• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 static const struct address_space_operations hugetlbfs_aops;
43 static const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46 
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48 
49 struct hugetlbfs_fs_context {
50 	struct hstate		*hstate;
51 	unsigned long long	max_size_opt;
52 	unsigned long long	min_size_opt;
53 	long			max_hpages;
54 	long			nr_inodes;
55 	long			min_hpages;
56 	enum hugetlbfs_size_type max_val_type;
57 	enum hugetlbfs_size_type min_val_type;
58 	kuid_t			uid;
59 	kgid_t			gid;
60 	umode_t			mode;
61 };
62 
63 int sysctl_hugetlb_shm_group;
64 
65 enum hugetlb_param {
66 	Opt_gid,
67 	Opt_min_size,
68 	Opt_mode,
69 	Opt_nr_inodes,
70 	Opt_pagesize,
71 	Opt_size,
72 	Opt_uid,
73 };
74 
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 	fsparam_gid   ("gid",		Opt_gid),
77 	fsparam_string("min_size",	Opt_min_size),
78 	fsparam_u32oct("mode",		Opt_mode),
79 	fsparam_string("nr_inodes",	Opt_nr_inodes),
80 	fsparam_string("pagesize",	Opt_pagesize),
81 	fsparam_string("size",		Opt_size),
82 	fsparam_uid   ("uid",		Opt_uid),
83 	{}
84 };
85 
86 /*
87  * Mask used when checking the page offset value passed in via system
88  * calls.  This value will be converted to a loff_t which is signed.
89  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
90  * value.  The extra bit (- 1 in the shift value) is to take the sign
91  * bit into account.
92  */
93 #define PGOFF_LOFFT_MAX \
94 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
95 
hugetlbfs_file_mmap(struct file * file,struct vm_area_struct * vma)96 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
97 {
98 	struct inode *inode = file_inode(file);
99 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
100 	loff_t len, vma_len;
101 	int ret;
102 	struct hstate *h = hstate_file(file);
103 	vm_flags_t vm_flags;
104 
105 	/*
106 	 * vma address alignment (but not the pgoff alignment) has
107 	 * already been checked by prepare_hugepage_range.  If you add
108 	 * any error returns here, do so after setting VM_HUGETLB, so
109 	 * is_vm_hugetlb_page tests below unmap_region go the right
110 	 * way when do_mmap unwinds (may be important on powerpc
111 	 * and ia64).
112 	 */
113 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
114 	vma->vm_ops = &hugetlb_vm_ops;
115 
116 	ret = seal_check_write(info->seals, vma);
117 	if (ret)
118 		return ret;
119 
120 	/*
121 	 * page based offset in vm_pgoff could be sufficiently large to
122 	 * overflow a loff_t when converted to byte offset.  This can
123 	 * only happen on architectures where sizeof(loff_t) ==
124 	 * sizeof(unsigned long).  So, only check in those instances.
125 	 */
126 	if (sizeof(unsigned long) == sizeof(loff_t)) {
127 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
128 			return -EINVAL;
129 	}
130 
131 	/* must be huge page aligned */
132 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
133 		return -EINVAL;
134 
135 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
136 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
137 	/* check for overflow */
138 	if (len < vma_len)
139 		return -EINVAL;
140 
141 	inode_lock(inode);
142 	file_accessed(file);
143 
144 	ret = -ENOMEM;
145 
146 	vm_flags = vma->vm_flags;
147 	/*
148 	 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
149 	 * reserving here. Note: only for SHM hugetlbfs file, the inode
150 	 * flag S_PRIVATE is set.
151 	 */
152 	if (inode->i_flags & S_PRIVATE)
153 		vm_flags |= VM_NORESERVE;
154 
155 	if (!hugetlb_reserve_pages(inode,
156 				vma->vm_pgoff >> huge_page_order(h),
157 				len >> huge_page_shift(h), vma,
158 				vm_flags))
159 		goto out;
160 
161 	ret = 0;
162 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
163 		i_size_write(inode, len);
164 out:
165 	inode_unlock(inode);
166 
167 	return ret;
168 }
169 
170 /*
171  * Called under mmap_write_lock(mm).
172  */
173 
174 static unsigned long
hugetlb_get_unmapped_area_bottomup(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)175 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
176 		unsigned long len, unsigned long pgoff, unsigned long flags)
177 {
178 	struct hstate *h = hstate_file(file);
179 	struct vm_unmapped_area_info info = {};
180 
181 	info.length = len;
182 	info.low_limit = current->mm->mmap_base;
183 	info.high_limit = arch_get_mmap_end(addr, len, flags);
184 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
185 	return vm_unmapped_area(&info);
186 }
187 
188 static unsigned long
hugetlb_get_unmapped_area_topdown(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)189 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
190 		unsigned long len, unsigned long pgoff, unsigned long flags)
191 {
192 	struct hstate *h = hstate_file(file);
193 	struct vm_unmapped_area_info info = {};
194 
195 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
196 	info.length = len;
197 	info.low_limit = PAGE_SIZE;
198 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
199 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
200 	addr = vm_unmapped_area(&info);
201 
202 	/*
203 	 * A failed mmap() very likely causes application failure,
204 	 * so fall back to the bottom-up function here. This scenario
205 	 * can happen with large stack limits and large mmap()
206 	 * allocations.
207 	 */
208 	if (unlikely(offset_in_page(addr))) {
209 		VM_BUG_ON(addr != -ENOMEM);
210 		info.flags = 0;
211 		info.low_limit = current->mm->mmap_base;
212 		info.high_limit = arch_get_mmap_end(addr, len, flags);
213 		addr = vm_unmapped_area(&info);
214 	}
215 
216 	return addr;
217 }
218 
219 unsigned long
generic_hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)220 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
221 				  unsigned long len, unsigned long pgoff,
222 				  unsigned long flags)
223 {
224 	struct mm_struct *mm = current->mm;
225 	struct vm_area_struct *vma, *prev;
226 	struct hstate *h = hstate_file(file);
227 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
228 
229 	if (len & ~huge_page_mask(h))
230 		return -EINVAL;
231 	if (len > mmap_end - mmap_min_addr)
232 		return -ENOMEM;
233 
234 	if (flags & MAP_FIXED) {
235 		if (prepare_hugepage_range(file, addr, len))
236 			return -EINVAL;
237 		return addr;
238 	}
239 
240 	if (addr) {
241 		addr = ALIGN(addr, huge_page_size(h));
242 		vma = find_vma_prev(mm, addr, &prev);
243 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
244 		    (!vma || addr + len <= vm_start_gap(vma)) &&
245 		    (!prev || addr >= vm_end_gap(prev)))
246 			return addr;
247 	}
248 
249 	/*
250 	 * Use MMF_TOPDOWN flag as a hint to use topdown routine.
251 	 * If architectures have special needs, they should define their own
252 	 * version of hugetlb_get_unmapped_area.
253 	 */
254 	if (test_bit(MMF_TOPDOWN, &mm->flags))
255 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
256 				pgoff, flags);
257 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
258 			pgoff, flags);
259 }
260 
261 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
262 static unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)263 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
264 			  unsigned long len, unsigned long pgoff,
265 			  unsigned long flags)
266 {
267 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
268 }
269 #endif
270 
271 /*
272  * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
273  * Returns the maximum number of bytes one can read without touching the 1st raw
274  * HWPOISON subpage.
275  *
276  * The implementation borrows the iteration logic from copy_page_to_iter*.
277  */
adjust_range_hwpoison(struct page * page,size_t offset,size_t bytes)278 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
279 {
280 	size_t n = 0;
281 	size_t res = 0;
282 
283 	/* First subpage to start the loop. */
284 	page = nth_page(page, offset / PAGE_SIZE);
285 	offset %= PAGE_SIZE;
286 	while (1) {
287 		if (is_raw_hwpoison_page_in_hugepage(page))
288 			break;
289 
290 		/* Safe to read n bytes without touching HWPOISON subpage. */
291 		n = min(bytes, (size_t)PAGE_SIZE - offset);
292 		res += n;
293 		bytes -= n;
294 		if (!bytes || !n)
295 			break;
296 		offset += n;
297 		if (offset == PAGE_SIZE) {
298 			page = nth_page(page, 1);
299 			offset = 0;
300 		}
301 	}
302 
303 	return res;
304 }
305 
306 /*
307  * Support for read() - Find the page attached to f_mapping and copy out the
308  * data. This provides functionality similar to filemap_read().
309  */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)310 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
311 {
312 	struct file *file = iocb->ki_filp;
313 	struct hstate *h = hstate_file(file);
314 	struct address_space *mapping = file->f_mapping;
315 	struct inode *inode = mapping->host;
316 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
317 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
318 	unsigned long end_index;
319 	loff_t isize;
320 	ssize_t retval = 0;
321 
322 	while (iov_iter_count(to)) {
323 		struct folio *folio;
324 		size_t nr, copied, want;
325 
326 		/* nr is the maximum number of bytes to copy from this page */
327 		nr = huge_page_size(h);
328 		isize = i_size_read(inode);
329 		if (!isize)
330 			break;
331 		end_index = (isize - 1) >> huge_page_shift(h);
332 		if (index > end_index)
333 			break;
334 		if (index == end_index) {
335 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
336 			if (nr <= offset)
337 				break;
338 		}
339 		nr = nr - offset;
340 
341 		/* Find the folio */
342 		folio = filemap_lock_hugetlb_folio(h, mapping, index);
343 		if (IS_ERR(folio)) {
344 			/*
345 			 * We have a HOLE, zero out the user-buffer for the
346 			 * length of the hole or request.
347 			 */
348 			copied = iov_iter_zero(nr, to);
349 		} else {
350 			folio_unlock(folio);
351 
352 			if (!folio_test_hwpoison(folio))
353 				want = nr;
354 			else {
355 				/*
356 				 * Adjust how many bytes safe to read without
357 				 * touching the 1st raw HWPOISON subpage after
358 				 * offset.
359 				 */
360 				want = adjust_range_hwpoison(&folio->page, offset, nr);
361 				if (want == 0) {
362 					folio_put(folio);
363 					retval = -EIO;
364 					break;
365 				}
366 			}
367 
368 			/*
369 			 * We have the folio, copy it to user space buffer.
370 			 */
371 			copied = copy_folio_to_iter(folio, offset, want, to);
372 			folio_put(folio);
373 		}
374 		offset += copied;
375 		retval += copied;
376 		if (copied != nr && iov_iter_count(to)) {
377 			if (!retval)
378 				retval = -EFAULT;
379 			break;
380 		}
381 		index += offset >> huge_page_shift(h);
382 		offset &= ~huge_page_mask(h);
383 	}
384 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
385 	return retval;
386 }
387 
hugetlbfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)388 static int hugetlbfs_write_begin(struct file *file,
389 			struct address_space *mapping,
390 			loff_t pos, unsigned len,
391 			struct folio **foliop, void **fsdata)
392 {
393 	return -EINVAL;
394 }
395 
hugetlbfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)396 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
397 			loff_t pos, unsigned len, unsigned copied,
398 			struct folio *folio, void *fsdata)
399 {
400 	BUG();
401 	return -EINVAL;
402 }
403 
hugetlb_delete_from_page_cache(struct folio * folio)404 static void hugetlb_delete_from_page_cache(struct folio *folio)
405 {
406 	folio_clear_dirty(folio);
407 	folio_clear_uptodate(folio);
408 	filemap_remove_folio(folio);
409 }
410 
411 /*
412  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
413  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
414  * mutex for the page in the mapping.  So, we can not race with page being
415  * faulted into the vma.
416  */
hugetlb_vma_maps_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)417 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
418 				unsigned long addr, struct page *page)
419 {
420 	pte_t *ptep, pte;
421 
422 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
423 	if (!ptep)
424 		return false;
425 
426 	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
427 	if (huge_pte_none(pte) || !pte_present(pte))
428 		return false;
429 
430 	if (pte_page(pte) == page)
431 		return true;
432 
433 	return false;
434 }
435 
436 /*
437  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
438  * No, because the interval tree returns us only those vmas
439  * which overlap the truncated area starting at pgoff,
440  * and no vma on a 32-bit arch can span beyond the 4GB.
441  */
vma_offset_start(struct vm_area_struct * vma,pgoff_t start)442 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
443 {
444 	unsigned long offset = 0;
445 
446 	if (vma->vm_pgoff < start)
447 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
448 
449 	return vma->vm_start + offset;
450 }
451 
vma_offset_end(struct vm_area_struct * vma,pgoff_t end)452 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
453 {
454 	unsigned long t_end;
455 
456 	if (!end)
457 		return vma->vm_end;
458 
459 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
460 	if (t_end > vma->vm_end)
461 		t_end = vma->vm_end;
462 	return t_end;
463 }
464 
465 /*
466  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
467  * this folio can be created while executing the routine.
468  */
hugetlb_unmap_file_folio(struct hstate * h,struct address_space * mapping,struct folio * folio,pgoff_t index)469 static void hugetlb_unmap_file_folio(struct hstate *h,
470 					struct address_space *mapping,
471 					struct folio *folio, pgoff_t index)
472 {
473 	struct rb_root_cached *root = &mapping->i_mmap;
474 	struct hugetlb_vma_lock *vma_lock;
475 	struct page *page = &folio->page;
476 	struct vm_area_struct *vma;
477 	unsigned long v_start;
478 	unsigned long v_end;
479 	pgoff_t start, end;
480 
481 	start = index * pages_per_huge_page(h);
482 	end = (index + 1) * pages_per_huge_page(h);
483 
484 	i_mmap_lock_write(mapping);
485 retry:
486 	vma_lock = NULL;
487 	vma_interval_tree_foreach(vma, root, start, end - 1) {
488 		v_start = vma_offset_start(vma, start);
489 		v_end = vma_offset_end(vma, end);
490 
491 		if (!hugetlb_vma_maps_page(vma, v_start, page))
492 			continue;
493 
494 		if (!hugetlb_vma_trylock_write(vma)) {
495 			vma_lock = vma->vm_private_data;
496 			/*
497 			 * If we can not get vma lock, we need to drop
498 			 * immap_sema and take locks in order.  First,
499 			 * take a ref on the vma_lock structure so that
500 			 * we can be guaranteed it will not go away when
501 			 * dropping immap_sema.
502 			 */
503 			kref_get(&vma_lock->refs);
504 			break;
505 		}
506 
507 		unmap_hugepage_range(vma, v_start, v_end, NULL,
508 				     ZAP_FLAG_DROP_MARKER);
509 		hugetlb_vma_unlock_write(vma);
510 	}
511 
512 	i_mmap_unlock_write(mapping);
513 
514 	if (vma_lock) {
515 		/*
516 		 * Wait on vma_lock.  We know it is still valid as we have
517 		 * a reference.  We must 'open code' vma locking as we do
518 		 * not know if vma_lock is still attached to vma.
519 		 */
520 		down_write(&vma_lock->rw_sema);
521 		i_mmap_lock_write(mapping);
522 
523 		vma = vma_lock->vma;
524 		if (!vma) {
525 			/*
526 			 * If lock is no longer attached to vma, then just
527 			 * unlock, drop our reference and retry looking for
528 			 * other vmas.
529 			 */
530 			up_write(&vma_lock->rw_sema);
531 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
532 			goto retry;
533 		}
534 
535 		/*
536 		 * vma_lock is still attached to vma.  Check to see if vma
537 		 * still maps page and if so, unmap.
538 		 */
539 		v_start = vma_offset_start(vma, start);
540 		v_end = vma_offset_end(vma, end);
541 		if (hugetlb_vma_maps_page(vma, v_start, page))
542 			unmap_hugepage_range(vma, v_start, v_end, NULL,
543 					     ZAP_FLAG_DROP_MARKER);
544 
545 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
546 		hugetlb_vma_unlock_write(vma);
547 
548 		goto retry;
549 	}
550 }
551 
552 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end,zap_flags_t zap_flags)553 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
554 		      zap_flags_t zap_flags)
555 {
556 	struct vm_area_struct *vma;
557 
558 	/*
559 	 * end == 0 indicates that the entire range after start should be
560 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
561 	 * an inclusive "last".
562 	 */
563 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
564 		unsigned long v_start;
565 		unsigned long v_end;
566 
567 		if (!hugetlb_vma_trylock_write(vma))
568 			continue;
569 
570 		v_start = vma_offset_start(vma, start);
571 		v_end = vma_offset_end(vma, end);
572 
573 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
574 
575 		/*
576 		 * Note that vma lock only exists for shared/non-private
577 		 * vmas.  Therefore, lock is not held when calling
578 		 * unmap_hugepage_range for private vmas.
579 		 */
580 		hugetlb_vma_unlock_write(vma);
581 	}
582 }
583 
584 /*
585  * Called with hugetlb fault mutex held.
586  * Returns true if page was actually removed, false otherwise.
587  */
remove_inode_single_folio(struct hstate * h,struct inode * inode,struct address_space * mapping,struct folio * folio,pgoff_t index,bool truncate_op)588 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
589 					struct address_space *mapping,
590 					struct folio *folio, pgoff_t index,
591 					bool truncate_op)
592 {
593 	bool ret = false;
594 
595 	/*
596 	 * If folio is mapped, it was faulted in after being
597 	 * unmapped in caller or hugetlb_vmdelete_list() skips
598 	 * unmapping it due to fail to grab lock.  Unmap (again)
599 	 * while holding the fault mutex.  The mutex will prevent
600 	 * faults until we finish removing the folio.  Hold folio
601 	 * lock to guarantee no concurrent migration.
602 	 */
603 	folio_lock(folio);
604 	if (unlikely(folio_mapped(folio)))
605 		hugetlb_unmap_file_folio(h, mapping, folio, index);
606 
607 	/*
608 	 * We must remove the folio from page cache before removing
609 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
610 	 * rare out of memory conditions, removal of the region/reserve
611 	 * map could fail.  Correspondingly, the subpool and global
612 	 * reserve usage count can need to be adjusted.
613 	 */
614 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
615 	hugetlb_delete_from_page_cache(folio);
616 	ret = true;
617 	if (!truncate_op) {
618 		if (unlikely(hugetlb_unreserve_pages(inode, index,
619 							index + 1, 1)))
620 			hugetlb_fix_reserve_counts(inode);
621 	}
622 
623 	folio_unlock(folio);
624 	return ret;
625 }
626 
627 /*
628  * remove_inode_hugepages handles two distinct cases: truncation and hole
629  * punch.  There are subtle differences in operation for each case.
630  *
631  * truncation is indicated by end of range being LLONG_MAX
632  *	In this case, we first scan the range and release found pages.
633  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
634  *	maps and global counts.  Page faults can race with truncation.
635  *	During faults, hugetlb_no_page() checks i_size before page allocation,
636  *	and again after obtaining page table lock.  It will 'back out'
637  *	allocations in the truncated range.
638  * hole punch is indicated if end is not LLONG_MAX
639  *	In the hole punch case we scan the range and release found pages.
640  *	Only when releasing a page is the associated region/reserve map
641  *	deleted.  The region/reserve map for ranges without associated
642  *	pages are not modified.  Page faults can race with hole punch.
643  *	This is indicated if we find a mapped page.
644  * Note: If the passed end of range value is beyond the end of file, but
645  * not LLONG_MAX this routine still performs a hole punch operation.
646  */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)647 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
648 				   loff_t lend)
649 {
650 	struct hstate *h = hstate_inode(inode);
651 	struct address_space *mapping = &inode->i_data;
652 	const pgoff_t end = lend >> PAGE_SHIFT;
653 	struct folio_batch fbatch;
654 	pgoff_t next, index;
655 	int i, freed = 0;
656 	bool truncate_op = (lend == LLONG_MAX);
657 
658 	folio_batch_init(&fbatch);
659 	next = lstart >> PAGE_SHIFT;
660 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
661 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
662 			struct folio *folio = fbatch.folios[i];
663 			u32 hash = 0;
664 
665 			index = folio->index >> huge_page_order(h);
666 			hash = hugetlb_fault_mutex_hash(mapping, index);
667 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
668 
669 			/*
670 			 * Remove folio that was part of folio_batch.
671 			 */
672 			if (remove_inode_single_folio(h, inode, mapping, folio,
673 							index, truncate_op))
674 				freed++;
675 
676 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
677 		}
678 		folio_batch_release(&fbatch);
679 		cond_resched();
680 	}
681 
682 	if (truncate_op)
683 		(void)hugetlb_unreserve_pages(inode,
684 				lstart >> huge_page_shift(h),
685 				LONG_MAX, freed);
686 }
687 
hugetlbfs_evict_inode(struct inode * inode)688 static void hugetlbfs_evict_inode(struct inode *inode)
689 {
690 	struct resv_map *resv_map;
691 
692 	remove_inode_hugepages(inode, 0, LLONG_MAX);
693 
694 	/*
695 	 * Get the resv_map from the address space embedded in the inode.
696 	 * This is the address space which points to any resv_map allocated
697 	 * at inode creation time.  If this is a device special inode,
698 	 * i_mapping may not point to the original address space.
699 	 */
700 	resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
701 	/* Only regular and link inodes have associated reserve maps */
702 	if (resv_map)
703 		resv_map_release(&resv_map->refs);
704 	clear_inode(inode);
705 }
706 
hugetlb_vmtruncate(struct inode * inode,loff_t offset)707 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
708 {
709 	pgoff_t pgoff;
710 	struct address_space *mapping = inode->i_mapping;
711 	struct hstate *h = hstate_inode(inode);
712 
713 	BUG_ON(offset & ~huge_page_mask(h));
714 	pgoff = offset >> PAGE_SHIFT;
715 
716 	i_size_write(inode, offset);
717 	i_mmap_lock_write(mapping);
718 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
719 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
720 				      ZAP_FLAG_DROP_MARKER);
721 	i_mmap_unlock_write(mapping);
722 	remove_inode_hugepages(inode, offset, LLONG_MAX);
723 }
724 
hugetlbfs_zero_partial_page(struct hstate * h,struct address_space * mapping,loff_t start,loff_t end)725 static void hugetlbfs_zero_partial_page(struct hstate *h,
726 					struct address_space *mapping,
727 					loff_t start,
728 					loff_t end)
729 {
730 	pgoff_t idx = start >> huge_page_shift(h);
731 	struct folio *folio;
732 
733 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
734 	if (IS_ERR(folio))
735 		return;
736 
737 	start = start & ~huge_page_mask(h);
738 	end = end & ~huge_page_mask(h);
739 	if (!end)
740 		end = huge_page_size(h);
741 
742 	folio_zero_segment(folio, (size_t)start, (size_t)end);
743 
744 	folio_unlock(folio);
745 	folio_put(folio);
746 }
747 
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)748 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
749 {
750 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
751 	struct address_space *mapping = inode->i_mapping;
752 	struct hstate *h = hstate_inode(inode);
753 	loff_t hpage_size = huge_page_size(h);
754 	loff_t hole_start, hole_end;
755 
756 	/*
757 	 * hole_start and hole_end indicate the full pages within the hole.
758 	 */
759 	hole_start = round_up(offset, hpage_size);
760 	hole_end = round_down(offset + len, hpage_size);
761 
762 	inode_lock(inode);
763 
764 	/* protected by i_rwsem */
765 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
766 		inode_unlock(inode);
767 		return -EPERM;
768 	}
769 
770 	i_mmap_lock_write(mapping);
771 
772 	/* If range starts before first full page, zero partial page. */
773 	if (offset < hole_start)
774 		hugetlbfs_zero_partial_page(h, mapping,
775 				offset, min(offset + len, hole_start));
776 
777 	/* Unmap users of full pages in the hole. */
778 	if (hole_end > hole_start) {
779 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
780 			hugetlb_vmdelete_list(&mapping->i_mmap,
781 					      hole_start >> PAGE_SHIFT,
782 					      hole_end >> PAGE_SHIFT, 0);
783 	}
784 
785 	/* If range extends beyond last full page, zero partial page. */
786 	if ((offset + len) > hole_end && (offset + len) > hole_start)
787 		hugetlbfs_zero_partial_page(h, mapping,
788 				hole_end, offset + len);
789 
790 	i_mmap_unlock_write(mapping);
791 
792 	/* Remove full pages from the file. */
793 	if (hole_end > hole_start)
794 		remove_inode_hugepages(inode, hole_start, hole_end);
795 
796 	inode_unlock(inode);
797 
798 	return 0;
799 }
800 
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)801 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
802 				loff_t len)
803 {
804 	struct inode *inode = file_inode(file);
805 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
806 	struct address_space *mapping = inode->i_mapping;
807 	struct hstate *h = hstate_inode(inode);
808 	struct vm_area_struct pseudo_vma;
809 	struct mm_struct *mm = current->mm;
810 	loff_t hpage_size = huge_page_size(h);
811 	unsigned long hpage_shift = huge_page_shift(h);
812 	pgoff_t start, index, end;
813 	int error;
814 	u32 hash;
815 
816 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
817 		return -EOPNOTSUPP;
818 
819 	if (mode & FALLOC_FL_PUNCH_HOLE)
820 		return hugetlbfs_punch_hole(inode, offset, len);
821 
822 	/*
823 	 * Default preallocate case.
824 	 * For this range, start is rounded down and end is rounded up
825 	 * as well as being converted to page offsets.
826 	 */
827 	start = offset >> hpage_shift;
828 	end = (offset + len + hpage_size - 1) >> hpage_shift;
829 
830 	inode_lock(inode);
831 
832 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
833 	error = inode_newsize_ok(inode, offset + len);
834 	if (error)
835 		goto out;
836 
837 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
838 		error = -EPERM;
839 		goto out;
840 	}
841 
842 	/*
843 	 * Initialize a pseudo vma as this is required by the huge page
844 	 * allocation routines.
845 	 */
846 	vma_init(&pseudo_vma, mm);
847 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
848 	pseudo_vma.vm_file = file;
849 
850 	for (index = start; index < end; index++) {
851 		/*
852 		 * This is supposed to be the vaddr where the page is being
853 		 * faulted in, but we have no vaddr here.
854 		 */
855 		struct folio *folio;
856 		unsigned long addr;
857 
858 		cond_resched();
859 
860 		/*
861 		 * fallocate(2) manpage permits EINTR; we may have been
862 		 * interrupted because we are using up too much memory.
863 		 */
864 		if (signal_pending(current)) {
865 			error = -EINTR;
866 			break;
867 		}
868 
869 		/* addr is the offset within the file (zero based) */
870 		addr = index * hpage_size;
871 
872 		/* mutex taken here, fault path and hole punch */
873 		hash = hugetlb_fault_mutex_hash(mapping, index);
874 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
875 
876 		/* See if already present in mapping to avoid alloc/free */
877 		folio = filemap_get_folio(mapping, index << huge_page_order(h));
878 		if (!IS_ERR(folio)) {
879 			folio_put(folio);
880 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
881 			continue;
882 		}
883 
884 		/*
885 		 * Allocate folio without setting the avoid_reserve argument.
886 		 * There certainly are no reserves associated with the
887 		 * pseudo_vma.  However, there could be shared mappings with
888 		 * reserves for the file at the inode level.  If we fallocate
889 		 * folios in these areas, we need to consume the reserves
890 		 * to keep reservation accounting consistent.
891 		 */
892 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
893 		if (IS_ERR(folio)) {
894 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
895 			error = PTR_ERR(folio);
896 			goto out;
897 		}
898 		folio_zero_user(folio, addr);
899 		__folio_mark_uptodate(folio);
900 		error = hugetlb_add_to_page_cache(folio, mapping, index);
901 		if (unlikely(error)) {
902 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
903 			folio_put(folio);
904 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
905 			goto out;
906 		}
907 
908 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
909 
910 		folio_set_hugetlb_migratable(folio);
911 		/*
912 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
913 		 * folio_put() due to reference from alloc_hugetlb_folio()
914 		 */
915 		folio_unlock(folio);
916 		folio_put(folio);
917 	}
918 
919 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
920 		i_size_write(inode, offset + len);
921 	inode_set_ctime_current(inode);
922 out:
923 	inode_unlock(inode);
924 	return error;
925 }
926 
hugetlbfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)927 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
928 			     struct dentry *dentry, struct iattr *attr)
929 {
930 	struct inode *inode = d_inode(dentry);
931 	struct hstate *h = hstate_inode(inode);
932 	int error;
933 	unsigned int ia_valid = attr->ia_valid;
934 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
935 
936 	error = setattr_prepare(idmap, dentry, attr);
937 	if (error)
938 		return error;
939 
940 	if (ia_valid & ATTR_SIZE) {
941 		loff_t oldsize = inode->i_size;
942 		loff_t newsize = attr->ia_size;
943 
944 		if (newsize & ~huge_page_mask(h))
945 			return -EINVAL;
946 		/* protected by i_rwsem */
947 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
948 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
949 			return -EPERM;
950 		hugetlb_vmtruncate(inode, newsize);
951 	}
952 
953 	setattr_copy(idmap, inode, attr);
954 	mark_inode_dirty(inode);
955 	return 0;
956 }
957 
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_fs_context * ctx)958 static struct inode *hugetlbfs_get_root(struct super_block *sb,
959 					struct hugetlbfs_fs_context *ctx)
960 {
961 	struct inode *inode;
962 
963 	inode = new_inode(sb);
964 	if (inode) {
965 		inode->i_ino = get_next_ino();
966 		inode->i_mode = S_IFDIR | ctx->mode;
967 		inode->i_uid = ctx->uid;
968 		inode->i_gid = ctx->gid;
969 		simple_inode_init_ts(inode);
970 		inode->i_op = &hugetlbfs_dir_inode_operations;
971 		inode->i_fop = &simple_dir_operations;
972 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
973 		inc_nlink(inode);
974 		lockdep_annotate_inode_mutex_key(inode);
975 	}
976 	return inode;
977 }
978 
979 /*
980  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
981  * be taken from reclaim -- unlike regular filesystems. This needs an
982  * annotation because huge_pmd_share() does an allocation under hugetlb's
983  * i_mmap_rwsem.
984  */
985 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
986 
hugetlbfs_get_inode(struct super_block * sb,struct mnt_idmap * idmap,struct inode * dir,umode_t mode,dev_t dev)987 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
988 					struct mnt_idmap *idmap,
989 					struct inode *dir,
990 					umode_t mode, dev_t dev)
991 {
992 	struct inode *inode;
993 	struct resv_map *resv_map = NULL;
994 
995 	/*
996 	 * Reserve maps are only needed for inodes that can have associated
997 	 * page allocations.
998 	 */
999 	if (S_ISREG(mode) || S_ISLNK(mode)) {
1000 		resv_map = resv_map_alloc();
1001 		if (!resv_map)
1002 			return NULL;
1003 	}
1004 
1005 	inode = new_inode(sb);
1006 	if (inode) {
1007 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1008 
1009 		inode->i_ino = get_next_ino();
1010 		inode_init_owner(idmap, inode, dir, mode);
1011 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
1012 				&hugetlbfs_i_mmap_rwsem_key);
1013 		inode->i_mapping->a_ops = &hugetlbfs_aops;
1014 		simple_inode_init_ts(inode);
1015 		inode->i_mapping->i_private_data = resv_map;
1016 		info->seals = F_SEAL_SEAL;
1017 		switch (mode & S_IFMT) {
1018 		default:
1019 			init_special_inode(inode, mode, dev);
1020 			break;
1021 		case S_IFREG:
1022 			inode->i_op = &hugetlbfs_inode_operations;
1023 			inode->i_fop = &hugetlbfs_file_operations;
1024 			break;
1025 		case S_IFDIR:
1026 			inode->i_op = &hugetlbfs_dir_inode_operations;
1027 			inode->i_fop = &simple_dir_operations;
1028 
1029 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
1030 			inc_nlink(inode);
1031 			break;
1032 		case S_IFLNK:
1033 			inode->i_op = &page_symlink_inode_operations;
1034 			inode_nohighmem(inode);
1035 			break;
1036 		}
1037 		lockdep_annotate_inode_mutex_key(inode);
1038 	} else {
1039 		if (resv_map)
1040 			kref_put(&resv_map->refs, resv_map_release);
1041 	}
1042 
1043 	return inode;
1044 }
1045 
1046 /*
1047  * File creation. Allocate an inode, and we're done..
1048  */
hugetlbfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)1049 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
1050 			   struct dentry *dentry, umode_t mode, dev_t dev)
1051 {
1052 	struct inode *inode;
1053 
1054 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
1055 	if (!inode)
1056 		return -ENOSPC;
1057 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1058 	d_instantiate(dentry, inode);
1059 	dget(dentry);/* Extra count - pin the dentry in core */
1060 	return 0;
1061 }
1062 
hugetlbfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)1063 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1064 			   struct dentry *dentry, umode_t mode)
1065 {
1066 	int retval = hugetlbfs_mknod(idmap, dir, dentry,
1067 				     mode | S_IFDIR, 0);
1068 	if (!retval)
1069 		inc_nlink(dir);
1070 	return retval;
1071 }
1072 
hugetlbfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1073 static int hugetlbfs_create(struct mnt_idmap *idmap,
1074 			    struct inode *dir, struct dentry *dentry,
1075 			    umode_t mode, bool excl)
1076 {
1077 	return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1078 }
1079 
hugetlbfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)1080 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1081 			     struct inode *dir, struct file *file,
1082 			     umode_t mode)
1083 {
1084 	struct inode *inode;
1085 
1086 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1087 	if (!inode)
1088 		return -ENOSPC;
1089 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1090 	d_tmpfile(file, inode);
1091 	return finish_open_simple(file, 0);
1092 }
1093 
hugetlbfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)1094 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1095 			     struct inode *dir, struct dentry *dentry,
1096 			     const char *symname)
1097 {
1098 	const umode_t mode = S_IFLNK|S_IRWXUGO;
1099 	struct inode *inode;
1100 	int error = -ENOSPC;
1101 
1102 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1103 	if (inode) {
1104 		int l = strlen(symname)+1;
1105 		error = page_symlink(inode, symname, l);
1106 		if (!error) {
1107 			d_instantiate(dentry, inode);
1108 			dget(dentry);
1109 		} else
1110 			iput(inode);
1111 	}
1112 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1113 
1114 	return error;
1115 }
1116 
1117 #ifdef CONFIG_MIGRATION
hugetlbfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1118 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1119 				struct folio *dst, struct folio *src,
1120 				enum migrate_mode mode)
1121 {
1122 	int rc;
1123 
1124 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1125 	if (rc != MIGRATEPAGE_SUCCESS)
1126 		return rc;
1127 
1128 	if (hugetlb_folio_subpool(src)) {
1129 		hugetlb_set_folio_subpool(dst,
1130 					hugetlb_folio_subpool(src));
1131 		hugetlb_set_folio_subpool(src, NULL);
1132 	}
1133 
1134 	folio_migrate_flags(dst, src);
1135 
1136 	return MIGRATEPAGE_SUCCESS;
1137 }
1138 #else
1139 #define hugetlbfs_migrate_folio NULL
1140 #endif
1141 
hugetlbfs_error_remove_folio(struct address_space * mapping,struct folio * folio)1142 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1143 				struct folio *folio)
1144 {
1145 	return 0;
1146 }
1147 
1148 /*
1149  * Display the mount options in /proc/mounts.
1150  */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)1151 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1152 {
1153 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1154 	struct hugepage_subpool *spool = sbinfo->spool;
1155 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1156 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1157 	char mod;
1158 
1159 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1160 		seq_printf(m, ",uid=%u",
1161 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1162 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1163 		seq_printf(m, ",gid=%u",
1164 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1165 	if (sbinfo->mode != 0755)
1166 		seq_printf(m, ",mode=%o", sbinfo->mode);
1167 	if (sbinfo->max_inodes != -1)
1168 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1169 
1170 	hpage_size /= 1024;
1171 	mod = 'K';
1172 	if (hpage_size >= 1024) {
1173 		hpage_size /= 1024;
1174 		mod = 'M';
1175 	}
1176 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1177 	if (spool) {
1178 		if (spool->max_hpages != -1)
1179 			seq_printf(m, ",size=%llu",
1180 				   (unsigned long long)spool->max_hpages << hpage_shift);
1181 		if (spool->min_hpages != -1)
1182 			seq_printf(m, ",min_size=%llu",
1183 				   (unsigned long long)spool->min_hpages << hpage_shift);
1184 	}
1185 	return 0;
1186 }
1187 
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)1188 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1189 {
1190 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1191 	struct hstate *h = hstate_inode(d_inode(dentry));
1192 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1193 
1194 	buf->f_fsid = u64_to_fsid(id);
1195 	buf->f_type = HUGETLBFS_MAGIC;
1196 	buf->f_bsize = huge_page_size(h);
1197 	if (sbinfo) {
1198 		spin_lock(&sbinfo->stat_lock);
1199 		/* If no limits set, just report 0 or -1 for max/free/used
1200 		 * blocks, like simple_statfs() */
1201 		if (sbinfo->spool) {
1202 			long free_pages;
1203 
1204 			spin_lock_irq(&sbinfo->spool->lock);
1205 			buf->f_blocks = sbinfo->spool->max_hpages;
1206 			free_pages = sbinfo->spool->max_hpages
1207 				- sbinfo->spool->used_hpages;
1208 			buf->f_bavail = buf->f_bfree = free_pages;
1209 			spin_unlock_irq(&sbinfo->spool->lock);
1210 			buf->f_files = sbinfo->max_inodes;
1211 			buf->f_ffree = sbinfo->free_inodes;
1212 		}
1213 		spin_unlock(&sbinfo->stat_lock);
1214 	}
1215 	buf->f_namelen = NAME_MAX;
1216 	return 0;
1217 }
1218 
hugetlbfs_put_super(struct super_block * sb)1219 static void hugetlbfs_put_super(struct super_block *sb)
1220 {
1221 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1222 
1223 	if (sbi) {
1224 		sb->s_fs_info = NULL;
1225 
1226 		if (sbi->spool)
1227 			hugepage_put_subpool(sbi->spool);
1228 
1229 		kfree(sbi);
1230 	}
1231 }
1232 
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)1233 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1234 {
1235 	if (sbinfo->free_inodes >= 0) {
1236 		spin_lock(&sbinfo->stat_lock);
1237 		if (unlikely(!sbinfo->free_inodes)) {
1238 			spin_unlock(&sbinfo->stat_lock);
1239 			return 0;
1240 		}
1241 		sbinfo->free_inodes--;
1242 		spin_unlock(&sbinfo->stat_lock);
1243 	}
1244 
1245 	return 1;
1246 }
1247 
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)1248 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1249 {
1250 	if (sbinfo->free_inodes >= 0) {
1251 		spin_lock(&sbinfo->stat_lock);
1252 		sbinfo->free_inodes++;
1253 		spin_unlock(&sbinfo->stat_lock);
1254 	}
1255 }
1256 
1257 
1258 static struct kmem_cache *hugetlbfs_inode_cachep;
1259 
hugetlbfs_alloc_inode(struct super_block * sb)1260 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1261 {
1262 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1263 	struct hugetlbfs_inode_info *p;
1264 
1265 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1266 		return NULL;
1267 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1268 	if (unlikely(!p)) {
1269 		hugetlbfs_inc_free_inodes(sbinfo);
1270 		return NULL;
1271 	}
1272 	return &p->vfs_inode;
1273 }
1274 
hugetlbfs_free_inode(struct inode * inode)1275 static void hugetlbfs_free_inode(struct inode *inode)
1276 {
1277 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1278 }
1279 
hugetlbfs_destroy_inode(struct inode * inode)1280 static void hugetlbfs_destroy_inode(struct inode *inode)
1281 {
1282 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1283 }
1284 
1285 static const struct address_space_operations hugetlbfs_aops = {
1286 	.write_begin	= hugetlbfs_write_begin,
1287 	.write_end	= hugetlbfs_write_end,
1288 	.dirty_folio	= noop_dirty_folio,
1289 	.migrate_folio  = hugetlbfs_migrate_folio,
1290 	.error_remove_folio	= hugetlbfs_error_remove_folio,
1291 };
1292 
1293 
init_once(void * foo)1294 static void init_once(void *foo)
1295 {
1296 	struct hugetlbfs_inode_info *ei = foo;
1297 
1298 	inode_init_once(&ei->vfs_inode);
1299 }
1300 
1301 static const struct file_operations hugetlbfs_file_operations = {
1302 	.read_iter		= hugetlbfs_read_iter,
1303 	.mmap			= hugetlbfs_file_mmap,
1304 	.fsync			= noop_fsync,
1305 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1306 	.llseek			= default_llseek,
1307 	.fallocate		= hugetlbfs_fallocate,
1308 	.fop_flags		= FOP_HUGE_PAGES,
1309 };
1310 
1311 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1312 	.create		= hugetlbfs_create,
1313 	.lookup		= simple_lookup,
1314 	.link		= simple_link,
1315 	.unlink		= simple_unlink,
1316 	.symlink	= hugetlbfs_symlink,
1317 	.mkdir		= hugetlbfs_mkdir,
1318 	.rmdir		= simple_rmdir,
1319 	.mknod		= hugetlbfs_mknod,
1320 	.rename		= simple_rename,
1321 	.setattr	= hugetlbfs_setattr,
1322 	.tmpfile	= hugetlbfs_tmpfile,
1323 };
1324 
1325 static const struct inode_operations hugetlbfs_inode_operations = {
1326 	.setattr	= hugetlbfs_setattr,
1327 };
1328 
1329 static const struct super_operations hugetlbfs_ops = {
1330 	.alloc_inode    = hugetlbfs_alloc_inode,
1331 	.free_inode     = hugetlbfs_free_inode,
1332 	.destroy_inode  = hugetlbfs_destroy_inode,
1333 	.evict_inode	= hugetlbfs_evict_inode,
1334 	.statfs		= hugetlbfs_statfs,
1335 	.put_super	= hugetlbfs_put_super,
1336 	.show_options	= hugetlbfs_show_options,
1337 };
1338 
1339 /*
1340  * Convert size option passed from command line to number of huge pages
1341  * in the pool specified by hstate.  Size option could be in bytes
1342  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1343  */
1344 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1345 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1346 			 enum hugetlbfs_size_type val_type)
1347 {
1348 	if (val_type == NO_SIZE)
1349 		return -1;
1350 
1351 	if (val_type == SIZE_PERCENT) {
1352 		size_opt <<= huge_page_shift(h);
1353 		size_opt *= h->max_huge_pages;
1354 		do_div(size_opt, 100);
1355 	}
1356 
1357 	size_opt >>= huge_page_shift(h);
1358 	return size_opt;
1359 }
1360 
1361 /*
1362  * Parse one mount parameter.
1363  */
hugetlbfs_parse_param(struct fs_context * fc,struct fs_parameter * param)1364 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1365 {
1366 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1367 	struct fs_parse_result result;
1368 	struct hstate *h;
1369 	char *rest;
1370 	unsigned long ps;
1371 	int opt;
1372 
1373 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1374 	if (opt < 0)
1375 		return opt;
1376 
1377 	switch (opt) {
1378 	case Opt_uid:
1379 		ctx->uid = result.uid;
1380 		return 0;
1381 
1382 	case Opt_gid:
1383 		ctx->gid = result.gid;
1384 		return 0;
1385 
1386 	case Opt_mode:
1387 		ctx->mode = result.uint_32 & 01777U;
1388 		return 0;
1389 
1390 	case Opt_size:
1391 		/* memparse() will accept a K/M/G without a digit */
1392 		if (!param->string || !isdigit(param->string[0]))
1393 			goto bad_val;
1394 		ctx->max_size_opt = memparse(param->string, &rest);
1395 		ctx->max_val_type = SIZE_STD;
1396 		if (*rest == '%')
1397 			ctx->max_val_type = SIZE_PERCENT;
1398 		return 0;
1399 
1400 	case Opt_nr_inodes:
1401 		/* memparse() will accept a K/M/G without a digit */
1402 		if (!param->string || !isdigit(param->string[0]))
1403 			goto bad_val;
1404 		ctx->nr_inodes = memparse(param->string, &rest);
1405 		return 0;
1406 
1407 	case Opt_pagesize:
1408 		ps = memparse(param->string, &rest);
1409 		h = size_to_hstate(ps);
1410 		if (!h) {
1411 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1412 			return -EINVAL;
1413 		}
1414 		ctx->hstate = h;
1415 		return 0;
1416 
1417 	case Opt_min_size:
1418 		/* memparse() will accept a K/M/G without a digit */
1419 		if (!param->string || !isdigit(param->string[0]))
1420 			goto bad_val;
1421 		ctx->min_size_opt = memparse(param->string, &rest);
1422 		ctx->min_val_type = SIZE_STD;
1423 		if (*rest == '%')
1424 			ctx->min_val_type = SIZE_PERCENT;
1425 		return 0;
1426 
1427 	default:
1428 		return -EINVAL;
1429 	}
1430 
1431 bad_val:
1432 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1433 		      param->string, param->key);
1434 }
1435 
1436 /*
1437  * Validate the parsed options.
1438  */
hugetlbfs_validate(struct fs_context * fc)1439 static int hugetlbfs_validate(struct fs_context *fc)
1440 {
1441 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1442 
1443 	/*
1444 	 * Use huge page pool size (in hstate) to convert the size
1445 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1446 	 */
1447 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1448 						   ctx->max_size_opt,
1449 						   ctx->max_val_type);
1450 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1451 						   ctx->min_size_opt,
1452 						   ctx->min_val_type);
1453 
1454 	/*
1455 	 * If max_size was specified, then min_size must be smaller
1456 	 */
1457 	if (ctx->max_val_type > NO_SIZE &&
1458 	    ctx->min_hpages > ctx->max_hpages) {
1459 		pr_err("Minimum size can not be greater than maximum size\n");
1460 		return -EINVAL;
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 static int
hugetlbfs_fill_super(struct super_block * sb,struct fs_context * fc)1467 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1468 {
1469 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1470 	struct hugetlbfs_sb_info *sbinfo;
1471 
1472 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1473 	if (!sbinfo)
1474 		return -ENOMEM;
1475 	sb->s_fs_info = sbinfo;
1476 	spin_lock_init(&sbinfo->stat_lock);
1477 	sbinfo->hstate		= ctx->hstate;
1478 	sbinfo->max_inodes	= ctx->nr_inodes;
1479 	sbinfo->free_inodes	= ctx->nr_inodes;
1480 	sbinfo->spool		= NULL;
1481 	sbinfo->uid		= ctx->uid;
1482 	sbinfo->gid		= ctx->gid;
1483 	sbinfo->mode		= ctx->mode;
1484 
1485 	/*
1486 	 * Allocate and initialize subpool if maximum or minimum size is
1487 	 * specified.  Any needed reservations (for minimum size) are taken
1488 	 * when the subpool is created.
1489 	 */
1490 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1491 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1492 						     ctx->max_hpages,
1493 						     ctx->min_hpages);
1494 		if (!sbinfo->spool)
1495 			goto out_free;
1496 	}
1497 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1498 	sb->s_blocksize = huge_page_size(ctx->hstate);
1499 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1500 	sb->s_magic = HUGETLBFS_MAGIC;
1501 	sb->s_op = &hugetlbfs_ops;
1502 	sb->s_time_gran = 1;
1503 
1504 	/*
1505 	 * Due to the special and limited functionality of hugetlbfs, it does
1506 	 * not work well as a stacking filesystem.
1507 	 */
1508 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1509 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1510 	if (!sb->s_root)
1511 		goto out_free;
1512 	return 0;
1513 out_free:
1514 	kfree(sbinfo->spool);
1515 	kfree(sbinfo);
1516 	return -ENOMEM;
1517 }
1518 
hugetlbfs_get_tree(struct fs_context * fc)1519 static int hugetlbfs_get_tree(struct fs_context *fc)
1520 {
1521 	int err = hugetlbfs_validate(fc);
1522 	if (err)
1523 		return err;
1524 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1525 }
1526 
hugetlbfs_fs_context_free(struct fs_context * fc)1527 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1528 {
1529 	kfree(fc->fs_private);
1530 }
1531 
1532 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1533 	.free		= hugetlbfs_fs_context_free,
1534 	.parse_param	= hugetlbfs_parse_param,
1535 	.get_tree	= hugetlbfs_get_tree,
1536 };
1537 
hugetlbfs_init_fs_context(struct fs_context * fc)1538 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1539 {
1540 	struct hugetlbfs_fs_context *ctx;
1541 
1542 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1543 	if (!ctx)
1544 		return -ENOMEM;
1545 
1546 	ctx->max_hpages	= -1; /* No limit on size by default */
1547 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1548 	ctx->uid	= current_fsuid();
1549 	ctx->gid	= current_fsgid();
1550 	ctx->mode	= 0755;
1551 	ctx->hstate	= &default_hstate;
1552 	ctx->min_hpages	= -1; /* No default minimum size */
1553 	ctx->max_val_type = NO_SIZE;
1554 	ctx->min_val_type = NO_SIZE;
1555 	fc->fs_private = ctx;
1556 	fc->ops	= &hugetlbfs_fs_context_ops;
1557 	return 0;
1558 }
1559 
1560 static struct file_system_type hugetlbfs_fs_type = {
1561 	.name			= "hugetlbfs",
1562 	.init_fs_context	= hugetlbfs_init_fs_context,
1563 	.parameters		= hugetlb_fs_parameters,
1564 	.kill_sb		= kill_litter_super,
1565 	.fs_flags               = FS_ALLOW_IDMAP,
1566 };
1567 
1568 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1569 
can_do_hugetlb_shm(void)1570 static int can_do_hugetlb_shm(void)
1571 {
1572 	kgid_t shm_group;
1573 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1574 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1575 }
1576 
get_hstate_idx(int page_size_log)1577 static int get_hstate_idx(int page_size_log)
1578 {
1579 	struct hstate *h = hstate_sizelog(page_size_log);
1580 
1581 	if (!h)
1582 		return -1;
1583 	return hstate_index(h);
1584 }
1585 
1586 /*
1587  * Note that size should be aligned to proper hugepage size in caller side,
1588  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1589  */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)1590 struct file *hugetlb_file_setup(const char *name, size_t size,
1591 				vm_flags_t acctflag, int creat_flags,
1592 				int page_size_log)
1593 {
1594 	struct inode *inode;
1595 	struct vfsmount *mnt;
1596 	int hstate_idx;
1597 	struct file *file;
1598 
1599 	hstate_idx = get_hstate_idx(page_size_log);
1600 	if (hstate_idx < 0)
1601 		return ERR_PTR(-ENODEV);
1602 
1603 	mnt = hugetlbfs_vfsmount[hstate_idx];
1604 	if (!mnt)
1605 		return ERR_PTR(-ENOENT);
1606 
1607 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1608 		struct ucounts *ucounts = current_ucounts();
1609 
1610 		if (user_shm_lock(size, ucounts)) {
1611 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1612 				current->comm, current->pid);
1613 			user_shm_unlock(size, ucounts);
1614 		}
1615 		return ERR_PTR(-EPERM);
1616 	}
1617 
1618 	file = ERR_PTR(-ENOSPC);
1619 	/* hugetlbfs_vfsmount[] mounts do not use idmapped mounts.  */
1620 	inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1621 				    S_IFREG | S_IRWXUGO, 0);
1622 	if (!inode)
1623 		goto out;
1624 	if (creat_flags == HUGETLB_SHMFS_INODE)
1625 		inode->i_flags |= S_PRIVATE;
1626 
1627 	inode->i_size = size;
1628 	clear_nlink(inode);
1629 
1630 	if (!hugetlb_reserve_pages(inode, 0,
1631 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1632 			acctflag))
1633 		file = ERR_PTR(-ENOMEM);
1634 	else
1635 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1636 					&hugetlbfs_file_operations);
1637 	if (!IS_ERR(file))
1638 		return file;
1639 
1640 	iput(inode);
1641 out:
1642 	return file;
1643 }
1644 
mount_one_hugetlbfs(struct hstate * h)1645 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1646 {
1647 	struct fs_context *fc;
1648 	struct vfsmount *mnt;
1649 
1650 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1651 	if (IS_ERR(fc)) {
1652 		mnt = ERR_CAST(fc);
1653 	} else {
1654 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1655 		ctx->hstate = h;
1656 		mnt = fc_mount(fc);
1657 		put_fs_context(fc);
1658 	}
1659 	if (IS_ERR(mnt))
1660 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1661 		       huge_page_size(h) / SZ_1K);
1662 	return mnt;
1663 }
1664 
init_hugetlbfs_fs(void)1665 static int __init init_hugetlbfs_fs(void)
1666 {
1667 	struct vfsmount *mnt;
1668 	struct hstate *h;
1669 	int error;
1670 	int i;
1671 
1672 	if (!hugepages_supported()) {
1673 		pr_info("disabling because there are no supported hugepage sizes\n");
1674 		return -ENOTSUPP;
1675 	}
1676 
1677 	error = -ENOMEM;
1678 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1679 					sizeof(struct hugetlbfs_inode_info),
1680 					0, SLAB_ACCOUNT, init_once);
1681 	if (hugetlbfs_inode_cachep == NULL)
1682 		goto out;
1683 
1684 	error = register_filesystem(&hugetlbfs_fs_type);
1685 	if (error)
1686 		goto out_free;
1687 
1688 	/* default hstate mount is required */
1689 	mnt = mount_one_hugetlbfs(&default_hstate);
1690 	if (IS_ERR(mnt)) {
1691 		error = PTR_ERR(mnt);
1692 		goto out_unreg;
1693 	}
1694 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1695 
1696 	/* other hstates are optional */
1697 	i = 0;
1698 	for_each_hstate(h) {
1699 		if (i == default_hstate_idx) {
1700 			i++;
1701 			continue;
1702 		}
1703 
1704 		mnt = mount_one_hugetlbfs(h);
1705 		if (IS_ERR(mnt))
1706 			hugetlbfs_vfsmount[i] = NULL;
1707 		else
1708 			hugetlbfs_vfsmount[i] = mnt;
1709 		i++;
1710 	}
1711 
1712 	return 0;
1713 
1714  out_unreg:
1715 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1716  out_free:
1717 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1718  out:
1719 	return error;
1720 }
1721 fs_initcall(init_hugetlbfs_fs)
1722