• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #undef TRACE_SYSTEM
3 #define TRACE_SYSTEM sched
4 
5 #if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ)
6 #define _TRACE_SCHED_H
7 
8 #include <linux/kthread.h>
9 #include <linux/sched/numa_balancing.h>
10 #include <linux/tracepoint.h>
11 #include <linux/binfmts.h>
12 
13 /*
14  * Tracepoint for calling kthread_stop, performed to end a kthread:
15  */
16 TRACE_EVENT(sched_kthread_stop,
17 
18 	TP_PROTO(struct task_struct *t),
19 
20 	TP_ARGS(t),
21 
22 	TP_STRUCT__entry(
23 		__array(	char,	comm,	TASK_COMM_LEN	)
24 		__field(	pid_t,	pid			)
25 	),
26 
27 	TP_fast_assign(
28 		memcpy(__entry->comm, t->comm, TASK_COMM_LEN);
29 		__entry->pid	= t->pid;
30 	),
31 
32 	TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
33 );
34 
35 /*
36  * Tracepoint for the return value of the kthread stopping:
37  */
38 TRACE_EVENT(sched_kthread_stop_ret,
39 
40 	TP_PROTO(int ret),
41 
42 	TP_ARGS(ret),
43 
44 	TP_STRUCT__entry(
45 		__field(	int,	ret	)
46 	),
47 
48 	TP_fast_assign(
49 		__entry->ret	= ret;
50 	),
51 
52 	TP_printk("ret=%d", __entry->ret)
53 );
54 
55 /**
56  * sched_kthread_work_queue_work - called when a work gets queued
57  * @worker:	pointer to the kthread_worker
58  * @work:	pointer to struct kthread_work
59  *
60  * This event occurs when a work is queued immediately or once a
61  * delayed work is actually queued (ie: once the delay has been
62  * reached).
63  */
64 TRACE_EVENT(sched_kthread_work_queue_work,
65 
66 	TP_PROTO(struct kthread_worker *worker,
67 		 struct kthread_work *work),
68 
69 	TP_ARGS(worker, work),
70 
71 	TP_STRUCT__entry(
72 		__field( void *,	work	)
73 		__field( void *,	function)
74 		__field( void *,	worker)
75 	),
76 
77 	TP_fast_assign(
78 		__entry->work		= work;
79 		__entry->function	= work->func;
80 		__entry->worker		= worker;
81 	),
82 
83 	TP_printk("work struct=%p function=%ps worker=%p",
84 		  __entry->work, __entry->function, __entry->worker)
85 );
86 
87 /**
88  * sched_kthread_work_execute_start - called immediately before the work callback
89  * @work:	pointer to struct kthread_work
90  *
91  * Allows to track kthread work execution.
92  */
93 TRACE_EVENT(sched_kthread_work_execute_start,
94 
95 	TP_PROTO(struct kthread_work *work),
96 
97 	TP_ARGS(work),
98 
99 	TP_STRUCT__entry(
100 		__field( void *,	work	)
101 		__field( void *,	function)
102 	),
103 
104 	TP_fast_assign(
105 		__entry->work		= work;
106 		__entry->function	= work->func;
107 	),
108 
109 	TP_printk("work struct %p: function %ps", __entry->work, __entry->function)
110 );
111 
112 /**
113  * sched_kthread_work_execute_end - called immediately after the work callback
114  * @work:	pointer to struct work_struct
115  * @function:   pointer to worker function
116  *
117  * Allows to track workqueue execution.
118  */
119 TRACE_EVENT(sched_kthread_work_execute_end,
120 
121 	TP_PROTO(struct kthread_work *work, kthread_work_func_t function),
122 
123 	TP_ARGS(work, function),
124 
125 	TP_STRUCT__entry(
126 		__field( void *,	work	)
127 		__field( void *,	function)
128 	),
129 
130 	TP_fast_assign(
131 		__entry->work		= work;
132 		__entry->function	= function;
133 	),
134 
135 	TP_printk("work struct %p: function %ps", __entry->work, __entry->function)
136 );
137 
138 /*
139  * Tracepoint for waking up a task:
140  */
141 DECLARE_EVENT_CLASS(sched_wakeup_template,
142 
143 	TP_PROTO(struct task_struct *p),
144 
145 	TP_ARGS(__perf_task(p)),
146 
147 	TP_STRUCT__entry(
148 		__array(	char,	comm,	TASK_COMM_LEN	)
149 		__field(	pid_t,	pid			)
150 		__field(	int,	prio			)
151 		__field(	int,	target_cpu		)
152 	),
153 
154 	TP_fast_assign(
155 		memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
156 		__entry->pid		= p->pid;
157 		__entry->prio		= p->prio; /* XXX SCHED_DEADLINE */
158 		__entry->target_cpu	= task_cpu(p);
159 	),
160 
161 	TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d",
162 		  __entry->comm, __entry->pid, __entry->prio,
163 		  __entry->target_cpu)
164 );
165 
166 /*
167  * Tracepoint called when waking a task; this tracepoint is guaranteed to be
168  * called from the waking context.
169  */
170 DEFINE_EVENT(sched_wakeup_template, sched_waking,
171 	     TP_PROTO(struct task_struct *p),
172 	     TP_ARGS(p));
173 
174 /*
175  * Tracepoint called when the task is actually woken; p->state == TASK_RUNNING.
176  * It is not always called from the waking context.
177  */
178 DEFINE_EVENT(sched_wakeup_template, sched_wakeup,
179 	     TP_PROTO(struct task_struct *p),
180 	     TP_ARGS(p));
181 
182 /*
183  * Tracepoint for waking up a new task:
184  */
185 DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new,
186 	     TP_PROTO(struct task_struct *p),
187 	     TP_ARGS(p));
188 
189 #ifdef CREATE_TRACE_POINTS
__trace_sched_switch_state(bool preempt,unsigned int prev_state,struct task_struct * p)190 static inline long __trace_sched_switch_state(bool preempt,
191 					      unsigned int prev_state,
192 					      struct task_struct *p)
193 {
194 	unsigned int state;
195 
196 #ifdef CONFIG_SCHED_DEBUG
197 	BUG_ON(p != current);
198 #endif /* CONFIG_SCHED_DEBUG */
199 
200 	/*
201 	 * Preemption ignores task state, therefore preempted tasks are always
202 	 * RUNNING (we will not have dequeued if state != RUNNING).
203 	 */
204 	if (preempt)
205 		return TASK_REPORT_MAX;
206 
207 	/*
208 	 * task_state_index() uses fls() and returns a value from 0-8 range.
209 	 * Decrement it by 1 (except TASK_RUNNING state i.e 0) before using
210 	 * it for left shift operation to get the correct task->state
211 	 * mapping.
212 	 */
213 	state = __task_state_index(prev_state, p->exit_state);
214 
215 	return state ? (1 << (state - 1)) : state;
216 }
217 #endif /* CREATE_TRACE_POINTS */
218 
219 /*
220  * Tracepoint for task switches, performed by the scheduler:
221  */
222 TRACE_EVENT(sched_switch,
223 
224 	TP_PROTO(bool preempt,
225 		 struct task_struct *prev,
226 		 struct task_struct *next,
227 		 unsigned int prev_state),
228 
229 	TP_ARGS(preempt, prev, next, prev_state),
230 
231 	TP_STRUCT__entry(
232 		__array(	char,	prev_comm,	TASK_COMM_LEN	)
233 		__field(	pid_t,	prev_pid			)
234 		__field(	int,	prev_prio			)
235 		__field(	long,	prev_state			)
236 		__array(	char,	next_comm,	TASK_COMM_LEN	)
237 		__field(	pid_t,	next_pid			)
238 		__field(	int,	next_prio			)
239 	),
240 
241 	TP_fast_assign(
242 		memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN);
243 		__entry->prev_pid	= prev->pid;
244 		__entry->prev_prio	= prev->prio;
245 		__entry->prev_state	= __trace_sched_switch_state(preempt, prev_state, prev);
246 		memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN);
247 		__entry->next_pid	= next->pid;
248 		__entry->next_prio	= next->prio;
249 		/* XXX SCHED_DEADLINE */
250 	),
251 
252 	TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d",
253 		__entry->prev_comm, __entry->prev_pid, __entry->prev_prio,
254 
255 		(__entry->prev_state & (TASK_REPORT_MAX - 1)) ?
256 		  __print_flags(__entry->prev_state & (TASK_REPORT_MAX - 1), "|",
257 				{ TASK_INTERRUPTIBLE, "S" },
258 				{ TASK_UNINTERRUPTIBLE, "D" },
259 				{ __TASK_STOPPED, "T" },
260 				{ __TASK_TRACED, "t" },
261 				{ EXIT_DEAD, "X" },
262 				{ EXIT_ZOMBIE, "Z" },
263 				{ TASK_PARKED, "P" },
264 				{ TASK_DEAD, "I" }) :
265 		  "R",
266 
267 		__entry->prev_state & TASK_REPORT_MAX ? "+" : "",
268 		__entry->next_comm, __entry->next_pid, __entry->next_prio)
269 );
270 
271 /*
272  * Tracepoint for a task being migrated:
273  */
274 TRACE_EVENT(sched_migrate_task,
275 
276 	TP_PROTO(struct task_struct *p, int dest_cpu),
277 
278 	TP_ARGS(p, dest_cpu),
279 
280 	TP_STRUCT__entry(
281 		__array(	char,	comm,	TASK_COMM_LEN	)
282 		__field(	pid_t,	pid			)
283 		__field(	int,	prio			)
284 		__field(	int,	orig_cpu		)
285 		__field(	int,	dest_cpu		)
286 	),
287 
288 	TP_fast_assign(
289 		memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
290 		__entry->pid		= p->pid;
291 		__entry->prio		= p->prio; /* XXX SCHED_DEADLINE */
292 		__entry->orig_cpu	= task_cpu(p);
293 		__entry->dest_cpu	= dest_cpu;
294 	),
295 
296 	TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d",
297 		  __entry->comm, __entry->pid, __entry->prio,
298 		  __entry->orig_cpu, __entry->dest_cpu)
299 );
300 
301 DECLARE_EVENT_CLASS(sched_process_template,
302 
303 	TP_PROTO(struct task_struct *p),
304 
305 	TP_ARGS(p),
306 
307 	TP_STRUCT__entry(
308 		__array(	char,	comm,	TASK_COMM_LEN	)
309 		__field(	pid_t,	pid			)
310 		__field(	int,	prio			)
311 	),
312 
313 	TP_fast_assign(
314 		memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
315 		__entry->pid		= p->pid;
316 		__entry->prio		= p->prio; /* XXX SCHED_DEADLINE */
317 	),
318 
319 	TP_printk("comm=%s pid=%d prio=%d",
320 		  __entry->comm, __entry->pid, __entry->prio)
321 );
322 
323 /*
324  * Tracepoint for freeing a task:
325  */
326 DEFINE_EVENT(sched_process_template, sched_process_free,
327 	     TP_PROTO(struct task_struct *p),
328 	     TP_ARGS(p));
329 
330 /*
331  * Tracepoint for a task exiting:
332  */
333 DEFINE_EVENT(sched_process_template, sched_process_exit,
334 	     TP_PROTO(struct task_struct *p),
335 	     TP_ARGS(p));
336 
337 /*
338  * Tracepoint for waiting on task to unschedule:
339  */
340 DEFINE_EVENT(sched_process_template, sched_wait_task,
341 	TP_PROTO(struct task_struct *p),
342 	TP_ARGS(p));
343 
344 /*
345  * Tracepoint for a waiting task:
346  */
347 TRACE_EVENT(sched_process_wait,
348 
349 	TP_PROTO(struct pid *pid),
350 
351 	TP_ARGS(pid),
352 
353 	TP_STRUCT__entry(
354 		__array(	char,	comm,	TASK_COMM_LEN	)
355 		__field(	pid_t,	pid			)
356 		__field(	int,	prio			)
357 	),
358 
359 	TP_fast_assign(
360 		memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
361 		__entry->pid		= pid_nr(pid);
362 		__entry->prio		= current->prio; /* XXX SCHED_DEADLINE */
363 	),
364 
365 	TP_printk("comm=%s pid=%d prio=%d",
366 		  __entry->comm, __entry->pid, __entry->prio)
367 );
368 
369 /*
370  * Tracepoint for kernel_clone:
371  */
372 TRACE_EVENT(sched_process_fork,
373 
374 	TP_PROTO(struct task_struct *parent, struct task_struct *child),
375 
376 	TP_ARGS(parent, child),
377 
378 	TP_STRUCT__entry(
379 		__array(	char,	parent_comm,	TASK_COMM_LEN	)
380 		__field(	pid_t,	parent_pid			)
381 		__array(	char,	child_comm,	TASK_COMM_LEN	)
382 		__field(	pid_t,	child_pid			)
383 	),
384 
385 	TP_fast_assign(
386 		memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN);
387 		__entry->parent_pid	= parent->pid;
388 		memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN);
389 		__entry->child_pid	= child->pid;
390 	),
391 
392 	TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d",
393 		__entry->parent_comm, __entry->parent_pid,
394 		__entry->child_comm, __entry->child_pid)
395 );
396 
397 /*
398  * Tracepoint for exec:
399  */
400 TRACE_EVENT(sched_process_exec,
401 
402 	TP_PROTO(struct task_struct *p, pid_t old_pid,
403 		 struct linux_binprm *bprm),
404 
405 	TP_ARGS(p, old_pid, bprm),
406 
407 	TP_STRUCT__entry(
408 		__string(	filename,	bprm->filename	)
409 		__field(	pid_t,		pid		)
410 		__field(	pid_t,		old_pid		)
411 	),
412 
413 	TP_fast_assign(
414 		__assign_str(filename);
415 		__entry->pid		= p->pid;
416 		__entry->old_pid	= old_pid;
417 	),
418 
419 	TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename),
420 		  __entry->pid, __entry->old_pid)
421 );
422 
423 /**
424  * sched_prepare_exec - called before setting up new exec
425  * @task:	pointer to the current task
426  * @bprm:	pointer to linux_binprm used for new exec
427  *
428  * Called before flushing the old exec, where @task is still unchanged, but at
429  * the point of no return during switching to the new exec. At the point it is
430  * called the exec will either succeed, or on failure terminate the task. Also
431  * see the "sched_process_exec" tracepoint, which is called right after @task
432  * has successfully switched to the new exec.
433  */
434 TRACE_EVENT(sched_prepare_exec,
435 
436 	TP_PROTO(struct task_struct *task, struct linux_binprm *bprm),
437 
438 	TP_ARGS(task, bprm),
439 
440 	TP_STRUCT__entry(
441 		__string(	interp,		bprm->interp	)
442 		__string(	filename,	bprm->filename	)
443 		__field(	pid_t,		pid		)
444 		__string(	comm,		task->comm	)
445 	),
446 
447 	TP_fast_assign(
448 		__assign_str(interp);
449 		__assign_str(filename);
450 		__entry->pid = task->pid;
451 		__assign_str(comm);
452 	),
453 
454 	TP_printk("interp=%s filename=%s pid=%d comm=%s",
455 		  __get_str(interp), __get_str(filename),
456 		  __entry->pid, __get_str(comm))
457 );
458 
459 #ifdef CONFIG_SCHEDSTATS
460 #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT
461 #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS
462 #else
463 #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT_NOP
464 #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS_NOP
465 #endif
466 
467 /*
468  * XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE
469  *     adding sched_stat support to SCHED_FIFO/RR would be welcome.
470  */
471 DECLARE_EVENT_CLASS_SCHEDSTAT(sched_stat_template,
472 
473 	TP_PROTO(struct task_struct *tsk, u64 delay),
474 
475 	TP_ARGS(__perf_task(tsk), __perf_count(delay)),
476 
477 	TP_STRUCT__entry(
478 		__array( char,	comm,	TASK_COMM_LEN	)
479 		__field( pid_t,	pid			)
480 		__field( u64,	delay			)
481 	),
482 
483 	TP_fast_assign(
484 		memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
485 		__entry->pid	= tsk->pid;
486 		__entry->delay	= delay;
487 	),
488 
489 	TP_printk("comm=%s pid=%d delay=%Lu [ns]",
490 			__entry->comm, __entry->pid,
491 			(unsigned long long)__entry->delay)
492 );
493 
494 /*
495  * Tracepoint for accounting wait time (time the task is runnable
496  * but not actually running due to scheduler contention).
497  */
498 DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_wait,
499 	     TP_PROTO(struct task_struct *tsk, u64 delay),
500 	     TP_ARGS(tsk, delay));
501 
502 /*
503  * Tracepoint for accounting sleep time (time the task is not runnable,
504  * including iowait, see below).
505  */
506 DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_sleep,
507 	     TP_PROTO(struct task_struct *tsk, u64 delay),
508 	     TP_ARGS(tsk, delay));
509 
510 /*
511  * Tracepoint for accounting iowait time (time the task is not runnable
512  * due to waiting on IO to complete).
513  */
514 DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_iowait,
515 	     TP_PROTO(struct task_struct *tsk, u64 delay),
516 	     TP_ARGS(tsk, delay));
517 
518 /*
519  * Tracepoint for accounting blocked time (time the task is in uninterruptible).
520  */
521 DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_blocked,
522 	     TP_PROTO(struct task_struct *tsk, u64 delay),
523 	     TP_ARGS(tsk, delay));
524 
525 /*
526  * Tracepoint for recording the cause of uninterruptible sleep.
527  */
528 TRACE_EVENT(sched_blocked_reason,
529 
530 	TP_PROTO(struct task_struct *tsk, void *blocked_func),
531 
532 	TP_ARGS(tsk, blocked_func),
533 
534 	TP_STRUCT__entry(
535 		__field( pid_t,	pid	)
536 		__field( void*, caller	)
537 		__field( bool, io_wait	)
538 	),
539 
540 	TP_fast_assign(
541 		__entry->pid	= tsk->pid;
542 		__entry->caller = blocked_func;
543 		__entry->io_wait = tsk->in_iowait;
544 	),
545 
546 	TP_printk("pid=%d iowait=%d caller=%pS", __entry->pid, __entry->io_wait, __entry->caller)
547 );
548 
549 /*
550  * Tracepoint for accounting runtime (time the task is executing
551  * on a CPU).
552  */
553 DECLARE_EVENT_CLASS(sched_stat_runtime,
554 
555 	TP_PROTO(struct task_struct *tsk, u64 runtime),
556 
557 	TP_ARGS(tsk, __perf_count(runtime)),
558 
559 	TP_STRUCT__entry(
560 		__array( char,	comm,	TASK_COMM_LEN	)
561 		__field( pid_t,	pid			)
562 		__field( u64,	runtime			)
563 	),
564 
565 	TP_fast_assign(
566 		memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
567 		__entry->pid		= tsk->pid;
568 		__entry->runtime	= runtime;
569 	),
570 
571 	TP_printk("comm=%s pid=%d runtime=%Lu [ns]",
572 			__entry->comm, __entry->pid,
573 			(unsigned long long)__entry->runtime)
574 );
575 
576 DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime,
577 	     TP_PROTO(struct task_struct *tsk, u64 runtime),
578 	     TP_ARGS(tsk, runtime));
579 
580 /*
581  * Tracepoint for showing priority inheritance modifying a tasks
582  * priority.
583  */
584 TRACE_EVENT(sched_pi_setprio,
585 
586 	TP_PROTO(struct task_struct *tsk, struct task_struct *pi_task),
587 
588 	TP_ARGS(tsk, pi_task),
589 
590 	TP_STRUCT__entry(
591 		__array( char,	comm,	TASK_COMM_LEN	)
592 		__field( pid_t,	pid			)
593 		__field( int,	oldprio			)
594 		__field( int,	newprio			)
595 	),
596 
597 	TP_fast_assign(
598 		memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
599 		__entry->pid		= tsk->pid;
600 		__entry->oldprio	= tsk->prio;
601 		__entry->newprio	= pi_task ?
602 				min(tsk->normal_prio, pi_task->prio) :
603 				tsk->normal_prio;
604 		/* XXX SCHED_DEADLINE bits missing */
605 	),
606 
607 	TP_printk("comm=%s pid=%d oldprio=%d newprio=%d",
608 			__entry->comm, __entry->pid,
609 			__entry->oldprio, __entry->newprio)
610 );
611 
612 #ifdef CONFIG_DETECT_HUNG_TASK
613 TRACE_EVENT(sched_process_hang,
614 	TP_PROTO(struct task_struct *tsk),
615 	TP_ARGS(tsk),
616 
617 	TP_STRUCT__entry(
618 		__array( char,	comm,	TASK_COMM_LEN	)
619 		__field( pid_t,	pid			)
620 	),
621 
622 	TP_fast_assign(
623 		memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
624 		__entry->pid = tsk->pid;
625 	),
626 
627 	TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
628 );
629 #endif /* CONFIG_DETECT_HUNG_TASK */
630 
631 /*
632  * Tracks migration of tasks from one runqueue to another. Can be used to
633  * detect if automatic NUMA balancing is bouncing between nodes.
634  */
635 TRACE_EVENT(sched_move_numa,
636 
637 	TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
638 
639 	TP_ARGS(tsk, src_cpu, dst_cpu),
640 
641 	TP_STRUCT__entry(
642 		__field( pid_t,	pid			)
643 		__field( pid_t,	tgid			)
644 		__field( pid_t,	ngid			)
645 		__field( int,	src_cpu			)
646 		__field( int,	src_nid			)
647 		__field( int,	dst_cpu			)
648 		__field( int,	dst_nid			)
649 	),
650 
651 	TP_fast_assign(
652 		__entry->pid		= task_pid_nr(tsk);
653 		__entry->tgid		= task_tgid_nr(tsk);
654 		__entry->ngid		= task_numa_group_id(tsk);
655 		__entry->src_cpu	= src_cpu;
656 		__entry->src_nid	= cpu_to_node(src_cpu);
657 		__entry->dst_cpu	= dst_cpu;
658 		__entry->dst_nid	= cpu_to_node(dst_cpu);
659 	),
660 
661 	TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d",
662 			__entry->pid, __entry->tgid, __entry->ngid,
663 			__entry->src_cpu, __entry->src_nid,
664 			__entry->dst_cpu, __entry->dst_nid)
665 );
666 
667 DECLARE_EVENT_CLASS(sched_numa_pair_template,
668 
669 	TP_PROTO(struct task_struct *src_tsk, int src_cpu,
670 		 struct task_struct *dst_tsk, int dst_cpu),
671 
672 	TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu),
673 
674 	TP_STRUCT__entry(
675 		__field( pid_t,	src_pid			)
676 		__field( pid_t,	src_tgid		)
677 		__field( pid_t,	src_ngid		)
678 		__field( int,	src_cpu			)
679 		__field( int,	src_nid			)
680 		__field( pid_t,	dst_pid			)
681 		__field( pid_t,	dst_tgid		)
682 		__field( pid_t,	dst_ngid		)
683 		__field( int,	dst_cpu			)
684 		__field( int,	dst_nid			)
685 	),
686 
687 	TP_fast_assign(
688 		__entry->src_pid	= task_pid_nr(src_tsk);
689 		__entry->src_tgid	= task_tgid_nr(src_tsk);
690 		__entry->src_ngid	= task_numa_group_id(src_tsk);
691 		__entry->src_cpu	= src_cpu;
692 		__entry->src_nid	= cpu_to_node(src_cpu);
693 		__entry->dst_pid	= dst_tsk ? task_pid_nr(dst_tsk) : 0;
694 		__entry->dst_tgid	= dst_tsk ? task_tgid_nr(dst_tsk) : 0;
695 		__entry->dst_ngid	= dst_tsk ? task_numa_group_id(dst_tsk) : 0;
696 		__entry->dst_cpu	= dst_cpu;
697 		__entry->dst_nid	= dst_cpu >= 0 ? cpu_to_node(dst_cpu) : -1;
698 	),
699 
700 	TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d",
701 			__entry->src_pid, __entry->src_tgid, __entry->src_ngid,
702 			__entry->src_cpu, __entry->src_nid,
703 			__entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid,
704 			__entry->dst_cpu, __entry->dst_nid)
705 );
706 
707 DEFINE_EVENT(sched_numa_pair_template, sched_stick_numa,
708 
709 	TP_PROTO(struct task_struct *src_tsk, int src_cpu,
710 		 struct task_struct *dst_tsk, int dst_cpu),
711 
712 	TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu)
713 );
714 
715 DEFINE_EVENT(sched_numa_pair_template, sched_swap_numa,
716 
717 	TP_PROTO(struct task_struct *src_tsk, int src_cpu,
718 		 struct task_struct *dst_tsk, int dst_cpu),
719 
720 	TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu)
721 );
722 
723 #ifdef CONFIG_NUMA_BALANCING
724 #define NUMAB_SKIP_REASON					\
725 	EM( NUMAB_SKIP_UNSUITABLE,		"unsuitable" )	\
726 	EM( NUMAB_SKIP_SHARED_RO,		"shared_ro" )	\
727 	EM( NUMAB_SKIP_INACCESSIBLE,		"inaccessible" )	\
728 	EM( NUMAB_SKIP_SCAN_DELAY,		"scan_delay" )	\
729 	EM( NUMAB_SKIP_PID_INACTIVE,		"pid_inactive" )	\
730 	EM( NUMAB_SKIP_IGNORE_PID,		"ignore_pid_inactive" )		\
731 	EMe(NUMAB_SKIP_SEQ_COMPLETED,		"seq_completed" )
732 
733 /* Redefine for export. */
734 #undef EM
735 #undef EMe
736 #define EM(a, b)	TRACE_DEFINE_ENUM(a);
737 #define EMe(a, b)	TRACE_DEFINE_ENUM(a);
738 
739 NUMAB_SKIP_REASON
740 
741 /* Redefine for symbolic printing. */
742 #undef EM
743 #undef EMe
744 #define EM(a, b)	{ a, b },
745 #define EMe(a, b)	{ a, b }
746 
747 TRACE_EVENT(sched_skip_vma_numa,
748 
749 	TP_PROTO(struct mm_struct *mm, struct vm_area_struct *vma,
750 		 enum numa_vmaskip_reason reason),
751 
752 	TP_ARGS(mm, vma, reason),
753 
754 	TP_STRUCT__entry(
755 		__field(unsigned long, numa_scan_offset)
756 		__field(unsigned long, vm_start)
757 		__field(unsigned long, vm_end)
758 		__field(enum numa_vmaskip_reason, reason)
759 	),
760 
761 	TP_fast_assign(
762 		__entry->numa_scan_offset	= mm->numa_scan_offset;
763 		__entry->vm_start		= vma->vm_start;
764 		__entry->vm_end			= vma->vm_end;
765 		__entry->reason			= reason;
766 	),
767 
768 	TP_printk("numa_scan_offset=%lX vm_start=%lX vm_end=%lX reason=%s",
769 		  __entry->numa_scan_offset,
770 		  __entry->vm_start,
771 		  __entry->vm_end,
772 		  __print_symbolic(__entry->reason, NUMAB_SKIP_REASON))
773 );
774 #endif /* CONFIG_NUMA_BALANCING */
775 
776 /*
777  * Tracepoint for waking a polling cpu without an IPI.
778  */
779 TRACE_EVENT(sched_wake_idle_without_ipi,
780 
781 	TP_PROTO(int cpu),
782 
783 	TP_ARGS(cpu),
784 
785 	TP_STRUCT__entry(
786 		__field(	int,	cpu	)
787 	),
788 
789 	TP_fast_assign(
790 		__entry->cpu	= cpu;
791 	),
792 
793 	TP_printk("cpu=%d", __entry->cpu)
794 );
795 
796 #ifdef CONFIG_SCHED_PROXY_EXEC
797 /**
798  * sched_pe_enqueue_sleeping_task - called when a task is enqueued on wait
799  *				    queue of a sleeping task (mutex owner).
800  * @mutex_owner: pointer to struct task_struct
801  * @blocked:     pointer to struct task_struct
802  */
803 TRACE_EVENT(sched_pe_enqueue_sleeping_task,
804 
805 	TP_PROTO(struct task_struct *mutex_owner, struct task_struct *blocked),
806 
807 	TP_ARGS(mutex_owner, blocked),
808 
809 	TP_STRUCT__entry(
810 		__array(char,	owner_comm,	TASK_COMM_LEN	)
811 		__field(pid_t,	owner_pid			)
812 		__field(int,	owner_prio			)
813 		__field(int,	owner_cpu			)
814 		__array(char,	blocked_comm,	TASK_COMM_LEN	)
815 		__field(pid_t,	blocked_pid			)
816 		__field(int,	blocked_prio			)
817 		__field(int,	blocked_cpu			)
818 	),
819 
820 	TP_fast_assign(
821 		strscpy(__entry->owner_comm, mutex_owner->comm, TASK_COMM_LEN);
822 		__entry->owner_pid	= mutex_owner->pid;
823 		__entry->owner_prio	= mutex_owner->prio; /* XXX SCHED_DEADLINE */
824 		__entry->owner_cpu	= task_cpu(mutex_owner);
825 
826 		strscpy(__entry->blocked_comm, blocked->comm, TASK_COMM_LEN);
827 		__entry->blocked_pid	= blocked->pid;
828 		__entry->blocked_prio	= blocked->prio; /* XXX SCHED_DEADLINE */
829 		__entry->blocked_cpu	= task_cpu(blocked);
830 	),
831 
832 	TP_printk("task=%s pid=%d prio=%d cpu=%d blocked_on owner_task=%s owner_pid=%d owner_prio=%d owner_cpu=%d",
833 		  __entry->blocked_comm, __entry->blocked_pid,
834 		  __entry->blocked_prio, __entry->blocked_cpu,
835 		  __entry->owner_comm, __entry->owner_pid,
836 		  __entry->owner_prio, __entry->owner_cpu)
837 );
838 
839 /**
840  * sched_pe_activate_blocked_entity - called when a blocked entity is activated
841  *				      when mutex owner wakes
842  * @owner: pointer to struct task_struct
843  * @blocked:     pointer to struct task_struct
844  */
845 TRACE_EVENT(sched_pe_activate_blocked_entity,
846 
847 	TP_PROTO(struct task_struct *owner, struct task_struct *blocked),
848 
849 	TP_ARGS(owner, blocked),
850 
851 	TP_STRUCT__entry(
852 		__array(char,	owner_comm,	TASK_COMM_LEN	)
853 		__field(pid_t,	owner_pid			)
854 		__field(int,	owner_prio			)
855 		__field(int,	owner_cpu			)
856 		__array(char,	blocked_comm,	TASK_COMM_LEN	)
857 		__field(pid_t,	blocked_pid			)
858 		__field(int,	blocked_prio			)
859 		__field(int,	blocked_cpu			)
860 	),
861 
862 	TP_fast_assign(
863 		strscpy(__entry->owner_comm, owner->comm, TASK_COMM_LEN);
864 		__entry->owner_pid	= owner->pid;
865 		__entry->owner_prio	= owner->prio; /* XXX SCHED_DEADLINE */
866 		__entry->owner_cpu	= task_cpu(owner);
867 
868 		strscpy(__entry->blocked_comm, blocked->comm, TASK_COMM_LEN);
869 		__entry->blocked_pid	= blocked->pid;
870 		__entry->blocked_prio	= blocked->prio; /* XXX SCHED_DEADLINE */
871 		__entry->blocked_cpu	= task_cpu(blocked);
872 	),
873 
874 	TP_printk("activating task=%s pid=%d prio=%d cpu=%d, blocked_on owner=%s pid=%d prio=%d cpu=%d",
875 		  __entry->blocked_comm, __entry->blocked_pid,
876 		  __entry->blocked_prio, __entry->blocked_cpu,
877 		  __entry->owner_comm, __entry->owner_pid,
878 		  __entry->owner_prio, __entry->owner_cpu)
879 );
880 
881 /**
882  * sched_pe_cross_remote_cpu - called when dependency chain crosses remote CPU
883  * @p: pointer to struct task_struct
884  */
885 TRACE_EVENT(sched_pe_migration,
886 
887 	TP_PROTO(struct task_struct *next, struct task_struct *owner),
888 
889 	TP_ARGS(next, owner),
890 
891 	TP_STRUCT__entry(
892 		__array(char,	next_comm,	TASK_COMM_LEN	)
893 		__field(pid_t,	next_pid			)
894 		__field(int,	next_prio			)
895 		__array(char,	owner_comm,	TASK_COMM_LEN	)
896 		__field(pid_t,	owner_pid			)
897 		__field(int,	owner_prio			)
898 		__field(int,	remote_cpu			)
899 	),
900 
901 	TP_fast_assign(
902 		strscpy(__entry->next_comm, next->comm, TASK_COMM_LEN);
903 		__entry->next_pid	= next->pid;
904 		__entry->next_prio	= next->prio; /* XXX SCHED_DEADLINE */
905 		strscpy(__entry->owner_comm, owner->comm, TASK_COMM_LEN);
906 		__entry->owner_pid	= owner->pid;
907 		__entry->owner_prio	= owner->prio; /* XXX SCHED_DEADLINE */
908 		__entry->remote_cpu	= task_cpu(owner);
909 	),
910 
911 	TP_printk("next=%s pid=%d prio=%d owner=%s pid=%d prio=%d remote_cpu=%d",
912 		  __entry->next_comm, __entry->next_pid, __entry->next_prio,
913 		  __entry->owner_comm, __entry->owner_pid, __entry->owner_prio,
914 		  __entry->remote_cpu)
915 );
916 
917 /**
918  * sched_pe_task_is_migrating - called when mutex owner is in migrating state
919  * @p: pointer to struct task_struct
920  */
921 TRACE_EVENT(sched_pe_owner_is_migrating,
922 
923 	TP_PROTO(struct task_struct *owner, struct task_struct *waiter),
924 
925 	TP_ARGS(owner, waiter),
926 
927 	TP_STRUCT__entry(
928 		__array(char,	owner_comm,	TASK_COMM_LEN	)
929 		__field(pid_t,	owner_pid			)
930 		__field(int,	owner_prio			)
931 		__array(char,	waiter_comm,	TASK_COMM_LEN	)
932 		__field(pid_t,	waiter_pid			)
933 		__field(int,	waiter_prio			)
934 	),
935 
936 	TP_fast_assign(
937 		strscpy(__entry->owner_comm, owner->comm, TASK_COMM_LEN);
938 		__entry->owner_pid	= owner->pid;
939 		__entry->owner_prio	= owner->prio; /* XXX SCHED_DEADLINE */
940 		strscpy(__entry->waiter_comm, waiter->comm, TASK_COMM_LEN);
941 		__entry->waiter_pid	= waiter->pid;
942 		__entry->waiter_prio	= waiter->prio; /* XXX SCHED_DEADLINE */
943 	),
944 
945 	TP_printk("owner comm=%s pid=%d prio=%d  waiter comm=%s pid=%d prio=%d",
946 		  __entry->owner_comm, __entry->owner_pid, __entry->owner_prio,
947 		  __entry->waiter_comm, __entry->waiter_pid, __entry->waiter_prio)
948 );
949 #endif /* CONFIG_SCHED_PROXY_EXEC */
950 
951 /**
952  * sched_pe_cross_remote_cpu - called when dependency chain crosses remote CPU
953  * @p: pointer to struct task_struct
954  */
955 TRACE_EVENT(sched_pe_return_migration,
956 
957 	TP_PROTO(struct task_struct *task, int target_cpu),
958 
959 	TP_ARGS(task, target_cpu),
960 
961 	TP_STRUCT__entry(
962 		__array(char,	comm,	TASK_COMM_LEN	)
963 		__field(pid_t,	pid			)
964 		__field(int,	prio			)
965 		__field(int,	target_cpu		)
966 	),
967 
968 	TP_fast_assign(
969 		strscpy(__entry->comm, task->comm, TASK_COMM_LEN);
970 		__entry->pid	= task->pid;
971 		__entry->prio	= task->prio; /* XXX SCHED_DEADLINE */
972 		__entry->target_cpu	= target_cpu;
973 	),
974 
975 	TP_printk("task=%s pid=%d prio=%d target_cpu=%d",
976 		  __entry->comm, __entry->pid, __entry->prio,
977 		  __entry->target_cpu)
978 );
979 
980 
981 TRACE_EVENT(sched_start_task_selection,
982 
983 	TP_PROTO(struct task_struct *prev, int cpu, bool is_blocked),
984 
985 	TP_ARGS(prev, cpu, is_blocked),
986 
987 	TP_STRUCT__entry(
988 		__array(char,	comm,	TASK_COMM_LEN	)
989 		__field(pid_t,	pid			)
990 		__field(int,	prio			)
991 		__field(bool,	is_blocked		)
992 	),
993 
994 	TP_fast_assign(
995 		strscpy(__entry->comm, prev->comm, TASK_COMM_LEN);
996 		__entry->pid		= prev->pid;
997 		__entry->prio		= prev->prio; /* XXX SCHED_DEADLINE */
998 		__entry->is_blocked	= is_blocked;
999 	),
1000 
1001 	TP_printk("prev=%s pid=%d prio=%d is_blocked: %i",
1002 		  __entry->comm, __entry->pid, __entry->prio, __entry->is_blocked)
1003 );
1004 
1005 TRACE_EVENT(sched_finish_task_selection,
1006 
1007 	TP_PROTO(struct task_struct *donor, struct task_struct *next, int cpu),
1008 
1009 	TP_ARGS(donor, next, cpu),
1010 
1011 	TP_STRUCT__entry(
1012 		__array(char,	donor_comm,	TASK_COMM_LEN	)
1013 		__field(pid_t,	donor_pid			)
1014 		__field(int,	donor_prio			)
1015 		__array(char,	next_comm,	TASK_COMM_LEN	)
1016 		__field(pid_t,	next_pid			)
1017 		__field(int,	next_prio			)
1018 		__field(int,	cpu				)
1019 	),
1020 
1021 	TP_fast_assign(
1022 		strscpy(__entry->donor_comm, donor->comm, TASK_COMM_LEN);
1023 		__entry->donor_pid	= donor->pid;
1024 		__entry->donor_prio	= donor->prio; /* XXX SCHED_DEADLINE */
1025 		strscpy(__entry->next_comm, next->comm, TASK_COMM_LEN);
1026 		__entry->next_pid	= next->pid;
1027 		__entry->next_prio	= next->prio; /* XXX SCHED_DEADLINE */
1028 		__entry->cpu = cpu;
1029 	),
1030 
1031 	TP_printk("donor=%s pid=%d prio=%d next=%s pid=%d prio=%d cpu=%d",
1032 		  __entry->donor_comm, __entry->donor_pid, __entry->donor_prio,
1033 		  __entry->next_comm, __entry->next_pid, __entry->next_prio,
1034 		  __entry->cpu)
1035 );
1036 
1037 /*
1038  * Following tracepoints are not exported in tracefs and provide hooking
1039  * mechanisms only for testing and debugging purposes.
1040  *
1041  * Postfixed with _tp to make them easily identifiable in the code.
1042  */
1043 DECLARE_TRACE(pelt_cfs_tp,
1044 	TP_PROTO(struct cfs_rq *cfs_rq),
1045 	TP_ARGS(cfs_rq));
1046 
1047 DECLARE_TRACE(pelt_rt_tp,
1048 	TP_PROTO(struct rq *rq),
1049 	TP_ARGS(rq));
1050 
1051 DECLARE_TRACE(pelt_dl_tp,
1052 	TP_PROTO(struct rq *rq),
1053 	TP_ARGS(rq));
1054 
1055 DECLARE_TRACE(pelt_hw_tp,
1056 	TP_PROTO(struct rq *rq),
1057 	TP_ARGS(rq));
1058 
1059 DECLARE_TRACE(pelt_irq_tp,
1060 	TP_PROTO(struct rq *rq),
1061 	TP_ARGS(rq));
1062 
1063 DECLARE_TRACE(pelt_se_tp,
1064 	TP_PROTO(struct sched_entity *se),
1065 	TP_ARGS(se));
1066 
1067 DECLARE_TRACE(sched_cpu_capacity_tp,
1068 	TP_PROTO(struct rq *rq),
1069 	TP_ARGS(rq));
1070 
1071 DECLARE_TRACE(sched_overutilized_tp,
1072 	TP_PROTO(struct root_domain *rd, bool overutilized),
1073 	TP_ARGS(rd, overutilized));
1074 
1075 DECLARE_TRACE(sched_util_est_cfs_tp,
1076 	TP_PROTO(struct cfs_rq *cfs_rq),
1077 	TP_ARGS(cfs_rq));
1078 
1079 DECLARE_TRACE(sched_util_est_se_tp,
1080 	TP_PROTO(struct sched_entity *se),
1081 	TP_ARGS(se));
1082 
1083 DECLARE_TRACE(sched_update_nr_running_tp,
1084 	TP_PROTO(struct rq *rq, int change),
1085 	TP_ARGS(rq, change));
1086 
1087 DECLARE_TRACE(sched_compute_energy_tp,
1088 	TP_PROTO(struct task_struct *p, int dst_cpu, unsigned long energy,
1089 		 unsigned long max_util, unsigned long busy_time),
1090 	TP_ARGS(p, dst_cpu, energy, max_util, busy_time));
1091 
1092 #endif /* _TRACE_SCHED_H */
1093 
1094 /* This part must be outside protection */
1095 #include <trace/define_trace.h>
1096