1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) 2017, Microsoft Corporation.
4  *
5  *   Author(s): Long Li <longli@microsoft.com>
6  */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include <linux/folio_queue.h>
10 #include "../common/smbdirect/smbdirect_pdu.h"
11 #include "smbdirect.h"
12 #include "cifs_debug.h"
13 #include "cifsproto.h"
14 #include "smb2proto.h"
15 
16 static struct smbd_response *get_receive_buffer(
17 		struct smbd_connection *info);
18 static void put_receive_buffer(
19 		struct smbd_connection *info,
20 		struct smbd_response *response);
21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
22 static void destroy_receive_buffers(struct smbd_connection *info);
23 
24 static void enqueue_reassembly(
25 		struct smbd_connection *info,
26 		struct smbd_response *response, int data_length);
27 static struct smbd_response *_get_first_reassembly(
28 		struct smbd_connection *info);
29 
30 static int smbd_post_recv(
31 		struct smbd_connection *info,
32 		struct smbd_response *response);
33 
34 static int smbd_post_send_empty(struct smbd_connection *info);
35 
36 static void destroy_mr_list(struct smbd_connection *info);
37 static int allocate_mr_list(struct smbd_connection *info);
38 
39 struct smb_extract_to_rdma {
40 	struct ib_sge		*sge;
41 	unsigned int		nr_sge;
42 	unsigned int		max_sge;
43 	struct ib_device	*device;
44 	u32			local_dma_lkey;
45 	enum dma_data_direction	direction;
46 };
47 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
48 					struct smb_extract_to_rdma *rdma);
49 
50 /* Port numbers for SMBD transport */
51 #define SMB_PORT	445
52 #define SMBD_PORT	5445
53 
54 /* Address lookup and resolve timeout in ms */
55 #define RDMA_RESOLVE_TIMEOUT	5000
56 
57 /* SMBD negotiation timeout in seconds */
58 #define SMBD_NEGOTIATE_TIMEOUT	120
59 
60 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
61 #define SMBD_MIN_RECEIVE_SIZE		128
62 #define SMBD_MIN_FRAGMENTED_SIZE	131072
63 
64 /*
65  * Default maximum number of RDMA read/write outstanding on this connection
66  * This value is possibly decreased during QP creation on hardware limit
67  */
68 #define SMBD_CM_RESPONDER_RESOURCES	32
69 
70 /* Maximum number of retries on data transfer operations */
71 #define SMBD_CM_RETRY			6
72 /* No need to retry on Receiver Not Ready since SMBD manages credits */
73 #define SMBD_CM_RNR_RETRY		0
74 
75 /*
76  * User configurable initial values per SMBD transport connection
77  * as defined in [MS-SMBD] 3.1.1.1
78  * Those may change after a SMBD negotiation
79  */
80 /* The local peer's maximum number of credits to grant to the peer */
81 int smbd_receive_credit_max = 255;
82 
83 /* The remote peer's credit request of local peer */
84 int smbd_send_credit_target = 255;
85 
86 /* The maximum single message size can be sent to remote peer */
87 int smbd_max_send_size = 1364;
88 
89 /*  The maximum fragmented upper-layer payload receive size supported */
90 int smbd_max_fragmented_recv_size = 1024 * 1024;
91 
92 /*  The maximum single-message size which can be received */
93 int smbd_max_receive_size = 1364;
94 
95 /* The timeout to initiate send of a keepalive message on idle */
96 int smbd_keep_alive_interval = 120;
97 
98 /*
99  * User configurable initial values for RDMA transport
100  * The actual values used may be lower and are limited to hardware capabilities
101  */
102 /* Default maximum number of pages in a single RDMA write/read */
103 int smbd_max_frmr_depth = 2048;
104 
105 /* If payload is less than this byte, use RDMA send/recv not read/write */
106 int rdma_readwrite_threshold = 4096;
107 
108 /* Transport logging functions
109  * Logging are defined as classes. They can be OR'ed to define the actual
110  * logging level via module parameter smbd_logging_class
111  * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
112  * log_rdma_event()
113  */
114 #define LOG_OUTGOING			0x1
115 #define LOG_INCOMING			0x2
116 #define LOG_READ			0x4
117 #define LOG_WRITE			0x8
118 #define LOG_RDMA_SEND			0x10
119 #define LOG_RDMA_RECV			0x20
120 #define LOG_KEEP_ALIVE			0x40
121 #define LOG_RDMA_EVENT			0x80
122 #define LOG_RDMA_MR			0x100
123 static unsigned int smbd_logging_class;
124 module_param(smbd_logging_class, uint, 0644);
125 MODULE_PARM_DESC(smbd_logging_class,
126 	"Logging class for SMBD transport 0x0 to 0x100");
127 
128 #define ERR		0x0
129 #define INFO		0x1
130 static unsigned int smbd_logging_level = ERR;
131 module_param(smbd_logging_level, uint, 0644);
132 MODULE_PARM_DESC(smbd_logging_level,
133 	"Logging level for SMBD transport, 0 (default): error, 1: info");
134 
135 #define log_rdma(level, class, fmt, args...)				\
136 do {									\
137 	if (level <= smbd_logging_level || class & smbd_logging_class)	\
138 		cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
139 } while (0)
140 
141 #define log_outgoing(level, fmt, args...) \
142 		log_rdma(level, LOG_OUTGOING, fmt, ##args)
143 #define log_incoming(level, fmt, args...) \
144 		log_rdma(level, LOG_INCOMING, fmt, ##args)
145 #define log_read(level, fmt, args...)	log_rdma(level, LOG_READ, fmt, ##args)
146 #define log_write(level, fmt, args...)	log_rdma(level, LOG_WRITE, fmt, ##args)
147 #define log_rdma_send(level, fmt, args...) \
148 		log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
149 #define log_rdma_recv(level, fmt, args...) \
150 		log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
151 #define log_keep_alive(level, fmt, args...) \
152 		log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
153 #define log_rdma_event(level, fmt, args...) \
154 		log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
155 #define log_rdma_mr(level, fmt, args...) \
156 		log_rdma(level, LOG_RDMA_MR, fmt, ##args)
157 
smbd_disconnect_rdma_work(struct work_struct * work)158 static void smbd_disconnect_rdma_work(struct work_struct *work)
159 {
160 	struct smbd_connection *info =
161 		container_of(work, struct smbd_connection, disconnect_work);
162 	struct smbdirect_socket *sc = &info->socket;
163 
164 	if (sc->status == SMBDIRECT_SOCKET_CONNECTED) {
165 		sc->status = SMBDIRECT_SOCKET_DISCONNECTING;
166 		rdma_disconnect(sc->rdma.cm_id);
167 	}
168 }
169 
smbd_disconnect_rdma_connection(struct smbd_connection * info)170 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
171 {
172 	queue_work(info->workqueue, &info->disconnect_work);
173 }
174 
175 /* Upcall from RDMA CM */
smbd_conn_upcall(struct rdma_cm_id * id,struct rdma_cm_event * event)176 static int smbd_conn_upcall(
177 		struct rdma_cm_id *id, struct rdma_cm_event *event)
178 {
179 	struct smbd_connection *info = id->context;
180 	struct smbdirect_socket *sc = &info->socket;
181 
182 	log_rdma_event(INFO, "event=%d status=%d\n",
183 		event->event, event->status);
184 
185 	switch (event->event) {
186 	case RDMA_CM_EVENT_ADDR_RESOLVED:
187 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
188 		info->ri_rc = 0;
189 		complete(&info->ri_done);
190 		break;
191 
192 	case RDMA_CM_EVENT_ADDR_ERROR:
193 		info->ri_rc = -EHOSTUNREACH;
194 		complete(&info->ri_done);
195 		break;
196 
197 	case RDMA_CM_EVENT_ROUTE_ERROR:
198 		info->ri_rc = -ENETUNREACH;
199 		complete(&info->ri_done);
200 		break;
201 
202 	case RDMA_CM_EVENT_ESTABLISHED:
203 		log_rdma_event(INFO, "connected event=%d\n", event->event);
204 		sc->status = SMBDIRECT_SOCKET_CONNECTED;
205 		wake_up_interruptible(&info->conn_wait);
206 		break;
207 
208 	case RDMA_CM_EVENT_CONNECT_ERROR:
209 	case RDMA_CM_EVENT_UNREACHABLE:
210 	case RDMA_CM_EVENT_REJECTED:
211 		log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
212 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
213 		wake_up_interruptible(&info->conn_wait);
214 		break;
215 
216 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
217 	case RDMA_CM_EVENT_DISCONNECTED:
218 		/* This happens when we fail the negotiation */
219 		if (sc->status == SMBDIRECT_SOCKET_NEGOTIATE_FAILED) {
220 			sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
221 			wake_up(&info->conn_wait);
222 			break;
223 		}
224 
225 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
226 		wake_up_interruptible(&info->disconn_wait);
227 		wake_up_interruptible(&info->wait_reassembly_queue);
228 		wake_up_interruptible_all(&info->wait_send_queue);
229 		break;
230 
231 	default:
232 		break;
233 	}
234 
235 	return 0;
236 }
237 
238 /* Upcall from RDMA QP */
239 static void
smbd_qp_async_error_upcall(struct ib_event * event,void * context)240 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
241 {
242 	struct smbd_connection *info = context;
243 
244 	log_rdma_event(ERR, "%s on device %s info %p\n",
245 		ib_event_msg(event->event), event->device->name, info);
246 
247 	switch (event->event) {
248 	case IB_EVENT_CQ_ERR:
249 	case IB_EVENT_QP_FATAL:
250 		smbd_disconnect_rdma_connection(info);
251 		break;
252 
253 	default:
254 		break;
255 	}
256 }
257 
smbd_request_payload(struct smbd_request * request)258 static inline void *smbd_request_payload(struct smbd_request *request)
259 {
260 	return (void *)request->packet;
261 }
262 
smbd_response_payload(struct smbd_response * response)263 static inline void *smbd_response_payload(struct smbd_response *response)
264 {
265 	return (void *)response->packet;
266 }
267 
268 /* Called when a RDMA send is done */
send_done(struct ib_cq * cq,struct ib_wc * wc)269 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
270 {
271 	int i;
272 	struct smbd_request *request =
273 		container_of(wc->wr_cqe, struct smbd_request, cqe);
274 	struct smbd_connection *info = request->info;
275 	struct smbdirect_socket *sc = &info->socket;
276 
277 	log_rdma_send(INFO, "smbd_request 0x%p completed wc->status=%d\n",
278 		request, wc->status);
279 
280 	for (i = 0; i < request->num_sge; i++)
281 		ib_dma_unmap_single(sc->ib.dev,
282 			request->sge[i].addr,
283 			request->sge[i].length,
284 			DMA_TO_DEVICE);
285 
286 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
287 		log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
288 			wc->status, wc->opcode);
289 		mempool_free(request, info->request_mempool);
290 		smbd_disconnect_rdma_connection(info);
291 		return;
292 	}
293 
294 	if (atomic_dec_and_test(&request->info->send_pending))
295 		wake_up(&request->info->wait_send_pending);
296 
297 	wake_up(&request->info->wait_post_send);
298 
299 	mempool_free(request, request->info->request_mempool);
300 }
301 
dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp * resp)302 static void dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp *resp)
303 {
304 	log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
305 		       resp->min_version, resp->max_version,
306 		       resp->negotiated_version, resp->credits_requested,
307 		       resp->credits_granted, resp->status,
308 		       resp->max_readwrite_size, resp->preferred_send_size,
309 		       resp->max_receive_size, resp->max_fragmented_size);
310 }
311 
312 /*
313  * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
314  * response, packet_length: the negotiation response message
315  * return value: true if negotiation is a success, false if failed
316  */
process_negotiation_response(struct smbd_response * response,int packet_length)317 static bool process_negotiation_response(
318 		struct smbd_response *response, int packet_length)
319 {
320 	struct smbd_connection *info = response->info;
321 	struct smbdirect_socket *sc = &info->socket;
322 	struct smbdirect_socket_parameters *sp = &sc->parameters;
323 	struct smbdirect_negotiate_resp *packet = smbd_response_payload(response);
324 
325 	if (packet_length < sizeof(struct smbdirect_negotiate_resp)) {
326 		log_rdma_event(ERR,
327 			"error: packet_length=%d\n", packet_length);
328 		return false;
329 	}
330 
331 	if (le16_to_cpu(packet->negotiated_version) != SMBDIRECT_V1) {
332 		log_rdma_event(ERR, "error: negotiated_version=%x\n",
333 			le16_to_cpu(packet->negotiated_version));
334 		return false;
335 	}
336 	info->protocol = le16_to_cpu(packet->negotiated_version);
337 
338 	if (packet->credits_requested == 0) {
339 		log_rdma_event(ERR, "error: credits_requested==0\n");
340 		return false;
341 	}
342 	info->receive_credit_target = le16_to_cpu(packet->credits_requested);
343 
344 	if (packet->credits_granted == 0) {
345 		log_rdma_event(ERR, "error: credits_granted==0\n");
346 		return false;
347 	}
348 	atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
349 
350 	atomic_set(&info->receive_credits, 0);
351 
352 	if (le32_to_cpu(packet->preferred_send_size) > sp->max_recv_size) {
353 		log_rdma_event(ERR, "error: preferred_send_size=%d\n",
354 			le32_to_cpu(packet->preferred_send_size));
355 		return false;
356 	}
357 	sp->max_recv_size = le32_to_cpu(packet->preferred_send_size);
358 
359 	if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
360 		log_rdma_event(ERR, "error: max_receive_size=%d\n",
361 			le32_to_cpu(packet->max_receive_size));
362 		return false;
363 	}
364 	sp->max_send_size = min_t(u32, sp->max_send_size,
365 				  le32_to_cpu(packet->max_receive_size));
366 
367 	if (le32_to_cpu(packet->max_fragmented_size) <
368 			SMBD_MIN_FRAGMENTED_SIZE) {
369 		log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
370 			le32_to_cpu(packet->max_fragmented_size));
371 		return false;
372 	}
373 	sp->max_fragmented_send_size =
374 		le32_to_cpu(packet->max_fragmented_size);
375 	info->rdma_readwrite_threshold =
376 		rdma_readwrite_threshold > sp->max_fragmented_send_size ?
377 		sp->max_fragmented_send_size :
378 		rdma_readwrite_threshold;
379 
380 
381 	sp->max_read_write_size = min_t(u32,
382 			le32_to_cpu(packet->max_readwrite_size),
383 			info->max_frmr_depth * PAGE_SIZE);
384 	info->max_frmr_depth = sp->max_read_write_size / PAGE_SIZE;
385 
386 	return true;
387 }
388 
smbd_post_send_credits(struct work_struct * work)389 static void smbd_post_send_credits(struct work_struct *work)
390 {
391 	int ret = 0;
392 	int rc;
393 	struct smbd_response *response;
394 	struct smbd_connection *info =
395 		container_of(work, struct smbd_connection,
396 			post_send_credits_work);
397 	struct smbdirect_socket *sc = &info->socket;
398 
399 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
400 		wake_up(&info->wait_receive_queues);
401 		return;
402 	}
403 
404 	if (info->receive_credit_target >
405 		atomic_read(&info->receive_credits)) {
406 		while (true) {
407 			response = get_receive_buffer(info);
408 			if (!response)
409 				break;
410 
411 			response->type = SMBD_TRANSFER_DATA;
412 			response->first_segment = false;
413 			rc = smbd_post_recv(info, response);
414 			if (rc) {
415 				log_rdma_recv(ERR,
416 					"post_recv failed rc=%d\n", rc);
417 				put_receive_buffer(info, response);
418 				break;
419 			}
420 
421 			ret++;
422 		}
423 	}
424 
425 	spin_lock(&info->lock_new_credits_offered);
426 	info->new_credits_offered += ret;
427 	spin_unlock(&info->lock_new_credits_offered);
428 
429 	/* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
430 	info->send_immediate = true;
431 	if (atomic_read(&info->receive_credits) <
432 		info->receive_credit_target - 1) {
433 		if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
434 		    info->send_immediate) {
435 			log_keep_alive(INFO, "send an empty message\n");
436 			smbd_post_send_empty(info);
437 		}
438 	}
439 }
440 
441 /* Called from softirq, when recv is done */
recv_done(struct ib_cq * cq,struct ib_wc * wc)442 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
443 {
444 	struct smbdirect_data_transfer *data_transfer;
445 	struct smbd_response *response =
446 		container_of(wc->wr_cqe, struct smbd_response, cqe);
447 	struct smbd_connection *info = response->info;
448 	int data_length = 0;
449 
450 	log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n",
451 		      response, response->type, wc->status, wc->opcode,
452 		      wc->byte_len, wc->pkey_index);
453 
454 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
455 		log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
456 			wc->status, wc->opcode);
457 		goto error;
458 	}
459 
460 	ib_dma_sync_single_for_cpu(
461 		wc->qp->device,
462 		response->sge.addr,
463 		response->sge.length,
464 		DMA_FROM_DEVICE);
465 
466 	switch (response->type) {
467 	/* SMBD negotiation response */
468 	case SMBD_NEGOTIATE_RESP:
469 		dump_smbdirect_negotiate_resp(smbd_response_payload(response));
470 		info->full_packet_received = true;
471 		info->negotiate_done =
472 			process_negotiation_response(response, wc->byte_len);
473 		put_receive_buffer(info, response);
474 		complete(&info->negotiate_completion);
475 		return;
476 
477 	/* SMBD data transfer packet */
478 	case SMBD_TRANSFER_DATA:
479 		data_transfer = smbd_response_payload(response);
480 		data_length = le32_to_cpu(data_transfer->data_length);
481 
482 		if (data_length) {
483 			if (info->full_packet_received)
484 				response->first_segment = true;
485 
486 			if (le32_to_cpu(data_transfer->remaining_data_length))
487 				info->full_packet_received = false;
488 			else
489 				info->full_packet_received = true;
490 		}
491 
492 		atomic_dec(&info->receive_credits);
493 		info->receive_credit_target =
494 			le16_to_cpu(data_transfer->credits_requested);
495 		if (le16_to_cpu(data_transfer->credits_granted)) {
496 			atomic_add(le16_to_cpu(data_transfer->credits_granted),
497 				&info->send_credits);
498 			/*
499 			 * We have new send credits granted from remote peer
500 			 * If any sender is waiting for credits, unblock it
501 			 */
502 			wake_up_interruptible(&info->wait_send_queue);
503 		}
504 
505 		log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
506 			     le16_to_cpu(data_transfer->flags),
507 			     le32_to_cpu(data_transfer->data_offset),
508 			     le32_to_cpu(data_transfer->data_length),
509 			     le32_to_cpu(data_transfer->remaining_data_length));
510 
511 		/* Send a KEEP_ALIVE response right away if requested */
512 		info->keep_alive_requested = KEEP_ALIVE_NONE;
513 		if (le16_to_cpu(data_transfer->flags) &
514 				SMBDIRECT_FLAG_RESPONSE_REQUESTED) {
515 			info->keep_alive_requested = KEEP_ALIVE_PENDING;
516 		}
517 
518 		/*
519 		 * If this is a packet with data playload place the data in
520 		 * reassembly queue and wake up the reading thread
521 		 */
522 		if (data_length) {
523 			enqueue_reassembly(info, response, data_length);
524 			wake_up_interruptible(&info->wait_reassembly_queue);
525 		} else
526 			put_receive_buffer(info, response);
527 
528 		return;
529 	}
530 
531 	/*
532 	 * This is an internal error!
533 	 */
534 	log_rdma_recv(ERR, "unexpected response type=%d\n", response->type);
535 	WARN_ON_ONCE(response->type != SMBD_TRANSFER_DATA);
536 error:
537 	put_receive_buffer(info, response);
538 	smbd_disconnect_rdma_connection(info);
539 }
540 
smbd_create_id(struct smbd_connection * info,struct sockaddr * dstaddr,int port)541 static struct rdma_cm_id *smbd_create_id(
542 		struct smbd_connection *info,
543 		struct sockaddr *dstaddr, int port)
544 {
545 	struct rdma_cm_id *id;
546 	int rc;
547 	__be16 *sport;
548 
549 	id = rdma_create_id(&init_net, smbd_conn_upcall, info,
550 		RDMA_PS_TCP, IB_QPT_RC);
551 	if (IS_ERR(id)) {
552 		rc = PTR_ERR(id);
553 		log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
554 		return id;
555 	}
556 
557 	if (dstaddr->sa_family == AF_INET6)
558 		sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
559 	else
560 		sport = &((struct sockaddr_in *)dstaddr)->sin_port;
561 
562 	*sport = htons(port);
563 
564 	init_completion(&info->ri_done);
565 	info->ri_rc = -ETIMEDOUT;
566 
567 	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
568 		RDMA_RESOLVE_TIMEOUT);
569 	if (rc) {
570 		log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
571 		goto out;
572 	}
573 	rc = wait_for_completion_interruptible_timeout(
574 		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
575 	/* e.g. if interrupted returns -ERESTARTSYS */
576 	if (rc < 0) {
577 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
578 		goto out;
579 	}
580 	rc = info->ri_rc;
581 	if (rc) {
582 		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
583 		goto out;
584 	}
585 
586 	info->ri_rc = -ETIMEDOUT;
587 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
588 	if (rc) {
589 		log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
590 		goto out;
591 	}
592 	rc = wait_for_completion_interruptible_timeout(
593 		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
594 	/* e.g. if interrupted returns -ERESTARTSYS */
595 	if (rc < 0)  {
596 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
597 		goto out;
598 	}
599 	rc = info->ri_rc;
600 	if (rc) {
601 		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
602 		goto out;
603 	}
604 
605 	return id;
606 
607 out:
608 	rdma_destroy_id(id);
609 	return ERR_PTR(rc);
610 }
611 
612 /*
613  * Test if FRWR (Fast Registration Work Requests) is supported on the device
614  * This implementation requires FRWR on RDMA read/write
615  * return value: true if it is supported
616  */
frwr_is_supported(struct ib_device_attr * attrs)617 static bool frwr_is_supported(struct ib_device_attr *attrs)
618 {
619 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
620 		return false;
621 	if (attrs->max_fast_reg_page_list_len == 0)
622 		return false;
623 	return true;
624 }
625 
smbd_ia_open(struct smbd_connection * info,struct sockaddr * dstaddr,int port)626 static int smbd_ia_open(
627 		struct smbd_connection *info,
628 		struct sockaddr *dstaddr, int port)
629 {
630 	struct smbdirect_socket *sc = &info->socket;
631 	int rc;
632 
633 	sc->rdma.cm_id = smbd_create_id(info, dstaddr, port);
634 	if (IS_ERR(sc->rdma.cm_id)) {
635 		rc = PTR_ERR(sc->rdma.cm_id);
636 		goto out1;
637 	}
638 	sc->ib.dev = sc->rdma.cm_id->device;
639 
640 	if (!frwr_is_supported(&sc->ib.dev->attrs)) {
641 		log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
642 		log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
643 			       sc->ib.dev->attrs.device_cap_flags,
644 			       sc->ib.dev->attrs.max_fast_reg_page_list_len);
645 		rc = -EPROTONOSUPPORT;
646 		goto out2;
647 	}
648 	info->max_frmr_depth = min_t(int,
649 		smbd_max_frmr_depth,
650 		sc->ib.dev->attrs.max_fast_reg_page_list_len);
651 	info->mr_type = IB_MR_TYPE_MEM_REG;
652 	if (sc->ib.dev->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
653 		info->mr_type = IB_MR_TYPE_SG_GAPS;
654 
655 	sc->ib.pd = ib_alloc_pd(sc->ib.dev, 0);
656 	if (IS_ERR(sc->ib.pd)) {
657 		rc = PTR_ERR(sc->ib.pd);
658 		log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
659 		goto out2;
660 	}
661 
662 	return 0;
663 
664 out2:
665 	rdma_destroy_id(sc->rdma.cm_id);
666 	sc->rdma.cm_id = NULL;
667 
668 out1:
669 	return rc;
670 }
671 
672 /*
673  * Send a negotiation request message to the peer
674  * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
675  * After negotiation, the transport is connected and ready for
676  * carrying upper layer SMB payload
677  */
smbd_post_send_negotiate_req(struct smbd_connection * info)678 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
679 {
680 	struct smbdirect_socket *sc = &info->socket;
681 	struct smbdirect_socket_parameters *sp = &sc->parameters;
682 	struct ib_send_wr send_wr;
683 	int rc = -ENOMEM;
684 	struct smbd_request *request;
685 	struct smbdirect_negotiate_req *packet;
686 
687 	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
688 	if (!request)
689 		return rc;
690 
691 	request->info = info;
692 
693 	packet = smbd_request_payload(request);
694 	packet->min_version = cpu_to_le16(SMBDIRECT_V1);
695 	packet->max_version = cpu_to_le16(SMBDIRECT_V1);
696 	packet->reserved = 0;
697 	packet->credits_requested = cpu_to_le16(sp->send_credit_target);
698 	packet->preferred_send_size = cpu_to_le32(sp->max_send_size);
699 	packet->max_receive_size = cpu_to_le32(sp->max_recv_size);
700 	packet->max_fragmented_size =
701 		cpu_to_le32(sp->max_fragmented_recv_size);
702 
703 	request->num_sge = 1;
704 	request->sge[0].addr = ib_dma_map_single(
705 				sc->ib.dev, (void *)packet,
706 				sizeof(*packet), DMA_TO_DEVICE);
707 	if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
708 		rc = -EIO;
709 		goto dma_mapping_failed;
710 	}
711 
712 	request->sge[0].length = sizeof(*packet);
713 	request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
714 
715 	ib_dma_sync_single_for_device(
716 		sc->ib.dev, request->sge[0].addr,
717 		request->sge[0].length, DMA_TO_DEVICE);
718 
719 	request->cqe.done = send_done;
720 
721 	send_wr.next = NULL;
722 	send_wr.wr_cqe = &request->cqe;
723 	send_wr.sg_list = request->sge;
724 	send_wr.num_sge = request->num_sge;
725 	send_wr.opcode = IB_WR_SEND;
726 	send_wr.send_flags = IB_SEND_SIGNALED;
727 
728 	log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
729 		request->sge[0].addr,
730 		request->sge[0].length, request->sge[0].lkey);
731 
732 	atomic_inc(&info->send_pending);
733 	rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
734 	if (!rc)
735 		return 0;
736 
737 	/* if we reach here, post send failed */
738 	log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
739 	atomic_dec(&info->send_pending);
740 	ib_dma_unmap_single(sc->ib.dev, request->sge[0].addr,
741 		request->sge[0].length, DMA_TO_DEVICE);
742 
743 	smbd_disconnect_rdma_connection(info);
744 
745 dma_mapping_failed:
746 	mempool_free(request, info->request_mempool);
747 	return rc;
748 }
749 
750 /*
751  * Extend the credits to remote peer
752  * This implements [MS-SMBD] 3.1.5.9
753  * The idea is that we should extend credits to remote peer as quickly as
754  * it's allowed, to maintain data flow. We allocate as much receive
755  * buffer as possible, and extend the receive credits to remote peer
756  * return value: the new credtis being granted.
757  */
manage_credits_prior_sending(struct smbd_connection * info)758 static int manage_credits_prior_sending(struct smbd_connection *info)
759 {
760 	int new_credits;
761 
762 	spin_lock(&info->lock_new_credits_offered);
763 	new_credits = info->new_credits_offered;
764 	info->new_credits_offered = 0;
765 	spin_unlock(&info->lock_new_credits_offered);
766 
767 	return new_credits;
768 }
769 
770 /*
771  * Check if we need to send a KEEP_ALIVE message
772  * The idle connection timer triggers a KEEP_ALIVE message when expires
773  * SMBDIRECT_FLAG_RESPONSE_REQUESTED is set in the message flag to have peer send
774  * back a response.
775  * return value:
776  * 1 if SMBDIRECT_FLAG_RESPONSE_REQUESTED needs to be set
777  * 0: otherwise
778  */
manage_keep_alive_before_sending(struct smbd_connection * info)779 static int manage_keep_alive_before_sending(struct smbd_connection *info)
780 {
781 	if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
782 		info->keep_alive_requested = KEEP_ALIVE_SENT;
783 		return 1;
784 	}
785 	return 0;
786 }
787 
788 /* Post the send request */
smbd_post_send(struct smbd_connection * info,struct smbd_request * request)789 static int smbd_post_send(struct smbd_connection *info,
790 		struct smbd_request *request)
791 {
792 	struct smbdirect_socket *sc = &info->socket;
793 	struct smbdirect_socket_parameters *sp = &sc->parameters;
794 	struct ib_send_wr send_wr;
795 	int rc, i;
796 
797 	for (i = 0; i < request->num_sge; i++) {
798 		log_rdma_send(INFO,
799 			"rdma_request sge[%d] addr=0x%llx length=%u\n",
800 			i, request->sge[i].addr, request->sge[i].length);
801 		ib_dma_sync_single_for_device(
802 			sc->ib.dev,
803 			request->sge[i].addr,
804 			request->sge[i].length,
805 			DMA_TO_DEVICE);
806 	}
807 
808 	request->cqe.done = send_done;
809 
810 	send_wr.next = NULL;
811 	send_wr.wr_cqe = &request->cqe;
812 	send_wr.sg_list = request->sge;
813 	send_wr.num_sge = request->num_sge;
814 	send_wr.opcode = IB_WR_SEND;
815 	send_wr.send_flags = IB_SEND_SIGNALED;
816 
817 	rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
818 	if (rc) {
819 		log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
820 		smbd_disconnect_rdma_connection(info);
821 		rc = -EAGAIN;
822 	} else
823 		/* Reset timer for idle connection after packet is sent */
824 		mod_delayed_work(info->workqueue, &info->idle_timer_work,
825 			msecs_to_jiffies(sp->keepalive_interval_msec));
826 
827 	return rc;
828 }
829 
smbd_post_send_iter(struct smbd_connection * info,struct iov_iter * iter,int * _remaining_data_length)830 static int smbd_post_send_iter(struct smbd_connection *info,
831 			       struct iov_iter *iter,
832 			       int *_remaining_data_length)
833 {
834 	struct smbdirect_socket *sc = &info->socket;
835 	struct smbdirect_socket_parameters *sp = &sc->parameters;
836 	int i, rc;
837 	int header_length;
838 	int data_length;
839 	struct smbd_request *request;
840 	struct smbdirect_data_transfer *packet;
841 	int new_credits = 0;
842 
843 wait_credit:
844 	/* Wait for send credits. A SMBD packet needs one credit */
845 	rc = wait_event_interruptible(info->wait_send_queue,
846 		atomic_read(&info->send_credits) > 0 ||
847 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
848 	if (rc)
849 		goto err_wait_credit;
850 
851 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
852 		log_outgoing(ERR, "disconnected not sending on wait_credit\n");
853 		rc = -EAGAIN;
854 		goto err_wait_credit;
855 	}
856 	if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
857 		atomic_inc(&info->send_credits);
858 		goto wait_credit;
859 	}
860 
861 wait_send_queue:
862 	wait_event(info->wait_post_send,
863 		atomic_read(&info->send_pending) < sp->send_credit_target ||
864 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
865 
866 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
867 		log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
868 		rc = -EAGAIN;
869 		goto err_wait_send_queue;
870 	}
871 
872 	if (unlikely(atomic_inc_return(&info->send_pending) >
873 				sp->send_credit_target)) {
874 		atomic_dec(&info->send_pending);
875 		goto wait_send_queue;
876 	}
877 
878 	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
879 	if (!request) {
880 		rc = -ENOMEM;
881 		goto err_alloc;
882 	}
883 
884 	request->info = info;
885 	memset(request->sge, 0, sizeof(request->sge));
886 
887 	/* Fill in the data payload to find out how much data we can add */
888 	if (iter) {
889 		struct smb_extract_to_rdma extract = {
890 			.nr_sge		= 1,
891 			.max_sge	= SMBDIRECT_MAX_SEND_SGE,
892 			.sge		= request->sge,
893 			.device		= sc->ib.dev,
894 			.local_dma_lkey	= sc->ib.pd->local_dma_lkey,
895 			.direction	= DMA_TO_DEVICE,
896 		};
897 		size_t payload_len = umin(*_remaining_data_length,
898 					  sp->max_send_size - sizeof(*packet));
899 
900 		rc = smb_extract_iter_to_rdma(iter, payload_len,
901 					      &extract);
902 		if (rc < 0)
903 			goto err_dma;
904 		data_length = rc;
905 		request->num_sge = extract.nr_sge;
906 		*_remaining_data_length -= data_length;
907 	} else {
908 		data_length = 0;
909 		request->num_sge = 1;
910 	}
911 
912 	/* Fill in the packet header */
913 	packet = smbd_request_payload(request);
914 	packet->credits_requested = cpu_to_le16(sp->send_credit_target);
915 
916 	new_credits = manage_credits_prior_sending(info);
917 	atomic_add(new_credits, &info->receive_credits);
918 	packet->credits_granted = cpu_to_le16(new_credits);
919 
920 	info->send_immediate = false;
921 
922 	packet->flags = 0;
923 	if (manage_keep_alive_before_sending(info))
924 		packet->flags |= cpu_to_le16(SMBDIRECT_FLAG_RESPONSE_REQUESTED);
925 
926 	packet->reserved = 0;
927 	if (!data_length)
928 		packet->data_offset = 0;
929 	else
930 		packet->data_offset = cpu_to_le32(24);
931 	packet->data_length = cpu_to_le32(data_length);
932 	packet->remaining_data_length = cpu_to_le32(*_remaining_data_length);
933 	packet->padding = 0;
934 
935 	log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
936 		     le16_to_cpu(packet->credits_requested),
937 		     le16_to_cpu(packet->credits_granted),
938 		     le32_to_cpu(packet->data_offset),
939 		     le32_to_cpu(packet->data_length),
940 		     le32_to_cpu(packet->remaining_data_length));
941 
942 	/* Map the packet to DMA */
943 	header_length = sizeof(struct smbdirect_data_transfer);
944 	/* If this is a packet without payload, don't send padding */
945 	if (!data_length)
946 		header_length = offsetof(struct smbdirect_data_transfer, padding);
947 
948 	request->sge[0].addr = ib_dma_map_single(sc->ib.dev,
949 						 (void *)packet,
950 						 header_length,
951 						 DMA_TO_DEVICE);
952 	if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
953 		rc = -EIO;
954 		request->sge[0].addr = 0;
955 		goto err_dma;
956 	}
957 
958 	request->sge[0].length = header_length;
959 	request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
960 
961 	rc = smbd_post_send(info, request);
962 	if (!rc)
963 		return 0;
964 
965 err_dma:
966 	for (i = 0; i < request->num_sge; i++)
967 		if (request->sge[i].addr)
968 			ib_dma_unmap_single(sc->ib.dev,
969 					    request->sge[i].addr,
970 					    request->sge[i].length,
971 					    DMA_TO_DEVICE);
972 	mempool_free(request, info->request_mempool);
973 
974 	/* roll back receive credits and credits to be offered */
975 	spin_lock(&info->lock_new_credits_offered);
976 	info->new_credits_offered += new_credits;
977 	spin_unlock(&info->lock_new_credits_offered);
978 	atomic_sub(new_credits, &info->receive_credits);
979 
980 err_alloc:
981 	if (atomic_dec_and_test(&info->send_pending))
982 		wake_up(&info->wait_send_pending);
983 
984 err_wait_send_queue:
985 	/* roll back send credits and pending */
986 	atomic_inc(&info->send_credits);
987 
988 err_wait_credit:
989 	return rc;
990 }
991 
992 /*
993  * Send an empty message
994  * Empty message is used to extend credits to peer to for keep live
995  * while there is no upper layer payload to send at the time
996  */
smbd_post_send_empty(struct smbd_connection * info)997 static int smbd_post_send_empty(struct smbd_connection *info)
998 {
999 	int remaining_data_length = 0;
1000 
1001 	info->count_send_empty++;
1002 	return smbd_post_send_iter(info, NULL, &remaining_data_length);
1003 }
1004 
smbd_post_send_full_iter(struct smbd_connection * info,struct iov_iter * iter,int * _remaining_data_length)1005 static int smbd_post_send_full_iter(struct smbd_connection *info,
1006 				    struct iov_iter *iter,
1007 				    int *_remaining_data_length)
1008 {
1009 	int rc = 0;
1010 
1011 	/*
1012 	 * smbd_post_send_iter() respects the
1013 	 * negotiated max_send_size, so we need to
1014 	 * loop until the full iter is posted
1015 	 */
1016 
1017 	while (iov_iter_count(iter) > 0) {
1018 		rc = smbd_post_send_iter(info, iter, _remaining_data_length);
1019 		if (rc < 0)
1020 			break;
1021 	}
1022 
1023 	return rc;
1024 }
1025 
1026 /*
1027  * Post a receive request to the transport
1028  * The remote peer can only send data when a receive request is posted
1029  * The interaction is controlled by send/receive credit system
1030  */
smbd_post_recv(struct smbd_connection * info,struct smbd_response * response)1031 static int smbd_post_recv(
1032 		struct smbd_connection *info, struct smbd_response *response)
1033 {
1034 	struct smbdirect_socket *sc = &info->socket;
1035 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1036 	struct ib_recv_wr recv_wr;
1037 	int rc = -EIO;
1038 
1039 	response->sge.addr = ib_dma_map_single(
1040 				sc->ib.dev, response->packet,
1041 				sp->max_recv_size, DMA_FROM_DEVICE);
1042 	if (ib_dma_mapping_error(sc->ib.dev, response->sge.addr))
1043 		return rc;
1044 
1045 	response->sge.length = sp->max_recv_size;
1046 	response->sge.lkey = sc->ib.pd->local_dma_lkey;
1047 
1048 	response->cqe.done = recv_done;
1049 
1050 	recv_wr.wr_cqe = &response->cqe;
1051 	recv_wr.next = NULL;
1052 	recv_wr.sg_list = &response->sge;
1053 	recv_wr.num_sge = 1;
1054 
1055 	rc = ib_post_recv(sc->ib.qp, &recv_wr, NULL);
1056 	if (rc) {
1057 		ib_dma_unmap_single(sc->ib.dev, response->sge.addr,
1058 				    response->sge.length, DMA_FROM_DEVICE);
1059 		response->sge.length = 0;
1060 		smbd_disconnect_rdma_connection(info);
1061 		log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1062 	}
1063 
1064 	return rc;
1065 }
1066 
1067 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
smbd_negotiate(struct smbd_connection * info)1068 static int smbd_negotiate(struct smbd_connection *info)
1069 {
1070 	int rc;
1071 	struct smbd_response *response = get_receive_buffer(info);
1072 
1073 	response->type = SMBD_NEGOTIATE_RESP;
1074 	rc = smbd_post_recv(info, response);
1075 	log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1076 		       rc, response->sge.addr,
1077 		       response->sge.length, response->sge.lkey);
1078 	if (rc) {
1079 		put_receive_buffer(info, response);
1080 		return rc;
1081 	}
1082 
1083 	init_completion(&info->negotiate_completion);
1084 	info->negotiate_done = false;
1085 	rc = smbd_post_send_negotiate_req(info);
1086 	if (rc)
1087 		return rc;
1088 
1089 	rc = wait_for_completion_interruptible_timeout(
1090 		&info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1091 	log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1092 
1093 	if (info->negotiate_done)
1094 		return 0;
1095 
1096 	if (rc == 0)
1097 		rc = -ETIMEDOUT;
1098 	else if (rc == -ERESTARTSYS)
1099 		rc = -EINTR;
1100 	else
1101 		rc = -ENOTCONN;
1102 
1103 	return rc;
1104 }
1105 
1106 /*
1107  * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1108  * This is a queue for reassembling upper layer payload and present to upper
1109  * layer. All the inncoming payload go to the reassembly queue, regardless of
1110  * if reassembly is required. The uuper layer code reads from the queue for all
1111  * incoming payloads.
1112  * Put a received packet to the reassembly queue
1113  * response: the packet received
1114  * data_length: the size of payload in this packet
1115  */
enqueue_reassembly(struct smbd_connection * info,struct smbd_response * response,int data_length)1116 static void enqueue_reassembly(
1117 	struct smbd_connection *info,
1118 	struct smbd_response *response,
1119 	int data_length)
1120 {
1121 	spin_lock(&info->reassembly_queue_lock);
1122 	list_add_tail(&response->list, &info->reassembly_queue);
1123 	info->reassembly_queue_length++;
1124 	/*
1125 	 * Make sure reassembly_data_length is updated after list and
1126 	 * reassembly_queue_length are updated. On the dequeue side
1127 	 * reassembly_data_length is checked without a lock to determine
1128 	 * if reassembly_queue_length and list is up to date
1129 	 */
1130 	virt_wmb();
1131 	info->reassembly_data_length += data_length;
1132 	spin_unlock(&info->reassembly_queue_lock);
1133 	info->count_reassembly_queue++;
1134 	info->count_enqueue_reassembly_queue++;
1135 }
1136 
1137 /*
1138  * Get the first entry at the front of reassembly queue
1139  * Caller is responsible for locking
1140  * return value: the first entry if any, NULL if queue is empty
1141  */
_get_first_reassembly(struct smbd_connection * info)1142 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1143 {
1144 	struct smbd_response *ret = NULL;
1145 
1146 	if (!list_empty(&info->reassembly_queue)) {
1147 		ret = list_first_entry(
1148 			&info->reassembly_queue,
1149 			struct smbd_response, list);
1150 	}
1151 	return ret;
1152 }
1153 
1154 /*
1155  * Get a receive buffer
1156  * For each remote send, we need to post a receive. The receive buffers are
1157  * pre-allocated in advance.
1158  * return value: the receive buffer, NULL if none is available
1159  */
get_receive_buffer(struct smbd_connection * info)1160 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1161 {
1162 	struct smbd_response *ret = NULL;
1163 	unsigned long flags;
1164 
1165 	spin_lock_irqsave(&info->receive_queue_lock, flags);
1166 	if (!list_empty(&info->receive_queue)) {
1167 		ret = list_first_entry(
1168 			&info->receive_queue,
1169 			struct smbd_response, list);
1170 		list_del(&ret->list);
1171 		info->count_receive_queue--;
1172 		info->count_get_receive_buffer++;
1173 	}
1174 	spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1175 
1176 	return ret;
1177 }
1178 
1179 /*
1180  * Return a receive buffer
1181  * Upon returning of a receive buffer, we can post new receive and extend
1182  * more receive credits to remote peer. This is done immediately after a
1183  * receive buffer is returned.
1184  */
put_receive_buffer(struct smbd_connection * info,struct smbd_response * response)1185 static void put_receive_buffer(
1186 	struct smbd_connection *info, struct smbd_response *response)
1187 {
1188 	struct smbdirect_socket *sc = &info->socket;
1189 	unsigned long flags;
1190 
1191 	if (likely(response->sge.length != 0)) {
1192 		ib_dma_unmap_single(sc->ib.dev,
1193 				    response->sge.addr,
1194 				    response->sge.length,
1195 				    DMA_FROM_DEVICE);
1196 		response->sge.length = 0;
1197 	}
1198 
1199 	spin_lock_irqsave(&info->receive_queue_lock, flags);
1200 	list_add_tail(&response->list, &info->receive_queue);
1201 	info->count_receive_queue++;
1202 	info->count_put_receive_buffer++;
1203 	spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1204 
1205 	queue_work(info->workqueue, &info->post_send_credits_work);
1206 }
1207 
1208 /* Preallocate all receive buffer on transport establishment */
allocate_receive_buffers(struct smbd_connection * info,int num_buf)1209 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1210 {
1211 	int i;
1212 	struct smbd_response *response;
1213 
1214 	INIT_LIST_HEAD(&info->reassembly_queue);
1215 	spin_lock_init(&info->reassembly_queue_lock);
1216 	info->reassembly_data_length = 0;
1217 	info->reassembly_queue_length = 0;
1218 
1219 	INIT_LIST_HEAD(&info->receive_queue);
1220 	spin_lock_init(&info->receive_queue_lock);
1221 	info->count_receive_queue = 0;
1222 
1223 	init_waitqueue_head(&info->wait_receive_queues);
1224 
1225 	for (i = 0; i < num_buf; i++) {
1226 		response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1227 		if (!response)
1228 			goto allocate_failed;
1229 
1230 		response->info = info;
1231 		response->sge.length = 0;
1232 		list_add_tail(&response->list, &info->receive_queue);
1233 		info->count_receive_queue++;
1234 	}
1235 
1236 	return 0;
1237 
1238 allocate_failed:
1239 	while (!list_empty(&info->receive_queue)) {
1240 		response = list_first_entry(
1241 				&info->receive_queue,
1242 				struct smbd_response, list);
1243 		list_del(&response->list);
1244 		info->count_receive_queue--;
1245 
1246 		mempool_free(response, info->response_mempool);
1247 	}
1248 	return -ENOMEM;
1249 }
1250 
destroy_receive_buffers(struct smbd_connection * info)1251 static void destroy_receive_buffers(struct smbd_connection *info)
1252 {
1253 	struct smbd_response *response;
1254 
1255 	while ((response = get_receive_buffer(info)))
1256 		mempool_free(response, info->response_mempool);
1257 }
1258 
1259 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
idle_connection_timer(struct work_struct * work)1260 static void idle_connection_timer(struct work_struct *work)
1261 {
1262 	struct smbd_connection *info = container_of(
1263 					work, struct smbd_connection,
1264 					idle_timer_work.work);
1265 	struct smbdirect_socket *sc = &info->socket;
1266 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1267 
1268 	if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1269 		log_keep_alive(ERR,
1270 			"error status info->keep_alive_requested=%d\n",
1271 			info->keep_alive_requested);
1272 		smbd_disconnect_rdma_connection(info);
1273 		return;
1274 	}
1275 
1276 	log_keep_alive(INFO, "about to send an empty idle message\n");
1277 	smbd_post_send_empty(info);
1278 
1279 	/* Setup the next idle timeout work */
1280 	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1281 			msecs_to_jiffies(sp->keepalive_interval_msec));
1282 }
1283 
1284 /*
1285  * Destroy the transport and related RDMA and memory resources
1286  * Need to go through all the pending counters and make sure on one is using
1287  * the transport while it is destroyed
1288  */
smbd_destroy(struct TCP_Server_Info * server)1289 void smbd_destroy(struct TCP_Server_Info *server)
1290 {
1291 	struct smbd_connection *info = server->smbd_conn;
1292 	struct smbdirect_socket *sc;
1293 	struct smbdirect_socket_parameters *sp;
1294 	struct smbd_response *response;
1295 	unsigned long flags;
1296 
1297 	if (!info) {
1298 		log_rdma_event(INFO, "rdma session already destroyed\n");
1299 		return;
1300 	}
1301 	sc = &info->socket;
1302 	sp = &sc->parameters;
1303 
1304 	log_rdma_event(INFO, "destroying rdma session\n");
1305 	if (sc->status != SMBDIRECT_SOCKET_DISCONNECTED) {
1306 		rdma_disconnect(sc->rdma.cm_id);
1307 		log_rdma_event(INFO, "wait for transport being disconnected\n");
1308 		wait_event_interruptible(
1309 			info->disconn_wait,
1310 			sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1311 	}
1312 
1313 	log_rdma_event(INFO, "cancelling post_send_credits_work\n");
1314 	disable_work_sync(&info->post_send_credits_work);
1315 
1316 	log_rdma_event(INFO, "destroying qp\n");
1317 	ib_drain_qp(sc->ib.qp);
1318 	rdma_destroy_qp(sc->rdma.cm_id);
1319 	sc->ib.qp = NULL;
1320 
1321 	log_rdma_event(INFO, "cancelling idle timer\n");
1322 	cancel_delayed_work_sync(&info->idle_timer_work);
1323 
1324 	/* It's not possible for upper layer to get to reassembly */
1325 	log_rdma_event(INFO, "drain the reassembly queue\n");
1326 	do {
1327 		spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1328 		response = _get_first_reassembly(info);
1329 		if (response) {
1330 			list_del(&response->list);
1331 			spin_unlock_irqrestore(
1332 				&info->reassembly_queue_lock, flags);
1333 			put_receive_buffer(info, response);
1334 		} else
1335 			spin_unlock_irqrestore(
1336 				&info->reassembly_queue_lock, flags);
1337 	} while (response);
1338 	info->reassembly_data_length = 0;
1339 
1340 	log_rdma_event(INFO, "free receive buffers\n");
1341 	wait_event(info->wait_receive_queues,
1342 		info->count_receive_queue == sp->recv_credit_max);
1343 	destroy_receive_buffers(info);
1344 
1345 	/*
1346 	 * For performance reasons, memory registration and deregistration
1347 	 * are not locked by srv_mutex. It is possible some processes are
1348 	 * blocked on transport srv_mutex while holding memory registration.
1349 	 * Release the transport srv_mutex to allow them to hit the failure
1350 	 * path when sending data, and then release memory registrations.
1351 	 */
1352 	log_rdma_event(INFO, "freeing mr list\n");
1353 	wake_up_interruptible_all(&info->wait_mr);
1354 	while (atomic_read(&info->mr_used_count)) {
1355 		cifs_server_unlock(server);
1356 		msleep(1000);
1357 		cifs_server_lock(server);
1358 	}
1359 	destroy_mr_list(info);
1360 
1361 	ib_free_cq(sc->ib.send_cq);
1362 	ib_free_cq(sc->ib.recv_cq);
1363 	ib_dealloc_pd(sc->ib.pd);
1364 	rdma_destroy_id(sc->rdma.cm_id);
1365 
1366 	/* free mempools */
1367 	mempool_destroy(info->request_mempool);
1368 	kmem_cache_destroy(info->request_cache);
1369 
1370 	mempool_destroy(info->response_mempool);
1371 	kmem_cache_destroy(info->response_cache);
1372 
1373 	sc->status = SMBDIRECT_SOCKET_DESTROYED;
1374 
1375 	destroy_workqueue(info->workqueue);
1376 	log_rdma_event(INFO,  "rdma session destroyed\n");
1377 	kfree(info);
1378 	server->smbd_conn = NULL;
1379 }
1380 
1381 /*
1382  * Reconnect this SMBD connection, called from upper layer
1383  * return value: 0 on success, or actual error code
1384  */
smbd_reconnect(struct TCP_Server_Info * server)1385 int smbd_reconnect(struct TCP_Server_Info *server)
1386 {
1387 	log_rdma_event(INFO, "reconnecting rdma session\n");
1388 
1389 	if (!server->smbd_conn) {
1390 		log_rdma_event(INFO, "rdma session already destroyed\n");
1391 		goto create_conn;
1392 	}
1393 
1394 	/*
1395 	 * This is possible if transport is disconnected and we haven't received
1396 	 * notification from RDMA, but upper layer has detected timeout
1397 	 */
1398 	if (server->smbd_conn->socket.status == SMBDIRECT_SOCKET_CONNECTED) {
1399 		log_rdma_event(INFO, "disconnecting transport\n");
1400 		smbd_destroy(server);
1401 	}
1402 
1403 create_conn:
1404 	log_rdma_event(INFO, "creating rdma session\n");
1405 	server->smbd_conn = smbd_get_connection(
1406 		server, (struct sockaddr *) &server->dstaddr);
1407 
1408 	if (server->smbd_conn) {
1409 		cifs_dbg(VFS, "RDMA transport re-established\n");
1410 		trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr);
1411 		return 0;
1412 	}
1413 	trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr);
1414 	return -ENOENT;
1415 }
1416 
destroy_caches_and_workqueue(struct smbd_connection * info)1417 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1418 {
1419 	destroy_receive_buffers(info);
1420 	destroy_workqueue(info->workqueue);
1421 	mempool_destroy(info->response_mempool);
1422 	kmem_cache_destroy(info->response_cache);
1423 	mempool_destroy(info->request_mempool);
1424 	kmem_cache_destroy(info->request_cache);
1425 }
1426 
1427 #define MAX_NAME_LEN	80
allocate_caches_and_workqueue(struct smbd_connection * info)1428 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1429 {
1430 	struct smbdirect_socket *sc = &info->socket;
1431 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1432 	char name[MAX_NAME_LEN];
1433 	int rc;
1434 
1435 	if (WARN_ON_ONCE(sp->max_recv_size < sizeof(struct smbdirect_data_transfer)))
1436 		return -ENOMEM;
1437 
1438 	scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1439 	info->request_cache =
1440 		kmem_cache_create(
1441 			name,
1442 			sizeof(struct smbd_request) +
1443 				sizeof(struct smbdirect_data_transfer),
1444 			0, SLAB_HWCACHE_ALIGN, NULL);
1445 	if (!info->request_cache)
1446 		return -ENOMEM;
1447 
1448 	info->request_mempool =
1449 		mempool_create(sp->send_credit_target, mempool_alloc_slab,
1450 			mempool_free_slab, info->request_cache);
1451 	if (!info->request_mempool)
1452 		goto out1;
1453 
1454 	scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1455 
1456 	struct kmem_cache_args response_args = {
1457 		.align		= __alignof__(struct smbd_response),
1458 		.useroffset	= (offsetof(struct smbd_response, packet) +
1459 				   sizeof(struct smbdirect_data_transfer)),
1460 		.usersize	= sp->max_recv_size - sizeof(struct smbdirect_data_transfer),
1461 	};
1462 	info->response_cache =
1463 		kmem_cache_create(name,
1464 				  sizeof(struct smbd_response) + sp->max_recv_size,
1465 				  &response_args, SLAB_HWCACHE_ALIGN);
1466 	if (!info->response_cache)
1467 		goto out2;
1468 
1469 	info->response_mempool =
1470 		mempool_create(sp->recv_credit_max, mempool_alloc_slab,
1471 		       mempool_free_slab, info->response_cache);
1472 	if (!info->response_mempool)
1473 		goto out3;
1474 
1475 	scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1476 	info->workqueue = create_workqueue(name);
1477 	if (!info->workqueue)
1478 		goto out4;
1479 
1480 	rc = allocate_receive_buffers(info, sp->recv_credit_max);
1481 	if (rc) {
1482 		log_rdma_event(ERR, "failed to allocate receive buffers\n");
1483 		goto out5;
1484 	}
1485 
1486 	return 0;
1487 
1488 out5:
1489 	destroy_workqueue(info->workqueue);
1490 out4:
1491 	mempool_destroy(info->response_mempool);
1492 out3:
1493 	kmem_cache_destroy(info->response_cache);
1494 out2:
1495 	mempool_destroy(info->request_mempool);
1496 out1:
1497 	kmem_cache_destroy(info->request_cache);
1498 	return -ENOMEM;
1499 }
1500 
1501 /* Create a SMBD connection, called by upper layer */
_smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr,int port)1502 static struct smbd_connection *_smbd_get_connection(
1503 	struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1504 {
1505 	int rc;
1506 	struct smbd_connection *info;
1507 	struct smbdirect_socket *sc;
1508 	struct smbdirect_socket_parameters *sp;
1509 	struct rdma_conn_param conn_param;
1510 	struct ib_qp_init_attr qp_attr;
1511 	struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1512 	struct ib_port_immutable port_immutable;
1513 	u32 ird_ord_hdr[2];
1514 
1515 	info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1516 	if (!info)
1517 		return NULL;
1518 	sc = &info->socket;
1519 	sp = &sc->parameters;
1520 
1521 	sc->status = SMBDIRECT_SOCKET_CONNECTING;
1522 	rc = smbd_ia_open(info, dstaddr, port);
1523 	if (rc) {
1524 		log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1525 		goto create_id_failed;
1526 	}
1527 
1528 	if (smbd_send_credit_target > sc->ib.dev->attrs.max_cqe ||
1529 	    smbd_send_credit_target > sc->ib.dev->attrs.max_qp_wr) {
1530 		log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1531 			       smbd_send_credit_target,
1532 			       sc->ib.dev->attrs.max_cqe,
1533 			       sc->ib.dev->attrs.max_qp_wr);
1534 		goto config_failed;
1535 	}
1536 
1537 	if (smbd_receive_credit_max > sc->ib.dev->attrs.max_cqe ||
1538 	    smbd_receive_credit_max > sc->ib.dev->attrs.max_qp_wr) {
1539 		log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1540 			       smbd_receive_credit_max,
1541 			       sc->ib.dev->attrs.max_cqe,
1542 			       sc->ib.dev->attrs.max_qp_wr);
1543 		goto config_failed;
1544 	}
1545 
1546 	sp->recv_credit_max = smbd_receive_credit_max;
1547 	sp->send_credit_target = smbd_send_credit_target;
1548 	sp->max_send_size = smbd_max_send_size;
1549 	sp->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1550 	sp->max_recv_size = smbd_max_receive_size;
1551 	sp->keepalive_interval_msec = smbd_keep_alive_interval * 1000;
1552 
1553 	if (sc->ib.dev->attrs.max_send_sge < SMBDIRECT_MAX_SEND_SGE ||
1554 	    sc->ib.dev->attrs.max_recv_sge < SMBDIRECT_MAX_RECV_SGE) {
1555 		log_rdma_event(ERR,
1556 			"device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1557 			IB_DEVICE_NAME_MAX,
1558 			sc->ib.dev->name,
1559 			sc->ib.dev->attrs.max_send_sge,
1560 			sc->ib.dev->attrs.max_recv_sge);
1561 		goto config_failed;
1562 	}
1563 
1564 	sc->ib.send_cq =
1565 		ib_alloc_cq_any(sc->ib.dev, info,
1566 				sp->send_credit_target, IB_POLL_SOFTIRQ);
1567 	if (IS_ERR(sc->ib.send_cq)) {
1568 		sc->ib.send_cq = NULL;
1569 		goto alloc_cq_failed;
1570 	}
1571 
1572 	sc->ib.recv_cq =
1573 		ib_alloc_cq_any(sc->ib.dev, info,
1574 				sp->recv_credit_max, IB_POLL_SOFTIRQ);
1575 	if (IS_ERR(sc->ib.recv_cq)) {
1576 		sc->ib.recv_cq = NULL;
1577 		goto alloc_cq_failed;
1578 	}
1579 
1580 	memset(&qp_attr, 0, sizeof(qp_attr));
1581 	qp_attr.event_handler = smbd_qp_async_error_upcall;
1582 	qp_attr.qp_context = info;
1583 	qp_attr.cap.max_send_wr = sp->send_credit_target;
1584 	qp_attr.cap.max_recv_wr = sp->recv_credit_max;
1585 	qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SEND_SGE;
1586 	qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_RECV_SGE;
1587 	qp_attr.cap.max_inline_data = 0;
1588 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1589 	qp_attr.qp_type = IB_QPT_RC;
1590 	qp_attr.send_cq = sc->ib.send_cq;
1591 	qp_attr.recv_cq = sc->ib.recv_cq;
1592 	qp_attr.port_num = ~0;
1593 
1594 	rc = rdma_create_qp(sc->rdma.cm_id, sc->ib.pd, &qp_attr);
1595 	if (rc) {
1596 		log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1597 		goto create_qp_failed;
1598 	}
1599 	sc->ib.qp = sc->rdma.cm_id->qp;
1600 
1601 	memset(&conn_param, 0, sizeof(conn_param));
1602 	conn_param.initiator_depth = 0;
1603 
1604 	conn_param.responder_resources =
1605 		min(sc->ib.dev->attrs.max_qp_rd_atom,
1606 		    SMBD_CM_RESPONDER_RESOURCES);
1607 	info->responder_resources = conn_param.responder_resources;
1608 	log_rdma_mr(INFO, "responder_resources=%d\n",
1609 		info->responder_resources);
1610 
1611 	/* Need to send IRD/ORD in private data for iWARP */
1612 	sc->ib.dev->ops.get_port_immutable(
1613 		sc->ib.dev, sc->rdma.cm_id->port_num, &port_immutable);
1614 	if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1615 		ird_ord_hdr[0] = info->responder_resources;
1616 		ird_ord_hdr[1] = 1;
1617 		conn_param.private_data = ird_ord_hdr;
1618 		conn_param.private_data_len = sizeof(ird_ord_hdr);
1619 	} else {
1620 		conn_param.private_data = NULL;
1621 		conn_param.private_data_len = 0;
1622 	}
1623 
1624 	conn_param.retry_count = SMBD_CM_RETRY;
1625 	conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1626 	conn_param.flow_control = 0;
1627 
1628 	log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1629 		&addr_in->sin_addr, port);
1630 
1631 	init_waitqueue_head(&info->conn_wait);
1632 	init_waitqueue_head(&info->disconn_wait);
1633 	init_waitqueue_head(&info->wait_reassembly_queue);
1634 	rc = rdma_connect(sc->rdma.cm_id, &conn_param);
1635 	if (rc) {
1636 		log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1637 		goto rdma_connect_failed;
1638 	}
1639 
1640 	wait_event_interruptible_timeout(
1641 		info->conn_wait,
1642 		sc->status != SMBDIRECT_SOCKET_CONNECTING,
1643 		msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
1644 
1645 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1646 		log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1647 		goto rdma_connect_failed;
1648 	}
1649 
1650 	log_rdma_event(INFO, "rdma_connect connected\n");
1651 
1652 	rc = allocate_caches_and_workqueue(info);
1653 	if (rc) {
1654 		log_rdma_event(ERR, "cache allocation failed\n");
1655 		goto allocate_cache_failed;
1656 	}
1657 
1658 	init_waitqueue_head(&info->wait_send_queue);
1659 	INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1660 	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1661 		msecs_to_jiffies(sp->keepalive_interval_msec));
1662 
1663 	init_waitqueue_head(&info->wait_send_pending);
1664 	atomic_set(&info->send_pending, 0);
1665 
1666 	init_waitqueue_head(&info->wait_post_send);
1667 
1668 	INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1669 	INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1670 	info->new_credits_offered = 0;
1671 	spin_lock_init(&info->lock_new_credits_offered);
1672 
1673 	rc = smbd_negotiate(info);
1674 	if (rc) {
1675 		log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1676 		goto negotiation_failed;
1677 	}
1678 
1679 	rc = allocate_mr_list(info);
1680 	if (rc) {
1681 		log_rdma_mr(ERR, "memory registration allocation failed\n");
1682 		goto allocate_mr_failed;
1683 	}
1684 
1685 	return info;
1686 
1687 allocate_mr_failed:
1688 	/* At this point, need to a full transport shutdown */
1689 	server->smbd_conn = info;
1690 	smbd_destroy(server);
1691 	return NULL;
1692 
1693 negotiation_failed:
1694 	cancel_delayed_work_sync(&info->idle_timer_work);
1695 	destroy_caches_and_workqueue(info);
1696 	sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
1697 	rdma_disconnect(sc->rdma.cm_id);
1698 	wait_event(info->conn_wait,
1699 		sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1700 
1701 allocate_cache_failed:
1702 rdma_connect_failed:
1703 	rdma_destroy_qp(sc->rdma.cm_id);
1704 
1705 create_qp_failed:
1706 alloc_cq_failed:
1707 	if (sc->ib.send_cq)
1708 		ib_free_cq(sc->ib.send_cq);
1709 	if (sc->ib.recv_cq)
1710 		ib_free_cq(sc->ib.recv_cq);
1711 
1712 config_failed:
1713 	ib_dealloc_pd(sc->ib.pd);
1714 	rdma_destroy_id(sc->rdma.cm_id);
1715 
1716 create_id_failed:
1717 	kfree(info);
1718 	return NULL;
1719 }
1720 
smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr)1721 struct smbd_connection *smbd_get_connection(
1722 	struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1723 {
1724 	struct smbd_connection *ret;
1725 	int port = SMBD_PORT;
1726 
1727 try_again:
1728 	ret = _smbd_get_connection(server, dstaddr, port);
1729 
1730 	/* Try SMB_PORT if SMBD_PORT doesn't work */
1731 	if (!ret && port == SMBD_PORT) {
1732 		port = SMB_PORT;
1733 		goto try_again;
1734 	}
1735 	return ret;
1736 }
1737 
1738 /*
1739  * Receive data from the transport's receive reassembly queue
1740  * All the incoming data packets are placed in reassembly queue
1741  * iter: the buffer to read data into
1742  * size: the length of data to read
1743  * return value: actual data read
1744  *
1745  * Note: this implementation copies the data from reassembly queue to receive
1746  * buffers used by upper layer. This is not the optimal code path. A better way
1747  * to do it is to not have upper layer allocate its receive buffers but rather
1748  * borrow the buffer from reassembly queue, and return it after data is
1749  * consumed. But this will require more changes to upper layer code, and also
1750  * need to consider packet boundaries while they still being reassembled.
1751  */
smbd_recv(struct smbd_connection * info,struct msghdr * msg)1752 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1753 {
1754 	struct smbdirect_socket *sc = &info->socket;
1755 	struct smbd_response *response;
1756 	struct smbdirect_data_transfer *data_transfer;
1757 	size_t size = iov_iter_count(&msg->msg_iter);
1758 	int to_copy, to_read, data_read, offset;
1759 	u32 data_length, remaining_data_length, data_offset;
1760 	int rc;
1761 
1762 	if (WARN_ON_ONCE(iov_iter_rw(&msg->msg_iter) == WRITE))
1763 		return -EINVAL; /* It's a bug in upper layer to get there */
1764 
1765 again:
1766 	/*
1767 	 * No need to hold the reassembly queue lock all the time as we are
1768 	 * the only one reading from the front of the queue. The transport
1769 	 * may add more entries to the back of the queue at the same time
1770 	 */
1771 	log_read(INFO, "size=%zd info->reassembly_data_length=%d\n", size,
1772 		info->reassembly_data_length);
1773 	if (info->reassembly_data_length >= size) {
1774 		int queue_length;
1775 		int queue_removed = 0;
1776 
1777 		/*
1778 		 * Need to make sure reassembly_data_length is read before
1779 		 * reading reassembly_queue_length and calling
1780 		 * _get_first_reassembly. This call is lock free
1781 		 * as we never read at the end of the queue which are being
1782 		 * updated in SOFTIRQ as more data is received
1783 		 */
1784 		virt_rmb();
1785 		queue_length = info->reassembly_queue_length;
1786 		data_read = 0;
1787 		to_read = size;
1788 		offset = info->first_entry_offset;
1789 		while (data_read < size) {
1790 			response = _get_first_reassembly(info);
1791 			data_transfer = smbd_response_payload(response);
1792 			data_length = le32_to_cpu(data_transfer->data_length);
1793 			remaining_data_length =
1794 				le32_to_cpu(
1795 					data_transfer->remaining_data_length);
1796 			data_offset = le32_to_cpu(data_transfer->data_offset);
1797 
1798 			/*
1799 			 * The upper layer expects RFC1002 length at the
1800 			 * beginning of the payload. Return it to indicate
1801 			 * the total length of the packet. This minimize the
1802 			 * change to upper layer packet processing logic. This
1803 			 * will be eventually remove when an intermediate
1804 			 * transport layer is added
1805 			 */
1806 			if (response->first_segment && size == 4) {
1807 				unsigned int rfc1002_len =
1808 					data_length + remaining_data_length;
1809 				__be32 rfc1002_hdr = cpu_to_be32(rfc1002_len);
1810 				if (copy_to_iter(&rfc1002_hdr, sizeof(rfc1002_hdr),
1811 						 &msg->msg_iter) != sizeof(rfc1002_hdr))
1812 					return -EFAULT;
1813 				data_read = 4;
1814 				response->first_segment = false;
1815 				log_read(INFO, "returning rfc1002 length %d\n",
1816 					rfc1002_len);
1817 				goto read_rfc1002_done;
1818 			}
1819 
1820 			to_copy = min_t(int, data_length - offset, to_read);
1821 			if (copy_to_iter((char *)data_transfer + data_offset + offset,
1822 					 to_copy, &msg->msg_iter) != to_copy)
1823 				return -EFAULT;
1824 
1825 			/* move on to the next buffer? */
1826 			if (to_copy == data_length - offset) {
1827 				queue_length--;
1828 				/*
1829 				 * No need to lock if we are not at the
1830 				 * end of the queue
1831 				 */
1832 				if (queue_length)
1833 					list_del(&response->list);
1834 				else {
1835 					spin_lock_irq(
1836 						&info->reassembly_queue_lock);
1837 					list_del(&response->list);
1838 					spin_unlock_irq(
1839 						&info->reassembly_queue_lock);
1840 				}
1841 				queue_removed++;
1842 				info->count_reassembly_queue--;
1843 				info->count_dequeue_reassembly_queue++;
1844 				put_receive_buffer(info, response);
1845 				offset = 0;
1846 				log_read(INFO, "put_receive_buffer offset=0\n");
1847 			} else
1848 				offset += to_copy;
1849 
1850 			to_read -= to_copy;
1851 			data_read += to_copy;
1852 
1853 			log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1854 				 to_copy, data_length - offset,
1855 				 to_read, data_read, offset);
1856 		}
1857 
1858 		spin_lock_irq(&info->reassembly_queue_lock);
1859 		info->reassembly_data_length -= data_read;
1860 		info->reassembly_queue_length -= queue_removed;
1861 		spin_unlock_irq(&info->reassembly_queue_lock);
1862 
1863 		info->first_entry_offset = offset;
1864 		log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1865 			 data_read, info->reassembly_data_length,
1866 			 info->first_entry_offset);
1867 read_rfc1002_done:
1868 		return data_read;
1869 	}
1870 
1871 	log_read(INFO, "wait_event on more data\n");
1872 	rc = wait_event_interruptible(
1873 		info->wait_reassembly_queue,
1874 		info->reassembly_data_length >= size ||
1875 			sc->status != SMBDIRECT_SOCKET_CONNECTED);
1876 	/* Don't return any data if interrupted */
1877 	if (rc)
1878 		return rc;
1879 
1880 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1881 		log_read(ERR, "disconnected\n");
1882 		return -ECONNABORTED;
1883 	}
1884 
1885 	goto again;
1886 }
1887 
1888 /*
1889  * Send data to transport
1890  * Each rqst is transported as a SMBDirect payload
1891  * rqst: the data to write
1892  * return value: 0 if successfully write, otherwise error code
1893  */
smbd_send(struct TCP_Server_Info * server,int num_rqst,struct smb_rqst * rqst_array)1894 int smbd_send(struct TCP_Server_Info *server,
1895 	int num_rqst, struct smb_rqst *rqst_array)
1896 {
1897 	struct smbd_connection *info = server->smbd_conn;
1898 	struct smbdirect_socket *sc = &info->socket;
1899 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1900 	struct smb_rqst *rqst;
1901 	struct iov_iter iter;
1902 	unsigned int remaining_data_length, klen;
1903 	int rc, i, rqst_idx;
1904 
1905 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
1906 		return -EAGAIN;
1907 
1908 	/*
1909 	 * Add in the page array if there is one. The caller needs to set
1910 	 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
1911 	 * ends at page boundary
1912 	 */
1913 	remaining_data_length = 0;
1914 	for (i = 0; i < num_rqst; i++)
1915 		remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
1916 
1917 	if (unlikely(remaining_data_length > sp->max_fragmented_send_size)) {
1918 		/* assertion: payload never exceeds negotiated maximum */
1919 		log_write(ERR, "payload size %d > max size %d\n",
1920 			remaining_data_length, sp->max_fragmented_send_size);
1921 		return -EINVAL;
1922 	}
1923 
1924 	log_write(INFO, "num_rqst=%d total length=%u\n",
1925 			num_rqst, remaining_data_length);
1926 
1927 	rqst_idx = 0;
1928 	do {
1929 		rqst = &rqst_array[rqst_idx];
1930 
1931 		cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
1932 			 rqst_idx, smb_rqst_len(server, rqst));
1933 		for (i = 0; i < rqst->rq_nvec; i++)
1934 			dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len);
1935 
1936 		log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n",
1937 			  rqst_idx, rqst->rq_nvec, remaining_data_length,
1938 			  iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst));
1939 
1940 		/* Send the metadata pages. */
1941 		klen = 0;
1942 		for (i = 0; i < rqst->rq_nvec; i++)
1943 			klen += rqst->rq_iov[i].iov_len;
1944 		iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen);
1945 
1946 		rc = smbd_post_send_full_iter(info, &iter, &remaining_data_length);
1947 		if (rc < 0)
1948 			break;
1949 
1950 		if (iov_iter_count(&rqst->rq_iter) > 0) {
1951 			/* And then the data pages if there are any */
1952 			rc = smbd_post_send_full_iter(info, &rqst->rq_iter,
1953 						      &remaining_data_length);
1954 			if (rc < 0)
1955 				break;
1956 		}
1957 
1958 	} while (++rqst_idx < num_rqst);
1959 
1960 	/*
1961 	 * As an optimization, we don't wait for individual I/O to finish
1962 	 * before sending the next one.
1963 	 * Send them all and wait for pending send count to get to 0
1964 	 * that means all the I/Os have been out and we are good to return
1965 	 */
1966 
1967 	wait_event(info->wait_send_pending,
1968 		atomic_read(&info->send_pending) == 0 ||
1969 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
1970 
1971 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED && rc == 0)
1972 		rc = -EAGAIN;
1973 
1974 	return rc;
1975 }
1976 
register_mr_done(struct ib_cq * cq,struct ib_wc * wc)1977 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
1978 {
1979 	struct smbd_mr *mr;
1980 	struct ib_cqe *cqe;
1981 
1982 	if (wc->status) {
1983 		log_rdma_mr(ERR, "status=%d\n", wc->status);
1984 		cqe = wc->wr_cqe;
1985 		mr = container_of(cqe, struct smbd_mr, cqe);
1986 		smbd_disconnect_rdma_connection(mr->conn);
1987 	}
1988 }
1989 
1990 /*
1991  * The work queue function that recovers MRs
1992  * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
1993  * again. Both calls are slow, so finish them in a workqueue. This will not
1994  * block I/O path.
1995  * There is one workqueue that recovers MRs, there is no need to lock as the
1996  * I/O requests calling smbd_register_mr will never update the links in the
1997  * mr_list.
1998  */
smbd_mr_recovery_work(struct work_struct * work)1999 static void smbd_mr_recovery_work(struct work_struct *work)
2000 {
2001 	struct smbd_connection *info =
2002 		container_of(work, struct smbd_connection, mr_recovery_work);
2003 	struct smbdirect_socket *sc = &info->socket;
2004 	struct smbd_mr *smbdirect_mr;
2005 	int rc;
2006 
2007 	list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2008 		if (smbdirect_mr->state == MR_ERROR) {
2009 
2010 			/* recover this MR entry */
2011 			rc = ib_dereg_mr(smbdirect_mr->mr);
2012 			if (rc) {
2013 				log_rdma_mr(ERR,
2014 					"ib_dereg_mr failed rc=%x\n",
2015 					rc);
2016 				smbd_disconnect_rdma_connection(info);
2017 				continue;
2018 			}
2019 
2020 			smbdirect_mr->mr = ib_alloc_mr(
2021 				sc->ib.pd, info->mr_type,
2022 				info->max_frmr_depth);
2023 			if (IS_ERR(smbdirect_mr->mr)) {
2024 				log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2025 					    info->mr_type,
2026 					    info->max_frmr_depth);
2027 				smbd_disconnect_rdma_connection(info);
2028 				continue;
2029 			}
2030 		} else
2031 			/* This MR is being used, don't recover it */
2032 			continue;
2033 
2034 		smbdirect_mr->state = MR_READY;
2035 
2036 		/* smbdirect_mr->state is updated by this function
2037 		 * and is read and updated by I/O issuing CPUs trying
2038 		 * to get a MR, the call to atomic_inc_return
2039 		 * implicates a memory barrier and guarantees this
2040 		 * value is updated before waking up any calls to
2041 		 * get_mr() from the I/O issuing CPUs
2042 		 */
2043 		if (atomic_inc_return(&info->mr_ready_count) == 1)
2044 			wake_up_interruptible(&info->wait_mr);
2045 	}
2046 }
2047 
destroy_mr_list(struct smbd_connection * info)2048 static void destroy_mr_list(struct smbd_connection *info)
2049 {
2050 	struct smbdirect_socket *sc = &info->socket;
2051 	struct smbd_mr *mr, *tmp;
2052 
2053 	cancel_work_sync(&info->mr_recovery_work);
2054 	list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2055 		if (mr->state == MR_INVALIDATED)
2056 			ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl,
2057 				mr->sgt.nents, mr->dir);
2058 		ib_dereg_mr(mr->mr);
2059 		kfree(mr->sgt.sgl);
2060 		kfree(mr);
2061 	}
2062 }
2063 
2064 /*
2065  * Allocate MRs used for RDMA read/write
2066  * The number of MRs will not exceed hardware capability in responder_resources
2067  * All MRs are kept in mr_list. The MR can be recovered after it's used
2068  * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2069  * as MRs are used and recovered for I/O, but the list links will not change
2070  */
allocate_mr_list(struct smbd_connection * info)2071 static int allocate_mr_list(struct smbd_connection *info)
2072 {
2073 	struct smbdirect_socket *sc = &info->socket;
2074 	int i;
2075 	struct smbd_mr *smbdirect_mr, *tmp;
2076 
2077 	INIT_LIST_HEAD(&info->mr_list);
2078 	init_waitqueue_head(&info->wait_mr);
2079 	spin_lock_init(&info->mr_list_lock);
2080 	atomic_set(&info->mr_ready_count, 0);
2081 	atomic_set(&info->mr_used_count, 0);
2082 	init_waitqueue_head(&info->wait_for_mr_cleanup);
2083 	INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2084 	/* Allocate more MRs (2x) than hardware responder_resources */
2085 	for (i = 0; i < info->responder_resources * 2; i++) {
2086 		smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2087 		if (!smbdirect_mr)
2088 			goto cleanup_entries;
2089 		smbdirect_mr->mr = ib_alloc_mr(sc->ib.pd, info->mr_type,
2090 					info->max_frmr_depth);
2091 		if (IS_ERR(smbdirect_mr->mr)) {
2092 			log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2093 				    info->mr_type, info->max_frmr_depth);
2094 			goto out;
2095 		}
2096 		smbdirect_mr->sgt.sgl = kcalloc(info->max_frmr_depth,
2097 						sizeof(struct scatterlist),
2098 						GFP_KERNEL);
2099 		if (!smbdirect_mr->sgt.sgl) {
2100 			log_rdma_mr(ERR, "failed to allocate sgl\n");
2101 			ib_dereg_mr(smbdirect_mr->mr);
2102 			goto out;
2103 		}
2104 		smbdirect_mr->state = MR_READY;
2105 		smbdirect_mr->conn = info;
2106 
2107 		list_add_tail(&smbdirect_mr->list, &info->mr_list);
2108 		atomic_inc(&info->mr_ready_count);
2109 	}
2110 	return 0;
2111 
2112 out:
2113 	kfree(smbdirect_mr);
2114 cleanup_entries:
2115 	list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2116 		list_del(&smbdirect_mr->list);
2117 		ib_dereg_mr(smbdirect_mr->mr);
2118 		kfree(smbdirect_mr->sgt.sgl);
2119 		kfree(smbdirect_mr);
2120 	}
2121 	return -ENOMEM;
2122 }
2123 
2124 /*
2125  * Get a MR from mr_list. This function waits until there is at least one
2126  * MR available in the list. It may access the list while the
2127  * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2128  * as they never modify the same places. However, there may be several CPUs
2129  * issuing I/O trying to get MR at the same time, mr_list_lock is used to
2130  * protect this situation.
2131  */
get_mr(struct smbd_connection * info)2132 static struct smbd_mr *get_mr(struct smbd_connection *info)
2133 {
2134 	struct smbdirect_socket *sc = &info->socket;
2135 	struct smbd_mr *ret;
2136 	int rc;
2137 again:
2138 	rc = wait_event_interruptible(info->wait_mr,
2139 		atomic_read(&info->mr_ready_count) ||
2140 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
2141 	if (rc) {
2142 		log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2143 		return NULL;
2144 	}
2145 
2146 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2147 		log_rdma_mr(ERR, "sc->status=%x\n", sc->status);
2148 		return NULL;
2149 	}
2150 
2151 	spin_lock(&info->mr_list_lock);
2152 	list_for_each_entry(ret, &info->mr_list, list) {
2153 		if (ret->state == MR_READY) {
2154 			ret->state = MR_REGISTERED;
2155 			spin_unlock(&info->mr_list_lock);
2156 			atomic_dec(&info->mr_ready_count);
2157 			atomic_inc(&info->mr_used_count);
2158 			return ret;
2159 		}
2160 	}
2161 
2162 	spin_unlock(&info->mr_list_lock);
2163 	/*
2164 	 * It is possible that we could fail to get MR because other processes may
2165 	 * try to acquire a MR at the same time. If this is the case, retry it.
2166 	 */
2167 	goto again;
2168 }
2169 
2170 /*
2171  * Transcribe the pages from an iterator into an MR scatterlist.
2172  */
smbd_iter_to_mr(struct smbd_connection * info,struct iov_iter * iter,struct sg_table * sgt,unsigned int max_sg)2173 static int smbd_iter_to_mr(struct smbd_connection *info,
2174 			   struct iov_iter *iter,
2175 			   struct sg_table *sgt,
2176 			   unsigned int max_sg)
2177 {
2178 	int ret;
2179 
2180 	memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist));
2181 
2182 	ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0);
2183 	WARN_ON(ret < 0);
2184 	if (sgt->nents > 0)
2185 		sg_mark_end(&sgt->sgl[sgt->nents - 1]);
2186 	return ret;
2187 }
2188 
2189 /*
2190  * Register memory for RDMA read/write
2191  * iter: the buffer to register memory with
2192  * writing: true if this is a RDMA write (SMB read), false for RDMA read
2193  * need_invalidate: true if this MR needs to be locally invalidated after I/O
2194  * return value: the MR registered, NULL if failed.
2195  */
smbd_register_mr(struct smbd_connection * info,struct iov_iter * iter,bool writing,bool need_invalidate)2196 struct smbd_mr *smbd_register_mr(struct smbd_connection *info,
2197 				 struct iov_iter *iter,
2198 				 bool writing, bool need_invalidate)
2199 {
2200 	struct smbdirect_socket *sc = &info->socket;
2201 	struct smbd_mr *smbdirect_mr;
2202 	int rc, num_pages;
2203 	enum dma_data_direction dir;
2204 	struct ib_reg_wr *reg_wr;
2205 
2206 	num_pages = iov_iter_npages(iter, info->max_frmr_depth + 1);
2207 	if (num_pages > info->max_frmr_depth) {
2208 		log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2209 			num_pages, info->max_frmr_depth);
2210 		WARN_ON_ONCE(1);
2211 		return NULL;
2212 	}
2213 
2214 	smbdirect_mr = get_mr(info);
2215 	if (!smbdirect_mr) {
2216 		log_rdma_mr(ERR, "get_mr returning NULL\n");
2217 		return NULL;
2218 	}
2219 
2220 	dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2221 	smbdirect_mr->dir = dir;
2222 	smbdirect_mr->need_invalidate = need_invalidate;
2223 	smbdirect_mr->sgt.nents = 0;
2224 	smbdirect_mr->sgt.orig_nents = 0;
2225 
2226 	log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n",
2227 		    num_pages, iov_iter_count(iter), info->max_frmr_depth);
2228 	smbd_iter_to_mr(info, iter, &smbdirect_mr->sgt, info->max_frmr_depth);
2229 
2230 	rc = ib_dma_map_sg(sc->ib.dev, smbdirect_mr->sgt.sgl,
2231 			   smbdirect_mr->sgt.nents, dir);
2232 	if (!rc) {
2233 		log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2234 			num_pages, dir, rc);
2235 		goto dma_map_error;
2236 	}
2237 
2238 	rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl,
2239 			  smbdirect_mr->sgt.nents, NULL, PAGE_SIZE);
2240 	if (rc != smbdirect_mr->sgt.nents) {
2241 		log_rdma_mr(ERR,
2242 			"ib_map_mr_sg failed rc = %d nents = %x\n",
2243 			rc, smbdirect_mr->sgt.nents);
2244 		goto map_mr_error;
2245 	}
2246 
2247 	ib_update_fast_reg_key(smbdirect_mr->mr,
2248 		ib_inc_rkey(smbdirect_mr->mr->rkey));
2249 	reg_wr = &smbdirect_mr->wr;
2250 	reg_wr->wr.opcode = IB_WR_REG_MR;
2251 	smbdirect_mr->cqe.done = register_mr_done;
2252 	reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2253 	reg_wr->wr.num_sge = 0;
2254 	reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2255 	reg_wr->mr = smbdirect_mr->mr;
2256 	reg_wr->key = smbdirect_mr->mr->rkey;
2257 	reg_wr->access = writing ?
2258 			IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2259 			IB_ACCESS_REMOTE_READ;
2260 
2261 	/*
2262 	 * There is no need for waiting for complemtion on ib_post_send
2263 	 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2264 	 * on the next ib_post_send when we actually send I/O to remote peer
2265 	 */
2266 	rc = ib_post_send(sc->ib.qp, ®_wr->wr, NULL);
2267 	if (!rc)
2268 		return smbdirect_mr;
2269 
2270 	log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2271 		rc, reg_wr->key);
2272 
2273 	/* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2274 map_mr_error:
2275 	ib_dma_unmap_sg(sc->ib.dev, smbdirect_mr->sgt.sgl,
2276 			smbdirect_mr->sgt.nents, smbdirect_mr->dir);
2277 
2278 dma_map_error:
2279 	smbdirect_mr->state = MR_ERROR;
2280 	if (atomic_dec_and_test(&info->mr_used_count))
2281 		wake_up(&info->wait_for_mr_cleanup);
2282 
2283 	smbd_disconnect_rdma_connection(info);
2284 
2285 	return NULL;
2286 }
2287 
local_inv_done(struct ib_cq * cq,struct ib_wc * wc)2288 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2289 {
2290 	struct smbd_mr *smbdirect_mr;
2291 	struct ib_cqe *cqe;
2292 
2293 	cqe = wc->wr_cqe;
2294 	smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2295 	smbdirect_mr->state = MR_INVALIDATED;
2296 	if (wc->status != IB_WC_SUCCESS) {
2297 		log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2298 		smbdirect_mr->state = MR_ERROR;
2299 	}
2300 	complete(&smbdirect_mr->invalidate_done);
2301 }
2302 
2303 /*
2304  * Deregister a MR after I/O is done
2305  * This function may wait if remote invalidation is not used
2306  * and we have to locally invalidate the buffer to prevent data is being
2307  * modified by remote peer after upper layer consumes it
2308  */
smbd_deregister_mr(struct smbd_mr * smbdirect_mr)2309 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2310 {
2311 	struct ib_send_wr *wr;
2312 	struct smbd_connection *info = smbdirect_mr->conn;
2313 	struct smbdirect_socket *sc = &info->socket;
2314 	int rc = 0;
2315 
2316 	if (smbdirect_mr->need_invalidate) {
2317 		/* Need to finish local invalidation before returning */
2318 		wr = &smbdirect_mr->inv_wr;
2319 		wr->opcode = IB_WR_LOCAL_INV;
2320 		smbdirect_mr->cqe.done = local_inv_done;
2321 		wr->wr_cqe = &smbdirect_mr->cqe;
2322 		wr->num_sge = 0;
2323 		wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2324 		wr->send_flags = IB_SEND_SIGNALED;
2325 
2326 		init_completion(&smbdirect_mr->invalidate_done);
2327 		rc = ib_post_send(sc->ib.qp, wr, NULL);
2328 		if (rc) {
2329 			log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2330 			smbd_disconnect_rdma_connection(info);
2331 			goto done;
2332 		}
2333 		wait_for_completion(&smbdirect_mr->invalidate_done);
2334 		smbdirect_mr->need_invalidate = false;
2335 	} else
2336 		/*
2337 		 * For remote invalidation, just set it to MR_INVALIDATED
2338 		 * and defer to mr_recovery_work to recover the MR for next use
2339 		 */
2340 		smbdirect_mr->state = MR_INVALIDATED;
2341 
2342 	if (smbdirect_mr->state == MR_INVALIDATED) {
2343 		ib_dma_unmap_sg(
2344 			sc->ib.dev, smbdirect_mr->sgt.sgl,
2345 			smbdirect_mr->sgt.nents,
2346 			smbdirect_mr->dir);
2347 		smbdirect_mr->state = MR_READY;
2348 		if (atomic_inc_return(&info->mr_ready_count) == 1)
2349 			wake_up_interruptible(&info->wait_mr);
2350 	} else
2351 		/*
2352 		 * Schedule the work to do MR recovery for future I/Os MR
2353 		 * recovery is slow and don't want it to block current I/O
2354 		 */
2355 		queue_work(info->workqueue, &info->mr_recovery_work);
2356 
2357 done:
2358 	if (atomic_dec_and_test(&info->mr_used_count))
2359 		wake_up(&info->wait_for_mr_cleanup);
2360 
2361 	return rc;
2362 }
2363 
smb_set_sge(struct smb_extract_to_rdma * rdma,struct page * lowest_page,size_t off,size_t len)2364 static bool smb_set_sge(struct smb_extract_to_rdma *rdma,
2365 			struct page *lowest_page, size_t off, size_t len)
2366 {
2367 	struct ib_sge *sge = &rdma->sge[rdma->nr_sge];
2368 	u64 addr;
2369 
2370 	addr = ib_dma_map_page(rdma->device, lowest_page,
2371 			       off, len, rdma->direction);
2372 	if (ib_dma_mapping_error(rdma->device, addr))
2373 		return false;
2374 
2375 	sge->addr   = addr;
2376 	sge->length = len;
2377 	sge->lkey   = rdma->local_dma_lkey;
2378 	rdma->nr_sge++;
2379 	return true;
2380 }
2381 
2382 /*
2383  * Extract page fragments from a BVEC-class iterator and add them to an RDMA
2384  * element list.  The pages are not pinned.
2385  */
smb_extract_bvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2386 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter,
2387 					struct smb_extract_to_rdma *rdma,
2388 					ssize_t maxsize)
2389 {
2390 	const struct bio_vec *bv = iter->bvec;
2391 	unsigned long start = iter->iov_offset;
2392 	unsigned int i;
2393 	ssize_t ret = 0;
2394 
2395 	for (i = 0; i < iter->nr_segs; i++) {
2396 		size_t off, len;
2397 
2398 		len = bv[i].bv_len;
2399 		if (start >= len) {
2400 			start -= len;
2401 			continue;
2402 		}
2403 
2404 		len = min_t(size_t, maxsize, len - start);
2405 		off = bv[i].bv_offset + start;
2406 
2407 		if (!smb_set_sge(rdma, bv[i].bv_page, off, len))
2408 			return -EIO;
2409 
2410 		ret += len;
2411 		maxsize -= len;
2412 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2413 			break;
2414 		start = 0;
2415 	}
2416 
2417 	if (ret > 0)
2418 		iov_iter_advance(iter, ret);
2419 	return ret;
2420 }
2421 
2422 /*
2423  * Extract fragments from a KVEC-class iterator and add them to an RDMA list.
2424  * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers.
2425  * The pages are not pinned.
2426  */
smb_extract_kvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2427 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter,
2428 					struct smb_extract_to_rdma *rdma,
2429 					ssize_t maxsize)
2430 {
2431 	const struct kvec *kv = iter->kvec;
2432 	unsigned long start = iter->iov_offset;
2433 	unsigned int i;
2434 	ssize_t ret = 0;
2435 
2436 	for (i = 0; i < iter->nr_segs; i++) {
2437 		struct page *page;
2438 		unsigned long kaddr;
2439 		size_t off, len, seg;
2440 
2441 		len = kv[i].iov_len;
2442 		if (start >= len) {
2443 			start -= len;
2444 			continue;
2445 		}
2446 
2447 		kaddr = (unsigned long)kv[i].iov_base + start;
2448 		off = kaddr & ~PAGE_MASK;
2449 		len = min_t(size_t, maxsize, len - start);
2450 		kaddr &= PAGE_MASK;
2451 
2452 		maxsize -= len;
2453 		do {
2454 			seg = min_t(size_t, len, PAGE_SIZE - off);
2455 
2456 			if (is_vmalloc_or_module_addr((void *)kaddr))
2457 				page = vmalloc_to_page((void *)kaddr);
2458 			else
2459 				page = virt_to_page((void *)kaddr);
2460 
2461 			if (!smb_set_sge(rdma, page, off, seg))
2462 				return -EIO;
2463 
2464 			ret += seg;
2465 			len -= seg;
2466 			kaddr += PAGE_SIZE;
2467 			off = 0;
2468 		} while (len > 0 && rdma->nr_sge < rdma->max_sge);
2469 
2470 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2471 			break;
2472 		start = 0;
2473 	}
2474 
2475 	if (ret > 0)
2476 		iov_iter_advance(iter, ret);
2477 	return ret;
2478 }
2479 
2480 /*
2481  * Extract folio fragments from a FOLIOQ-class iterator and add them to an RDMA
2482  * list.  The folios are not pinned.
2483  */
smb_extract_folioq_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2484 static ssize_t smb_extract_folioq_to_rdma(struct iov_iter *iter,
2485 					  struct smb_extract_to_rdma *rdma,
2486 					  ssize_t maxsize)
2487 {
2488 	const struct folio_queue *folioq = iter->folioq;
2489 	unsigned int slot = iter->folioq_slot;
2490 	ssize_t ret = 0;
2491 	size_t offset = iter->iov_offset;
2492 
2493 	BUG_ON(!folioq);
2494 
2495 	if (slot >= folioq_nr_slots(folioq)) {
2496 		folioq = folioq->next;
2497 		if (WARN_ON_ONCE(!folioq))
2498 			return -EIO;
2499 		slot = 0;
2500 	}
2501 
2502 	do {
2503 		struct folio *folio = folioq_folio(folioq, slot);
2504 		size_t fsize = folioq_folio_size(folioq, slot);
2505 
2506 		if (offset < fsize) {
2507 			size_t part = umin(maxsize, fsize - offset);
2508 
2509 			if (!smb_set_sge(rdma, folio_page(folio, 0), offset, part))
2510 				return -EIO;
2511 
2512 			offset += part;
2513 			ret += part;
2514 			maxsize -= part;
2515 		}
2516 
2517 		if (offset >= fsize) {
2518 			offset = 0;
2519 			slot++;
2520 			if (slot >= folioq_nr_slots(folioq)) {
2521 				if (!folioq->next) {
2522 					WARN_ON_ONCE(ret < iter->count);
2523 					break;
2524 				}
2525 				folioq = folioq->next;
2526 				slot = 0;
2527 			}
2528 		}
2529 	} while (rdma->nr_sge < rdma->max_sge && maxsize > 0);
2530 
2531 	iter->folioq = folioq;
2532 	iter->folioq_slot = slot;
2533 	iter->iov_offset = offset;
2534 	iter->count -= ret;
2535 	return ret;
2536 }
2537 
2538 /*
2539  * Extract page fragments from up to the given amount of the source iterator
2540  * and build up an RDMA list that refers to all of those bits.  The RDMA list
2541  * is appended to, up to the maximum number of elements set in the parameter
2542  * block.
2543  *
2544  * The extracted page fragments are not pinned or ref'd in any way; if an
2545  * IOVEC/UBUF-type iterator is to be used, it should be converted to a
2546  * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some
2547  * way.
2548  */
smb_extract_iter_to_rdma(struct iov_iter * iter,size_t len,struct smb_extract_to_rdma * rdma)2549 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
2550 					struct smb_extract_to_rdma *rdma)
2551 {
2552 	ssize_t ret;
2553 	int before = rdma->nr_sge;
2554 
2555 	switch (iov_iter_type(iter)) {
2556 	case ITER_BVEC:
2557 		ret = smb_extract_bvec_to_rdma(iter, rdma, len);
2558 		break;
2559 	case ITER_KVEC:
2560 		ret = smb_extract_kvec_to_rdma(iter, rdma, len);
2561 		break;
2562 	case ITER_FOLIOQ:
2563 		ret = smb_extract_folioq_to_rdma(iter, rdma, len);
2564 		break;
2565 	default:
2566 		WARN_ON_ONCE(1);
2567 		return -EIO;
2568 	}
2569 
2570 	if (ret < 0) {
2571 		while (rdma->nr_sge > before) {
2572 			struct ib_sge *sge = &rdma->sge[rdma->nr_sge--];
2573 
2574 			ib_dma_unmap_single(rdma->device, sge->addr, sge->length,
2575 					    rdma->direction);
2576 			sge->addr = 0;
2577 		}
2578 	}
2579 
2580 	return ret;
2581 }
2582