• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/android_fuse.h>
7 #include <uapi/linux/bpf_perf_event.h>
8 #include <uapi/linux/types.h>
9 #include <linux/seq_file.h>
10 #include <linux/compiler.h>
11 #include <linux/ctype.h>
12 #include <linux/errno.h>
13 #include <linux/slab.h>
14 #include <linux/anon_inodes.h>
15 #include <linux/file.h>
16 #include <linux/uaccess.h>
17 #include <linux/kernel.h>
18 #include <linux/idr.h>
19 #include <linux/sort.h>
20 #include <linux/bpf_verifier.h>
21 #include <linux/btf.h>
22 #include <linux/btf_ids.h>
23 #include <linux/bpf.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/skmsg.h>
26 #include <linux/perf_event.h>
27 #include <linux/bsearch.h>
28 #include <linux/kobject.h>
29 #include <linux/sysfs.h>
30 
31 #include <net/netfilter/nf_bpf_link.h>
32 
33 #include <net/sock.h>
34 #include <net/xdp.h>
35 #include "../tools/lib/bpf/relo_core.h"
36 
37 /* BTF (BPF Type Format) is the meta data format which describes
38  * the data types of BPF program/map.  Hence, it basically focus
39  * on the C programming language which the modern BPF is primary
40  * using.
41  *
42  * ELF Section:
43  * ~~~~~~~~~~~
44  * The BTF data is stored under the ".BTF" ELF section
45  *
46  * struct btf_type:
47  * ~~~~~~~~~~~~~~~
48  * Each 'struct btf_type' object describes a C data type.
49  * Depending on the type it is describing, a 'struct btf_type'
50  * object may be followed by more data.  F.e.
51  * To describe an array, 'struct btf_type' is followed by
52  * 'struct btf_array'.
53  *
54  * 'struct btf_type' and any extra data following it are
55  * 4 bytes aligned.
56  *
57  * Type section:
58  * ~~~~~~~~~~~~~
59  * The BTF type section contains a list of 'struct btf_type' objects.
60  * Each one describes a C type.  Recall from the above section
61  * that a 'struct btf_type' object could be immediately followed by extra
62  * data in order to describe some particular C types.
63  *
64  * type_id:
65  * ~~~~~~~
66  * Each btf_type object is identified by a type_id.  The type_id
67  * is implicitly implied by the location of the btf_type object in
68  * the BTF type section.  The first one has type_id 1.  The second
69  * one has type_id 2...etc.  Hence, an earlier btf_type has
70  * a smaller type_id.
71  *
72  * A btf_type object may refer to another btf_type object by using
73  * type_id (i.e. the "type" in the "struct btf_type").
74  *
75  * NOTE that we cannot assume any reference-order.
76  * A btf_type object can refer to an earlier btf_type object
77  * but it can also refer to a later btf_type object.
78  *
79  * For example, to describe "const void *".  A btf_type
80  * object describing "const" may refer to another btf_type
81  * object describing "void *".  This type-reference is done
82  * by specifying type_id:
83  *
84  * [1] CONST (anon) type_id=2
85  * [2] PTR (anon) type_id=0
86  *
87  * The above is the btf_verifier debug log:
88  *   - Each line started with "[?]" is a btf_type object
89  *   - [?] is the type_id of the btf_type object.
90  *   - CONST/PTR is the BTF_KIND_XXX
91  *   - "(anon)" is the name of the type.  It just
92  *     happens that CONST and PTR has no name.
93  *   - type_id=XXX is the 'u32 type' in btf_type
94  *
95  * NOTE: "void" has type_id 0
96  *
97  * String section:
98  * ~~~~~~~~~~~~~~
99  * The BTF string section contains the names used by the type section.
100  * Each string is referred by an "offset" from the beginning of the
101  * string section.
102  *
103  * Each string is '\0' terminated.
104  *
105  * The first character in the string section must be '\0'
106  * which is used to mean 'anonymous'. Some btf_type may not
107  * have a name.
108  */
109 
110 /* BTF verification:
111  *
112  * To verify BTF data, two passes are needed.
113  *
114  * Pass #1
115  * ~~~~~~~
116  * The first pass is to collect all btf_type objects to
117  * an array: "btf->types".
118  *
119  * Depending on the C type that a btf_type is describing,
120  * a btf_type may be followed by extra data.  We don't know
121  * how many btf_type is there, and more importantly we don't
122  * know where each btf_type is located in the type section.
123  *
124  * Without knowing the location of each type_id, most verifications
125  * cannot be done.  e.g. an earlier btf_type may refer to a later
126  * btf_type (recall the "const void *" above), so we cannot
127  * check this type-reference in the first pass.
128  *
129  * In the first pass, it still does some verifications (e.g.
130  * checking the name is a valid offset to the string section).
131  *
132  * Pass #2
133  * ~~~~~~~
134  * The main focus is to resolve a btf_type that is referring
135  * to another type.
136  *
137  * We have to ensure the referring type:
138  * 1) does exist in the BTF (i.e. in btf->types[])
139  * 2) does not cause a loop:
140  *	struct A {
141  *		struct B b;
142  *	};
143  *
144  *	struct B {
145  *		struct A a;
146  *	};
147  *
148  * btf_type_needs_resolve() decides if a btf_type needs
149  * to be resolved.
150  *
151  * The needs_resolve type implements the "resolve()" ops which
152  * essentially does a DFS and detects backedge.
153  *
154  * During resolve (or DFS), different C types have different
155  * "RESOLVED" conditions.
156  *
157  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
158  * members because a member is always referring to another
159  * type.  A struct's member can be treated as "RESOLVED" if
160  * it is referring to a BTF_KIND_PTR.  Otherwise, the
161  * following valid C struct would be rejected:
162  *
163  *	struct A {
164  *		int m;
165  *		struct A *a;
166  *	};
167  *
168  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
169  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
170  * detect a pointer loop, e.g.:
171  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
172  *                        ^                                         |
173  *                        +-----------------------------------------+
174  *
175  */
176 
177 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
178 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
179 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
180 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
181 #define BITS_ROUNDUP_BYTES(bits) \
182 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
183 
184 #define BTF_INFO_MASK 0x9f00ffff
185 #define BTF_INT_MASK 0x0fffffff
186 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
187 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
188 
189 /* 16MB for 64k structs and each has 16 members and
190  * a few MB spaces for the string section.
191  * The hard limit is S32_MAX.
192  */
193 #define BTF_MAX_SIZE (16 * 1024 * 1024)
194 
195 #define for_each_member_from(i, from, struct_type, member)		\
196 	for (i = from, member = btf_type_member(struct_type) + from;	\
197 	     i < btf_type_vlen(struct_type);				\
198 	     i++, member++)
199 
200 #define for_each_vsi_from(i, from, struct_type, member)				\
201 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
202 	     i < btf_type_vlen(struct_type);					\
203 	     i++, member++)
204 
205 DEFINE_IDR(btf_idr);
206 DEFINE_SPINLOCK(btf_idr_lock);
207 
208 enum btf_kfunc_hook {
209 	BTF_KFUNC_HOOK_COMMON,
210 	BTF_KFUNC_HOOK_XDP,
211 	BTF_KFUNC_HOOK_TC,
212 	BTF_KFUNC_HOOK_STRUCT_OPS,
213 	BTF_KFUNC_HOOK_TRACING,
214 	BTF_KFUNC_HOOK_SYSCALL,
215 	BTF_KFUNC_HOOK_FMODRET,
216 	BTF_KFUNC_HOOK_CGROUP,
217 	BTF_KFUNC_HOOK_SCHED_ACT,
218 	BTF_KFUNC_HOOK_SK_SKB,
219 	BTF_KFUNC_HOOK_SOCKET_FILTER,
220 	BTF_KFUNC_HOOK_LWT,
221 	BTF_KFUNC_HOOK_NETFILTER,
222 	BTF_KFUNC_HOOK_KPROBE,
223 	BTF_KFUNC_HOOK_MAX,
224 };
225 
226 enum {
227 	BTF_KFUNC_SET_MAX_CNT = 256,
228 	BTF_DTOR_KFUNC_MAX_CNT = 256,
229 	BTF_KFUNC_FILTER_MAX_CNT = 16,
230 };
231 
232 struct btf_kfunc_hook_filter {
233 	btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
234 	u32 nr_filters;
235 };
236 
237 struct btf_kfunc_set_tab {
238 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
239 	struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
240 };
241 
242 struct btf_id_dtor_kfunc_tab {
243 	u32 cnt;
244 	struct btf_id_dtor_kfunc dtors[];
245 };
246 
247 struct btf_struct_ops_tab {
248 	u32 cnt;
249 	u32 capacity;
250 	struct bpf_struct_ops_desc ops[];
251 };
252 
253 struct btf {
254 	void *data;
255 	struct btf_type **types;
256 	u32 *resolved_ids;
257 	u32 *resolved_sizes;
258 	const char *strings;
259 	void *nohdr_data;
260 	struct btf_header hdr;
261 	u32 nr_types; /* includes VOID for base BTF */
262 	u32 types_size;
263 	u32 data_size;
264 	refcount_t refcnt;
265 	u32 id;
266 	struct rcu_head rcu;
267 	struct btf_kfunc_set_tab *kfunc_set_tab;
268 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
269 	struct btf_struct_metas *struct_meta_tab;
270 	struct btf_struct_ops_tab *struct_ops_tab;
271 
272 	/* split BTF support */
273 	struct btf *base_btf;
274 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
275 	u32 start_str_off; /* first string offset (0 for base BTF) */
276 	char name[MODULE_NAME_LEN];
277 	bool kernel_btf;
278 	__u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */
279 };
280 
281 enum verifier_phase {
282 	CHECK_META,
283 	CHECK_TYPE,
284 };
285 
286 struct resolve_vertex {
287 	const struct btf_type *t;
288 	u32 type_id;
289 	u16 next_member;
290 };
291 
292 enum visit_state {
293 	NOT_VISITED,
294 	VISITED,
295 	RESOLVED,
296 };
297 
298 enum resolve_mode {
299 	RESOLVE_TBD,	/* To Be Determined */
300 	RESOLVE_PTR,	/* Resolving for Pointer */
301 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
302 					 * or array
303 					 */
304 };
305 
306 #define MAX_RESOLVE_DEPTH 32
307 
308 struct btf_sec_info {
309 	u32 off;
310 	u32 len;
311 };
312 
313 struct btf_verifier_env {
314 	struct btf *btf;
315 	u8 *visit_states;
316 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
317 	struct bpf_verifier_log log;
318 	u32 log_type_id;
319 	u32 top_stack;
320 	enum verifier_phase phase;
321 	enum resolve_mode resolve_mode;
322 };
323 
324 static const char * const btf_kind_str[NR_BTF_KINDS] = {
325 	[BTF_KIND_UNKN]		= "UNKNOWN",
326 	[BTF_KIND_INT]		= "INT",
327 	[BTF_KIND_PTR]		= "PTR",
328 	[BTF_KIND_ARRAY]	= "ARRAY",
329 	[BTF_KIND_STRUCT]	= "STRUCT",
330 	[BTF_KIND_UNION]	= "UNION",
331 	[BTF_KIND_ENUM]		= "ENUM",
332 	[BTF_KIND_FWD]		= "FWD",
333 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
334 	[BTF_KIND_VOLATILE]	= "VOLATILE",
335 	[BTF_KIND_CONST]	= "CONST",
336 	[BTF_KIND_RESTRICT]	= "RESTRICT",
337 	[BTF_KIND_FUNC]		= "FUNC",
338 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
339 	[BTF_KIND_VAR]		= "VAR",
340 	[BTF_KIND_DATASEC]	= "DATASEC",
341 	[BTF_KIND_FLOAT]	= "FLOAT",
342 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
343 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
344 	[BTF_KIND_ENUM64]	= "ENUM64",
345 };
346 
btf_type_str(const struct btf_type * t)347 const char *btf_type_str(const struct btf_type *t)
348 {
349 	return btf_kind_str[BTF_INFO_KIND(t->info)];
350 }
351 
352 /* Chunk size we use in safe copy of data to be shown. */
353 #define BTF_SHOW_OBJ_SAFE_SIZE		32
354 
355 /*
356  * This is the maximum size of a base type value (equivalent to a
357  * 128-bit int); if we are at the end of our safe buffer and have
358  * less than 16 bytes space we can't be assured of being able
359  * to copy the next type safely, so in such cases we will initiate
360  * a new copy.
361  */
362 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
363 
364 /* Type name size */
365 #define BTF_SHOW_NAME_SIZE		80
366 
367 /*
368  * The suffix of a type that indicates it cannot alias another type when
369  * comparing BTF IDs for kfunc invocations.
370  */
371 #define NOCAST_ALIAS_SUFFIX		"___init"
372 
373 /*
374  * Common data to all BTF show operations. Private show functions can add
375  * their own data to a structure containing a struct btf_show and consult it
376  * in the show callback.  See btf_type_show() below.
377  *
378  * One challenge with showing nested data is we want to skip 0-valued
379  * data, but in order to figure out whether a nested object is all zeros
380  * we need to walk through it.  As a result, we need to make two passes
381  * when handling structs, unions and arrays; the first path simply looks
382  * for nonzero data, while the second actually does the display.  The first
383  * pass is signalled by show->state.depth_check being set, and if we
384  * encounter a non-zero value we set show->state.depth_to_show to
385  * the depth at which we encountered it.  When we have completed the
386  * first pass, we will know if anything needs to be displayed if
387  * depth_to_show > depth.  See btf_[struct,array]_show() for the
388  * implementation of this.
389  *
390  * Another problem is we want to ensure the data for display is safe to
391  * access.  To support this, the anonymous "struct {} obj" tracks the data
392  * object and our safe copy of it.  We copy portions of the data needed
393  * to the object "copy" buffer, but because its size is limited to
394  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
395  * traverse larger objects for display.
396  *
397  * The various data type show functions all start with a call to
398  * btf_show_start_type() which returns a pointer to the safe copy
399  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
400  * raw data itself).  btf_show_obj_safe() is responsible for
401  * using copy_from_kernel_nofault() to update the safe data if necessary
402  * as we traverse the object's data.  skbuff-like semantics are
403  * used:
404  *
405  * - obj.head points to the start of the toplevel object for display
406  * - obj.size is the size of the toplevel object
407  * - obj.data points to the current point in the original data at
408  *   which our safe data starts.  obj.data will advance as we copy
409  *   portions of the data.
410  *
411  * In most cases a single copy will suffice, but larger data structures
412  * such as "struct task_struct" will require many copies.  The logic in
413  * btf_show_obj_safe() handles the logic that determines if a new
414  * copy_from_kernel_nofault() is needed.
415  */
416 struct btf_show {
417 	u64 flags;
418 	void *target;	/* target of show operation (seq file, buffer) */
419 	__printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
420 	const struct btf *btf;
421 	/* below are used during iteration */
422 	struct {
423 		u8 depth;
424 		u8 depth_to_show;
425 		u8 depth_check;
426 		u8 array_member:1,
427 		   array_terminated:1;
428 		u16 array_encoding;
429 		u32 type_id;
430 		int status;			/* non-zero for error */
431 		const struct btf_type *type;
432 		const struct btf_member *member;
433 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
434 	} state;
435 	struct {
436 		u32 size;
437 		void *head;
438 		void *data;
439 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
440 	} obj;
441 };
442 
443 struct btf_kind_operations {
444 	s32 (*check_meta)(struct btf_verifier_env *env,
445 			  const struct btf_type *t,
446 			  u32 meta_left);
447 	int (*resolve)(struct btf_verifier_env *env,
448 		       const struct resolve_vertex *v);
449 	int (*check_member)(struct btf_verifier_env *env,
450 			    const struct btf_type *struct_type,
451 			    const struct btf_member *member,
452 			    const struct btf_type *member_type);
453 	int (*check_kflag_member)(struct btf_verifier_env *env,
454 				  const struct btf_type *struct_type,
455 				  const struct btf_member *member,
456 				  const struct btf_type *member_type);
457 	void (*log_details)(struct btf_verifier_env *env,
458 			    const struct btf_type *t);
459 	void (*show)(const struct btf *btf, const struct btf_type *t,
460 			 u32 type_id, void *data, u8 bits_offsets,
461 			 struct btf_show *show);
462 };
463 
464 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
465 static struct btf_type btf_void;
466 
467 static int btf_resolve(struct btf_verifier_env *env,
468 		       const struct btf_type *t, u32 type_id);
469 
470 static int btf_func_check(struct btf_verifier_env *env,
471 			  const struct btf_type *t);
472 
btf_type_is_modifier(const struct btf_type * t)473 static bool btf_type_is_modifier(const struct btf_type *t)
474 {
475 	/* Some of them is not strictly a C modifier
476 	 * but they are grouped into the same bucket
477 	 * for BTF concern:
478 	 *   A type (t) that refers to another
479 	 *   type through t->type AND its size cannot
480 	 *   be determined without following the t->type.
481 	 *
482 	 * ptr does not fall into this bucket
483 	 * because its size is always sizeof(void *).
484 	 */
485 	switch (BTF_INFO_KIND(t->info)) {
486 	case BTF_KIND_TYPEDEF:
487 	case BTF_KIND_VOLATILE:
488 	case BTF_KIND_CONST:
489 	case BTF_KIND_RESTRICT:
490 	case BTF_KIND_TYPE_TAG:
491 		return true;
492 	}
493 
494 	return false;
495 }
496 
btf_type_is_void(const struct btf_type * t)497 bool btf_type_is_void(const struct btf_type *t)
498 {
499 	return t == &btf_void;
500 }
501 
btf_type_is_datasec(const struct btf_type * t)502 static bool btf_type_is_datasec(const struct btf_type *t)
503 {
504 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
505 }
506 
btf_type_is_decl_tag(const struct btf_type * t)507 static bool btf_type_is_decl_tag(const struct btf_type *t)
508 {
509 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
510 }
511 
btf_type_nosize(const struct btf_type * t)512 static bool btf_type_nosize(const struct btf_type *t)
513 {
514 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
515 	       btf_type_is_func(t) || btf_type_is_func_proto(t) ||
516 	       btf_type_is_decl_tag(t);
517 }
518 
btf_type_nosize_or_null(const struct btf_type * t)519 static bool btf_type_nosize_or_null(const struct btf_type *t)
520 {
521 	return !t || btf_type_nosize(t);
522 }
523 
btf_type_is_decl_tag_target(const struct btf_type * t)524 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
525 {
526 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
527 	       btf_type_is_var(t) || btf_type_is_typedef(t);
528 }
529 
btf_is_vmlinux(const struct btf * btf)530 bool btf_is_vmlinux(const struct btf *btf)
531 {
532 	return btf->kernel_btf && !btf->base_btf;
533 }
534 
btf_nr_types(const struct btf * btf)535 u32 btf_nr_types(const struct btf *btf)
536 {
537 	u32 total = 0;
538 
539 	while (btf) {
540 		total += btf->nr_types;
541 		btf = btf->base_btf;
542 	}
543 
544 	return total;
545 }
546 
btf_find_by_name_kind(const struct btf * btf,const char * name,u8 kind)547 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
548 {
549 	const struct btf_type *t;
550 	const char *tname;
551 	u32 i, total;
552 
553 	total = btf_nr_types(btf);
554 	for (i = 1; i < total; i++) {
555 		t = btf_type_by_id(btf, i);
556 		if (BTF_INFO_KIND(t->info) != kind)
557 			continue;
558 
559 		tname = btf_name_by_offset(btf, t->name_off);
560 		if (!strcmp(tname, name))
561 			return i;
562 	}
563 
564 	return -ENOENT;
565 }
566 
bpf_find_btf_id(const char * name,u32 kind,struct btf ** btf_p)567 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
568 {
569 	struct btf *btf;
570 	s32 ret;
571 	int id;
572 
573 	btf = bpf_get_btf_vmlinux();
574 	if (IS_ERR(btf))
575 		return PTR_ERR(btf);
576 	if (!btf)
577 		return -EINVAL;
578 
579 	ret = btf_find_by_name_kind(btf, name, kind);
580 	/* ret is never zero, since btf_find_by_name_kind returns
581 	 * positive btf_id or negative error.
582 	 */
583 	if (ret > 0) {
584 		btf_get(btf);
585 		*btf_p = btf;
586 		return ret;
587 	}
588 
589 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
590 	spin_lock_bh(&btf_idr_lock);
591 	idr_for_each_entry(&btf_idr, btf, id) {
592 		if (!btf_is_module(btf))
593 			continue;
594 		/* linear search could be slow hence unlock/lock
595 		 * the IDR to avoiding holding it for too long
596 		 */
597 		btf_get(btf);
598 		spin_unlock_bh(&btf_idr_lock);
599 		ret = btf_find_by_name_kind(btf, name, kind);
600 		if (ret > 0) {
601 			*btf_p = btf;
602 			return ret;
603 		}
604 		btf_put(btf);
605 		spin_lock_bh(&btf_idr_lock);
606 	}
607 	spin_unlock_bh(&btf_idr_lock);
608 	return ret;
609 }
610 
btf_type_skip_modifiers(const struct btf * btf,u32 id,u32 * res_id)611 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
612 					       u32 id, u32 *res_id)
613 {
614 	const struct btf_type *t = btf_type_by_id(btf, id);
615 
616 	while (btf_type_is_modifier(t)) {
617 		id = t->type;
618 		t = btf_type_by_id(btf, t->type);
619 	}
620 
621 	if (res_id)
622 		*res_id = id;
623 
624 	return t;
625 }
626 
btf_type_resolve_ptr(const struct btf * btf,u32 id,u32 * res_id)627 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
628 					    u32 id, u32 *res_id)
629 {
630 	const struct btf_type *t;
631 
632 	t = btf_type_skip_modifiers(btf, id, NULL);
633 	if (!btf_type_is_ptr(t))
634 		return NULL;
635 
636 	return btf_type_skip_modifiers(btf, t->type, res_id);
637 }
638 
btf_type_resolve_func_ptr(const struct btf * btf,u32 id,u32 * res_id)639 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
640 						 u32 id, u32 *res_id)
641 {
642 	const struct btf_type *ptype;
643 
644 	ptype = btf_type_resolve_ptr(btf, id, res_id);
645 	if (ptype && btf_type_is_func_proto(ptype))
646 		return ptype;
647 
648 	return NULL;
649 }
650 
651 /* Types that act only as a source, not sink or intermediate
652  * type when resolving.
653  */
btf_type_is_resolve_source_only(const struct btf_type * t)654 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
655 {
656 	return btf_type_is_var(t) ||
657 	       btf_type_is_decl_tag(t) ||
658 	       btf_type_is_datasec(t);
659 }
660 
661 /* What types need to be resolved?
662  *
663  * btf_type_is_modifier() is an obvious one.
664  *
665  * btf_type_is_struct() because its member refers to
666  * another type (through member->type).
667  *
668  * btf_type_is_var() because the variable refers to
669  * another type. btf_type_is_datasec() holds multiple
670  * btf_type_is_var() types that need resolving.
671  *
672  * btf_type_is_array() because its element (array->type)
673  * refers to another type.  Array can be thought of a
674  * special case of struct while array just has the same
675  * member-type repeated by array->nelems of times.
676  */
btf_type_needs_resolve(const struct btf_type * t)677 static bool btf_type_needs_resolve(const struct btf_type *t)
678 {
679 	return btf_type_is_modifier(t) ||
680 	       btf_type_is_ptr(t) ||
681 	       btf_type_is_struct(t) ||
682 	       btf_type_is_array(t) ||
683 	       btf_type_is_var(t) ||
684 	       btf_type_is_func(t) ||
685 	       btf_type_is_decl_tag(t) ||
686 	       btf_type_is_datasec(t);
687 }
688 
689 /* t->size can be used */
btf_type_has_size(const struct btf_type * t)690 static bool btf_type_has_size(const struct btf_type *t)
691 {
692 	switch (BTF_INFO_KIND(t->info)) {
693 	case BTF_KIND_INT:
694 	case BTF_KIND_STRUCT:
695 	case BTF_KIND_UNION:
696 	case BTF_KIND_ENUM:
697 	case BTF_KIND_DATASEC:
698 	case BTF_KIND_FLOAT:
699 	case BTF_KIND_ENUM64:
700 		return true;
701 	}
702 
703 	return false;
704 }
705 
btf_int_encoding_str(u8 encoding)706 static const char *btf_int_encoding_str(u8 encoding)
707 {
708 	if (encoding == 0)
709 		return "(none)";
710 	else if (encoding == BTF_INT_SIGNED)
711 		return "SIGNED";
712 	else if (encoding == BTF_INT_CHAR)
713 		return "CHAR";
714 	else if (encoding == BTF_INT_BOOL)
715 		return "BOOL";
716 	else
717 		return "UNKN";
718 }
719 
btf_type_int(const struct btf_type * t)720 static u32 btf_type_int(const struct btf_type *t)
721 {
722 	return *(u32 *)(t + 1);
723 }
724 
btf_type_array(const struct btf_type * t)725 static const struct btf_array *btf_type_array(const struct btf_type *t)
726 {
727 	return (const struct btf_array *)(t + 1);
728 }
729 
btf_type_enum(const struct btf_type * t)730 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
731 {
732 	return (const struct btf_enum *)(t + 1);
733 }
734 
btf_type_var(const struct btf_type * t)735 static const struct btf_var *btf_type_var(const struct btf_type *t)
736 {
737 	return (const struct btf_var *)(t + 1);
738 }
739 
btf_type_decl_tag(const struct btf_type * t)740 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
741 {
742 	return (const struct btf_decl_tag *)(t + 1);
743 }
744 
btf_type_enum64(const struct btf_type * t)745 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
746 {
747 	return (const struct btf_enum64 *)(t + 1);
748 }
749 
btf_type_ops(const struct btf_type * t)750 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
751 {
752 	return kind_ops[BTF_INFO_KIND(t->info)];
753 }
754 
btf_name_offset_valid(const struct btf * btf,u32 offset)755 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
756 {
757 	if (!BTF_STR_OFFSET_VALID(offset))
758 		return false;
759 
760 	while (offset < btf->start_str_off)
761 		btf = btf->base_btf;
762 
763 	offset -= btf->start_str_off;
764 	return offset < btf->hdr.str_len;
765 }
766 
__btf_name_char_ok(char c,bool first)767 static bool __btf_name_char_ok(char c, bool first)
768 {
769 	if ((first ? !isalpha(c) :
770 		     !isalnum(c)) &&
771 	    c != '_' &&
772 	    c != '.')
773 		return false;
774 	return true;
775 }
776 
btf_str_by_offset(const struct btf * btf,u32 offset)777 const char *btf_str_by_offset(const struct btf *btf, u32 offset)
778 {
779 	while (offset < btf->start_str_off)
780 		btf = btf->base_btf;
781 
782 	offset -= btf->start_str_off;
783 	if (offset < btf->hdr.str_len)
784 		return &btf->strings[offset];
785 
786 	return NULL;
787 }
788 
btf_name_valid_identifier(const struct btf * btf,u32 offset)789 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
790 {
791 	/* offset must be valid */
792 	const char *src = btf_str_by_offset(btf, offset);
793 	const char *src_limit;
794 
795 	if (!__btf_name_char_ok(*src, true))
796 		return false;
797 
798 	/* set a limit on identifier length */
799 	src_limit = src + KSYM_NAME_LEN;
800 	src++;
801 	while (*src && src < src_limit) {
802 		if (!__btf_name_char_ok(*src, false))
803 			return false;
804 		src++;
805 	}
806 
807 	return !*src;
808 }
809 
810 /* Allow any printable character in DATASEC names */
btf_name_valid_section(const struct btf * btf,u32 offset)811 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
812 {
813 	/* offset must be valid */
814 	const char *src = btf_str_by_offset(btf, offset);
815 	const char *src_limit;
816 
817 	if (!*src)
818 		return false;
819 
820 	/* set a limit on identifier length */
821 	src_limit = src + KSYM_NAME_LEN;
822 	while (*src && src < src_limit) {
823 		if (!isprint(*src))
824 			return false;
825 		src++;
826 	}
827 
828 	return !*src;
829 }
830 
__btf_name_by_offset(const struct btf * btf,u32 offset)831 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
832 {
833 	const char *name;
834 
835 	if (!offset)
836 		return "(anon)";
837 
838 	name = btf_str_by_offset(btf, offset);
839 	return name ?: "(invalid-name-offset)";
840 }
841 
btf_name_by_offset(const struct btf * btf,u32 offset)842 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
843 {
844 	return btf_str_by_offset(btf, offset);
845 }
846 
btf_type_by_id(const struct btf * btf,u32 type_id)847 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
848 {
849 	while (type_id < btf->start_id)
850 		btf = btf->base_btf;
851 
852 	type_id -= btf->start_id;
853 	if (type_id >= btf->nr_types)
854 		return NULL;
855 	return btf->types[type_id];
856 }
857 EXPORT_SYMBOL_GPL(btf_type_by_id);
858 
859 /*
860  * Regular int is not a bit field and it must be either
861  * u8/u16/u32/u64 or __int128.
862  */
btf_type_int_is_regular(const struct btf_type * t)863 static bool btf_type_int_is_regular(const struct btf_type *t)
864 {
865 	u8 nr_bits, nr_bytes;
866 	u32 int_data;
867 
868 	int_data = btf_type_int(t);
869 	nr_bits = BTF_INT_BITS(int_data);
870 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
871 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
872 	    BTF_INT_OFFSET(int_data) ||
873 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
874 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
875 	     nr_bytes != (2 * sizeof(u64)))) {
876 		return false;
877 	}
878 
879 	return true;
880 }
881 
882 /*
883  * Check that given struct member is a regular int with expected
884  * offset and size.
885  */
btf_member_is_reg_int(const struct btf * btf,const struct btf_type * s,const struct btf_member * m,u32 expected_offset,u32 expected_size)886 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
887 			   const struct btf_member *m,
888 			   u32 expected_offset, u32 expected_size)
889 {
890 	const struct btf_type *t;
891 	u32 id, int_data;
892 	u8 nr_bits;
893 
894 	id = m->type;
895 	t = btf_type_id_size(btf, &id, NULL);
896 	if (!t || !btf_type_is_int(t))
897 		return false;
898 
899 	int_data = btf_type_int(t);
900 	nr_bits = BTF_INT_BITS(int_data);
901 	if (btf_type_kflag(s)) {
902 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
903 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
904 
905 		/* if kflag set, int should be a regular int and
906 		 * bit offset should be at byte boundary.
907 		 */
908 		return !bitfield_size &&
909 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
910 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
911 	}
912 
913 	if (BTF_INT_OFFSET(int_data) ||
914 	    BITS_PER_BYTE_MASKED(m->offset) ||
915 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
916 	    BITS_PER_BYTE_MASKED(nr_bits) ||
917 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
918 		return false;
919 
920 	return true;
921 }
922 
923 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
btf_type_skip_qualifiers(const struct btf * btf,u32 id)924 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
925 						       u32 id)
926 {
927 	const struct btf_type *t = btf_type_by_id(btf, id);
928 
929 	while (btf_type_is_modifier(t) &&
930 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
931 		t = btf_type_by_id(btf, t->type);
932 	}
933 
934 	return t;
935 }
936 
937 #define BTF_SHOW_MAX_ITER	10
938 
939 #define BTF_KIND_BIT(kind)	(1ULL << kind)
940 
941 /*
942  * Populate show->state.name with type name information.
943  * Format of type name is
944  *
945  * [.member_name = ] (type_name)
946  */
btf_show_name(struct btf_show * show)947 static const char *btf_show_name(struct btf_show *show)
948 {
949 	/* BTF_MAX_ITER array suffixes "[]" */
950 	const char *array_suffixes = "[][][][][][][][][][]";
951 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
952 	/* BTF_MAX_ITER pointer suffixes "*" */
953 	const char *ptr_suffixes = "**********";
954 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
955 	const char *name = NULL, *prefix = "", *parens = "";
956 	const struct btf_member *m = show->state.member;
957 	const struct btf_type *t;
958 	const struct btf_array *array;
959 	u32 id = show->state.type_id;
960 	const char *member = NULL;
961 	bool show_member = false;
962 	u64 kinds = 0;
963 	int i;
964 
965 	show->state.name[0] = '\0';
966 
967 	/*
968 	 * Don't show type name if we're showing an array member;
969 	 * in that case we show the array type so don't need to repeat
970 	 * ourselves for each member.
971 	 */
972 	if (show->state.array_member)
973 		return "";
974 
975 	/* Retrieve member name, if any. */
976 	if (m) {
977 		member = btf_name_by_offset(show->btf, m->name_off);
978 		show_member = strlen(member) > 0;
979 		id = m->type;
980 	}
981 
982 	/*
983 	 * Start with type_id, as we have resolved the struct btf_type *
984 	 * via btf_modifier_show() past the parent typedef to the child
985 	 * struct, int etc it is defined as.  In such cases, the type_id
986 	 * still represents the starting type while the struct btf_type *
987 	 * in our show->state points at the resolved type of the typedef.
988 	 */
989 	t = btf_type_by_id(show->btf, id);
990 	if (!t)
991 		return "";
992 
993 	/*
994 	 * The goal here is to build up the right number of pointer and
995 	 * array suffixes while ensuring the type name for a typedef
996 	 * is represented.  Along the way we accumulate a list of
997 	 * BTF kinds we have encountered, since these will inform later
998 	 * display; for example, pointer types will not require an
999 	 * opening "{" for struct, we will just display the pointer value.
1000 	 *
1001 	 * We also want to accumulate the right number of pointer or array
1002 	 * indices in the format string while iterating until we get to
1003 	 * the typedef/pointee/array member target type.
1004 	 *
1005 	 * We start by pointing at the end of pointer and array suffix
1006 	 * strings; as we accumulate pointers and arrays we move the pointer
1007 	 * or array string backwards so it will show the expected number of
1008 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
1009 	 * and/or arrays and typedefs are supported as a precaution.
1010 	 *
1011 	 * We also want to get typedef name while proceeding to resolve
1012 	 * type it points to so that we can add parentheses if it is a
1013 	 * "typedef struct" etc.
1014 	 */
1015 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1016 
1017 		switch (BTF_INFO_KIND(t->info)) {
1018 		case BTF_KIND_TYPEDEF:
1019 			if (!name)
1020 				name = btf_name_by_offset(show->btf,
1021 							       t->name_off);
1022 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1023 			id = t->type;
1024 			break;
1025 		case BTF_KIND_ARRAY:
1026 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1027 			parens = "[";
1028 			if (!t)
1029 				return "";
1030 			array = btf_type_array(t);
1031 			if (array_suffix > array_suffixes)
1032 				array_suffix -= 2;
1033 			id = array->type;
1034 			break;
1035 		case BTF_KIND_PTR:
1036 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1037 			if (ptr_suffix > ptr_suffixes)
1038 				ptr_suffix -= 1;
1039 			id = t->type;
1040 			break;
1041 		default:
1042 			id = 0;
1043 			break;
1044 		}
1045 		if (!id)
1046 			break;
1047 		t = btf_type_skip_qualifiers(show->btf, id);
1048 	}
1049 	/* We may not be able to represent this type; bail to be safe */
1050 	if (i == BTF_SHOW_MAX_ITER)
1051 		return "";
1052 
1053 	if (!name)
1054 		name = btf_name_by_offset(show->btf, t->name_off);
1055 
1056 	switch (BTF_INFO_KIND(t->info)) {
1057 	case BTF_KIND_STRUCT:
1058 	case BTF_KIND_UNION:
1059 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1060 			 "struct" : "union";
1061 		/* if it's an array of struct/union, parens is already set */
1062 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1063 			parens = "{";
1064 		break;
1065 	case BTF_KIND_ENUM:
1066 	case BTF_KIND_ENUM64:
1067 		prefix = "enum";
1068 		break;
1069 	default:
1070 		break;
1071 	}
1072 
1073 	/* pointer does not require parens */
1074 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1075 		parens = "";
1076 	/* typedef does not require struct/union/enum prefix */
1077 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1078 		prefix = "";
1079 
1080 	if (!name)
1081 		name = "";
1082 
1083 	/* Even if we don't want type name info, we want parentheses etc */
1084 	if (show->flags & BTF_SHOW_NONAME)
1085 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1086 			 parens);
1087 	else
1088 		snprintf(show->state.name, sizeof(show->state.name),
1089 			 "%s%s%s(%s%s%s%s%s%s)%s",
1090 			 /* first 3 strings comprise ".member = " */
1091 			 show_member ? "." : "",
1092 			 show_member ? member : "",
1093 			 show_member ? " = " : "",
1094 			 /* ...next is our prefix (struct, enum, etc) */
1095 			 prefix,
1096 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1097 			 /* ...this is the type name itself */
1098 			 name,
1099 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1100 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1101 			 array_suffix, parens);
1102 
1103 	return show->state.name;
1104 }
1105 
__btf_show_indent(struct btf_show * show)1106 static const char *__btf_show_indent(struct btf_show *show)
1107 {
1108 	const char *indents = "                                ";
1109 	const char *indent = &indents[strlen(indents)];
1110 
1111 	if ((indent - show->state.depth) >= indents)
1112 		return indent - show->state.depth;
1113 	return indents;
1114 }
1115 
btf_show_indent(struct btf_show * show)1116 static const char *btf_show_indent(struct btf_show *show)
1117 {
1118 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1119 }
1120 
btf_show_newline(struct btf_show * show)1121 static const char *btf_show_newline(struct btf_show *show)
1122 {
1123 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1124 }
1125 
btf_show_delim(struct btf_show * show)1126 static const char *btf_show_delim(struct btf_show *show)
1127 {
1128 	if (show->state.depth == 0)
1129 		return "";
1130 
1131 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1132 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1133 		return "|";
1134 
1135 	return ",";
1136 }
1137 
btf_show(struct btf_show * show,const char * fmt,...)1138 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1139 {
1140 	va_list args;
1141 
1142 	if (!show->state.depth_check) {
1143 		va_start(args, fmt);
1144 		show->showfn(show, fmt, args);
1145 		va_end(args);
1146 	}
1147 }
1148 
1149 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1150  * format specifiers to the format specifier passed in; these do the work of
1151  * adding indentation, delimiters etc while the caller simply has to specify
1152  * the type value(s) in the format specifier + value(s).
1153  */
1154 #define btf_show_type_value(show, fmt, value)				       \
1155 	do {								       \
1156 		if ((value) != (__typeof__(value))0 ||			       \
1157 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1158 		    show->state.depth == 0) {				       \
1159 			btf_show(show, "%s%s" fmt "%s%s",		       \
1160 				 btf_show_indent(show),			       \
1161 				 btf_show_name(show),			       \
1162 				 value, btf_show_delim(show),		       \
1163 				 btf_show_newline(show));		       \
1164 			if (show->state.depth > show->state.depth_to_show)     \
1165 				show->state.depth_to_show = show->state.depth; \
1166 		}							       \
1167 	} while (0)
1168 
1169 #define btf_show_type_values(show, fmt, ...)				       \
1170 	do {								       \
1171 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1172 			 btf_show_name(show),				       \
1173 			 __VA_ARGS__, btf_show_delim(show),		       \
1174 			 btf_show_newline(show));			       \
1175 		if (show->state.depth > show->state.depth_to_show)	       \
1176 			show->state.depth_to_show = show->state.depth;	       \
1177 	} while (0)
1178 
1179 /* How much is left to copy to safe buffer after @data? */
btf_show_obj_size_left(struct btf_show * show,void * data)1180 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1181 {
1182 	return show->obj.head + show->obj.size - data;
1183 }
1184 
1185 /* Is object pointed to by @data of @size already copied to our safe buffer? */
btf_show_obj_is_safe(struct btf_show * show,void * data,int size)1186 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1187 {
1188 	return data >= show->obj.data &&
1189 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1190 }
1191 
1192 /*
1193  * If object pointed to by @data of @size falls within our safe buffer, return
1194  * the equivalent pointer to the same safe data.  Assumes
1195  * copy_from_kernel_nofault() has already happened and our safe buffer is
1196  * populated.
1197  */
__btf_show_obj_safe(struct btf_show * show,void * data,int size)1198 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1199 {
1200 	if (btf_show_obj_is_safe(show, data, size))
1201 		return show->obj.safe + (data - show->obj.data);
1202 	return NULL;
1203 }
1204 
1205 /*
1206  * Return a safe-to-access version of data pointed to by @data.
1207  * We do this by copying the relevant amount of information
1208  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1209  *
1210  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1211  * safe copy is needed.
1212  *
1213  * Otherwise we need to determine if we have the required amount
1214  * of data (determined by the @data pointer and the size of the
1215  * largest base type we can encounter (represented by
1216  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1217  * that we will be able to print some of the current object,
1218  * and if more is needed a copy will be triggered.
1219  * Some objects such as structs will not fit into the buffer;
1220  * in such cases additional copies when we iterate over their
1221  * members may be needed.
1222  *
1223  * btf_show_obj_safe() is used to return a safe buffer for
1224  * btf_show_start_type(); this ensures that as we recurse into
1225  * nested types we always have safe data for the given type.
1226  * This approach is somewhat wasteful; it's possible for example
1227  * that when iterating over a large union we'll end up copying the
1228  * same data repeatedly, but the goal is safety not performance.
1229  * We use stack data as opposed to per-CPU buffers because the
1230  * iteration over a type can take some time, and preemption handling
1231  * would greatly complicate use of the safe buffer.
1232  */
btf_show_obj_safe(struct btf_show * show,const struct btf_type * t,void * data)1233 static void *btf_show_obj_safe(struct btf_show *show,
1234 			       const struct btf_type *t,
1235 			       void *data)
1236 {
1237 	const struct btf_type *rt;
1238 	int size_left, size;
1239 	void *safe = NULL;
1240 
1241 	if (show->flags & BTF_SHOW_UNSAFE)
1242 		return data;
1243 
1244 	rt = btf_resolve_size(show->btf, t, &size);
1245 	if (IS_ERR(rt)) {
1246 		show->state.status = PTR_ERR(rt);
1247 		return NULL;
1248 	}
1249 
1250 	/*
1251 	 * Is this toplevel object? If so, set total object size and
1252 	 * initialize pointers.  Otherwise check if we still fall within
1253 	 * our safe object data.
1254 	 */
1255 	if (show->state.depth == 0) {
1256 		show->obj.size = size;
1257 		show->obj.head = data;
1258 	} else {
1259 		/*
1260 		 * If the size of the current object is > our remaining
1261 		 * safe buffer we _may_ need to do a new copy.  However
1262 		 * consider the case of a nested struct; it's size pushes
1263 		 * us over the safe buffer limit, but showing any individual
1264 		 * struct members does not.  In such cases, we don't need
1265 		 * to initiate a fresh copy yet; however we definitely need
1266 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1267 		 * in our buffer, regardless of the current object size.
1268 		 * The logic here is that as we resolve types we will
1269 		 * hit a base type at some point, and we need to be sure
1270 		 * the next chunk of data is safely available to display
1271 		 * that type info safely.  We cannot rely on the size of
1272 		 * the current object here because it may be much larger
1273 		 * than our current buffer (e.g. task_struct is 8k).
1274 		 * All we want to do here is ensure that we can print the
1275 		 * next basic type, which we can if either
1276 		 * - the current type size is within the safe buffer; or
1277 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1278 		 *   the safe buffer.
1279 		 */
1280 		safe = __btf_show_obj_safe(show, data,
1281 					   min(size,
1282 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1283 	}
1284 
1285 	/*
1286 	 * We need a new copy to our safe object, either because we haven't
1287 	 * yet copied and are initializing safe data, or because the data
1288 	 * we want falls outside the boundaries of the safe object.
1289 	 */
1290 	if (!safe) {
1291 		size_left = btf_show_obj_size_left(show, data);
1292 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1293 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1294 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1295 							      data, size_left);
1296 		if (!show->state.status) {
1297 			show->obj.data = data;
1298 			safe = show->obj.safe;
1299 		}
1300 	}
1301 
1302 	return safe;
1303 }
1304 
1305 /*
1306  * Set the type we are starting to show and return a safe data pointer
1307  * to be used for showing the associated data.
1308  */
btf_show_start_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1309 static void *btf_show_start_type(struct btf_show *show,
1310 				 const struct btf_type *t,
1311 				 u32 type_id, void *data)
1312 {
1313 	show->state.type = t;
1314 	show->state.type_id = type_id;
1315 	show->state.name[0] = '\0';
1316 
1317 	return btf_show_obj_safe(show, t, data);
1318 }
1319 
btf_show_end_type(struct btf_show * show)1320 static void btf_show_end_type(struct btf_show *show)
1321 {
1322 	show->state.type = NULL;
1323 	show->state.type_id = 0;
1324 	show->state.name[0] = '\0';
1325 }
1326 
btf_show_start_aggr_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1327 static void *btf_show_start_aggr_type(struct btf_show *show,
1328 				      const struct btf_type *t,
1329 				      u32 type_id, void *data)
1330 {
1331 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1332 
1333 	if (!safe_data)
1334 		return safe_data;
1335 
1336 	btf_show(show, "%s%s%s", btf_show_indent(show),
1337 		 btf_show_name(show),
1338 		 btf_show_newline(show));
1339 	show->state.depth++;
1340 	return safe_data;
1341 }
1342 
btf_show_end_aggr_type(struct btf_show * show,const char * suffix)1343 static void btf_show_end_aggr_type(struct btf_show *show,
1344 				   const char *suffix)
1345 {
1346 	show->state.depth--;
1347 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1348 		 btf_show_delim(show), btf_show_newline(show));
1349 	btf_show_end_type(show);
1350 }
1351 
btf_show_start_member(struct btf_show * show,const struct btf_member * m)1352 static void btf_show_start_member(struct btf_show *show,
1353 				  const struct btf_member *m)
1354 {
1355 	show->state.member = m;
1356 }
1357 
btf_show_start_array_member(struct btf_show * show)1358 static void btf_show_start_array_member(struct btf_show *show)
1359 {
1360 	show->state.array_member = 1;
1361 	btf_show_start_member(show, NULL);
1362 }
1363 
btf_show_end_member(struct btf_show * show)1364 static void btf_show_end_member(struct btf_show *show)
1365 {
1366 	show->state.member = NULL;
1367 }
1368 
btf_show_end_array_member(struct btf_show * show)1369 static void btf_show_end_array_member(struct btf_show *show)
1370 {
1371 	show->state.array_member = 0;
1372 	btf_show_end_member(show);
1373 }
1374 
btf_show_start_array_type(struct btf_show * show,const struct btf_type * t,u32 type_id,u16 array_encoding,void * data)1375 static void *btf_show_start_array_type(struct btf_show *show,
1376 				       const struct btf_type *t,
1377 				       u32 type_id,
1378 				       u16 array_encoding,
1379 				       void *data)
1380 {
1381 	show->state.array_encoding = array_encoding;
1382 	show->state.array_terminated = 0;
1383 	return btf_show_start_aggr_type(show, t, type_id, data);
1384 }
1385 
btf_show_end_array_type(struct btf_show * show)1386 static void btf_show_end_array_type(struct btf_show *show)
1387 {
1388 	show->state.array_encoding = 0;
1389 	show->state.array_terminated = 0;
1390 	btf_show_end_aggr_type(show, "]");
1391 }
1392 
btf_show_start_struct_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1393 static void *btf_show_start_struct_type(struct btf_show *show,
1394 					const struct btf_type *t,
1395 					u32 type_id,
1396 					void *data)
1397 {
1398 	return btf_show_start_aggr_type(show, t, type_id, data);
1399 }
1400 
btf_show_end_struct_type(struct btf_show * show)1401 static void btf_show_end_struct_type(struct btf_show *show)
1402 {
1403 	btf_show_end_aggr_type(show, "}");
1404 }
1405 
__btf_verifier_log(struct bpf_verifier_log * log,const char * fmt,...)1406 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1407 					      const char *fmt, ...)
1408 {
1409 	va_list args;
1410 
1411 	va_start(args, fmt);
1412 	bpf_verifier_vlog(log, fmt, args);
1413 	va_end(args);
1414 }
1415 
btf_verifier_log(struct btf_verifier_env * env,const char * fmt,...)1416 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1417 					    const char *fmt, ...)
1418 {
1419 	struct bpf_verifier_log *log = &env->log;
1420 	va_list args;
1421 
1422 	if (!bpf_verifier_log_needed(log))
1423 		return;
1424 
1425 	va_start(args, fmt);
1426 	bpf_verifier_vlog(log, fmt, args);
1427 	va_end(args);
1428 }
1429 
__btf_verifier_log_type(struct btf_verifier_env * env,const struct btf_type * t,bool log_details,const char * fmt,...)1430 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1431 						   const struct btf_type *t,
1432 						   bool log_details,
1433 						   const char *fmt, ...)
1434 {
1435 	struct bpf_verifier_log *log = &env->log;
1436 	struct btf *btf = env->btf;
1437 	va_list args;
1438 
1439 	if (!bpf_verifier_log_needed(log))
1440 		return;
1441 
1442 	if (log->level == BPF_LOG_KERNEL) {
1443 		/* btf verifier prints all types it is processing via
1444 		 * btf_verifier_log_type(..., fmt = NULL).
1445 		 * Skip those prints for in-kernel BTF verification.
1446 		 */
1447 		if (!fmt)
1448 			return;
1449 
1450 		/* Skip logging when loading module BTF with mismatches permitted */
1451 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1452 			return;
1453 	}
1454 
1455 	__btf_verifier_log(log, "[%u] %s %s%s",
1456 			   env->log_type_id,
1457 			   btf_type_str(t),
1458 			   __btf_name_by_offset(btf, t->name_off),
1459 			   log_details ? " " : "");
1460 
1461 	if (log_details)
1462 		btf_type_ops(t)->log_details(env, t);
1463 
1464 	if (fmt && *fmt) {
1465 		__btf_verifier_log(log, " ");
1466 		va_start(args, fmt);
1467 		bpf_verifier_vlog(log, fmt, args);
1468 		va_end(args);
1469 	}
1470 
1471 	__btf_verifier_log(log, "\n");
1472 }
1473 
1474 #define btf_verifier_log_type(env, t, ...) \
1475 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1476 #define btf_verifier_log_basic(env, t, ...) \
1477 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1478 
1479 __printf(4, 5)
btf_verifier_log_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const char * fmt,...)1480 static void btf_verifier_log_member(struct btf_verifier_env *env,
1481 				    const struct btf_type *struct_type,
1482 				    const struct btf_member *member,
1483 				    const char *fmt, ...)
1484 {
1485 	struct bpf_verifier_log *log = &env->log;
1486 	struct btf *btf = env->btf;
1487 	va_list args;
1488 
1489 	if (!bpf_verifier_log_needed(log))
1490 		return;
1491 
1492 	if (log->level == BPF_LOG_KERNEL) {
1493 		if (!fmt)
1494 			return;
1495 
1496 		/* Skip logging when loading module BTF with mismatches permitted */
1497 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1498 			return;
1499 	}
1500 
1501 	/* The CHECK_META phase already did a btf dump.
1502 	 *
1503 	 * If member is logged again, it must hit an error in
1504 	 * parsing this member.  It is useful to print out which
1505 	 * struct this member belongs to.
1506 	 */
1507 	if (env->phase != CHECK_META)
1508 		btf_verifier_log_type(env, struct_type, NULL);
1509 
1510 	if (btf_type_kflag(struct_type))
1511 		__btf_verifier_log(log,
1512 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1513 				   __btf_name_by_offset(btf, member->name_off),
1514 				   member->type,
1515 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1516 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1517 	else
1518 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1519 				   __btf_name_by_offset(btf, member->name_off),
1520 				   member->type, member->offset);
1521 
1522 	if (fmt && *fmt) {
1523 		__btf_verifier_log(log, " ");
1524 		va_start(args, fmt);
1525 		bpf_verifier_vlog(log, fmt, args);
1526 		va_end(args);
1527 	}
1528 
1529 	__btf_verifier_log(log, "\n");
1530 }
1531 
1532 __printf(4, 5)
btf_verifier_log_vsi(struct btf_verifier_env * env,const struct btf_type * datasec_type,const struct btf_var_secinfo * vsi,const char * fmt,...)1533 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1534 				 const struct btf_type *datasec_type,
1535 				 const struct btf_var_secinfo *vsi,
1536 				 const char *fmt, ...)
1537 {
1538 	struct bpf_verifier_log *log = &env->log;
1539 	va_list args;
1540 
1541 	if (!bpf_verifier_log_needed(log))
1542 		return;
1543 	if (log->level == BPF_LOG_KERNEL && !fmt)
1544 		return;
1545 	if (env->phase != CHECK_META)
1546 		btf_verifier_log_type(env, datasec_type, NULL);
1547 
1548 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1549 			   vsi->type, vsi->offset, vsi->size);
1550 	if (fmt && *fmt) {
1551 		__btf_verifier_log(log, " ");
1552 		va_start(args, fmt);
1553 		bpf_verifier_vlog(log, fmt, args);
1554 		va_end(args);
1555 	}
1556 
1557 	__btf_verifier_log(log, "\n");
1558 }
1559 
btf_verifier_log_hdr(struct btf_verifier_env * env,u32 btf_data_size)1560 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1561 				 u32 btf_data_size)
1562 {
1563 	struct bpf_verifier_log *log = &env->log;
1564 	const struct btf *btf = env->btf;
1565 	const struct btf_header *hdr;
1566 
1567 	if (!bpf_verifier_log_needed(log))
1568 		return;
1569 
1570 	if (log->level == BPF_LOG_KERNEL)
1571 		return;
1572 	hdr = &btf->hdr;
1573 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1574 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1575 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1576 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1577 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1578 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1579 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1580 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1581 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1582 }
1583 
btf_add_type(struct btf_verifier_env * env,struct btf_type * t)1584 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1585 {
1586 	struct btf *btf = env->btf;
1587 
1588 	if (btf->types_size == btf->nr_types) {
1589 		/* Expand 'types' array */
1590 
1591 		struct btf_type **new_types;
1592 		u32 expand_by, new_size;
1593 
1594 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1595 			btf_verifier_log(env, "Exceeded max num of types");
1596 			return -E2BIG;
1597 		}
1598 
1599 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1600 		new_size = min_t(u32, BTF_MAX_TYPE,
1601 				 btf->types_size + expand_by);
1602 
1603 		new_types = kvcalloc(new_size, sizeof(*new_types),
1604 				     GFP_KERNEL | __GFP_NOWARN);
1605 		if (!new_types)
1606 			return -ENOMEM;
1607 
1608 		if (btf->nr_types == 0) {
1609 			if (!btf->base_btf) {
1610 				/* lazily init VOID type */
1611 				new_types[0] = &btf_void;
1612 				btf->nr_types++;
1613 			}
1614 		} else {
1615 			memcpy(new_types, btf->types,
1616 			       sizeof(*btf->types) * btf->nr_types);
1617 		}
1618 
1619 		kvfree(btf->types);
1620 		btf->types = new_types;
1621 		btf->types_size = new_size;
1622 	}
1623 
1624 	btf->types[btf->nr_types++] = t;
1625 
1626 	return 0;
1627 }
1628 
btf_alloc_id(struct btf * btf)1629 static int btf_alloc_id(struct btf *btf)
1630 {
1631 	int id;
1632 
1633 	idr_preload(GFP_KERNEL);
1634 	spin_lock_bh(&btf_idr_lock);
1635 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1636 	if (id > 0)
1637 		btf->id = id;
1638 	spin_unlock_bh(&btf_idr_lock);
1639 	idr_preload_end();
1640 
1641 	if (WARN_ON_ONCE(!id))
1642 		return -ENOSPC;
1643 
1644 	return id > 0 ? 0 : id;
1645 }
1646 
btf_free_id(struct btf * btf)1647 static void btf_free_id(struct btf *btf)
1648 {
1649 	unsigned long flags;
1650 
1651 	/*
1652 	 * In map-in-map, calling map_delete_elem() on outer
1653 	 * map will call bpf_map_put on the inner map.
1654 	 * It will then eventually call btf_free_id()
1655 	 * on the inner map.  Some of the map_delete_elem()
1656 	 * implementation may have irq disabled, so
1657 	 * we need to use the _irqsave() version instead
1658 	 * of the _bh() version.
1659 	 */
1660 	spin_lock_irqsave(&btf_idr_lock, flags);
1661 	idr_remove(&btf_idr, btf->id);
1662 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1663 }
1664 
btf_free_kfunc_set_tab(struct btf * btf)1665 static void btf_free_kfunc_set_tab(struct btf *btf)
1666 {
1667 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1668 	int hook;
1669 
1670 	if (!tab)
1671 		return;
1672 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1673 		kfree(tab->sets[hook]);
1674 	kfree(tab);
1675 	btf->kfunc_set_tab = NULL;
1676 }
1677 
btf_free_dtor_kfunc_tab(struct btf * btf)1678 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1679 {
1680 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1681 
1682 	if (!tab)
1683 		return;
1684 	kfree(tab);
1685 	btf->dtor_kfunc_tab = NULL;
1686 }
1687 
btf_struct_metas_free(struct btf_struct_metas * tab)1688 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1689 {
1690 	int i;
1691 
1692 	if (!tab)
1693 		return;
1694 	for (i = 0; i < tab->cnt; i++)
1695 		btf_record_free(tab->types[i].record);
1696 	kfree(tab);
1697 }
1698 
btf_free_struct_meta_tab(struct btf * btf)1699 static void btf_free_struct_meta_tab(struct btf *btf)
1700 {
1701 	struct btf_struct_metas *tab = btf->struct_meta_tab;
1702 
1703 	btf_struct_metas_free(tab);
1704 	btf->struct_meta_tab = NULL;
1705 }
1706 
btf_free_struct_ops_tab(struct btf * btf)1707 static void btf_free_struct_ops_tab(struct btf *btf)
1708 {
1709 	struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1710 	u32 i;
1711 
1712 	if (!tab)
1713 		return;
1714 
1715 	for (i = 0; i < tab->cnt; i++)
1716 		bpf_struct_ops_desc_release(&tab->ops[i]);
1717 
1718 	kfree(tab);
1719 	btf->struct_ops_tab = NULL;
1720 }
1721 
btf_free(struct btf * btf)1722 static void btf_free(struct btf *btf)
1723 {
1724 	btf_free_struct_meta_tab(btf);
1725 	btf_free_dtor_kfunc_tab(btf);
1726 	btf_free_kfunc_set_tab(btf);
1727 	btf_free_struct_ops_tab(btf);
1728 	kvfree(btf->types);
1729 	kvfree(btf->resolved_sizes);
1730 	kvfree(btf->resolved_ids);
1731 	/* vmlinux does not allocate btf->data, it simply points it at
1732 	 * __start_BTF.
1733 	 */
1734 	if (!btf_is_vmlinux(btf))
1735 		kvfree(btf->data);
1736 	kvfree(btf->base_id_map);
1737 	kfree(btf);
1738 }
1739 
btf_free_rcu(struct rcu_head * rcu)1740 static void btf_free_rcu(struct rcu_head *rcu)
1741 {
1742 	struct btf *btf = container_of(rcu, struct btf, rcu);
1743 
1744 	btf_free(btf);
1745 }
1746 
btf_get_name(const struct btf * btf)1747 const char *btf_get_name(const struct btf *btf)
1748 {
1749 	return btf->name;
1750 }
1751 
btf_get(struct btf * btf)1752 void btf_get(struct btf *btf)
1753 {
1754 	refcount_inc(&btf->refcnt);
1755 }
1756 
btf_put(struct btf * btf)1757 void btf_put(struct btf *btf)
1758 {
1759 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1760 		btf_free_id(btf);
1761 		call_rcu(&btf->rcu, btf_free_rcu);
1762 	}
1763 }
1764 
btf_base_btf(const struct btf * btf)1765 struct btf *btf_base_btf(const struct btf *btf)
1766 {
1767 	return btf->base_btf;
1768 }
1769 
btf_header(const struct btf * btf)1770 const struct btf_header *btf_header(const struct btf *btf)
1771 {
1772 	return &btf->hdr;
1773 }
1774 
btf_set_base_btf(struct btf * btf,const struct btf * base_btf)1775 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
1776 {
1777 	btf->base_btf = (struct btf *)base_btf;
1778 	btf->start_id = btf_nr_types(base_btf);
1779 	btf->start_str_off = base_btf->hdr.str_len;
1780 }
1781 
env_resolve_init(struct btf_verifier_env * env)1782 static int env_resolve_init(struct btf_verifier_env *env)
1783 {
1784 	struct btf *btf = env->btf;
1785 	u32 nr_types = btf->nr_types;
1786 	u32 *resolved_sizes = NULL;
1787 	u32 *resolved_ids = NULL;
1788 	u8 *visit_states = NULL;
1789 
1790 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1791 				  GFP_KERNEL | __GFP_NOWARN);
1792 	if (!resolved_sizes)
1793 		goto nomem;
1794 
1795 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1796 				GFP_KERNEL | __GFP_NOWARN);
1797 	if (!resolved_ids)
1798 		goto nomem;
1799 
1800 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1801 				GFP_KERNEL | __GFP_NOWARN);
1802 	if (!visit_states)
1803 		goto nomem;
1804 
1805 	btf->resolved_sizes = resolved_sizes;
1806 	btf->resolved_ids = resolved_ids;
1807 	env->visit_states = visit_states;
1808 
1809 	return 0;
1810 
1811 nomem:
1812 	kvfree(resolved_sizes);
1813 	kvfree(resolved_ids);
1814 	kvfree(visit_states);
1815 	return -ENOMEM;
1816 }
1817 
btf_verifier_env_free(struct btf_verifier_env * env)1818 static void btf_verifier_env_free(struct btf_verifier_env *env)
1819 {
1820 	kvfree(env->visit_states);
1821 	kfree(env);
1822 }
1823 
env_type_is_resolve_sink(const struct btf_verifier_env * env,const struct btf_type * next_type)1824 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1825 				     const struct btf_type *next_type)
1826 {
1827 	switch (env->resolve_mode) {
1828 	case RESOLVE_TBD:
1829 		/* int, enum or void is a sink */
1830 		return !btf_type_needs_resolve(next_type);
1831 	case RESOLVE_PTR:
1832 		/* int, enum, void, struct, array, func or func_proto is a sink
1833 		 * for ptr
1834 		 */
1835 		return !btf_type_is_modifier(next_type) &&
1836 			!btf_type_is_ptr(next_type);
1837 	case RESOLVE_STRUCT_OR_ARRAY:
1838 		/* int, enum, void, ptr, func or func_proto is a sink
1839 		 * for struct and array
1840 		 */
1841 		return !btf_type_is_modifier(next_type) &&
1842 			!btf_type_is_array(next_type) &&
1843 			!btf_type_is_struct(next_type);
1844 	default:
1845 		BUG();
1846 	}
1847 }
1848 
env_type_is_resolved(const struct btf_verifier_env * env,u32 type_id)1849 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1850 				 u32 type_id)
1851 {
1852 	/* base BTF types should be resolved by now */
1853 	if (type_id < env->btf->start_id)
1854 		return true;
1855 
1856 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1857 }
1858 
env_stack_push(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)1859 static int env_stack_push(struct btf_verifier_env *env,
1860 			  const struct btf_type *t, u32 type_id)
1861 {
1862 	const struct btf *btf = env->btf;
1863 	struct resolve_vertex *v;
1864 
1865 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1866 		return -E2BIG;
1867 
1868 	if (type_id < btf->start_id
1869 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1870 		return -EEXIST;
1871 
1872 	env->visit_states[type_id - btf->start_id] = VISITED;
1873 
1874 	v = &env->stack[env->top_stack++];
1875 	v->t = t;
1876 	v->type_id = type_id;
1877 	v->next_member = 0;
1878 
1879 	if (env->resolve_mode == RESOLVE_TBD) {
1880 		if (btf_type_is_ptr(t))
1881 			env->resolve_mode = RESOLVE_PTR;
1882 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1883 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1884 	}
1885 
1886 	return 0;
1887 }
1888 
env_stack_set_next_member(struct btf_verifier_env * env,u16 next_member)1889 static void env_stack_set_next_member(struct btf_verifier_env *env,
1890 				      u16 next_member)
1891 {
1892 	env->stack[env->top_stack - 1].next_member = next_member;
1893 }
1894 
env_stack_pop_resolved(struct btf_verifier_env * env,u32 resolved_type_id,u32 resolved_size)1895 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1896 				   u32 resolved_type_id,
1897 				   u32 resolved_size)
1898 {
1899 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1900 	struct btf *btf = env->btf;
1901 
1902 	type_id -= btf->start_id; /* adjust to local type id */
1903 	btf->resolved_sizes[type_id] = resolved_size;
1904 	btf->resolved_ids[type_id] = resolved_type_id;
1905 	env->visit_states[type_id] = RESOLVED;
1906 }
1907 
env_stack_peak(struct btf_verifier_env * env)1908 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1909 {
1910 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1911 }
1912 
1913 /* Resolve the size of a passed-in "type"
1914  *
1915  * type: is an array (e.g. u32 array[x][y])
1916  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1917  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1918  *             corresponds to the return type.
1919  * *elem_type: u32
1920  * *elem_id: id of u32
1921  * *total_nelems: (x * y).  Hence, individual elem size is
1922  *                (*type_size / *total_nelems)
1923  * *type_id: id of type if it's changed within the function, 0 if not
1924  *
1925  * type: is not an array (e.g. const struct X)
1926  * return type: type "struct X"
1927  * *type_size: sizeof(struct X)
1928  * *elem_type: same as return type ("struct X")
1929  * *elem_id: 0
1930  * *total_nelems: 1
1931  * *type_id: id of type if it's changed within the function, 0 if not
1932  */
1933 static const struct btf_type *
__btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size,const struct btf_type ** elem_type,u32 * elem_id,u32 * total_nelems,u32 * type_id)1934 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1935 		   u32 *type_size, const struct btf_type **elem_type,
1936 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1937 {
1938 	const struct btf_type *array_type = NULL;
1939 	const struct btf_array *array = NULL;
1940 	u32 i, size, nelems = 1, id = 0;
1941 
1942 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1943 		switch (BTF_INFO_KIND(type->info)) {
1944 		/* type->size can be used */
1945 		case BTF_KIND_INT:
1946 		case BTF_KIND_STRUCT:
1947 		case BTF_KIND_UNION:
1948 		case BTF_KIND_ENUM:
1949 		case BTF_KIND_FLOAT:
1950 		case BTF_KIND_ENUM64:
1951 			size = type->size;
1952 			goto resolved;
1953 
1954 		case BTF_KIND_PTR:
1955 			size = sizeof(void *);
1956 			goto resolved;
1957 
1958 		/* Modifiers */
1959 		case BTF_KIND_TYPEDEF:
1960 		case BTF_KIND_VOLATILE:
1961 		case BTF_KIND_CONST:
1962 		case BTF_KIND_RESTRICT:
1963 		case BTF_KIND_TYPE_TAG:
1964 			id = type->type;
1965 			type = btf_type_by_id(btf, type->type);
1966 			break;
1967 
1968 		case BTF_KIND_ARRAY:
1969 			if (!array_type)
1970 				array_type = type;
1971 			array = btf_type_array(type);
1972 			if (nelems && array->nelems > U32_MAX / nelems)
1973 				return ERR_PTR(-EINVAL);
1974 			nelems *= array->nelems;
1975 			type = btf_type_by_id(btf, array->type);
1976 			break;
1977 
1978 		/* type without size */
1979 		default:
1980 			return ERR_PTR(-EINVAL);
1981 		}
1982 	}
1983 
1984 	return ERR_PTR(-EINVAL);
1985 
1986 resolved:
1987 	if (nelems && size > U32_MAX / nelems)
1988 		return ERR_PTR(-EINVAL);
1989 
1990 	*type_size = nelems * size;
1991 	if (total_nelems)
1992 		*total_nelems = nelems;
1993 	if (elem_type)
1994 		*elem_type = type;
1995 	if (elem_id)
1996 		*elem_id = array ? array->type : 0;
1997 	if (type_id && id)
1998 		*type_id = id;
1999 
2000 	return array_type ? : type;
2001 }
2002 
2003 const struct btf_type *
btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size)2004 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
2005 		 u32 *type_size)
2006 {
2007 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
2008 }
2009 
btf_resolved_type_id(const struct btf * btf,u32 type_id)2010 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
2011 {
2012 	while (type_id < btf->start_id)
2013 		btf = btf->base_btf;
2014 
2015 	return btf->resolved_ids[type_id - btf->start_id];
2016 }
2017 
2018 /* The input param "type_id" must point to a needs_resolve type */
btf_type_id_resolve(const struct btf * btf,u32 * type_id)2019 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
2020 						  u32 *type_id)
2021 {
2022 	*type_id = btf_resolved_type_id(btf, *type_id);
2023 	return btf_type_by_id(btf, *type_id);
2024 }
2025 
btf_resolved_type_size(const struct btf * btf,u32 type_id)2026 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
2027 {
2028 	while (type_id < btf->start_id)
2029 		btf = btf->base_btf;
2030 
2031 	return btf->resolved_sizes[type_id - btf->start_id];
2032 }
2033 
btf_type_id_size(const struct btf * btf,u32 * type_id,u32 * ret_size)2034 const struct btf_type *btf_type_id_size(const struct btf *btf,
2035 					u32 *type_id, u32 *ret_size)
2036 {
2037 	const struct btf_type *size_type;
2038 	u32 size_type_id = *type_id;
2039 	u32 size = 0;
2040 
2041 	size_type = btf_type_by_id(btf, size_type_id);
2042 	if (btf_type_nosize_or_null(size_type))
2043 		return NULL;
2044 
2045 	if (btf_type_has_size(size_type)) {
2046 		size = size_type->size;
2047 	} else if (btf_type_is_array(size_type)) {
2048 		size = btf_resolved_type_size(btf, size_type_id);
2049 	} else if (btf_type_is_ptr(size_type)) {
2050 		size = sizeof(void *);
2051 	} else {
2052 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2053 				 !btf_type_is_var(size_type)))
2054 			return NULL;
2055 
2056 		size_type_id = btf_resolved_type_id(btf, size_type_id);
2057 		size_type = btf_type_by_id(btf, size_type_id);
2058 		if (btf_type_nosize_or_null(size_type))
2059 			return NULL;
2060 		else if (btf_type_has_size(size_type))
2061 			size = size_type->size;
2062 		else if (btf_type_is_array(size_type))
2063 			size = btf_resolved_type_size(btf, size_type_id);
2064 		else if (btf_type_is_ptr(size_type))
2065 			size = sizeof(void *);
2066 		else
2067 			return NULL;
2068 	}
2069 
2070 	*type_id = size_type_id;
2071 	if (ret_size)
2072 		*ret_size = size;
2073 
2074 	return size_type;
2075 }
2076 
btf_df_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2077 static int btf_df_check_member(struct btf_verifier_env *env,
2078 			       const struct btf_type *struct_type,
2079 			       const struct btf_member *member,
2080 			       const struct btf_type *member_type)
2081 {
2082 	btf_verifier_log_basic(env, struct_type,
2083 			       "Unsupported check_member");
2084 	return -EINVAL;
2085 }
2086 
btf_df_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2087 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2088 				     const struct btf_type *struct_type,
2089 				     const struct btf_member *member,
2090 				     const struct btf_type *member_type)
2091 {
2092 	btf_verifier_log_basic(env, struct_type,
2093 			       "Unsupported check_kflag_member");
2094 	return -EINVAL;
2095 }
2096 
2097 /* Used for ptr, array struct/union and float type members.
2098  * int, enum and modifier types have their specific callback functions.
2099  */
btf_generic_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2100 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2101 					  const struct btf_type *struct_type,
2102 					  const struct btf_member *member,
2103 					  const struct btf_type *member_type)
2104 {
2105 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2106 		btf_verifier_log_member(env, struct_type, member,
2107 					"Invalid member bitfield_size");
2108 		return -EINVAL;
2109 	}
2110 
2111 	/* bitfield size is 0, so member->offset represents bit offset only.
2112 	 * It is safe to call non kflag check_member variants.
2113 	 */
2114 	return btf_type_ops(member_type)->check_member(env, struct_type,
2115 						       member,
2116 						       member_type);
2117 }
2118 
btf_df_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2119 static int btf_df_resolve(struct btf_verifier_env *env,
2120 			  const struct resolve_vertex *v)
2121 {
2122 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2123 	return -EINVAL;
2124 }
2125 
btf_df_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offsets,struct btf_show * show)2126 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2127 			u32 type_id, void *data, u8 bits_offsets,
2128 			struct btf_show *show)
2129 {
2130 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2131 }
2132 
btf_int_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2133 static int btf_int_check_member(struct btf_verifier_env *env,
2134 				const struct btf_type *struct_type,
2135 				const struct btf_member *member,
2136 				const struct btf_type *member_type)
2137 {
2138 	u32 int_data = btf_type_int(member_type);
2139 	u32 struct_bits_off = member->offset;
2140 	u32 struct_size = struct_type->size;
2141 	u32 nr_copy_bits;
2142 	u32 bytes_offset;
2143 
2144 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2145 		btf_verifier_log_member(env, struct_type, member,
2146 					"bits_offset exceeds U32_MAX");
2147 		return -EINVAL;
2148 	}
2149 
2150 	struct_bits_off += BTF_INT_OFFSET(int_data);
2151 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2152 	nr_copy_bits = BTF_INT_BITS(int_data) +
2153 		BITS_PER_BYTE_MASKED(struct_bits_off);
2154 
2155 	if (nr_copy_bits > BITS_PER_U128) {
2156 		btf_verifier_log_member(env, struct_type, member,
2157 					"nr_copy_bits exceeds 128");
2158 		return -EINVAL;
2159 	}
2160 
2161 	if (struct_size < bytes_offset ||
2162 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2163 		btf_verifier_log_member(env, struct_type, member,
2164 					"Member exceeds struct_size");
2165 		return -EINVAL;
2166 	}
2167 
2168 	return 0;
2169 }
2170 
btf_int_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2171 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2172 				      const struct btf_type *struct_type,
2173 				      const struct btf_member *member,
2174 				      const struct btf_type *member_type)
2175 {
2176 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2177 	u32 int_data = btf_type_int(member_type);
2178 	u32 struct_size = struct_type->size;
2179 	u32 nr_copy_bits;
2180 
2181 	/* a regular int type is required for the kflag int member */
2182 	if (!btf_type_int_is_regular(member_type)) {
2183 		btf_verifier_log_member(env, struct_type, member,
2184 					"Invalid member base type");
2185 		return -EINVAL;
2186 	}
2187 
2188 	/* check sanity of bitfield size */
2189 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2190 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2191 	nr_int_data_bits = BTF_INT_BITS(int_data);
2192 	if (!nr_bits) {
2193 		/* Not a bitfield member, member offset must be at byte
2194 		 * boundary.
2195 		 */
2196 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2197 			btf_verifier_log_member(env, struct_type, member,
2198 						"Invalid member offset");
2199 			return -EINVAL;
2200 		}
2201 
2202 		nr_bits = nr_int_data_bits;
2203 	} else if (nr_bits > nr_int_data_bits) {
2204 		btf_verifier_log_member(env, struct_type, member,
2205 					"Invalid member bitfield_size");
2206 		return -EINVAL;
2207 	}
2208 
2209 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2210 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2211 	if (nr_copy_bits > BITS_PER_U128) {
2212 		btf_verifier_log_member(env, struct_type, member,
2213 					"nr_copy_bits exceeds 128");
2214 		return -EINVAL;
2215 	}
2216 
2217 	if (struct_size < bytes_offset ||
2218 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2219 		btf_verifier_log_member(env, struct_type, member,
2220 					"Member exceeds struct_size");
2221 		return -EINVAL;
2222 	}
2223 
2224 	return 0;
2225 }
2226 
btf_int_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2227 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2228 			      const struct btf_type *t,
2229 			      u32 meta_left)
2230 {
2231 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2232 	u16 encoding;
2233 
2234 	if (meta_left < meta_needed) {
2235 		btf_verifier_log_basic(env, t,
2236 				       "meta_left:%u meta_needed:%u",
2237 				       meta_left, meta_needed);
2238 		return -EINVAL;
2239 	}
2240 
2241 	if (btf_type_vlen(t)) {
2242 		btf_verifier_log_type(env, t, "vlen != 0");
2243 		return -EINVAL;
2244 	}
2245 
2246 	if (btf_type_kflag(t)) {
2247 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2248 		return -EINVAL;
2249 	}
2250 
2251 	int_data = btf_type_int(t);
2252 	if (int_data & ~BTF_INT_MASK) {
2253 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2254 				       int_data);
2255 		return -EINVAL;
2256 	}
2257 
2258 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2259 
2260 	if (nr_bits > BITS_PER_U128) {
2261 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2262 				      BITS_PER_U128);
2263 		return -EINVAL;
2264 	}
2265 
2266 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2267 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2268 		return -EINVAL;
2269 	}
2270 
2271 	/*
2272 	 * Only one of the encoding bits is allowed and it
2273 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2274 	 * Multiple bits can be allowed later if it is found
2275 	 * to be insufficient.
2276 	 */
2277 	encoding = BTF_INT_ENCODING(int_data);
2278 	if (encoding &&
2279 	    encoding != BTF_INT_SIGNED &&
2280 	    encoding != BTF_INT_CHAR &&
2281 	    encoding != BTF_INT_BOOL) {
2282 		btf_verifier_log_type(env, t, "Unsupported encoding");
2283 		return -ENOTSUPP;
2284 	}
2285 
2286 	btf_verifier_log_type(env, t, NULL);
2287 
2288 	return meta_needed;
2289 }
2290 
btf_int_log(struct btf_verifier_env * env,const struct btf_type * t)2291 static void btf_int_log(struct btf_verifier_env *env,
2292 			const struct btf_type *t)
2293 {
2294 	int int_data = btf_type_int(t);
2295 
2296 	btf_verifier_log(env,
2297 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2298 			 t->size, BTF_INT_OFFSET(int_data),
2299 			 BTF_INT_BITS(int_data),
2300 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2301 }
2302 
btf_int128_print(struct btf_show * show,void * data)2303 static void btf_int128_print(struct btf_show *show, void *data)
2304 {
2305 	/* data points to a __int128 number.
2306 	 * Suppose
2307 	 *     int128_num = *(__int128 *)data;
2308 	 * The below formulas shows what upper_num and lower_num represents:
2309 	 *     upper_num = int128_num >> 64;
2310 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2311 	 */
2312 	u64 upper_num, lower_num;
2313 
2314 #ifdef __BIG_ENDIAN_BITFIELD
2315 	upper_num = *(u64 *)data;
2316 	lower_num = *(u64 *)(data + 8);
2317 #else
2318 	upper_num = *(u64 *)(data + 8);
2319 	lower_num = *(u64 *)data;
2320 #endif
2321 	if (upper_num == 0)
2322 		btf_show_type_value(show, "0x%llx", lower_num);
2323 	else
2324 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2325 				     lower_num);
2326 }
2327 
btf_int128_shift(u64 * print_num,u16 left_shift_bits,u16 right_shift_bits)2328 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2329 			     u16 right_shift_bits)
2330 {
2331 	u64 upper_num, lower_num;
2332 
2333 #ifdef __BIG_ENDIAN_BITFIELD
2334 	upper_num = print_num[0];
2335 	lower_num = print_num[1];
2336 #else
2337 	upper_num = print_num[1];
2338 	lower_num = print_num[0];
2339 #endif
2340 
2341 	/* shake out un-needed bits by shift/or operations */
2342 	if (left_shift_bits >= 64) {
2343 		upper_num = lower_num << (left_shift_bits - 64);
2344 		lower_num = 0;
2345 	} else {
2346 		upper_num = (upper_num << left_shift_bits) |
2347 			    (lower_num >> (64 - left_shift_bits));
2348 		lower_num = lower_num << left_shift_bits;
2349 	}
2350 
2351 	if (right_shift_bits >= 64) {
2352 		lower_num = upper_num >> (right_shift_bits - 64);
2353 		upper_num = 0;
2354 	} else {
2355 		lower_num = (lower_num >> right_shift_bits) |
2356 			    (upper_num << (64 - right_shift_bits));
2357 		upper_num = upper_num >> right_shift_bits;
2358 	}
2359 
2360 #ifdef __BIG_ENDIAN_BITFIELD
2361 	print_num[0] = upper_num;
2362 	print_num[1] = lower_num;
2363 #else
2364 	print_num[0] = lower_num;
2365 	print_num[1] = upper_num;
2366 #endif
2367 }
2368 
btf_bitfield_show(void * data,u8 bits_offset,u8 nr_bits,struct btf_show * show)2369 static void btf_bitfield_show(void *data, u8 bits_offset,
2370 			      u8 nr_bits, struct btf_show *show)
2371 {
2372 	u16 left_shift_bits, right_shift_bits;
2373 	u8 nr_copy_bytes;
2374 	u8 nr_copy_bits;
2375 	u64 print_num[2] = {};
2376 
2377 	nr_copy_bits = nr_bits + bits_offset;
2378 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2379 
2380 	memcpy(print_num, data, nr_copy_bytes);
2381 
2382 #ifdef __BIG_ENDIAN_BITFIELD
2383 	left_shift_bits = bits_offset;
2384 #else
2385 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2386 #endif
2387 	right_shift_bits = BITS_PER_U128 - nr_bits;
2388 
2389 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2390 	btf_int128_print(show, print_num);
2391 }
2392 
2393 
btf_int_bits_show(const struct btf * btf,const struct btf_type * t,void * data,u8 bits_offset,struct btf_show * show)2394 static void btf_int_bits_show(const struct btf *btf,
2395 			      const struct btf_type *t,
2396 			      void *data, u8 bits_offset,
2397 			      struct btf_show *show)
2398 {
2399 	u32 int_data = btf_type_int(t);
2400 	u8 nr_bits = BTF_INT_BITS(int_data);
2401 	u8 total_bits_offset;
2402 
2403 	/*
2404 	 * bits_offset is at most 7.
2405 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2406 	 */
2407 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2408 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2409 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2410 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2411 }
2412 
btf_int_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2413 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2414 			 u32 type_id, void *data, u8 bits_offset,
2415 			 struct btf_show *show)
2416 {
2417 	u32 int_data = btf_type_int(t);
2418 	u8 encoding = BTF_INT_ENCODING(int_data);
2419 	bool sign = encoding & BTF_INT_SIGNED;
2420 	u8 nr_bits = BTF_INT_BITS(int_data);
2421 	void *safe_data;
2422 
2423 	safe_data = btf_show_start_type(show, t, type_id, data);
2424 	if (!safe_data)
2425 		return;
2426 
2427 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2428 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2429 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2430 		goto out;
2431 	}
2432 
2433 	switch (nr_bits) {
2434 	case 128:
2435 		btf_int128_print(show, safe_data);
2436 		break;
2437 	case 64:
2438 		if (sign)
2439 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2440 		else
2441 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2442 		break;
2443 	case 32:
2444 		if (sign)
2445 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2446 		else
2447 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2448 		break;
2449 	case 16:
2450 		if (sign)
2451 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2452 		else
2453 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2454 		break;
2455 	case 8:
2456 		if (show->state.array_encoding == BTF_INT_CHAR) {
2457 			/* check for null terminator */
2458 			if (show->state.array_terminated)
2459 				break;
2460 			if (*(char *)data == '\0') {
2461 				show->state.array_terminated = 1;
2462 				break;
2463 			}
2464 			if (isprint(*(char *)data)) {
2465 				btf_show_type_value(show, "'%c'",
2466 						    *(char *)safe_data);
2467 				break;
2468 			}
2469 		}
2470 		if (sign)
2471 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2472 		else
2473 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2474 		break;
2475 	default:
2476 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2477 		break;
2478 	}
2479 out:
2480 	btf_show_end_type(show);
2481 }
2482 
2483 static const struct btf_kind_operations int_ops = {
2484 	.check_meta = btf_int_check_meta,
2485 	.resolve = btf_df_resolve,
2486 	.check_member = btf_int_check_member,
2487 	.check_kflag_member = btf_int_check_kflag_member,
2488 	.log_details = btf_int_log,
2489 	.show = btf_int_show,
2490 };
2491 
btf_modifier_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2492 static int btf_modifier_check_member(struct btf_verifier_env *env,
2493 				     const struct btf_type *struct_type,
2494 				     const struct btf_member *member,
2495 				     const struct btf_type *member_type)
2496 {
2497 	const struct btf_type *resolved_type;
2498 	u32 resolved_type_id = member->type;
2499 	struct btf_member resolved_member;
2500 	struct btf *btf = env->btf;
2501 
2502 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2503 	if (!resolved_type) {
2504 		btf_verifier_log_member(env, struct_type, member,
2505 					"Invalid member");
2506 		return -EINVAL;
2507 	}
2508 
2509 	resolved_member = *member;
2510 	resolved_member.type = resolved_type_id;
2511 
2512 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2513 							 &resolved_member,
2514 							 resolved_type);
2515 }
2516 
btf_modifier_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2517 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2518 					   const struct btf_type *struct_type,
2519 					   const struct btf_member *member,
2520 					   const struct btf_type *member_type)
2521 {
2522 	const struct btf_type *resolved_type;
2523 	u32 resolved_type_id = member->type;
2524 	struct btf_member resolved_member;
2525 	struct btf *btf = env->btf;
2526 
2527 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2528 	if (!resolved_type) {
2529 		btf_verifier_log_member(env, struct_type, member,
2530 					"Invalid member");
2531 		return -EINVAL;
2532 	}
2533 
2534 	resolved_member = *member;
2535 	resolved_member.type = resolved_type_id;
2536 
2537 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2538 							       &resolved_member,
2539 							       resolved_type);
2540 }
2541 
btf_ptr_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2542 static int btf_ptr_check_member(struct btf_verifier_env *env,
2543 				const struct btf_type *struct_type,
2544 				const struct btf_member *member,
2545 				const struct btf_type *member_type)
2546 {
2547 	u32 struct_size, struct_bits_off, bytes_offset;
2548 
2549 	struct_size = struct_type->size;
2550 	struct_bits_off = member->offset;
2551 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2552 
2553 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2554 		btf_verifier_log_member(env, struct_type, member,
2555 					"Member is not byte aligned");
2556 		return -EINVAL;
2557 	}
2558 
2559 	if (struct_size - bytes_offset < sizeof(void *)) {
2560 		btf_verifier_log_member(env, struct_type, member,
2561 					"Member exceeds struct_size");
2562 		return -EINVAL;
2563 	}
2564 
2565 	return 0;
2566 }
2567 
btf_ref_type_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2568 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2569 				   const struct btf_type *t,
2570 				   u32 meta_left)
2571 {
2572 	const char *value;
2573 
2574 	if (btf_type_vlen(t)) {
2575 		btf_verifier_log_type(env, t, "vlen != 0");
2576 		return -EINVAL;
2577 	}
2578 
2579 	if (btf_type_kflag(t)) {
2580 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2581 		return -EINVAL;
2582 	}
2583 
2584 	if (!BTF_TYPE_ID_VALID(t->type)) {
2585 		btf_verifier_log_type(env, t, "Invalid type_id");
2586 		return -EINVAL;
2587 	}
2588 
2589 	/* typedef/type_tag type must have a valid name, and other ref types,
2590 	 * volatile, const, restrict, should have a null name.
2591 	 */
2592 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2593 		if (!t->name_off ||
2594 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2595 			btf_verifier_log_type(env, t, "Invalid name");
2596 			return -EINVAL;
2597 		}
2598 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2599 		value = btf_name_by_offset(env->btf, t->name_off);
2600 		if (!value || !value[0]) {
2601 			btf_verifier_log_type(env, t, "Invalid name");
2602 			return -EINVAL;
2603 		}
2604 	} else {
2605 		if (t->name_off) {
2606 			btf_verifier_log_type(env, t, "Invalid name");
2607 			return -EINVAL;
2608 		}
2609 	}
2610 
2611 	btf_verifier_log_type(env, t, NULL);
2612 
2613 	return 0;
2614 }
2615 
btf_modifier_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2616 static int btf_modifier_resolve(struct btf_verifier_env *env,
2617 				const struct resolve_vertex *v)
2618 {
2619 	const struct btf_type *t = v->t;
2620 	const struct btf_type *next_type;
2621 	u32 next_type_id = t->type;
2622 	struct btf *btf = env->btf;
2623 
2624 	next_type = btf_type_by_id(btf, next_type_id);
2625 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2626 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2627 		return -EINVAL;
2628 	}
2629 
2630 	if (!env_type_is_resolve_sink(env, next_type) &&
2631 	    !env_type_is_resolved(env, next_type_id))
2632 		return env_stack_push(env, next_type, next_type_id);
2633 
2634 	/* Figure out the resolved next_type_id with size.
2635 	 * They will be stored in the current modifier's
2636 	 * resolved_ids and resolved_sizes such that it can
2637 	 * save us a few type-following when we use it later (e.g. in
2638 	 * pretty print).
2639 	 */
2640 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2641 		if (env_type_is_resolved(env, next_type_id))
2642 			next_type = btf_type_id_resolve(btf, &next_type_id);
2643 
2644 		/* "typedef void new_void", "const void"...etc */
2645 		if (!btf_type_is_void(next_type) &&
2646 		    !btf_type_is_fwd(next_type) &&
2647 		    !btf_type_is_func_proto(next_type)) {
2648 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2649 			return -EINVAL;
2650 		}
2651 	}
2652 
2653 	env_stack_pop_resolved(env, next_type_id, 0);
2654 
2655 	return 0;
2656 }
2657 
btf_var_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2658 static int btf_var_resolve(struct btf_verifier_env *env,
2659 			   const struct resolve_vertex *v)
2660 {
2661 	const struct btf_type *next_type;
2662 	const struct btf_type *t = v->t;
2663 	u32 next_type_id = t->type;
2664 	struct btf *btf = env->btf;
2665 
2666 	next_type = btf_type_by_id(btf, next_type_id);
2667 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2668 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2669 		return -EINVAL;
2670 	}
2671 
2672 	if (!env_type_is_resolve_sink(env, next_type) &&
2673 	    !env_type_is_resolved(env, next_type_id))
2674 		return env_stack_push(env, next_type, next_type_id);
2675 
2676 	if (btf_type_is_modifier(next_type)) {
2677 		const struct btf_type *resolved_type;
2678 		u32 resolved_type_id;
2679 
2680 		resolved_type_id = next_type_id;
2681 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2682 
2683 		if (btf_type_is_ptr(resolved_type) &&
2684 		    !env_type_is_resolve_sink(env, resolved_type) &&
2685 		    !env_type_is_resolved(env, resolved_type_id))
2686 			return env_stack_push(env, resolved_type,
2687 					      resolved_type_id);
2688 	}
2689 
2690 	/* We must resolve to something concrete at this point, no
2691 	 * forward types or similar that would resolve to size of
2692 	 * zero is allowed.
2693 	 */
2694 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2695 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2696 		return -EINVAL;
2697 	}
2698 
2699 	env_stack_pop_resolved(env, next_type_id, 0);
2700 
2701 	return 0;
2702 }
2703 
btf_ptr_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2704 static int btf_ptr_resolve(struct btf_verifier_env *env,
2705 			   const struct resolve_vertex *v)
2706 {
2707 	const struct btf_type *next_type;
2708 	const struct btf_type *t = v->t;
2709 	u32 next_type_id = t->type;
2710 	struct btf *btf = env->btf;
2711 
2712 	next_type = btf_type_by_id(btf, next_type_id);
2713 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2714 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2715 		return -EINVAL;
2716 	}
2717 
2718 	if (!env_type_is_resolve_sink(env, next_type) &&
2719 	    !env_type_is_resolved(env, next_type_id))
2720 		return env_stack_push(env, next_type, next_type_id);
2721 
2722 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2723 	 * the modifier may have stopped resolving when it was resolved
2724 	 * to a ptr (last-resolved-ptr).
2725 	 *
2726 	 * We now need to continue from the last-resolved-ptr to
2727 	 * ensure the last-resolved-ptr will not referring back to
2728 	 * the current ptr (t).
2729 	 */
2730 	if (btf_type_is_modifier(next_type)) {
2731 		const struct btf_type *resolved_type;
2732 		u32 resolved_type_id;
2733 
2734 		resolved_type_id = next_type_id;
2735 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2736 
2737 		if (btf_type_is_ptr(resolved_type) &&
2738 		    !env_type_is_resolve_sink(env, resolved_type) &&
2739 		    !env_type_is_resolved(env, resolved_type_id))
2740 			return env_stack_push(env, resolved_type,
2741 					      resolved_type_id);
2742 	}
2743 
2744 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2745 		if (env_type_is_resolved(env, next_type_id))
2746 			next_type = btf_type_id_resolve(btf, &next_type_id);
2747 
2748 		if (!btf_type_is_void(next_type) &&
2749 		    !btf_type_is_fwd(next_type) &&
2750 		    !btf_type_is_func_proto(next_type)) {
2751 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2752 			return -EINVAL;
2753 		}
2754 	}
2755 
2756 	env_stack_pop_resolved(env, next_type_id, 0);
2757 
2758 	return 0;
2759 }
2760 
btf_modifier_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2761 static void btf_modifier_show(const struct btf *btf,
2762 			      const struct btf_type *t,
2763 			      u32 type_id, void *data,
2764 			      u8 bits_offset, struct btf_show *show)
2765 {
2766 	if (btf->resolved_ids)
2767 		t = btf_type_id_resolve(btf, &type_id);
2768 	else
2769 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2770 
2771 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2772 }
2773 
btf_var_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2774 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2775 			 u32 type_id, void *data, u8 bits_offset,
2776 			 struct btf_show *show)
2777 {
2778 	t = btf_type_id_resolve(btf, &type_id);
2779 
2780 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2781 }
2782 
btf_ptr_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2783 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2784 			 u32 type_id, void *data, u8 bits_offset,
2785 			 struct btf_show *show)
2786 {
2787 	void *safe_data;
2788 
2789 	safe_data = btf_show_start_type(show, t, type_id, data);
2790 	if (!safe_data)
2791 		return;
2792 
2793 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2794 	if (show->flags & BTF_SHOW_PTR_RAW)
2795 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2796 	else
2797 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2798 	btf_show_end_type(show);
2799 }
2800 
btf_ref_type_log(struct btf_verifier_env * env,const struct btf_type * t)2801 static void btf_ref_type_log(struct btf_verifier_env *env,
2802 			     const struct btf_type *t)
2803 {
2804 	btf_verifier_log(env, "type_id=%u", t->type);
2805 }
2806 
2807 static struct btf_kind_operations modifier_ops = {
2808 	.check_meta = btf_ref_type_check_meta,
2809 	.resolve = btf_modifier_resolve,
2810 	.check_member = btf_modifier_check_member,
2811 	.check_kflag_member = btf_modifier_check_kflag_member,
2812 	.log_details = btf_ref_type_log,
2813 	.show = btf_modifier_show,
2814 };
2815 
2816 static struct btf_kind_operations ptr_ops = {
2817 	.check_meta = btf_ref_type_check_meta,
2818 	.resolve = btf_ptr_resolve,
2819 	.check_member = btf_ptr_check_member,
2820 	.check_kflag_member = btf_generic_check_kflag_member,
2821 	.log_details = btf_ref_type_log,
2822 	.show = btf_ptr_show,
2823 };
2824 
btf_fwd_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2825 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2826 			      const struct btf_type *t,
2827 			      u32 meta_left)
2828 {
2829 	if (btf_type_vlen(t)) {
2830 		btf_verifier_log_type(env, t, "vlen != 0");
2831 		return -EINVAL;
2832 	}
2833 
2834 	if (t->type) {
2835 		btf_verifier_log_type(env, t, "type != 0");
2836 		return -EINVAL;
2837 	}
2838 
2839 	/* fwd type must have a valid name */
2840 	if (!t->name_off ||
2841 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2842 		btf_verifier_log_type(env, t, "Invalid name");
2843 		return -EINVAL;
2844 	}
2845 
2846 	btf_verifier_log_type(env, t, NULL);
2847 
2848 	return 0;
2849 }
2850 
btf_fwd_type_log(struct btf_verifier_env * env,const struct btf_type * t)2851 static void btf_fwd_type_log(struct btf_verifier_env *env,
2852 			     const struct btf_type *t)
2853 {
2854 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2855 }
2856 
2857 static struct btf_kind_operations fwd_ops = {
2858 	.check_meta = btf_fwd_check_meta,
2859 	.resolve = btf_df_resolve,
2860 	.check_member = btf_df_check_member,
2861 	.check_kflag_member = btf_df_check_kflag_member,
2862 	.log_details = btf_fwd_type_log,
2863 	.show = btf_df_show,
2864 };
2865 
btf_array_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2866 static int btf_array_check_member(struct btf_verifier_env *env,
2867 				  const struct btf_type *struct_type,
2868 				  const struct btf_member *member,
2869 				  const struct btf_type *member_type)
2870 {
2871 	u32 struct_bits_off = member->offset;
2872 	u32 struct_size, bytes_offset;
2873 	u32 array_type_id, array_size;
2874 	struct btf *btf = env->btf;
2875 
2876 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2877 		btf_verifier_log_member(env, struct_type, member,
2878 					"Member is not byte aligned");
2879 		return -EINVAL;
2880 	}
2881 
2882 	array_type_id = member->type;
2883 	btf_type_id_size(btf, &array_type_id, &array_size);
2884 	struct_size = struct_type->size;
2885 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2886 	if (struct_size - bytes_offset < array_size) {
2887 		btf_verifier_log_member(env, struct_type, member,
2888 					"Member exceeds struct_size");
2889 		return -EINVAL;
2890 	}
2891 
2892 	return 0;
2893 }
2894 
btf_array_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2895 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2896 				const struct btf_type *t,
2897 				u32 meta_left)
2898 {
2899 	const struct btf_array *array = btf_type_array(t);
2900 	u32 meta_needed = sizeof(*array);
2901 
2902 	if (meta_left < meta_needed) {
2903 		btf_verifier_log_basic(env, t,
2904 				       "meta_left:%u meta_needed:%u",
2905 				       meta_left, meta_needed);
2906 		return -EINVAL;
2907 	}
2908 
2909 	/* array type should not have a name */
2910 	if (t->name_off) {
2911 		btf_verifier_log_type(env, t, "Invalid name");
2912 		return -EINVAL;
2913 	}
2914 
2915 	if (btf_type_vlen(t)) {
2916 		btf_verifier_log_type(env, t, "vlen != 0");
2917 		return -EINVAL;
2918 	}
2919 
2920 	if (btf_type_kflag(t)) {
2921 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2922 		return -EINVAL;
2923 	}
2924 
2925 	if (t->size) {
2926 		btf_verifier_log_type(env, t, "size != 0");
2927 		return -EINVAL;
2928 	}
2929 
2930 	/* Array elem type and index type cannot be in type void,
2931 	 * so !array->type and !array->index_type are not allowed.
2932 	 */
2933 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2934 		btf_verifier_log_type(env, t, "Invalid elem");
2935 		return -EINVAL;
2936 	}
2937 
2938 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2939 		btf_verifier_log_type(env, t, "Invalid index");
2940 		return -EINVAL;
2941 	}
2942 
2943 	btf_verifier_log_type(env, t, NULL);
2944 
2945 	return meta_needed;
2946 }
2947 
btf_array_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2948 static int btf_array_resolve(struct btf_verifier_env *env,
2949 			     const struct resolve_vertex *v)
2950 {
2951 	const struct btf_array *array = btf_type_array(v->t);
2952 	const struct btf_type *elem_type, *index_type;
2953 	u32 elem_type_id, index_type_id;
2954 	struct btf *btf = env->btf;
2955 	u32 elem_size;
2956 
2957 	/* Check array->index_type */
2958 	index_type_id = array->index_type;
2959 	index_type = btf_type_by_id(btf, index_type_id);
2960 	if (btf_type_nosize_or_null(index_type) ||
2961 	    btf_type_is_resolve_source_only(index_type)) {
2962 		btf_verifier_log_type(env, v->t, "Invalid index");
2963 		return -EINVAL;
2964 	}
2965 
2966 	if (!env_type_is_resolve_sink(env, index_type) &&
2967 	    !env_type_is_resolved(env, index_type_id))
2968 		return env_stack_push(env, index_type, index_type_id);
2969 
2970 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2971 	if (!index_type || !btf_type_is_int(index_type) ||
2972 	    !btf_type_int_is_regular(index_type)) {
2973 		btf_verifier_log_type(env, v->t, "Invalid index");
2974 		return -EINVAL;
2975 	}
2976 
2977 	/* Check array->type */
2978 	elem_type_id = array->type;
2979 	elem_type = btf_type_by_id(btf, elem_type_id);
2980 	if (btf_type_nosize_or_null(elem_type) ||
2981 	    btf_type_is_resolve_source_only(elem_type)) {
2982 		btf_verifier_log_type(env, v->t,
2983 				      "Invalid elem");
2984 		return -EINVAL;
2985 	}
2986 
2987 	if (!env_type_is_resolve_sink(env, elem_type) &&
2988 	    !env_type_is_resolved(env, elem_type_id))
2989 		return env_stack_push(env, elem_type, elem_type_id);
2990 
2991 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2992 	if (!elem_type) {
2993 		btf_verifier_log_type(env, v->t, "Invalid elem");
2994 		return -EINVAL;
2995 	}
2996 
2997 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2998 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2999 		return -EINVAL;
3000 	}
3001 
3002 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
3003 		btf_verifier_log_type(env, v->t,
3004 				      "Array size overflows U32_MAX");
3005 		return -EINVAL;
3006 	}
3007 
3008 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
3009 
3010 	return 0;
3011 }
3012 
btf_array_log(struct btf_verifier_env * env,const struct btf_type * t)3013 static void btf_array_log(struct btf_verifier_env *env,
3014 			  const struct btf_type *t)
3015 {
3016 	const struct btf_array *array = btf_type_array(t);
3017 
3018 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
3019 			 array->type, array->index_type, array->nelems);
3020 }
3021 
__btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3022 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
3023 			     u32 type_id, void *data, u8 bits_offset,
3024 			     struct btf_show *show)
3025 {
3026 	const struct btf_array *array = btf_type_array(t);
3027 	const struct btf_kind_operations *elem_ops;
3028 	const struct btf_type *elem_type;
3029 	u32 i, elem_size = 0, elem_type_id;
3030 	u16 encoding = 0;
3031 
3032 	elem_type_id = array->type;
3033 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
3034 	if (elem_type && btf_type_has_size(elem_type))
3035 		elem_size = elem_type->size;
3036 
3037 	if (elem_type && btf_type_is_int(elem_type)) {
3038 		u32 int_type = btf_type_int(elem_type);
3039 
3040 		encoding = BTF_INT_ENCODING(int_type);
3041 
3042 		/*
3043 		 * BTF_INT_CHAR encoding never seems to be set for
3044 		 * char arrays, so if size is 1 and element is
3045 		 * printable as a char, we'll do that.
3046 		 */
3047 		if (elem_size == 1)
3048 			encoding = BTF_INT_CHAR;
3049 	}
3050 
3051 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
3052 		return;
3053 
3054 	if (!elem_type)
3055 		goto out;
3056 	elem_ops = btf_type_ops(elem_type);
3057 
3058 	for (i = 0; i < array->nelems; i++) {
3059 
3060 		btf_show_start_array_member(show);
3061 
3062 		elem_ops->show(btf, elem_type, elem_type_id, data,
3063 			       bits_offset, show);
3064 		data += elem_size;
3065 
3066 		btf_show_end_array_member(show);
3067 
3068 		if (show->state.array_terminated)
3069 			break;
3070 	}
3071 out:
3072 	btf_show_end_array_type(show);
3073 }
3074 
btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3075 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3076 			   u32 type_id, void *data, u8 bits_offset,
3077 			   struct btf_show *show)
3078 {
3079 	const struct btf_member *m = show->state.member;
3080 
3081 	/*
3082 	 * First check if any members would be shown (are non-zero).
3083 	 * See comments above "struct btf_show" definition for more
3084 	 * details on how this works at a high-level.
3085 	 */
3086 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3087 		if (!show->state.depth_check) {
3088 			show->state.depth_check = show->state.depth + 1;
3089 			show->state.depth_to_show = 0;
3090 		}
3091 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3092 		show->state.member = m;
3093 
3094 		if (show->state.depth_check != show->state.depth + 1)
3095 			return;
3096 		show->state.depth_check = 0;
3097 
3098 		if (show->state.depth_to_show <= show->state.depth)
3099 			return;
3100 		/*
3101 		 * Reaching here indicates we have recursed and found
3102 		 * non-zero array member(s).
3103 		 */
3104 	}
3105 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3106 }
3107 
3108 static struct btf_kind_operations array_ops = {
3109 	.check_meta = btf_array_check_meta,
3110 	.resolve = btf_array_resolve,
3111 	.check_member = btf_array_check_member,
3112 	.check_kflag_member = btf_generic_check_kflag_member,
3113 	.log_details = btf_array_log,
3114 	.show = btf_array_show,
3115 };
3116 
btf_struct_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)3117 static int btf_struct_check_member(struct btf_verifier_env *env,
3118 				   const struct btf_type *struct_type,
3119 				   const struct btf_member *member,
3120 				   const struct btf_type *member_type)
3121 {
3122 	u32 struct_bits_off = member->offset;
3123 	u32 struct_size, bytes_offset;
3124 
3125 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3126 		btf_verifier_log_member(env, struct_type, member,
3127 					"Member is not byte aligned");
3128 		return -EINVAL;
3129 	}
3130 
3131 	struct_size = struct_type->size;
3132 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3133 	if (struct_size - bytes_offset < member_type->size) {
3134 		btf_verifier_log_member(env, struct_type, member,
3135 					"Member exceeds struct_size");
3136 		return -EINVAL;
3137 	}
3138 
3139 	return 0;
3140 }
3141 
btf_struct_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3142 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3143 				 const struct btf_type *t,
3144 				 u32 meta_left)
3145 {
3146 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3147 	const struct btf_member *member;
3148 	u32 meta_needed, last_offset;
3149 	struct btf *btf = env->btf;
3150 	u32 struct_size = t->size;
3151 	u32 offset;
3152 	u16 i;
3153 
3154 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3155 	if (meta_left < meta_needed) {
3156 		btf_verifier_log_basic(env, t,
3157 				       "meta_left:%u meta_needed:%u",
3158 				       meta_left, meta_needed);
3159 		return -EINVAL;
3160 	}
3161 
3162 	/* struct type either no name or a valid one */
3163 	if (t->name_off &&
3164 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3165 		btf_verifier_log_type(env, t, "Invalid name");
3166 		return -EINVAL;
3167 	}
3168 
3169 	btf_verifier_log_type(env, t, NULL);
3170 
3171 	last_offset = 0;
3172 	for_each_member(i, t, member) {
3173 		if (!btf_name_offset_valid(btf, member->name_off)) {
3174 			btf_verifier_log_member(env, t, member,
3175 						"Invalid member name_offset:%u",
3176 						member->name_off);
3177 			return -EINVAL;
3178 		}
3179 
3180 		/* struct member either no name or a valid one */
3181 		if (member->name_off &&
3182 		    !btf_name_valid_identifier(btf, member->name_off)) {
3183 			btf_verifier_log_member(env, t, member, "Invalid name");
3184 			return -EINVAL;
3185 		}
3186 		/* A member cannot be in type void */
3187 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3188 			btf_verifier_log_member(env, t, member,
3189 						"Invalid type_id");
3190 			return -EINVAL;
3191 		}
3192 
3193 		offset = __btf_member_bit_offset(t, member);
3194 		if (is_union && offset) {
3195 			btf_verifier_log_member(env, t, member,
3196 						"Invalid member bits_offset");
3197 			return -EINVAL;
3198 		}
3199 
3200 		/*
3201 		 * ">" instead of ">=" because the last member could be
3202 		 * "char a[0];"
3203 		 */
3204 		if (last_offset > offset) {
3205 			btf_verifier_log_member(env, t, member,
3206 						"Invalid member bits_offset");
3207 			return -EINVAL;
3208 		}
3209 
3210 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3211 			btf_verifier_log_member(env, t, member,
3212 						"Member bits_offset exceeds its struct size");
3213 			return -EINVAL;
3214 		}
3215 
3216 		btf_verifier_log_member(env, t, member, NULL);
3217 		last_offset = offset;
3218 	}
3219 
3220 	return meta_needed;
3221 }
3222 
btf_struct_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)3223 static int btf_struct_resolve(struct btf_verifier_env *env,
3224 			      const struct resolve_vertex *v)
3225 {
3226 	const struct btf_member *member;
3227 	int err;
3228 	u16 i;
3229 
3230 	/* Before continue resolving the next_member,
3231 	 * ensure the last member is indeed resolved to a
3232 	 * type with size info.
3233 	 */
3234 	if (v->next_member) {
3235 		const struct btf_type *last_member_type;
3236 		const struct btf_member *last_member;
3237 		u32 last_member_type_id;
3238 
3239 		last_member = btf_type_member(v->t) + v->next_member - 1;
3240 		last_member_type_id = last_member->type;
3241 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3242 						       last_member_type_id)))
3243 			return -EINVAL;
3244 
3245 		last_member_type = btf_type_by_id(env->btf,
3246 						  last_member_type_id);
3247 		if (btf_type_kflag(v->t))
3248 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3249 								last_member,
3250 								last_member_type);
3251 		else
3252 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3253 								last_member,
3254 								last_member_type);
3255 		if (err)
3256 			return err;
3257 	}
3258 
3259 	for_each_member_from(i, v->next_member, v->t, member) {
3260 		u32 member_type_id = member->type;
3261 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3262 								member_type_id);
3263 
3264 		if (btf_type_nosize_or_null(member_type) ||
3265 		    btf_type_is_resolve_source_only(member_type)) {
3266 			btf_verifier_log_member(env, v->t, member,
3267 						"Invalid member");
3268 			return -EINVAL;
3269 		}
3270 
3271 		if (!env_type_is_resolve_sink(env, member_type) &&
3272 		    !env_type_is_resolved(env, member_type_id)) {
3273 			env_stack_set_next_member(env, i + 1);
3274 			return env_stack_push(env, member_type, member_type_id);
3275 		}
3276 
3277 		if (btf_type_kflag(v->t))
3278 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3279 									    member,
3280 									    member_type);
3281 		else
3282 			err = btf_type_ops(member_type)->check_member(env, v->t,
3283 								      member,
3284 								      member_type);
3285 		if (err)
3286 			return err;
3287 	}
3288 
3289 	env_stack_pop_resolved(env, 0, 0);
3290 
3291 	return 0;
3292 }
3293 
btf_struct_log(struct btf_verifier_env * env,const struct btf_type * t)3294 static void btf_struct_log(struct btf_verifier_env *env,
3295 			   const struct btf_type *t)
3296 {
3297 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3298 }
3299 
3300 enum {
3301 	BTF_FIELD_IGNORE = 0,
3302 	BTF_FIELD_FOUND  = 1,
3303 };
3304 
3305 struct btf_field_info {
3306 	enum btf_field_type type;
3307 	u32 off;
3308 	union {
3309 		struct {
3310 			u32 type_id;
3311 		} kptr;
3312 		struct {
3313 			const char *node_name;
3314 			u32 value_btf_id;
3315 		} graph_root;
3316 	};
3317 };
3318 
btf_find_struct(const struct btf * btf,const struct btf_type * t,u32 off,int sz,enum btf_field_type field_type,struct btf_field_info * info)3319 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3320 			   u32 off, int sz, enum btf_field_type field_type,
3321 			   struct btf_field_info *info)
3322 {
3323 	if (!__btf_type_is_struct(t))
3324 		return BTF_FIELD_IGNORE;
3325 	if (t->size != sz)
3326 		return BTF_FIELD_IGNORE;
3327 	info->type = field_type;
3328 	info->off = off;
3329 	return BTF_FIELD_FOUND;
3330 }
3331 
btf_find_kptr(const struct btf * btf,const struct btf_type * t,u32 off,int sz,struct btf_field_info * info)3332 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3333 			 u32 off, int sz, struct btf_field_info *info)
3334 {
3335 	enum btf_field_type type;
3336 	u32 res_id;
3337 
3338 	/* Permit modifiers on the pointer itself */
3339 	if (btf_type_is_volatile(t))
3340 		t = btf_type_by_id(btf, t->type);
3341 	/* For PTR, sz is always == 8 */
3342 	if (!btf_type_is_ptr(t))
3343 		return BTF_FIELD_IGNORE;
3344 	t = btf_type_by_id(btf, t->type);
3345 
3346 	if (!btf_type_is_type_tag(t))
3347 		return BTF_FIELD_IGNORE;
3348 	/* Reject extra tags */
3349 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3350 		return -EINVAL;
3351 	if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3352 		type = BPF_KPTR_UNREF;
3353 	else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3354 		type = BPF_KPTR_REF;
3355 	else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off)))
3356 		type = BPF_KPTR_PERCPU;
3357 	else
3358 		return -EINVAL;
3359 
3360 	/* Get the base type */
3361 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3362 	/* Only pointer to struct is allowed */
3363 	if (!__btf_type_is_struct(t))
3364 		return -EINVAL;
3365 
3366 	info->type = type;
3367 	info->off = off;
3368 	info->kptr.type_id = res_id;
3369 	return BTF_FIELD_FOUND;
3370 }
3371 
btf_find_next_decl_tag(const struct btf * btf,const struct btf_type * pt,int comp_idx,const char * tag_key,int last_id)3372 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3373 			   int comp_idx, const char *tag_key, int last_id)
3374 {
3375 	int len = strlen(tag_key);
3376 	int i, n;
3377 
3378 	for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3379 		const struct btf_type *t = btf_type_by_id(btf, i);
3380 
3381 		if (!btf_type_is_decl_tag(t))
3382 			continue;
3383 		if (pt != btf_type_by_id(btf, t->type))
3384 			continue;
3385 		if (btf_type_decl_tag(t)->component_idx != comp_idx)
3386 			continue;
3387 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3388 			continue;
3389 		return i;
3390 	}
3391 	return -ENOENT;
3392 }
3393 
btf_find_decl_tag_value(const struct btf * btf,const struct btf_type * pt,int comp_idx,const char * tag_key)3394 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3395 				    int comp_idx, const char *tag_key)
3396 {
3397 	const char *value = NULL;
3398 	const struct btf_type *t;
3399 	int len, id;
3400 
3401 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0);
3402 	if (id < 0)
3403 		return ERR_PTR(id);
3404 
3405 	t = btf_type_by_id(btf, id);
3406 	len = strlen(tag_key);
3407 	value = __btf_name_by_offset(btf, t->name_off) + len;
3408 
3409 	/* Prevent duplicate entries for same type */
3410 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
3411 	if (id >= 0)
3412 		return ERR_PTR(-EEXIST);
3413 
3414 	return value;
3415 }
3416 
3417 static int
btf_find_graph_root(const struct btf * btf,const struct btf_type * pt,const struct btf_type * t,int comp_idx,u32 off,int sz,struct btf_field_info * info,enum btf_field_type head_type)3418 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3419 		    const struct btf_type *t, int comp_idx, u32 off,
3420 		    int sz, struct btf_field_info *info,
3421 		    enum btf_field_type head_type)
3422 {
3423 	const char *node_field_name;
3424 	const char *value_type;
3425 	s32 id;
3426 
3427 	if (!__btf_type_is_struct(t))
3428 		return BTF_FIELD_IGNORE;
3429 	if (t->size != sz)
3430 		return BTF_FIELD_IGNORE;
3431 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3432 	if (IS_ERR(value_type))
3433 		return -EINVAL;
3434 	node_field_name = strstr(value_type, ":");
3435 	if (!node_field_name)
3436 		return -EINVAL;
3437 	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3438 	if (!value_type)
3439 		return -ENOMEM;
3440 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3441 	kfree(value_type);
3442 	if (id < 0)
3443 		return id;
3444 	node_field_name++;
3445 	if (str_is_empty(node_field_name))
3446 		return -EINVAL;
3447 	info->type = head_type;
3448 	info->off = off;
3449 	info->graph_root.value_btf_id = id;
3450 	info->graph_root.node_name = node_field_name;
3451 	return BTF_FIELD_FOUND;
3452 }
3453 
3454 #define field_mask_test_name(field_type, field_type_str) \
3455 	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3456 		type = field_type;					\
3457 		goto end;						\
3458 	}
3459 
btf_get_field_type(const struct btf * btf,const struct btf_type * var_type,u32 field_mask,u32 * seen_mask,int * align,int * sz)3460 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type,
3461 			      u32 field_mask, u32 *seen_mask,
3462 			      int *align, int *sz)
3463 {
3464 	int type = 0;
3465 	const char *name = __btf_name_by_offset(btf, var_type->name_off);
3466 
3467 	if (field_mask & BPF_SPIN_LOCK) {
3468 		if (!strcmp(name, "bpf_spin_lock")) {
3469 			if (*seen_mask & BPF_SPIN_LOCK)
3470 				return -E2BIG;
3471 			*seen_mask |= BPF_SPIN_LOCK;
3472 			type = BPF_SPIN_LOCK;
3473 			goto end;
3474 		}
3475 	}
3476 	if (field_mask & BPF_TIMER) {
3477 		if (!strcmp(name, "bpf_timer")) {
3478 			if (*seen_mask & BPF_TIMER)
3479 				return -E2BIG;
3480 			*seen_mask |= BPF_TIMER;
3481 			type = BPF_TIMER;
3482 			goto end;
3483 		}
3484 	}
3485 	if (field_mask & BPF_WORKQUEUE) {
3486 		if (!strcmp(name, "bpf_wq")) {
3487 			if (*seen_mask & BPF_WORKQUEUE)
3488 				return -E2BIG;
3489 			*seen_mask |= BPF_WORKQUEUE;
3490 			type = BPF_WORKQUEUE;
3491 			goto end;
3492 		}
3493 	}
3494 	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3495 	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3496 	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3497 	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3498 	field_mask_test_name(BPF_REFCOUNT,  "bpf_refcount");
3499 
3500 	/* Only return BPF_KPTR when all other types with matchable names fail */
3501 	if (field_mask & BPF_KPTR && !__btf_type_is_struct(var_type)) {
3502 		type = BPF_KPTR_REF;
3503 		goto end;
3504 	}
3505 	return 0;
3506 end:
3507 	*sz = btf_field_type_size(type);
3508 	*align = btf_field_type_align(type);
3509 	return type;
3510 }
3511 
3512 #undef field_mask_test_name
3513 
3514 /* Repeat a number of fields for a specified number of times.
3515  *
3516  * Copy the fields starting from the first field and repeat them for
3517  * repeat_cnt times. The fields are repeated by adding the offset of each
3518  * field with
3519  *   (i + 1) * elem_size
3520  * where i is the repeat index and elem_size is the size of an element.
3521  */
btf_repeat_fields(struct btf_field_info * info,int info_cnt,u32 field_cnt,u32 repeat_cnt,u32 elem_size)3522 static int btf_repeat_fields(struct btf_field_info *info, int info_cnt,
3523 			     u32 field_cnt, u32 repeat_cnt, u32 elem_size)
3524 {
3525 	u32 i, j;
3526 	u32 cur;
3527 
3528 	/* Ensure not repeating fields that should not be repeated. */
3529 	for (i = 0; i < field_cnt; i++) {
3530 		switch (info[i].type) {
3531 		case BPF_KPTR_UNREF:
3532 		case BPF_KPTR_REF:
3533 		case BPF_KPTR_PERCPU:
3534 		case BPF_LIST_HEAD:
3535 		case BPF_RB_ROOT:
3536 			break;
3537 		default:
3538 			return -EINVAL;
3539 		}
3540 	}
3541 
3542 	/* The type of struct size or variable size is u32,
3543 	 * so the multiplication will not overflow.
3544 	 */
3545 	if (field_cnt * (repeat_cnt + 1) > info_cnt)
3546 		return -E2BIG;
3547 
3548 	cur = field_cnt;
3549 	for (i = 0; i < repeat_cnt; i++) {
3550 		memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0]));
3551 		for (j = 0; j < field_cnt; j++)
3552 			info[cur++].off += (i + 1) * elem_size;
3553 	}
3554 
3555 	return 0;
3556 }
3557 
3558 static int btf_find_struct_field(const struct btf *btf,
3559 				 const struct btf_type *t, u32 field_mask,
3560 				 struct btf_field_info *info, int info_cnt,
3561 				 u32 level);
3562 
3563 /* Find special fields in the struct type of a field.
3564  *
3565  * This function is used to find fields of special types that is not a
3566  * global variable or a direct field of a struct type. It also handles the
3567  * repetition if it is the element type of an array.
3568  */
btf_find_nested_struct(const struct btf * btf,const struct btf_type * t,u32 off,u32 nelems,u32 field_mask,struct btf_field_info * info,int info_cnt,u32 level)3569 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t,
3570 				  u32 off, u32 nelems,
3571 				  u32 field_mask, struct btf_field_info *info,
3572 				  int info_cnt, u32 level)
3573 {
3574 	int ret, err, i;
3575 
3576 	level++;
3577 	if (level >= MAX_RESOLVE_DEPTH)
3578 		return -E2BIG;
3579 
3580 	ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level);
3581 
3582 	if (ret <= 0)
3583 		return ret;
3584 
3585 	/* Shift the offsets of the nested struct fields to the offsets
3586 	 * related to the container.
3587 	 */
3588 	for (i = 0; i < ret; i++)
3589 		info[i].off += off;
3590 
3591 	if (nelems > 1) {
3592 		err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size);
3593 		if (err == 0)
3594 			ret *= nelems;
3595 		else
3596 			ret = err;
3597 	}
3598 
3599 	return ret;
3600 }
3601 
btf_find_field_one(const struct btf * btf,const struct btf_type * var,const struct btf_type * var_type,int var_idx,u32 off,u32 expected_size,u32 field_mask,u32 * seen_mask,struct btf_field_info * info,int info_cnt,u32 level)3602 static int btf_find_field_one(const struct btf *btf,
3603 			      const struct btf_type *var,
3604 			      const struct btf_type *var_type,
3605 			      int var_idx,
3606 			      u32 off, u32 expected_size,
3607 			      u32 field_mask, u32 *seen_mask,
3608 			      struct btf_field_info *info, int info_cnt,
3609 			      u32 level)
3610 {
3611 	int ret, align, sz, field_type;
3612 	struct btf_field_info tmp;
3613 	const struct btf_array *array;
3614 	u32 i, nelems = 1;
3615 
3616 	/* Walk into array types to find the element type and the number of
3617 	 * elements in the (flattened) array.
3618 	 */
3619 	for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) {
3620 		array = btf_array(var_type);
3621 		nelems *= array->nelems;
3622 		var_type = btf_type_by_id(btf, array->type);
3623 	}
3624 	if (i == MAX_RESOLVE_DEPTH)
3625 		return -E2BIG;
3626 	if (nelems == 0)
3627 		return 0;
3628 
3629 	field_type = btf_get_field_type(btf, var_type,
3630 					field_mask, seen_mask, &align, &sz);
3631 	/* Look into variables of struct types */
3632 	if (!field_type && __btf_type_is_struct(var_type)) {
3633 		sz = var_type->size;
3634 		if (expected_size && expected_size != sz * nelems)
3635 			return 0;
3636 		ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask,
3637 					     &info[0], info_cnt, level);
3638 		return ret;
3639 	}
3640 
3641 	if (field_type == 0)
3642 		return 0;
3643 	if (field_type < 0)
3644 		return field_type;
3645 
3646 	if (expected_size && expected_size != sz * nelems)
3647 		return 0;
3648 	if (off % align)
3649 		return 0;
3650 
3651 	switch (field_type) {
3652 	case BPF_SPIN_LOCK:
3653 	case BPF_TIMER:
3654 	case BPF_WORKQUEUE:
3655 	case BPF_LIST_NODE:
3656 	case BPF_RB_NODE:
3657 	case BPF_REFCOUNT:
3658 		ret = btf_find_struct(btf, var_type, off, sz, field_type,
3659 				      info_cnt ? &info[0] : &tmp);
3660 		if (ret < 0)
3661 			return ret;
3662 		break;
3663 	case BPF_KPTR_UNREF:
3664 	case BPF_KPTR_REF:
3665 	case BPF_KPTR_PERCPU:
3666 		ret = btf_find_kptr(btf, var_type, off, sz,
3667 				    info_cnt ? &info[0] : &tmp);
3668 		if (ret < 0)
3669 			return ret;
3670 		break;
3671 	case BPF_LIST_HEAD:
3672 	case BPF_RB_ROOT:
3673 		ret = btf_find_graph_root(btf, var, var_type,
3674 					  var_idx, off, sz,
3675 					  info_cnt ? &info[0] : &tmp,
3676 					  field_type);
3677 		if (ret < 0)
3678 			return ret;
3679 		break;
3680 	default:
3681 		return -EFAULT;
3682 	}
3683 
3684 	if (ret == BTF_FIELD_IGNORE)
3685 		return 0;
3686 	if (!info_cnt)
3687 		return -E2BIG;
3688 	if (nelems > 1) {
3689 		ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz);
3690 		if (ret < 0)
3691 			return ret;
3692 	}
3693 	return nelems;
3694 }
3695 
btf_find_struct_field(const struct btf * btf,const struct btf_type * t,u32 field_mask,struct btf_field_info * info,int info_cnt,u32 level)3696 static int btf_find_struct_field(const struct btf *btf,
3697 				 const struct btf_type *t, u32 field_mask,
3698 				 struct btf_field_info *info, int info_cnt,
3699 				 u32 level)
3700 {
3701 	int ret, idx = 0;
3702 	const struct btf_member *member;
3703 	u32 i, off, seen_mask = 0;
3704 
3705 	for_each_member(i, t, member) {
3706 		const struct btf_type *member_type = btf_type_by_id(btf,
3707 								    member->type);
3708 
3709 		off = __btf_member_bit_offset(t, member);
3710 		if (off % 8)
3711 			/* valid C code cannot generate such BTF */
3712 			return -EINVAL;
3713 		off /= 8;
3714 
3715 		ret = btf_find_field_one(btf, t, member_type, i,
3716 					 off, 0,
3717 					 field_mask, &seen_mask,
3718 					 &info[idx], info_cnt - idx, level);
3719 		if (ret < 0)
3720 			return ret;
3721 		idx += ret;
3722 	}
3723 	return idx;
3724 }
3725 
btf_find_datasec_var(const struct btf * btf,const struct btf_type * t,u32 field_mask,struct btf_field_info * info,int info_cnt,u32 level)3726 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3727 				u32 field_mask, struct btf_field_info *info,
3728 				int info_cnt, u32 level)
3729 {
3730 	int ret, idx = 0;
3731 	const struct btf_var_secinfo *vsi;
3732 	u32 i, off, seen_mask = 0;
3733 
3734 	for_each_vsi(i, t, vsi) {
3735 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3736 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3737 
3738 		off = vsi->offset;
3739 		ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size,
3740 					 field_mask, &seen_mask,
3741 					 &info[idx], info_cnt - idx,
3742 					 level);
3743 		if (ret < 0)
3744 			return ret;
3745 		idx += ret;
3746 	}
3747 	return idx;
3748 }
3749 
btf_find_field(const struct btf * btf,const struct btf_type * t,u32 field_mask,struct btf_field_info * info,int info_cnt)3750 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3751 			  u32 field_mask, struct btf_field_info *info,
3752 			  int info_cnt)
3753 {
3754 	if (__btf_type_is_struct(t))
3755 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0);
3756 	else if (btf_type_is_datasec(t))
3757 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0);
3758 	return -EINVAL;
3759 }
3760 
3761 /* Callers have to ensure the life cycle of btf if it is program BTF */
btf_parse_kptr(const struct btf * btf,struct btf_field * field,struct btf_field_info * info)3762 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3763 			  struct btf_field_info *info)
3764 {
3765 	struct module *mod = NULL;
3766 	const struct btf_type *t;
3767 	/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3768 	 * is that BTF, otherwise it's program BTF
3769 	 */
3770 	struct btf *kptr_btf;
3771 	int ret;
3772 	s32 id;
3773 
3774 	/* Find type in map BTF, and use it to look up the matching type
3775 	 * in vmlinux or module BTFs, by name and kind.
3776 	 */
3777 	t = btf_type_by_id(btf, info->kptr.type_id);
3778 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3779 			     &kptr_btf);
3780 	if (id == -ENOENT) {
3781 		/* btf_parse_kptr should only be called w/ btf = program BTF */
3782 		WARN_ON_ONCE(btf_is_kernel(btf));
3783 
3784 		/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3785 		 * kptr allocated via bpf_obj_new
3786 		 */
3787 		field->kptr.dtor = NULL;
3788 		id = info->kptr.type_id;
3789 		kptr_btf = (struct btf *)btf;
3790 		goto found_dtor;
3791 	}
3792 	if (id < 0)
3793 		return id;
3794 
3795 	/* Find and stash the function pointer for the destruction function that
3796 	 * needs to be eventually invoked from the map free path.
3797 	 */
3798 	if (info->type == BPF_KPTR_REF) {
3799 		const struct btf_type *dtor_func;
3800 		const char *dtor_func_name;
3801 		unsigned long addr;
3802 		s32 dtor_btf_id;
3803 
3804 		/* This call also serves as a whitelist of allowed objects that
3805 		 * can be used as a referenced pointer and be stored in a map at
3806 		 * the same time.
3807 		 */
3808 		dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3809 		if (dtor_btf_id < 0) {
3810 			ret = dtor_btf_id;
3811 			goto end_btf;
3812 		}
3813 
3814 		dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3815 		if (!dtor_func) {
3816 			ret = -ENOENT;
3817 			goto end_btf;
3818 		}
3819 
3820 		if (btf_is_module(kptr_btf)) {
3821 			mod = btf_try_get_module(kptr_btf);
3822 			if (!mod) {
3823 				ret = -ENXIO;
3824 				goto end_btf;
3825 			}
3826 		}
3827 
3828 		/* We already verified dtor_func to be btf_type_is_func
3829 		 * in register_btf_id_dtor_kfuncs.
3830 		 */
3831 		dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3832 		addr = kallsyms_lookup_name(dtor_func_name);
3833 		if (!addr) {
3834 			ret = -EINVAL;
3835 			goto end_mod;
3836 		}
3837 		field->kptr.dtor = (void *)addr;
3838 	}
3839 
3840 found_dtor:
3841 	field->kptr.btf_id = id;
3842 	field->kptr.btf = kptr_btf;
3843 	field->kptr.module = mod;
3844 	return 0;
3845 end_mod:
3846 	module_put(mod);
3847 end_btf:
3848 	btf_put(kptr_btf);
3849 	return ret;
3850 }
3851 
btf_parse_graph_root(const struct btf * btf,struct btf_field * field,struct btf_field_info * info,const char * node_type_name,size_t node_type_align)3852 static int btf_parse_graph_root(const struct btf *btf,
3853 				struct btf_field *field,
3854 				struct btf_field_info *info,
3855 				const char *node_type_name,
3856 				size_t node_type_align)
3857 {
3858 	const struct btf_type *t, *n = NULL;
3859 	const struct btf_member *member;
3860 	u32 offset;
3861 	int i;
3862 
3863 	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3864 	/* We've already checked that value_btf_id is a struct type. We
3865 	 * just need to figure out the offset of the list_node, and
3866 	 * verify its type.
3867 	 */
3868 	for_each_member(i, t, member) {
3869 		if (strcmp(info->graph_root.node_name,
3870 			   __btf_name_by_offset(btf, member->name_off)))
3871 			continue;
3872 		/* Invalid BTF, two members with same name */
3873 		if (n)
3874 			return -EINVAL;
3875 		n = btf_type_by_id(btf, member->type);
3876 		if (!__btf_type_is_struct(n))
3877 			return -EINVAL;
3878 		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3879 			return -EINVAL;
3880 		offset = __btf_member_bit_offset(n, member);
3881 		if (offset % 8)
3882 			return -EINVAL;
3883 		offset /= 8;
3884 		if (offset % node_type_align)
3885 			return -EINVAL;
3886 
3887 		field->graph_root.btf = (struct btf *)btf;
3888 		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3889 		field->graph_root.node_offset = offset;
3890 	}
3891 	if (!n)
3892 		return -ENOENT;
3893 	return 0;
3894 }
3895 
btf_parse_list_head(const struct btf * btf,struct btf_field * field,struct btf_field_info * info)3896 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3897 			       struct btf_field_info *info)
3898 {
3899 	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3900 					    __alignof__(struct bpf_list_node));
3901 }
3902 
btf_parse_rb_root(const struct btf * btf,struct btf_field * field,struct btf_field_info * info)3903 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3904 			     struct btf_field_info *info)
3905 {
3906 	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3907 					    __alignof__(struct bpf_rb_node));
3908 }
3909 
btf_field_cmp(const void * _a,const void * _b,const void * priv)3910 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3911 {
3912 	const struct btf_field *a = (const struct btf_field *)_a;
3913 	const struct btf_field *b = (const struct btf_field *)_b;
3914 
3915 	if (a->offset < b->offset)
3916 		return -1;
3917 	else if (a->offset > b->offset)
3918 		return 1;
3919 	return 0;
3920 }
3921 
btf_parse_fields(const struct btf * btf,const struct btf_type * t,u32 field_mask,u32 value_size)3922 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3923 				    u32 field_mask, u32 value_size)
3924 {
3925 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3926 	u32 next_off = 0, field_type_size;
3927 	struct btf_record *rec;
3928 	int ret, i, cnt;
3929 
3930 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3931 	if (ret < 0)
3932 		return ERR_PTR(ret);
3933 	if (!ret)
3934 		return NULL;
3935 
3936 	cnt = ret;
3937 	/* This needs to be kzalloc to zero out padding and unused fields, see
3938 	 * comment in btf_record_equal.
3939 	 */
3940 	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3941 	if (!rec)
3942 		return ERR_PTR(-ENOMEM);
3943 
3944 	rec->spin_lock_off = -EINVAL;
3945 	rec->timer_off = -EINVAL;
3946 	rec->wq_off = -EINVAL;
3947 	rec->refcount_off = -EINVAL;
3948 	for (i = 0; i < cnt; i++) {
3949 		field_type_size = btf_field_type_size(info_arr[i].type);
3950 		if (info_arr[i].off + field_type_size > value_size) {
3951 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3952 			ret = -EFAULT;
3953 			goto end;
3954 		}
3955 		if (info_arr[i].off < next_off) {
3956 			ret = -EEXIST;
3957 			goto end;
3958 		}
3959 		next_off = info_arr[i].off + field_type_size;
3960 
3961 		rec->field_mask |= info_arr[i].type;
3962 		rec->fields[i].offset = info_arr[i].off;
3963 		rec->fields[i].type = info_arr[i].type;
3964 		rec->fields[i].size = field_type_size;
3965 
3966 		switch (info_arr[i].type) {
3967 		case BPF_SPIN_LOCK:
3968 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3969 			/* Cache offset for faster lookup at runtime */
3970 			rec->spin_lock_off = rec->fields[i].offset;
3971 			break;
3972 		case BPF_TIMER:
3973 			WARN_ON_ONCE(rec->timer_off >= 0);
3974 			/* Cache offset for faster lookup at runtime */
3975 			rec->timer_off = rec->fields[i].offset;
3976 			break;
3977 		case BPF_WORKQUEUE:
3978 			WARN_ON_ONCE(rec->wq_off >= 0);
3979 			/* Cache offset for faster lookup at runtime */
3980 			rec->wq_off = rec->fields[i].offset;
3981 			break;
3982 		case BPF_REFCOUNT:
3983 			WARN_ON_ONCE(rec->refcount_off >= 0);
3984 			/* Cache offset for faster lookup at runtime */
3985 			rec->refcount_off = rec->fields[i].offset;
3986 			break;
3987 		case BPF_KPTR_UNREF:
3988 		case BPF_KPTR_REF:
3989 		case BPF_KPTR_PERCPU:
3990 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3991 			if (ret < 0)
3992 				goto end;
3993 			break;
3994 		case BPF_LIST_HEAD:
3995 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3996 			if (ret < 0)
3997 				goto end;
3998 			break;
3999 		case BPF_RB_ROOT:
4000 			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
4001 			if (ret < 0)
4002 				goto end;
4003 			break;
4004 		case BPF_LIST_NODE:
4005 		case BPF_RB_NODE:
4006 			break;
4007 		default:
4008 			ret = -EFAULT;
4009 			goto end;
4010 		}
4011 		rec->cnt++;
4012 	}
4013 
4014 	/* bpf_{list_head, rb_node} require bpf_spin_lock */
4015 	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
4016 	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
4017 		ret = -EINVAL;
4018 		goto end;
4019 	}
4020 
4021 	if (rec->refcount_off < 0 &&
4022 	    btf_record_has_field(rec, BPF_LIST_NODE) &&
4023 	    btf_record_has_field(rec, BPF_RB_NODE)) {
4024 		ret = -EINVAL;
4025 		goto end;
4026 	}
4027 
4028 	sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
4029 	       NULL, rec);
4030 
4031 	return rec;
4032 end:
4033 	btf_record_free(rec);
4034 	return ERR_PTR(ret);
4035 }
4036 
btf_check_and_fixup_fields(const struct btf * btf,struct btf_record * rec)4037 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
4038 {
4039 	int i;
4040 
4041 	/* There are three types that signify ownership of some other type:
4042 	 *  kptr_ref, bpf_list_head, bpf_rb_root.
4043 	 * kptr_ref only supports storing kernel types, which can't store
4044 	 * references to program allocated local types.
4045 	 *
4046 	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
4047 	 * does not form cycles.
4048 	 */
4049 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT))
4050 		return 0;
4051 	for (i = 0; i < rec->cnt; i++) {
4052 		struct btf_struct_meta *meta;
4053 		u32 btf_id;
4054 
4055 		if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
4056 			continue;
4057 		btf_id = rec->fields[i].graph_root.value_btf_id;
4058 		meta = btf_find_struct_meta(btf, btf_id);
4059 		if (!meta)
4060 			return -EFAULT;
4061 		rec->fields[i].graph_root.value_rec = meta->record;
4062 
4063 		/* We need to set value_rec for all root types, but no need
4064 		 * to check ownership cycle for a type unless it's also a
4065 		 * node type.
4066 		 */
4067 		if (!(rec->field_mask & BPF_GRAPH_NODE))
4068 			continue;
4069 
4070 		/* We need to ensure ownership acyclicity among all types. The
4071 		 * proper way to do it would be to topologically sort all BTF
4072 		 * IDs based on the ownership edges, since there can be multiple
4073 		 * bpf_{list_head,rb_node} in a type. Instead, we use the
4074 		 * following resaoning:
4075 		 *
4076 		 * - A type can only be owned by another type in user BTF if it
4077 		 *   has a bpf_{list,rb}_node. Let's call these node types.
4078 		 * - A type can only _own_ another type in user BTF if it has a
4079 		 *   bpf_{list_head,rb_root}. Let's call these root types.
4080 		 *
4081 		 * We ensure that if a type is both a root and node, its
4082 		 * element types cannot be root types.
4083 		 *
4084 		 * To ensure acyclicity:
4085 		 *
4086 		 * When A is an root type but not a node, its ownership
4087 		 * chain can be:
4088 		 *	A -> B -> C
4089 		 * Where:
4090 		 * - A is an root, e.g. has bpf_rb_root.
4091 		 * - B is both a root and node, e.g. has bpf_rb_node and
4092 		 *   bpf_list_head.
4093 		 * - C is only an root, e.g. has bpf_list_node
4094 		 *
4095 		 * When A is both a root and node, some other type already
4096 		 * owns it in the BTF domain, hence it can not own
4097 		 * another root type through any of the ownership edges.
4098 		 *	A -> B
4099 		 * Where:
4100 		 * - A is both an root and node.
4101 		 * - B is only an node.
4102 		 */
4103 		if (meta->record->field_mask & BPF_GRAPH_ROOT)
4104 			return -ELOOP;
4105 	}
4106 	return 0;
4107 }
4108 
__btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4109 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
4110 			      u32 type_id, void *data, u8 bits_offset,
4111 			      struct btf_show *show)
4112 {
4113 	const struct btf_member *member;
4114 	void *safe_data;
4115 	u32 i;
4116 
4117 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
4118 	if (!safe_data)
4119 		return;
4120 
4121 	for_each_member(i, t, member) {
4122 		const struct btf_type *member_type = btf_type_by_id(btf,
4123 								member->type);
4124 		const struct btf_kind_operations *ops;
4125 		u32 member_offset, bitfield_size;
4126 		u32 bytes_offset;
4127 		u8 bits8_offset;
4128 
4129 		btf_show_start_member(show, member);
4130 
4131 		member_offset = __btf_member_bit_offset(t, member);
4132 		bitfield_size = __btf_member_bitfield_size(t, member);
4133 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
4134 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
4135 		if (bitfield_size) {
4136 			safe_data = btf_show_start_type(show, member_type,
4137 							member->type,
4138 							data + bytes_offset);
4139 			if (safe_data)
4140 				btf_bitfield_show(safe_data,
4141 						  bits8_offset,
4142 						  bitfield_size, show);
4143 			btf_show_end_type(show);
4144 		} else {
4145 			ops = btf_type_ops(member_type);
4146 			ops->show(btf, member_type, member->type,
4147 				  data + bytes_offset, bits8_offset, show);
4148 		}
4149 
4150 		btf_show_end_member(show);
4151 	}
4152 
4153 	btf_show_end_struct_type(show);
4154 }
4155 
btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4156 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4157 			    u32 type_id, void *data, u8 bits_offset,
4158 			    struct btf_show *show)
4159 {
4160 	const struct btf_member *m = show->state.member;
4161 
4162 	/*
4163 	 * First check if any members would be shown (are non-zero).
4164 	 * See comments above "struct btf_show" definition for more
4165 	 * details on how this works at a high-level.
4166 	 */
4167 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4168 		if (!show->state.depth_check) {
4169 			show->state.depth_check = show->state.depth + 1;
4170 			show->state.depth_to_show = 0;
4171 		}
4172 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4173 		/* Restore saved member data here */
4174 		show->state.member = m;
4175 		if (show->state.depth_check != show->state.depth + 1)
4176 			return;
4177 		show->state.depth_check = 0;
4178 
4179 		if (show->state.depth_to_show <= show->state.depth)
4180 			return;
4181 		/*
4182 		 * Reaching here indicates we have recursed and found
4183 		 * non-zero child values.
4184 		 */
4185 	}
4186 
4187 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4188 }
4189 
4190 static struct btf_kind_operations struct_ops = {
4191 	.check_meta = btf_struct_check_meta,
4192 	.resolve = btf_struct_resolve,
4193 	.check_member = btf_struct_check_member,
4194 	.check_kflag_member = btf_generic_check_kflag_member,
4195 	.log_details = btf_struct_log,
4196 	.show = btf_struct_show,
4197 };
4198 
btf_enum_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)4199 static int btf_enum_check_member(struct btf_verifier_env *env,
4200 				 const struct btf_type *struct_type,
4201 				 const struct btf_member *member,
4202 				 const struct btf_type *member_type)
4203 {
4204 	u32 struct_bits_off = member->offset;
4205 	u32 struct_size, bytes_offset;
4206 
4207 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4208 		btf_verifier_log_member(env, struct_type, member,
4209 					"Member is not byte aligned");
4210 		return -EINVAL;
4211 	}
4212 
4213 	struct_size = struct_type->size;
4214 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4215 	if (struct_size - bytes_offset < member_type->size) {
4216 		btf_verifier_log_member(env, struct_type, member,
4217 					"Member exceeds struct_size");
4218 		return -EINVAL;
4219 	}
4220 
4221 	return 0;
4222 }
4223 
btf_enum_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)4224 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4225 				       const struct btf_type *struct_type,
4226 				       const struct btf_member *member,
4227 				       const struct btf_type *member_type)
4228 {
4229 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4230 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4231 
4232 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4233 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4234 	if (!nr_bits) {
4235 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4236 			btf_verifier_log_member(env, struct_type, member,
4237 						"Member is not byte aligned");
4238 			return -EINVAL;
4239 		}
4240 
4241 		nr_bits = int_bitsize;
4242 	} else if (nr_bits > int_bitsize) {
4243 		btf_verifier_log_member(env, struct_type, member,
4244 					"Invalid member bitfield_size");
4245 		return -EINVAL;
4246 	}
4247 
4248 	struct_size = struct_type->size;
4249 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4250 	if (struct_size < bytes_end) {
4251 		btf_verifier_log_member(env, struct_type, member,
4252 					"Member exceeds struct_size");
4253 		return -EINVAL;
4254 	}
4255 
4256 	return 0;
4257 }
4258 
btf_enum_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4259 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4260 			       const struct btf_type *t,
4261 			       u32 meta_left)
4262 {
4263 	const struct btf_enum *enums = btf_type_enum(t);
4264 	struct btf *btf = env->btf;
4265 	const char *fmt_str;
4266 	u16 i, nr_enums;
4267 	u32 meta_needed;
4268 
4269 	nr_enums = btf_type_vlen(t);
4270 	meta_needed = nr_enums * sizeof(*enums);
4271 
4272 	if (meta_left < meta_needed) {
4273 		btf_verifier_log_basic(env, t,
4274 				       "meta_left:%u meta_needed:%u",
4275 				       meta_left, meta_needed);
4276 		return -EINVAL;
4277 	}
4278 
4279 	if (t->size > 8 || !is_power_of_2(t->size)) {
4280 		btf_verifier_log_type(env, t, "Unexpected size");
4281 		return -EINVAL;
4282 	}
4283 
4284 	/* enum type either no name or a valid one */
4285 	if (t->name_off &&
4286 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4287 		btf_verifier_log_type(env, t, "Invalid name");
4288 		return -EINVAL;
4289 	}
4290 
4291 	btf_verifier_log_type(env, t, NULL);
4292 
4293 	for (i = 0; i < nr_enums; i++) {
4294 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4295 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4296 					 enums[i].name_off);
4297 			return -EINVAL;
4298 		}
4299 
4300 		/* enum member must have a valid name */
4301 		if (!enums[i].name_off ||
4302 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4303 			btf_verifier_log_type(env, t, "Invalid name");
4304 			return -EINVAL;
4305 		}
4306 
4307 		if (env->log.level == BPF_LOG_KERNEL)
4308 			continue;
4309 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4310 		btf_verifier_log(env, fmt_str,
4311 				 __btf_name_by_offset(btf, enums[i].name_off),
4312 				 enums[i].val);
4313 	}
4314 
4315 	return meta_needed;
4316 }
4317 
btf_enum_log(struct btf_verifier_env * env,const struct btf_type * t)4318 static void btf_enum_log(struct btf_verifier_env *env,
4319 			 const struct btf_type *t)
4320 {
4321 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4322 }
4323 
btf_enum_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4324 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4325 			  u32 type_id, void *data, u8 bits_offset,
4326 			  struct btf_show *show)
4327 {
4328 	const struct btf_enum *enums = btf_type_enum(t);
4329 	u32 i, nr_enums = btf_type_vlen(t);
4330 	void *safe_data;
4331 	int v;
4332 
4333 	safe_data = btf_show_start_type(show, t, type_id, data);
4334 	if (!safe_data)
4335 		return;
4336 
4337 	v = *(int *)safe_data;
4338 
4339 	for (i = 0; i < nr_enums; i++) {
4340 		if (v != enums[i].val)
4341 			continue;
4342 
4343 		btf_show_type_value(show, "%s",
4344 				    __btf_name_by_offset(btf,
4345 							 enums[i].name_off));
4346 
4347 		btf_show_end_type(show);
4348 		return;
4349 	}
4350 
4351 	if (btf_type_kflag(t))
4352 		btf_show_type_value(show, "%d", v);
4353 	else
4354 		btf_show_type_value(show, "%u", v);
4355 	btf_show_end_type(show);
4356 }
4357 
4358 static struct btf_kind_operations enum_ops = {
4359 	.check_meta = btf_enum_check_meta,
4360 	.resolve = btf_df_resolve,
4361 	.check_member = btf_enum_check_member,
4362 	.check_kflag_member = btf_enum_check_kflag_member,
4363 	.log_details = btf_enum_log,
4364 	.show = btf_enum_show,
4365 };
4366 
btf_enum64_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4367 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4368 				 const struct btf_type *t,
4369 				 u32 meta_left)
4370 {
4371 	const struct btf_enum64 *enums = btf_type_enum64(t);
4372 	struct btf *btf = env->btf;
4373 	const char *fmt_str;
4374 	u16 i, nr_enums;
4375 	u32 meta_needed;
4376 
4377 	nr_enums = btf_type_vlen(t);
4378 	meta_needed = nr_enums * sizeof(*enums);
4379 
4380 	if (meta_left < meta_needed) {
4381 		btf_verifier_log_basic(env, t,
4382 				       "meta_left:%u meta_needed:%u",
4383 				       meta_left, meta_needed);
4384 		return -EINVAL;
4385 	}
4386 
4387 	if (t->size > 8 || !is_power_of_2(t->size)) {
4388 		btf_verifier_log_type(env, t, "Unexpected size");
4389 		return -EINVAL;
4390 	}
4391 
4392 	/* enum type either no name or a valid one */
4393 	if (t->name_off &&
4394 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4395 		btf_verifier_log_type(env, t, "Invalid name");
4396 		return -EINVAL;
4397 	}
4398 
4399 	btf_verifier_log_type(env, t, NULL);
4400 
4401 	for (i = 0; i < nr_enums; i++) {
4402 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4403 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4404 					 enums[i].name_off);
4405 			return -EINVAL;
4406 		}
4407 
4408 		/* enum member must have a valid name */
4409 		if (!enums[i].name_off ||
4410 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4411 			btf_verifier_log_type(env, t, "Invalid name");
4412 			return -EINVAL;
4413 		}
4414 
4415 		if (env->log.level == BPF_LOG_KERNEL)
4416 			continue;
4417 
4418 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4419 		btf_verifier_log(env, fmt_str,
4420 				 __btf_name_by_offset(btf, enums[i].name_off),
4421 				 btf_enum64_value(enums + i));
4422 	}
4423 
4424 	return meta_needed;
4425 }
4426 
btf_enum64_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4427 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4428 			    u32 type_id, void *data, u8 bits_offset,
4429 			    struct btf_show *show)
4430 {
4431 	const struct btf_enum64 *enums = btf_type_enum64(t);
4432 	u32 i, nr_enums = btf_type_vlen(t);
4433 	void *safe_data;
4434 	s64 v;
4435 
4436 	safe_data = btf_show_start_type(show, t, type_id, data);
4437 	if (!safe_data)
4438 		return;
4439 
4440 	v = *(u64 *)safe_data;
4441 
4442 	for (i = 0; i < nr_enums; i++) {
4443 		if (v != btf_enum64_value(enums + i))
4444 			continue;
4445 
4446 		btf_show_type_value(show, "%s",
4447 				    __btf_name_by_offset(btf,
4448 							 enums[i].name_off));
4449 
4450 		btf_show_end_type(show);
4451 		return;
4452 	}
4453 
4454 	if (btf_type_kflag(t))
4455 		btf_show_type_value(show, "%lld", v);
4456 	else
4457 		btf_show_type_value(show, "%llu", v);
4458 	btf_show_end_type(show);
4459 }
4460 
4461 static struct btf_kind_operations enum64_ops = {
4462 	.check_meta = btf_enum64_check_meta,
4463 	.resolve = btf_df_resolve,
4464 	.check_member = btf_enum_check_member,
4465 	.check_kflag_member = btf_enum_check_kflag_member,
4466 	.log_details = btf_enum_log,
4467 	.show = btf_enum64_show,
4468 };
4469 
btf_func_proto_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4470 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4471 				     const struct btf_type *t,
4472 				     u32 meta_left)
4473 {
4474 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4475 
4476 	if (meta_left < meta_needed) {
4477 		btf_verifier_log_basic(env, t,
4478 				       "meta_left:%u meta_needed:%u",
4479 				       meta_left, meta_needed);
4480 		return -EINVAL;
4481 	}
4482 
4483 	if (t->name_off) {
4484 		btf_verifier_log_type(env, t, "Invalid name");
4485 		return -EINVAL;
4486 	}
4487 
4488 	if (btf_type_kflag(t)) {
4489 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4490 		return -EINVAL;
4491 	}
4492 
4493 	btf_verifier_log_type(env, t, NULL);
4494 
4495 	return meta_needed;
4496 }
4497 
btf_func_proto_log(struct btf_verifier_env * env,const struct btf_type * t)4498 static void btf_func_proto_log(struct btf_verifier_env *env,
4499 			       const struct btf_type *t)
4500 {
4501 	const struct btf_param *args = (const struct btf_param *)(t + 1);
4502 	u16 nr_args = btf_type_vlen(t), i;
4503 
4504 	btf_verifier_log(env, "return=%u args=(", t->type);
4505 	if (!nr_args) {
4506 		btf_verifier_log(env, "void");
4507 		goto done;
4508 	}
4509 
4510 	if (nr_args == 1 && !args[0].type) {
4511 		/* Only one vararg */
4512 		btf_verifier_log(env, "vararg");
4513 		goto done;
4514 	}
4515 
4516 	btf_verifier_log(env, "%u %s", args[0].type,
4517 			 __btf_name_by_offset(env->btf,
4518 					      args[0].name_off));
4519 	for (i = 1; i < nr_args - 1; i++)
4520 		btf_verifier_log(env, ", %u %s", args[i].type,
4521 				 __btf_name_by_offset(env->btf,
4522 						      args[i].name_off));
4523 
4524 	if (nr_args > 1) {
4525 		const struct btf_param *last_arg = &args[nr_args - 1];
4526 
4527 		if (last_arg->type)
4528 			btf_verifier_log(env, ", %u %s", last_arg->type,
4529 					 __btf_name_by_offset(env->btf,
4530 							      last_arg->name_off));
4531 		else
4532 			btf_verifier_log(env, ", vararg");
4533 	}
4534 
4535 done:
4536 	btf_verifier_log(env, ")");
4537 }
4538 
4539 static struct btf_kind_operations func_proto_ops = {
4540 	.check_meta = btf_func_proto_check_meta,
4541 	.resolve = btf_df_resolve,
4542 	/*
4543 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4544 	 * a struct's member.
4545 	 *
4546 	 * It should be a function pointer instead.
4547 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4548 	 *
4549 	 * Hence, there is no btf_func_check_member().
4550 	 */
4551 	.check_member = btf_df_check_member,
4552 	.check_kflag_member = btf_df_check_kflag_member,
4553 	.log_details = btf_func_proto_log,
4554 	.show = btf_df_show,
4555 };
4556 
btf_func_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4557 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4558 			       const struct btf_type *t,
4559 			       u32 meta_left)
4560 {
4561 	if (!t->name_off ||
4562 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4563 		btf_verifier_log_type(env, t, "Invalid name");
4564 		return -EINVAL;
4565 	}
4566 
4567 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4568 		btf_verifier_log_type(env, t, "Invalid func linkage");
4569 		return -EINVAL;
4570 	}
4571 
4572 	if (btf_type_kflag(t)) {
4573 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4574 		return -EINVAL;
4575 	}
4576 
4577 	btf_verifier_log_type(env, t, NULL);
4578 
4579 	return 0;
4580 }
4581 
btf_func_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4582 static int btf_func_resolve(struct btf_verifier_env *env,
4583 			    const struct resolve_vertex *v)
4584 {
4585 	const struct btf_type *t = v->t;
4586 	u32 next_type_id = t->type;
4587 	int err;
4588 
4589 	err = btf_func_check(env, t);
4590 	if (err)
4591 		return err;
4592 
4593 	env_stack_pop_resolved(env, next_type_id, 0);
4594 	return 0;
4595 }
4596 
4597 static struct btf_kind_operations func_ops = {
4598 	.check_meta = btf_func_check_meta,
4599 	.resolve = btf_func_resolve,
4600 	.check_member = btf_df_check_member,
4601 	.check_kflag_member = btf_df_check_kflag_member,
4602 	.log_details = btf_ref_type_log,
4603 	.show = btf_df_show,
4604 };
4605 
btf_var_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4606 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4607 			      const struct btf_type *t,
4608 			      u32 meta_left)
4609 {
4610 	const struct btf_var *var;
4611 	u32 meta_needed = sizeof(*var);
4612 
4613 	if (meta_left < meta_needed) {
4614 		btf_verifier_log_basic(env, t,
4615 				       "meta_left:%u meta_needed:%u",
4616 				       meta_left, meta_needed);
4617 		return -EINVAL;
4618 	}
4619 
4620 	if (btf_type_vlen(t)) {
4621 		btf_verifier_log_type(env, t, "vlen != 0");
4622 		return -EINVAL;
4623 	}
4624 
4625 	if (btf_type_kflag(t)) {
4626 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4627 		return -EINVAL;
4628 	}
4629 
4630 	if (!t->name_off ||
4631 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4632 		btf_verifier_log_type(env, t, "Invalid name");
4633 		return -EINVAL;
4634 	}
4635 
4636 	/* A var cannot be in type void */
4637 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4638 		btf_verifier_log_type(env, t, "Invalid type_id");
4639 		return -EINVAL;
4640 	}
4641 
4642 	var = btf_type_var(t);
4643 	if (var->linkage != BTF_VAR_STATIC &&
4644 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4645 		btf_verifier_log_type(env, t, "Linkage not supported");
4646 		return -EINVAL;
4647 	}
4648 
4649 	btf_verifier_log_type(env, t, NULL);
4650 
4651 	return meta_needed;
4652 }
4653 
btf_var_log(struct btf_verifier_env * env,const struct btf_type * t)4654 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4655 {
4656 	const struct btf_var *var = btf_type_var(t);
4657 
4658 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4659 }
4660 
4661 static const struct btf_kind_operations var_ops = {
4662 	.check_meta		= btf_var_check_meta,
4663 	.resolve		= btf_var_resolve,
4664 	.check_member		= btf_df_check_member,
4665 	.check_kflag_member	= btf_df_check_kflag_member,
4666 	.log_details		= btf_var_log,
4667 	.show			= btf_var_show,
4668 };
4669 
btf_datasec_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4670 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4671 				  const struct btf_type *t,
4672 				  u32 meta_left)
4673 {
4674 	const struct btf_var_secinfo *vsi;
4675 	u64 last_vsi_end_off = 0, sum = 0;
4676 	u32 i, meta_needed;
4677 
4678 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4679 	if (meta_left < meta_needed) {
4680 		btf_verifier_log_basic(env, t,
4681 				       "meta_left:%u meta_needed:%u",
4682 				       meta_left, meta_needed);
4683 		return -EINVAL;
4684 	}
4685 
4686 	if (!t->size) {
4687 		btf_verifier_log_type(env, t, "size == 0");
4688 		return -EINVAL;
4689 	}
4690 
4691 	if (btf_type_kflag(t)) {
4692 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4693 		return -EINVAL;
4694 	}
4695 
4696 	if (!t->name_off ||
4697 	    !btf_name_valid_section(env->btf, t->name_off)) {
4698 		btf_verifier_log_type(env, t, "Invalid name");
4699 		return -EINVAL;
4700 	}
4701 
4702 	btf_verifier_log_type(env, t, NULL);
4703 
4704 	for_each_vsi(i, t, vsi) {
4705 		/* A var cannot be in type void */
4706 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4707 			btf_verifier_log_vsi(env, t, vsi,
4708 					     "Invalid type_id");
4709 			return -EINVAL;
4710 		}
4711 
4712 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4713 			btf_verifier_log_vsi(env, t, vsi,
4714 					     "Invalid offset");
4715 			return -EINVAL;
4716 		}
4717 
4718 		if (!vsi->size || vsi->size > t->size) {
4719 			btf_verifier_log_vsi(env, t, vsi,
4720 					     "Invalid size");
4721 			return -EINVAL;
4722 		}
4723 
4724 		last_vsi_end_off = vsi->offset + vsi->size;
4725 		if (last_vsi_end_off > t->size) {
4726 			btf_verifier_log_vsi(env, t, vsi,
4727 					     "Invalid offset+size");
4728 			return -EINVAL;
4729 		}
4730 
4731 		btf_verifier_log_vsi(env, t, vsi, NULL);
4732 		sum += vsi->size;
4733 	}
4734 
4735 	if (t->size < sum) {
4736 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4737 		return -EINVAL;
4738 	}
4739 
4740 	return meta_needed;
4741 }
4742 
btf_datasec_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4743 static int btf_datasec_resolve(struct btf_verifier_env *env,
4744 			       const struct resolve_vertex *v)
4745 {
4746 	const struct btf_var_secinfo *vsi;
4747 	struct btf *btf = env->btf;
4748 	u16 i;
4749 
4750 	env->resolve_mode = RESOLVE_TBD;
4751 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4752 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4753 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4754 								 var_type_id);
4755 		if (!var_type || !btf_type_is_var(var_type)) {
4756 			btf_verifier_log_vsi(env, v->t, vsi,
4757 					     "Not a VAR kind member");
4758 			return -EINVAL;
4759 		}
4760 
4761 		if (!env_type_is_resolve_sink(env, var_type) &&
4762 		    !env_type_is_resolved(env, var_type_id)) {
4763 			env_stack_set_next_member(env, i + 1);
4764 			return env_stack_push(env, var_type, var_type_id);
4765 		}
4766 
4767 		type_id = var_type->type;
4768 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4769 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4770 			return -EINVAL;
4771 		}
4772 
4773 		if (vsi->size < type_size) {
4774 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4775 			return -EINVAL;
4776 		}
4777 	}
4778 
4779 	env_stack_pop_resolved(env, 0, 0);
4780 	return 0;
4781 }
4782 
btf_datasec_log(struct btf_verifier_env * env,const struct btf_type * t)4783 static void btf_datasec_log(struct btf_verifier_env *env,
4784 			    const struct btf_type *t)
4785 {
4786 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4787 }
4788 
btf_datasec_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4789 static void btf_datasec_show(const struct btf *btf,
4790 			     const struct btf_type *t, u32 type_id,
4791 			     void *data, u8 bits_offset,
4792 			     struct btf_show *show)
4793 {
4794 	const struct btf_var_secinfo *vsi;
4795 	const struct btf_type *var;
4796 	u32 i;
4797 
4798 	if (!btf_show_start_type(show, t, type_id, data))
4799 		return;
4800 
4801 	btf_show_type_value(show, "section (\"%s\") = {",
4802 			    __btf_name_by_offset(btf, t->name_off));
4803 	for_each_vsi(i, t, vsi) {
4804 		var = btf_type_by_id(btf, vsi->type);
4805 		if (i)
4806 			btf_show(show, ",");
4807 		btf_type_ops(var)->show(btf, var, vsi->type,
4808 					data + vsi->offset, bits_offset, show);
4809 	}
4810 	btf_show_end_type(show);
4811 }
4812 
4813 static const struct btf_kind_operations datasec_ops = {
4814 	.check_meta		= btf_datasec_check_meta,
4815 	.resolve		= btf_datasec_resolve,
4816 	.check_member		= btf_df_check_member,
4817 	.check_kflag_member	= btf_df_check_kflag_member,
4818 	.log_details		= btf_datasec_log,
4819 	.show			= btf_datasec_show,
4820 };
4821 
btf_float_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4822 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4823 				const struct btf_type *t,
4824 				u32 meta_left)
4825 {
4826 	if (btf_type_vlen(t)) {
4827 		btf_verifier_log_type(env, t, "vlen != 0");
4828 		return -EINVAL;
4829 	}
4830 
4831 	if (btf_type_kflag(t)) {
4832 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4833 		return -EINVAL;
4834 	}
4835 
4836 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4837 	    t->size != 16) {
4838 		btf_verifier_log_type(env, t, "Invalid type_size");
4839 		return -EINVAL;
4840 	}
4841 
4842 	btf_verifier_log_type(env, t, NULL);
4843 
4844 	return 0;
4845 }
4846 
btf_float_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)4847 static int btf_float_check_member(struct btf_verifier_env *env,
4848 				  const struct btf_type *struct_type,
4849 				  const struct btf_member *member,
4850 				  const struct btf_type *member_type)
4851 {
4852 	u64 start_offset_bytes;
4853 	u64 end_offset_bytes;
4854 	u64 misalign_bits;
4855 	u64 align_bytes;
4856 	u64 align_bits;
4857 
4858 	/* Different architectures have different alignment requirements, so
4859 	 * here we check only for the reasonable minimum. This way we ensure
4860 	 * that types after CO-RE can pass the kernel BTF verifier.
4861 	 */
4862 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4863 	align_bits = align_bytes * BITS_PER_BYTE;
4864 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4865 	if (misalign_bits) {
4866 		btf_verifier_log_member(env, struct_type, member,
4867 					"Member is not properly aligned");
4868 		return -EINVAL;
4869 	}
4870 
4871 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4872 	end_offset_bytes = start_offset_bytes + member_type->size;
4873 	if (end_offset_bytes > struct_type->size) {
4874 		btf_verifier_log_member(env, struct_type, member,
4875 					"Member exceeds struct_size");
4876 		return -EINVAL;
4877 	}
4878 
4879 	return 0;
4880 }
4881 
btf_float_log(struct btf_verifier_env * env,const struct btf_type * t)4882 static void btf_float_log(struct btf_verifier_env *env,
4883 			  const struct btf_type *t)
4884 {
4885 	btf_verifier_log(env, "size=%u", t->size);
4886 }
4887 
4888 static const struct btf_kind_operations float_ops = {
4889 	.check_meta = btf_float_check_meta,
4890 	.resolve = btf_df_resolve,
4891 	.check_member = btf_float_check_member,
4892 	.check_kflag_member = btf_generic_check_kflag_member,
4893 	.log_details = btf_float_log,
4894 	.show = btf_df_show,
4895 };
4896 
btf_decl_tag_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4897 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4898 			      const struct btf_type *t,
4899 			      u32 meta_left)
4900 {
4901 	const struct btf_decl_tag *tag;
4902 	u32 meta_needed = sizeof(*tag);
4903 	s32 component_idx;
4904 	const char *value;
4905 
4906 	if (meta_left < meta_needed) {
4907 		btf_verifier_log_basic(env, t,
4908 				       "meta_left:%u meta_needed:%u",
4909 				       meta_left, meta_needed);
4910 		return -EINVAL;
4911 	}
4912 
4913 	value = btf_name_by_offset(env->btf, t->name_off);
4914 	if (!value || !value[0]) {
4915 		btf_verifier_log_type(env, t, "Invalid value");
4916 		return -EINVAL;
4917 	}
4918 
4919 	if (btf_type_vlen(t)) {
4920 		btf_verifier_log_type(env, t, "vlen != 0");
4921 		return -EINVAL;
4922 	}
4923 
4924 	if (btf_type_kflag(t)) {
4925 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4926 		return -EINVAL;
4927 	}
4928 
4929 	component_idx = btf_type_decl_tag(t)->component_idx;
4930 	if (component_idx < -1) {
4931 		btf_verifier_log_type(env, t, "Invalid component_idx");
4932 		return -EINVAL;
4933 	}
4934 
4935 	btf_verifier_log_type(env, t, NULL);
4936 
4937 	return meta_needed;
4938 }
4939 
btf_decl_tag_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4940 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4941 			   const struct resolve_vertex *v)
4942 {
4943 	const struct btf_type *next_type;
4944 	const struct btf_type *t = v->t;
4945 	u32 next_type_id = t->type;
4946 	struct btf *btf = env->btf;
4947 	s32 component_idx;
4948 	u32 vlen;
4949 
4950 	next_type = btf_type_by_id(btf, next_type_id);
4951 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4952 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4953 		return -EINVAL;
4954 	}
4955 
4956 	if (!env_type_is_resolve_sink(env, next_type) &&
4957 	    !env_type_is_resolved(env, next_type_id))
4958 		return env_stack_push(env, next_type, next_type_id);
4959 
4960 	component_idx = btf_type_decl_tag(t)->component_idx;
4961 	if (component_idx != -1) {
4962 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4963 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4964 			return -EINVAL;
4965 		}
4966 
4967 		if (btf_type_is_struct(next_type)) {
4968 			vlen = btf_type_vlen(next_type);
4969 		} else {
4970 			/* next_type should be a function */
4971 			next_type = btf_type_by_id(btf, next_type->type);
4972 			vlen = btf_type_vlen(next_type);
4973 		}
4974 
4975 		if ((u32)component_idx >= vlen) {
4976 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4977 			return -EINVAL;
4978 		}
4979 	}
4980 
4981 	env_stack_pop_resolved(env, next_type_id, 0);
4982 
4983 	return 0;
4984 }
4985 
btf_decl_tag_log(struct btf_verifier_env * env,const struct btf_type * t)4986 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4987 {
4988 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4989 			 btf_type_decl_tag(t)->component_idx);
4990 }
4991 
4992 static const struct btf_kind_operations decl_tag_ops = {
4993 	.check_meta = btf_decl_tag_check_meta,
4994 	.resolve = btf_decl_tag_resolve,
4995 	.check_member = btf_df_check_member,
4996 	.check_kflag_member = btf_df_check_kflag_member,
4997 	.log_details = btf_decl_tag_log,
4998 	.show = btf_df_show,
4999 };
5000 
btf_func_proto_check(struct btf_verifier_env * env,const struct btf_type * t)5001 static int btf_func_proto_check(struct btf_verifier_env *env,
5002 				const struct btf_type *t)
5003 {
5004 	const struct btf_type *ret_type;
5005 	const struct btf_param *args;
5006 	const struct btf *btf;
5007 	u16 nr_args, i;
5008 	int err;
5009 
5010 	btf = env->btf;
5011 	args = (const struct btf_param *)(t + 1);
5012 	nr_args = btf_type_vlen(t);
5013 
5014 	/* Check func return type which could be "void" (t->type == 0) */
5015 	if (t->type) {
5016 		u32 ret_type_id = t->type;
5017 
5018 		ret_type = btf_type_by_id(btf, ret_type_id);
5019 		if (!ret_type) {
5020 			btf_verifier_log_type(env, t, "Invalid return type");
5021 			return -EINVAL;
5022 		}
5023 
5024 		if (btf_type_is_resolve_source_only(ret_type)) {
5025 			btf_verifier_log_type(env, t, "Invalid return type");
5026 			return -EINVAL;
5027 		}
5028 
5029 		if (btf_type_needs_resolve(ret_type) &&
5030 		    !env_type_is_resolved(env, ret_type_id)) {
5031 			err = btf_resolve(env, ret_type, ret_type_id);
5032 			if (err)
5033 				return err;
5034 		}
5035 
5036 		/* Ensure the return type is a type that has a size */
5037 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
5038 			btf_verifier_log_type(env, t, "Invalid return type");
5039 			return -EINVAL;
5040 		}
5041 	}
5042 
5043 	if (!nr_args)
5044 		return 0;
5045 
5046 	/* Last func arg type_id could be 0 if it is a vararg */
5047 	if (!args[nr_args - 1].type) {
5048 		if (args[nr_args - 1].name_off) {
5049 			btf_verifier_log_type(env, t, "Invalid arg#%u",
5050 					      nr_args);
5051 			return -EINVAL;
5052 		}
5053 		nr_args--;
5054 	}
5055 
5056 	for (i = 0; i < nr_args; i++) {
5057 		const struct btf_type *arg_type;
5058 		u32 arg_type_id;
5059 
5060 		arg_type_id = args[i].type;
5061 		arg_type = btf_type_by_id(btf, arg_type_id);
5062 		if (!arg_type) {
5063 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5064 			return -EINVAL;
5065 		}
5066 
5067 		if (btf_type_is_resolve_source_only(arg_type)) {
5068 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5069 			return -EINVAL;
5070 		}
5071 
5072 		if (args[i].name_off &&
5073 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
5074 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
5075 			btf_verifier_log_type(env, t,
5076 					      "Invalid arg#%u", i + 1);
5077 			return -EINVAL;
5078 		}
5079 
5080 		if (btf_type_needs_resolve(arg_type) &&
5081 		    !env_type_is_resolved(env, arg_type_id)) {
5082 			err = btf_resolve(env, arg_type, arg_type_id);
5083 			if (err)
5084 				return err;
5085 		}
5086 
5087 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
5088 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5089 			return -EINVAL;
5090 		}
5091 	}
5092 
5093 	return 0;
5094 }
5095 
btf_func_check(struct btf_verifier_env * env,const struct btf_type * t)5096 static int btf_func_check(struct btf_verifier_env *env,
5097 			  const struct btf_type *t)
5098 {
5099 	const struct btf_type *proto_type;
5100 	const struct btf_param *args;
5101 	const struct btf *btf;
5102 	u16 nr_args, i;
5103 
5104 	btf = env->btf;
5105 	proto_type = btf_type_by_id(btf, t->type);
5106 
5107 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
5108 		btf_verifier_log_type(env, t, "Invalid type_id");
5109 		return -EINVAL;
5110 	}
5111 
5112 	args = (const struct btf_param *)(proto_type + 1);
5113 	nr_args = btf_type_vlen(proto_type);
5114 	for (i = 0; i < nr_args; i++) {
5115 		if (!args[i].name_off && args[i].type) {
5116 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5117 			return -EINVAL;
5118 		}
5119 	}
5120 
5121 	return 0;
5122 }
5123 
5124 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
5125 	[BTF_KIND_INT] = &int_ops,
5126 	[BTF_KIND_PTR] = &ptr_ops,
5127 	[BTF_KIND_ARRAY] = &array_ops,
5128 	[BTF_KIND_STRUCT] = &struct_ops,
5129 	[BTF_KIND_UNION] = &struct_ops,
5130 	[BTF_KIND_ENUM] = &enum_ops,
5131 	[BTF_KIND_FWD] = &fwd_ops,
5132 	[BTF_KIND_TYPEDEF] = &modifier_ops,
5133 	[BTF_KIND_VOLATILE] = &modifier_ops,
5134 	[BTF_KIND_CONST] = &modifier_ops,
5135 	[BTF_KIND_RESTRICT] = &modifier_ops,
5136 	[BTF_KIND_FUNC] = &func_ops,
5137 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
5138 	[BTF_KIND_VAR] = &var_ops,
5139 	[BTF_KIND_DATASEC] = &datasec_ops,
5140 	[BTF_KIND_FLOAT] = &float_ops,
5141 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
5142 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
5143 	[BTF_KIND_ENUM64] = &enum64_ops,
5144 };
5145 
btf_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)5146 static s32 btf_check_meta(struct btf_verifier_env *env,
5147 			  const struct btf_type *t,
5148 			  u32 meta_left)
5149 {
5150 	u32 saved_meta_left = meta_left;
5151 	s32 var_meta_size;
5152 
5153 	if (meta_left < sizeof(*t)) {
5154 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
5155 				 env->log_type_id, meta_left, sizeof(*t));
5156 		return -EINVAL;
5157 	}
5158 	meta_left -= sizeof(*t);
5159 
5160 	if (t->info & ~BTF_INFO_MASK) {
5161 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
5162 				 env->log_type_id, t->info);
5163 		return -EINVAL;
5164 	}
5165 
5166 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5167 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5168 		btf_verifier_log(env, "[%u] Invalid kind:%u",
5169 				 env->log_type_id, BTF_INFO_KIND(t->info));
5170 		return -EINVAL;
5171 	}
5172 
5173 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
5174 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5175 				 env->log_type_id, t->name_off);
5176 		return -EINVAL;
5177 	}
5178 
5179 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5180 	if (var_meta_size < 0)
5181 		return var_meta_size;
5182 
5183 	meta_left -= var_meta_size;
5184 
5185 	return saved_meta_left - meta_left;
5186 }
5187 
btf_check_all_metas(struct btf_verifier_env * env)5188 static int btf_check_all_metas(struct btf_verifier_env *env)
5189 {
5190 	struct btf *btf = env->btf;
5191 	struct btf_header *hdr;
5192 	void *cur, *end;
5193 
5194 	hdr = &btf->hdr;
5195 	cur = btf->nohdr_data + hdr->type_off;
5196 	end = cur + hdr->type_len;
5197 
5198 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
5199 	while (cur < end) {
5200 		struct btf_type *t = cur;
5201 		s32 meta_size;
5202 
5203 		meta_size = btf_check_meta(env, t, end - cur);
5204 		if (meta_size < 0)
5205 			return meta_size;
5206 
5207 		btf_add_type(env, t);
5208 		cur += meta_size;
5209 		env->log_type_id++;
5210 	}
5211 
5212 	return 0;
5213 }
5214 
btf_resolve_valid(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)5215 static bool btf_resolve_valid(struct btf_verifier_env *env,
5216 			      const struct btf_type *t,
5217 			      u32 type_id)
5218 {
5219 	struct btf *btf = env->btf;
5220 
5221 	if (!env_type_is_resolved(env, type_id))
5222 		return false;
5223 
5224 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5225 		return !btf_resolved_type_id(btf, type_id) &&
5226 		       !btf_resolved_type_size(btf, type_id);
5227 
5228 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5229 		return btf_resolved_type_id(btf, type_id) &&
5230 		       !btf_resolved_type_size(btf, type_id);
5231 
5232 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5233 	    btf_type_is_var(t)) {
5234 		t = btf_type_id_resolve(btf, &type_id);
5235 		return t &&
5236 		       !btf_type_is_modifier(t) &&
5237 		       !btf_type_is_var(t) &&
5238 		       !btf_type_is_datasec(t);
5239 	}
5240 
5241 	if (btf_type_is_array(t)) {
5242 		const struct btf_array *array = btf_type_array(t);
5243 		const struct btf_type *elem_type;
5244 		u32 elem_type_id = array->type;
5245 		u32 elem_size;
5246 
5247 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5248 		return elem_type && !btf_type_is_modifier(elem_type) &&
5249 			(array->nelems * elem_size ==
5250 			 btf_resolved_type_size(btf, type_id));
5251 	}
5252 
5253 	return false;
5254 }
5255 
btf_resolve(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)5256 static int btf_resolve(struct btf_verifier_env *env,
5257 		       const struct btf_type *t, u32 type_id)
5258 {
5259 	u32 save_log_type_id = env->log_type_id;
5260 	const struct resolve_vertex *v;
5261 	int err = 0;
5262 
5263 	env->resolve_mode = RESOLVE_TBD;
5264 	env_stack_push(env, t, type_id);
5265 	while (!err && (v = env_stack_peak(env))) {
5266 		env->log_type_id = v->type_id;
5267 		err = btf_type_ops(v->t)->resolve(env, v);
5268 	}
5269 
5270 	env->log_type_id = type_id;
5271 	if (err == -E2BIG) {
5272 		btf_verifier_log_type(env, t,
5273 				      "Exceeded max resolving depth:%u",
5274 				      MAX_RESOLVE_DEPTH);
5275 	} else if (err == -EEXIST) {
5276 		btf_verifier_log_type(env, t, "Loop detected");
5277 	}
5278 
5279 	/* Final sanity check */
5280 	if (!err && !btf_resolve_valid(env, t, type_id)) {
5281 		btf_verifier_log_type(env, t, "Invalid resolve state");
5282 		err = -EINVAL;
5283 	}
5284 
5285 	env->log_type_id = save_log_type_id;
5286 	return err;
5287 }
5288 
btf_check_all_types(struct btf_verifier_env * env)5289 static int btf_check_all_types(struct btf_verifier_env *env)
5290 {
5291 	struct btf *btf = env->btf;
5292 	const struct btf_type *t;
5293 	u32 type_id, i;
5294 	int err;
5295 
5296 	err = env_resolve_init(env);
5297 	if (err)
5298 		return err;
5299 
5300 	env->phase++;
5301 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5302 		type_id = btf->start_id + i;
5303 		t = btf_type_by_id(btf, type_id);
5304 
5305 		env->log_type_id = type_id;
5306 		if (btf_type_needs_resolve(t) &&
5307 		    !env_type_is_resolved(env, type_id)) {
5308 			err = btf_resolve(env, t, type_id);
5309 			if (err)
5310 				return err;
5311 		}
5312 
5313 		if (btf_type_is_func_proto(t)) {
5314 			err = btf_func_proto_check(env, t);
5315 			if (err)
5316 				return err;
5317 		}
5318 	}
5319 
5320 	return 0;
5321 }
5322 
btf_parse_type_sec(struct btf_verifier_env * env)5323 static int btf_parse_type_sec(struct btf_verifier_env *env)
5324 {
5325 	const struct btf_header *hdr = &env->btf->hdr;
5326 	int err;
5327 
5328 	/* Type section must align to 4 bytes */
5329 	if (hdr->type_off & (sizeof(u32) - 1)) {
5330 		btf_verifier_log(env, "Unaligned type_off");
5331 		return -EINVAL;
5332 	}
5333 
5334 	if (!env->btf->base_btf && !hdr->type_len) {
5335 		btf_verifier_log(env, "No type found");
5336 		return -EINVAL;
5337 	}
5338 
5339 	err = btf_check_all_metas(env);
5340 	if (err)
5341 		return err;
5342 
5343 	return btf_check_all_types(env);
5344 }
5345 
btf_parse_str_sec(struct btf_verifier_env * env)5346 static int btf_parse_str_sec(struct btf_verifier_env *env)
5347 {
5348 	const struct btf_header *hdr;
5349 	struct btf *btf = env->btf;
5350 	const char *start, *end;
5351 
5352 	hdr = &btf->hdr;
5353 	start = btf->nohdr_data + hdr->str_off;
5354 	end = start + hdr->str_len;
5355 
5356 	if (end != btf->data + btf->data_size) {
5357 		btf_verifier_log(env, "String section is not at the end");
5358 		return -EINVAL;
5359 	}
5360 
5361 	btf->strings = start;
5362 
5363 	if (btf->base_btf && !hdr->str_len)
5364 		return 0;
5365 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5366 		btf_verifier_log(env, "Invalid string section");
5367 		return -EINVAL;
5368 	}
5369 	if (!btf->base_btf && start[0]) {
5370 		btf_verifier_log(env, "Invalid string section");
5371 		return -EINVAL;
5372 	}
5373 
5374 	return 0;
5375 }
5376 
5377 static const size_t btf_sec_info_offset[] = {
5378 	offsetof(struct btf_header, type_off),
5379 	offsetof(struct btf_header, str_off),
5380 };
5381 
btf_sec_info_cmp(const void * a,const void * b)5382 static int btf_sec_info_cmp(const void *a, const void *b)
5383 {
5384 	const struct btf_sec_info *x = a;
5385 	const struct btf_sec_info *y = b;
5386 
5387 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5388 }
5389 
btf_check_sec_info(struct btf_verifier_env * env,u32 btf_data_size)5390 static int btf_check_sec_info(struct btf_verifier_env *env,
5391 			      u32 btf_data_size)
5392 {
5393 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5394 	u32 total, expected_total, i;
5395 	const struct btf_header *hdr;
5396 	const struct btf *btf;
5397 
5398 	btf = env->btf;
5399 	hdr = &btf->hdr;
5400 
5401 	/* Populate the secs from hdr */
5402 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5403 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5404 						   btf_sec_info_offset[i]);
5405 
5406 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5407 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5408 
5409 	/* Check for gaps and overlap among sections */
5410 	total = 0;
5411 	expected_total = btf_data_size - hdr->hdr_len;
5412 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5413 		if (expected_total < secs[i].off) {
5414 			btf_verifier_log(env, "Invalid section offset");
5415 			return -EINVAL;
5416 		}
5417 		if (total < secs[i].off) {
5418 			/* gap */
5419 			btf_verifier_log(env, "Unsupported section found");
5420 			return -EINVAL;
5421 		}
5422 		if (total > secs[i].off) {
5423 			btf_verifier_log(env, "Section overlap found");
5424 			return -EINVAL;
5425 		}
5426 		if (expected_total - total < secs[i].len) {
5427 			btf_verifier_log(env,
5428 					 "Total section length too long");
5429 			return -EINVAL;
5430 		}
5431 		total += secs[i].len;
5432 	}
5433 
5434 	/* There is data other than hdr and known sections */
5435 	if (expected_total != total) {
5436 		btf_verifier_log(env, "Unsupported section found");
5437 		return -EINVAL;
5438 	}
5439 
5440 	return 0;
5441 }
5442 
btf_parse_hdr(struct btf_verifier_env * env)5443 static int btf_parse_hdr(struct btf_verifier_env *env)
5444 {
5445 	u32 hdr_len, hdr_copy, btf_data_size;
5446 	const struct btf_header *hdr;
5447 	struct btf *btf;
5448 
5449 	btf = env->btf;
5450 	btf_data_size = btf->data_size;
5451 
5452 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5453 		btf_verifier_log(env, "hdr_len not found");
5454 		return -EINVAL;
5455 	}
5456 
5457 	hdr = btf->data;
5458 	hdr_len = hdr->hdr_len;
5459 	if (btf_data_size < hdr_len) {
5460 		btf_verifier_log(env, "btf_header not found");
5461 		return -EINVAL;
5462 	}
5463 
5464 	/* Ensure the unsupported header fields are zero */
5465 	if (hdr_len > sizeof(btf->hdr)) {
5466 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5467 		u8 *end = btf->data + hdr_len;
5468 
5469 		for (; expected_zero < end; expected_zero++) {
5470 			if (*expected_zero) {
5471 				btf_verifier_log(env, "Unsupported btf_header");
5472 				return -E2BIG;
5473 			}
5474 		}
5475 	}
5476 
5477 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5478 	memcpy(&btf->hdr, btf->data, hdr_copy);
5479 
5480 	hdr = &btf->hdr;
5481 
5482 	btf_verifier_log_hdr(env, btf_data_size);
5483 
5484 	if (hdr->magic != BTF_MAGIC) {
5485 		btf_verifier_log(env, "Invalid magic");
5486 		return -EINVAL;
5487 	}
5488 
5489 	if (hdr->version != BTF_VERSION) {
5490 		btf_verifier_log(env, "Unsupported version");
5491 		return -ENOTSUPP;
5492 	}
5493 
5494 	if (hdr->flags) {
5495 		btf_verifier_log(env, "Unsupported flags");
5496 		return -ENOTSUPP;
5497 	}
5498 
5499 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5500 		btf_verifier_log(env, "No data");
5501 		return -EINVAL;
5502 	}
5503 
5504 	return btf_check_sec_info(env, btf_data_size);
5505 }
5506 
5507 static const char *alloc_obj_fields[] = {
5508 	"bpf_spin_lock",
5509 	"bpf_list_head",
5510 	"bpf_list_node",
5511 	"bpf_rb_root",
5512 	"bpf_rb_node",
5513 	"bpf_refcount",
5514 };
5515 
5516 static struct btf_struct_metas *
btf_parse_struct_metas(struct bpf_verifier_log * log,struct btf * btf)5517 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5518 {
5519 	struct btf_struct_metas *tab = NULL;
5520 	struct btf_id_set *aof;
5521 	int i, n, id, ret;
5522 
5523 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5524 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5525 
5526 	aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN);
5527 	if (!aof)
5528 		return ERR_PTR(-ENOMEM);
5529 	aof->cnt = 0;
5530 
5531 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5532 		/* Try to find whether this special type exists in user BTF, and
5533 		 * if so remember its ID so we can easily find it among members
5534 		 * of structs that we iterate in the next loop.
5535 		 */
5536 		struct btf_id_set *new_aof;
5537 
5538 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5539 		if (id < 0)
5540 			continue;
5541 
5542 		new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]),
5543 				   GFP_KERNEL | __GFP_NOWARN);
5544 		if (!new_aof) {
5545 			ret = -ENOMEM;
5546 			goto free_aof;
5547 		}
5548 		aof = new_aof;
5549 		aof->ids[aof->cnt++] = id;
5550 	}
5551 
5552 	n = btf_nr_types(btf);
5553 	for (i = 1; i < n; i++) {
5554 		/* Try to find if there are kptrs in user BTF and remember their ID */
5555 		struct btf_id_set *new_aof;
5556 		struct btf_field_info tmp;
5557 		const struct btf_type *t;
5558 
5559 		t = btf_type_by_id(btf, i);
5560 		if (!t) {
5561 			ret = -EINVAL;
5562 			goto free_aof;
5563 		}
5564 
5565 		ret = btf_find_kptr(btf, t, 0, 0, &tmp);
5566 		if (ret != BTF_FIELD_FOUND)
5567 			continue;
5568 
5569 		new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]),
5570 				   GFP_KERNEL | __GFP_NOWARN);
5571 		if (!new_aof) {
5572 			ret = -ENOMEM;
5573 			goto free_aof;
5574 		}
5575 		aof = new_aof;
5576 		aof->ids[aof->cnt++] = i;
5577 	}
5578 
5579 	if (!aof->cnt) {
5580 		kfree(aof);
5581 		return NULL;
5582 	}
5583 	sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL);
5584 
5585 	for (i = 1; i < n; i++) {
5586 		struct btf_struct_metas *new_tab;
5587 		const struct btf_member *member;
5588 		struct btf_struct_meta *type;
5589 		struct btf_record *record;
5590 		const struct btf_type *t;
5591 		int j, tab_cnt;
5592 
5593 		t = btf_type_by_id(btf, i);
5594 		if (!__btf_type_is_struct(t))
5595 			continue;
5596 
5597 		cond_resched();
5598 
5599 		for_each_member(j, t, member) {
5600 			if (btf_id_set_contains(aof, member->type))
5601 				goto parse;
5602 		}
5603 		continue;
5604 	parse:
5605 		tab_cnt = tab ? tab->cnt : 0;
5606 		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5607 				   GFP_KERNEL | __GFP_NOWARN);
5608 		if (!new_tab) {
5609 			ret = -ENOMEM;
5610 			goto free;
5611 		}
5612 		if (!tab)
5613 			new_tab->cnt = 0;
5614 		tab = new_tab;
5615 
5616 		type = &tab->types[tab->cnt];
5617 		type->btf_id = i;
5618 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5619 						  BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT |
5620 						  BPF_KPTR, t->size);
5621 		/* The record cannot be unset, treat it as an error if so */
5622 		if (IS_ERR_OR_NULL(record)) {
5623 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5624 			goto free;
5625 		}
5626 		type->record = record;
5627 		tab->cnt++;
5628 	}
5629 	kfree(aof);
5630 	return tab;
5631 free:
5632 	btf_struct_metas_free(tab);
5633 free_aof:
5634 	kfree(aof);
5635 	return ERR_PTR(ret);
5636 }
5637 
btf_find_struct_meta(const struct btf * btf,u32 btf_id)5638 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5639 {
5640 	struct btf_struct_metas *tab;
5641 
5642 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5643 	tab = btf->struct_meta_tab;
5644 	if (!tab)
5645 		return NULL;
5646 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5647 }
5648 
btf_check_type_tags(struct btf_verifier_env * env,struct btf * btf,int start_id)5649 static int btf_check_type_tags(struct btf_verifier_env *env,
5650 			       struct btf *btf, int start_id)
5651 {
5652 	int i, n, good_id = start_id - 1;
5653 	bool in_tags;
5654 
5655 	n = btf_nr_types(btf);
5656 	for (i = start_id; i < n; i++) {
5657 		const struct btf_type *t;
5658 		int chain_limit = 32;
5659 		u32 cur_id = i;
5660 
5661 		t = btf_type_by_id(btf, i);
5662 		if (!t)
5663 			return -EINVAL;
5664 		if (!btf_type_is_modifier(t))
5665 			continue;
5666 
5667 		cond_resched();
5668 
5669 		in_tags = btf_type_is_type_tag(t);
5670 		while (btf_type_is_modifier(t)) {
5671 			if (!chain_limit--) {
5672 				btf_verifier_log(env, "Max chain length or cycle detected");
5673 				return -ELOOP;
5674 			}
5675 			if (btf_type_is_type_tag(t)) {
5676 				if (!in_tags) {
5677 					btf_verifier_log(env, "Type tags don't precede modifiers");
5678 					return -EINVAL;
5679 				}
5680 			} else if (in_tags) {
5681 				in_tags = false;
5682 			}
5683 			if (cur_id <= good_id)
5684 				break;
5685 			/* Move to next type */
5686 			cur_id = t->type;
5687 			t = btf_type_by_id(btf, cur_id);
5688 			if (!t)
5689 				return -EINVAL;
5690 		}
5691 		good_id = i;
5692 	}
5693 	return 0;
5694 }
5695 
finalize_log(struct bpf_verifier_log * log,bpfptr_t uattr,u32 uattr_size)5696 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5697 {
5698 	u32 log_true_size;
5699 	int err;
5700 
5701 	err = bpf_vlog_finalize(log, &log_true_size);
5702 
5703 	if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5704 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5705 				  &log_true_size, sizeof(log_true_size)))
5706 		err = -EFAULT;
5707 
5708 	return err;
5709 }
5710 
btf_parse(const union bpf_attr * attr,bpfptr_t uattr,u32 uattr_size)5711 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5712 {
5713 	bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5714 	char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5715 	struct btf_struct_metas *struct_meta_tab;
5716 	struct btf_verifier_env *env = NULL;
5717 	struct btf *btf = NULL;
5718 	u8 *data;
5719 	int err, ret;
5720 
5721 	if (attr->btf_size > BTF_MAX_SIZE)
5722 		return ERR_PTR(-E2BIG);
5723 
5724 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5725 	if (!env)
5726 		return ERR_PTR(-ENOMEM);
5727 
5728 	/* user could have requested verbose verifier output
5729 	 * and supplied buffer to store the verification trace
5730 	 */
5731 	err = bpf_vlog_init(&env->log, attr->btf_log_level,
5732 			    log_ubuf, attr->btf_log_size);
5733 	if (err)
5734 		goto errout_free;
5735 
5736 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5737 	if (!btf) {
5738 		err = -ENOMEM;
5739 		goto errout;
5740 	}
5741 	env->btf = btf;
5742 
5743 	data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5744 	if (!data) {
5745 		err = -ENOMEM;
5746 		goto errout;
5747 	}
5748 
5749 	btf->data = data;
5750 	btf->data_size = attr->btf_size;
5751 
5752 	if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5753 		err = -EFAULT;
5754 		goto errout;
5755 	}
5756 
5757 	err = btf_parse_hdr(env);
5758 	if (err)
5759 		goto errout;
5760 
5761 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5762 
5763 	err = btf_parse_str_sec(env);
5764 	if (err)
5765 		goto errout;
5766 
5767 	err = btf_parse_type_sec(env);
5768 	if (err)
5769 		goto errout;
5770 
5771 	err = btf_check_type_tags(env, btf, 1);
5772 	if (err)
5773 		goto errout;
5774 
5775 	struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5776 	if (IS_ERR(struct_meta_tab)) {
5777 		err = PTR_ERR(struct_meta_tab);
5778 		goto errout;
5779 	}
5780 	btf->struct_meta_tab = struct_meta_tab;
5781 
5782 	if (struct_meta_tab) {
5783 		int i;
5784 
5785 		for (i = 0; i < struct_meta_tab->cnt; i++) {
5786 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5787 			if (err < 0)
5788 				goto errout_meta;
5789 		}
5790 	}
5791 
5792 	err = finalize_log(&env->log, uattr, uattr_size);
5793 	if (err)
5794 		goto errout_free;
5795 
5796 	btf_verifier_env_free(env);
5797 	refcount_set(&btf->refcnt, 1);
5798 	return btf;
5799 
5800 errout_meta:
5801 	btf_free_struct_meta_tab(btf);
5802 errout:
5803 	/* overwrite err with -ENOSPC or -EFAULT */
5804 	ret = finalize_log(&env->log, uattr, uattr_size);
5805 	if (ret)
5806 		err = ret;
5807 errout_free:
5808 	btf_verifier_env_free(env);
5809 	if (btf)
5810 		btf_free(btf);
5811 	return ERR_PTR(err);
5812 }
5813 
5814 extern char __start_BTF[];
5815 extern char __stop_BTF[];
5816 extern struct btf *btf_vmlinux;
5817 
5818 #define BPF_MAP_TYPE(_id, _ops)
5819 #define BPF_LINK_TYPE(_id, _name)
5820 static union {
5821 	struct bpf_ctx_convert {
5822 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5823 	prog_ctx_type _id##_prog; \
5824 	kern_ctx_type _id##_kern;
5825 #include <linux/bpf_types.h>
5826 #undef BPF_PROG_TYPE
5827 	} *__t;
5828 	/* 't' is written once under lock. Read many times. */
5829 	const struct btf_type *t;
5830 } bpf_ctx_convert;
5831 enum {
5832 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5833 	__ctx_convert##_id,
5834 #include <linux/bpf_types.h>
5835 #undef BPF_PROG_TYPE
5836 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5837 };
5838 static u8 bpf_ctx_convert_map[] = {
5839 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5840 	[_id] = __ctx_convert##_id,
5841 #include <linux/bpf_types.h>
5842 #undef BPF_PROG_TYPE
5843 	0, /* avoid empty array */
5844 };
5845 #undef BPF_MAP_TYPE
5846 #undef BPF_LINK_TYPE
5847 
find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)5848 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
5849 {
5850 	const struct btf_type *conv_struct;
5851 	const struct btf_member *ctx_type;
5852 
5853 	conv_struct = bpf_ctx_convert.t;
5854 	if (!conv_struct)
5855 		return NULL;
5856 	/* prog_type is valid bpf program type. No need for bounds check. */
5857 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5858 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5859 	 * Like 'struct __sk_buff'
5860 	 */
5861 	return btf_type_by_id(btf_vmlinux, ctx_type->type);
5862 }
5863 
find_kern_ctx_type_id(enum bpf_prog_type prog_type)5864 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
5865 {
5866 	const struct btf_type *conv_struct;
5867 	const struct btf_member *ctx_type;
5868 
5869 	conv_struct = bpf_ctx_convert.t;
5870 	if (!conv_struct)
5871 		return -EFAULT;
5872 	/* prog_type is valid bpf program type. No need for bounds check. */
5873 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5874 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5875 	 * Like 'struct sk_buff'
5876 	 */
5877 	return ctx_type->type;
5878 }
5879 
btf_is_projection_of(const char * pname,const char * tname)5880 bool btf_is_projection_of(const char *pname, const char *tname)
5881 {
5882 	if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5883 		return true;
5884 	if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5885 		return true;
5886 	return false;
5887 }
5888 
btf_is_prog_ctx_type(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)5889 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5890 			  const struct btf_type *t, enum bpf_prog_type prog_type,
5891 			  int arg)
5892 {
5893 	const struct btf_type *ctx_type;
5894 	const char *tname, *ctx_tname;
5895 
5896 	t = btf_type_by_id(btf, t->type);
5897 
5898 	/* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
5899 	 * check before we skip all the typedef below.
5900 	 */
5901 	if (prog_type == BPF_PROG_TYPE_KPROBE) {
5902 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5903 			t = btf_type_by_id(btf, t->type);
5904 
5905 		if (btf_type_is_typedef(t)) {
5906 			tname = btf_name_by_offset(btf, t->name_off);
5907 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5908 				return true;
5909 		}
5910 	}
5911 
5912 	while (btf_type_is_modifier(t))
5913 		t = btf_type_by_id(btf, t->type);
5914 	if (!btf_type_is_struct(t)) {
5915 		/* Only pointer to struct is supported for now.
5916 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5917 		 * is not supported yet.
5918 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5919 		 */
5920 		return false;
5921 	}
5922 	tname = btf_name_by_offset(btf, t->name_off);
5923 	if (!tname) {
5924 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5925 		return false;
5926 	}
5927 
5928 	ctx_type = find_canonical_prog_ctx_type(prog_type);
5929 	if (!ctx_type) {
5930 		bpf_log(log, "btf_vmlinux is malformed\n");
5931 		/* should not happen */
5932 		return false;
5933 	}
5934 again:
5935 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5936 	if (!ctx_tname) {
5937 		/* should not happen */
5938 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5939 		return false;
5940 	}
5941 	/* program types without named context types work only with arg:ctx tag */
5942 	if (ctx_tname[0] == '\0')
5943 		return false;
5944 	/* only compare that prog's ctx type name is the same as
5945 	 * kernel expects. No need to compare field by field.
5946 	 * It's ok for bpf prog to do:
5947 	 * struct __sk_buff {};
5948 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5949 	 * { // no fields of skb are ever used }
5950 	 */
5951 	if (btf_is_projection_of(ctx_tname, tname))
5952 		return true;
5953 	if (strcmp(ctx_tname, tname)) {
5954 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5955 		 * underlying struct and check name again
5956 		 */
5957 		if (!btf_type_is_modifier(ctx_type))
5958 			return false;
5959 		while (btf_type_is_modifier(ctx_type))
5960 			ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5961 		goto again;
5962 	}
5963 	return true;
5964 }
5965 
5966 /* forward declarations for arch-specific underlying types of
5967  * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
5968  * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
5969  * works correctly with __builtin_types_compatible_p() on respective
5970  * architectures
5971  */
5972 struct user_regs_struct;
5973 struct user_pt_regs;
5974 
btf_validate_prog_ctx_type(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int arg,enum bpf_prog_type prog_type,enum bpf_attach_type attach_type)5975 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5976 				      const struct btf_type *t, int arg,
5977 				      enum bpf_prog_type prog_type,
5978 				      enum bpf_attach_type attach_type)
5979 {
5980 	const struct btf_type *ctx_type;
5981 	const char *tname, *ctx_tname;
5982 
5983 	if (!btf_is_ptr(t)) {
5984 		bpf_log(log, "arg#%d type isn't a pointer\n", arg);
5985 		return -EINVAL;
5986 	}
5987 	t = btf_type_by_id(btf, t->type);
5988 
5989 	/* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
5990 	if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
5991 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5992 			t = btf_type_by_id(btf, t->type);
5993 
5994 		if (btf_type_is_typedef(t)) {
5995 			tname = btf_name_by_offset(btf, t->name_off);
5996 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5997 				return 0;
5998 		}
5999 	}
6000 
6001 	/* all other program types don't use typedefs for context type */
6002 	while (btf_type_is_modifier(t))
6003 		t = btf_type_by_id(btf, t->type);
6004 
6005 	/* `void *ctx __arg_ctx` is always valid */
6006 	if (btf_type_is_void(t))
6007 		return 0;
6008 
6009 	tname = btf_name_by_offset(btf, t->name_off);
6010 	if (str_is_empty(tname)) {
6011 		bpf_log(log, "arg#%d type doesn't have a name\n", arg);
6012 		return -EINVAL;
6013 	}
6014 
6015 	/* special cases */
6016 	switch (prog_type) {
6017 	case BPF_PROG_TYPE_KPROBE:
6018 		if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6019 			return 0;
6020 		break;
6021 	case BPF_PROG_TYPE_PERF_EVENT:
6022 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6023 		    __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6024 			return 0;
6025 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6026 		    __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6027 			return 0;
6028 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6029 		    __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6030 			return 0;
6031 		break;
6032 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6033 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6034 		/* allow u64* as ctx */
6035 		if (btf_is_int(t) && t->size == 8)
6036 			return 0;
6037 		break;
6038 	case BPF_PROG_TYPE_TRACING:
6039 		switch (attach_type) {
6040 		case BPF_TRACE_RAW_TP:
6041 			/* tp_btf program is TRACING, so need special case here */
6042 			if (__btf_type_is_struct(t) &&
6043 			    strcmp(tname, "bpf_raw_tracepoint_args") == 0)
6044 				return 0;
6045 			/* allow u64* as ctx */
6046 			if (btf_is_int(t) && t->size == 8)
6047 				return 0;
6048 			break;
6049 		case BPF_TRACE_ITER:
6050 			/* allow struct bpf_iter__xxx types only */
6051 			if (__btf_type_is_struct(t) &&
6052 			    strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
6053 				return 0;
6054 			break;
6055 		case BPF_TRACE_FENTRY:
6056 		case BPF_TRACE_FEXIT:
6057 		case BPF_MODIFY_RETURN:
6058 			/* allow u64* as ctx */
6059 			if (btf_is_int(t) && t->size == 8)
6060 				return 0;
6061 			break;
6062 		default:
6063 			break;
6064 		}
6065 		break;
6066 	case BPF_PROG_TYPE_LSM:
6067 	case BPF_PROG_TYPE_STRUCT_OPS:
6068 		/* allow u64* as ctx */
6069 		if (btf_is_int(t) && t->size == 8)
6070 			return 0;
6071 		break;
6072 	case BPF_PROG_TYPE_TRACEPOINT:
6073 	case BPF_PROG_TYPE_SYSCALL:
6074 	case BPF_PROG_TYPE_EXT:
6075 		return 0; /* anything goes */
6076 	default:
6077 		break;
6078 	}
6079 
6080 	ctx_type = find_canonical_prog_ctx_type(prog_type);
6081 	if (!ctx_type) {
6082 		/* should not happen */
6083 		bpf_log(log, "btf_vmlinux is malformed\n");
6084 		return -EINVAL;
6085 	}
6086 
6087 	/* resolve typedefs and check that underlying structs are matching as well */
6088 	while (btf_type_is_modifier(ctx_type))
6089 		ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
6090 
6091 	/* if program type doesn't have distinctly named struct type for
6092 	 * context, then __arg_ctx argument can only be `void *`, which we
6093 	 * already checked above
6094 	 */
6095 	if (!__btf_type_is_struct(ctx_type)) {
6096 		bpf_log(log, "arg#%d should be void pointer\n", arg);
6097 		return -EINVAL;
6098 	}
6099 
6100 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
6101 	if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
6102 		bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
6103 		return -EINVAL;
6104 	}
6105 
6106 	return 0;
6107 }
6108 
btf_translate_to_vmlinux(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)6109 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
6110 				     struct btf *btf,
6111 				     const struct btf_type *t,
6112 				     enum bpf_prog_type prog_type,
6113 				     int arg)
6114 {
6115 	if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
6116 		return -ENOENT;
6117 	return find_kern_ctx_type_id(prog_type);
6118 }
6119 
get_kern_ctx_btf_id(struct bpf_verifier_log * log,enum bpf_prog_type prog_type)6120 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
6121 {
6122 	const struct btf_member *kctx_member;
6123 	const struct btf_type *conv_struct;
6124 	const struct btf_type *kctx_type;
6125 	u32 kctx_type_id;
6126 
6127 	conv_struct = bpf_ctx_convert.t;
6128 	/* get member for kernel ctx type */
6129 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
6130 	kctx_type_id = kctx_member->type;
6131 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
6132 	if (!btf_type_is_struct(kctx_type)) {
6133 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
6134 		return -EINVAL;
6135 	}
6136 
6137 	return kctx_type_id;
6138 }
6139 
6140 BTF_ID_LIST(bpf_ctx_convert_btf_id)
BTF_ID(struct,bpf_ctx_convert)6141 BTF_ID(struct, bpf_ctx_convert)
6142 
6143 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name,
6144 				  void *data, unsigned int data_size)
6145 {
6146 	struct btf *btf = NULL;
6147 	int err;
6148 
6149 	if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF))
6150 		return ERR_PTR(-ENOENT);
6151 
6152 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6153 	if (!btf) {
6154 		err = -ENOMEM;
6155 		goto errout;
6156 	}
6157 	env->btf = btf;
6158 
6159 	btf->data = data;
6160 	btf->data_size = data_size;
6161 	btf->kernel_btf = true;
6162 	snprintf(btf->name, sizeof(btf->name), "%s", name);
6163 
6164 	err = btf_parse_hdr(env);
6165 	if (err)
6166 		goto errout;
6167 
6168 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6169 
6170 	err = btf_parse_str_sec(env);
6171 	if (err)
6172 		goto errout;
6173 
6174 	err = btf_check_all_metas(env);
6175 	if (err)
6176 		goto errout;
6177 
6178 	err = btf_check_type_tags(env, btf, 1);
6179 	if (err)
6180 		goto errout;
6181 
6182 	refcount_set(&btf->refcnt, 1);
6183 
6184 	return btf;
6185 
6186 errout:
6187 	if (btf) {
6188 		kvfree(btf->types);
6189 		kfree(btf);
6190 	}
6191 	return ERR_PTR(err);
6192 }
6193 
btf_parse_vmlinux(void)6194 struct btf *btf_parse_vmlinux(void)
6195 {
6196 	struct btf_verifier_env *env = NULL;
6197 	struct bpf_verifier_log *log;
6198 	struct btf *btf;
6199 	int err;
6200 
6201 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6202 	if (!env)
6203 		return ERR_PTR(-ENOMEM);
6204 
6205 	log = &env->log;
6206 	log->level = BPF_LOG_KERNEL;
6207 	btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF);
6208 	if (IS_ERR(btf))
6209 		goto err_out;
6210 
6211 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
6212 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
6213 	err = btf_alloc_id(btf);
6214 	if (err) {
6215 		btf_free(btf);
6216 		btf = ERR_PTR(err);
6217 	}
6218 err_out:
6219 	btf_verifier_env_free(env);
6220 	return btf;
6221 }
6222 
6223 /* If .BTF_ids section was created with distilled base BTF, both base and
6224  * split BTF ids will need to be mapped to actual base/split ids for
6225  * BTF now that it has been relocated.
6226  */
btf_relocate_id(const struct btf * btf,__u32 id)6227 static __u32 btf_relocate_id(const struct btf *btf, __u32 id)
6228 {
6229 	if (!btf->base_btf || !btf->base_id_map)
6230 		return id;
6231 	return btf->base_id_map[id];
6232 }
6233 
6234 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6235 
btf_parse_module(const char * module_name,const void * data,unsigned int data_size,void * base_data,unsigned int base_data_size)6236 static struct btf *btf_parse_module(const char *module_name, const void *data,
6237 				    unsigned int data_size, void *base_data,
6238 				    unsigned int base_data_size)
6239 {
6240 	struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL;
6241 	struct btf_verifier_env *env = NULL;
6242 	struct bpf_verifier_log *log;
6243 	int err = 0;
6244 
6245 	vmlinux_btf = bpf_get_btf_vmlinux();
6246 	if (IS_ERR(vmlinux_btf))
6247 		return vmlinux_btf;
6248 	if (!vmlinux_btf)
6249 		return ERR_PTR(-EINVAL);
6250 
6251 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6252 	if (!env)
6253 		return ERR_PTR(-ENOMEM);
6254 
6255 	log = &env->log;
6256 	log->level = BPF_LOG_KERNEL;
6257 
6258 	if (base_data) {
6259 		base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size);
6260 		if (IS_ERR(base_btf)) {
6261 			err = PTR_ERR(base_btf);
6262 			goto errout;
6263 		}
6264 	} else {
6265 		base_btf = vmlinux_btf;
6266 	}
6267 
6268 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6269 	if (!btf) {
6270 		err = -ENOMEM;
6271 		goto errout;
6272 	}
6273 	env->btf = btf;
6274 
6275 	btf->base_btf = base_btf;
6276 	btf->start_id = base_btf->nr_types;
6277 	btf->start_str_off = base_btf->hdr.str_len;
6278 	btf->kernel_btf = true;
6279 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
6280 
6281 	btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN);
6282 	if (!btf->data) {
6283 		err = -ENOMEM;
6284 		goto errout;
6285 	}
6286 	btf->data_size = data_size;
6287 
6288 	err = btf_parse_hdr(env);
6289 	if (err)
6290 		goto errout;
6291 
6292 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6293 
6294 	err = btf_parse_str_sec(env);
6295 	if (err)
6296 		goto errout;
6297 
6298 	err = btf_check_all_metas(env);
6299 	if (err)
6300 		goto errout;
6301 
6302 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6303 	if (err)
6304 		goto errout;
6305 
6306 	if (base_btf != vmlinux_btf) {
6307 		err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map);
6308 		if (err)
6309 			goto errout;
6310 		btf_free(base_btf);
6311 		base_btf = vmlinux_btf;
6312 	}
6313 
6314 	btf_verifier_env_free(env);
6315 	refcount_set(&btf->refcnt, 1);
6316 	return btf;
6317 
6318 errout:
6319 	btf_verifier_env_free(env);
6320 	if (!IS_ERR(base_btf) && base_btf != vmlinux_btf)
6321 		btf_free(base_btf);
6322 	if (btf) {
6323 		kvfree(btf->data);
6324 		kvfree(btf->types);
6325 		kfree(btf);
6326 	}
6327 	return ERR_PTR(err);
6328 }
6329 
6330 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6331 
bpf_prog_get_target_btf(const struct bpf_prog * prog)6332 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6333 {
6334 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6335 
6336 	if (tgt_prog)
6337 		return tgt_prog->aux->btf;
6338 	else
6339 		return prog->aux->attach_btf;
6340 }
6341 
is_int_ptr(struct btf * btf,const struct btf_type * t)6342 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
6343 {
6344 	/* skip modifiers */
6345 	t = btf_type_skip_modifiers(btf, t->type, NULL);
6346 
6347 	return btf_type_is_int(t);
6348 }
6349 
get_ctx_arg_idx(struct btf * btf,const struct btf_type * func_proto,int off)6350 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6351 			   int off)
6352 {
6353 	const struct btf_param *args;
6354 	const struct btf_type *t;
6355 	u32 offset = 0, nr_args;
6356 	int i;
6357 
6358 	if (!func_proto)
6359 		return off / 8;
6360 
6361 	nr_args = btf_type_vlen(func_proto);
6362 	args = (const struct btf_param *)(func_proto + 1);
6363 	for (i = 0; i < nr_args; i++) {
6364 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6365 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6366 		if (off < offset)
6367 			return i;
6368 	}
6369 
6370 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6371 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6372 	if (off < offset)
6373 		return nr_args;
6374 
6375 	return nr_args + 1;
6376 }
6377 
prog_args_trusted(const struct bpf_prog * prog)6378 static bool prog_args_trusted(const struct bpf_prog *prog)
6379 {
6380 	enum bpf_attach_type atype = prog->expected_attach_type;
6381 
6382 	switch (prog->type) {
6383 	case BPF_PROG_TYPE_TRACING:
6384 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6385 	case BPF_PROG_TYPE_LSM:
6386 		return bpf_lsm_is_trusted(prog);
6387 	case BPF_PROG_TYPE_STRUCT_OPS:
6388 		return true;
6389 	default:
6390 		return false;
6391 	}
6392 }
6393 
btf_ctx_arg_offset(const struct btf * btf,const struct btf_type * func_proto,u32 arg_no)6394 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
6395 		       u32 arg_no)
6396 {
6397 	const struct btf_param *args;
6398 	const struct btf_type *t;
6399 	int off = 0, i;
6400 	u32 sz;
6401 
6402 	args = btf_params(func_proto);
6403 	for (i = 0; i < arg_no; i++) {
6404 		t = btf_type_by_id(btf, args[i].type);
6405 		t = btf_resolve_size(btf, t, &sz);
6406 		if (IS_ERR(t))
6407 			return PTR_ERR(t);
6408 		off += roundup(sz, 8);
6409 	}
6410 
6411 	return off;
6412 }
6413 
6414 struct bpf_raw_tp_null_args {
6415 	const char *func;
6416 	u64 mask;
6417 };
6418 
6419 static const struct bpf_raw_tp_null_args raw_tp_null_args[] = {
6420 	/* sched */
6421 	{ "sched_pi_setprio", 0x10 },
6422 	/* ... from sched_numa_pair_template event class */
6423 	{ "sched_stick_numa", 0x100 },
6424 	{ "sched_swap_numa", 0x100 },
6425 	/* afs */
6426 	{ "afs_make_fs_call", 0x10 },
6427 	{ "afs_make_fs_calli", 0x10 },
6428 	{ "afs_make_fs_call1", 0x10 },
6429 	{ "afs_make_fs_call2", 0x10 },
6430 	{ "afs_protocol_error", 0x1 },
6431 	{ "afs_flock_ev", 0x10 },
6432 	/* cachefiles */
6433 	{ "cachefiles_lookup", 0x1 | 0x200 },
6434 	{ "cachefiles_unlink", 0x1 },
6435 	{ "cachefiles_rename", 0x1 },
6436 	{ "cachefiles_prep_read", 0x1 },
6437 	{ "cachefiles_mark_active", 0x1 },
6438 	{ "cachefiles_mark_failed", 0x1 },
6439 	{ "cachefiles_mark_inactive", 0x1 },
6440 	{ "cachefiles_vfs_error", 0x1 },
6441 	{ "cachefiles_io_error", 0x1 },
6442 	{ "cachefiles_ondemand_open", 0x1 },
6443 	{ "cachefiles_ondemand_copen", 0x1 },
6444 	{ "cachefiles_ondemand_close", 0x1 },
6445 	{ "cachefiles_ondemand_read", 0x1 },
6446 	{ "cachefiles_ondemand_cread", 0x1 },
6447 	{ "cachefiles_ondemand_fd_write", 0x1 },
6448 	{ "cachefiles_ondemand_fd_release", 0x1 },
6449 	/* ext4, from ext4__mballoc event class */
6450 	{ "ext4_mballoc_discard", 0x10 },
6451 	{ "ext4_mballoc_free", 0x10 },
6452 	/* fib */
6453 	{ "fib_table_lookup", 0x100 },
6454 	/* filelock */
6455 	/* ... from filelock_lock event class */
6456 	{ "posix_lock_inode", 0x10 },
6457 	{ "fcntl_setlk", 0x10 },
6458 	{ "locks_remove_posix", 0x10 },
6459 	{ "flock_lock_inode", 0x10 },
6460 	/* ... from filelock_lease event class */
6461 	{ "break_lease_noblock", 0x10 },
6462 	{ "break_lease_block", 0x10 },
6463 	{ "break_lease_unblock", 0x10 },
6464 	{ "generic_delete_lease", 0x10 },
6465 	{ "time_out_leases", 0x10 },
6466 	/* host1x */
6467 	{ "host1x_cdma_push_gather", 0x10000 },
6468 	/* huge_memory */
6469 	{ "mm_khugepaged_scan_pmd", 0x10 },
6470 	{ "mm_collapse_huge_page_isolate", 0x1 },
6471 	{ "mm_khugepaged_scan_file", 0x10 },
6472 	{ "mm_khugepaged_collapse_file", 0x10 },
6473 	/* kmem */
6474 	{ "mm_page_alloc", 0x1 },
6475 	{ "mm_page_pcpu_drain", 0x1 },
6476 	/* .. from mm_page event class */
6477 	{ "mm_page_alloc_zone_locked", 0x1 },
6478 	/* netfs */
6479 	{ "netfs_failure", 0x10 },
6480 	/* power */
6481 	{ "device_pm_callback_start", 0x10 },
6482 	/* qdisc */
6483 	{ "qdisc_dequeue", 0x1000 },
6484 	/* rxrpc */
6485 	{ "rxrpc_recvdata", 0x1 },
6486 	{ "rxrpc_resend", 0x10 },
6487 	/* skb */
6488 	{"kfree_skb", 0x1000},
6489 	/* sunrpc */
6490 	{ "xs_stream_read_data", 0x1 },
6491 	/* ... from xprt_cong_event event class */
6492 	{ "xprt_reserve_cong", 0x10 },
6493 	{ "xprt_release_cong", 0x10 },
6494 	{ "xprt_get_cong", 0x10 },
6495 	{ "xprt_put_cong", 0x10 },
6496 	/* tcp */
6497 	{ "tcp_send_reset", 0x11 },
6498 	/* tegra_apb_dma */
6499 	{ "tegra_dma_tx_status", 0x100 },
6500 	/* timer_migration */
6501 	{ "tmigr_update_events", 0x1 },
6502 	/* writeback, from writeback_folio_template event class */
6503 	{ "writeback_dirty_folio", 0x10 },
6504 	{ "folio_wait_writeback", 0x10 },
6505 	/* rdma */
6506 	{ "mr_integ_alloc", 0x2000 },
6507 	/* bpf_testmod */
6508 	{ "bpf_testmod_test_read", 0x0 },
6509 };
6510 
btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6511 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6512 		    const struct bpf_prog *prog,
6513 		    struct bpf_insn_access_aux *info)
6514 {
6515 	const struct btf_type *t = prog->aux->attach_func_proto;
6516 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6517 	struct btf *btf = bpf_prog_get_target_btf(prog);
6518 	const char *tname = prog->aux->attach_func_name;
6519 	struct bpf_verifier_log *log = info->log;
6520 	const struct btf_param *args;
6521 	bool ptr_err_raw_tp = false;
6522 	const char *tag_value;
6523 	u32 nr_args, arg;
6524 	int i, ret;
6525 
6526 	if (off % 8) {
6527 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6528 			tname, off);
6529 		return false;
6530 	}
6531 	arg = get_ctx_arg_idx(btf, t, off);
6532 	args = (const struct btf_param *)(t + 1);
6533 	/* if (t == NULL) Fall back to default BPF prog with
6534 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6535 	 */
6536 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6537 	if (prog->aux->attach_btf_trace) {
6538 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
6539 		args++;
6540 		nr_args--;
6541 	}
6542 
6543 	if (arg > nr_args) {
6544 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6545 			tname, arg + 1);
6546 		return false;
6547 	}
6548 
6549 	if (arg == nr_args) {
6550 		switch (prog->expected_attach_type) {
6551 		case BPF_LSM_MAC:
6552 			/* mark we are accessing the return value */
6553 			info->is_retval = true;
6554 			fallthrough;
6555 		case BPF_LSM_CGROUP:
6556 		case BPF_TRACE_FEXIT:
6557 			/* When LSM programs are attached to void LSM hooks
6558 			 * they use FEXIT trampolines and when attached to
6559 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
6560 			 *
6561 			 * While the LSM programs are BPF_MODIFY_RETURN-like
6562 			 * the check:
6563 			 *
6564 			 *	if (ret_type != 'int')
6565 			 *		return -EINVAL;
6566 			 *
6567 			 * is _not_ done here. This is still safe as LSM hooks
6568 			 * have only void and int return types.
6569 			 */
6570 			if (!t)
6571 				return true;
6572 			t = btf_type_by_id(btf, t->type);
6573 			break;
6574 		case BPF_MODIFY_RETURN:
6575 			/* For now the BPF_MODIFY_RETURN can only be attached to
6576 			 * functions that return an int.
6577 			 */
6578 			if (!t)
6579 				return false;
6580 
6581 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6582 			if (!btf_type_is_small_int(t)) {
6583 				bpf_log(log,
6584 					"ret type %s not allowed for fmod_ret\n",
6585 					btf_type_str(t));
6586 				return false;
6587 			}
6588 			break;
6589 		default:
6590 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6591 				tname, arg + 1);
6592 			return false;
6593 		}
6594 	} else {
6595 		if (!t)
6596 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6597 			return true;
6598 		t = btf_type_by_id(btf, args[arg].type);
6599 	}
6600 
6601 	/* skip modifiers */
6602 	while (btf_type_is_modifier(t))
6603 		t = btf_type_by_id(btf, t->type);
6604 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6605 		/* accessing a scalar */
6606 		return true;
6607 	if (!btf_type_is_ptr(t)) {
6608 		bpf_log(log,
6609 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6610 			tname, arg,
6611 			__btf_name_by_offset(btf, t->name_off),
6612 			btf_type_str(t));
6613 		return false;
6614 	}
6615 
6616 	if (size != sizeof(u64)) {
6617 		bpf_log(log, "func '%s' size %d must be 8\n",
6618 			tname, size);
6619 		return false;
6620 	}
6621 
6622 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6623 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6624 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6625 		u32 type, flag;
6626 
6627 		type = base_type(ctx_arg_info->reg_type);
6628 		flag = type_flag(ctx_arg_info->reg_type);
6629 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6630 		    (flag & PTR_MAYBE_NULL)) {
6631 			info->reg_type = ctx_arg_info->reg_type;
6632 			return true;
6633 		}
6634 	}
6635 
6636 	if (t->type == 0)
6637 		/* This is a pointer to void.
6638 		 * It is the same as scalar from the verifier safety pov.
6639 		 * No further pointer walking is allowed.
6640 		 */
6641 		return true;
6642 
6643 	if (is_int_ptr(btf, t))
6644 		return true;
6645 
6646 	/* this is a pointer to another type */
6647 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6648 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6649 
6650 		if (ctx_arg_info->offset == off) {
6651 			if (!ctx_arg_info->btf_id) {
6652 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6653 				return false;
6654 			}
6655 
6656 			info->reg_type = ctx_arg_info->reg_type;
6657 			info->btf = ctx_arg_info->btf ? : btf_vmlinux;
6658 			info->btf_id = ctx_arg_info->btf_id;
6659 			return true;
6660 		}
6661 	}
6662 
6663 	info->reg_type = PTR_TO_BTF_ID;
6664 	if (prog_args_trusted(prog))
6665 		info->reg_type |= PTR_TRUSTED;
6666 
6667 	if (btf_param_match_suffix(btf, &args[arg], "__nullable"))
6668 		info->reg_type |= PTR_MAYBE_NULL;
6669 
6670 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
6671 		struct btf *btf = prog->aux->attach_btf;
6672 		const struct btf_type *t;
6673 		const char *tname;
6674 
6675 		/* BTF lookups cannot fail, return false on error */
6676 		t = btf_type_by_id(btf, prog->aux->attach_btf_id);
6677 		if (!t)
6678 			return false;
6679 		tname = btf_name_by_offset(btf, t->name_off);
6680 		if (!tname)
6681 			return false;
6682 		/* Checked by bpf_check_attach_target */
6683 		tname += sizeof("btf_trace_") - 1;
6684 		for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) {
6685 			/* Is this a func with potential NULL args? */
6686 			if (strcmp(tname, raw_tp_null_args[i].func))
6687 				continue;
6688 			if (raw_tp_null_args[i].mask & (0x1ULL << (arg * 4)))
6689 				info->reg_type |= PTR_MAYBE_NULL;
6690 			/* Is the current arg IS_ERR? */
6691 			if (raw_tp_null_args[i].mask & (0x2ULL << (arg * 4)))
6692 				ptr_err_raw_tp = true;
6693 			break;
6694 		}
6695 		/* If we don't know NULL-ness specification and the tracepoint
6696 		 * is coming from a loadable module, be conservative and mark
6697 		 * argument as PTR_MAYBE_NULL.
6698 		 */
6699 		if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf))
6700 			info->reg_type |= PTR_MAYBE_NULL;
6701 	}
6702 
6703 	if (tgt_prog) {
6704 		enum bpf_prog_type tgt_type;
6705 
6706 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6707 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6708 		else
6709 			tgt_type = tgt_prog->type;
6710 
6711 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6712 		if (ret > 0) {
6713 			info->btf = btf_vmlinux;
6714 			info->btf_id = ret;
6715 			return true;
6716 		} else {
6717 			return false;
6718 		}
6719 	}
6720 
6721 	info->btf = btf;
6722 	info->btf_id = t->type;
6723 	t = btf_type_by_id(btf, t->type);
6724 
6725 	if (btf_type_is_type_tag(t)) {
6726 		tag_value = __btf_name_by_offset(btf, t->name_off);
6727 		if (strcmp(tag_value, "user") == 0)
6728 			info->reg_type |= MEM_USER;
6729 		if (strcmp(tag_value, "percpu") == 0)
6730 			info->reg_type |= MEM_PERCPU;
6731 	}
6732 
6733 	/* skip modifiers */
6734 	while (btf_type_is_modifier(t)) {
6735 		info->btf_id = t->type;
6736 		t = btf_type_by_id(btf, t->type);
6737 	}
6738 	if (!btf_type_is_struct(t)) {
6739 		bpf_log(log,
6740 			"func '%s' arg%d type %s is not a struct\n",
6741 			tname, arg, btf_type_str(t));
6742 		return false;
6743 	}
6744 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6745 		tname, arg, info->btf_id, btf_type_str(t),
6746 		__btf_name_by_offset(btf, t->name_off));
6747 
6748 	/* Perform all checks on the validity of type for this argument, but if
6749 	 * we know it can be IS_ERR at runtime, scrub pointer type and mark as
6750 	 * scalar.
6751 	 */
6752 	if (ptr_err_raw_tp) {
6753 		bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg);
6754 		info->reg_type = SCALAR_VALUE;
6755 	}
6756 	return true;
6757 }
6758 EXPORT_SYMBOL_GPL(btf_ctx_access);
6759 
6760 enum bpf_struct_walk_result {
6761 	/* < 0 error */
6762 	WALK_SCALAR = 0,
6763 	WALK_PTR,
6764 	WALK_STRUCT,
6765 };
6766 
btf_struct_walk(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int off,int size,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)6767 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6768 			   const struct btf_type *t, int off, int size,
6769 			   u32 *next_btf_id, enum bpf_type_flag *flag,
6770 			   const char **field_name)
6771 {
6772 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6773 	const struct btf_type *mtype, *elem_type = NULL;
6774 	const struct btf_member *member;
6775 	const char *tname, *mname, *tag_value;
6776 	u32 vlen, elem_id, mid;
6777 
6778 again:
6779 	if (btf_type_is_modifier(t))
6780 		t = btf_type_skip_modifiers(btf, t->type, NULL);
6781 	tname = __btf_name_by_offset(btf, t->name_off);
6782 	if (!btf_type_is_struct(t)) {
6783 		bpf_log(log, "Type '%s' is not a struct\n", tname);
6784 		return -EINVAL;
6785 	}
6786 
6787 	vlen = btf_type_vlen(t);
6788 	if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6789 		/*
6790 		 * walking unions yields untrusted pointers
6791 		 * with exception of __bpf_md_ptr and other
6792 		 * unions with a single member
6793 		 */
6794 		*flag |= PTR_UNTRUSTED;
6795 
6796 	if (off + size > t->size) {
6797 		/* If the last element is a variable size array, we may
6798 		 * need to relax the rule.
6799 		 */
6800 		struct btf_array *array_elem;
6801 
6802 		if (vlen == 0)
6803 			goto error;
6804 
6805 		member = btf_type_member(t) + vlen - 1;
6806 		mtype = btf_type_skip_modifiers(btf, member->type,
6807 						NULL);
6808 		if (!btf_type_is_array(mtype))
6809 			goto error;
6810 
6811 		array_elem = (struct btf_array *)(mtype + 1);
6812 		if (array_elem->nelems != 0)
6813 			goto error;
6814 
6815 		moff = __btf_member_bit_offset(t, member) / 8;
6816 		if (off < moff)
6817 			goto error;
6818 
6819 		/* allow structure and integer */
6820 		t = btf_type_skip_modifiers(btf, array_elem->type,
6821 					    NULL);
6822 
6823 		if (btf_type_is_int(t))
6824 			return WALK_SCALAR;
6825 
6826 		if (!btf_type_is_struct(t))
6827 			goto error;
6828 
6829 		off = (off - moff) % t->size;
6830 		goto again;
6831 
6832 error:
6833 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6834 			tname, off, size);
6835 		return -EACCES;
6836 	}
6837 
6838 	for_each_member(i, t, member) {
6839 		/* offset of the field in bytes */
6840 		moff = __btf_member_bit_offset(t, member) / 8;
6841 		if (off + size <= moff)
6842 			/* won't find anything, field is already too far */
6843 			break;
6844 
6845 		if (__btf_member_bitfield_size(t, member)) {
6846 			u32 end_bit = __btf_member_bit_offset(t, member) +
6847 				__btf_member_bitfield_size(t, member);
6848 
6849 			/* off <= moff instead of off == moff because clang
6850 			 * does not generate a BTF member for anonymous
6851 			 * bitfield like the ":16" here:
6852 			 * struct {
6853 			 *	int :16;
6854 			 *	int x:8;
6855 			 * };
6856 			 */
6857 			if (off <= moff &&
6858 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6859 				return WALK_SCALAR;
6860 
6861 			/* off may be accessing a following member
6862 			 *
6863 			 * or
6864 			 *
6865 			 * Doing partial access at either end of this
6866 			 * bitfield.  Continue on this case also to
6867 			 * treat it as not accessing this bitfield
6868 			 * and eventually error out as field not
6869 			 * found to keep it simple.
6870 			 * It could be relaxed if there was a legit
6871 			 * partial access case later.
6872 			 */
6873 			continue;
6874 		}
6875 
6876 		/* In case of "off" is pointing to holes of a struct */
6877 		if (off < moff)
6878 			break;
6879 
6880 		/* type of the field */
6881 		mid = member->type;
6882 		mtype = btf_type_by_id(btf, member->type);
6883 		mname = __btf_name_by_offset(btf, member->name_off);
6884 
6885 		mtype = __btf_resolve_size(btf, mtype, &msize,
6886 					   &elem_type, &elem_id, &total_nelems,
6887 					   &mid);
6888 		if (IS_ERR(mtype)) {
6889 			bpf_log(log, "field %s doesn't have size\n", mname);
6890 			return -EFAULT;
6891 		}
6892 
6893 		mtrue_end = moff + msize;
6894 		if (off >= mtrue_end)
6895 			/* no overlap with member, keep iterating */
6896 			continue;
6897 
6898 		if (btf_type_is_array(mtype)) {
6899 			u32 elem_idx;
6900 
6901 			/* __btf_resolve_size() above helps to
6902 			 * linearize a multi-dimensional array.
6903 			 *
6904 			 * The logic here is treating an array
6905 			 * in a struct as the following way:
6906 			 *
6907 			 * struct outer {
6908 			 *	struct inner array[2][2];
6909 			 * };
6910 			 *
6911 			 * looks like:
6912 			 *
6913 			 * struct outer {
6914 			 *	struct inner array_elem0;
6915 			 *	struct inner array_elem1;
6916 			 *	struct inner array_elem2;
6917 			 *	struct inner array_elem3;
6918 			 * };
6919 			 *
6920 			 * When accessing outer->array[1][0], it moves
6921 			 * moff to "array_elem2", set mtype to
6922 			 * "struct inner", and msize also becomes
6923 			 * sizeof(struct inner).  Then most of the
6924 			 * remaining logic will fall through without
6925 			 * caring the current member is an array or
6926 			 * not.
6927 			 *
6928 			 * Unlike mtype/msize/moff, mtrue_end does not
6929 			 * change.  The naming difference ("_true") tells
6930 			 * that it is not always corresponding to
6931 			 * the current mtype/msize/moff.
6932 			 * It is the true end of the current
6933 			 * member (i.e. array in this case).  That
6934 			 * will allow an int array to be accessed like
6935 			 * a scratch space,
6936 			 * i.e. allow access beyond the size of
6937 			 *      the array's element as long as it is
6938 			 *      within the mtrue_end boundary.
6939 			 */
6940 
6941 			/* skip empty array */
6942 			if (moff == mtrue_end)
6943 				continue;
6944 
6945 			msize /= total_nelems;
6946 			elem_idx = (off - moff) / msize;
6947 			moff += elem_idx * msize;
6948 			mtype = elem_type;
6949 			mid = elem_id;
6950 		}
6951 
6952 		/* the 'off' we're looking for is either equal to start
6953 		 * of this field or inside of this struct
6954 		 */
6955 		if (btf_type_is_struct(mtype)) {
6956 			/* our field must be inside that union or struct */
6957 			t = mtype;
6958 
6959 			/* return if the offset matches the member offset */
6960 			if (off == moff) {
6961 				*next_btf_id = mid;
6962 				return WALK_STRUCT;
6963 			}
6964 
6965 			/* adjust offset we're looking for */
6966 			off -= moff;
6967 			goto again;
6968 		}
6969 
6970 		if (btf_type_is_ptr(mtype)) {
6971 			const struct btf_type *stype, *t;
6972 			enum bpf_type_flag tmp_flag = 0;
6973 			u32 id;
6974 
6975 			if (msize != size || off != moff) {
6976 				bpf_log(log,
6977 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6978 					mname, moff, tname, off, size);
6979 				return -EACCES;
6980 			}
6981 
6982 			/* check type tag */
6983 			t = btf_type_by_id(btf, mtype->type);
6984 			if (btf_type_is_type_tag(t)) {
6985 				tag_value = __btf_name_by_offset(btf, t->name_off);
6986 				/* check __user tag */
6987 				if (strcmp(tag_value, "user") == 0)
6988 					tmp_flag = MEM_USER;
6989 				/* check __percpu tag */
6990 				if (strcmp(tag_value, "percpu") == 0)
6991 					tmp_flag = MEM_PERCPU;
6992 				/* check __rcu tag */
6993 				if (strcmp(tag_value, "rcu") == 0)
6994 					tmp_flag = MEM_RCU;
6995 			}
6996 
6997 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6998 			if (btf_type_is_struct(stype)) {
6999 				*next_btf_id = id;
7000 				*flag |= tmp_flag;
7001 				if (field_name)
7002 					*field_name = mname;
7003 				return WALK_PTR;
7004 			}
7005 		}
7006 
7007 		/* Allow more flexible access within an int as long as
7008 		 * it is within mtrue_end.
7009 		 * Since mtrue_end could be the end of an array,
7010 		 * that also allows using an array of int as a scratch
7011 		 * space. e.g. skb->cb[].
7012 		 */
7013 		if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
7014 			bpf_log(log,
7015 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
7016 				mname, mtrue_end, tname, off, size);
7017 			return -EACCES;
7018 		}
7019 
7020 		return WALK_SCALAR;
7021 	}
7022 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
7023 	return -EINVAL;
7024 }
7025 
btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size,enum bpf_access_type atype __maybe_unused,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)7026 int btf_struct_access(struct bpf_verifier_log *log,
7027 		      const struct bpf_reg_state *reg,
7028 		      int off, int size, enum bpf_access_type atype __maybe_unused,
7029 		      u32 *next_btf_id, enum bpf_type_flag *flag,
7030 		      const char **field_name)
7031 {
7032 	const struct btf *btf = reg->btf;
7033 	enum bpf_type_flag tmp_flag = 0;
7034 	const struct btf_type *t;
7035 	u32 id = reg->btf_id;
7036 	int err;
7037 
7038 	while (type_is_alloc(reg->type)) {
7039 		struct btf_struct_meta *meta;
7040 		struct btf_record *rec;
7041 		int i;
7042 
7043 		meta = btf_find_struct_meta(btf, id);
7044 		if (!meta)
7045 			break;
7046 		rec = meta->record;
7047 		for (i = 0; i < rec->cnt; i++) {
7048 			struct btf_field *field = &rec->fields[i];
7049 			u32 offset = field->offset;
7050 			if (off < offset + field->size && offset < off + size) {
7051 				bpf_log(log,
7052 					"direct access to %s is disallowed\n",
7053 					btf_field_type_name(field->type));
7054 				return -EACCES;
7055 			}
7056 		}
7057 		break;
7058 	}
7059 
7060 	t = btf_type_by_id(btf, id);
7061 	do {
7062 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
7063 
7064 		switch (err) {
7065 		case WALK_PTR:
7066 			/* For local types, the destination register cannot
7067 			 * become a pointer again.
7068 			 */
7069 			if (type_is_alloc(reg->type))
7070 				return SCALAR_VALUE;
7071 			/* If we found the pointer or scalar on t+off,
7072 			 * we're done.
7073 			 */
7074 			*next_btf_id = id;
7075 			*flag = tmp_flag;
7076 			return PTR_TO_BTF_ID;
7077 		case WALK_SCALAR:
7078 			return SCALAR_VALUE;
7079 		case WALK_STRUCT:
7080 			/* We found nested struct, so continue the search
7081 			 * by diving in it. At this point the offset is
7082 			 * aligned with the new type, so set it to 0.
7083 			 */
7084 			t = btf_type_by_id(btf, id);
7085 			off = 0;
7086 			break;
7087 		default:
7088 			/* It's either error or unknown return value..
7089 			 * scream and leave.
7090 			 */
7091 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
7092 				return -EINVAL;
7093 			return err;
7094 		}
7095 	} while (t);
7096 
7097 	return -EINVAL;
7098 }
7099 
7100 /* Check that two BTF types, each specified as an BTF object + id, are exactly
7101  * the same. Trivial ID check is not enough due to module BTFs, because we can
7102  * end up with two different module BTFs, but IDs point to the common type in
7103  * vmlinux BTF.
7104  */
btf_types_are_same(const struct btf * btf1,u32 id1,const struct btf * btf2,u32 id2)7105 bool btf_types_are_same(const struct btf *btf1, u32 id1,
7106 			const struct btf *btf2, u32 id2)
7107 {
7108 	if (id1 != id2)
7109 		return false;
7110 	if (btf1 == btf2)
7111 		return true;
7112 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
7113 }
7114 
btf_struct_ids_match(struct bpf_verifier_log * log,const struct btf * btf,u32 id,int off,const struct btf * need_btf,u32 need_type_id,bool strict)7115 bool btf_struct_ids_match(struct bpf_verifier_log *log,
7116 			  const struct btf *btf, u32 id, int off,
7117 			  const struct btf *need_btf, u32 need_type_id,
7118 			  bool strict)
7119 {
7120 	const struct btf_type *type;
7121 	enum bpf_type_flag flag = 0;
7122 	int err;
7123 
7124 	/* Are we already done? */
7125 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
7126 		return true;
7127 	/* In case of strict type match, we do not walk struct, the top level
7128 	 * type match must succeed. When strict is true, off should have already
7129 	 * been 0.
7130 	 */
7131 	if (strict)
7132 		return false;
7133 again:
7134 	type = btf_type_by_id(btf, id);
7135 	if (!type)
7136 		return false;
7137 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
7138 	if (err != WALK_STRUCT)
7139 		return false;
7140 
7141 	/* We found nested struct object. If it matches
7142 	 * the requested ID, we're done. Otherwise let's
7143 	 * continue the search with offset 0 in the new
7144 	 * type.
7145 	 */
7146 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
7147 		off = 0;
7148 		goto again;
7149 	}
7150 
7151 	return true;
7152 }
7153 
__get_type_size(struct btf * btf,u32 btf_id,const struct btf_type ** ret_type)7154 static int __get_type_size(struct btf *btf, u32 btf_id,
7155 			   const struct btf_type **ret_type)
7156 {
7157 	const struct btf_type *t;
7158 
7159 	*ret_type = btf_type_by_id(btf, 0);
7160 	if (!btf_id)
7161 		/* void */
7162 		return 0;
7163 	t = btf_type_by_id(btf, btf_id);
7164 	while (t && btf_type_is_modifier(t))
7165 		t = btf_type_by_id(btf, t->type);
7166 	if (!t)
7167 		return -EINVAL;
7168 	*ret_type = t;
7169 	if (btf_type_is_ptr(t))
7170 		/* kernel size of pointer. Not BPF's size of pointer*/
7171 		return sizeof(void *);
7172 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
7173 		return t->size;
7174 	return -EINVAL;
7175 }
7176 
__get_type_fmodel_flags(const struct btf_type * t)7177 static u8 __get_type_fmodel_flags(const struct btf_type *t)
7178 {
7179 	u8 flags = 0;
7180 
7181 	if (__btf_type_is_struct(t))
7182 		flags |= BTF_FMODEL_STRUCT_ARG;
7183 	if (btf_type_is_signed_int(t))
7184 		flags |= BTF_FMODEL_SIGNED_ARG;
7185 
7186 	return flags;
7187 }
7188 
btf_distill_func_proto(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * func,const char * tname,struct btf_func_model * m)7189 int btf_distill_func_proto(struct bpf_verifier_log *log,
7190 			   struct btf *btf,
7191 			   const struct btf_type *func,
7192 			   const char *tname,
7193 			   struct btf_func_model *m)
7194 {
7195 	const struct btf_param *args;
7196 	const struct btf_type *t;
7197 	u32 i, nargs;
7198 	int ret;
7199 
7200 	if (!func) {
7201 		/* BTF function prototype doesn't match the verifier types.
7202 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
7203 		 */
7204 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7205 			m->arg_size[i] = 8;
7206 			m->arg_flags[i] = 0;
7207 		}
7208 		m->ret_size = 8;
7209 		m->ret_flags = 0;
7210 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
7211 		return 0;
7212 	}
7213 	args = (const struct btf_param *)(func + 1);
7214 	nargs = btf_type_vlen(func);
7215 	if (nargs > MAX_BPF_FUNC_ARGS) {
7216 		bpf_log(log,
7217 			"The function %s has %d arguments. Too many.\n",
7218 			tname, nargs);
7219 		return -EINVAL;
7220 	}
7221 	ret = __get_type_size(btf, func->type, &t);
7222 	if (ret < 0 || __btf_type_is_struct(t)) {
7223 		bpf_log(log,
7224 			"The function %s return type %s is unsupported.\n",
7225 			tname, btf_type_str(t));
7226 		return -EINVAL;
7227 	}
7228 	m->ret_size = ret;
7229 	m->ret_flags = __get_type_fmodel_flags(t);
7230 
7231 	for (i = 0; i < nargs; i++) {
7232 		if (i == nargs - 1 && args[i].type == 0) {
7233 			bpf_log(log,
7234 				"The function %s with variable args is unsupported.\n",
7235 				tname);
7236 			return -EINVAL;
7237 		}
7238 		ret = __get_type_size(btf, args[i].type, &t);
7239 
7240 		/* No support of struct argument size greater than 16 bytes */
7241 		if (ret < 0 || ret > 16) {
7242 			bpf_log(log,
7243 				"The function %s arg%d type %s is unsupported.\n",
7244 				tname, i, btf_type_str(t));
7245 			return -EINVAL;
7246 		}
7247 		if (ret == 0) {
7248 			bpf_log(log,
7249 				"The function %s has malformed void argument.\n",
7250 				tname);
7251 			return -EINVAL;
7252 		}
7253 		m->arg_size[i] = ret;
7254 		m->arg_flags[i] = __get_type_fmodel_flags(t);
7255 	}
7256 	m->nr_args = nargs;
7257 	return 0;
7258 }
7259 
7260 /* Compare BTFs of two functions assuming only scalars and pointers to context.
7261  * t1 points to BTF_KIND_FUNC in btf1
7262  * t2 points to BTF_KIND_FUNC in btf2
7263  * Returns:
7264  * EINVAL - function prototype mismatch
7265  * EFAULT - verifier bug
7266  * 0 - 99% match. The last 1% is validated by the verifier.
7267  */
btf_check_func_type_match(struct bpf_verifier_log * log,struct btf * btf1,const struct btf_type * t1,struct btf * btf2,const struct btf_type * t2)7268 static int btf_check_func_type_match(struct bpf_verifier_log *log,
7269 				     struct btf *btf1, const struct btf_type *t1,
7270 				     struct btf *btf2, const struct btf_type *t2)
7271 {
7272 	const struct btf_param *args1, *args2;
7273 	const char *fn1, *fn2, *s1, *s2;
7274 	u32 nargs1, nargs2, i;
7275 
7276 	fn1 = btf_name_by_offset(btf1, t1->name_off);
7277 	fn2 = btf_name_by_offset(btf2, t2->name_off);
7278 
7279 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
7280 		bpf_log(log, "%s() is not a global function\n", fn1);
7281 		return -EINVAL;
7282 	}
7283 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
7284 		bpf_log(log, "%s() is not a global function\n", fn2);
7285 		return -EINVAL;
7286 	}
7287 
7288 	t1 = btf_type_by_id(btf1, t1->type);
7289 	if (!t1 || !btf_type_is_func_proto(t1))
7290 		return -EFAULT;
7291 	t2 = btf_type_by_id(btf2, t2->type);
7292 	if (!t2 || !btf_type_is_func_proto(t2))
7293 		return -EFAULT;
7294 
7295 	args1 = (const struct btf_param *)(t1 + 1);
7296 	nargs1 = btf_type_vlen(t1);
7297 	args2 = (const struct btf_param *)(t2 + 1);
7298 	nargs2 = btf_type_vlen(t2);
7299 
7300 	if (nargs1 != nargs2) {
7301 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
7302 			fn1, nargs1, fn2, nargs2);
7303 		return -EINVAL;
7304 	}
7305 
7306 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7307 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7308 	if (t1->info != t2->info) {
7309 		bpf_log(log,
7310 			"Return type %s of %s() doesn't match type %s of %s()\n",
7311 			btf_type_str(t1), fn1,
7312 			btf_type_str(t2), fn2);
7313 		return -EINVAL;
7314 	}
7315 
7316 	for (i = 0; i < nargs1; i++) {
7317 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
7318 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
7319 
7320 		if (t1->info != t2->info) {
7321 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
7322 				i, fn1, btf_type_str(t1),
7323 				fn2, btf_type_str(t2));
7324 			return -EINVAL;
7325 		}
7326 		if (btf_type_has_size(t1) && t1->size != t2->size) {
7327 			bpf_log(log,
7328 				"arg%d in %s() has size %d while %s() has %d\n",
7329 				i, fn1, t1->size,
7330 				fn2, t2->size);
7331 			return -EINVAL;
7332 		}
7333 
7334 		/* global functions are validated with scalars and pointers
7335 		 * to context only. And only global functions can be replaced.
7336 		 * Hence type check only those types.
7337 		 */
7338 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
7339 			continue;
7340 		if (!btf_type_is_ptr(t1)) {
7341 			bpf_log(log,
7342 				"arg%d in %s() has unrecognized type\n",
7343 				i, fn1);
7344 			return -EINVAL;
7345 		}
7346 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7347 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7348 		if (!btf_type_is_struct(t1)) {
7349 			bpf_log(log,
7350 				"arg%d in %s() is not a pointer to context\n",
7351 				i, fn1);
7352 			return -EINVAL;
7353 		}
7354 		if (!btf_type_is_struct(t2)) {
7355 			bpf_log(log,
7356 				"arg%d in %s() is not a pointer to context\n",
7357 				i, fn2);
7358 			return -EINVAL;
7359 		}
7360 		/* This is an optional check to make program writing easier.
7361 		 * Compare names of structs and report an error to the user.
7362 		 * btf_prepare_func_args() already checked that t2 struct
7363 		 * is a context type. btf_prepare_func_args() will check
7364 		 * later that t1 struct is a context type as well.
7365 		 */
7366 		s1 = btf_name_by_offset(btf1, t1->name_off);
7367 		s2 = btf_name_by_offset(btf2, t2->name_off);
7368 		if (strcmp(s1, s2)) {
7369 			bpf_log(log,
7370 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
7371 				i, fn1, s1, fn2, s2);
7372 			return -EINVAL;
7373 		}
7374 	}
7375 	return 0;
7376 }
7377 
7378 /* Compare BTFs of given program with BTF of target program */
btf_check_type_match(struct bpf_verifier_log * log,const struct bpf_prog * prog,struct btf * btf2,const struct btf_type * t2)7379 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
7380 			 struct btf *btf2, const struct btf_type *t2)
7381 {
7382 	struct btf *btf1 = prog->aux->btf;
7383 	const struct btf_type *t1;
7384 	u32 btf_id = 0;
7385 
7386 	if (!prog->aux->func_info) {
7387 		bpf_log(log, "Program extension requires BTF\n");
7388 		return -EINVAL;
7389 	}
7390 
7391 	btf_id = prog->aux->func_info[0].type_id;
7392 	if (!btf_id)
7393 		return -EFAULT;
7394 
7395 	t1 = btf_type_by_id(btf1, btf_id);
7396 	if (!t1 || !btf_type_is_func(t1))
7397 		return -EFAULT;
7398 
7399 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
7400 }
7401 
btf_is_dynptr_ptr(const struct btf * btf,const struct btf_type * t)7402 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
7403 {
7404 	const char *name;
7405 
7406 	t = btf_type_by_id(btf, t->type); /* skip PTR */
7407 
7408 	while (btf_type_is_modifier(t))
7409 		t = btf_type_by_id(btf, t->type);
7410 
7411 	/* allow either struct or struct forward declaration */
7412 	if (btf_type_is_struct(t) ||
7413 	    (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
7414 		name = btf_str_by_offset(btf, t->name_off);
7415 		return name && strcmp(name, "bpf_dynptr") == 0;
7416 	}
7417 
7418 	return false;
7419 }
7420 
7421 struct bpf_cand_cache {
7422 	const char *name;
7423 	u32 name_len;
7424 	u16 kind;
7425 	u16 cnt;
7426 	struct {
7427 		const struct btf *btf;
7428 		u32 id;
7429 	} cands[];
7430 };
7431 
7432 static DEFINE_MUTEX(cand_cache_mutex);
7433 
7434 static struct bpf_cand_cache *
7435 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
7436 
btf_get_ptr_to_btf_id(struct bpf_verifier_log * log,int arg_idx,const struct btf * btf,const struct btf_type * t)7437 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
7438 				 const struct btf *btf, const struct btf_type *t)
7439 {
7440 	struct bpf_cand_cache *cc;
7441 	struct bpf_core_ctx ctx = {
7442 		.btf = btf,
7443 		.log = log,
7444 	};
7445 	u32 kern_type_id, type_id;
7446 	int err = 0;
7447 
7448 	/* skip PTR and modifiers */
7449 	type_id = t->type;
7450 	t = btf_type_by_id(btf, t->type);
7451 	while (btf_type_is_modifier(t)) {
7452 		type_id = t->type;
7453 		t = btf_type_by_id(btf, t->type);
7454 	}
7455 
7456 	mutex_lock(&cand_cache_mutex);
7457 	cc = bpf_core_find_cands(&ctx, type_id);
7458 	if (IS_ERR(cc)) {
7459 		err = PTR_ERR(cc);
7460 		bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n",
7461 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7462 			err);
7463 		goto cand_cache_unlock;
7464 	}
7465 	if (cc->cnt != 1) {
7466 		bpf_log(log, "arg#%d reference type('%s %s') %s\n",
7467 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7468 			cc->cnt == 0 ? "has no matches" : "is ambiguous");
7469 		err = cc->cnt == 0 ? -ENOENT : -ESRCH;
7470 		goto cand_cache_unlock;
7471 	}
7472 	if (btf_is_module(cc->cands[0].btf)) {
7473 		bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
7474 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off));
7475 		err = -EOPNOTSUPP;
7476 		goto cand_cache_unlock;
7477 	}
7478 	kern_type_id = cc->cands[0].id;
7479 
7480 cand_cache_unlock:
7481 	mutex_unlock(&cand_cache_mutex);
7482 	if (err)
7483 		return err;
7484 
7485 	return kern_type_id;
7486 }
7487 
7488 enum btf_arg_tag {
7489 	ARG_TAG_CTX	 = BIT_ULL(0),
7490 	ARG_TAG_NONNULL  = BIT_ULL(1),
7491 	ARG_TAG_TRUSTED  = BIT_ULL(2),
7492 	ARG_TAG_NULLABLE = BIT_ULL(3),
7493 	ARG_TAG_ARENA	 = BIT_ULL(4),
7494 };
7495 
7496 /* Process BTF of a function to produce high-level expectation of function
7497  * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
7498  * is cached in subprog info for reuse.
7499  * Returns:
7500  * EFAULT - there is a verifier bug. Abort verification.
7501  * EINVAL - cannot convert BTF.
7502  * 0 - Successfully processed BTF and constructed argument expectations.
7503  */
btf_prepare_func_args(struct bpf_verifier_env * env,int subprog)7504 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
7505 {
7506 	bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7507 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
7508 	struct bpf_verifier_log *log = &env->log;
7509 	struct bpf_prog *prog = env->prog;
7510 	enum bpf_prog_type prog_type = prog->type;
7511 	struct btf *btf = prog->aux->btf;
7512 	const struct btf_param *args;
7513 	const struct btf_type *t, *ref_t, *fn_t;
7514 	u32 i, nargs, btf_id;
7515 	const char *tname;
7516 
7517 	if (sub->args_cached)
7518 		return 0;
7519 
7520 	if (!prog->aux->func_info) {
7521 		bpf_log(log, "Verifier bug\n");
7522 		return -EFAULT;
7523 	}
7524 
7525 	btf_id = prog->aux->func_info[subprog].type_id;
7526 	if (!btf_id) {
7527 		if (!is_global) /* not fatal for static funcs */
7528 			return -EINVAL;
7529 		bpf_log(log, "Global functions need valid BTF\n");
7530 		return -EFAULT;
7531 	}
7532 
7533 	fn_t = btf_type_by_id(btf, btf_id);
7534 	if (!fn_t || !btf_type_is_func(fn_t)) {
7535 		/* These checks were already done by the verifier while loading
7536 		 * struct bpf_func_info
7537 		 */
7538 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7539 			subprog);
7540 		return -EFAULT;
7541 	}
7542 	tname = btf_name_by_offset(btf, fn_t->name_off);
7543 
7544 	if (prog->aux->func_info_aux[subprog].unreliable) {
7545 		bpf_log(log, "Verifier bug in function %s()\n", tname);
7546 		return -EFAULT;
7547 	}
7548 	if (prog_type == BPF_PROG_TYPE_EXT)
7549 		prog_type = prog->aux->dst_prog->type;
7550 
7551 	t = btf_type_by_id(btf, fn_t->type);
7552 	if (!t || !btf_type_is_func_proto(t)) {
7553 		bpf_log(log, "Invalid type of function %s()\n", tname);
7554 		return -EFAULT;
7555 	}
7556 	args = (const struct btf_param *)(t + 1);
7557 	nargs = btf_type_vlen(t);
7558 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7559 		if (!is_global)
7560 			return -EINVAL;
7561 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7562 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7563 		return -EINVAL;
7564 	}
7565 	/* check that function returns int, exception cb also requires this */
7566 	t = btf_type_by_id(btf, t->type);
7567 	while (btf_type_is_modifier(t))
7568 		t = btf_type_by_id(btf, t->type);
7569 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7570 		if (!is_global)
7571 			return -EINVAL;
7572 		bpf_log(log,
7573 			"Global function %s() doesn't return scalar. Only those are supported.\n",
7574 			tname);
7575 		return -EINVAL;
7576 	}
7577 	/* Convert BTF function arguments into verifier types.
7578 	 * Only PTR_TO_CTX and SCALAR are supported atm.
7579 	 */
7580 	for (i = 0; i < nargs; i++) {
7581 		u32 tags = 0;
7582 		int id = 0;
7583 
7584 		/* 'arg:<tag>' decl_tag takes precedence over derivation of
7585 		 * register type from BTF type itself
7586 		 */
7587 		while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
7588 			const struct btf_type *tag_t = btf_type_by_id(btf, id);
7589 			const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
7590 
7591 			/* disallow arg tags in static subprogs */
7592 			if (!is_global) {
7593 				bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7594 				return -EOPNOTSUPP;
7595 			}
7596 
7597 			if (strcmp(tag, "ctx") == 0) {
7598 				tags |= ARG_TAG_CTX;
7599 			} else if (strcmp(tag, "trusted") == 0) {
7600 				tags |= ARG_TAG_TRUSTED;
7601 			} else if (strcmp(tag, "nonnull") == 0) {
7602 				tags |= ARG_TAG_NONNULL;
7603 			} else if (strcmp(tag, "nullable") == 0) {
7604 				tags |= ARG_TAG_NULLABLE;
7605 			} else if (strcmp(tag, "arena") == 0) {
7606 				tags |= ARG_TAG_ARENA;
7607 			} else {
7608 				bpf_log(log, "arg#%d has unsupported set of tags\n", i);
7609 				return -EOPNOTSUPP;
7610 			}
7611 		}
7612 		if (id != -ENOENT) {
7613 			bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
7614 			return id;
7615 		}
7616 
7617 		t = btf_type_by_id(btf, args[i].type);
7618 		while (btf_type_is_modifier(t))
7619 			t = btf_type_by_id(btf, t->type);
7620 		if (!btf_type_is_ptr(t))
7621 			goto skip_pointer;
7622 
7623 		if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) {
7624 			if (tags & ~ARG_TAG_CTX) {
7625 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7626 				return -EINVAL;
7627 			}
7628 			if ((tags & ARG_TAG_CTX) &&
7629 			    btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7630 						       prog->expected_attach_type))
7631 				return -EINVAL;
7632 			sub->args[i].arg_type = ARG_PTR_TO_CTX;
7633 			continue;
7634 		}
7635 		if (btf_is_dynptr_ptr(btf, t)) {
7636 			if (tags) {
7637 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7638 				return -EINVAL;
7639 			}
7640 			sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7641 			continue;
7642 		}
7643 		if (tags & ARG_TAG_TRUSTED) {
7644 			int kern_type_id;
7645 
7646 			if (tags & ARG_TAG_NONNULL) {
7647 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7648 				return -EINVAL;
7649 			}
7650 
7651 			kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7652 			if (kern_type_id < 0)
7653 				return kern_type_id;
7654 
7655 			sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
7656 			if (tags & ARG_TAG_NULLABLE)
7657 				sub->args[i].arg_type |= PTR_MAYBE_NULL;
7658 			sub->args[i].btf_id = kern_type_id;
7659 			continue;
7660 		}
7661 		if (tags & ARG_TAG_ARENA) {
7662 			if (tags & ~ARG_TAG_ARENA) {
7663 				bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i);
7664 				return -EINVAL;
7665 			}
7666 			sub->args[i].arg_type = ARG_PTR_TO_ARENA;
7667 			continue;
7668 		}
7669 		if (is_global) { /* generic user data pointer */
7670 			u32 mem_size;
7671 
7672 			if (tags & ARG_TAG_NULLABLE) {
7673 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7674 				return -EINVAL;
7675 			}
7676 
7677 			t = btf_type_skip_modifiers(btf, t->type, NULL);
7678 			ref_t = btf_resolve_size(btf, t, &mem_size);
7679 			if (IS_ERR(ref_t)) {
7680 				bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7681 					i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7682 					PTR_ERR(ref_t));
7683 				return -EINVAL;
7684 			}
7685 
7686 			sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7687 			if (tags & ARG_TAG_NONNULL)
7688 				sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7689 			sub->args[i].mem_size = mem_size;
7690 			continue;
7691 		}
7692 
7693 skip_pointer:
7694 		if (tags) {
7695 			bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
7696 			return -EINVAL;
7697 		}
7698 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7699 			sub->args[i].arg_type = ARG_ANYTHING;
7700 			continue;
7701 		}
7702 		if (!is_global)
7703 			return -EINVAL;
7704 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7705 			i, btf_type_str(t), tname);
7706 		return -EINVAL;
7707 	}
7708 
7709 	sub->arg_cnt = nargs;
7710 	sub->args_cached = true;
7711 
7712 	return 0;
7713 }
7714 
btf_type_show(const struct btf * btf,u32 type_id,void * obj,struct btf_show * show)7715 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7716 			  struct btf_show *show)
7717 {
7718 	const struct btf_type *t = btf_type_by_id(btf, type_id);
7719 
7720 	show->btf = btf;
7721 	memset(&show->state, 0, sizeof(show->state));
7722 	memset(&show->obj, 0, sizeof(show->obj));
7723 
7724 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7725 }
7726 
btf_seq_show(struct btf_show * show,const char * fmt,va_list args)7727 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt,
7728 					va_list args)
7729 {
7730 	seq_vprintf((struct seq_file *)show->target, fmt, args);
7731 }
7732 
btf_type_seq_show_flags(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m,u64 flags)7733 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7734 			    void *obj, struct seq_file *m, u64 flags)
7735 {
7736 	struct btf_show sseq;
7737 
7738 	sseq.target = m;
7739 	sseq.showfn = btf_seq_show;
7740 	sseq.flags = flags;
7741 
7742 	btf_type_show(btf, type_id, obj, &sseq);
7743 
7744 	return sseq.state.status;
7745 }
7746 
btf_type_seq_show(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m)7747 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7748 		       struct seq_file *m)
7749 {
7750 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7751 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7752 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7753 }
7754 
7755 struct btf_show_snprintf {
7756 	struct btf_show show;
7757 	int len_left;		/* space left in string */
7758 	int len;		/* length we would have written */
7759 };
7760 
btf_snprintf_show(struct btf_show * show,const char * fmt,va_list args)7761 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7762 					     va_list args)
7763 {
7764 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7765 	int len;
7766 
7767 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7768 
7769 	if (len < 0) {
7770 		ssnprintf->len_left = 0;
7771 		ssnprintf->len = len;
7772 	} else if (len >= ssnprintf->len_left) {
7773 		/* no space, drive on to get length we would have written */
7774 		ssnprintf->len_left = 0;
7775 		ssnprintf->len += len;
7776 	} else {
7777 		ssnprintf->len_left -= len;
7778 		ssnprintf->len += len;
7779 		show->target += len;
7780 	}
7781 }
7782 
btf_type_snprintf_show(const struct btf * btf,u32 type_id,void * obj,char * buf,int len,u64 flags)7783 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7784 			   char *buf, int len, u64 flags)
7785 {
7786 	struct btf_show_snprintf ssnprintf;
7787 
7788 	ssnprintf.show.target = buf;
7789 	ssnprintf.show.flags = flags;
7790 	ssnprintf.show.showfn = btf_snprintf_show;
7791 	ssnprintf.len_left = len;
7792 	ssnprintf.len = 0;
7793 
7794 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7795 
7796 	/* If we encountered an error, return it. */
7797 	if (ssnprintf.show.state.status)
7798 		return ssnprintf.show.state.status;
7799 
7800 	/* Otherwise return length we would have written */
7801 	return ssnprintf.len;
7802 }
7803 
7804 #ifdef CONFIG_PROC_FS
bpf_btf_show_fdinfo(struct seq_file * m,struct file * filp)7805 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7806 {
7807 	const struct btf *btf = filp->private_data;
7808 
7809 	seq_printf(m, "btf_id:\t%u\n", btf->id);
7810 }
7811 #endif
7812 
btf_release(struct inode * inode,struct file * filp)7813 static int btf_release(struct inode *inode, struct file *filp)
7814 {
7815 	btf_put(filp->private_data);
7816 	return 0;
7817 }
7818 
7819 const struct file_operations btf_fops = {
7820 #ifdef CONFIG_PROC_FS
7821 	.show_fdinfo	= bpf_btf_show_fdinfo,
7822 #endif
7823 	.release	= btf_release,
7824 };
7825 
__btf_new_fd(struct btf * btf)7826 static int __btf_new_fd(struct btf *btf)
7827 {
7828 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7829 }
7830 
btf_new_fd(const union bpf_attr * attr,bpfptr_t uattr,u32 uattr_size)7831 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7832 {
7833 	struct btf *btf;
7834 	int ret;
7835 
7836 	btf = btf_parse(attr, uattr, uattr_size);
7837 	if (IS_ERR(btf))
7838 		return PTR_ERR(btf);
7839 
7840 	ret = btf_alloc_id(btf);
7841 	if (ret) {
7842 		btf_free(btf);
7843 		return ret;
7844 	}
7845 
7846 	/*
7847 	 * The BTF ID is published to the userspace.
7848 	 * All BTF free must go through call_rcu() from
7849 	 * now on (i.e. free by calling btf_put()).
7850 	 */
7851 
7852 	ret = __btf_new_fd(btf);
7853 	if (ret < 0)
7854 		btf_put(btf);
7855 
7856 	return ret;
7857 }
7858 
btf_get_by_fd(int fd)7859 struct btf *btf_get_by_fd(int fd)
7860 {
7861 	struct btf *btf;
7862 	CLASS(fd, f)(fd);
7863 
7864 	if (fd_empty(f))
7865 		return ERR_PTR(-EBADF);
7866 
7867 	if (fd_file(f)->f_op != &btf_fops)
7868 		return ERR_PTR(-EINVAL);
7869 
7870 	btf = fd_file(f)->private_data;
7871 	refcount_inc(&btf->refcnt);
7872 
7873 	return btf;
7874 }
7875 
btf_get_info_by_fd(const struct btf * btf,const union bpf_attr * attr,union bpf_attr __user * uattr)7876 int btf_get_info_by_fd(const struct btf *btf,
7877 		       const union bpf_attr *attr,
7878 		       union bpf_attr __user *uattr)
7879 {
7880 	struct bpf_btf_info __user *uinfo;
7881 	struct bpf_btf_info info;
7882 	u32 info_copy, btf_copy;
7883 	void __user *ubtf;
7884 	char __user *uname;
7885 	u32 uinfo_len, uname_len, name_len;
7886 	int ret = 0;
7887 
7888 	uinfo = u64_to_user_ptr(attr->info.info);
7889 	uinfo_len = attr->info.info_len;
7890 
7891 	info_copy = min_t(u32, uinfo_len, sizeof(info));
7892 	memset(&info, 0, sizeof(info));
7893 	if (copy_from_user(&info, uinfo, info_copy))
7894 		return -EFAULT;
7895 
7896 	info.id = btf->id;
7897 	ubtf = u64_to_user_ptr(info.btf);
7898 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7899 	if (copy_to_user(ubtf, btf->data, btf_copy))
7900 		return -EFAULT;
7901 	info.btf_size = btf->data_size;
7902 
7903 	info.kernel_btf = btf->kernel_btf;
7904 
7905 	uname = u64_to_user_ptr(info.name);
7906 	uname_len = info.name_len;
7907 	if (!uname ^ !uname_len)
7908 		return -EINVAL;
7909 
7910 	name_len = strlen(btf->name);
7911 	info.name_len = name_len;
7912 
7913 	if (uname) {
7914 		if (uname_len >= name_len + 1) {
7915 			if (copy_to_user(uname, btf->name, name_len + 1))
7916 				return -EFAULT;
7917 		} else {
7918 			char zero = '\0';
7919 
7920 			if (copy_to_user(uname, btf->name, uname_len - 1))
7921 				return -EFAULT;
7922 			if (put_user(zero, uname + uname_len - 1))
7923 				return -EFAULT;
7924 			/* let user-space know about too short buffer */
7925 			ret = -ENOSPC;
7926 		}
7927 	}
7928 
7929 	if (copy_to_user(uinfo, &info, info_copy) ||
7930 	    put_user(info_copy, &uattr->info.info_len))
7931 		return -EFAULT;
7932 
7933 	return ret;
7934 }
7935 
btf_get_fd_by_id(u32 id)7936 int btf_get_fd_by_id(u32 id)
7937 {
7938 	struct btf *btf;
7939 	int fd;
7940 
7941 	rcu_read_lock();
7942 	btf = idr_find(&btf_idr, id);
7943 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7944 		btf = ERR_PTR(-ENOENT);
7945 	rcu_read_unlock();
7946 
7947 	if (IS_ERR(btf))
7948 		return PTR_ERR(btf);
7949 
7950 	fd = __btf_new_fd(btf);
7951 	if (fd < 0)
7952 		btf_put(btf);
7953 
7954 	return fd;
7955 }
7956 
btf_obj_id(const struct btf * btf)7957 u32 btf_obj_id(const struct btf *btf)
7958 {
7959 	return btf->id;
7960 }
7961 
btf_is_kernel(const struct btf * btf)7962 bool btf_is_kernel(const struct btf *btf)
7963 {
7964 	return btf->kernel_btf;
7965 }
7966 
btf_is_module(const struct btf * btf)7967 bool btf_is_module(const struct btf *btf)
7968 {
7969 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7970 }
7971 
7972 enum {
7973 	BTF_MODULE_F_LIVE = (1 << 0),
7974 };
7975 
7976 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7977 struct btf_module {
7978 	struct list_head list;
7979 	struct module *module;
7980 	struct btf *btf;
7981 	struct bin_attribute *sysfs_attr;
7982 	int flags;
7983 };
7984 
7985 static LIST_HEAD(btf_modules);
7986 static DEFINE_MUTEX(btf_module_mutex);
7987 
7988 static ssize_t
btf_module_read(struct file * file,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t len)7989 btf_module_read(struct file *file, struct kobject *kobj,
7990 		struct bin_attribute *bin_attr,
7991 		char *buf, loff_t off, size_t len)
7992 {
7993 	const struct btf *btf = bin_attr->private;
7994 
7995 	memcpy(buf, btf->data + off, len);
7996 	return len;
7997 }
7998 
7999 static void purge_cand_cache(struct btf *btf);
8000 
btf_module_notify(struct notifier_block * nb,unsigned long op,void * module)8001 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
8002 			     void *module)
8003 {
8004 	struct btf_module *btf_mod, *tmp;
8005 	struct module *mod = module;
8006 	struct btf *btf;
8007 	int err = 0;
8008 
8009 	if (mod->btf_data_size == 0 ||
8010 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
8011 	     op != MODULE_STATE_GOING))
8012 		goto out;
8013 
8014 	switch (op) {
8015 	case MODULE_STATE_COMING:
8016 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
8017 		if (!btf_mod) {
8018 			err = -ENOMEM;
8019 			goto out;
8020 		}
8021 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size,
8022 				       mod->btf_base_data, mod->btf_base_data_size);
8023 		if (IS_ERR(btf)) {
8024 			kfree(btf_mod);
8025 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
8026 				pr_warn("failed to validate module [%s] BTF: %ld\n",
8027 					mod->name, PTR_ERR(btf));
8028 				err = PTR_ERR(btf);
8029 			} else {
8030 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
8031 			}
8032 			goto out;
8033 		}
8034 		err = btf_alloc_id(btf);
8035 		if (err) {
8036 			btf_free(btf);
8037 			kfree(btf_mod);
8038 			goto out;
8039 		}
8040 
8041 		purge_cand_cache(NULL);
8042 		mutex_lock(&btf_module_mutex);
8043 		btf_mod->module = module;
8044 		btf_mod->btf = btf;
8045 		list_add(&btf_mod->list, &btf_modules);
8046 		mutex_unlock(&btf_module_mutex);
8047 
8048 		if (IS_ENABLED(CONFIG_SYSFS)) {
8049 			struct bin_attribute *attr;
8050 
8051 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
8052 			if (!attr)
8053 				goto out;
8054 
8055 			sysfs_bin_attr_init(attr);
8056 			attr->attr.name = btf->name;
8057 			attr->attr.mode = 0444;
8058 			attr->size = btf->data_size;
8059 			attr->private = btf;
8060 			attr->read = btf_module_read;
8061 
8062 			err = sysfs_create_bin_file(btf_kobj, attr);
8063 			if (err) {
8064 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
8065 					mod->name, err);
8066 				kfree(attr);
8067 				err = 0;
8068 				goto out;
8069 			}
8070 
8071 			btf_mod->sysfs_attr = attr;
8072 		}
8073 
8074 		break;
8075 	case MODULE_STATE_LIVE:
8076 		mutex_lock(&btf_module_mutex);
8077 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8078 			if (btf_mod->module != module)
8079 				continue;
8080 
8081 			btf_mod->flags |= BTF_MODULE_F_LIVE;
8082 			break;
8083 		}
8084 		mutex_unlock(&btf_module_mutex);
8085 		break;
8086 	case MODULE_STATE_GOING:
8087 		mutex_lock(&btf_module_mutex);
8088 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8089 			if (btf_mod->module != module)
8090 				continue;
8091 
8092 			list_del(&btf_mod->list);
8093 			if (btf_mod->sysfs_attr)
8094 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
8095 			purge_cand_cache(btf_mod->btf);
8096 			btf_put(btf_mod->btf);
8097 			kfree(btf_mod->sysfs_attr);
8098 			kfree(btf_mod);
8099 			break;
8100 		}
8101 		mutex_unlock(&btf_module_mutex);
8102 		break;
8103 	}
8104 out:
8105 	return notifier_from_errno(err);
8106 }
8107 
8108 static struct notifier_block btf_module_nb = {
8109 	.notifier_call = btf_module_notify,
8110 };
8111 
btf_module_init(void)8112 static int __init btf_module_init(void)
8113 {
8114 	register_module_notifier(&btf_module_nb);
8115 	return 0;
8116 }
8117 
8118 fs_initcall(btf_module_init);
8119 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
8120 
btf_try_get_module(const struct btf * btf)8121 struct module *btf_try_get_module(const struct btf *btf)
8122 {
8123 	struct module *res = NULL;
8124 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8125 	struct btf_module *btf_mod, *tmp;
8126 
8127 	mutex_lock(&btf_module_mutex);
8128 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8129 		if (btf_mod->btf != btf)
8130 			continue;
8131 
8132 		/* We must only consider module whose __init routine has
8133 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
8134 		 * which is set from the notifier callback for
8135 		 * MODULE_STATE_LIVE.
8136 		 */
8137 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
8138 			res = btf_mod->module;
8139 
8140 		break;
8141 	}
8142 	mutex_unlock(&btf_module_mutex);
8143 #endif
8144 
8145 	return res;
8146 }
8147 
8148 /* Returns struct btf corresponding to the struct module.
8149  * This function can return NULL or ERR_PTR.
8150  */
btf_get_module_btf(const struct module * module)8151 static struct btf *btf_get_module_btf(const struct module *module)
8152 {
8153 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8154 	struct btf_module *btf_mod, *tmp;
8155 #endif
8156 	struct btf *btf = NULL;
8157 
8158 	if (!module) {
8159 		btf = bpf_get_btf_vmlinux();
8160 		if (!IS_ERR_OR_NULL(btf))
8161 			btf_get(btf);
8162 		return btf;
8163 	}
8164 
8165 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8166 	mutex_lock(&btf_module_mutex);
8167 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8168 		if (btf_mod->module != module)
8169 			continue;
8170 
8171 		btf_get(btf_mod->btf);
8172 		btf = btf_mod->btf;
8173 		break;
8174 	}
8175 	mutex_unlock(&btf_module_mutex);
8176 #endif
8177 
8178 	return btf;
8179 }
8180 
check_btf_kconfigs(const struct module * module,const char * feature)8181 static int check_btf_kconfigs(const struct module *module, const char *feature)
8182 {
8183 	if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8184 		pr_err("missing vmlinux BTF, cannot register %s\n", feature);
8185 		return -ENOENT;
8186 	}
8187 	if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
8188 		pr_warn("missing module BTF, cannot register %s\n", feature);
8189 	return 0;
8190 }
8191 
BPF_CALL_4(bpf_btf_find_by_name_kind,char *,name,int,name_sz,u32,kind,int,flags)8192 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
8193 {
8194 	struct btf *btf = NULL;
8195 	int btf_obj_fd = 0;
8196 	long ret;
8197 
8198 	if (flags)
8199 		return -EINVAL;
8200 
8201 	if (name_sz <= 1 || name[name_sz - 1])
8202 		return -EINVAL;
8203 
8204 	ret = bpf_find_btf_id(name, kind, &btf);
8205 	if (ret > 0 && btf_is_module(btf)) {
8206 		btf_obj_fd = __btf_new_fd(btf);
8207 		if (btf_obj_fd < 0) {
8208 			btf_put(btf);
8209 			return btf_obj_fd;
8210 		}
8211 		return ret | (((u64)btf_obj_fd) << 32);
8212 	}
8213 	if (ret > 0)
8214 		btf_put(btf);
8215 	return ret;
8216 }
8217 
8218 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
8219 	.func		= bpf_btf_find_by_name_kind,
8220 	.gpl_only	= false,
8221 	.ret_type	= RET_INTEGER,
8222 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
8223 	.arg2_type	= ARG_CONST_SIZE,
8224 	.arg3_type	= ARG_ANYTHING,
8225 	.arg4_type	= ARG_ANYTHING,
8226 };
8227 
BTF_ID_LIST_GLOBAL(btf_tracing_ids,MAX_BTF_TRACING_TYPE)8228 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
8229 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
8230 BTF_TRACING_TYPE_xxx
8231 #undef BTF_TRACING_TYPE
8232 
8233 /* Validate well-formedness of iter argument type.
8234  * On success, return positive BTF ID of iter state's STRUCT type.
8235  * On error, negative error is returned.
8236  */
8237 int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx)
8238 {
8239 	const struct btf_param *arg;
8240 	const struct btf_type *t;
8241 	const char *name;
8242 	int btf_id;
8243 
8244 	if (btf_type_vlen(func) <= arg_idx)
8245 		return -EINVAL;
8246 
8247 	arg = &btf_params(func)[arg_idx];
8248 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8249 	if (!t || !btf_type_is_ptr(t))
8250 		return -EINVAL;
8251 	t = btf_type_skip_modifiers(btf, t->type, &btf_id);
8252 	if (!t || !__btf_type_is_struct(t))
8253 		return -EINVAL;
8254 
8255 	name = btf_name_by_offset(btf, t->name_off);
8256 	if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
8257 		return -EINVAL;
8258 
8259 	return btf_id;
8260 }
8261 
btf_check_iter_kfuncs(struct btf * btf,const char * func_name,const struct btf_type * func,u32 func_flags)8262 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
8263 				 const struct btf_type *func, u32 func_flags)
8264 {
8265 	u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8266 	const char *sfx, *iter_name;
8267 	const struct btf_type *t;
8268 	char exp_name[128];
8269 	u32 nr_args;
8270 	int btf_id;
8271 
8272 	/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
8273 	if (!flags || (flags & (flags - 1)))
8274 		return -EINVAL;
8275 
8276 	/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
8277 	nr_args = btf_type_vlen(func);
8278 	if (nr_args < 1)
8279 		return -EINVAL;
8280 
8281 	btf_id = btf_check_iter_arg(btf, func, 0);
8282 	if (btf_id < 0)
8283 		return btf_id;
8284 
8285 	/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
8286 	 * fit nicely in stack slots
8287 	 */
8288 	t = btf_type_by_id(btf, btf_id);
8289 	if (t->size == 0 || (t->size % 8))
8290 		return -EINVAL;
8291 
8292 	/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
8293 	 * naming pattern
8294 	 */
8295 	iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1;
8296 	if (flags & KF_ITER_NEW)
8297 		sfx = "new";
8298 	else if (flags & KF_ITER_NEXT)
8299 		sfx = "next";
8300 	else /* (flags & KF_ITER_DESTROY) */
8301 		sfx = "destroy";
8302 
8303 	snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
8304 	if (strcmp(func_name, exp_name))
8305 		return -EINVAL;
8306 
8307 	/* only iter constructor should have extra arguments */
8308 	if (!(flags & KF_ITER_NEW) && nr_args != 1)
8309 		return -EINVAL;
8310 
8311 	if (flags & KF_ITER_NEXT) {
8312 		/* bpf_iter_<type>_next() should return pointer */
8313 		t = btf_type_skip_modifiers(btf, func->type, NULL);
8314 		if (!t || !btf_type_is_ptr(t))
8315 			return -EINVAL;
8316 	}
8317 
8318 	if (flags & KF_ITER_DESTROY) {
8319 		/* bpf_iter_<type>_destroy() should return void */
8320 		t = btf_type_by_id(btf, func->type);
8321 		if (!t || !btf_type_is_void(t))
8322 			return -EINVAL;
8323 	}
8324 
8325 	return 0;
8326 }
8327 
btf_check_kfunc_protos(struct btf * btf,u32 func_id,u32 func_flags)8328 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
8329 {
8330 	const struct btf_type *func;
8331 	const char *func_name;
8332 	int err;
8333 
8334 	/* any kfunc should be FUNC -> FUNC_PROTO */
8335 	func = btf_type_by_id(btf, func_id);
8336 	if (!func || !btf_type_is_func(func))
8337 		return -EINVAL;
8338 
8339 	/* sanity check kfunc name */
8340 	func_name = btf_name_by_offset(btf, func->name_off);
8341 	if (!func_name || !func_name[0])
8342 		return -EINVAL;
8343 
8344 	func = btf_type_by_id(btf, func->type);
8345 	if (!func || !btf_type_is_func_proto(func))
8346 		return -EINVAL;
8347 
8348 	if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
8349 		err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
8350 		if (err)
8351 			return err;
8352 	}
8353 
8354 	return 0;
8355 }
8356 
8357 /* Kernel Function (kfunc) BTF ID set registration API */
8358 
btf_populate_kfunc_set(struct btf * btf,enum btf_kfunc_hook hook,const struct btf_kfunc_id_set * kset)8359 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
8360 				  const struct btf_kfunc_id_set *kset)
8361 {
8362 	struct btf_kfunc_hook_filter *hook_filter;
8363 	struct btf_id_set8 *add_set = kset->set;
8364 	bool vmlinux_set = !btf_is_module(btf);
8365 	bool add_filter = !!kset->filter;
8366 	struct btf_kfunc_set_tab *tab;
8367 	struct btf_id_set8 *set;
8368 	u32 set_cnt, i;
8369 	int ret;
8370 
8371 	if (hook >= BTF_KFUNC_HOOK_MAX) {
8372 		ret = -EINVAL;
8373 		goto end;
8374 	}
8375 
8376 	if (!add_set->cnt)
8377 		return 0;
8378 
8379 	tab = btf->kfunc_set_tab;
8380 
8381 	if (tab && add_filter) {
8382 		u32 i;
8383 
8384 		hook_filter = &tab->hook_filters[hook];
8385 		for (i = 0; i < hook_filter->nr_filters; i++) {
8386 			if (hook_filter->filters[i] == kset->filter) {
8387 				add_filter = false;
8388 				break;
8389 			}
8390 		}
8391 
8392 		if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
8393 			ret = -E2BIG;
8394 			goto end;
8395 		}
8396 	}
8397 
8398 	if (!tab) {
8399 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
8400 		if (!tab)
8401 			return -ENOMEM;
8402 		btf->kfunc_set_tab = tab;
8403 	}
8404 
8405 	set = tab->sets[hook];
8406 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
8407 	 * for module sets.
8408 	 */
8409 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
8410 		ret = -EINVAL;
8411 		goto end;
8412 	}
8413 
8414 	/* In case of vmlinux sets, there may be more than one set being
8415 	 * registered per hook. To create a unified set, we allocate a new set
8416 	 * and concatenate all individual sets being registered. While each set
8417 	 * is individually sorted, they may become unsorted when concatenated,
8418 	 * hence re-sorting the final set again is required to make binary
8419 	 * searching the set using btf_id_set8_contains function work.
8420 	 *
8421 	 * For module sets, we need to allocate as we may need to relocate
8422 	 * BTF ids.
8423 	 */
8424 	set_cnt = set ? set->cnt : 0;
8425 
8426 	if (set_cnt > U32_MAX - add_set->cnt) {
8427 		ret = -EOVERFLOW;
8428 		goto end;
8429 	}
8430 
8431 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
8432 		ret = -E2BIG;
8433 		goto end;
8434 	}
8435 
8436 	/* Grow set */
8437 	set = krealloc(tab->sets[hook],
8438 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
8439 		       GFP_KERNEL | __GFP_NOWARN);
8440 	if (!set) {
8441 		ret = -ENOMEM;
8442 		goto end;
8443 	}
8444 
8445 	/* For newly allocated set, initialize set->cnt to 0 */
8446 	if (!tab->sets[hook])
8447 		set->cnt = 0;
8448 	tab->sets[hook] = set;
8449 
8450 	/* Concatenate the two sets */
8451 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
8452 	/* Now that the set is copied, update with relocated BTF ids */
8453 	for (i = set->cnt; i < set->cnt + add_set->cnt; i++)
8454 		set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id);
8455 
8456 	set->cnt += add_set->cnt;
8457 
8458 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
8459 
8460 	if (add_filter) {
8461 		hook_filter = &tab->hook_filters[hook];
8462 		hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
8463 	}
8464 	return 0;
8465 end:
8466 	btf_free_kfunc_set_tab(btf);
8467 	return ret;
8468 }
8469 
__btf_kfunc_id_set_contains(const struct btf * btf,enum btf_kfunc_hook hook,u32 kfunc_btf_id,const struct bpf_prog * prog)8470 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
8471 					enum btf_kfunc_hook hook,
8472 					u32 kfunc_btf_id,
8473 					const struct bpf_prog *prog)
8474 {
8475 	struct btf_kfunc_hook_filter *hook_filter;
8476 	struct btf_id_set8 *set;
8477 	u32 *id, i;
8478 
8479 	if (hook >= BTF_KFUNC_HOOK_MAX)
8480 		return NULL;
8481 	if (!btf->kfunc_set_tab)
8482 		return NULL;
8483 	hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
8484 	for (i = 0; i < hook_filter->nr_filters; i++) {
8485 		if (hook_filter->filters[i](prog, kfunc_btf_id))
8486 			return NULL;
8487 	}
8488 	set = btf->kfunc_set_tab->sets[hook];
8489 	if (!set)
8490 		return NULL;
8491 	id = btf_id_set8_contains(set, kfunc_btf_id);
8492 	if (!id)
8493 		return NULL;
8494 	/* The flags for BTF ID are located next to it */
8495 	return id + 1;
8496 }
8497 
bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)8498 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
8499 {
8500 	switch (prog_type) {
8501 	case BPF_PROG_TYPE_UNSPEC:
8502 		return BTF_KFUNC_HOOK_COMMON;
8503 	case BPF_PROG_TYPE_XDP:
8504 		return BTF_KFUNC_HOOK_XDP;
8505 	case BPF_PROG_TYPE_SCHED_CLS:
8506 		return BTF_KFUNC_HOOK_TC;
8507 	case BPF_PROG_TYPE_STRUCT_OPS:
8508 		return BTF_KFUNC_HOOK_STRUCT_OPS;
8509 	case BPF_PROG_TYPE_TRACING:
8510 	case BPF_PROG_TYPE_TRACEPOINT:
8511 	case BPF_PROG_TYPE_PERF_EVENT:
8512 	case BPF_PROG_TYPE_LSM:
8513 		return BTF_KFUNC_HOOK_TRACING;
8514 	case BPF_PROG_TYPE_SYSCALL:
8515 		return BTF_KFUNC_HOOK_SYSCALL;
8516 	case BPF_PROG_TYPE_CGROUP_SKB:
8517 	case BPF_PROG_TYPE_CGROUP_SOCK:
8518 	case BPF_PROG_TYPE_CGROUP_DEVICE:
8519 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8520 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8521 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
8522 		return BTF_KFUNC_HOOK_CGROUP;
8523 	case BPF_PROG_TYPE_SCHED_ACT:
8524 		return BTF_KFUNC_HOOK_SCHED_ACT;
8525 	case BPF_PROG_TYPE_SK_SKB:
8526 		return BTF_KFUNC_HOOK_SK_SKB;
8527 	case BPF_PROG_TYPE_SOCKET_FILTER:
8528 		return BTF_KFUNC_HOOK_SOCKET_FILTER;
8529 	case BPF_PROG_TYPE_LWT_OUT:
8530 	case BPF_PROG_TYPE_LWT_IN:
8531 	case BPF_PROG_TYPE_LWT_XMIT:
8532 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
8533 		return BTF_KFUNC_HOOK_LWT;
8534 	case BPF_PROG_TYPE_NETFILTER:
8535 		return BTF_KFUNC_HOOK_NETFILTER;
8536 	case BPF_PROG_TYPE_KPROBE:
8537 		return BTF_KFUNC_HOOK_KPROBE;
8538 	default:
8539 		return BTF_KFUNC_HOOK_MAX;
8540 	}
8541 }
8542 
8543 /* Caution:
8544  * Reference to the module (obtained using btf_try_get_module) corresponding to
8545  * the struct btf *MUST* be held when calling this function from verifier
8546  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
8547  * keeping the reference for the duration of the call provides the necessary
8548  * protection for looking up a well-formed btf->kfunc_set_tab.
8549  */
btf_kfunc_id_set_contains(const struct btf * btf,u32 kfunc_btf_id,const struct bpf_prog * prog)8550 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
8551 			       u32 kfunc_btf_id,
8552 			       const struct bpf_prog *prog)
8553 {
8554 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
8555 	enum btf_kfunc_hook hook;
8556 	u32 *kfunc_flags;
8557 
8558 	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
8559 	if (kfunc_flags)
8560 		return kfunc_flags;
8561 
8562 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8563 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
8564 }
8565 
btf_kfunc_is_modify_return(const struct btf * btf,u32 kfunc_btf_id,const struct bpf_prog * prog)8566 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8567 				const struct bpf_prog *prog)
8568 {
8569 	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
8570 }
8571 
__register_btf_kfunc_id_set(enum btf_kfunc_hook hook,const struct btf_kfunc_id_set * kset)8572 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8573 				       const struct btf_kfunc_id_set *kset)
8574 {
8575 	struct btf *btf;
8576 	int ret, i;
8577 
8578 	btf = btf_get_module_btf(kset->owner);
8579 	if (!btf)
8580 		return check_btf_kconfigs(kset->owner, "kfunc");
8581 	if (IS_ERR(btf))
8582 		return PTR_ERR(btf);
8583 
8584 	for (i = 0; i < kset->set->cnt; i++) {
8585 		ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id),
8586 					     kset->set->pairs[i].flags);
8587 		if (ret)
8588 			goto err_out;
8589 	}
8590 
8591 	ret = btf_populate_kfunc_set(btf, hook, kset);
8592 
8593 err_out:
8594 	btf_put(btf);
8595 	return ret;
8596 }
8597 
8598 /* This function must be invoked only from initcalls/module init functions */
register_btf_kfunc_id_set(enum bpf_prog_type prog_type,const struct btf_kfunc_id_set * kset)8599 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8600 			      const struct btf_kfunc_id_set *kset)
8601 {
8602 	enum btf_kfunc_hook hook;
8603 
8604 	/* All kfuncs need to be tagged as such in BTF.
8605 	 * WARN() for initcall registrations that do not check errors.
8606 	 */
8607 	if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
8608 		WARN_ON(!kset->owner);
8609 		return -EINVAL;
8610 	}
8611 
8612 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8613 	return __register_btf_kfunc_id_set(hook, kset);
8614 }
8615 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8616 
8617 /* This function must be invoked only from initcalls/module init functions */
register_btf_fmodret_id_set(const struct btf_kfunc_id_set * kset)8618 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8619 {
8620 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
8621 }
8622 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8623 
btf_find_dtor_kfunc(struct btf * btf,u32 btf_id)8624 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8625 {
8626 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8627 	struct btf_id_dtor_kfunc *dtor;
8628 
8629 	if (!tab)
8630 		return -ENOENT;
8631 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8632 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8633 	 */
8634 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8635 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8636 	if (!dtor)
8637 		return -ENOENT;
8638 	return dtor->kfunc_btf_id;
8639 }
8640 
btf_check_dtor_kfuncs(struct btf * btf,const struct btf_id_dtor_kfunc * dtors,u32 cnt)8641 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8642 {
8643 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
8644 	const struct btf_param *args;
8645 	s32 dtor_btf_id;
8646 	u32 nr_args, i;
8647 
8648 	for (i = 0; i < cnt; i++) {
8649 		dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id);
8650 
8651 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
8652 		if (!dtor_func || !btf_type_is_func(dtor_func))
8653 			return -EINVAL;
8654 
8655 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8656 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8657 			return -EINVAL;
8658 
8659 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8660 		t = btf_type_by_id(btf, dtor_func_proto->type);
8661 		if (!t || !btf_type_is_void(t))
8662 			return -EINVAL;
8663 
8664 		nr_args = btf_type_vlen(dtor_func_proto);
8665 		if (nr_args != 1)
8666 			return -EINVAL;
8667 		args = btf_params(dtor_func_proto);
8668 		t = btf_type_by_id(btf, args[0].type);
8669 		/* Allow any pointer type, as width on targets Linux supports
8670 		 * will be same for all pointer types (i.e. sizeof(void *))
8671 		 */
8672 		if (!t || !btf_type_is_ptr(t))
8673 			return -EINVAL;
8674 	}
8675 	return 0;
8676 }
8677 
8678 /* This function must be invoked only from initcalls/module init functions */
register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc * dtors,u32 add_cnt,struct module * owner)8679 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8680 				struct module *owner)
8681 {
8682 	struct btf_id_dtor_kfunc_tab *tab;
8683 	struct btf *btf;
8684 	u32 tab_cnt, i;
8685 	int ret;
8686 
8687 	btf = btf_get_module_btf(owner);
8688 	if (!btf)
8689 		return check_btf_kconfigs(owner, "dtor kfuncs");
8690 	if (IS_ERR(btf))
8691 		return PTR_ERR(btf);
8692 
8693 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8694 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8695 		ret = -E2BIG;
8696 		goto end;
8697 	}
8698 
8699 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
8700 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8701 	if (ret < 0)
8702 		goto end;
8703 
8704 	tab = btf->dtor_kfunc_tab;
8705 	/* Only one call allowed for modules */
8706 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8707 		ret = -EINVAL;
8708 		goto end;
8709 	}
8710 
8711 	tab_cnt = tab ? tab->cnt : 0;
8712 	if (tab_cnt > U32_MAX - add_cnt) {
8713 		ret = -EOVERFLOW;
8714 		goto end;
8715 	}
8716 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8717 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8718 		ret = -E2BIG;
8719 		goto end;
8720 	}
8721 
8722 	tab = krealloc(btf->dtor_kfunc_tab,
8723 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8724 		       GFP_KERNEL | __GFP_NOWARN);
8725 	if (!tab) {
8726 		ret = -ENOMEM;
8727 		goto end;
8728 	}
8729 
8730 	if (!btf->dtor_kfunc_tab)
8731 		tab->cnt = 0;
8732 	btf->dtor_kfunc_tab = tab;
8733 
8734 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8735 
8736 	/* remap BTF ids based on BTF relocation (if any) */
8737 	for (i = tab_cnt; i < tab_cnt + add_cnt; i++) {
8738 		tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id);
8739 		tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id);
8740 	}
8741 
8742 	tab->cnt += add_cnt;
8743 
8744 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8745 
8746 end:
8747 	if (ret)
8748 		btf_free_dtor_kfunc_tab(btf);
8749 	btf_put(btf);
8750 	return ret;
8751 }
8752 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8753 
8754 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8755 
8756 /* Check local and target types for compatibility. This check is used for
8757  * type-based CO-RE relocations and follow slightly different rules than
8758  * field-based relocations. This function assumes that root types were already
8759  * checked for name match. Beyond that initial root-level name check, names
8760  * are completely ignored. Compatibility rules are as follows:
8761  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8762  *     kind should match for local and target types (i.e., STRUCT is not
8763  *     compatible with UNION);
8764  *   - for ENUMs/ENUM64s, the size is ignored;
8765  *   - for INT, size and signedness are ignored;
8766  *   - for ARRAY, dimensionality is ignored, element types are checked for
8767  *     compatibility recursively;
8768  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
8769  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8770  *   - FUNC_PROTOs are compatible if they have compatible signature: same
8771  *     number of input args and compatible return and argument types.
8772  * These rules are not set in stone and probably will be adjusted as we get
8773  * more experience with using BPF CO-RE relocations.
8774  */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)8775 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8776 			      const struct btf *targ_btf, __u32 targ_id)
8777 {
8778 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8779 					   MAX_TYPES_ARE_COMPAT_DEPTH);
8780 }
8781 
8782 #define MAX_TYPES_MATCH_DEPTH 2
8783 
bpf_core_types_match(const struct btf * local_btf,u32 local_id,const struct btf * targ_btf,u32 targ_id)8784 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8785 			 const struct btf *targ_btf, u32 targ_id)
8786 {
8787 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8788 				      MAX_TYPES_MATCH_DEPTH);
8789 }
8790 
bpf_core_is_flavor_sep(const char * s)8791 static bool bpf_core_is_flavor_sep(const char *s)
8792 {
8793 	/* check X___Y name pattern, where X and Y are not underscores */
8794 	return s[0] != '_' &&				      /* X */
8795 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
8796 	       s[4] != '_';				      /* Y */
8797 }
8798 
bpf_core_essential_name_len(const char * name)8799 size_t bpf_core_essential_name_len(const char *name)
8800 {
8801 	size_t n = strlen(name);
8802 	int i;
8803 
8804 	for (i = n - 5; i >= 0; i--) {
8805 		if (bpf_core_is_flavor_sep(name + i))
8806 			return i + 1;
8807 	}
8808 	return n;
8809 }
8810 
bpf_free_cands(struct bpf_cand_cache * cands)8811 static void bpf_free_cands(struct bpf_cand_cache *cands)
8812 {
8813 	if (!cands->cnt)
8814 		/* empty candidate array was allocated on stack */
8815 		return;
8816 	kfree(cands);
8817 }
8818 
bpf_free_cands_from_cache(struct bpf_cand_cache * cands)8819 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8820 {
8821 	kfree(cands->name);
8822 	kfree(cands);
8823 }
8824 
8825 #define VMLINUX_CAND_CACHE_SIZE 31
8826 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8827 
8828 #define MODULE_CAND_CACHE_SIZE 31
8829 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8830 
__print_cand_cache(struct bpf_verifier_log * log,struct bpf_cand_cache ** cache,int cache_size)8831 static void __print_cand_cache(struct bpf_verifier_log *log,
8832 			       struct bpf_cand_cache **cache,
8833 			       int cache_size)
8834 {
8835 	struct bpf_cand_cache *cc;
8836 	int i, j;
8837 
8838 	for (i = 0; i < cache_size; i++) {
8839 		cc = cache[i];
8840 		if (!cc)
8841 			continue;
8842 		bpf_log(log, "[%d]%s(", i, cc->name);
8843 		for (j = 0; j < cc->cnt; j++) {
8844 			bpf_log(log, "%d", cc->cands[j].id);
8845 			if (j < cc->cnt - 1)
8846 				bpf_log(log, " ");
8847 		}
8848 		bpf_log(log, "), ");
8849 	}
8850 }
8851 
print_cand_cache(struct bpf_verifier_log * log)8852 static void print_cand_cache(struct bpf_verifier_log *log)
8853 {
8854 	mutex_lock(&cand_cache_mutex);
8855 	bpf_log(log, "vmlinux_cand_cache:");
8856 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8857 	bpf_log(log, "\nmodule_cand_cache:");
8858 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8859 	bpf_log(log, "\n");
8860 	mutex_unlock(&cand_cache_mutex);
8861 }
8862 
hash_cands(struct bpf_cand_cache * cands)8863 static u32 hash_cands(struct bpf_cand_cache *cands)
8864 {
8865 	return jhash(cands->name, cands->name_len, 0);
8866 }
8867 
check_cand_cache(struct bpf_cand_cache * cands,struct bpf_cand_cache ** cache,int cache_size)8868 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8869 					       struct bpf_cand_cache **cache,
8870 					       int cache_size)
8871 {
8872 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8873 
8874 	if (cc && cc->name_len == cands->name_len &&
8875 	    !strncmp(cc->name, cands->name, cands->name_len))
8876 		return cc;
8877 	return NULL;
8878 }
8879 
sizeof_cands(int cnt)8880 static size_t sizeof_cands(int cnt)
8881 {
8882 	return offsetof(struct bpf_cand_cache, cands[cnt]);
8883 }
8884 
populate_cand_cache(struct bpf_cand_cache * cands,struct bpf_cand_cache ** cache,int cache_size)8885 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8886 						  struct bpf_cand_cache **cache,
8887 						  int cache_size)
8888 {
8889 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8890 
8891 	if (*cc) {
8892 		bpf_free_cands_from_cache(*cc);
8893 		*cc = NULL;
8894 	}
8895 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8896 	if (!new_cands) {
8897 		bpf_free_cands(cands);
8898 		return ERR_PTR(-ENOMEM);
8899 	}
8900 	/* strdup the name, since it will stay in cache.
8901 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8902 	 */
8903 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8904 	bpf_free_cands(cands);
8905 	if (!new_cands->name) {
8906 		kfree(new_cands);
8907 		return ERR_PTR(-ENOMEM);
8908 	}
8909 	*cc = new_cands;
8910 	return new_cands;
8911 }
8912 
8913 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
__purge_cand_cache(struct btf * btf,struct bpf_cand_cache ** cache,int cache_size)8914 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8915 			       int cache_size)
8916 {
8917 	struct bpf_cand_cache *cc;
8918 	int i, j;
8919 
8920 	for (i = 0; i < cache_size; i++) {
8921 		cc = cache[i];
8922 		if (!cc)
8923 			continue;
8924 		if (!btf) {
8925 			/* when new module is loaded purge all of module_cand_cache,
8926 			 * since new module might have candidates with the name
8927 			 * that matches cached cands.
8928 			 */
8929 			bpf_free_cands_from_cache(cc);
8930 			cache[i] = NULL;
8931 			continue;
8932 		}
8933 		/* when module is unloaded purge cache entries
8934 		 * that match module's btf
8935 		 */
8936 		for (j = 0; j < cc->cnt; j++)
8937 			if (cc->cands[j].btf == btf) {
8938 				bpf_free_cands_from_cache(cc);
8939 				cache[i] = NULL;
8940 				break;
8941 			}
8942 	}
8943 
8944 }
8945 
purge_cand_cache(struct btf * btf)8946 static void purge_cand_cache(struct btf *btf)
8947 {
8948 	mutex_lock(&cand_cache_mutex);
8949 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8950 	mutex_unlock(&cand_cache_mutex);
8951 }
8952 #endif
8953 
8954 static struct bpf_cand_cache *
bpf_core_add_cands(struct bpf_cand_cache * cands,const struct btf * targ_btf,int targ_start_id)8955 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8956 		   int targ_start_id)
8957 {
8958 	struct bpf_cand_cache *new_cands;
8959 	const struct btf_type *t;
8960 	const char *targ_name;
8961 	size_t targ_essent_len;
8962 	int n, i;
8963 
8964 	n = btf_nr_types(targ_btf);
8965 	for (i = targ_start_id; i < n; i++) {
8966 		t = btf_type_by_id(targ_btf, i);
8967 		if (btf_kind(t) != cands->kind)
8968 			continue;
8969 
8970 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8971 		if (!targ_name)
8972 			continue;
8973 
8974 		/* the resched point is before strncmp to make sure that search
8975 		 * for non-existing name will have a chance to schedule().
8976 		 */
8977 		cond_resched();
8978 
8979 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8980 			continue;
8981 
8982 		targ_essent_len = bpf_core_essential_name_len(targ_name);
8983 		if (targ_essent_len != cands->name_len)
8984 			continue;
8985 
8986 		/* most of the time there is only one candidate for a given kind+name pair */
8987 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8988 		if (!new_cands) {
8989 			bpf_free_cands(cands);
8990 			return ERR_PTR(-ENOMEM);
8991 		}
8992 
8993 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8994 		bpf_free_cands(cands);
8995 		cands = new_cands;
8996 		cands->cands[cands->cnt].btf = targ_btf;
8997 		cands->cands[cands->cnt].id = i;
8998 		cands->cnt++;
8999 	}
9000 	return cands;
9001 }
9002 
9003 static struct bpf_cand_cache *
bpf_core_find_cands(struct bpf_core_ctx * ctx,u32 local_type_id)9004 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
9005 {
9006 	struct bpf_cand_cache *cands, *cc, local_cand = {};
9007 	const struct btf *local_btf = ctx->btf;
9008 	const struct btf_type *local_type;
9009 	const struct btf *main_btf;
9010 	size_t local_essent_len;
9011 	struct btf *mod_btf;
9012 	const char *name;
9013 	int id;
9014 
9015 	main_btf = bpf_get_btf_vmlinux();
9016 	if (IS_ERR(main_btf))
9017 		return ERR_CAST(main_btf);
9018 	if (!main_btf)
9019 		return ERR_PTR(-EINVAL);
9020 
9021 	local_type = btf_type_by_id(local_btf, local_type_id);
9022 	if (!local_type)
9023 		return ERR_PTR(-EINVAL);
9024 
9025 	name = btf_name_by_offset(local_btf, local_type->name_off);
9026 	if (str_is_empty(name))
9027 		return ERR_PTR(-EINVAL);
9028 	local_essent_len = bpf_core_essential_name_len(name);
9029 
9030 	cands = &local_cand;
9031 	cands->name = name;
9032 	cands->kind = btf_kind(local_type);
9033 	cands->name_len = local_essent_len;
9034 
9035 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9036 	/* cands is a pointer to stack here */
9037 	if (cc) {
9038 		if (cc->cnt)
9039 			return cc;
9040 		goto check_modules;
9041 	}
9042 
9043 	/* Attempt to find target candidates in vmlinux BTF first */
9044 	cands = bpf_core_add_cands(cands, main_btf, 1);
9045 	if (IS_ERR(cands))
9046 		return ERR_CAST(cands);
9047 
9048 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
9049 
9050 	/* populate cache even when cands->cnt == 0 */
9051 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9052 	if (IS_ERR(cc))
9053 		return ERR_CAST(cc);
9054 
9055 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
9056 	if (cc->cnt)
9057 		return cc;
9058 
9059 check_modules:
9060 	/* cands is a pointer to stack here and cands->cnt == 0 */
9061 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9062 	if (cc)
9063 		/* if cache has it return it even if cc->cnt == 0 */
9064 		return cc;
9065 
9066 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
9067 	spin_lock_bh(&btf_idr_lock);
9068 	idr_for_each_entry(&btf_idr, mod_btf, id) {
9069 		if (!btf_is_module(mod_btf))
9070 			continue;
9071 		/* linear search could be slow hence unlock/lock
9072 		 * the IDR to avoiding holding it for too long
9073 		 */
9074 		btf_get(mod_btf);
9075 		spin_unlock_bh(&btf_idr_lock);
9076 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
9077 		btf_put(mod_btf);
9078 		if (IS_ERR(cands))
9079 			return ERR_CAST(cands);
9080 		spin_lock_bh(&btf_idr_lock);
9081 	}
9082 	spin_unlock_bh(&btf_idr_lock);
9083 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
9084 	 * or pointer to stack if cands->cnd == 0.
9085 	 * Copy it into the cache even when cands->cnt == 0 and
9086 	 * return the result.
9087 	 */
9088 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9089 }
9090 
bpf_core_apply(struct bpf_core_ctx * ctx,const struct bpf_core_relo * relo,int relo_idx,void * insn)9091 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
9092 		   int relo_idx, void *insn)
9093 {
9094 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
9095 	struct bpf_core_cand_list cands = {};
9096 	struct bpf_core_relo_res targ_res;
9097 	struct bpf_core_spec *specs;
9098 	const struct btf_type *type;
9099 	int err;
9100 
9101 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
9102 	 * into arrays of btf_ids of struct fields and array indices.
9103 	 */
9104 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
9105 	if (!specs)
9106 		return -ENOMEM;
9107 
9108 	type = btf_type_by_id(ctx->btf, relo->type_id);
9109 	if (!type) {
9110 		bpf_log(ctx->log, "relo #%u: bad type id %u\n",
9111 			relo_idx, relo->type_id);
9112 		kfree(specs);
9113 		return -EINVAL;
9114 	}
9115 
9116 	if (need_cands) {
9117 		struct bpf_cand_cache *cc;
9118 		int i;
9119 
9120 		mutex_lock(&cand_cache_mutex);
9121 		cc = bpf_core_find_cands(ctx, relo->type_id);
9122 		if (IS_ERR(cc)) {
9123 			bpf_log(ctx->log, "target candidate search failed for %d\n",
9124 				relo->type_id);
9125 			err = PTR_ERR(cc);
9126 			goto out;
9127 		}
9128 		if (cc->cnt) {
9129 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
9130 			if (!cands.cands) {
9131 				err = -ENOMEM;
9132 				goto out;
9133 			}
9134 		}
9135 		for (i = 0; i < cc->cnt; i++) {
9136 			bpf_log(ctx->log,
9137 				"CO-RE relocating %s %s: found target candidate [%d]\n",
9138 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
9139 			cands.cands[i].btf = cc->cands[i].btf;
9140 			cands.cands[i].id = cc->cands[i].id;
9141 		}
9142 		cands.len = cc->cnt;
9143 		/* cand_cache_mutex needs to span the cache lookup and
9144 		 * copy of btf pointer into bpf_core_cand_list,
9145 		 * since module can be unloaded while bpf_core_calc_relo_insn
9146 		 * is working with module's btf.
9147 		 */
9148 	}
9149 
9150 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
9151 				      &targ_res);
9152 	if (err)
9153 		goto out;
9154 
9155 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
9156 				  &targ_res);
9157 
9158 out:
9159 	kfree(specs);
9160 	if (need_cands) {
9161 		kfree(cands.cands);
9162 		mutex_unlock(&cand_cache_mutex);
9163 		if (ctx->log->level & BPF_LOG_LEVEL2)
9164 			print_cand_cache(ctx->log);
9165 	}
9166 	return err;
9167 }
9168 
btf_nested_type_is_trusted(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,const char * field_name,u32 btf_id,const char * suffix)9169 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
9170 				const struct bpf_reg_state *reg,
9171 				const char *field_name, u32 btf_id, const char *suffix)
9172 {
9173 	struct btf *btf = reg->btf;
9174 	const struct btf_type *walk_type, *safe_type;
9175 	const char *tname;
9176 	char safe_tname[64];
9177 	long ret, safe_id;
9178 	const struct btf_member *member;
9179 	u32 i;
9180 
9181 	walk_type = btf_type_by_id(btf, reg->btf_id);
9182 	if (!walk_type)
9183 		return false;
9184 
9185 	tname = btf_name_by_offset(btf, walk_type->name_off);
9186 
9187 	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
9188 	if (ret >= sizeof(safe_tname))
9189 		return false;
9190 
9191 	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
9192 	if (safe_id < 0)
9193 		return false;
9194 
9195 	safe_type = btf_type_by_id(btf, safe_id);
9196 	if (!safe_type)
9197 		return false;
9198 
9199 	for_each_member(i, safe_type, member) {
9200 		const char *m_name = __btf_name_by_offset(btf, member->name_off);
9201 		const struct btf_type *mtype = btf_type_by_id(btf, member->type);
9202 		u32 id;
9203 
9204 		if (!btf_type_is_ptr(mtype))
9205 			continue;
9206 
9207 		btf_type_skip_modifiers(btf, mtype->type, &id);
9208 		/* If we match on both type and name, the field is considered trusted. */
9209 		if (btf_id == id && !strcmp(field_name, m_name))
9210 			return true;
9211 	}
9212 
9213 	return false;
9214 }
9215 
btf_type_ids_nocast_alias(struct bpf_verifier_log * log,const struct btf * reg_btf,u32 reg_id,const struct btf * arg_btf,u32 arg_id)9216 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
9217 			       const struct btf *reg_btf, u32 reg_id,
9218 			       const struct btf *arg_btf, u32 arg_id)
9219 {
9220 	const char *reg_name, *arg_name, *search_needle;
9221 	const struct btf_type *reg_type, *arg_type;
9222 	int reg_len, arg_len, cmp_len;
9223 	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
9224 
9225 	reg_type = btf_type_by_id(reg_btf, reg_id);
9226 	if (!reg_type)
9227 		return false;
9228 
9229 	arg_type = btf_type_by_id(arg_btf, arg_id);
9230 	if (!arg_type)
9231 		return false;
9232 
9233 	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
9234 	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
9235 
9236 	reg_len = strlen(reg_name);
9237 	arg_len = strlen(arg_name);
9238 
9239 	/* Exactly one of the two type names may be suffixed with ___init, so
9240 	 * if the strings are the same size, they can't possibly be no-cast
9241 	 * aliases of one another. If you have two of the same type names, e.g.
9242 	 * they're both nf_conn___init, it would be improper to return true
9243 	 * because they are _not_ no-cast aliases, they are the same type.
9244 	 */
9245 	if (reg_len == arg_len)
9246 		return false;
9247 
9248 	/* Either of the two names must be the other name, suffixed with ___init. */
9249 	if ((reg_len != arg_len + pattern_len) &&
9250 	    (arg_len != reg_len + pattern_len))
9251 		return false;
9252 
9253 	if (reg_len < arg_len) {
9254 		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
9255 		cmp_len = reg_len;
9256 	} else {
9257 		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
9258 		cmp_len = arg_len;
9259 	}
9260 
9261 	if (!search_needle)
9262 		return false;
9263 
9264 	/* ___init suffix must come at the end of the name */
9265 	if (*(search_needle + pattern_len) != '\0')
9266 		return false;
9267 
9268 	return !strncmp(reg_name, arg_name, cmp_len);
9269 }
9270 
9271 #ifdef CONFIG_BPF_JIT
9272 static int
btf_add_struct_ops(struct btf * btf,struct bpf_struct_ops * st_ops,struct bpf_verifier_log * log)9273 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
9274 		   struct bpf_verifier_log *log)
9275 {
9276 	struct btf_struct_ops_tab *tab, *new_tab;
9277 	int i, err;
9278 
9279 	tab = btf->struct_ops_tab;
9280 	if (!tab) {
9281 		tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]),
9282 			      GFP_KERNEL);
9283 		if (!tab)
9284 			return -ENOMEM;
9285 		tab->capacity = 4;
9286 		btf->struct_ops_tab = tab;
9287 	}
9288 
9289 	for (i = 0; i < tab->cnt; i++)
9290 		if (tab->ops[i].st_ops == st_ops)
9291 			return -EEXIST;
9292 
9293 	if (tab->cnt == tab->capacity) {
9294 		new_tab = krealloc(tab,
9295 				   offsetof(struct btf_struct_ops_tab,
9296 					    ops[tab->capacity * 2]),
9297 				   GFP_KERNEL);
9298 		if (!new_tab)
9299 			return -ENOMEM;
9300 		tab = new_tab;
9301 		tab->capacity *= 2;
9302 		btf->struct_ops_tab = tab;
9303 	}
9304 
9305 	tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
9306 
9307 	err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
9308 	if (err)
9309 		return err;
9310 
9311 	btf->struct_ops_tab->cnt++;
9312 
9313 	return 0;
9314 }
9315 
9316 const struct bpf_struct_ops_desc *
bpf_struct_ops_find_value(struct btf * btf,u32 value_id)9317 bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
9318 {
9319 	const struct bpf_struct_ops_desc *st_ops_list;
9320 	unsigned int i;
9321 	u32 cnt;
9322 
9323 	if (!value_id)
9324 		return NULL;
9325 	if (!btf->struct_ops_tab)
9326 		return NULL;
9327 
9328 	cnt = btf->struct_ops_tab->cnt;
9329 	st_ops_list = btf->struct_ops_tab->ops;
9330 	for (i = 0; i < cnt; i++) {
9331 		if (st_ops_list[i].value_id == value_id)
9332 			return &st_ops_list[i];
9333 	}
9334 
9335 	return NULL;
9336 }
9337 
9338 const struct bpf_struct_ops_desc *
bpf_struct_ops_find(struct btf * btf,u32 type_id)9339 bpf_struct_ops_find(struct btf *btf, u32 type_id)
9340 {
9341 	const struct bpf_struct_ops_desc *st_ops_list;
9342 	unsigned int i;
9343 	u32 cnt;
9344 
9345 	if (!type_id)
9346 		return NULL;
9347 	if (!btf->struct_ops_tab)
9348 		return NULL;
9349 
9350 	cnt = btf->struct_ops_tab->cnt;
9351 	st_ops_list = btf->struct_ops_tab->ops;
9352 	for (i = 0; i < cnt; i++) {
9353 		if (st_ops_list[i].type_id == type_id)
9354 			return &st_ops_list[i];
9355 	}
9356 
9357 	return NULL;
9358 }
9359 
__register_bpf_struct_ops(struct bpf_struct_ops * st_ops)9360 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
9361 {
9362 	struct bpf_verifier_log *log;
9363 	struct btf *btf;
9364 	int err = 0;
9365 
9366 	btf = btf_get_module_btf(st_ops->owner);
9367 	if (!btf)
9368 		return check_btf_kconfigs(st_ops->owner, "struct_ops");
9369 	if (IS_ERR(btf))
9370 		return PTR_ERR(btf);
9371 
9372 	log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
9373 	if (!log) {
9374 		err = -ENOMEM;
9375 		goto errout;
9376 	}
9377 
9378 	log->level = BPF_LOG_KERNEL;
9379 
9380 	err = btf_add_struct_ops(btf, st_ops, log);
9381 
9382 errout:
9383 	kfree(log);
9384 	btf_put(btf);
9385 
9386 	return err;
9387 }
9388 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
9389 #endif
9390 
btf_param_match_suffix(const struct btf * btf,const struct btf_param * arg,const char * suffix)9391 bool btf_param_match_suffix(const struct btf *btf,
9392 			    const struct btf_param *arg,
9393 			    const char *suffix)
9394 {
9395 	int suffix_len = strlen(suffix), len;
9396 	const char *param_name;
9397 
9398 	/* In the future, this can be ported to use BTF tagging */
9399 	param_name = btf_name_by_offset(btf, arg->name_off);
9400 	if (str_is_empty(param_name))
9401 		return false;
9402 	len = strlen(param_name);
9403 	if (len <= suffix_len)
9404 		return false;
9405 	param_name += len - suffix_len;
9406 	return !strncmp(param_name, suffix, suffix_len);
9407 }
9408