1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/android_kabi.h>
9 #include <linux/spinlock.h>
10 #include <linux/list.h>
11 #include <linux/list_nulls.h>
12 #include <linux/wait.h>
13 #include <linux/bitops.h>
14 #include <linux/cache.h>
15 #include <linux/threads.h>
16 #include <linux/numa.h>
17 #include <linux/init.h>
18 #include <linux/seqlock.h>
19 #include <linux/nodemask.h>
20 #include <linux/pageblock-flags.h>
21 #include <linux/page-flags-layout.h>
22 #include <linux/atomic.h>
23 #include <linux/mm_types.h>
24 #include <linux/page-flags.h>
25 #include <linux/local_lock.h>
26 #include <linux/zswap.h>
27 #include <linux/android_kabi.h>
28 #include <asm/page.h>
29 
30 /* Free memory management - zoned buddy allocator.  */
31 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
32 #define MAX_PAGE_ORDER 10
33 #else
34 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
35 #endif
36 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
37 
38 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
39 
40 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
41 
42 /* Defines the order for the number of pages that have a migrate type. */
43 #ifndef CONFIG_PAGE_BLOCK_ORDER
44 #define PAGE_BLOCK_ORDER MAX_PAGE_ORDER
45 #else
46 #define PAGE_BLOCK_ORDER CONFIG_PAGE_BLOCK_ORDER
47 #endif /* CONFIG_PAGE_BLOCK_ORDER */
48 
49 /*
50  * The MAX_PAGE_ORDER, which defines the max order of pages to be allocated
51  * by the buddy allocator, has to be larger or equal to the PAGE_BLOCK_ORDER,
52  * which defines the order for the number of pages that can have a migrate type
53  */
54 #if (PAGE_BLOCK_ORDER > MAX_PAGE_ORDER)
55 #error MAX_PAGE_ORDER must be >= PAGE_BLOCK_ORDER
56 #endif
57 
58 /*
59  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
60  * costly to service.  That is between allocation orders which should
61  * coalesce naturally under reasonable reclaim pressure and those which
62  * will not.
63  */
64 #define PAGE_ALLOC_COSTLY_ORDER 3
65 
66 enum migratetype {
67 	MIGRATE_UNMOVABLE,
68 	MIGRATE_MOVABLE,
69 	MIGRATE_RECLAIMABLE,
70 	/* the number of types that have fallbacks */
71 	MIGRATE_FALLBACKS,
72 #ifdef CONFIG_CMA
73 	/*
74 	 * MIGRATE_CMA migration type is designed to mimic the way
75 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
76 	 * from MIGRATE_CMA pageblocks and page allocator never
77 	 * implicitly change migration type of MIGRATE_CMA pageblock.
78 	 *
79 	 * The way to use it is to change migratetype of a range of
80 	 * pageblocks to MIGRATE_CMA which can be done by
81 	 * __free_pageblock_cma() function.
82 	 */
83 	MIGRATE_CMA = MIGRATE_FALLBACKS,
84 	MIGRATE_PCPTYPES,
85 #else
86 	/* the number of types on the pcp lists */
87 	MIGRATE_PCPTYPES = MIGRATE_FALLBACKS,
88 #endif
89 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
90 #ifdef CONFIG_MEMORY_ISOLATION
91 	MIGRATE_ISOLATE,	/* can't allocate from here */
92 #endif
93 	MIGRATE_TYPES
94 };
95 
96 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
97 extern const char * const migratetype_names[MIGRATE_TYPES];
98 
99 #ifdef CONFIG_CMA
100 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
101 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
102 #  define is_migrate_cma_folio(folio, pfn)	(MIGRATE_CMA ==		\
103 	get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK))
104 #  define get_cma_migrate_type() MIGRATE_CMA
105 #else
106 #  define is_migrate_cma(migratetype) false
107 #  define is_migrate_cma_page(_page) false
108 #  define is_migrate_cma_folio(folio, pfn) false
109 #  define get_cma_migrate_type() MIGRATE_MOVABLE
110 #endif
111 
is_migrate_movable(int mt)112 static inline bool is_migrate_movable(int mt)
113 {
114 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
115 }
116 
117 /*
118  * Check whether a migratetype can be merged with another migratetype.
119  *
120  * It is only mergeable when it can fall back to other migratetypes for
121  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
122  */
migratetype_is_mergeable(int mt)123 static inline bool migratetype_is_mergeable(int mt)
124 {
125 	return mt < MIGRATE_FALLBACKS;
126 }
127 
128 #define for_each_migratetype_order(order, type) \
129 	for (order = 0; order < NR_PAGE_ORDERS; order++) \
130 		for (type = 0; type < MIGRATE_TYPES; type++)
131 
132 extern int page_group_by_mobility_disabled;
133 
134 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
135 
136 #define get_pageblock_migratetype(page)					\
137 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
138 
139 #define folio_migratetype(folio)				\
140 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
141 			MIGRATETYPE_MASK)
142 struct free_area {
143 	struct list_head	free_list[MIGRATE_TYPES];
144 	unsigned long		nr_free;
145 };
146 
147 struct pglist_data;
148 
149 #ifdef CONFIG_NUMA
150 enum numa_stat_item {
151 	NUMA_HIT,		/* allocated in intended node */
152 	NUMA_MISS,		/* allocated in non intended node */
153 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
154 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
155 	NUMA_LOCAL,		/* allocation from local node */
156 	NUMA_OTHER,		/* allocation from other node */
157 	NR_VM_NUMA_EVENT_ITEMS
158 };
159 #else
160 #define NR_VM_NUMA_EVENT_ITEMS 0
161 #endif
162 
163 enum zone_stat_item {
164 	/* First 128 byte cacheline (assuming 64 bit words) */
165 	NR_FREE_PAGES,
166 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
167 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
168 	NR_ZONE_ACTIVE_ANON,
169 	NR_ZONE_INACTIVE_FILE,
170 	NR_ZONE_ACTIVE_FILE,
171 	NR_ZONE_UNEVICTABLE,
172 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
173 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
174 	/* Second 128 byte cacheline */
175 	NR_BOUNCE,
176 	NR_ZSPAGES,		/* allocated in zsmalloc */
177 	NR_FREE_CMA_PAGES,
178 #ifdef CONFIG_UNACCEPTED_MEMORY
179 	NR_UNACCEPTED,
180 #endif
181 	NR_VM_ZONE_STAT_ITEMS };
182 
183 enum node_stat_item {
184 	NR_LRU_BASE,
185 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
186 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
187 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
188 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
189 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
190 	NR_SLAB_RECLAIMABLE_B,
191 	NR_SLAB_UNRECLAIMABLE_B,
192 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
193 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
194 	WORKINGSET_NODES,
195 	WORKINGSET_REFAULT_BASE,
196 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
197 	WORKINGSET_REFAULT_FILE,
198 	WORKINGSET_ACTIVATE_BASE,
199 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
200 	WORKINGSET_ACTIVATE_FILE,
201 	WORKINGSET_RESTORE_BASE,
202 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
203 	WORKINGSET_RESTORE_FILE,
204 	WORKINGSET_NODERECLAIM,
205 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
206 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
207 			   only modified from process context */
208 	NR_FILE_PAGES,
209 	NR_FILE_DIRTY,
210 	NR_WRITEBACK,
211 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
212 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
213 	NR_SHMEM_THPS,
214 	NR_SHMEM_PMDMAPPED,
215 	NR_FILE_THPS,
216 	NR_FILE_PMDMAPPED,
217 	NR_ANON_THPS,
218 	NR_VMSCAN_WRITE,
219 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
220 	NR_DIRTIED,		/* page dirtyings since bootup */
221 	NR_WRITTEN,		/* page writings since bootup */
222 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
223 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
224 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
225 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
226 	NR_KERNEL_STACK_KB,	/* measured in KiB */
227 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
228 	NR_KERNEL_SCS_KB,	/* measured in KiB */
229 #endif
230 	NR_PAGETABLE,		/* used for pagetables */
231 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */
232 #ifdef CONFIG_IOMMU_SUPPORT
233 	NR_IOMMU_PAGES,		/* # of pages allocated by IOMMU */
234 #endif
235 #ifdef CONFIG_SWAP
236 	NR_SWAPCACHE,
237 #endif
238 #ifdef CONFIG_NUMA_BALANCING
239 	PGPROMOTE_SUCCESS,	/* promote successfully */
240 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
241 #endif
242 	/* PGDEMOTE_*: pages demoted */
243 	PGDEMOTE_KSWAPD,
244 	PGDEMOTE_DIRECT,
245 	PGDEMOTE_KHUGEPAGED,
246 	NR_VM_NODE_STAT_ITEMS
247 };
248 
249 /*
250  * Returns true if the item should be printed in THPs (/proc/vmstat
251  * currently prints number of anon, file and shmem THPs. But the item
252  * is charged in pages).
253  */
vmstat_item_print_in_thp(enum node_stat_item item)254 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
255 {
256 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
257 		return false;
258 
259 	return item == NR_ANON_THPS ||
260 	       item == NR_FILE_THPS ||
261 	       item == NR_SHMEM_THPS ||
262 	       item == NR_SHMEM_PMDMAPPED ||
263 	       item == NR_FILE_PMDMAPPED;
264 }
265 
266 /*
267  * Returns true if the value is measured in bytes (most vmstat values are
268  * measured in pages). This defines the API part, the internal representation
269  * might be different.
270  */
vmstat_item_in_bytes(int idx)271 static __always_inline bool vmstat_item_in_bytes(int idx)
272 {
273 	/*
274 	 * Global and per-node slab counters track slab pages.
275 	 * It's expected that changes are multiples of PAGE_SIZE.
276 	 * Internally values are stored in pages.
277 	 *
278 	 * Per-memcg and per-lruvec counters track memory, consumed
279 	 * by individual slab objects. These counters are actually
280 	 * byte-precise.
281 	 */
282 	return (idx == NR_SLAB_RECLAIMABLE_B ||
283 		idx == NR_SLAB_UNRECLAIMABLE_B);
284 }
285 
286 /*
287  * We do arithmetic on the LRU lists in various places in the code,
288  * so it is important to keep the active lists LRU_ACTIVE higher in
289  * the array than the corresponding inactive lists, and to keep
290  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
291  *
292  * This has to be kept in sync with the statistics in zone_stat_item
293  * above and the descriptions in vmstat_text in mm/vmstat.c
294  */
295 #define LRU_BASE 0
296 #define LRU_ACTIVE 1
297 #define LRU_FILE 2
298 
299 enum lru_list {
300 	LRU_INACTIVE_ANON = LRU_BASE,
301 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
302 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
303 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
304 	LRU_UNEVICTABLE,
305 	NR_LRU_LISTS
306 };
307 
308 enum vmscan_throttle_state {
309 	VMSCAN_THROTTLE_WRITEBACK,
310 	VMSCAN_THROTTLE_ISOLATED,
311 	VMSCAN_THROTTLE_NOPROGRESS,
312 	VMSCAN_THROTTLE_CONGESTED,
313 	NR_VMSCAN_THROTTLE,
314 };
315 
316 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
317 
318 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
319 
is_file_lru(enum lru_list lru)320 static inline bool is_file_lru(enum lru_list lru)
321 {
322 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
323 }
324 
is_active_lru(enum lru_list lru)325 static inline bool is_active_lru(enum lru_list lru)
326 {
327 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
328 }
329 
330 #define WORKINGSET_ANON 0
331 #define WORKINGSET_FILE 1
332 #define ANON_AND_FILE 2
333 
334 enum lruvec_flags {
335 	/*
336 	 * An lruvec has many dirty pages backed by a congested BDI:
337 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
338 	 *    It can be cleared by cgroup reclaim or kswapd.
339 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
340 	 *    It can only be cleared by kswapd.
341 	 *
342 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
343 	 * reclaim, but not vice versa. This only applies to the root cgroup.
344 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
345 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
346 	 * by kswapd).
347 	 */
348 	LRUVEC_CGROUP_CONGESTED,
349 	LRUVEC_NODE_CONGESTED,
350 };
351 
352 #endif /* !__GENERATING_BOUNDS_H */
353 
354 /*
355  * Evictable folios are divided into multiple generations. The youngest and the
356  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
357  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
358  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
359  * corresponding generation. The gen counter in folio->flags stores gen+1 while
360  * a folio is on one of lrugen->folios[]. Otherwise it stores 0.
361  *
362  * After a folio is faulted in, the aging needs to check the accessed bit at
363  * least twice before handing this folio over to the eviction. The first check
364  * clears the accessed bit from the initial fault; the second check makes sure
365  * this folio hasn't been used since then. This process, AKA second chance,
366  * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI
367  * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two
368  * generations are considered active; the rest of generations, if they exist,
369  * are considered inactive. See lru_gen_is_active().
370  *
371  * PG_active is always cleared while a folio is on one of lrugen->folios[] so
372  * that the sliding window needs not to worry about it. And it's set again when
373  * a folio considered active is isolated for non-reclaiming purposes, e.g.,
374  * migration. See lru_gen_add_folio() and lru_gen_del_folio().
375  *
376  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
377  * number of categories of the active/inactive LRU when keeping track of
378  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
379  * in folio->flags, masked by LRU_GEN_MASK.
380  */
381 #define MIN_NR_GENS		2U
382 #define MAX_NR_GENS		4U
383 
384 /*
385  * Each generation is divided into multiple tiers. A folio accessed N times
386  * through file descriptors is in tier order_base_2(N). A folio in the first
387  * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page
388  * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by
389  * PG_workingset. A folio in any other tier (1<N<5) between the first and last
390  * is marked by additional bits of LRU_REFS_WIDTH in folio->flags.
391  *
392  * In contrast to moving across generations which requires the LRU lock, moving
393  * across tiers only involves atomic operations on folio->flags and therefore
394  * has a negligible cost in the buffered access path. In the eviction path,
395  * comparisons of refaulted/(evicted+protected) from the first tier and the rest
396  * infer whether folios accessed multiple times through file descriptors are
397  * statistically hot and thus worth protecting.
398  *
399  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
400  * number of categories of the active/inactive LRU when keeping track of
401  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
402  * folio->flags, masked by LRU_REFS_MASK.
403  */
404 #define MAX_NR_TIERS		4U
405 
406 #ifndef __GENERATING_BOUNDS_H
407 
408 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
409 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
410 
411 /*
412  * For folios accessed multiple times through file descriptors,
413  * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags
414  * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its
415  * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily
416  * promoted into the second oldest generation in the eviction path. And when
417  * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that
418  * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is
419  * only valid when PG_referenced is set.
420  *
421  * For folios accessed multiple times through page tables, folio_update_gen()
422  * from a page table walk or lru_gen_set_refs() from a rmap walk sets
423  * PG_referenced after the accessed bit is cleared for the first time.
424  * Thereafter, those two paths set PG_workingset and promote folios to the
425  * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears
426  * PG_referenced. Note that for this case, LRU_REFS_MASK is not used.
427  *
428  * For both cases above, after PG_workingset is set on a folio, it remains until
429  * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It
430  * can be set again if lru_gen_test_recent() returns true upon a refault.
431  */
432 #define LRU_REFS_FLAGS		(LRU_REFS_MASK | BIT(PG_referenced))
433 
434 struct lruvec;
435 struct page_vma_mapped_walk;
436 
437 #ifdef CONFIG_LRU_GEN
438 
439 enum {
440 	LRU_GEN_ANON,
441 	LRU_GEN_FILE,
442 };
443 
444 enum {
445 	LRU_GEN_CORE,
446 	LRU_GEN_MM_WALK,
447 	LRU_GEN_NONLEAF_YOUNG,
448 	NR_LRU_GEN_CAPS
449 };
450 
451 #define MIN_LRU_BATCH		BITS_PER_LONG
452 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
453 
454 /* whether to keep historical stats from evicted generations */
455 #ifdef CONFIG_LRU_GEN_STATS
456 #define NR_HIST_GENS		MAX_NR_GENS
457 #else
458 #define NR_HIST_GENS		1U
459 #endif
460 
461 /*
462  * The youngest generation number is stored in max_seq for both anon and file
463  * types as they are aged on an equal footing. The oldest generation numbers are
464  * stored in min_seq[] separately for anon and file types so that they can be
465  * incremented independently. Ideally min_seq[] are kept in sync when both anon
466  * and file types are evictable. However, to adapt to situations like extreme
467  * swappiness, they are allowed to be out of sync by at most
468  * MAX_NR_GENS-MIN_NR_GENS-1.
469  *
470  * The number of pages in each generation is eventually consistent and therefore
471  * can be transiently negative when reset_batch_size() is pending.
472  */
473 struct lru_gen_folio {
474 	/* the aging increments the youngest generation number */
475 	unsigned long max_seq;
476 	/* the eviction increments the oldest generation numbers */
477 	unsigned long min_seq[ANON_AND_FILE];
478 	/* the birth time of each generation in jiffies */
479 	unsigned long timestamps[MAX_NR_GENS];
480 	/* the multi-gen LRU lists, lazily sorted on eviction */
481 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
482 	/* the multi-gen LRU sizes, eventually consistent */
483 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
484 	/* the exponential moving average of refaulted */
485 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
486 	/* the exponential moving average of evicted+protected */
487 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
488 	/* can only be modified under the LRU lock */
489 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
490 	/* can be modified without holding the LRU lock */
491 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
492 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
493 	/* whether the multi-gen LRU is enabled */
494 	bool enabled;
495 	/* the memcg generation this lru_gen_folio belongs to */
496 	u8 gen;
497 	/* the list segment this lru_gen_folio belongs to */
498 	u8 seg;
499 	/* per-node lru_gen_folio list for global reclaim */
500 	struct hlist_nulls_node list;
501 
502 	ANDROID_KABI_RESERVE(1);
503 	ANDROID_KABI_RESERVE(2);
504 	ANDROID_OEM_DATA_ARRAY(1, 6);
505 };
506 
507 enum {
508 	MM_LEAF_TOTAL,		/* total leaf entries */
509 	MM_LEAF_YOUNG,		/* young leaf entries */
510 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
511 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
512 	NR_MM_STATS
513 };
514 
515 /* double-buffering Bloom filters */
516 #define NR_BLOOM_FILTERS	2
517 
518 struct lru_gen_mm_state {
519 	/* synced with max_seq after each iteration */
520 	unsigned long seq;
521 	/* where the current iteration continues after */
522 	struct list_head *head;
523 	/* where the last iteration ended before */
524 	struct list_head *tail;
525 	/* Bloom filters flip after each iteration */
526 	unsigned long *filters[NR_BLOOM_FILTERS];
527 	/* the mm stats for debugging */
528 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
529 
530 	ANDROID_KABI_RESERVE(1);
531 };
532 
533 struct lru_gen_mm_walk {
534 	/* the lruvec under reclaim */
535 	struct lruvec *lruvec;
536 	/* max_seq from lru_gen_folio: can be out of date */
537 	unsigned long seq;
538 	/* the next address within an mm to scan */
539 	unsigned long next_addr;
540 	/* to batch promoted pages */
541 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
542 	/* to batch the mm stats */
543 	int mm_stats[NR_MM_STATS];
544 	/* total batched items */
545 	int batched;
546 	int swappiness;
547 	bool force_scan;
548 
549 	ANDROID_KABI_RESERVE(1);
550 };
551 
552 /*
553  * For each node, memcgs are divided into two generations: the old and the
554  * young. For each generation, memcgs are randomly sharded into multiple bins
555  * to improve scalability. For each bin, the hlist_nulls is virtually divided
556  * into three segments: the head, the tail and the default.
557  *
558  * An onlining memcg is added to the tail of a random bin in the old generation.
559  * The eviction starts at the head of a random bin in the old generation. The
560  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
561  * the old generation, is incremented when all its bins become empty.
562  *
563  * There are four operations:
564  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
565  *    current generation (old or young) and updates its "seg" to "head";
566  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
567  *    current generation (old or young) and updates its "seg" to "tail";
568  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
569  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
570  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
571  *    young generation, updates its "gen" to "young" and resets its "seg" to
572  *    "default".
573  *
574  * The events that trigger the above operations are:
575  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
576  * 2. The first attempt to reclaim a memcg below low, which triggers
577  *    MEMCG_LRU_TAIL;
578  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
579  *    threshold, which triggers MEMCG_LRU_TAIL;
580  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
581  *    threshold, which triggers MEMCG_LRU_YOUNG;
582  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
583  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
584  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
585  *
586  * Notes:
587  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
588  *    of their max_seq counters ensures the eventual fairness to all eligible
589  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
590  * 2. There are only two valid generations: old (seq) and young (seq+1).
591  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
592  *    locklessly, a stale value (seq-1) does not wraparound to young.
593  */
594 #define MEMCG_NR_GENS	3
595 #define MEMCG_NR_BINS	8
596 
597 struct lru_gen_memcg {
598 	/* the per-node memcg generation counter */
599 	unsigned long seq;
600 	/* each memcg has one lru_gen_folio per node */
601 	unsigned long nr_memcgs[MEMCG_NR_GENS];
602 	/* per-node lru_gen_folio list for global reclaim */
603 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
604 	/* protects the above */
605 	spinlock_t lock;
606 };
607 
608 void lru_gen_init_pgdat(struct pglist_data *pgdat);
609 void lru_gen_init_lruvec(struct lruvec *lruvec);
610 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
611 
612 void lru_gen_init_memcg(struct mem_cgroup *memcg);
613 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
614 void lru_gen_online_memcg(struct mem_cgroup *memcg);
615 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
616 void lru_gen_release_memcg(struct mem_cgroup *memcg);
617 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
618 
619 #else /* !CONFIG_LRU_GEN */
620 
lru_gen_init_pgdat(struct pglist_data * pgdat)621 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
622 {
623 }
624 
lru_gen_init_lruvec(struct lruvec * lruvec)625 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
626 {
627 }
628 
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)629 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
630 {
631 	return false;
632 }
633 
lru_gen_init_memcg(struct mem_cgroup * memcg)634 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
635 {
636 }
637 
lru_gen_exit_memcg(struct mem_cgroup * memcg)638 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
639 {
640 }
641 
lru_gen_online_memcg(struct mem_cgroup * memcg)642 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
643 {
644 }
645 
lru_gen_offline_memcg(struct mem_cgroup * memcg)646 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
647 {
648 }
649 
lru_gen_release_memcg(struct mem_cgroup * memcg)650 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
651 {
652 }
653 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)654 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
655 {
656 }
657 
658 #endif /* CONFIG_LRU_GEN */
659 
660 struct lruvec {
661 	struct list_head		lists[NR_LRU_LISTS];
662 	/* per lruvec lru_lock for memcg */
663 	spinlock_t			lru_lock;
664 	/*
665 	 * These track the cost of reclaiming one LRU - file or anon -
666 	 * over the other. As the observed cost of reclaiming one LRU
667 	 * increases, the reclaim scan balance tips toward the other.
668 	 */
669 	unsigned long			anon_cost;
670 	unsigned long			file_cost;
671 	/* Non-resident age, driven by LRU movement */
672 	atomic_long_t			nonresident_age;
673 	/* Refaults at the time of last reclaim cycle */
674 	unsigned long			refaults[ANON_AND_FILE];
675 	/* Various lruvec state flags (enum lruvec_flags) */
676 	unsigned long			flags;
677 #ifdef CONFIG_LRU_GEN
678 	/* evictable pages divided into generations */
679 	struct lru_gen_folio		lrugen;
680 #ifdef CONFIG_LRU_GEN_WALKS_MMU
681 	/* to concurrently iterate lru_gen_mm_list */
682 	struct lru_gen_mm_state		mm_state;
683 #endif
684 #endif /* CONFIG_LRU_GEN */
685 #ifdef CONFIG_MEMCG
686 	struct pglist_data *pgdat;
687 #endif
688 	struct zswap_lruvec_state zswap_lruvec_state;
689 
690 	ANDROID_BACKPORT_RESERVE(1);
691 };
692 
693 /* Isolate for asynchronous migration */
694 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
695 /* Isolate unevictable pages */
696 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
697 
698 /* LRU Isolation modes. */
699 typedef unsigned __bitwise isolate_mode_t;
700 
701 enum zone_watermarks {
702 	WMARK_MIN,
703 	WMARK_LOW,
704 	WMARK_HIGH,
705 	WMARK_PROMO,
706 	NR_WMARK
707 };
708 
709 /*
710  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
711  * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
712  * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
713  */
714 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
715 #define NR_PCP_THP 2
716 #else
717 #define NR_PCP_THP 0
718 #endif
719 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
720 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
721 
722 /*
723  * Flags used in pcp->flags field.
724  *
725  * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
726  * previous page freeing.  To avoid to drain PCP for an accident
727  * high-order page freeing.
728  *
729  * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
730  * draining PCP for consecutive high-order pages freeing without
731  * allocation if data cache slice of CPU is large enough.  To reduce
732  * zone lock contention and keep cache-hot pages reusing.
733  */
734 #define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0)
735 #define	PCPF_FREE_HIGH_BATCH		BIT(1)
736 
737 struct per_cpu_pages {
738 	spinlock_t lock;	/* Protects lists field */
739 	int count;		/* number of pages in the list */
740 	int high;		/* high watermark, emptying needed */
741 	int high_min;		/* min high watermark */
742 	int high_max;		/* max high watermark */
743 	int batch;		/* chunk size for buddy add/remove */
744 	u8 flags;		/* protected by pcp->lock */
745 	u8 alloc_factor;	/* batch scaling factor during allocate */
746 #ifdef CONFIG_NUMA
747 	u8 expire;		/* When 0, remote pagesets are drained */
748 #endif
749 	short free_count;	/* consecutive free count */
750 
751 	/* Lists of pages, one per migrate type stored on the pcp-lists */
752 	struct list_head lists[NR_PCP_LISTS];
753 } ____cacheline_aligned_in_smp;
754 
755 struct per_cpu_zonestat {
756 #ifdef CONFIG_SMP
757 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
758 	s8 stat_threshold;
759 #endif
760 #ifdef CONFIG_NUMA
761 	/*
762 	 * Low priority inaccurate counters that are only folded
763 	 * on demand. Use a large type to avoid the overhead of
764 	 * folding during refresh_cpu_vm_stats.
765 	 */
766 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
767 #endif
768 };
769 
770 struct per_cpu_nodestat {
771 	s8 stat_threshold;
772 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
773 };
774 
775 #endif /* !__GENERATING_BOUNDS.H */
776 
777 enum zone_type {
778 	/*
779 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
780 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
781 	 * On architectures where this area covers the whole 32 bit address
782 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
783 	 * DMA addressing constraints. This distinction is important as a 32bit
784 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
785 	 * platforms may need both zones as they support peripherals with
786 	 * different DMA addressing limitations.
787 	 */
788 #ifdef CONFIG_ZONE_DMA
789 	ZONE_DMA,
790 #endif
791 #ifdef CONFIG_ZONE_DMA32
792 	ZONE_DMA32,
793 #endif
794 	/*
795 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
796 	 * performed on pages in ZONE_NORMAL if the DMA devices support
797 	 * transfers to all addressable memory.
798 	 */
799 	ZONE_NORMAL,
800 #ifdef CONFIG_HIGHMEM
801 	/*
802 	 * A memory area that is only addressable by the kernel through
803 	 * mapping portions into its own address space. This is for example
804 	 * used by i386 to allow the kernel to address the memory beyond
805 	 * 900MB. The kernel will set up special mappings (page
806 	 * table entries on i386) for each page that the kernel needs to
807 	 * access.
808 	 */
809 	ZONE_HIGHMEM,
810 #endif
811 	/*
812 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
813 	 * movable pages with few exceptional cases described below. Main use
814 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
815 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
816 	 * to increase the number of THP/huge pages. Notable special cases are:
817 	 *
818 	 * 1. Pinned pages: (long-term) pinning of movable pages might
819 	 *    essentially turn such pages unmovable. Therefore, we do not allow
820 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
821 	 *    faulted, they come from the right zone right away. However, it is
822 	 *    still possible that address space already has pages in
823 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
824 	 *    touches that memory before pinning). In such case we migrate them
825 	 *    to a different zone. When migration fails - pinning fails.
826 	 * 2. memblock allocations: kernelcore/movablecore setups might create
827 	 *    situations where ZONE_MOVABLE contains unmovable allocations
828 	 *    after boot. Memory offlining and allocations fail early.
829 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
830 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
831 	 *    for example, if we have sections that are only partially
832 	 *    populated. Memory offlining and allocations fail early.
833 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
834 	 *    memory offlining, such pages cannot be allocated.
835 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
836 	 *    hotplugged memory blocks might only partially be managed by the
837 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
838 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
839 	 *    some cases (virtio-mem), such pages can be skipped during
840 	 *    memory offlining, however, cannot be moved/allocated. These
841 	 *    techniques might use alloc_contig_range() to hide previously
842 	 *    exposed pages from the buddy again (e.g., to implement some sort
843 	 *    of memory unplug in virtio-mem).
844 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
845 	 *    situations where ZERO_PAGE(0) which is allocated differently
846 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
847 	 *    cannot be migrated.
848 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
849 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
850 	 *    such zone. Such pages cannot be really moved around as they are
851 	 *    self-stored in the range, but they are treated as movable when
852 	 *    the range they describe is about to be offlined.
853 	 *
854 	 * In general, no unmovable allocations that degrade memory offlining
855 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
856 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
857 	 * if has_unmovable_pages() states that there are no unmovable pages,
858 	 * there can be false negatives).
859 	 */
860 	ZONE_MOVABLE,
861 #ifdef CONFIG_ZONE_DEVICE
862 	ZONE_DEVICE,
863 #endif
864 	__MAX_NR_ZONES
865 
866 };
867 
868 #ifndef __GENERATING_BOUNDS_H
869 
870 #define ASYNC_AND_SYNC 2
871 
872 struct zone {
873 	/* Read-mostly fields */
874 
875 	/* zone watermarks, access with *_wmark_pages(zone) macros */
876 	unsigned long _watermark[NR_WMARK];
877 	unsigned long watermark_boost;
878 
879 	unsigned long nr_reserved_highatomic;
880 	unsigned long nr_free_highatomic;
881 
882 	/*
883 	 * We don't know if the memory that we're going to allocate will be
884 	 * freeable or/and it will be released eventually, so to avoid totally
885 	 * wasting several GB of ram we must reserve some of the lower zone
886 	 * memory (otherwise we risk to run OOM on the lower zones despite
887 	 * there being tons of freeable ram on the higher zones).  This array is
888 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
889 	 * changes.
890 	 */
891 	long lowmem_reserve[MAX_NR_ZONES];
892 
893 #ifdef CONFIG_NUMA
894 	int node;
895 #endif
896 	struct pglist_data	*zone_pgdat;
897 	struct per_cpu_pages	__percpu *per_cpu_pageset;
898 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
899 	/*
900 	 * the high and batch values are copied to individual pagesets for
901 	 * faster access
902 	 */
903 	int pageset_high_min;
904 	int pageset_high_max;
905 	int pageset_batch;
906 
907 #ifndef CONFIG_SPARSEMEM
908 	/*
909 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
910 	 * In SPARSEMEM, this map is stored in struct mem_section
911 	 */
912 	unsigned long		*pageblock_flags;
913 #endif /* CONFIG_SPARSEMEM */
914 
915 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
916 	unsigned long		zone_start_pfn;
917 
918 	/*
919 	 * spanned_pages is the total pages spanned by the zone, including
920 	 * holes, which is calculated as:
921 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
922 	 *
923 	 * present_pages is physical pages existing within the zone, which
924 	 * is calculated as:
925 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
926 	 *
927 	 * present_early_pages is present pages existing within the zone
928 	 * located on memory available since early boot, excluding hotplugged
929 	 * memory.
930 	 *
931 	 * managed_pages is present pages managed by the buddy system, which
932 	 * is calculated as (reserved_pages includes pages allocated by the
933 	 * bootmem allocator):
934 	 *	managed_pages = present_pages - reserved_pages;
935 	 *
936 	 * cma pages is present pages that are assigned for CMA use
937 	 * (MIGRATE_CMA).
938 	 *
939 	 * So present_pages may be used by memory hotplug or memory power
940 	 * management logic to figure out unmanaged pages by checking
941 	 * (present_pages - managed_pages). And managed_pages should be used
942 	 * by page allocator and vm scanner to calculate all kinds of watermarks
943 	 * and thresholds.
944 	 *
945 	 * Locking rules:
946 	 *
947 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
948 	 * It is a seqlock because it has to be read outside of zone->lock,
949 	 * and it is done in the main allocator path.  But, it is written
950 	 * quite infrequently.
951 	 *
952 	 * The span_seq lock is declared along with zone->lock because it is
953 	 * frequently read in proximity to zone->lock.  It's good to
954 	 * give them a chance of being in the same cacheline.
955 	 *
956 	 * Write access to present_pages at runtime should be protected by
957 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
958 	 * present_pages should use get_online_mems() to get a stable value.
959 	 */
960 	atomic_long_t		managed_pages;
961 	unsigned long		spanned_pages;
962 	unsigned long		present_pages;
963 #if defined(CONFIG_MEMORY_HOTPLUG)
964 	unsigned long		present_early_pages;
965 #endif
966 #ifdef CONFIG_CMA
967 	unsigned long		cma_pages;
968 #endif
969 
970 	const char		*name;
971 
972 #ifdef CONFIG_MEMORY_ISOLATION
973 	/*
974 	 * Number of isolated pageblock. It is used to solve incorrect
975 	 * freepage counting problem due to racy retrieving migratetype
976 	 * of pageblock. Protected by zone->lock.
977 	 */
978 	unsigned long		nr_isolate_pageblock;
979 #endif
980 
981 #ifdef CONFIG_MEMORY_HOTPLUG
982 	/* see spanned/present_pages for more description */
983 	seqlock_t		span_seqlock;
984 #endif
985 
986 	int initialized;
987 
988 	/* Write-intensive fields used from the page allocator */
989 	CACHELINE_PADDING(_pad1_);
990 
991 	/* free areas of different sizes */
992 	struct free_area	free_area[NR_PAGE_ORDERS];
993 
994 #ifdef CONFIG_UNACCEPTED_MEMORY
995 	/* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
996 	struct list_head	unaccepted_pages;
997 #endif
998 
999 	/* zone flags, see below */
1000 	unsigned long		flags;
1001 
1002 	/* Primarily protects free_area */
1003 	spinlock_t		lock;
1004 
1005 	/* Write-intensive fields used by compaction and vmstats. */
1006 	CACHELINE_PADDING(_pad2_);
1007 
1008 	/*
1009 	 * When free pages are below this point, additional steps are taken
1010 	 * when reading the number of free pages to avoid per-cpu counter
1011 	 * drift allowing watermarks to be breached
1012 	 */
1013 	unsigned long percpu_drift_mark;
1014 
1015 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1016 	/* pfn where compaction free scanner should start */
1017 	unsigned long		compact_cached_free_pfn;
1018 	/* pfn where compaction migration scanner should start */
1019 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
1020 	unsigned long		compact_init_migrate_pfn;
1021 	unsigned long		compact_init_free_pfn;
1022 #endif
1023 
1024 #ifdef CONFIG_COMPACTION
1025 	/*
1026 	 * On compaction failure, 1<<compact_defer_shift compactions
1027 	 * are skipped before trying again. The number attempted since
1028 	 * last failure is tracked with compact_considered.
1029 	 * compact_order_failed is the minimum compaction failed order.
1030 	 */
1031 	unsigned int		compact_considered;
1032 	unsigned int		compact_defer_shift;
1033 	int			compact_order_failed;
1034 #endif
1035 
1036 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1037 	/* Set to true when the PG_migrate_skip bits should be cleared */
1038 	bool			compact_blockskip_flush;
1039 #endif
1040 
1041 	bool			contiguous;
1042 
1043 	CACHELINE_PADDING(_pad3_);
1044 	/* Zone statistics */
1045 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
1046 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
1047 } ____cacheline_internodealigned_in_smp;
1048 
1049 enum pgdat_flags {
1050 	PGDAT_DIRTY,			/* reclaim scanning has recently found
1051 					 * many dirty file pages at the tail
1052 					 * of the LRU.
1053 					 */
1054 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1055 					 * many pages under writeback
1056 					 */
1057 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1058 };
1059 
1060 enum zone_flags {
1061 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1062 					 * Cleared when kswapd is woken.
1063 					 */
1064 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1065 	ZONE_BELOW_HIGH,		/* zone is below high watermark. */
1066 };
1067 
wmark_pages(const struct zone * z,enum zone_watermarks w)1068 static inline unsigned long wmark_pages(const struct zone *z,
1069 					enum zone_watermarks w)
1070 {
1071 	return z->_watermark[w] + z->watermark_boost;
1072 }
1073 
min_wmark_pages(const struct zone * z)1074 static inline unsigned long min_wmark_pages(const struct zone *z)
1075 {
1076 	return wmark_pages(z, WMARK_MIN);
1077 }
1078 
low_wmark_pages(const struct zone * z)1079 static inline unsigned long low_wmark_pages(const struct zone *z)
1080 {
1081 	return wmark_pages(z, WMARK_LOW);
1082 }
1083 
high_wmark_pages(const struct zone * z)1084 static inline unsigned long high_wmark_pages(const struct zone *z)
1085 {
1086 	return wmark_pages(z, WMARK_HIGH);
1087 }
1088 
promo_wmark_pages(const struct zone * z)1089 static inline unsigned long promo_wmark_pages(const struct zone *z)
1090 {
1091 	return wmark_pages(z, WMARK_PROMO);
1092 }
1093 
zone_managed_pages(struct zone * zone)1094 static inline unsigned long zone_managed_pages(struct zone *zone)
1095 {
1096 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1097 }
1098 
zone_cma_pages(struct zone * zone)1099 static inline unsigned long zone_cma_pages(struct zone *zone)
1100 {
1101 #ifdef CONFIG_CMA
1102 	return zone->cma_pages;
1103 #else
1104 	return 0;
1105 #endif
1106 }
1107 
zone_end_pfn(const struct zone * zone)1108 static inline unsigned long zone_end_pfn(const struct zone *zone)
1109 {
1110 	return zone->zone_start_pfn + zone->spanned_pages;
1111 }
1112 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1113 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1114 {
1115 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1116 }
1117 
zone_is_initialized(struct zone * zone)1118 static inline bool zone_is_initialized(struct zone *zone)
1119 {
1120 	return zone->initialized;
1121 }
1122 
zone_is_empty(struct zone * zone)1123 static inline bool zone_is_empty(struct zone *zone)
1124 {
1125 	return zone->spanned_pages == 0;
1126 }
1127 
1128 #ifndef BUILD_VDSO32_64
1129 /*
1130  * The zone field is never updated after free_area_init_core()
1131  * sets it, so none of the operations on it need to be atomic.
1132  */
1133 
1134 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1135 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1136 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1137 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1138 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1139 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1140 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1141 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1142 
1143 /*
1144  * Define the bit shifts to access each section.  For non-existent
1145  * sections we define the shift as 0; that plus a 0 mask ensures
1146  * the compiler will optimise away reference to them.
1147  */
1148 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1149 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1150 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1151 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1152 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1153 
1154 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1155 #ifdef NODE_NOT_IN_PAGE_FLAGS
1156 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1157 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1158 						SECTIONS_PGOFF : ZONES_PGOFF)
1159 #else
1160 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1161 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1162 						NODES_PGOFF : ZONES_PGOFF)
1163 #endif
1164 
1165 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1166 
1167 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1168 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1169 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1170 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1171 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1172 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1173 
page_zonenum(const struct page * page)1174 static inline enum zone_type page_zonenum(const struct page *page)
1175 {
1176 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1177 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1178 }
1179 
folio_zonenum(const struct folio * folio)1180 static inline enum zone_type folio_zonenum(const struct folio *folio)
1181 {
1182 	return page_zonenum(&folio->page);
1183 }
1184 
1185 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1186 static inline bool is_zone_device_page(const struct page *page)
1187 {
1188 	return page_zonenum(page) == ZONE_DEVICE;
1189 }
1190 
1191 /*
1192  * Consecutive zone device pages should not be merged into the same sgl
1193  * or bvec segment with other types of pages or if they belong to different
1194  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1195  * without scanning the entire segment. This helper returns true either if
1196  * both pages are not zone device pages or both pages are zone device pages
1197  * with the same pgmap.
1198  */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1199 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1200 						     const struct page *b)
1201 {
1202 	if (is_zone_device_page(a) != is_zone_device_page(b))
1203 		return false;
1204 	if (!is_zone_device_page(a))
1205 		return true;
1206 	return a->pgmap == b->pgmap;
1207 }
1208 
1209 extern void memmap_init_zone_device(struct zone *, unsigned long,
1210 				    unsigned long, struct dev_pagemap *);
1211 #else
is_zone_device_page(const struct page * page)1212 static inline bool is_zone_device_page(const struct page *page)
1213 {
1214 	return false;
1215 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1216 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1217 						     const struct page *b)
1218 {
1219 	return true;
1220 }
1221 #endif
1222 
folio_is_zone_device(const struct folio * folio)1223 static inline bool folio_is_zone_device(const struct folio *folio)
1224 {
1225 	return is_zone_device_page(&folio->page);
1226 }
1227 
is_zone_movable_page(const struct page * page)1228 static inline bool is_zone_movable_page(const struct page *page)
1229 {
1230 	return page_zonenum(page) == ZONE_MOVABLE;
1231 }
1232 
folio_is_zone_movable(const struct folio * folio)1233 static inline bool folio_is_zone_movable(const struct folio *folio)
1234 {
1235 	return folio_zonenum(folio) == ZONE_MOVABLE;
1236 }
1237 #endif
1238 
1239 /*
1240  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1241  * intersection with the given zone
1242  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1243 static inline bool zone_intersects(struct zone *zone,
1244 		unsigned long start_pfn, unsigned long nr_pages)
1245 {
1246 	if (zone_is_empty(zone))
1247 		return false;
1248 	if (start_pfn >= zone_end_pfn(zone) ||
1249 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1250 		return false;
1251 
1252 	return true;
1253 }
1254 
1255 /*
1256  * The "priority" of VM scanning is how much of the queues we will scan in one
1257  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1258  * queues ("queue_length >> 12") during an aging round.
1259  */
1260 #define DEF_PRIORITY 12
1261 
1262 /* Maximum number of zones on a zonelist */
1263 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1264 
1265 enum {
1266 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1267 #ifdef CONFIG_NUMA
1268 	/*
1269 	 * The NUMA zonelists are doubled because we need zonelists that
1270 	 * restrict the allocations to a single node for __GFP_THISNODE.
1271 	 */
1272 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1273 #endif
1274 	MAX_ZONELISTS
1275 };
1276 
1277 /*
1278  * This struct contains information about a zone in a zonelist. It is stored
1279  * here to avoid dereferences into large structures and lookups of tables
1280  */
1281 struct zoneref {
1282 	struct zone *zone;	/* Pointer to actual zone */
1283 	int zone_idx;		/* zone_idx(zoneref->zone) */
1284 };
1285 
1286 /*
1287  * One allocation request operates on a zonelist. A zonelist
1288  * is a list of zones, the first one is the 'goal' of the
1289  * allocation, the other zones are fallback zones, in decreasing
1290  * priority.
1291  *
1292  * To speed the reading of the zonelist, the zonerefs contain the zone index
1293  * of the entry being read. Helper functions to access information given
1294  * a struct zoneref are
1295  *
1296  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1297  * zonelist_zone_idx()	- Return the index of the zone for an entry
1298  * zonelist_node_idx()	- Return the index of the node for an entry
1299  */
1300 struct zonelist {
1301 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1302 };
1303 
1304 /*
1305  * The array of struct pages for flatmem.
1306  * It must be declared for SPARSEMEM as well because there are configurations
1307  * that rely on that.
1308  */
1309 extern struct page *mem_map;
1310 
1311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1312 struct deferred_split {
1313 	spinlock_t split_queue_lock;
1314 	struct list_head split_queue;
1315 	unsigned long split_queue_len;
1316 };
1317 #endif
1318 
1319 #ifdef CONFIG_MEMORY_FAILURE
1320 /*
1321  * Per NUMA node memory failure handling statistics.
1322  */
1323 struct memory_failure_stats {
1324 	/*
1325 	 * Number of raw pages poisoned.
1326 	 * Cases not accounted: memory outside kernel control, offline page,
1327 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1328 	 * error events, and unpoison actions from hwpoison_unpoison.
1329 	 */
1330 	unsigned long total;
1331 	/*
1332 	 * Recovery results of poisoned raw pages handled by memory_failure,
1333 	 * in sync with mf_result.
1334 	 * total = ignored + failed + delayed + recovered.
1335 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1336 	 */
1337 	unsigned long ignored;
1338 	unsigned long failed;
1339 	unsigned long delayed;
1340 	unsigned long recovered;
1341 };
1342 #endif
1343 
1344 /*
1345  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1346  * it's memory layout. On UMA machines there is a single pglist_data which
1347  * describes the whole memory.
1348  *
1349  * Memory statistics and page replacement data structures are maintained on a
1350  * per-zone basis.
1351  */
1352 typedef struct pglist_data {
1353 	/*
1354 	 * node_zones contains just the zones for THIS node. Not all of the
1355 	 * zones may be populated, but it is the full list. It is referenced by
1356 	 * this node's node_zonelists as well as other node's node_zonelists.
1357 	 */
1358 	struct zone node_zones[MAX_NR_ZONES];
1359 
1360 	/*
1361 	 * node_zonelists contains references to all zones in all nodes.
1362 	 * Generally the first zones will be references to this node's
1363 	 * node_zones.
1364 	 */
1365 	struct zonelist node_zonelists[MAX_ZONELISTS];
1366 
1367 	int nr_zones; /* number of populated zones in this node */
1368 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1369 	struct page *node_mem_map;
1370 #ifdef CONFIG_PAGE_EXTENSION
1371 	struct page_ext *node_page_ext;
1372 #endif
1373 #endif
1374 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1375 	/*
1376 	 * Must be held any time you expect node_start_pfn,
1377 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1378 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1379 	 * init.
1380 	 *
1381 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1382 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1383 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1384 	 *
1385 	 * Nests above zone->lock and zone->span_seqlock
1386 	 */
1387 	spinlock_t node_size_lock;
1388 #endif
1389 	unsigned long node_start_pfn;
1390 	unsigned long node_present_pages; /* total number of physical pages */
1391 	unsigned long node_spanned_pages; /* total size of physical page
1392 					     range, including holes */
1393 	int node_id;
1394 	wait_queue_head_t kswapd_wait;
1395 	wait_queue_head_t pfmemalloc_wait;
1396 
1397 	/* workqueues for throttling reclaim for different reasons. */
1398 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1399 
1400 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1401 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1402 					 * when throttling started. */
1403 #ifdef CONFIG_MEMORY_HOTPLUG
1404 	struct mutex kswapd_lock;
1405 #endif
1406 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1407 	int kswapd_order;
1408 	enum zone_type kswapd_highest_zoneidx;
1409 
1410 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1411 
1412 #ifdef CONFIG_COMPACTION
1413 	int kcompactd_max_order;
1414 	enum zone_type kcompactd_highest_zoneidx;
1415 	wait_queue_head_t kcompactd_wait;
1416 	struct task_struct *kcompactd;
1417 	bool proactive_compact_trigger;
1418 #endif
1419 	/*
1420 	 * This is a per-node reserve of pages that are not available
1421 	 * to userspace allocations.
1422 	 */
1423 	unsigned long		totalreserve_pages;
1424 
1425 #ifdef CONFIG_NUMA
1426 	/*
1427 	 * node reclaim becomes active if more unmapped pages exist.
1428 	 */
1429 	unsigned long		min_unmapped_pages;
1430 	unsigned long		min_slab_pages;
1431 #endif /* CONFIG_NUMA */
1432 
1433 	/* Write-intensive fields used by page reclaim */
1434 	CACHELINE_PADDING(_pad1_);
1435 
1436 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1437 	/*
1438 	 * If memory initialisation on large machines is deferred then this
1439 	 * is the first PFN that needs to be initialised.
1440 	 */
1441 	unsigned long first_deferred_pfn;
1442 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1443 
1444 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1445 	struct deferred_split deferred_split_queue;
1446 #endif
1447 
1448 #ifdef CONFIG_NUMA_BALANCING
1449 	/* start time in ms of current promote rate limit period */
1450 	unsigned int nbp_rl_start;
1451 	/* number of promote candidate pages at start time of current rate limit period */
1452 	unsigned long nbp_rl_nr_cand;
1453 	/* promote threshold in ms */
1454 	unsigned int nbp_threshold;
1455 	/* start time in ms of current promote threshold adjustment period */
1456 	unsigned int nbp_th_start;
1457 	/*
1458 	 * number of promote candidate pages at start time of current promote
1459 	 * threshold adjustment period
1460 	 */
1461 	unsigned long nbp_th_nr_cand;
1462 #endif
1463 	/* Fields commonly accessed by the page reclaim scanner */
1464 
1465 	/*
1466 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1467 	 *
1468 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1469 	 */
1470 	struct lruvec		__lruvec;
1471 
1472 	unsigned long		flags;
1473 
1474 #ifdef CONFIG_LRU_GEN
1475 	/* kswap mm walk data */
1476 	struct lru_gen_mm_walk mm_walk;
1477 	/* lru_gen_folio list */
1478 	struct lru_gen_memcg memcg_lru;
1479 #endif
1480 
1481 	CACHELINE_PADDING(_pad2_);
1482 
1483 	/* Per-node vmstats */
1484 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1485 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1486 #ifdef CONFIG_NUMA
1487 	struct memory_tier __rcu *memtier;
1488 #endif
1489 #ifdef CONFIG_MEMORY_FAILURE
1490 	struct memory_failure_stats mf_stats;
1491 #endif
1492 
1493 	ANDROID_KABI_RESERVE(1);
1494 	ANDROID_BACKPORT_RESERVE(1);
1495 	ANDROID_OEM_DATA(1);
1496 } pg_data_t;
1497 
1498 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1499 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1500 
1501 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1502 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1503 
pgdat_end_pfn(pg_data_t * pgdat)1504 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1505 {
1506 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1507 }
1508 
1509 #include <linux/memory_hotplug.h>
1510 
1511 void build_all_zonelists(pg_data_t *pgdat);
1512 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1513 		   enum zone_type highest_zoneidx);
1514 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1515 			 int highest_zoneidx, unsigned int alloc_flags,
1516 			 long free_pages);
1517 bool zone_watermark_ok(struct zone *z, unsigned int order,
1518 		unsigned long mark, int highest_zoneidx,
1519 		unsigned int alloc_flags);
1520 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1521 		unsigned long mark, int highest_zoneidx);
1522 /*
1523  * Memory initialization context, use to differentiate memory added by
1524  * the platform statically or via memory hotplug interface.
1525  */
1526 enum meminit_context {
1527 	MEMINIT_EARLY,
1528 	MEMINIT_HOTPLUG,
1529 };
1530 
1531 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1532 				     unsigned long size);
1533 
1534 extern void lruvec_init(struct lruvec *lruvec);
1535 
lruvec_pgdat(struct lruvec * lruvec)1536 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1537 {
1538 #ifdef CONFIG_MEMCG
1539 	return lruvec->pgdat;
1540 #else
1541 	return container_of(lruvec, struct pglist_data, __lruvec);
1542 #endif
1543 }
1544 
1545 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1546 int local_memory_node(int node_id);
1547 #else
local_memory_node(int node_id)1548 static inline int local_memory_node(int node_id) { return node_id; };
1549 #endif
1550 
1551 /*
1552  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1553  */
1554 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1555 
1556 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1557 static inline bool zone_is_zone_device(struct zone *zone)
1558 {
1559 	return zone_idx(zone) == ZONE_DEVICE;
1560 }
1561 #else
zone_is_zone_device(struct zone * zone)1562 static inline bool zone_is_zone_device(struct zone *zone)
1563 {
1564 	return false;
1565 }
1566 #endif
1567 
1568 /*
1569  * Returns true if a zone has pages managed by the buddy allocator.
1570  * All the reclaim decisions have to use this function rather than
1571  * populated_zone(). If the whole zone is reserved then we can easily
1572  * end up with populated_zone() && !managed_zone().
1573  */
managed_zone(struct zone * zone)1574 static inline bool managed_zone(struct zone *zone)
1575 {
1576 	return zone_managed_pages(zone);
1577 }
1578 
1579 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1580 static inline bool populated_zone(struct zone *zone)
1581 {
1582 	return zone->present_pages;
1583 }
1584 
1585 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1586 static inline int zone_to_nid(struct zone *zone)
1587 {
1588 	return zone->node;
1589 }
1590 
zone_set_nid(struct zone * zone,int nid)1591 static inline void zone_set_nid(struct zone *zone, int nid)
1592 {
1593 	zone->node = nid;
1594 }
1595 #else
zone_to_nid(struct zone * zone)1596 static inline int zone_to_nid(struct zone *zone)
1597 {
1598 	return 0;
1599 }
1600 
zone_set_nid(struct zone * zone,int nid)1601 static inline void zone_set_nid(struct zone *zone, int nid) {}
1602 #endif
1603 
1604 extern int movable_zone;
1605 
is_highmem_idx(enum zone_type idx)1606 static inline int is_highmem_idx(enum zone_type idx)
1607 {
1608 #ifdef CONFIG_HIGHMEM
1609 	return (idx == ZONE_HIGHMEM ||
1610 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1611 #else
1612 	return 0;
1613 #endif
1614 }
1615 
1616 /**
1617  * is_highmem - helper function to quickly check if a struct zone is a
1618  *              highmem zone or not.  This is an attempt to keep references
1619  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1620  * @zone: pointer to struct zone variable
1621  * Return: 1 for a highmem zone, 0 otherwise
1622  */
is_highmem(struct zone * zone)1623 static inline int is_highmem(struct zone *zone)
1624 {
1625 	return is_highmem_idx(zone_idx(zone));
1626 }
1627 
1628 #ifdef CONFIG_ZONE_DMA
1629 bool has_managed_dma(void);
1630 #else
has_managed_dma(void)1631 static inline bool has_managed_dma(void)
1632 {
1633 	return false;
1634 }
1635 #endif
1636 
1637 
1638 #ifndef CONFIG_NUMA
1639 
1640 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1641 static inline struct pglist_data *NODE_DATA(int nid)
1642 {
1643 	return &contig_page_data;
1644 }
1645 
1646 #else /* CONFIG_NUMA */
1647 
1648 #include <asm/mmzone.h>
1649 
1650 #endif /* !CONFIG_NUMA */
1651 
1652 extern struct pglist_data *first_online_pgdat(void);
1653 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1654 extern struct zone *next_zone(struct zone *zone);
1655 extern int isolate_anon_lru_page(struct page *page);
1656 
1657 #ifdef CONFIG_COMPACTION
1658 extern unsigned long isolate_and_split_free_page(struct page *page,
1659 			struct list_head *list);
1660 #else
isolate_and_split_free_page(struct page * page,struct list_head * list)1661 static inline unsigned long isolate_and_split_free_page(struct page *page,
1662 				struct list_head *list)
1663 {
1664 	return 0;
1665 }
1666 #endif /* CONFIG_COMPACTION */
1667 
1668 /**
1669  * for_each_online_pgdat - helper macro to iterate over all online nodes
1670  * @pgdat: pointer to a pg_data_t variable
1671  */
1672 #define for_each_online_pgdat(pgdat)			\
1673 	for (pgdat = first_online_pgdat();		\
1674 	     pgdat;					\
1675 	     pgdat = next_online_pgdat(pgdat))
1676 /**
1677  * for_each_zone - helper macro to iterate over all memory zones
1678  * @zone: pointer to struct zone variable
1679  *
1680  * The user only needs to declare the zone variable, for_each_zone
1681  * fills it in.
1682  */
1683 #define for_each_zone(zone)			        \
1684 	for (zone = (first_online_pgdat())->node_zones; \
1685 	     zone;					\
1686 	     zone = next_zone(zone))
1687 
1688 #define for_each_populated_zone(zone)		        \
1689 	for (zone = (first_online_pgdat())->node_zones; \
1690 	     zone;					\
1691 	     zone = next_zone(zone))			\
1692 		if (!populated_zone(zone))		\
1693 			; /* do nothing */		\
1694 		else
1695 
zonelist_zone(struct zoneref * zoneref)1696 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1697 {
1698 	return zoneref->zone;
1699 }
1700 
zonelist_zone_idx(struct zoneref * zoneref)1701 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1702 {
1703 	return zoneref->zone_idx;
1704 }
1705 
zonelist_node_idx(struct zoneref * zoneref)1706 static inline int zonelist_node_idx(struct zoneref *zoneref)
1707 {
1708 	return zone_to_nid(zoneref->zone);
1709 }
1710 
1711 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1712 					enum zone_type highest_zoneidx,
1713 					nodemask_t *nodes);
1714 
1715 /**
1716  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1717  * @z: The cursor used as a starting point for the search
1718  * @highest_zoneidx: The zone index of the highest zone to return
1719  * @nodes: An optional nodemask to filter the zonelist with
1720  *
1721  * This function returns the next zone at or below a given zone index that is
1722  * within the allowed nodemask using a cursor as the starting point for the
1723  * search. The zoneref returned is a cursor that represents the current zone
1724  * being examined. It should be advanced by one before calling
1725  * next_zones_zonelist again.
1726  *
1727  * Return: the next zone at or below highest_zoneidx within the allowed
1728  * nodemask using a cursor within a zonelist as a starting point
1729  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1730 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1731 					enum zone_type highest_zoneidx,
1732 					nodemask_t *nodes)
1733 {
1734 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1735 		return z;
1736 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1737 }
1738 
1739 /**
1740  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1741  * @zonelist: The zonelist to search for a suitable zone
1742  * @highest_zoneidx: The zone index of the highest zone to return
1743  * @nodes: An optional nodemask to filter the zonelist with
1744  *
1745  * This function returns the first zone at or below a given zone index that is
1746  * within the allowed nodemask. The zoneref returned is a cursor that can be
1747  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1748  * one before calling.
1749  *
1750  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1751  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1752  * update due to cpuset modification.
1753  *
1754  * Return: Zoneref pointer for the first suitable zone found
1755  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1756 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1757 					enum zone_type highest_zoneidx,
1758 					nodemask_t *nodes)
1759 {
1760 	return next_zones_zonelist(zonelist->_zonerefs,
1761 							highest_zoneidx, nodes);
1762 }
1763 
1764 /**
1765  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1766  * @zone: The current zone in the iterator
1767  * @z: The current pointer within zonelist->_zonerefs being iterated
1768  * @zlist: The zonelist being iterated
1769  * @highidx: The zone index of the highest zone to return
1770  * @nodemask: Nodemask allowed by the allocator
1771  *
1772  * This iterator iterates though all zones at or below a given zone index and
1773  * within a given nodemask
1774  */
1775 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1776 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1777 		zone;							\
1778 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1779 			zone = zonelist_zone(z))
1780 
1781 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1782 	for (zone = zonelist_zone(z);	\
1783 		zone;							\
1784 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1785 			zone = zonelist_zone(z))
1786 
1787 
1788 /**
1789  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1790  * @zone: The current zone in the iterator
1791  * @z: The current pointer within zonelist->zones being iterated
1792  * @zlist: The zonelist being iterated
1793  * @highidx: The zone index of the highest zone to return
1794  *
1795  * This iterator iterates though all zones at or below a given zone index.
1796  */
1797 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1798 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1799 
1800 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1801 static inline bool movable_only_nodes(nodemask_t *nodes)
1802 {
1803 	struct zonelist *zonelist;
1804 	struct zoneref *z;
1805 	int nid;
1806 
1807 	if (nodes_empty(*nodes))
1808 		return false;
1809 
1810 	/*
1811 	 * We can chose arbitrary node from the nodemask to get a
1812 	 * zonelist as they are interlinked. We just need to find
1813 	 * at least one zone that can satisfy kernel allocations.
1814 	 */
1815 	nid = first_node(*nodes);
1816 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1817 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1818 	return (!zonelist_zone(z)) ? true : false;
1819 }
1820 
1821 
1822 #ifdef CONFIG_SPARSEMEM
1823 #include <asm/sparsemem.h>
1824 #endif
1825 
1826 #ifdef CONFIG_FLATMEM
1827 #define pfn_to_nid(pfn)		(0)
1828 #endif
1829 
1830 #ifdef CONFIG_SPARSEMEM
1831 
1832 /*
1833  * PA_SECTION_SHIFT		physical address to/from section number
1834  * PFN_SECTION_SHIFT		pfn to/from section number
1835  */
1836 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1837 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1838 
1839 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1840 
1841 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1842 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1843 
1844 #define SECTION_BLOCKFLAGS_BITS \
1845 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1846 
1847 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1848 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1849 #endif
1850 
pfn_to_section_nr(unsigned long pfn)1851 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1852 {
1853 	return pfn >> PFN_SECTION_SHIFT;
1854 }
section_nr_to_pfn(unsigned long sec)1855 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1856 {
1857 	return sec << PFN_SECTION_SHIFT;
1858 }
1859 
1860 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1861 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1862 
1863 #define SUBSECTION_SHIFT 21
1864 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1865 
1866 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1867 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1868 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1869 
1870 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1871 #error Subsection size exceeds section size
1872 #else
1873 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1874 #endif
1875 
1876 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1877 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1878 
1879 struct mem_section_usage {
1880 	struct rcu_head rcu;
1881 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1882 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1883 #endif
1884 	/* See declaration of similar field in struct zone */
1885 	unsigned long pageblock_flags[0];
1886 };
1887 
1888 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1889 
1890 struct page;
1891 struct page_ext;
1892 struct mem_section {
1893 	/*
1894 	 * This is, logically, a pointer to an array of struct
1895 	 * pages.  However, it is stored with some other magic.
1896 	 * (see sparse.c::sparse_init_one_section())
1897 	 *
1898 	 * Additionally during early boot we encode node id of
1899 	 * the location of the section here to guide allocation.
1900 	 * (see sparse.c::memory_present())
1901 	 *
1902 	 * Making it a UL at least makes someone do a cast
1903 	 * before using it wrong.
1904 	 */
1905 	unsigned long section_mem_map;
1906 
1907 	struct mem_section_usage *usage;
1908 #ifdef CONFIG_PAGE_EXTENSION
1909 	/*
1910 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1911 	 * section. (see page_ext.h about this.)
1912 	 */
1913 	struct page_ext *page_ext;
1914 	unsigned long pad;
1915 #endif
1916 	/*
1917 	 * WARNING: mem_section must be a power-of-2 in size for the
1918 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1919 	 */
1920 };
1921 
1922 #ifdef CONFIG_SPARSEMEM_EXTREME
1923 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1924 #else
1925 #define SECTIONS_PER_ROOT	1
1926 #endif
1927 
1928 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1929 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1930 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1931 
1932 #ifdef CONFIG_SPARSEMEM_EXTREME
1933 extern struct mem_section **mem_section;
1934 #else
1935 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1936 #endif
1937 
section_to_usemap(struct mem_section * ms)1938 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1939 {
1940 	return ms->usage->pageblock_flags;
1941 }
1942 
__nr_to_section(unsigned long nr)1943 static inline struct mem_section *__nr_to_section(unsigned long nr)
1944 {
1945 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1946 
1947 	if (unlikely(root >= NR_SECTION_ROOTS))
1948 		return NULL;
1949 
1950 #ifdef CONFIG_SPARSEMEM_EXTREME
1951 	if (!mem_section || !mem_section[root])
1952 		return NULL;
1953 #endif
1954 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1955 }
1956 extern size_t mem_section_usage_size(void);
1957 
1958 /*
1959  * We use the lower bits of the mem_map pointer to store
1960  * a little bit of information.  The pointer is calculated
1961  * as mem_map - section_nr_to_pfn(pnum).  The result is
1962  * aligned to the minimum alignment of the two values:
1963  *   1. All mem_map arrays are page-aligned.
1964  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1965  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1966  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1967  *      worst combination is powerpc with 256k pages,
1968  *      which results in PFN_SECTION_SHIFT equal 6.
1969  * To sum it up, at least 6 bits are available on all architectures.
1970  * However, we can exceed 6 bits on some other architectures except
1971  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1972  * with the worst case of 64K pages on arm64) if we make sure the
1973  * exceeded bit is not applicable to powerpc.
1974  */
1975 enum {
1976 	SECTION_MARKED_PRESENT_BIT,
1977 	SECTION_HAS_MEM_MAP_BIT,
1978 	SECTION_IS_ONLINE_BIT,
1979 	SECTION_IS_EARLY_BIT,
1980 #ifdef CONFIG_ZONE_DEVICE
1981 	SECTION_TAINT_ZONE_DEVICE_BIT,
1982 #endif
1983 	SECTION_MAP_LAST_BIT,
1984 };
1985 
1986 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1987 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1988 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1989 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1990 #ifdef CONFIG_ZONE_DEVICE
1991 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1992 #endif
1993 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1994 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1995 
__section_mem_map_addr(struct mem_section * section)1996 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1997 {
1998 	unsigned long map = section->section_mem_map;
1999 	map &= SECTION_MAP_MASK;
2000 	return (struct page *)map;
2001 }
2002 
present_section(struct mem_section * section)2003 static inline int present_section(struct mem_section *section)
2004 {
2005 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
2006 }
2007 
present_section_nr(unsigned long nr)2008 static inline int present_section_nr(unsigned long nr)
2009 {
2010 	return present_section(__nr_to_section(nr));
2011 }
2012 
valid_section(struct mem_section * section)2013 static inline int valid_section(struct mem_section *section)
2014 {
2015 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
2016 }
2017 
early_section(struct mem_section * section)2018 static inline int early_section(struct mem_section *section)
2019 {
2020 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
2021 }
2022 
valid_section_nr(unsigned long nr)2023 static inline int valid_section_nr(unsigned long nr)
2024 {
2025 	return valid_section(__nr_to_section(nr));
2026 }
2027 
online_section(struct mem_section * section)2028 static inline int online_section(struct mem_section *section)
2029 {
2030 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
2031 }
2032 
2033 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)2034 static inline int online_device_section(struct mem_section *section)
2035 {
2036 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
2037 
2038 	return section && ((section->section_mem_map & flags) == flags);
2039 }
2040 #else
online_device_section(struct mem_section * section)2041 static inline int online_device_section(struct mem_section *section)
2042 {
2043 	return 0;
2044 }
2045 #endif
2046 
online_section_nr(unsigned long nr)2047 static inline int online_section_nr(unsigned long nr)
2048 {
2049 	return online_section(__nr_to_section(nr));
2050 }
2051 
2052 #ifdef CONFIG_MEMORY_HOTPLUG
2053 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2054 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2055 #endif
2056 
__pfn_to_section(unsigned long pfn)2057 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
2058 {
2059 	return __nr_to_section(pfn_to_section_nr(pfn));
2060 }
2061 
2062 extern unsigned long __highest_present_section_nr;
2063 
subsection_map_index(unsigned long pfn)2064 static inline int subsection_map_index(unsigned long pfn)
2065 {
2066 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
2067 }
2068 
2069 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2070 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2071 {
2072 	int idx = subsection_map_index(pfn);
2073 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2074 
2075 	return usage ? test_bit(idx, usage->subsection_map) : 0;
2076 }
2077 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2078 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2079 {
2080 	return 1;
2081 }
2082 #endif
2083 
2084 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2085 /**
2086  * pfn_valid - check if there is a valid memory map entry for a PFN
2087  * @pfn: the page frame number to check
2088  *
2089  * Check if there is a valid memory map entry aka struct page for the @pfn.
2090  * Note, that availability of the memory map entry does not imply that
2091  * there is actual usable memory at that @pfn. The struct page may
2092  * represent a hole or an unusable page frame.
2093  *
2094  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2095  */
pfn_valid(unsigned long pfn)2096 static inline int pfn_valid(unsigned long pfn)
2097 {
2098 	struct mem_section *ms;
2099 	int ret;
2100 
2101 	/*
2102 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2103 	 * pfn. Else it might lead to false positives when
2104 	 * some of the upper bits are set, but the lower bits
2105 	 * match a valid pfn.
2106 	 */
2107 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2108 		return 0;
2109 
2110 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2111 		return 0;
2112 	ms = __pfn_to_section(pfn);
2113 	rcu_read_lock_sched();
2114 	if (!valid_section(ms)) {
2115 		rcu_read_unlock_sched();
2116 		return 0;
2117 	}
2118 	/*
2119 	 * Traditionally early sections always returned pfn_valid() for
2120 	 * the entire section-sized span.
2121 	 */
2122 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2123 	rcu_read_unlock_sched();
2124 
2125 	return ret;
2126 }
2127 #endif
2128 
pfn_in_present_section(unsigned long pfn)2129 static inline int pfn_in_present_section(unsigned long pfn)
2130 {
2131 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2132 		return 0;
2133 	return present_section(__pfn_to_section(pfn));
2134 }
2135 
next_present_section_nr(unsigned long section_nr)2136 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2137 {
2138 	while (++section_nr <= __highest_present_section_nr) {
2139 		if (present_section_nr(section_nr))
2140 			return section_nr;
2141 	}
2142 
2143 	return -1;
2144 }
2145 
2146 /*
2147  * These are _only_ used during initialisation, therefore they
2148  * can use __initdata ...  They could have names to indicate
2149  * this restriction.
2150  */
2151 #ifdef CONFIG_NUMA
2152 #define pfn_to_nid(pfn)							\
2153 ({									\
2154 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2155 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2156 })
2157 #else
2158 #define pfn_to_nid(pfn)		(0)
2159 #endif
2160 
2161 void sparse_init(void);
2162 #else
2163 #define sparse_init()	do {} while (0)
2164 #define sparse_index_init(_sec, _nid)  do {} while (0)
2165 #define pfn_in_present_section pfn_valid
2166 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2167 #endif /* CONFIG_SPARSEMEM */
2168 
2169 #endif /* !__GENERATING_BOUNDS.H */
2170 #endif /* !__ASSEMBLY__ */
2171 #endif /* _LINUX_MMZONE_H */
2172