• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/anon_inodes.h>
3 #include <linux/file.h>
4 #include <linux/fs.h>
5 #include <linux/magic.h>
6 #include <linux/mount.h>
7 #include <linux/pid.h>
8 #include <linux/pidfs.h>
9 #include <linux/pid_namespace.h>
10 #include <linux/poll.h>
11 #include <linux/proc_fs.h>
12 #include <linux/proc_ns.h>
13 #include <linux/pseudo_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/seq_file.h>
16 #include <uapi/linux/pidfd.h>
17 #include <linux/ipc_namespace.h>
18 #include <linux/time_namespace.h>
19 #include <linux/utsname.h>
20 #include <net/net_namespace.h>
21 
22 #include "internal.h"
23 #include "mount.h"
24 
25 #ifdef CONFIG_PROC_FS
26 /**
27  * pidfd_show_fdinfo - print information about a pidfd
28  * @m: proc fdinfo file
29  * @f: file referencing a pidfd
30  *
31  * Pid:
32  * This function will print the pid that a given pidfd refers to in the
33  * pid namespace of the procfs instance.
34  * If the pid namespace of the process is not a descendant of the pid
35  * namespace of the procfs instance 0 will be shown as its pid. This is
36  * similar to calling getppid() on a process whose parent is outside of
37  * its pid namespace.
38  *
39  * NSpid:
40  * If pid namespaces are supported then this function will also print
41  * the pid of a given pidfd refers to for all descendant pid namespaces
42  * starting from the current pid namespace of the instance, i.e. the
43  * Pid field and the first entry in the NSpid field will be identical.
44  * If the pid namespace of the process is not a descendant of the pid
45  * namespace of the procfs instance 0 will be shown as its first NSpid
46  * entry and no others will be shown.
47  * Note that this differs from the Pid and NSpid fields in
48  * /proc/<pid>/status where Pid and NSpid are always shown relative to
49  * the  pid namespace of the procfs instance. The difference becomes
50  * obvious when sending around a pidfd between pid namespaces from a
51  * different branch of the tree, i.e. where no ancestral relation is
52  * present between the pid namespaces:
53  * - create two new pid namespaces ns1 and ns2 in the initial pid
54  *   namespace (also take care to create new mount namespaces in the
55  *   new pid namespace and mount procfs)
56  * - create a process with a pidfd in ns1
57  * - send pidfd from ns1 to ns2
58  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
59  *   have exactly one entry, which is 0
60  */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)61 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
62 {
63 	struct pid *pid = pidfd_pid(f);
64 	struct pid_namespace *ns;
65 	pid_t nr = -1;
66 
67 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
68 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
69 		nr = pid_nr_ns(pid, ns);
70 	}
71 
72 	seq_put_decimal_ll(m, "Pid:\t", nr);
73 
74 #ifdef CONFIG_PID_NS
75 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
76 	if (nr > 0) {
77 		int i;
78 
79 		/* If nr is non-zero it means that 'pid' is valid and that
80 		 * ns, i.e. the pid namespace associated with the procfs
81 		 * instance, is in the pid namespace hierarchy of pid.
82 		 * Start at one below the already printed level.
83 		 */
84 		for (i = ns->level + 1; i <= pid->level; i++)
85 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
86 	}
87 #endif
88 	seq_putc(m, '\n');
89 }
90 #endif
91 
92 /*
93  * Poll support for process exit notification.
94  */
pidfd_poll(struct file * file,struct poll_table_struct * pts)95 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
96 {
97 	struct pid *pid = pidfd_pid(file);
98 	struct task_struct *task;
99 	__poll_t poll_flags = 0;
100 
101 	poll_wait(file, &pid->wait_pidfd, pts);
102 	/*
103 	 * Don't wake waiters if the thread-group leader exited
104 	 * prematurely. They either get notified when the last subthread
105 	 * exits or not at all if one of the remaining subthreads execs
106 	 * and assumes the struct pid of the old thread-group leader.
107 	 */
108 	guard(rcu)();
109 	task = pid_task(pid, PIDTYPE_PID);
110 	if (!task)
111 		poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP;
112 	else if (task->exit_state && !delay_group_leader(task))
113 		poll_flags = EPOLLIN | EPOLLRDNORM;
114 
115 	return poll_flags;
116 }
117 
pidfd_ioctl(struct file * file,unsigned int cmd,unsigned long arg)118 static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
119 {
120 	struct task_struct *task __free(put_task) = NULL;
121 	struct nsproxy *nsp __free(put_nsproxy) = NULL;
122 	struct pid *pid = pidfd_pid(file);
123 	struct ns_common *ns_common = NULL;
124 	struct pid_namespace *pid_ns;
125 
126 	if (arg)
127 		return -EINVAL;
128 
129 	task = get_pid_task(pid, PIDTYPE_PID);
130 	if (!task)
131 		return -ESRCH;
132 
133 	scoped_guard(task_lock, task) {
134 		nsp = task->nsproxy;
135 		if (nsp)
136 			get_nsproxy(nsp);
137 	}
138 	if (!nsp)
139 		return -ESRCH; /* just pretend it didn't exist */
140 
141 	/*
142 	 * We're trying to open a file descriptor to the namespace so perform a
143 	 * filesystem cred ptrace check. Also, we mirror nsfs behavior.
144 	 */
145 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
146 		return -EACCES;
147 
148 	switch (cmd) {
149 	/* Namespaces that hang of nsproxy. */
150 	case PIDFD_GET_CGROUP_NAMESPACE:
151 		if (IS_ENABLED(CONFIG_CGROUPS)) {
152 			get_cgroup_ns(nsp->cgroup_ns);
153 			ns_common = to_ns_common(nsp->cgroup_ns);
154 		}
155 		break;
156 	case PIDFD_GET_IPC_NAMESPACE:
157 		if (IS_ENABLED(CONFIG_IPC_NS)) {
158 			get_ipc_ns(nsp->ipc_ns);
159 			ns_common = to_ns_common(nsp->ipc_ns);
160 		}
161 		break;
162 	case PIDFD_GET_MNT_NAMESPACE:
163 		get_mnt_ns(nsp->mnt_ns);
164 		ns_common = to_ns_common(nsp->mnt_ns);
165 		break;
166 	case PIDFD_GET_NET_NAMESPACE:
167 		if (IS_ENABLED(CONFIG_NET_NS)) {
168 			ns_common = to_ns_common(nsp->net_ns);
169 			get_net_ns(ns_common);
170 		}
171 		break;
172 	case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
173 		if (IS_ENABLED(CONFIG_PID_NS)) {
174 			get_pid_ns(nsp->pid_ns_for_children);
175 			ns_common = to_ns_common(nsp->pid_ns_for_children);
176 		}
177 		break;
178 	case PIDFD_GET_TIME_NAMESPACE:
179 		if (IS_ENABLED(CONFIG_TIME_NS)) {
180 			get_time_ns(nsp->time_ns);
181 			ns_common = to_ns_common(nsp->time_ns);
182 		}
183 		break;
184 	case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
185 		if (IS_ENABLED(CONFIG_TIME_NS)) {
186 			get_time_ns(nsp->time_ns_for_children);
187 			ns_common = to_ns_common(nsp->time_ns_for_children);
188 		}
189 		break;
190 	case PIDFD_GET_UTS_NAMESPACE:
191 		if (IS_ENABLED(CONFIG_UTS_NS)) {
192 			get_uts_ns(nsp->uts_ns);
193 			ns_common = to_ns_common(nsp->uts_ns);
194 		}
195 		break;
196 	/* Namespaces that don't hang of nsproxy. */
197 	case PIDFD_GET_USER_NAMESPACE:
198 		if (IS_ENABLED(CONFIG_USER_NS)) {
199 			rcu_read_lock();
200 			ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns)));
201 			rcu_read_unlock();
202 		}
203 		break;
204 	case PIDFD_GET_PID_NAMESPACE:
205 		if (IS_ENABLED(CONFIG_PID_NS)) {
206 			rcu_read_lock();
207 			pid_ns = task_active_pid_ns(task);
208 			if (pid_ns)
209 				ns_common = to_ns_common(get_pid_ns(pid_ns));
210 			rcu_read_unlock();
211 		}
212 		break;
213 	default:
214 		return -ENOIOCTLCMD;
215 	}
216 
217 	if (!ns_common)
218 		return -EOPNOTSUPP;
219 
220 	/* open_namespace() unconditionally consumes the reference */
221 	return open_namespace(ns_common);
222 }
223 
224 static const struct file_operations pidfs_file_operations = {
225 	.poll		= pidfd_poll,
226 #ifdef CONFIG_PROC_FS
227 	.show_fdinfo	= pidfd_show_fdinfo,
228 #endif
229 	.unlocked_ioctl	= pidfd_ioctl,
230 	.compat_ioctl   = compat_ptr_ioctl,
231 };
232 
pidfd_pid(const struct file * file)233 struct pid *pidfd_pid(const struct file *file)
234 {
235 	if (file->f_op != &pidfs_file_operations)
236 		return ERR_PTR(-EBADF);
237 	return file_inode(file)->i_private;
238 }
239 
240 static struct vfsmount *pidfs_mnt __ro_after_init;
241 
242 #if BITS_PER_LONG == 32
243 /*
244  * Provide a fallback mechanism for 32-bit systems so processes remain
245  * reliably comparable by inode number even on those systems.
246  */
247 static DEFINE_IDA(pidfd_inum_ida);
248 
pidfs_inum(struct pid * pid,unsigned long * ino)249 static int pidfs_inum(struct pid *pid, unsigned long *ino)
250 {
251 	int ret;
252 
253 	ret = ida_alloc_range(&pidfd_inum_ida, RESERVED_PIDS + 1,
254 			      UINT_MAX, GFP_ATOMIC);
255 	if (ret < 0)
256 		return -ENOSPC;
257 
258 	*ino = ret;
259 	return 0;
260 }
261 
pidfs_free_inum(unsigned long ino)262 static inline void pidfs_free_inum(unsigned long ino)
263 {
264 	if (ino > 0)
265 		ida_free(&pidfd_inum_ida, ino);
266 }
267 #else
pidfs_inum(struct pid * pid,unsigned long * ino)268 static inline int pidfs_inum(struct pid *pid, unsigned long *ino)
269 {
270 	*ino = pid->ino;
271 	return 0;
272 }
273 #define pidfs_free_inum(ino) ((void)(ino))
274 #endif
275 
276 /*
277  * The vfs falls back to simple_setattr() if i_op->setattr() isn't
278  * implemented. Let's reject it completely until we have a clean
279  * permission concept for pidfds.
280  */
pidfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)281 static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
282 			 struct iattr *attr)
283 {
284 	return -EOPNOTSUPP;
285 }
286 
287 
288 /*
289  * User space expects pidfs inodes to have no file type in st_mode.
290  *
291  * In particular, 'lsof' has this legacy logic:
292  *
293  *	type = s->st_mode & S_IFMT;
294  *	switch (type) {
295  *	  ...
296  *	case 0:
297  *		if (!strcmp(p, "anon_inode"))
298  *			Lf->ntype = Ntype = N_ANON_INODE;
299  *
300  * to detect our old anon_inode logic.
301  *
302  * Rather than mess with our internal sane inode data, just fix it
303  * up here in getattr() by masking off the format bits.
304  */
pidfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)305 static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path,
306 			 struct kstat *stat, u32 request_mask,
307 			 unsigned int query_flags)
308 {
309 	struct inode *inode = d_inode(path->dentry);
310 
311 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
312 	stat->mode &= ~S_IFMT;
313 	return 0;
314 }
315 
316 static const struct inode_operations pidfs_inode_operations = {
317 	.getattr = pidfs_getattr,
318 	.setattr = pidfs_setattr,
319 };
320 
pidfs_evict_inode(struct inode * inode)321 static void pidfs_evict_inode(struct inode *inode)
322 {
323 	struct pid *pid = inode->i_private;
324 
325 	clear_inode(inode);
326 	put_pid(pid);
327 	pidfs_free_inum(inode->i_ino);
328 }
329 
330 static const struct super_operations pidfs_sops = {
331 	.drop_inode	= generic_delete_inode,
332 	.evict_inode	= pidfs_evict_inode,
333 	.statfs		= simple_statfs,
334 };
335 
336 /*
337  * 'lsof' has knowledge of out historical anon_inode use, and expects
338  * the pidfs dentry name to start with 'anon_inode'.
339  */
pidfs_dname(struct dentry * dentry,char * buffer,int buflen)340 static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen)
341 {
342 	return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]");
343 }
344 
345 static const struct dentry_operations pidfs_dentry_operations = {
346 	.d_delete	= always_delete_dentry,
347 	.d_dname	= pidfs_dname,
348 	.d_prune	= stashed_dentry_prune,
349 };
350 
pidfs_init_inode(struct inode * inode,void * data)351 static int pidfs_init_inode(struct inode *inode, void *data)
352 {
353 	inode->i_private = data;
354 	inode->i_flags |= S_PRIVATE;
355 	inode->i_mode |= S_IRWXU;
356 	inode->i_op = &pidfs_inode_operations;
357 	inode->i_fop = &pidfs_file_operations;
358 	/*
359 	 * Inode numbering for pidfs start at RESERVED_PIDS + 1. This
360 	 * avoids collisions with the root inode which is 1 for pseudo
361 	 * filesystems.
362 	 */
363 	return pidfs_inum(data, &inode->i_ino);
364 }
365 
pidfs_put_data(void * data)366 static void pidfs_put_data(void *data)
367 {
368 	struct pid *pid = data;
369 	put_pid(pid);
370 }
371 
372 static const struct stashed_operations pidfs_stashed_ops = {
373 	.init_inode = pidfs_init_inode,
374 	.put_data = pidfs_put_data,
375 };
376 
pidfs_init_fs_context(struct fs_context * fc)377 static int pidfs_init_fs_context(struct fs_context *fc)
378 {
379 	struct pseudo_fs_context *ctx;
380 
381 	ctx = init_pseudo(fc, PID_FS_MAGIC);
382 	if (!ctx)
383 		return -ENOMEM;
384 
385 	fc->s_iflags |= SB_I_NOEXEC;
386 	fc->s_iflags |= SB_I_NODEV;
387 	ctx->ops = &pidfs_sops;
388 	ctx->dops = &pidfs_dentry_operations;
389 	fc->s_fs_info = (void *)&pidfs_stashed_ops;
390 	return 0;
391 }
392 
393 static struct file_system_type pidfs_type = {
394 	.name			= "pidfs",
395 	.init_fs_context	= pidfs_init_fs_context,
396 	.kill_sb		= kill_anon_super,
397 };
398 
pidfs_alloc_file(struct pid * pid,unsigned int flags)399 struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags)
400 {
401 
402 	struct file *pidfd_file;
403 	struct path path;
404 	int ret;
405 
406 	ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
407 	if (ret < 0)
408 		return ERR_PTR(ret);
409 
410 	pidfd_file = dentry_open(&path, flags, current_cred());
411 	path_put(&path);
412 	return pidfd_file;
413 }
414 
pidfs_init(void)415 void __init pidfs_init(void)
416 {
417 	pidfs_mnt = kern_mount(&pidfs_type);
418 	if (IS_ERR(pidfs_mnt))
419 		panic("Failed to mount pidfs pseudo filesystem");
420 }
421