1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41
42 static const struct address_space_operations hugetlbfs_aops;
43 static const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48
49 struct hugetlbfs_fs_context {
50 struct hstate *hstate;
51 unsigned long long max_size_opt;
52 unsigned long long min_size_opt;
53 long max_hpages;
54 long nr_inodes;
55 long min_hpages;
56 enum hugetlbfs_size_type max_val_type;
57 enum hugetlbfs_size_type min_val_type;
58 kuid_t uid;
59 kgid_t gid;
60 umode_t mode;
61 };
62
63 int sysctl_hugetlb_shm_group;
64
65 enum hugetlb_param {
66 Opt_gid,
67 Opt_min_size,
68 Opt_mode,
69 Opt_nr_inodes,
70 Opt_pagesize,
71 Opt_size,
72 Opt_uid,
73 };
74
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 fsparam_gid ("gid", Opt_gid),
77 fsparam_string("min_size", Opt_min_size),
78 fsparam_u32oct("mode", Opt_mode),
79 fsparam_string("nr_inodes", Opt_nr_inodes),
80 fsparam_string("pagesize", Opt_pagesize),
81 fsparam_string("size", Opt_size),
82 fsparam_uid ("uid", Opt_uid),
83 {}
84 };
85
86 /*
87 * Mask used when checking the page offset value passed in via system
88 * calls. This value will be converted to a loff_t which is signed.
89 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
90 * value. The extra bit (- 1 in the shift value) is to take the sign
91 * bit into account.
92 */
93 #define PGOFF_LOFFT_MAX \
94 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
95
hugetlbfs_file_mmap(struct file * file,struct vm_area_struct * vma)96 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
97 {
98 struct inode *inode = file_inode(file);
99 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
100 loff_t len, vma_len;
101 int ret;
102 struct hstate *h = hstate_file(file);
103 vm_flags_t vm_flags;
104
105 /*
106 * vma address alignment (but not the pgoff alignment) has
107 * already been checked by prepare_hugepage_range. If you add
108 * any error returns here, do so after setting VM_HUGETLB, so
109 * is_vm_hugetlb_page tests below unmap_region go the right
110 * way when do_mmap unwinds (may be important on powerpc
111 * and ia64).
112 */
113 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
114 vma->vm_ops = &hugetlb_vm_ops;
115
116 ret = seal_check_write(info->seals, vma);
117 if (ret)
118 return ret;
119
120 /*
121 * page based offset in vm_pgoff could be sufficiently large to
122 * overflow a loff_t when converted to byte offset. This can
123 * only happen on architectures where sizeof(loff_t) ==
124 * sizeof(unsigned long). So, only check in those instances.
125 */
126 if (sizeof(unsigned long) == sizeof(loff_t)) {
127 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
128 return -EINVAL;
129 }
130
131 /* must be huge page aligned */
132 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
133 return -EINVAL;
134
135 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
136 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
137 /* check for overflow */
138 if (len < vma_len)
139 return -EINVAL;
140
141 inode_lock(inode);
142 file_accessed(file);
143
144 ret = -ENOMEM;
145
146 vm_flags = vma->vm_flags;
147 /*
148 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
149 * reserving here. Note: only for SHM hugetlbfs file, the inode
150 * flag S_PRIVATE is set.
151 */
152 if (inode->i_flags & S_PRIVATE)
153 vm_flags |= VM_NORESERVE;
154
155 if (!hugetlb_reserve_pages(inode,
156 vma->vm_pgoff >> huge_page_order(h),
157 len >> huge_page_shift(h), vma,
158 vm_flags))
159 goto out;
160
161 ret = 0;
162 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
163 i_size_write(inode, len);
164 out:
165 inode_unlock(inode);
166
167 return ret;
168 }
169
170 /*
171 * Called under mmap_write_lock(mm).
172 */
173
174 static unsigned long
hugetlb_get_unmapped_area_bottomup(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)175 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
176 unsigned long len, unsigned long pgoff, unsigned long flags)
177 {
178 struct hstate *h = hstate_file(file);
179 struct vm_unmapped_area_info info = {};
180
181 info.length = len;
182 info.low_limit = current->mm->mmap_base;
183 info.high_limit = arch_get_mmap_end(addr, len, flags);
184 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
185 return vm_unmapped_area(&info);
186 }
187
188 static unsigned long
hugetlb_get_unmapped_area_topdown(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)189 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
190 unsigned long len, unsigned long pgoff, unsigned long flags)
191 {
192 struct hstate *h = hstate_file(file);
193 struct vm_unmapped_area_info info = {};
194
195 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
196 info.length = len;
197 info.low_limit = PAGE_SIZE;
198 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
199 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
200 addr = vm_unmapped_area(&info);
201
202 /*
203 * A failed mmap() very likely causes application failure,
204 * so fall back to the bottom-up function here. This scenario
205 * can happen with large stack limits and large mmap()
206 * allocations.
207 */
208 if (unlikely(offset_in_page(addr))) {
209 VM_BUG_ON(addr != -ENOMEM);
210 info.flags = 0;
211 info.low_limit = current->mm->mmap_base;
212 info.high_limit = arch_get_mmap_end(addr, len, flags);
213 addr = vm_unmapped_area(&info);
214 }
215
216 return addr;
217 }
218
219 unsigned long
generic_hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)220 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
221 unsigned long len, unsigned long pgoff,
222 unsigned long flags)
223 {
224 struct mm_struct *mm = current->mm;
225 struct vm_area_struct *vma, *prev;
226 struct hstate *h = hstate_file(file);
227 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
228
229 if (len & ~huge_page_mask(h))
230 return -EINVAL;
231 if (len > mmap_end - mmap_min_addr)
232 return -ENOMEM;
233
234 if (flags & MAP_FIXED) {
235 if (prepare_hugepage_range(file, addr, len))
236 return -EINVAL;
237 return addr;
238 }
239
240 if (addr) {
241 addr = ALIGN(addr, huge_page_size(h));
242 vma = find_vma_prev(mm, addr, &prev);
243 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
244 (!vma || addr + len <= vm_start_gap(vma)) &&
245 (!prev || addr >= vm_end_gap(prev)))
246 return addr;
247 }
248
249 /*
250 * Use MMF_TOPDOWN flag as a hint to use topdown routine.
251 * If architectures have special needs, they should define their own
252 * version of hugetlb_get_unmapped_area.
253 */
254 if (test_bit(MMF_TOPDOWN, &mm->flags))
255 return hugetlb_get_unmapped_area_topdown(file, addr, len,
256 pgoff, flags);
257 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
258 pgoff, flags);
259 }
260
261 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
262 static unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)263 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
264 unsigned long len, unsigned long pgoff,
265 unsigned long flags)
266 {
267 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
268 }
269 #endif
270
271 /*
272 * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
273 * Returns the maximum number of bytes one can read without touching the 1st raw
274 * HWPOISON subpage.
275 *
276 * The implementation borrows the iteration logic from copy_page_to_iter*.
277 */
adjust_range_hwpoison(struct page * page,size_t offset,size_t bytes)278 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
279 {
280 size_t n = 0;
281 size_t res = 0;
282
283 /* First subpage to start the loop. */
284 page = nth_page(page, offset / PAGE_SIZE);
285 offset %= PAGE_SIZE;
286 while (1) {
287 if (is_raw_hwpoison_page_in_hugepage(page))
288 break;
289
290 /* Safe to read n bytes without touching HWPOISON subpage. */
291 n = min(bytes, (size_t)PAGE_SIZE - offset);
292 res += n;
293 bytes -= n;
294 if (!bytes || !n)
295 break;
296 offset += n;
297 if (offset == PAGE_SIZE) {
298 page = nth_page(page, 1);
299 offset = 0;
300 }
301 }
302
303 return res;
304 }
305
306 /*
307 * Support for read() - Find the page attached to f_mapping and copy out the
308 * data. This provides functionality similar to filemap_read().
309 */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)310 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
311 {
312 struct file *file = iocb->ki_filp;
313 struct hstate *h = hstate_file(file);
314 struct address_space *mapping = file->f_mapping;
315 struct inode *inode = mapping->host;
316 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
317 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
318 unsigned long end_index;
319 loff_t isize;
320 ssize_t retval = 0;
321
322 while (iov_iter_count(to)) {
323 struct folio *folio;
324 size_t nr, copied, want;
325
326 /* nr is the maximum number of bytes to copy from this page */
327 nr = huge_page_size(h);
328 isize = i_size_read(inode);
329 if (!isize)
330 break;
331 end_index = (isize - 1) >> huge_page_shift(h);
332 if (index > end_index)
333 break;
334 if (index == end_index) {
335 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
336 if (nr <= offset)
337 break;
338 }
339 nr = nr - offset;
340
341 /* Find the folio */
342 folio = filemap_lock_hugetlb_folio(h, mapping, index);
343 if (IS_ERR(folio)) {
344 /*
345 * We have a HOLE, zero out the user-buffer for the
346 * length of the hole or request.
347 */
348 copied = iov_iter_zero(nr, to);
349 } else {
350 folio_unlock(folio);
351
352 if (!folio_test_hwpoison(folio))
353 want = nr;
354 else {
355 /*
356 * Adjust how many bytes safe to read without
357 * touching the 1st raw HWPOISON subpage after
358 * offset.
359 */
360 want = adjust_range_hwpoison(&folio->page, offset, nr);
361 if (want == 0) {
362 folio_put(folio);
363 retval = -EIO;
364 break;
365 }
366 }
367
368 /*
369 * We have the folio, copy it to user space buffer.
370 */
371 copied = copy_folio_to_iter(folio, offset, want, to);
372 folio_put(folio);
373 }
374 offset += copied;
375 retval += copied;
376 if (copied != nr && iov_iter_count(to)) {
377 if (!retval)
378 retval = -EFAULT;
379 break;
380 }
381 index += offset >> huge_page_shift(h);
382 offset &= ~huge_page_mask(h);
383 }
384 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
385 return retval;
386 }
387
hugetlbfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)388 static int hugetlbfs_write_begin(struct file *file,
389 struct address_space *mapping,
390 loff_t pos, unsigned len,
391 struct folio **foliop, void **fsdata)
392 {
393 return -EINVAL;
394 }
395
hugetlbfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)396 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
397 loff_t pos, unsigned len, unsigned copied,
398 struct folio *folio, void *fsdata)
399 {
400 BUG();
401 return -EINVAL;
402 }
403
hugetlb_delete_from_page_cache(struct folio * folio)404 static void hugetlb_delete_from_page_cache(struct folio *folio)
405 {
406 folio_clear_dirty(folio);
407 folio_clear_uptodate(folio);
408 filemap_remove_folio(folio);
409 }
410
411 /*
412 * Called with i_mmap_rwsem held for inode based vma maps. This makes
413 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
414 * mutex for the page in the mapping. So, we can not race with page being
415 * faulted into the vma.
416 */
hugetlb_vma_maps_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)417 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
418 unsigned long addr, struct page *page)
419 {
420 pte_t *ptep, pte;
421
422 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
423 if (!ptep)
424 return false;
425
426 pte = huge_ptep_get(vma->vm_mm, addr, ptep);
427 if (huge_pte_none(pte) || !pte_present(pte))
428 return false;
429
430 if (pte_page(pte) == page)
431 return true;
432
433 return false;
434 }
435
436 /*
437 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
438 * No, because the interval tree returns us only those vmas
439 * which overlap the truncated area starting at pgoff,
440 * and no vma on a 32-bit arch can span beyond the 4GB.
441 */
vma_offset_start(struct vm_area_struct * vma,pgoff_t start)442 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
443 {
444 unsigned long offset = 0;
445
446 if (vma->vm_pgoff < start)
447 offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
448
449 return vma->vm_start + offset;
450 }
451
vma_offset_end(struct vm_area_struct * vma,pgoff_t end)452 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
453 {
454 unsigned long t_end;
455
456 if (!end)
457 return vma->vm_end;
458
459 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
460 if (t_end > vma->vm_end)
461 t_end = vma->vm_end;
462 return t_end;
463 }
464
465 /*
466 * Called with hugetlb fault mutex held. Therefore, no more mappings to
467 * this folio can be created while executing the routine.
468 */
hugetlb_unmap_file_folio(struct hstate * h,struct address_space * mapping,struct folio * folio,pgoff_t index)469 static void hugetlb_unmap_file_folio(struct hstate *h,
470 struct address_space *mapping,
471 struct folio *folio, pgoff_t index)
472 {
473 struct rb_root_cached *root = &mapping->i_mmap;
474 struct hugetlb_vma_lock *vma_lock;
475 struct page *page = &folio->page;
476 struct vm_area_struct *vma;
477 unsigned long v_start;
478 unsigned long v_end;
479 pgoff_t start, end;
480
481 start = index * pages_per_huge_page(h);
482 end = (index + 1) * pages_per_huge_page(h);
483
484 i_mmap_lock_write(mapping);
485 retry:
486 vma_lock = NULL;
487 vma_interval_tree_foreach(vma, root, start, end - 1) {
488 v_start = vma_offset_start(vma, start);
489 v_end = vma_offset_end(vma, end);
490
491 if (!hugetlb_vma_maps_page(vma, v_start, page))
492 continue;
493
494 if (!hugetlb_vma_trylock_write(vma)) {
495 vma_lock = vma->vm_private_data;
496 /*
497 * If we can not get vma lock, we need to drop
498 * immap_sema and take locks in order. First,
499 * take a ref on the vma_lock structure so that
500 * we can be guaranteed it will not go away when
501 * dropping immap_sema.
502 */
503 kref_get(&vma_lock->refs);
504 break;
505 }
506
507 unmap_hugepage_range(vma, v_start, v_end, NULL,
508 ZAP_FLAG_DROP_MARKER);
509 hugetlb_vma_unlock_write(vma);
510 }
511
512 i_mmap_unlock_write(mapping);
513
514 if (vma_lock) {
515 /*
516 * Wait on vma_lock. We know it is still valid as we have
517 * a reference. We must 'open code' vma locking as we do
518 * not know if vma_lock is still attached to vma.
519 */
520 down_write(&vma_lock->rw_sema);
521 i_mmap_lock_write(mapping);
522
523 vma = vma_lock->vma;
524 if (!vma) {
525 /*
526 * If lock is no longer attached to vma, then just
527 * unlock, drop our reference and retry looking for
528 * other vmas.
529 */
530 up_write(&vma_lock->rw_sema);
531 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
532 goto retry;
533 }
534
535 /*
536 * vma_lock is still attached to vma. Check to see if vma
537 * still maps page and if so, unmap.
538 */
539 v_start = vma_offset_start(vma, start);
540 v_end = vma_offset_end(vma, end);
541 if (hugetlb_vma_maps_page(vma, v_start, page))
542 unmap_hugepage_range(vma, v_start, v_end, NULL,
543 ZAP_FLAG_DROP_MARKER);
544
545 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
546 hugetlb_vma_unlock_write(vma);
547
548 goto retry;
549 }
550 }
551
552 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end,zap_flags_t zap_flags)553 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
554 zap_flags_t zap_flags)
555 {
556 struct vm_area_struct *vma;
557
558 /*
559 * end == 0 indicates that the entire range after start should be
560 * unmapped. Note, end is exclusive, whereas the interval tree takes
561 * an inclusive "last".
562 */
563 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
564 unsigned long v_start;
565 unsigned long v_end;
566
567 if (!hugetlb_vma_trylock_write(vma))
568 continue;
569
570 v_start = vma_offset_start(vma, start);
571 v_end = vma_offset_end(vma, end);
572
573 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
574
575 /*
576 * Note that vma lock only exists for shared/non-private
577 * vmas. Therefore, lock is not held when calling
578 * unmap_hugepage_range for private vmas.
579 */
580 hugetlb_vma_unlock_write(vma);
581 }
582 }
583
584 /*
585 * Called with hugetlb fault mutex held.
586 * Returns true if page was actually removed, false otherwise.
587 */
remove_inode_single_folio(struct hstate * h,struct inode * inode,struct address_space * mapping,struct folio * folio,pgoff_t index,bool truncate_op)588 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
589 struct address_space *mapping,
590 struct folio *folio, pgoff_t index,
591 bool truncate_op)
592 {
593 bool ret = false;
594
595 /*
596 * If folio is mapped, it was faulted in after being
597 * unmapped in caller or hugetlb_vmdelete_list() skips
598 * unmapping it due to fail to grab lock. Unmap (again)
599 * while holding the fault mutex. The mutex will prevent
600 * faults until we finish removing the folio. Hold folio
601 * lock to guarantee no concurrent migration.
602 */
603 folio_lock(folio);
604 if (unlikely(folio_mapped(folio)))
605 hugetlb_unmap_file_folio(h, mapping, folio, index);
606
607 /*
608 * We must remove the folio from page cache before removing
609 * the region/ reserve map (hugetlb_unreserve_pages). In
610 * rare out of memory conditions, removal of the region/reserve
611 * map could fail. Correspondingly, the subpool and global
612 * reserve usage count can need to be adjusted.
613 */
614 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
615 hugetlb_delete_from_page_cache(folio);
616 ret = true;
617 if (!truncate_op) {
618 if (unlikely(hugetlb_unreserve_pages(inode, index,
619 index + 1, 1)))
620 hugetlb_fix_reserve_counts(inode);
621 }
622
623 folio_unlock(folio);
624 return ret;
625 }
626
627 /*
628 * remove_inode_hugepages handles two distinct cases: truncation and hole
629 * punch. There are subtle differences in operation for each case.
630 *
631 * truncation is indicated by end of range being LLONG_MAX
632 * In this case, we first scan the range and release found pages.
633 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
634 * maps and global counts. Page faults can race with truncation.
635 * During faults, hugetlb_no_page() checks i_size before page allocation,
636 * and again after obtaining page table lock. It will 'back out'
637 * allocations in the truncated range.
638 * hole punch is indicated if end is not LLONG_MAX
639 * In the hole punch case we scan the range and release found pages.
640 * Only when releasing a page is the associated region/reserve map
641 * deleted. The region/reserve map for ranges without associated
642 * pages are not modified. Page faults can race with hole punch.
643 * This is indicated if we find a mapped page.
644 * Note: If the passed end of range value is beyond the end of file, but
645 * not LLONG_MAX this routine still performs a hole punch operation.
646 */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)647 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
648 loff_t lend)
649 {
650 struct hstate *h = hstate_inode(inode);
651 struct address_space *mapping = &inode->i_data;
652 const pgoff_t end = lend >> PAGE_SHIFT;
653 struct folio_batch fbatch;
654 pgoff_t next, index;
655 int i, freed = 0;
656 bool truncate_op = (lend == LLONG_MAX);
657
658 folio_batch_init(&fbatch);
659 next = lstart >> PAGE_SHIFT;
660 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
661 for (i = 0; i < folio_batch_count(&fbatch); ++i) {
662 struct folio *folio = fbatch.folios[i];
663 u32 hash = 0;
664
665 index = folio->index >> huge_page_order(h);
666 hash = hugetlb_fault_mutex_hash(mapping, index);
667 mutex_lock(&hugetlb_fault_mutex_table[hash]);
668
669 /*
670 * Remove folio that was part of folio_batch.
671 */
672 if (remove_inode_single_folio(h, inode, mapping, folio,
673 index, truncate_op))
674 freed++;
675
676 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
677 }
678 folio_batch_release(&fbatch);
679 cond_resched();
680 }
681
682 if (truncate_op)
683 (void)hugetlb_unreserve_pages(inode,
684 lstart >> huge_page_shift(h),
685 LONG_MAX, freed);
686 }
687
hugetlbfs_evict_inode(struct inode * inode)688 static void hugetlbfs_evict_inode(struct inode *inode)
689 {
690 struct resv_map *resv_map;
691
692 remove_inode_hugepages(inode, 0, LLONG_MAX);
693
694 /*
695 * Get the resv_map from the address space embedded in the inode.
696 * This is the address space which points to any resv_map allocated
697 * at inode creation time. If this is a device special inode,
698 * i_mapping may not point to the original address space.
699 */
700 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
701 /* Only regular and link inodes have associated reserve maps */
702 if (resv_map)
703 resv_map_release(&resv_map->refs);
704 clear_inode(inode);
705 }
706
hugetlb_vmtruncate(struct inode * inode,loff_t offset)707 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
708 {
709 pgoff_t pgoff;
710 struct address_space *mapping = inode->i_mapping;
711 struct hstate *h = hstate_inode(inode);
712
713 BUG_ON(offset & ~huge_page_mask(h));
714 pgoff = offset >> PAGE_SHIFT;
715
716 i_size_write(inode, offset);
717 i_mmap_lock_write(mapping);
718 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
719 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
720 ZAP_FLAG_DROP_MARKER);
721 i_mmap_unlock_write(mapping);
722 remove_inode_hugepages(inode, offset, LLONG_MAX);
723 }
724
hugetlbfs_zero_partial_page(struct hstate * h,struct address_space * mapping,loff_t start,loff_t end)725 static void hugetlbfs_zero_partial_page(struct hstate *h,
726 struct address_space *mapping,
727 loff_t start,
728 loff_t end)
729 {
730 pgoff_t idx = start >> huge_page_shift(h);
731 struct folio *folio;
732
733 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
734 if (IS_ERR(folio))
735 return;
736
737 start = start & ~huge_page_mask(h);
738 end = end & ~huge_page_mask(h);
739 if (!end)
740 end = huge_page_size(h);
741
742 folio_zero_segment(folio, (size_t)start, (size_t)end);
743
744 folio_unlock(folio);
745 folio_put(folio);
746 }
747
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)748 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
749 {
750 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
751 struct address_space *mapping = inode->i_mapping;
752 struct hstate *h = hstate_inode(inode);
753 loff_t hpage_size = huge_page_size(h);
754 loff_t hole_start, hole_end;
755
756 /*
757 * hole_start and hole_end indicate the full pages within the hole.
758 */
759 hole_start = round_up(offset, hpage_size);
760 hole_end = round_down(offset + len, hpage_size);
761
762 inode_lock(inode);
763
764 /* protected by i_rwsem */
765 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
766 inode_unlock(inode);
767 return -EPERM;
768 }
769
770 i_mmap_lock_write(mapping);
771
772 /* If range starts before first full page, zero partial page. */
773 if (offset < hole_start)
774 hugetlbfs_zero_partial_page(h, mapping,
775 offset, min(offset + len, hole_start));
776
777 /* Unmap users of full pages in the hole. */
778 if (hole_end > hole_start) {
779 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
780 hugetlb_vmdelete_list(&mapping->i_mmap,
781 hole_start >> PAGE_SHIFT,
782 hole_end >> PAGE_SHIFT, 0);
783 }
784
785 /* If range extends beyond last full page, zero partial page. */
786 if ((offset + len) > hole_end && (offset + len) > hole_start)
787 hugetlbfs_zero_partial_page(h, mapping,
788 hole_end, offset + len);
789
790 i_mmap_unlock_write(mapping);
791
792 /* Remove full pages from the file. */
793 if (hole_end > hole_start)
794 remove_inode_hugepages(inode, hole_start, hole_end);
795
796 inode_unlock(inode);
797
798 return 0;
799 }
800
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)801 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
802 loff_t len)
803 {
804 struct inode *inode = file_inode(file);
805 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
806 struct address_space *mapping = inode->i_mapping;
807 struct hstate *h = hstate_inode(inode);
808 struct vm_area_struct pseudo_vma;
809 struct mm_struct *mm = current->mm;
810 loff_t hpage_size = huge_page_size(h);
811 unsigned long hpage_shift = huge_page_shift(h);
812 pgoff_t start, index, end;
813 int error;
814 u32 hash;
815
816 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
817 return -EOPNOTSUPP;
818
819 if (mode & FALLOC_FL_PUNCH_HOLE)
820 return hugetlbfs_punch_hole(inode, offset, len);
821
822 /*
823 * Default preallocate case.
824 * For this range, start is rounded down and end is rounded up
825 * as well as being converted to page offsets.
826 */
827 start = offset >> hpage_shift;
828 end = (offset + len + hpage_size - 1) >> hpage_shift;
829
830 inode_lock(inode);
831
832 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
833 error = inode_newsize_ok(inode, offset + len);
834 if (error)
835 goto out;
836
837 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
838 error = -EPERM;
839 goto out;
840 }
841
842 /*
843 * Initialize a pseudo vma as this is required by the huge page
844 * allocation routines.
845 */
846 vma_init(&pseudo_vma, mm);
847 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
848 pseudo_vma.vm_file = file;
849
850 for (index = start; index < end; index++) {
851 /*
852 * This is supposed to be the vaddr where the page is being
853 * faulted in, but we have no vaddr here.
854 */
855 struct folio *folio;
856 unsigned long addr;
857
858 cond_resched();
859
860 /*
861 * fallocate(2) manpage permits EINTR; we may have been
862 * interrupted because we are using up too much memory.
863 */
864 if (signal_pending(current)) {
865 error = -EINTR;
866 break;
867 }
868
869 /* addr is the offset within the file (zero based) */
870 addr = index * hpage_size;
871
872 /* mutex taken here, fault path and hole punch */
873 hash = hugetlb_fault_mutex_hash(mapping, index);
874 mutex_lock(&hugetlb_fault_mutex_table[hash]);
875
876 /* See if already present in mapping to avoid alloc/free */
877 folio = filemap_get_folio(mapping, index << huge_page_order(h));
878 if (!IS_ERR(folio)) {
879 folio_put(folio);
880 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
881 continue;
882 }
883
884 /*
885 * Allocate folio without setting the avoid_reserve argument.
886 * There certainly are no reserves associated with the
887 * pseudo_vma. However, there could be shared mappings with
888 * reserves for the file at the inode level. If we fallocate
889 * folios in these areas, we need to consume the reserves
890 * to keep reservation accounting consistent.
891 */
892 folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
893 if (IS_ERR(folio)) {
894 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
895 error = PTR_ERR(folio);
896 goto out;
897 }
898 folio_zero_user(folio, addr);
899 __folio_mark_uptodate(folio);
900 error = hugetlb_add_to_page_cache(folio, mapping, index);
901 if (unlikely(error)) {
902 restore_reserve_on_error(h, &pseudo_vma, addr, folio);
903 folio_put(folio);
904 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
905 goto out;
906 }
907
908 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
909
910 folio_set_hugetlb_migratable(folio);
911 /*
912 * folio_unlock because locked by hugetlb_add_to_page_cache()
913 * folio_put() due to reference from alloc_hugetlb_folio()
914 */
915 folio_unlock(folio);
916 folio_put(folio);
917 }
918
919 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
920 i_size_write(inode, offset + len);
921 inode_set_ctime_current(inode);
922 out:
923 inode_unlock(inode);
924 return error;
925 }
926
hugetlbfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)927 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
928 struct dentry *dentry, struct iattr *attr)
929 {
930 struct inode *inode = d_inode(dentry);
931 struct hstate *h = hstate_inode(inode);
932 int error;
933 unsigned int ia_valid = attr->ia_valid;
934 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
935
936 error = setattr_prepare(idmap, dentry, attr);
937 if (error)
938 return error;
939
940 if (ia_valid & ATTR_SIZE) {
941 loff_t oldsize = inode->i_size;
942 loff_t newsize = attr->ia_size;
943
944 if (newsize & ~huge_page_mask(h))
945 return -EINVAL;
946 /* protected by i_rwsem */
947 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
948 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
949 return -EPERM;
950 hugetlb_vmtruncate(inode, newsize);
951 }
952
953 setattr_copy(idmap, inode, attr);
954 mark_inode_dirty(inode);
955 return 0;
956 }
957
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_fs_context * ctx)958 static struct inode *hugetlbfs_get_root(struct super_block *sb,
959 struct hugetlbfs_fs_context *ctx)
960 {
961 struct inode *inode;
962
963 inode = new_inode(sb);
964 if (inode) {
965 inode->i_ino = get_next_ino();
966 inode->i_mode = S_IFDIR | ctx->mode;
967 inode->i_uid = ctx->uid;
968 inode->i_gid = ctx->gid;
969 simple_inode_init_ts(inode);
970 inode->i_op = &hugetlbfs_dir_inode_operations;
971 inode->i_fop = &simple_dir_operations;
972 /* directory inodes start off with i_nlink == 2 (for "." entry) */
973 inc_nlink(inode);
974 lockdep_annotate_inode_mutex_key(inode);
975 }
976 return inode;
977 }
978
979 /*
980 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
981 * be taken from reclaim -- unlike regular filesystems. This needs an
982 * annotation because huge_pmd_share() does an allocation under hugetlb's
983 * i_mmap_rwsem.
984 */
985 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
986
hugetlbfs_get_inode(struct super_block * sb,struct mnt_idmap * idmap,struct inode * dir,umode_t mode,dev_t dev)987 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
988 struct mnt_idmap *idmap,
989 struct inode *dir,
990 umode_t mode, dev_t dev)
991 {
992 struct inode *inode;
993 struct resv_map *resv_map = NULL;
994
995 /*
996 * Reserve maps are only needed for inodes that can have associated
997 * page allocations.
998 */
999 if (S_ISREG(mode) || S_ISLNK(mode)) {
1000 resv_map = resv_map_alloc();
1001 if (!resv_map)
1002 return NULL;
1003 }
1004
1005 inode = new_inode(sb);
1006 if (inode) {
1007 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1008
1009 inode->i_ino = get_next_ino();
1010 inode_init_owner(idmap, inode, dir, mode);
1011 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
1012 &hugetlbfs_i_mmap_rwsem_key);
1013 inode->i_mapping->a_ops = &hugetlbfs_aops;
1014 simple_inode_init_ts(inode);
1015 inode->i_mapping->i_private_data = resv_map;
1016 info->seals = F_SEAL_SEAL;
1017 switch (mode & S_IFMT) {
1018 default:
1019 init_special_inode(inode, mode, dev);
1020 break;
1021 case S_IFREG:
1022 inode->i_op = &hugetlbfs_inode_operations;
1023 inode->i_fop = &hugetlbfs_file_operations;
1024 break;
1025 case S_IFDIR:
1026 inode->i_op = &hugetlbfs_dir_inode_operations;
1027 inode->i_fop = &simple_dir_operations;
1028
1029 /* directory inodes start off with i_nlink == 2 (for "." entry) */
1030 inc_nlink(inode);
1031 break;
1032 case S_IFLNK:
1033 inode->i_op = &page_symlink_inode_operations;
1034 inode_nohighmem(inode);
1035 break;
1036 }
1037 lockdep_annotate_inode_mutex_key(inode);
1038 } else {
1039 if (resv_map)
1040 kref_put(&resv_map->refs, resv_map_release);
1041 }
1042
1043 return inode;
1044 }
1045
1046 /*
1047 * File creation. Allocate an inode, and we're done..
1048 */
hugetlbfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)1049 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
1050 struct dentry *dentry, umode_t mode, dev_t dev)
1051 {
1052 struct inode *inode;
1053
1054 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
1055 if (!inode)
1056 return -ENOSPC;
1057 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1058 d_instantiate(dentry, inode);
1059 dget(dentry);/* Extra count - pin the dentry in core */
1060 return 0;
1061 }
1062
hugetlbfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)1063 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1064 struct dentry *dentry, umode_t mode)
1065 {
1066 int retval = hugetlbfs_mknod(idmap, dir, dentry,
1067 mode | S_IFDIR, 0);
1068 if (!retval)
1069 inc_nlink(dir);
1070 return retval;
1071 }
1072
hugetlbfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1073 static int hugetlbfs_create(struct mnt_idmap *idmap,
1074 struct inode *dir, struct dentry *dentry,
1075 umode_t mode, bool excl)
1076 {
1077 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1078 }
1079
hugetlbfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)1080 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1081 struct inode *dir, struct file *file,
1082 umode_t mode)
1083 {
1084 struct inode *inode;
1085
1086 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1087 if (!inode)
1088 return -ENOSPC;
1089 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1090 d_tmpfile(file, inode);
1091 return finish_open_simple(file, 0);
1092 }
1093
hugetlbfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)1094 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1095 struct inode *dir, struct dentry *dentry,
1096 const char *symname)
1097 {
1098 const umode_t mode = S_IFLNK|S_IRWXUGO;
1099 struct inode *inode;
1100 int error = -ENOSPC;
1101
1102 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1103 if (inode) {
1104 int l = strlen(symname)+1;
1105 error = page_symlink(inode, symname, l);
1106 if (!error) {
1107 d_instantiate(dentry, inode);
1108 dget(dentry);
1109 } else
1110 iput(inode);
1111 }
1112 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1113
1114 return error;
1115 }
1116
1117 #ifdef CONFIG_MIGRATION
hugetlbfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1118 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1119 struct folio *dst, struct folio *src,
1120 enum migrate_mode mode)
1121 {
1122 int rc;
1123
1124 rc = migrate_huge_page_move_mapping(mapping, dst, src);
1125 if (rc != MIGRATEPAGE_SUCCESS)
1126 return rc;
1127
1128 if (hugetlb_folio_subpool(src)) {
1129 hugetlb_set_folio_subpool(dst,
1130 hugetlb_folio_subpool(src));
1131 hugetlb_set_folio_subpool(src, NULL);
1132 }
1133
1134 folio_migrate_flags(dst, src);
1135
1136 return MIGRATEPAGE_SUCCESS;
1137 }
1138 #else
1139 #define hugetlbfs_migrate_folio NULL
1140 #endif
1141
hugetlbfs_error_remove_folio(struct address_space * mapping,struct folio * folio)1142 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1143 struct folio *folio)
1144 {
1145 return 0;
1146 }
1147
1148 /*
1149 * Display the mount options in /proc/mounts.
1150 */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)1151 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1152 {
1153 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1154 struct hugepage_subpool *spool = sbinfo->spool;
1155 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1156 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1157 char mod;
1158
1159 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1160 seq_printf(m, ",uid=%u",
1161 from_kuid_munged(&init_user_ns, sbinfo->uid));
1162 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1163 seq_printf(m, ",gid=%u",
1164 from_kgid_munged(&init_user_ns, sbinfo->gid));
1165 if (sbinfo->mode != 0755)
1166 seq_printf(m, ",mode=%o", sbinfo->mode);
1167 if (sbinfo->max_inodes != -1)
1168 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1169
1170 hpage_size /= 1024;
1171 mod = 'K';
1172 if (hpage_size >= 1024) {
1173 hpage_size /= 1024;
1174 mod = 'M';
1175 }
1176 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1177 if (spool) {
1178 if (spool->max_hpages != -1)
1179 seq_printf(m, ",size=%llu",
1180 (unsigned long long)spool->max_hpages << hpage_shift);
1181 if (spool->min_hpages != -1)
1182 seq_printf(m, ",min_size=%llu",
1183 (unsigned long long)spool->min_hpages << hpage_shift);
1184 }
1185 return 0;
1186 }
1187
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)1188 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1189 {
1190 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1191 struct hstate *h = hstate_inode(d_inode(dentry));
1192 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1193
1194 buf->f_fsid = u64_to_fsid(id);
1195 buf->f_type = HUGETLBFS_MAGIC;
1196 buf->f_bsize = huge_page_size(h);
1197 if (sbinfo) {
1198 spin_lock(&sbinfo->stat_lock);
1199 /* If no limits set, just report 0 or -1 for max/free/used
1200 * blocks, like simple_statfs() */
1201 if (sbinfo->spool) {
1202 long free_pages;
1203
1204 spin_lock_irq(&sbinfo->spool->lock);
1205 buf->f_blocks = sbinfo->spool->max_hpages;
1206 free_pages = sbinfo->spool->max_hpages
1207 - sbinfo->spool->used_hpages;
1208 buf->f_bavail = buf->f_bfree = free_pages;
1209 spin_unlock_irq(&sbinfo->spool->lock);
1210 buf->f_files = sbinfo->max_inodes;
1211 buf->f_ffree = sbinfo->free_inodes;
1212 }
1213 spin_unlock(&sbinfo->stat_lock);
1214 }
1215 buf->f_namelen = NAME_MAX;
1216 return 0;
1217 }
1218
hugetlbfs_put_super(struct super_block * sb)1219 static void hugetlbfs_put_super(struct super_block *sb)
1220 {
1221 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1222
1223 if (sbi) {
1224 sb->s_fs_info = NULL;
1225
1226 if (sbi->spool)
1227 hugepage_put_subpool(sbi->spool);
1228
1229 kfree(sbi);
1230 }
1231 }
1232
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)1233 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1234 {
1235 if (sbinfo->free_inodes >= 0) {
1236 spin_lock(&sbinfo->stat_lock);
1237 if (unlikely(!sbinfo->free_inodes)) {
1238 spin_unlock(&sbinfo->stat_lock);
1239 return 0;
1240 }
1241 sbinfo->free_inodes--;
1242 spin_unlock(&sbinfo->stat_lock);
1243 }
1244
1245 return 1;
1246 }
1247
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)1248 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1249 {
1250 if (sbinfo->free_inodes >= 0) {
1251 spin_lock(&sbinfo->stat_lock);
1252 sbinfo->free_inodes++;
1253 spin_unlock(&sbinfo->stat_lock);
1254 }
1255 }
1256
1257
1258 static struct kmem_cache *hugetlbfs_inode_cachep;
1259
hugetlbfs_alloc_inode(struct super_block * sb)1260 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1261 {
1262 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1263 struct hugetlbfs_inode_info *p;
1264
1265 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1266 return NULL;
1267 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1268 if (unlikely(!p)) {
1269 hugetlbfs_inc_free_inodes(sbinfo);
1270 return NULL;
1271 }
1272 return &p->vfs_inode;
1273 }
1274
hugetlbfs_free_inode(struct inode * inode)1275 static void hugetlbfs_free_inode(struct inode *inode)
1276 {
1277 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1278 }
1279
hugetlbfs_destroy_inode(struct inode * inode)1280 static void hugetlbfs_destroy_inode(struct inode *inode)
1281 {
1282 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1283 }
1284
1285 static const struct address_space_operations hugetlbfs_aops = {
1286 .write_begin = hugetlbfs_write_begin,
1287 .write_end = hugetlbfs_write_end,
1288 .dirty_folio = noop_dirty_folio,
1289 .migrate_folio = hugetlbfs_migrate_folio,
1290 .error_remove_folio = hugetlbfs_error_remove_folio,
1291 };
1292
1293
init_once(void * foo)1294 static void init_once(void *foo)
1295 {
1296 struct hugetlbfs_inode_info *ei = foo;
1297
1298 inode_init_once(&ei->vfs_inode);
1299 }
1300
1301 static const struct file_operations hugetlbfs_file_operations = {
1302 .read_iter = hugetlbfs_read_iter,
1303 .mmap = hugetlbfs_file_mmap,
1304 .fsync = noop_fsync,
1305 .get_unmapped_area = hugetlb_get_unmapped_area,
1306 .llseek = default_llseek,
1307 .fallocate = hugetlbfs_fallocate,
1308 .fop_flags = FOP_HUGE_PAGES,
1309 };
1310
1311 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1312 .create = hugetlbfs_create,
1313 .lookup = simple_lookup,
1314 .link = simple_link,
1315 .unlink = simple_unlink,
1316 .symlink = hugetlbfs_symlink,
1317 .mkdir = hugetlbfs_mkdir,
1318 .rmdir = simple_rmdir,
1319 .mknod = hugetlbfs_mknod,
1320 .rename = simple_rename,
1321 .setattr = hugetlbfs_setattr,
1322 .tmpfile = hugetlbfs_tmpfile,
1323 };
1324
1325 static const struct inode_operations hugetlbfs_inode_operations = {
1326 .setattr = hugetlbfs_setattr,
1327 };
1328
1329 static const struct super_operations hugetlbfs_ops = {
1330 .alloc_inode = hugetlbfs_alloc_inode,
1331 .free_inode = hugetlbfs_free_inode,
1332 .destroy_inode = hugetlbfs_destroy_inode,
1333 .evict_inode = hugetlbfs_evict_inode,
1334 .statfs = hugetlbfs_statfs,
1335 .put_super = hugetlbfs_put_super,
1336 .show_options = hugetlbfs_show_options,
1337 };
1338
1339 /*
1340 * Convert size option passed from command line to number of huge pages
1341 * in the pool specified by hstate. Size option could be in bytes
1342 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1343 */
1344 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1345 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1346 enum hugetlbfs_size_type val_type)
1347 {
1348 if (val_type == NO_SIZE)
1349 return -1;
1350
1351 if (val_type == SIZE_PERCENT) {
1352 size_opt <<= huge_page_shift(h);
1353 size_opt *= h->max_huge_pages;
1354 do_div(size_opt, 100);
1355 }
1356
1357 size_opt >>= huge_page_shift(h);
1358 return size_opt;
1359 }
1360
1361 /*
1362 * Parse one mount parameter.
1363 */
hugetlbfs_parse_param(struct fs_context * fc,struct fs_parameter * param)1364 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1365 {
1366 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1367 struct fs_parse_result result;
1368 struct hstate *h;
1369 char *rest;
1370 unsigned long ps;
1371 int opt;
1372
1373 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1374 if (opt < 0)
1375 return opt;
1376
1377 switch (opt) {
1378 case Opt_uid:
1379 ctx->uid = result.uid;
1380 return 0;
1381
1382 case Opt_gid:
1383 ctx->gid = result.gid;
1384 return 0;
1385
1386 case Opt_mode:
1387 ctx->mode = result.uint_32 & 01777U;
1388 return 0;
1389
1390 case Opt_size:
1391 /* memparse() will accept a K/M/G without a digit */
1392 if (!param->string || !isdigit(param->string[0]))
1393 goto bad_val;
1394 ctx->max_size_opt = memparse(param->string, &rest);
1395 ctx->max_val_type = SIZE_STD;
1396 if (*rest == '%')
1397 ctx->max_val_type = SIZE_PERCENT;
1398 return 0;
1399
1400 case Opt_nr_inodes:
1401 /* memparse() will accept a K/M/G without a digit */
1402 if (!param->string || !isdigit(param->string[0]))
1403 goto bad_val;
1404 ctx->nr_inodes = memparse(param->string, &rest);
1405 return 0;
1406
1407 case Opt_pagesize:
1408 ps = memparse(param->string, &rest);
1409 h = size_to_hstate(ps);
1410 if (!h) {
1411 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1412 return -EINVAL;
1413 }
1414 ctx->hstate = h;
1415 return 0;
1416
1417 case Opt_min_size:
1418 /* memparse() will accept a K/M/G without a digit */
1419 if (!param->string || !isdigit(param->string[0]))
1420 goto bad_val;
1421 ctx->min_size_opt = memparse(param->string, &rest);
1422 ctx->min_val_type = SIZE_STD;
1423 if (*rest == '%')
1424 ctx->min_val_type = SIZE_PERCENT;
1425 return 0;
1426
1427 default:
1428 return -EINVAL;
1429 }
1430
1431 bad_val:
1432 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1433 param->string, param->key);
1434 }
1435
1436 /*
1437 * Validate the parsed options.
1438 */
hugetlbfs_validate(struct fs_context * fc)1439 static int hugetlbfs_validate(struct fs_context *fc)
1440 {
1441 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1442
1443 /*
1444 * Use huge page pool size (in hstate) to convert the size
1445 * options to number of huge pages. If NO_SIZE, -1 is returned.
1446 */
1447 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1448 ctx->max_size_opt,
1449 ctx->max_val_type);
1450 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1451 ctx->min_size_opt,
1452 ctx->min_val_type);
1453
1454 /*
1455 * If max_size was specified, then min_size must be smaller
1456 */
1457 if (ctx->max_val_type > NO_SIZE &&
1458 ctx->min_hpages > ctx->max_hpages) {
1459 pr_err("Minimum size can not be greater than maximum size\n");
1460 return -EINVAL;
1461 }
1462
1463 return 0;
1464 }
1465
1466 static int
hugetlbfs_fill_super(struct super_block * sb,struct fs_context * fc)1467 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1468 {
1469 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1470 struct hugetlbfs_sb_info *sbinfo;
1471
1472 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1473 if (!sbinfo)
1474 return -ENOMEM;
1475 sb->s_fs_info = sbinfo;
1476 spin_lock_init(&sbinfo->stat_lock);
1477 sbinfo->hstate = ctx->hstate;
1478 sbinfo->max_inodes = ctx->nr_inodes;
1479 sbinfo->free_inodes = ctx->nr_inodes;
1480 sbinfo->spool = NULL;
1481 sbinfo->uid = ctx->uid;
1482 sbinfo->gid = ctx->gid;
1483 sbinfo->mode = ctx->mode;
1484
1485 /*
1486 * Allocate and initialize subpool if maximum or minimum size is
1487 * specified. Any needed reservations (for minimum size) are taken
1488 * when the subpool is created.
1489 */
1490 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1491 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1492 ctx->max_hpages,
1493 ctx->min_hpages);
1494 if (!sbinfo->spool)
1495 goto out_free;
1496 }
1497 sb->s_maxbytes = MAX_LFS_FILESIZE;
1498 sb->s_blocksize = huge_page_size(ctx->hstate);
1499 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1500 sb->s_magic = HUGETLBFS_MAGIC;
1501 sb->s_op = &hugetlbfs_ops;
1502 sb->s_time_gran = 1;
1503
1504 /*
1505 * Due to the special and limited functionality of hugetlbfs, it does
1506 * not work well as a stacking filesystem.
1507 */
1508 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1509 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1510 if (!sb->s_root)
1511 goto out_free;
1512 return 0;
1513 out_free:
1514 kfree(sbinfo->spool);
1515 kfree(sbinfo);
1516 return -ENOMEM;
1517 }
1518
hugetlbfs_get_tree(struct fs_context * fc)1519 static int hugetlbfs_get_tree(struct fs_context *fc)
1520 {
1521 int err = hugetlbfs_validate(fc);
1522 if (err)
1523 return err;
1524 return get_tree_nodev(fc, hugetlbfs_fill_super);
1525 }
1526
hugetlbfs_fs_context_free(struct fs_context * fc)1527 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1528 {
1529 kfree(fc->fs_private);
1530 }
1531
1532 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1533 .free = hugetlbfs_fs_context_free,
1534 .parse_param = hugetlbfs_parse_param,
1535 .get_tree = hugetlbfs_get_tree,
1536 };
1537
hugetlbfs_init_fs_context(struct fs_context * fc)1538 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1539 {
1540 struct hugetlbfs_fs_context *ctx;
1541
1542 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1543 if (!ctx)
1544 return -ENOMEM;
1545
1546 ctx->max_hpages = -1; /* No limit on size by default */
1547 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1548 ctx->uid = current_fsuid();
1549 ctx->gid = current_fsgid();
1550 ctx->mode = 0755;
1551 ctx->hstate = &default_hstate;
1552 ctx->min_hpages = -1; /* No default minimum size */
1553 ctx->max_val_type = NO_SIZE;
1554 ctx->min_val_type = NO_SIZE;
1555 fc->fs_private = ctx;
1556 fc->ops = &hugetlbfs_fs_context_ops;
1557 return 0;
1558 }
1559
1560 static struct file_system_type hugetlbfs_fs_type = {
1561 .name = "hugetlbfs",
1562 .init_fs_context = hugetlbfs_init_fs_context,
1563 .parameters = hugetlb_fs_parameters,
1564 .kill_sb = kill_litter_super,
1565 .fs_flags = FS_ALLOW_IDMAP,
1566 };
1567
1568 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1569
can_do_hugetlb_shm(void)1570 static int can_do_hugetlb_shm(void)
1571 {
1572 kgid_t shm_group;
1573 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1574 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1575 }
1576
get_hstate_idx(int page_size_log)1577 static int get_hstate_idx(int page_size_log)
1578 {
1579 struct hstate *h = hstate_sizelog(page_size_log);
1580
1581 if (!h)
1582 return -1;
1583 return hstate_index(h);
1584 }
1585
1586 /*
1587 * Note that size should be aligned to proper hugepage size in caller side,
1588 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1589 */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)1590 struct file *hugetlb_file_setup(const char *name, size_t size,
1591 vm_flags_t acctflag, int creat_flags,
1592 int page_size_log)
1593 {
1594 struct inode *inode;
1595 struct vfsmount *mnt;
1596 int hstate_idx;
1597 struct file *file;
1598
1599 hstate_idx = get_hstate_idx(page_size_log);
1600 if (hstate_idx < 0)
1601 return ERR_PTR(-ENODEV);
1602
1603 mnt = hugetlbfs_vfsmount[hstate_idx];
1604 if (!mnt)
1605 return ERR_PTR(-ENOENT);
1606
1607 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1608 struct ucounts *ucounts = current_ucounts();
1609
1610 if (user_shm_lock(size, ucounts)) {
1611 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1612 current->comm, current->pid);
1613 user_shm_unlock(size, ucounts);
1614 }
1615 return ERR_PTR(-EPERM);
1616 }
1617
1618 file = ERR_PTR(-ENOSPC);
1619 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */
1620 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1621 S_IFREG | S_IRWXUGO, 0);
1622 if (!inode)
1623 goto out;
1624 if (creat_flags == HUGETLB_SHMFS_INODE)
1625 inode->i_flags |= S_PRIVATE;
1626
1627 inode->i_size = size;
1628 clear_nlink(inode);
1629
1630 if (!hugetlb_reserve_pages(inode, 0,
1631 size >> huge_page_shift(hstate_inode(inode)), NULL,
1632 acctflag))
1633 file = ERR_PTR(-ENOMEM);
1634 else
1635 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1636 &hugetlbfs_file_operations);
1637 if (!IS_ERR(file))
1638 return file;
1639
1640 iput(inode);
1641 out:
1642 return file;
1643 }
1644
mount_one_hugetlbfs(struct hstate * h)1645 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1646 {
1647 struct fs_context *fc;
1648 struct vfsmount *mnt;
1649
1650 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1651 if (IS_ERR(fc)) {
1652 mnt = ERR_CAST(fc);
1653 } else {
1654 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1655 ctx->hstate = h;
1656 mnt = fc_mount(fc);
1657 put_fs_context(fc);
1658 }
1659 if (IS_ERR(mnt))
1660 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1661 huge_page_size(h) / SZ_1K);
1662 return mnt;
1663 }
1664
init_hugetlbfs_fs(void)1665 static int __init init_hugetlbfs_fs(void)
1666 {
1667 struct vfsmount *mnt;
1668 struct hstate *h;
1669 int error;
1670 int i;
1671
1672 if (!hugepages_supported()) {
1673 pr_info("disabling because there are no supported hugepage sizes\n");
1674 return -ENOTSUPP;
1675 }
1676
1677 error = -ENOMEM;
1678 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1679 sizeof(struct hugetlbfs_inode_info),
1680 0, SLAB_ACCOUNT, init_once);
1681 if (hugetlbfs_inode_cachep == NULL)
1682 goto out;
1683
1684 error = register_filesystem(&hugetlbfs_fs_type);
1685 if (error)
1686 goto out_free;
1687
1688 /* default hstate mount is required */
1689 mnt = mount_one_hugetlbfs(&default_hstate);
1690 if (IS_ERR(mnt)) {
1691 error = PTR_ERR(mnt);
1692 goto out_unreg;
1693 }
1694 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1695
1696 /* other hstates are optional */
1697 i = 0;
1698 for_each_hstate(h) {
1699 if (i == default_hstate_idx) {
1700 i++;
1701 continue;
1702 }
1703
1704 mnt = mount_one_hugetlbfs(h);
1705 if (IS_ERR(mnt))
1706 hugetlbfs_vfsmount[i] = NULL;
1707 else
1708 hugetlbfs_vfsmount[i] = mnt;
1709 i++;
1710 }
1711
1712 return 0;
1713
1714 out_unreg:
1715 (void)unregister_filesystem(&hugetlbfs_fs_type);
1716 out_free:
1717 kmem_cache_destroy(hugetlbfs_inode_cachep);
1718 out:
1719 return error;
1720 }
1721 fs_initcall(init_hugetlbfs_fs)
1722