epi)
1273 {
1274 struct eventpoll *ep = epi->ep;
1275
1276 /* Fast preliminary check */
1277 if (epi->next != EP_UNACTIVE_PTR)
1278 return false;
1279
1280 /* Check that the same epi has not been just chained from another CPU */
1281 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1282 return false;
1283
1284 /* Atomically exchange tail */
1285 epi->next = xchg(&ep->ovflist, epi);
1286
1287 return true;
1288 }
1289
1290 /*
1291 * This is the callback that is passed to the wait queue wakeup
1292 * mechanism. It is called by the stored file descriptors when they
1293 * have events to report.
1294 *
1295 * This callback takes a read lock in order not to contend with concurrent
1296 * events from another file descriptor, thus all modifications to ->rdllist
1297 * or ->ovflist are lockless. Read lock is paired with the write lock from
1298 * ep_start/done_scan(), which stops all list modifications and guarantees
1299 * that lists state is seen correctly.
1300 *
1301 * Another thing worth to mention is that ep_poll_callback() can be called
1302 * concurrently for the same @epi from different CPUs if poll table was inited
1303 * with several wait queues entries. Plural wakeup from different CPUs of a
1304 * single wait queue is serialized by wq.lock, but the case when multiple wait
1305 * queues are used should be detected accordingly. This is detected using
1306 * cmpxchg() operation.
1307 */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1308 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1309 {
1310 int pwake = 0;
1311 struct epitem *epi = ep_item_from_wait(wait);
1312 struct eventpoll *ep = epi->ep;
1313 __poll_t pollflags = key_to_poll(key);
1314 unsigned long flags;
1315 int ewake = 0;
1316
1317 read_lock_irqsave(&ep->lock, flags);
1318
1319 ep_set_busy_poll_napi_id(epi);
1320
1321 /*
1322 * If the event mask does not contain any poll(2) event, we consider the
1323 * descriptor to be disabled. This condition is likely the effect of the
1324 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1325 * until the next EPOLL_CTL_MOD will be issued.
1326 */
1327 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1328 goto out_unlock;
1329
1330 /*
1331 * Check the events coming with the callback. At this stage, not
1332 * every device reports the events in the "key" parameter of the
1333 * callback. We need to be able to handle both cases here, hence the
1334 * test for "key" != NULL before the event match test.
1335 */
1336 if (pollflags && !(pollflags & epi->event.events))
1337 goto out_unlock;
1338
1339 /*
1340 * If we are transferring events to userspace, we can hold no locks
1341 * (because we're accessing user memory, and because of linux f_op->poll()
1342 * semantics). All the events that happen during that period of time are
1343 * chained in ep->ovflist and requeued later on.
1344 */
1345 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1346 if (chain_epi_lockless(epi))
1347 ep_pm_stay_awake_rcu(epi);
1348 } else if (!ep_is_linked(epi)) {
1349 /* In the usual case, add event to ready list. */
1350 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1351 ep_pm_stay_awake_rcu(epi);
1352 }
1353
1354 /*
1355 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1356 * wait list.
1357 */
1358 if (waitqueue_active(&ep->wq)) {
1359 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1360 !(pollflags & POLLFREE)) {
1361 switch (pollflags & EPOLLINOUT_BITS) {
1362 case EPOLLIN:
1363 if (epi->event.events & EPOLLIN)
1364 ewake = 1;
1365 break;
1366 case EPOLLOUT:
1367 if (epi->event.events & EPOLLOUT)
1368 ewake = 1;
1369 break;
1370 case 0:
1371 ewake = 1;
1372 break;
1373 }
1374 }
1375 if (sync)
1376 wake_up_sync(&ep->wq);
1377 else
1378 wake_up(&ep->wq);
1379 }
1380 if (waitqueue_active(&ep->poll_wait))
1381 pwake++;
1382
1383 out_unlock:
1384 read_unlock_irqrestore(&ep->lock, flags);
1385
1386 /* We have to call this outside the lock */
1387 if (pwake)
1388 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1389
1390 if (!(epi->event.events & EPOLLEXCLUSIVE))
1391 ewake = 1;
1392
1393 if (pollflags & POLLFREE) {
1394 /*
1395 * If we race with ep_remove_wait_queue() it can miss
1396 * ->whead = NULL and do another remove_wait_queue() after
1397 * us, so we can't use __remove_wait_queue().
1398 */
1399 list_del_init(&wait->entry);
1400 /*
1401 * ->whead != NULL protects us from the race with
1402 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1403 * takes whead->lock held by the caller. Once we nullify it,
1404 * nothing protects ep/epi or even wait.
1405 */
1406 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1407 }
1408
1409 return ewake;
1410 }
1411
1412 /*
1413 * This is the callback that is used to add our wait queue to the
1414 * target file wakeup lists.
1415 */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1416 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1417 poll_table *pt)
1418 {
1419 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1420 struct epitem *epi = epq->epi;
1421 struct eppoll_entry *pwq;
1422
1423 if (unlikely(!epi)) // an earlier allocation has failed
1424 return;
1425
1426 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1427 if (unlikely(!pwq)) {
1428 epq->epi = NULL;
1429 return;
1430 }
1431
1432 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1433 pwq->whead = whead;
1434 pwq->base = epi;
1435 if (epi->event.events & EPOLLEXCLUSIVE)
1436 add_wait_queue_exclusive(whead, &pwq->wait);
1437 else
1438 add_wait_queue(whead, &pwq->wait);
1439 pwq->next = epi->pwqlist;
1440 epi->pwqlist = pwq;
1441 }
1442
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1443 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1444 {
1445 int kcmp;
1446 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1447 struct epitem *epic;
1448 bool leftmost = true;
1449
1450 while (*p) {
1451 parent = *p;
1452 epic = rb_entry(parent, struct epitem, rbn);
1453 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1454 if (kcmp > 0) {
1455 p = &parent->rb_right;
1456 leftmost = false;
1457 } else
1458 p = &parent->rb_left;
1459 }
1460 rb_link_node(&epi->rbn, parent, p);
1461 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1462 }
1463
1464
1465
1466 #define PATH_ARR_SIZE 5
1467 /*
1468 * These are the number paths of length 1 to 5, that we are allowing to emanate
1469 * from a single file of interest. For example, we allow 1000 paths of length
1470 * 1, to emanate from each file of interest. This essentially represents the
1471 * potential wakeup paths, which need to be limited in order to avoid massive
1472 * uncontrolled wakeup storms. The common use case should be a single ep which
1473 * is connected to n file sources. In this case each file source has 1 path
1474 * of length 1. Thus, the numbers below should be more than sufficient. These
1475 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1476 * and delete can't add additional paths. Protected by the epnested_mutex.
1477 */
1478 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1479 static int path_count[PATH_ARR_SIZE];
1480
path_count_inc(int nests)1481 static int path_count_inc(int nests)
1482 {
1483 /* Allow an arbitrary number of depth 1 paths */
1484 if (nests == 0)
1485 return 0;
1486
1487 if (++path_count[nests] > path_limits[nests])
1488 return -1;
1489 return 0;
1490 }
1491
path_count_init(void)1492 static void path_count_init(void)
1493 {
1494 int i;
1495
1496 for (i = 0; i < PATH_ARR_SIZE; i++)
1497 path_count[i] = 0;
1498 }
1499
reverse_path_check_proc(struct hlist_head * refs,int depth)1500 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1501 {
1502 int error = 0;
1503 struct epitem *epi;
1504
1505 if (depth > EP_MAX_NESTS) /* too deep nesting */
1506 return -1;
1507
1508 /* CTL_DEL can remove links here, but that can't increase our count */
1509 hlist_for_each_entry_rcu(epi, refs, fllink) {
1510 struct hlist_head *refs = &epi->ep->refs;
1511 if (hlist_empty(refs))
1512 error = path_count_inc(depth);
1513 else
1514 error = reverse_path_check_proc(refs, depth + 1);
1515 if (error != 0)
1516 break;
1517 }
1518 return error;
1519 }
1520
1521 /**
1522 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1523 * links that are proposed to be newly added. We need to
1524 * make sure that those added links don't add too many
1525 * paths such that we will spend all our time waking up
1526 * eventpoll objects.
1527 *
1528 * Return: %zero if the proposed links don't create too many paths,
1529 * %-1 otherwise.
1530 */
reverse_path_check(void)1531 static int reverse_path_check(void)
1532 {
1533 struct epitems_head *p;
1534
1535 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1536 int error;
1537 path_count_init();
1538 rcu_read_lock();
1539 error = reverse_path_check_proc(&p->epitems, 0);
1540 rcu_read_unlock();
1541 if (error)
1542 return error;
1543 }
1544 return 0;
1545 }
1546
ep_create_wakeup_source(struct epitem * epi)1547 static int ep_create_wakeup_source(struct epitem *epi)
1548 {
1549 struct name_snapshot n;
1550 struct wakeup_source *ws;
1551
1552 if (!epi->ep->ws) {
1553 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1554 if (!epi->ep->ws)
1555 return -ENOMEM;
1556 }
1557
1558 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1559 ws = wakeup_source_register(NULL, n.name.name);
1560 release_dentry_name_snapshot(&n);
1561
1562 if (!ws)
1563 return -ENOMEM;
1564 rcu_assign_pointer(epi->ws, ws);
1565
1566 return 0;
1567 }
1568
1569 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1570 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1571 {
1572 struct wakeup_source *ws = ep_wakeup_source(epi);
1573
1574 RCU_INIT_POINTER(epi->ws, NULL);
1575
1576 /*
1577 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1578 * used internally by wakeup_source_remove, too (called by
1579 * wakeup_source_unregister), so we cannot use call_rcu
1580 */
1581 synchronize_rcu();
1582 wakeup_source_unregister(ws);
1583 }
1584
attach_epitem(struct file * file,struct epitem * epi)1585 static int attach_epitem(struct file *file, struct epitem *epi)
1586 {
1587 struct epitems_head *to_free = NULL;
1588 struct hlist_head *head = NULL;
1589 struct eventpoll *ep = NULL;
1590
1591 if (is_file_epoll(file))
1592 ep = file->private_data;
1593
1594 if (ep) {
1595 head = &ep->refs;
1596 } else if (!READ_ONCE(file->f_ep)) {
1597 allocate:
1598 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1599 if (!to_free)
1600 return -ENOMEM;
1601 head = &to_free->epitems;
1602 }
1603 spin_lock(&file->f_lock);
1604 if (!file->f_ep) {
1605 if (unlikely(!head)) {
1606 spin_unlock(&file->f_lock);
1607 goto allocate;
1608 }
1609 /* See eventpoll_release() for details. */
1610 WRITE_ONCE(file->f_ep, head);
1611 to_free = NULL;
1612 }
1613 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1614 spin_unlock(&file->f_lock);
1615 free_ephead(to_free);
1616 return 0;
1617 }
1618
1619 /*
1620 * Must be called with "mtx" held.
1621 */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1622 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1623 struct file *tfile, int fd, int full_check)
1624 {
1625 int error, pwake = 0;
1626 __poll_t revents;
1627 struct epitem *epi;
1628 struct ep_pqueue epq;
1629 struct eventpoll *tep = NULL;
1630
1631 if (is_file_epoll(tfile))
1632 tep = tfile->private_data;
1633
1634 lockdep_assert_irqs_enabled();
1635
1636 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1637 max_user_watches) >= 0))
1638 return -ENOSPC;
1639 percpu_counter_inc(&ep->user->epoll_watches);
1640
1641 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1642 percpu_counter_dec(&ep->user->epoll_watches);
1643 return -ENOMEM;
1644 }
1645
1646 /* Item initialization follow here ... */
1647 INIT_LIST_HEAD(&epi->rdllink);
1648 epi->ep = ep;
1649 ep_set_ffd(&epi->ffd, tfile, fd);
1650 epi->event = *event;
1651 epi->next = EP_UNACTIVE_PTR;
1652
1653 if (tep)
1654 mutex_lock_nested(&tep->mtx, 1);
1655 /* Add the current item to the list of active epoll hook for this file */
1656 if (unlikely(attach_epitem(tfile, epi) < 0)) {
1657 if (tep)
1658 mutex_unlock(&tep->mtx);
1659 kmem_cache_free(epi_cache, epi);
1660 percpu_counter_dec(&ep->user->epoll_watches);
1661 return -ENOMEM;
1662 }
1663
1664 if (full_check && !tep)
1665 list_file(tfile);
1666
1667 /*
1668 * Add the current item to the RB tree. All RB tree operations are
1669 * protected by "mtx", and ep_insert() is called with "mtx" held.
1670 */
1671 ep_rbtree_insert(ep, epi);
1672 if (tep)
1673 mutex_unlock(&tep->mtx);
1674
1675 /*
1676 * ep_remove_safe() calls in the later error paths can't lead to
1677 * ep_free() as the ep file itself still holds an ep reference.
1678 */
1679 ep_get(ep);
1680
1681 /* now check if we've created too many backpaths */
1682 if (unlikely(full_check && reverse_path_check())) {
1683 ep_remove_safe(ep, epi);
1684 return -EINVAL;
1685 }
1686
1687 if (epi->event.events & EPOLLWAKEUP) {
1688 error = ep_create_wakeup_source(epi);
1689 if (error) {
1690 ep_remove_safe(ep, epi);
1691 return error;
1692 }
1693 }
1694
1695 /* Initialize the poll table using the queue callback */
1696 epq.epi = epi;
1697 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1698
1699 /*
1700 * Attach the item to the poll hooks and get current event bits.
1701 * We can safely use the file* here because its usage count has
1702 * been increased by the caller of this function. Note that after
1703 * this operation completes, the poll callback can start hitting
1704 * the new item.
1705 */
1706 revents = ep_item_poll(epi, &epq.pt, 1);
1707
1708 /*
1709 * We have to check if something went wrong during the poll wait queue
1710 * install process. Namely an allocation for a wait queue failed due
1711 * high memory pressure.
1712 */
1713 if (unlikely(!epq.epi)) {
1714 ep_remove_safe(ep, epi);
1715 return -ENOMEM;
1716 }
1717
1718 /* We have to drop the new item inside our item list to keep track of it */
1719 write_lock_irq(&ep->lock);
1720
1721 /* record NAPI ID of new item if present */
1722 ep_set_busy_poll_napi_id(epi);
1723
1724 /* If the file is already "ready" we drop it inside the ready list */
1725 if (revents && !ep_is_linked(epi)) {
1726 list_add_tail(&epi->rdllink, &ep->rdllist);
1727 ep_pm_stay_awake(epi);
1728
1729 /* Notify waiting tasks that events are available */
1730 if (waitqueue_active(&ep->wq))
1731 wake_up(&ep->wq);
1732 if (waitqueue_active(&ep->poll_wait))
1733 pwake++;
1734 }
1735
1736 write_unlock_irq(&ep->lock);
1737
1738 /* We have to call this outside the lock */
1739 if (pwake)
1740 ep_poll_safewake(ep, NULL, 0);
1741
1742 return 0;
1743 }
1744
1745 /*
1746 * Modify the interest event mask by dropping an event if the new mask
1747 * has a match in the current file status. Must be called with "mtx" held.
1748 */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1749 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1750 const struct epoll_event *event)
1751 {
1752 int pwake = 0;
1753 poll_table pt;
1754
1755 lockdep_assert_irqs_enabled();
1756
1757 init_poll_funcptr(&pt, NULL);
1758
1759 /*
1760 * Set the new event interest mask before calling f_op->poll();
1761 * otherwise we might miss an event that happens between the
1762 * f_op->poll() call and the new event set registering.
1763 */
1764 epi->event.events = event->events; /* need barrier below */
1765 epi->event.data = event->data; /* protected by mtx */
1766 if (epi->event.events & EPOLLWAKEUP) {
1767 if (!ep_has_wakeup_source(epi))
1768 ep_create_wakeup_source(epi);
1769 } else if (ep_has_wakeup_source(epi)) {
1770 ep_destroy_wakeup_source(epi);
1771 }
1772
1773 /*
1774 * The following barrier has two effects:
1775 *
1776 * 1) Flush epi changes above to other CPUs. This ensures
1777 * we do not miss events from ep_poll_callback if an
1778 * event occurs immediately after we call f_op->poll().
1779 * We need this because we did not take ep->lock while
1780 * changing epi above (but ep_poll_callback does take
1781 * ep->lock).
1782 *
1783 * 2) We also need to ensure we do not miss _past_ events
1784 * when calling f_op->poll(). This barrier also
1785 * pairs with the barrier in wq_has_sleeper (see
1786 * comments for wq_has_sleeper).
1787 *
1788 * This barrier will now guarantee ep_poll_callback or f_op->poll
1789 * (or both) will notice the readiness of an item.
1790 */
1791 smp_mb();
1792
1793 /*
1794 * Get current event bits. We can safely use the file* here because
1795 * its usage count has been increased by the caller of this function.
1796 * If the item is "hot" and it is not registered inside the ready
1797 * list, push it inside.
1798 */
1799 if (ep_item_poll(epi, &pt, 1)) {
1800 write_lock_irq(&ep->lock);
1801 if (!ep_is_linked(epi)) {
1802 list_add_tail(&epi->rdllink, &ep->rdllist);
1803 ep_pm_stay_awake(epi);
1804
1805 /* Notify waiting tasks that events are available */
1806 if (waitqueue_active(&ep->wq))
1807 wake_up(&ep->wq);
1808 if (waitqueue_active(&ep->poll_wait))
1809 pwake++;
1810 }
1811 write_unlock_irq(&ep->lock);
1812 }
1813
1814 /* We have to call this outside the lock */
1815 if (pwake)
1816 ep_poll_safewake(ep, NULL, 0);
1817
1818 return 0;
1819 }
1820
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1821 static int ep_send_events(struct eventpoll *ep,
1822 struct epoll_event __user *events, int maxevents)
1823 {
1824 struct epitem *epi, *tmp;
1825 LIST_HEAD(txlist);
1826 poll_table pt;
1827 int res = 0;
1828
1829 /*
1830 * Always short-circuit for fatal signals to allow threads to make a
1831 * timely exit without the chance of finding more events available and
1832 * fetching repeatedly.
1833 */
1834 if (fatal_signal_pending(current))
1835 return -EINTR;
1836
1837 init_poll_funcptr(&pt, NULL);
1838
1839 mutex_lock(&ep->mtx);
1840 ep_start_scan(ep, &txlist);
1841
1842 /*
1843 * We can loop without lock because we are passed a task private list.
1844 * Items cannot vanish during the loop we are holding ep->mtx.
1845 */
1846 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1847 struct wakeup_source *ws;
1848 __poll_t revents;
1849
1850 if (res >= maxevents)
1851 break;
1852
1853 /*
1854 * Activate ep->ws before deactivating epi->ws to prevent
1855 * triggering auto-suspend here (in case we reactive epi->ws
1856 * below).
1857 *
1858 * This could be rearranged to delay the deactivation of epi->ws
1859 * instead, but then epi->ws would temporarily be out of sync
1860 * with ep_is_linked().
1861 */
1862 ws = ep_wakeup_source(epi);
1863 if (ws) {
1864 if (ws->active)
1865 __pm_stay_awake(ep->ws);
1866 __pm_relax(ws);
1867 }
1868
1869 list_del_init(&epi->rdllink);
1870
1871 /*
1872 * If the event mask intersect the caller-requested one,
1873 * deliver the event to userspace. Again, we are holding ep->mtx,
1874 * so no operations coming from userspace can change the item.
1875 */
1876 revents = ep_item_poll(epi, &pt, 1);
1877 if (!revents)
1878 continue;
1879
1880 events = epoll_put_uevent(revents, epi->event.data, events);
1881 if (!events) {
1882 list_add(&epi->rdllink, &txlist);
1883 ep_pm_stay_awake(epi);
1884 if (!res)
1885 res = -EFAULT;
1886 break;
1887 }
1888 res++;
1889 if (epi->event.events & EPOLLONESHOT)
1890 epi->event.events &= EP_PRIVATE_BITS;
1891 else if (!(epi->event.events & EPOLLET)) {
1892 /*
1893 * If this file has been added with Level
1894 * Trigger mode, we need to insert back inside
1895 * the ready list, so that the next call to
1896 * epoll_wait() will check again the events
1897 * availability. At this point, no one can insert
1898 * into ep->rdllist besides us. The epoll_ctl()
1899 * callers are locked out by
1900 * ep_send_events() holding "mtx" and the
1901 * poll callback will queue them in ep->ovflist.
1902 */
1903 list_add_tail(&epi->rdllink, &ep->rdllist);
1904 ep_pm_stay_awake(epi);
1905 }
1906 }
1907 ep_done_scan(ep, &txlist);
1908 mutex_unlock(&ep->mtx);
1909
1910 return res;
1911 }
1912
ep_timeout_to_timespec(struct timespec64 * to,long ms)1913 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1914 {
1915 struct timespec64 now;
1916
1917 if (ms < 0)
1918 return NULL;
1919
1920 if (!ms) {
1921 to->tv_sec = 0;
1922 to->tv_nsec = 0;
1923 return to;
1924 }
1925
1926 to->tv_sec = ms / MSEC_PER_SEC;
1927 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1928
1929 ktime_get_ts64(&now);
1930 *to = timespec64_add_safe(now, *to);
1931 return to;
1932 }
1933
1934 /*
1935 * autoremove_wake_function, but remove even on failure to wake up, because we
1936 * know that default_wake_function/ttwu will only fail if the thread is already
1937 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1938 * try to reuse it.
1939 */
ep_autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned int mode,int sync,void * key)1940 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1941 unsigned int mode, int sync, void *key)
1942 {
1943 int ret = default_wake_function(wq_entry, mode, sync, key);
1944
1945 /*
1946 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1947 * iterations see the cause of this wakeup.
1948 */
1949 list_del_init_careful(&wq_entry->entry);
1950 return ret;
1951 }
1952
1953 /**
1954 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1955 * event buffer.
1956 *
1957 * @ep: Pointer to the eventpoll context.
1958 * @events: Pointer to the userspace buffer where the ready events should be
1959 * stored.
1960 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1961 * @timeout: Maximum timeout for the ready events fetch operation, in
1962 * timespec. If the timeout is zero, the function will not block,
1963 * while if the @timeout ptr is NULL, the function will block
1964 * until at least one event has been retrieved (or an error
1965 * occurred).
1966 *
1967 * Return: the number of ready events which have been fetched, or an
1968 * error code, in case of error.
1969 */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout)1970 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1971 int maxevents, struct timespec64 *timeout)
1972 {
1973 int res, eavail, timed_out = 0;
1974 u64 slack = 0;
1975 wait_queue_entry_t wait;
1976 ktime_t expires, *to = NULL;
1977
1978 lockdep_assert_irqs_enabled();
1979
1980 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1981 slack = select_estimate_accuracy(timeout);
1982 to = &expires;
1983 *to = timespec64_to_ktime(*timeout);
1984 } else if (timeout) {
1985 /*
1986 * Avoid the unnecessary trip to the wait queue loop, if the
1987 * caller specified a non blocking operation.
1988 */
1989 timed_out = 1;
1990 }
1991
1992 /*
1993 * This call is racy: We may or may not see events that are being added
1994 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1995 * with a non-zero timeout, this thread will check the ready list under
1996 * lock and will add to the wait queue. For cases with a zero
1997 * timeout, the user by definition should not care and will have to
1998 * recheck again.
1999 */
2000 eavail = ep_events_available(ep);
2001
2002 while (1) {
2003 if (eavail) {
2004 /*
2005 * Try to transfer events to user space. In case we get
2006 * 0 events and there's still timeout left over, we go
2007 * trying again in search of more luck.
2008 */
2009 res = ep_send_events(ep, events, maxevents);
2010 if (res)
2011 return res;
2012 }
2013
2014 if (timed_out)
2015 return 0;
2016
2017 eavail = ep_busy_loop(ep, timed_out);
2018 if (eavail)
2019 continue;
2020
2021 if (signal_pending(current))
2022 return -EINTR;
2023
2024 /*
2025 * Internally init_wait() uses autoremove_wake_function(),
2026 * thus wait entry is removed from the wait queue on each
2027 * wakeup. Why it is important? In case of several waiters
2028 * each new wakeup will hit the next waiter, giving it the
2029 * chance to harvest new event. Otherwise wakeup can be
2030 * lost. This is also good performance-wise, because on
2031 * normal wakeup path no need to call __remove_wait_queue()
2032 * explicitly, thus ep->lock is not taken, which halts the
2033 * event delivery.
2034 *
2035 * In fact, we now use an even more aggressive function that
2036 * unconditionally removes, because we don't reuse the wait
2037 * entry between loop iterations. This lets us also avoid the
2038 * performance issue if a process is killed, causing all of its
2039 * threads to wake up without being removed normally.
2040 */
2041 init_wait(&wait);
2042 wait.func = ep_autoremove_wake_function;
2043
2044 write_lock_irq(&ep->lock);
2045 /*
2046 * Barrierless variant, waitqueue_active() is called under
2047 * the same lock on wakeup ep_poll_callback() side, so it
2048 * is safe to avoid an explicit barrier.
2049 */
2050 __set_current_state(TASK_INTERRUPTIBLE);
2051
2052 /*
2053 * Do the final check under the lock. ep_start/done_scan()
2054 * plays with two lists (->rdllist and ->ovflist) and there
2055 * is always a race when both lists are empty for short
2056 * period of time although events are pending, so lock is
2057 * important.
2058 */
2059 eavail = ep_events_available(ep);
2060 if (!eavail)
2061 __add_wait_queue_exclusive(&ep->wq, &wait);
2062
2063 write_unlock_irq(&ep->lock);
2064
2065 if (!eavail)
2066 timed_out = !schedule_hrtimeout_range(to, slack,
2067 HRTIMER_MODE_ABS);
2068 __set_current_state(TASK_RUNNING);
2069
2070 /*
2071 * We were woken up, thus go and try to harvest some events.
2072 * If timed out and still on the wait queue, recheck eavail
2073 * carefully under lock, below.
2074 */
2075 eavail = 1;
2076
2077 if (!list_empty_careful(&wait.entry)) {
2078 write_lock_irq(&ep->lock);
2079 /*
2080 * If the thread timed out and is not on the wait queue,
2081 * it means that the thread was woken up after its
2082 * timeout expired before it could reacquire the lock.
2083 * Thus, when wait.entry is empty, it needs to harvest
2084 * events.
2085 */
2086 if (timed_out)
2087 eavail = list_empty(&wait.entry);
2088 __remove_wait_queue(&ep->wq, &wait);
2089 write_unlock_irq(&ep->lock);
2090 }
2091 }
2092 }
2093
2094 /**
2095 * ep_loop_check_proc - verify that adding an epoll file @ep inside another
2096 * epoll file does not create closed loops, and
2097 * determine the depth of the subtree starting at @ep
2098 *
2099 * @ep: the &struct eventpoll to be currently checked.
2100 * @depth: Current depth of the path being checked.
2101 *
2102 * Return: depth of the subtree, or INT_MAX if we found a loop or went too deep.
2103 */
ep_loop_check_proc(struct eventpoll * ep,int depth)2104 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
2105 {
2106 int result = 0;
2107 struct rb_node *rbp;
2108 struct epitem *epi;
2109
2110 if (ep->gen == loop_check_gen)
2111 return ep->loop_check_depth;
2112
2113 mutex_lock_nested(&ep->mtx, depth + 1);
2114 ep->gen = loop_check_gen;
2115 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2116 epi = rb_entry(rbp, struct epitem, rbn);
2117 if (unlikely(is_file_epoll(epi->ffd.file))) {
2118 struct eventpoll *ep_tovisit;
2119 ep_tovisit = epi->ffd.file->private_data;
2120 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
2121 result = INT_MAX;
2122 else
2123 result = max(result, ep_loop_check_proc(ep_tovisit, depth + 1) + 1);
2124 if (result > EP_MAX_NESTS)
2125 break;
2126 } else {
2127 /*
2128 * If we've reached a file that is not associated with
2129 * an ep, then we need to check if the newly added
2130 * links are going to add too many wakeup paths. We do
2131 * this by adding it to the tfile_check_list, if it's
2132 * not already there, and calling reverse_path_check()
2133 * during ep_insert().
2134 */
2135 list_file(epi->ffd.file);
2136 }
2137 }
2138 ep->loop_check_depth = result;
2139 mutex_unlock(&ep->mtx);
2140
2141 return result;
2142 }
2143
2144 /**
2145 * ep_get_upwards_depth_proc - determine depth of @ep when traversed upwards
2146 */
ep_get_upwards_depth_proc(struct eventpoll * ep,int depth)2147 static int ep_get_upwards_depth_proc(struct eventpoll *ep, int depth)
2148 {
2149 int result = 0;
2150 struct epitem *epi;
2151
2152 if (ep->gen == loop_check_gen)
2153 return ep->loop_check_depth;
2154 hlist_for_each_entry_rcu(epi, &ep->refs, fllink)
2155 result = max(result, ep_get_upwards_depth_proc(epi->ep, depth + 1) + 1);
2156 ep->gen = loop_check_gen;
2157 ep->loop_check_depth = result;
2158 return result;
2159 }
2160
2161 /**
2162 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2163 * into another epoll file (represented by @ep) does not create
2164 * closed loops or too deep chains.
2165 *
2166 * @ep: Pointer to the epoll we are inserting into.
2167 * @to: Pointer to the epoll to be inserted.
2168 *
2169 * Return: %zero if adding the epoll @to inside the epoll @from
2170 * does not violate the constraints, or %-1 otherwise.
2171 */
ep_loop_check(struct eventpoll * ep,struct eventpoll * to)2172 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2173 {
2174 int depth, upwards_depth;
2175
2176 inserting_into = ep;
2177 /*
2178 * Check how deep down we can get from @to, and whether it is possible
2179 * to loop up to @ep.
2180 */
2181 depth = ep_loop_check_proc(to, 0);
2182 if (depth > EP_MAX_NESTS)
2183 return -1;
2184 /* Check how far up we can go from @ep. */
2185 rcu_read_lock();
2186 upwards_depth = ep_get_upwards_depth_proc(ep, 0);
2187 rcu_read_unlock();
2188
2189 return (depth+1+upwards_depth > EP_MAX_NESTS) ? -1 : 0;
2190 }
2191
clear_tfile_check_list(void)2192 static void clear_tfile_check_list(void)
2193 {
2194 rcu_read_lock();
2195 while (tfile_check_list != EP_UNACTIVE_PTR) {
2196 struct epitems_head *head = tfile_check_list;
2197 tfile_check_list = head->next;
2198 unlist_file(head);
2199 }
2200 rcu_read_unlock();
2201 }
2202
2203 /*
2204 * Open an eventpoll file descriptor.
2205 */
do_epoll_create(int flags)2206 static int do_epoll_create(int flags)
2207 {
2208 int error, fd;
2209 struct eventpoll *ep = NULL;
2210 struct file *file;
2211
2212 /* Check the EPOLL_* constant for consistency. */
2213 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2214
2215 if (flags & ~EPOLL_CLOEXEC)
2216 return -EINVAL;
2217 /*
2218 * Create the internal data structure ("struct eventpoll").
2219 */
2220 error = ep_alloc(&ep);
2221 if (error < 0)
2222 return error;
2223 /*
2224 * Creates all the items needed to setup an eventpoll file. That is,
2225 * a file structure and a free file descriptor.
2226 */
2227 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2228 if (fd < 0) {
2229 error = fd;
2230 goto out_free_ep;
2231 }
2232 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2233 O_RDWR | (flags & O_CLOEXEC));
2234 if (IS_ERR(file)) {
2235 error = PTR_ERR(file);
2236 goto out_free_fd;
2237 }
2238 ep->file = file;
2239 fd_install(fd, file);
2240 return fd;
2241
2242 out_free_fd:
2243 put_unused_fd(fd);
2244 out_free_ep:
2245 ep_clear_and_put(ep);
2246 return error;
2247 }
2248
SYSCALL_DEFINE1(epoll_create1,int,flags)2249 SYSCALL_DEFINE1(epoll_create1, int, flags)
2250 {
2251 return do_epoll_create(flags);
2252 }
2253
SYSCALL_DEFINE1(epoll_create,int,size)2254 SYSCALL_DEFINE1(epoll_create, int, size)
2255 {
2256 if (size <= 0)
2257 return -EINVAL;
2258
2259 return do_epoll_create(0);
2260 }
2261
2262 #ifdef CONFIG_PM_SLEEP
ep_take_care_of_epollwakeup(struct epoll_event * epev)2263 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2264 {
2265 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2266 epev->events &= ~EPOLLWAKEUP;
2267 }
2268 #else
ep_take_care_of_epollwakeup(struct epoll_event * epev)2269 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2270 {
2271 epev->events &= ~EPOLLWAKEUP;
2272 }
2273 #endif
2274
epoll_mutex_lock(struct mutex * mutex,int depth,bool nonblock)2275 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2276 bool nonblock)
2277 {
2278 if (!nonblock) {
2279 mutex_lock_nested(mutex, depth);
2280 return 0;
2281 }
2282 if (mutex_trylock(mutex))
2283 return 0;
2284 return -EAGAIN;
2285 }
2286
do_epoll_ctl(int epfd,int op,int fd,struct epoll_event * epds,bool nonblock)2287 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2288 bool nonblock)
2289 {
2290 int error;
2291 int full_check = 0;
2292 struct fd f, tf;
2293 struct eventpoll *ep;
2294 struct epitem *epi;
2295 struct eventpoll *tep = NULL;
2296
2297 error = -EBADF;
2298 f = fdget(epfd);
2299 if (!fd_file(f))
2300 goto error_return;
2301
2302 /* Get the "struct file *" for the target file */
2303 tf = fdget(fd);
2304 if (!fd_file(tf))
2305 goto error_fput;
2306
2307 /* The target file descriptor must support poll */
2308 error = -EPERM;
2309 if (!file_can_poll(fd_file(tf)))
2310 goto error_tgt_fput;
2311
2312 /* Check if EPOLLWAKEUP is allowed */
2313 if (ep_op_has_event(op))
2314 ep_take_care_of_epollwakeup(epds);
2315
2316 /*
2317 * We have to check that the file structure underneath the file descriptor
2318 * the user passed to us _is_ an eventpoll file. And also we do not permit
2319 * adding an epoll file descriptor inside itself.
2320 */
2321 error = -EINVAL;
2322 if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f)))
2323 goto error_tgt_fput;
2324
2325 /*
2326 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2327 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2328 * Also, we do not currently supported nested exclusive wakeups.
2329 */
2330 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2331 if (op == EPOLL_CTL_MOD)
2332 goto error_tgt_fput;
2333 if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) ||
2334 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2335 goto error_tgt_fput;
2336 }
2337
2338 /*
2339 * At this point it is safe to assume that the "private_data" contains
2340 * our own data structure.
2341 */
2342 ep = fd_file(f)->private_data;
2343
2344 /*
2345 * When we insert an epoll file descriptor inside another epoll file
2346 * descriptor, there is the chance of creating closed loops, which are
2347 * better be handled here, than in more critical paths. While we are
2348 * checking for loops we also determine the list of files reachable
2349 * and hang them on the tfile_check_list, so we can check that we
2350 * haven't created too many possible wakeup paths.
2351 *
2352 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2353 * the epoll file descriptor is attaching directly to a wakeup source,
2354 * unless the epoll file descriptor is nested. The purpose of taking the
2355 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2356 * deep wakeup paths from forming in parallel through multiple
2357 * EPOLL_CTL_ADD operations.
2358 */
2359 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2360 if (error)
2361 goto error_tgt_fput;
2362 if (op == EPOLL_CTL_ADD) {
2363 if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen ||
2364 is_file_epoll(fd_file(tf))) {
2365 mutex_unlock(&ep->mtx);
2366 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2367 if (error)
2368 goto error_tgt_fput;
2369 loop_check_gen++;
2370 full_check = 1;
2371 if (is_file_epoll(fd_file(tf))) {
2372 tep = fd_file(tf)->private_data;
2373 error = -ELOOP;
2374 if (ep_loop_check(ep, tep) != 0)
2375 goto error_tgt_fput;
2376 }
2377 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2378 if (error)
2379 goto error_tgt_fput;
2380 }
2381 }
2382
2383 /*
2384 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2385 * above, we can be sure to be able to use the item looked up by
2386 * ep_find() till we release the mutex.
2387 */
2388 epi = ep_find(ep, fd_file(tf), fd);
2389
2390 error = -EINVAL;
2391 switch (op) {
2392 case EPOLL_CTL_ADD:
2393 if (!epi) {
2394 epds->events |= EPOLLERR | EPOLLHUP;
2395 error = ep_insert(ep, epds, fd_file(tf), fd, full_check);
2396 } else
2397 error = -EEXIST;
2398 break;
2399 case EPOLL_CTL_DEL:
2400 if (epi) {
2401 /*
2402 * The eventpoll itself is still alive: the refcount
2403 * can't go to zero here.
2404 */
2405 ep_remove_safe(ep, epi);
2406 error = 0;
2407 } else {
2408 error = -ENOENT;
2409 }
2410 break;
2411 case EPOLL_CTL_MOD:
2412 if (epi) {
2413 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2414 epds->events |= EPOLLERR | EPOLLHUP;
2415 error = ep_modify(ep, epi, epds);
2416 }
2417 } else
2418 error = -ENOENT;
2419 break;
2420 }
2421 mutex_unlock(&ep->mtx);
2422
2423 error_tgt_fput:
2424 if (full_check) {
2425 clear_tfile_check_list();
2426 loop_check_gen++;
2427 mutex_unlock(&epnested_mutex);
2428 }
2429
2430 fdput(tf);
2431 error_fput:
2432 fdput(f);
2433 error_return:
2434
2435 return error;
2436 }
2437
2438 /*
2439 * The following function implements the controller interface for
2440 * the eventpoll file that enables the insertion/removal/change of
2441 * file descriptors inside the interest set.
2442 */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2443 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2444 struct epoll_event __user *, event)
2445 {
2446 struct epoll_event epds;
2447
2448 if (ep_op_has_event(op) &&
2449 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2450 return -EFAULT;
2451
2452 return do_epoll_ctl(epfd, op, fd, &epds, false);
2453 }
2454
2455 /*
2456 * Implement the event wait interface for the eventpoll file. It is the kernel
2457 * part of the user space epoll_wait(2).
2458 */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to)2459 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2460 int maxevents, struct timespec64 *to)
2461 {
2462 int error;
2463 struct fd f;
2464 struct eventpoll *ep;
2465
2466 /* The maximum number of event must be greater than zero */
2467 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2468 return -EINVAL;
2469
2470 /* Verify that the area passed by the user is writeable */
2471 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2472 return -EFAULT;
2473
2474 /* Get the "struct file *" for the eventpoll file */
2475 f = fdget(epfd);
2476 if (!fd_file(f))
2477 return -EBADF;
2478
2479 /*
2480 * We have to check that the file structure underneath the fd
2481 * the user passed to us _is_ an eventpoll file.
2482 */
2483 error = -EINVAL;
2484 if (!is_file_epoll(fd_file(f)))
2485 goto error_fput;
2486
2487 /*
2488 * At this point it is safe to assume that the "private_data" contains
2489 * our own data structure.
2490 */
2491 ep = fd_file(f)->private_data;
2492
2493 /* Time to fish for events ... */
2494 error = ep_poll(ep, events, maxevents, to);
2495
2496 error_fput:
2497 fdput(f);
2498 return error;
2499 }
2500
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2501 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2502 int, maxevents, int, timeout)
2503 {
2504 struct timespec64 to;
2505
2506 return do_epoll_wait(epfd, events, maxevents,
2507 ep_timeout_to_timespec(&to, timeout));
2508 }
2509
2510 /*
2511 * Implement the event wait interface for the eventpoll file. It is the kernel
2512 * part of the user space epoll_pwait(2).
2513 */
do_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to,const sigset_t __user * sigmask,size_t sigsetsize)2514 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2515 int maxevents, struct timespec64 *to,
2516 const sigset_t __user *sigmask, size_t sigsetsize)
2517 {
2518 int error;
2519
2520 /*
2521 * If the caller wants a certain signal mask to be set during the wait,
2522 * we apply it here.
2523 */
2524 error = set_user_sigmask(sigmask, sigsetsize);
2525 if (error)
2526 return error;
2527
2528 error = do_epoll_wait(epfd, events, maxevents, to);
2529
2530 restore_saved_sigmask_unless(error == -EINTR);
2531
2532 return error;
2533 }
2534
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2535 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2536 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2537 size_t, sigsetsize)
2538 {
2539 struct timespec64 to;
2540
2541 return do_epoll_pwait(epfd, events, maxevents,
2542 ep_timeout_to_timespec(&to, timeout),
2543 sigmask, sigsetsize);
2544 }
2545
SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2546 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2547 int, maxevents, const struct __kernel_timespec __user *, timeout,
2548 const sigset_t __user *, sigmask, size_t, sigsetsize)
2549 {
2550 struct timespec64 ts, *to = NULL;
2551
2552 if (timeout) {
2553 if (get_timespec64(&ts, timeout))
2554 return -EFAULT;
2555 to = &ts;
2556 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2557 return -EINVAL;
2558 }
2559
2560 return do_epoll_pwait(epfd, events, maxevents, to,
2561 sigmask, sigsetsize);
2562 }
2563
2564 #ifdef CONFIG_COMPAT
do_compat_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout,const compat_sigset_t __user * sigmask,compat_size_t sigsetsize)2565 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2566 int maxevents, struct timespec64 *timeout,
2567 const compat_sigset_t __user *sigmask,
2568 compat_size_t sigsetsize)
2569 {
2570 long err;
2571
2572 /*
2573 * If the caller wants a certain signal mask to be set during the wait,
2574 * we apply it here.
2575 */
2576 err = set_compat_user_sigmask(sigmask, sigsetsize);
2577 if (err)
2578 return err;
2579
2580 err = do_epoll_wait(epfd, events, maxevents, timeout);
2581
2582 restore_saved_sigmask_unless(err == -EINTR);
2583
2584 return err;
2585 }
2586
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2587 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2588 struct epoll_event __user *, events,
2589 int, maxevents, int, timeout,
2590 const compat_sigset_t __user *, sigmask,
2591 compat_size_t, sigsetsize)
2592 {
2593 struct timespec64 to;
2594
2595 return do_compat_epoll_pwait(epfd, events, maxevents,
2596 ep_timeout_to_timespec(&to, timeout),
2597 sigmask, sigsetsize);
2598 }
2599
COMPAT_SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2600 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2601 struct epoll_event __user *, events,
2602 int, maxevents,
2603 const struct __kernel_timespec __user *, timeout,
2604 const compat_sigset_t __user *, sigmask,
2605 compat_size_t, sigsetsize)
2606 {
2607 struct timespec64 ts, *to = NULL;
2608
2609 if (timeout) {
2610 if (get_timespec64(&ts, timeout))
2611 return -EFAULT;
2612 to = &ts;
2613 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2614 return -EINVAL;
2615 }
2616
2617 return do_compat_epoll_pwait(epfd, events, maxevents, to,
2618 sigmask, sigsetsize);
2619 }
2620
2621 #endif
2622
eventpoll_init(void)2623 static int __init eventpoll_init(void)
2624 {
2625 struct sysinfo si;
2626
2627 si_meminfo(&si);
2628 /*
2629 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2630 */
2631 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2632 EP_ITEM_COST;
2633 BUG_ON(max_user_watches < 0);
2634
2635 /*
2636 * We can have many thousands of epitems, so prevent this from
2637 * using an extra cache line on 64-bit (and smaller) CPUs
2638 */
2639 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2640
2641 /* Allocates slab cache used to allocate "struct epitem" items */
2642 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2643 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2644
2645 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2646 pwq_cache = kmem_cache_create("eventpoll_pwq",
2647 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2648 epoll_sysctls_init();
2649
2650 ephead_cache = kmem_cache_create("ep_head",
2651 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2652
2653 return 0;
2654 }
2655 fs_initcall(eventpoll_init);
2656