• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/bpf.h>
26 #include <linux/btf.h>
27 #include <linux/objtool.h>
28 #include <linux/overflow.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 #include <linux/nospec.h>
38 #include <linux/bpf_mem_alloc.h>
39 #include <linux/memcontrol.h>
40 #include <linux/execmem.h>
41 
42 #include <asm/barrier.h>
43 #include <linux/unaligned.h>
44 
45 /* Registers */
46 #define BPF_R0	regs[BPF_REG_0]
47 #define BPF_R1	regs[BPF_REG_1]
48 #define BPF_R2	regs[BPF_REG_2]
49 #define BPF_R3	regs[BPF_REG_3]
50 #define BPF_R4	regs[BPF_REG_4]
51 #define BPF_R5	regs[BPF_REG_5]
52 #define BPF_R6	regs[BPF_REG_6]
53 #define BPF_R7	regs[BPF_REG_7]
54 #define BPF_R8	regs[BPF_REG_8]
55 #define BPF_R9	regs[BPF_REG_9]
56 #define BPF_R10	regs[BPF_REG_10]
57 
58 /* Named registers */
59 #define DST	regs[insn->dst_reg]
60 #define SRC	regs[insn->src_reg]
61 #define FP	regs[BPF_REG_FP]
62 #define AX	regs[BPF_REG_AX]
63 #define ARG1	regs[BPF_REG_ARG1]
64 #define CTX	regs[BPF_REG_CTX]
65 #define OFF	insn->off
66 #define IMM	insn->imm
67 
68 struct bpf_mem_alloc bpf_global_ma;
69 bool bpf_global_ma_set;
70 
71 /* No hurry in this branch
72  *
73  * Exported for the bpf jit load helper.
74  */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)75 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
76 {
77 	u8 *ptr = NULL;
78 
79 	if (k >= SKF_NET_OFF) {
80 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
81 	} else if (k >= SKF_LL_OFF) {
82 		if (unlikely(!skb_mac_header_was_set(skb)))
83 			return NULL;
84 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
85 	}
86 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
87 		return ptr;
88 
89 	return NULL;
90 }
91 
92 /*
93  * Android uses __PAGE_SIZE for larger than 4KB base page size emulation
94  * on x86_64. Undef this to avoid conflicts with bpf core's usage of
95  * __PAGE_SIZE in this compilation unit.
96  */
97 #ifdef __PAGE_SIZE
98 #undef __PAGE_SIZE
99 #endif
100 
101 /* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */
102 enum page_size_enum {
103 	__PAGE_SIZE = PAGE_SIZE
104 };
105 
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)106 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
107 {
108 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
109 	struct bpf_prog_aux *aux;
110 	struct bpf_prog *fp;
111 
112 	size = round_up(size, __PAGE_SIZE);
113 	fp = __vmalloc(size, gfp_flags);
114 	if (fp == NULL)
115 		return NULL;
116 
117 	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
118 	if (aux == NULL) {
119 		vfree(fp);
120 		return NULL;
121 	}
122 	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
123 	if (!fp->active) {
124 		vfree(fp);
125 		kfree(aux);
126 		return NULL;
127 	}
128 
129 	fp->pages = size / PAGE_SIZE;
130 	fp->aux = aux;
131 	fp->aux->prog = fp;
132 	fp->jit_requested = ebpf_jit_enabled();
133 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
134 #ifdef CONFIG_CGROUP_BPF
135 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
136 #endif
137 
138 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
139 #ifdef CONFIG_FINEIBT
140 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
141 #endif
142 	mutex_init(&fp->aux->used_maps_mutex);
143 	mutex_init(&fp->aux->ext_mutex);
144 	mutex_init(&fp->aux->dst_mutex);
145 
146 	return fp;
147 }
148 
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)149 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
150 {
151 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
152 	struct bpf_prog *prog;
153 	int cpu;
154 
155 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
156 	if (!prog)
157 		return NULL;
158 
159 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
160 	if (!prog->stats) {
161 		free_percpu(prog->active);
162 		kfree(prog->aux);
163 		vfree(prog);
164 		return NULL;
165 	}
166 
167 	for_each_possible_cpu(cpu) {
168 		struct bpf_prog_stats *pstats;
169 
170 		pstats = per_cpu_ptr(prog->stats, cpu);
171 		u64_stats_init(&pstats->syncp);
172 	}
173 	return prog;
174 }
175 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
176 
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)177 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
178 {
179 	if (!prog->aux->nr_linfo || !prog->jit_requested)
180 		return 0;
181 
182 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
183 					  sizeof(*prog->aux->jited_linfo),
184 					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
185 	if (!prog->aux->jited_linfo)
186 		return -ENOMEM;
187 
188 	return 0;
189 }
190 
bpf_prog_jit_attempt_done(struct bpf_prog * prog)191 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
192 {
193 	if (prog->aux->jited_linfo &&
194 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
195 		kvfree(prog->aux->jited_linfo);
196 		prog->aux->jited_linfo = NULL;
197 	}
198 
199 	kfree(prog->aux->kfunc_tab);
200 	prog->aux->kfunc_tab = NULL;
201 }
202 
203 /* The jit engine is responsible to provide an array
204  * for insn_off to the jited_off mapping (insn_to_jit_off).
205  *
206  * The idx to this array is the insn_off.  Hence, the insn_off
207  * here is relative to the prog itself instead of the main prog.
208  * This array has one entry for each xlated bpf insn.
209  *
210  * jited_off is the byte off to the end of the jited insn.
211  *
212  * Hence, with
213  * insn_start:
214  *      The first bpf insn off of the prog.  The insn off
215  *      here is relative to the main prog.
216  *      e.g. if prog is a subprog, insn_start > 0
217  * linfo_idx:
218  *      The prog's idx to prog->aux->linfo and jited_linfo
219  *
220  * jited_linfo[linfo_idx] = prog->bpf_func
221  *
222  * For i > linfo_idx,
223  *
224  * jited_linfo[i] = prog->bpf_func +
225  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
226  */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)227 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
228 			       const u32 *insn_to_jit_off)
229 {
230 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
231 	const struct bpf_line_info *linfo;
232 	void **jited_linfo;
233 
234 	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
235 		/* Userspace did not provide linfo */
236 		return;
237 
238 	linfo_idx = prog->aux->linfo_idx;
239 	linfo = &prog->aux->linfo[linfo_idx];
240 	insn_start = linfo[0].insn_off;
241 	insn_end = insn_start + prog->len;
242 
243 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
244 	jited_linfo[0] = prog->bpf_func;
245 
246 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
247 
248 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
249 		/* The verifier ensures that linfo[i].insn_off is
250 		 * strictly increasing
251 		 */
252 		jited_linfo[i] = prog->bpf_func +
253 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
254 }
255 
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)256 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
257 				  gfp_t gfp_extra_flags)
258 {
259 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
260 	struct bpf_prog *fp;
261 	u32 pages;
262 
263 	size = round_up(size, PAGE_SIZE);
264 	pages = size / PAGE_SIZE;
265 	if (pages <= fp_old->pages)
266 		return fp_old;
267 
268 	fp = __vmalloc(size, gfp_flags);
269 	if (fp) {
270 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
271 		fp->pages = pages;
272 		fp->aux->prog = fp;
273 
274 		/* We keep fp->aux from fp_old around in the new
275 		 * reallocated structure.
276 		 */
277 		fp_old->aux = NULL;
278 		fp_old->stats = NULL;
279 		fp_old->active = NULL;
280 		__bpf_prog_free(fp_old);
281 	}
282 
283 	return fp;
284 }
285 
__bpf_prog_free(struct bpf_prog * fp)286 void __bpf_prog_free(struct bpf_prog *fp)
287 {
288 	if (fp->aux) {
289 		mutex_destroy(&fp->aux->used_maps_mutex);
290 		mutex_destroy(&fp->aux->dst_mutex);
291 		kfree(fp->aux->poke_tab);
292 		kfree(fp->aux);
293 	}
294 	free_percpu(fp->stats);
295 	free_percpu(fp->active);
296 	vfree(fp);
297 }
298 
bpf_prog_calc_tag(struct bpf_prog * fp)299 int bpf_prog_calc_tag(struct bpf_prog *fp)
300 {
301 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
302 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
303 	u32 digest[SHA1_DIGEST_WORDS];
304 	u32 ws[SHA1_WORKSPACE_WORDS];
305 	u32 i, bsize, psize, blocks;
306 	struct bpf_insn *dst;
307 	bool was_ld_map;
308 	u8 *raw, *todo;
309 	__be32 *result;
310 	__be64 *bits;
311 
312 	raw = vmalloc(raw_size);
313 	if (!raw)
314 		return -ENOMEM;
315 
316 	sha1_init(digest);
317 	memset(ws, 0, sizeof(ws));
318 
319 	/* We need to take out the map fd for the digest calculation
320 	 * since they are unstable from user space side.
321 	 */
322 	dst = (void *)raw;
323 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
324 		dst[i] = fp->insnsi[i];
325 		if (!was_ld_map &&
326 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
327 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
328 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
329 			was_ld_map = true;
330 			dst[i].imm = 0;
331 		} else if (was_ld_map &&
332 			   dst[i].code == 0 &&
333 			   dst[i].dst_reg == 0 &&
334 			   dst[i].src_reg == 0 &&
335 			   dst[i].off == 0) {
336 			was_ld_map = false;
337 			dst[i].imm = 0;
338 		} else {
339 			was_ld_map = false;
340 		}
341 	}
342 
343 	psize = bpf_prog_insn_size(fp);
344 	memset(&raw[psize], 0, raw_size - psize);
345 	raw[psize++] = 0x80;
346 
347 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
348 	blocks = bsize / SHA1_BLOCK_SIZE;
349 	todo   = raw;
350 	if (bsize - psize >= sizeof(__be64)) {
351 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
352 	} else {
353 		bits = (__be64 *)(todo + bsize + bits_offset);
354 		blocks++;
355 	}
356 	*bits = cpu_to_be64((psize - 1) << 3);
357 
358 	while (blocks--) {
359 		sha1_transform(digest, todo, ws);
360 		todo += SHA1_BLOCK_SIZE;
361 	}
362 
363 	result = (__force __be32 *)digest;
364 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
365 		result[i] = cpu_to_be32(digest[i]);
366 	memcpy(fp->tag, result, sizeof(fp->tag));
367 
368 	vfree(raw);
369 	return 0;
370 }
371 
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)372 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
373 				s32 end_new, s32 curr, const bool probe_pass)
374 {
375 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
376 	s32 delta = end_new - end_old;
377 	s64 imm = insn->imm;
378 
379 	if (curr < pos && curr + imm + 1 >= end_old)
380 		imm += delta;
381 	else if (curr >= end_new && curr + imm + 1 < end_new)
382 		imm -= delta;
383 	if (imm < imm_min || imm > imm_max)
384 		return -ERANGE;
385 	if (!probe_pass)
386 		insn->imm = imm;
387 	return 0;
388 }
389 
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)390 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
391 				s32 end_new, s32 curr, const bool probe_pass)
392 {
393 	s64 off_min, off_max, off;
394 	s32 delta = end_new - end_old;
395 
396 	if (insn->code == (BPF_JMP32 | BPF_JA)) {
397 		off = insn->imm;
398 		off_min = S32_MIN;
399 		off_max = S32_MAX;
400 	} else {
401 		off = insn->off;
402 		off_min = S16_MIN;
403 		off_max = S16_MAX;
404 	}
405 
406 	if (curr < pos && curr + off + 1 >= end_old)
407 		off += delta;
408 	else if (curr >= end_new && curr + off + 1 < end_new)
409 		off -= delta;
410 	if (off < off_min || off > off_max)
411 		return -ERANGE;
412 	if (!probe_pass) {
413 		if (insn->code == (BPF_JMP32 | BPF_JA))
414 			insn->imm = off;
415 		else
416 			insn->off = off;
417 	}
418 	return 0;
419 }
420 
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)421 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
422 			    s32 end_new, const bool probe_pass)
423 {
424 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
425 	struct bpf_insn *insn = prog->insnsi;
426 	int ret = 0;
427 
428 	for (i = 0; i < insn_cnt; i++, insn++) {
429 		u8 code;
430 
431 		/* In the probing pass we still operate on the original,
432 		 * unpatched image in order to check overflows before we
433 		 * do any other adjustments. Therefore skip the patchlet.
434 		 */
435 		if (probe_pass && i == pos) {
436 			i = end_new;
437 			insn = prog->insnsi + end_old;
438 		}
439 		if (bpf_pseudo_func(insn)) {
440 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
441 						   end_new, i, probe_pass);
442 			if (ret)
443 				return ret;
444 			continue;
445 		}
446 		code = insn->code;
447 		if ((BPF_CLASS(code) != BPF_JMP &&
448 		     BPF_CLASS(code) != BPF_JMP32) ||
449 		    BPF_OP(code) == BPF_EXIT)
450 			continue;
451 		/* Adjust offset of jmps if we cross patch boundaries. */
452 		if (BPF_OP(code) == BPF_CALL) {
453 			if (insn->src_reg != BPF_PSEUDO_CALL)
454 				continue;
455 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
456 						   end_new, i, probe_pass);
457 		} else {
458 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
459 						   end_new, i, probe_pass);
460 		}
461 		if (ret)
462 			break;
463 	}
464 
465 	return ret;
466 }
467 
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)468 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
469 {
470 	struct bpf_line_info *linfo;
471 	u32 i, nr_linfo;
472 
473 	nr_linfo = prog->aux->nr_linfo;
474 	if (!nr_linfo || !delta)
475 		return;
476 
477 	linfo = prog->aux->linfo;
478 
479 	for (i = 0; i < nr_linfo; i++)
480 		if (off < linfo[i].insn_off)
481 			break;
482 
483 	/* Push all off < linfo[i].insn_off by delta */
484 	for (; i < nr_linfo; i++)
485 		linfo[i].insn_off += delta;
486 }
487 
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)488 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
489 				       const struct bpf_insn *patch, u32 len)
490 {
491 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
492 	const u32 cnt_max = S16_MAX;
493 	struct bpf_prog *prog_adj;
494 	int err;
495 
496 	/* Since our patchlet doesn't expand the image, we're done. */
497 	if (insn_delta == 0) {
498 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
499 		return prog;
500 	}
501 
502 	insn_adj_cnt = prog->len + insn_delta;
503 
504 	/* Reject anything that would potentially let the insn->off
505 	 * target overflow when we have excessive program expansions.
506 	 * We need to probe here before we do any reallocation where
507 	 * we afterwards may not fail anymore.
508 	 */
509 	if (insn_adj_cnt > cnt_max &&
510 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
511 		return ERR_PTR(err);
512 
513 	/* Several new instructions need to be inserted. Make room
514 	 * for them. Likely, there's no need for a new allocation as
515 	 * last page could have large enough tailroom.
516 	 */
517 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
518 				    GFP_USER);
519 	if (!prog_adj)
520 		return ERR_PTR(-ENOMEM);
521 
522 	prog_adj->len = insn_adj_cnt;
523 
524 	/* Patching happens in 3 steps:
525 	 *
526 	 * 1) Move over tail of insnsi from next instruction onwards,
527 	 *    so we can patch the single target insn with one or more
528 	 *    new ones (patching is always from 1 to n insns, n > 0).
529 	 * 2) Inject new instructions at the target location.
530 	 * 3) Adjust branch offsets if necessary.
531 	 */
532 	insn_rest = insn_adj_cnt - off - len;
533 
534 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
535 		sizeof(*patch) * insn_rest);
536 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
537 
538 	/* We are guaranteed to not fail at this point, otherwise
539 	 * the ship has sailed to reverse to the original state. An
540 	 * overflow cannot happen at this point.
541 	 */
542 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
543 
544 	bpf_adj_linfo(prog_adj, off, insn_delta);
545 
546 	return prog_adj;
547 }
548 
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)549 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
550 {
551 	int err;
552 
553 	/* Branch offsets can't overflow when program is shrinking, no need
554 	 * to call bpf_adj_branches(..., true) here
555 	 */
556 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
557 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
558 	prog->len -= cnt;
559 
560 	err = bpf_adj_branches(prog, off, off + cnt, off, false);
561 	WARN_ON_ONCE(err);
562 	return err;
563 }
564 
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)565 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
566 {
567 	int i;
568 
569 	for (i = 0; i < fp->aux->real_func_cnt; i++)
570 		bpf_prog_kallsyms_del(fp->aux->func[i]);
571 }
572 
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)573 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
574 {
575 	bpf_prog_kallsyms_del_subprogs(fp);
576 	bpf_prog_kallsyms_del(fp);
577 }
578 
579 #ifdef CONFIG_BPF_JIT
580 /* All BPF JIT sysctl knobs here. */
581 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
582 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
583 int bpf_jit_harden   __read_mostly;
584 long bpf_jit_limit   __read_mostly;
585 long bpf_jit_limit_max __read_mostly;
586 
587 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)588 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
589 {
590 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
591 
592 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
593 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
594 }
595 
596 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)597 bpf_prog_ksym_set_name(struct bpf_prog *prog)
598 {
599 	char *sym = prog->aux->ksym.name;
600 	const char *end = sym + KSYM_NAME_LEN;
601 	const struct btf_type *type;
602 	const char *func_name;
603 
604 	BUILD_BUG_ON(sizeof("bpf_prog_") +
605 		     sizeof(prog->tag) * 2 +
606 		     /* name has been null terminated.
607 		      * We should need +1 for the '_' preceding
608 		      * the name.  However, the null character
609 		      * is double counted between the name and the
610 		      * sizeof("bpf_prog_") above, so we omit
611 		      * the +1 here.
612 		      */
613 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
614 
615 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
616 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
617 
618 	/* prog->aux->name will be ignored if full btf name is available */
619 	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
620 		type = btf_type_by_id(prog->aux->btf,
621 				      prog->aux->func_info[prog->aux->func_idx].type_id);
622 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
623 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
624 		return;
625 	}
626 
627 	if (prog->aux->name[0])
628 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
629 	else
630 		*sym = 0;
631 }
632 
bpf_get_ksym_start(struct latch_tree_node * n)633 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
634 {
635 	return container_of(n, struct bpf_ksym, tnode)->start;
636 }
637 
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)638 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
639 					  struct latch_tree_node *b)
640 {
641 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
642 }
643 
bpf_tree_comp(void * key,struct latch_tree_node * n)644 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
645 {
646 	unsigned long val = (unsigned long)key;
647 	const struct bpf_ksym *ksym;
648 
649 	ksym = container_of(n, struct bpf_ksym, tnode);
650 
651 	if (val < ksym->start)
652 		return -1;
653 	/* Ensure that we detect return addresses as part of the program, when
654 	 * the final instruction is a call for a program part of the stack
655 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
656 	 */
657 	if (val > ksym->end)
658 		return  1;
659 
660 	return 0;
661 }
662 
663 static const struct latch_tree_ops bpf_tree_ops = {
664 	.less	= bpf_tree_less,
665 	.comp	= bpf_tree_comp,
666 };
667 
668 static DEFINE_SPINLOCK(bpf_lock);
669 static LIST_HEAD(bpf_kallsyms);
670 static struct latch_tree_root bpf_tree __cacheline_aligned;
671 
bpf_ksym_add(struct bpf_ksym * ksym)672 void bpf_ksym_add(struct bpf_ksym *ksym)
673 {
674 	spin_lock_bh(&bpf_lock);
675 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
676 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
677 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
678 	spin_unlock_bh(&bpf_lock);
679 }
680 
__bpf_ksym_del(struct bpf_ksym * ksym)681 static void __bpf_ksym_del(struct bpf_ksym *ksym)
682 {
683 	if (list_empty(&ksym->lnode))
684 		return;
685 
686 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
687 	list_del_rcu(&ksym->lnode);
688 }
689 
bpf_ksym_del(struct bpf_ksym * ksym)690 void bpf_ksym_del(struct bpf_ksym *ksym)
691 {
692 	spin_lock_bh(&bpf_lock);
693 	__bpf_ksym_del(ksym);
694 	spin_unlock_bh(&bpf_lock);
695 }
696 
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)697 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
698 {
699 	return fp->jited && !bpf_prog_was_classic(fp);
700 }
701 
bpf_prog_kallsyms_add(struct bpf_prog * fp)702 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
703 {
704 	if (!bpf_prog_kallsyms_candidate(fp) ||
705 	    !bpf_token_capable(fp->aux->token, CAP_BPF))
706 		return;
707 
708 	bpf_prog_ksym_set_addr(fp);
709 	bpf_prog_ksym_set_name(fp);
710 	fp->aux->ksym.prog = true;
711 
712 	bpf_ksym_add(&fp->aux->ksym);
713 
714 #ifdef CONFIG_FINEIBT
715 	/*
716 	 * When FineIBT, code in the __cfi_foo() symbols can get executed
717 	 * and hence unwinder needs help.
718 	 */
719 	if (cfi_mode != CFI_FINEIBT)
720 		return;
721 
722 	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
723 		 "__cfi_%s", fp->aux->ksym.name);
724 
725 	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
726 	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
727 
728 	bpf_ksym_add(&fp->aux->ksym_prefix);
729 #endif
730 }
731 
bpf_prog_kallsyms_del(struct bpf_prog * fp)732 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
733 {
734 	if (!bpf_prog_kallsyms_candidate(fp))
735 		return;
736 
737 	bpf_ksym_del(&fp->aux->ksym);
738 #ifdef CONFIG_FINEIBT
739 	if (cfi_mode != CFI_FINEIBT)
740 		return;
741 	bpf_ksym_del(&fp->aux->ksym_prefix);
742 #endif
743 }
744 
bpf_ksym_find(unsigned long addr)745 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
746 {
747 	struct latch_tree_node *n;
748 
749 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
750 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
751 }
752 
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)753 int __bpf_address_lookup(unsigned long addr, unsigned long *size,
754 				 unsigned long *off, char *sym)
755 {
756 	struct bpf_ksym *ksym;
757 	int ret = 0;
758 
759 	rcu_read_lock();
760 	ksym = bpf_ksym_find(addr);
761 	if (ksym) {
762 		unsigned long symbol_start = ksym->start;
763 		unsigned long symbol_end = ksym->end;
764 
765 		ret = strscpy(sym, ksym->name, KSYM_NAME_LEN);
766 
767 		if (size)
768 			*size = symbol_end - symbol_start;
769 		if (off)
770 			*off  = addr - symbol_start;
771 	}
772 	rcu_read_unlock();
773 
774 	return ret;
775 }
776 
is_bpf_text_address(unsigned long addr)777 bool is_bpf_text_address(unsigned long addr)
778 {
779 	bool ret;
780 
781 	rcu_read_lock();
782 	ret = bpf_ksym_find(addr) != NULL;
783 	rcu_read_unlock();
784 
785 	return ret;
786 }
787 
bpf_prog_ksym_find(unsigned long addr)788 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
789 {
790 	struct bpf_ksym *ksym;
791 
792 	WARN_ON_ONCE(!rcu_read_lock_held());
793 	ksym = bpf_ksym_find(addr);
794 
795 	return ksym && ksym->prog ?
796 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
797 	       NULL;
798 }
799 
search_bpf_extables(unsigned long addr)800 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
801 {
802 	const struct exception_table_entry *e = NULL;
803 	struct bpf_prog *prog;
804 
805 	rcu_read_lock();
806 	prog = bpf_prog_ksym_find(addr);
807 	if (!prog)
808 		goto out;
809 	if (!prog->aux->num_exentries)
810 		goto out;
811 
812 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
813 out:
814 	rcu_read_unlock();
815 	return e;
816 }
817 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)818 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
819 		    char *sym)
820 {
821 	struct bpf_ksym *ksym;
822 	unsigned int it = 0;
823 	int ret = -ERANGE;
824 
825 	if (!bpf_jit_kallsyms_enabled())
826 		return ret;
827 
828 	rcu_read_lock();
829 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
830 		if (it++ != symnum)
831 			continue;
832 
833 		strscpy(sym, ksym->name, KSYM_NAME_LEN);
834 
835 		*value = ksym->start;
836 		*type  = BPF_SYM_ELF_TYPE;
837 
838 		ret = 0;
839 		break;
840 	}
841 	rcu_read_unlock();
842 
843 	return ret;
844 }
845 
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)846 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
847 				struct bpf_jit_poke_descriptor *poke)
848 {
849 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
850 	static const u32 poke_tab_max = 1024;
851 	u32 slot = prog->aux->size_poke_tab;
852 	u32 size = slot + 1;
853 
854 	if (size > poke_tab_max)
855 		return -ENOSPC;
856 	if (poke->tailcall_target || poke->tailcall_target_stable ||
857 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
858 		return -EINVAL;
859 
860 	switch (poke->reason) {
861 	case BPF_POKE_REASON_TAIL_CALL:
862 		if (!poke->tail_call.map)
863 			return -EINVAL;
864 		break;
865 	default:
866 		return -EINVAL;
867 	}
868 
869 	tab = krealloc_array(tab, size, sizeof(*poke), GFP_KERNEL);
870 	if (!tab)
871 		return -ENOMEM;
872 
873 	memcpy(&tab[slot], poke, sizeof(*poke));
874 	prog->aux->size_poke_tab = size;
875 	prog->aux->poke_tab = tab;
876 
877 	return slot;
878 }
879 
880 /*
881  * BPF program pack allocator.
882  *
883  * Most BPF programs are pretty small. Allocating a hole page for each
884  * program is sometime a waste. Many small bpf program also adds pressure
885  * to instruction TLB. To solve this issue, we introduce a BPF program pack
886  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
887  * to host BPF programs.
888  */
889 #define BPF_PROG_CHUNK_SHIFT	6
890 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
891 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
892 
893 struct bpf_prog_pack {
894 	struct list_head list;
895 	void *ptr;
896 	unsigned long bitmap[];
897 };
898 
bpf_jit_fill_hole_with_zero(void * area,unsigned int size)899 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
900 {
901 	memset(area, 0, size);
902 }
903 
904 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
905 
906 static DEFINE_MUTEX(pack_mutex);
907 static LIST_HEAD(pack_list);
908 
909 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
910  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
911  */
912 #ifdef PMD_SIZE
913 /* PMD_SIZE is really big for some archs. It doesn't make sense to
914  * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
915  * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
916  * greater than or equal to 2MB.
917  */
918 #define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
919 #else
920 #define BPF_PROG_PACK_SIZE PAGE_SIZE
921 #endif
922 
923 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
924 
alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)925 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
926 {
927 	struct bpf_prog_pack *pack;
928 	int err;
929 
930 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
931 		       GFP_KERNEL);
932 	if (!pack)
933 		return NULL;
934 	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
935 	if (!pack->ptr)
936 		goto out;
937 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
938 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
939 
940 	set_vm_flush_reset_perms(pack->ptr);
941 	err = set_memory_rox((unsigned long)pack->ptr,
942 			     BPF_PROG_PACK_SIZE / PAGE_SIZE);
943 	if (err)
944 		goto out;
945 	list_add_tail(&pack->list, &pack_list);
946 	return pack;
947 
948 out:
949 	bpf_jit_free_exec(pack->ptr);
950 	kfree(pack);
951 	return NULL;
952 }
953 
bpf_prog_pack_alloc(u32 size,bpf_jit_fill_hole_t bpf_fill_ill_insns)954 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
955 {
956 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
957 	struct bpf_prog_pack *pack;
958 	unsigned long pos;
959 	void *ptr = NULL;
960 
961 	mutex_lock(&pack_mutex);
962 	if (size > BPF_PROG_PACK_SIZE) {
963 		size = round_up(size, PAGE_SIZE);
964 		ptr = bpf_jit_alloc_exec(size);
965 		if (ptr) {
966 			int err;
967 
968 			bpf_fill_ill_insns(ptr, size);
969 			set_vm_flush_reset_perms(ptr);
970 			err = set_memory_rox((unsigned long)ptr,
971 					     size / PAGE_SIZE);
972 			if (err) {
973 				bpf_jit_free_exec(ptr);
974 				ptr = NULL;
975 			}
976 		}
977 		goto out;
978 	}
979 	list_for_each_entry(pack, &pack_list, list) {
980 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
981 						 nbits, 0);
982 		if (pos < BPF_PROG_CHUNK_COUNT)
983 			goto found_free_area;
984 	}
985 
986 	pack = alloc_new_pack(bpf_fill_ill_insns);
987 	if (!pack)
988 		goto out;
989 
990 	pos = 0;
991 
992 found_free_area:
993 	bitmap_set(pack->bitmap, pos, nbits);
994 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
995 
996 out:
997 	mutex_unlock(&pack_mutex);
998 	return ptr;
999 }
1000 
bpf_prog_pack_free(void * ptr,u32 size)1001 void bpf_prog_pack_free(void *ptr, u32 size)
1002 {
1003 	struct bpf_prog_pack *pack = NULL, *tmp;
1004 	unsigned int nbits;
1005 	unsigned long pos;
1006 
1007 	mutex_lock(&pack_mutex);
1008 	if (size > BPF_PROG_PACK_SIZE) {
1009 		bpf_jit_free_exec(ptr);
1010 		goto out;
1011 	}
1012 
1013 	list_for_each_entry(tmp, &pack_list, list) {
1014 		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
1015 			pack = tmp;
1016 			break;
1017 		}
1018 	}
1019 
1020 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
1021 		goto out;
1022 
1023 	nbits = BPF_PROG_SIZE_TO_NBITS(size);
1024 	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
1025 
1026 	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
1027 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
1028 
1029 	bitmap_clear(pack->bitmap, pos, nbits);
1030 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
1031 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
1032 		list_del(&pack->list);
1033 		bpf_jit_free_exec(pack->ptr);
1034 		kfree(pack);
1035 	}
1036 out:
1037 	mutex_unlock(&pack_mutex);
1038 }
1039 
1040 static atomic_long_t bpf_jit_current;
1041 
1042 /* Can be overridden by an arch's JIT compiler if it has a custom,
1043  * dedicated BPF backend memory area, or if neither of the two
1044  * below apply.
1045  */
bpf_jit_alloc_exec_limit(void)1046 u64 __weak bpf_jit_alloc_exec_limit(void)
1047 {
1048 #if defined(MODULES_VADDR)
1049 	return MODULES_END - MODULES_VADDR;
1050 #else
1051 	return VMALLOC_END - VMALLOC_START;
1052 #endif
1053 }
1054 
bpf_jit_charge_init(void)1055 static int __init bpf_jit_charge_init(void)
1056 {
1057 	/* Only used as heuristic here to derive limit. */
1058 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1059 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1060 					    PAGE_SIZE), LONG_MAX);
1061 	return 0;
1062 }
1063 pure_initcall(bpf_jit_charge_init);
1064 
bpf_jit_charge_modmem(u32 size)1065 int bpf_jit_charge_modmem(u32 size)
1066 {
1067 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1068 		if (!bpf_capable()) {
1069 			atomic_long_sub(size, &bpf_jit_current);
1070 			return -EPERM;
1071 		}
1072 	}
1073 
1074 	return 0;
1075 }
1076 
bpf_jit_uncharge_modmem(u32 size)1077 void bpf_jit_uncharge_modmem(u32 size)
1078 {
1079 	atomic_long_sub(size, &bpf_jit_current);
1080 }
1081 
bpf_jit_alloc_exec(unsigned long size)1082 void *__weak bpf_jit_alloc_exec(unsigned long size)
1083 {
1084 	return execmem_alloc(EXECMEM_BPF, size);
1085 }
1086 
bpf_jit_free_exec(void * addr)1087 void __weak bpf_jit_free_exec(void *addr)
1088 {
1089 	execmem_free(addr);
1090 }
1091 
1092 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)1093 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1094 		     unsigned int alignment,
1095 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1096 {
1097 	struct bpf_binary_header *hdr;
1098 	u32 size, hole, start;
1099 
1100 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1101 		     alignment > BPF_IMAGE_ALIGNMENT);
1102 
1103 	/* Most of BPF filters are really small, but if some of them
1104 	 * fill a page, allow at least 128 extra bytes to insert a
1105 	 * random section of illegal instructions.
1106 	 */
1107 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1108 
1109 	if (bpf_jit_charge_modmem(size))
1110 		return NULL;
1111 	hdr = bpf_jit_alloc_exec(size);
1112 	if (!hdr) {
1113 		bpf_jit_uncharge_modmem(size);
1114 		return NULL;
1115 	}
1116 
1117 	/* Fill space with illegal/arch-dep instructions. */
1118 	bpf_fill_ill_insns(hdr, size);
1119 
1120 	hdr->size = size;
1121 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1122 		     PAGE_SIZE - sizeof(*hdr));
1123 	start = get_random_u32_below(hole) & ~(alignment - 1);
1124 
1125 	/* Leave a random number of instructions before BPF code. */
1126 	*image_ptr = &hdr->image[start];
1127 
1128 	return hdr;
1129 }
1130 
bpf_jit_binary_free(struct bpf_binary_header * hdr)1131 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1132 {
1133 	u32 size = hdr->size;
1134 
1135 	bpf_jit_free_exec(hdr);
1136 	bpf_jit_uncharge_modmem(size);
1137 }
1138 
1139 /* Allocate jit binary from bpf_prog_pack allocator.
1140  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1141  * to the memory. To solve this problem, a RW buffer is also allocated at
1142  * as the same time. The JIT engine should calculate offsets based on the
1143  * RO memory address, but write JITed program to the RW buffer. Once the
1144  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1145  * the JITed program to the RO memory.
1146  */
1147 struct bpf_binary_header *
bpf_jit_binary_pack_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,struct bpf_binary_header ** rw_header,u8 ** rw_image,bpf_jit_fill_hole_t bpf_fill_ill_insns)1148 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1149 			  unsigned int alignment,
1150 			  struct bpf_binary_header **rw_header,
1151 			  u8 **rw_image,
1152 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1153 {
1154 	struct bpf_binary_header *ro_header;
1155 	u32 size, hole, start;
1156 
1157 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1158 		     alignment > BPF_IMAGE_ALIGNMENT);
1159 
1160 	/* add 16 bytes for a random section of illegal instructions */
1161 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1162 
1163 	if (bpf_jit_charge_modmem(size))
1164 		return NULL;
1165 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1166 	if (!ro_header) {
1167 		bpf_jit_uncharge_modmem(size);
1168 		return NULL;
1169 	}
1170 
1171 	*rw_header = kvmalloc(size, GFP_KERNEL);
1172 	if (!*rw_header) {
1173 		bpf_prog_pack_free(ro_header, size);
1174 		bpf_jit_uncharge_modmem(size);
1175 		return NULL;
1176 	}
1177 
1178 	/* Fill space with illegal/arch-dep instructions. */
1179 	bpf_fill_ill_insns(*rw_header, size);
1180 	(*rw_header)->size = size;
1181 
1182 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1183 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1184 	start = get_random_u32_below(hole) & ~(alignment - 1);
1185 
1186 	*image_ptr = &ro_header->image[start];
1187 	*rw_image = &(*rw_header)->image[start];
1188 
1189 	return ro_header;
1190 }
1191 
1192 /* Copy JITed text from rw_header to its final location, the ro_header. */
bpf_jit_binary_pack_finalize(struct bpf_binary_header * ro_header,struct bpf_binary_header * rw_header)1193 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1194 				 struct bpf_binary_header *rw_header)
1195 {
1196 	void *ptr;
1197 
1198 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1199 
1200 	kvfree(rw_header);
1201 
1202 	if (IS_ERR(ptr)) {
1203 		bpf_prog_pack_free(ro_header, ro_header->size);
1204 		return PTR_ERR(ptr);
1205 	}
1206 	return 0;
1207 }
1208 
1209 /* bpf_jit_binary_pack_free is called in two different scenarios:
1210  *   1) when the program is freed after;
1211  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1212  * For case 2), we need to free both the RO memory and the RW buffer.
1213  *
1214  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1215  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1216  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1217  * bpf_arch_text_copy (when jit fails).
1218  */
bpf_jit_binary_pack_free(struct bpf_binary_header * ro_header,struct bpf_binary_header * rw_header)1219 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1220 			      struct bpf_binary_header *rw_header)
1221 {
1222 	u32 size = ro_header->size;
1223 
1224 	bpf_prog_pack_free(ro_header, size);
1225 	kvfree(rw_header);
1226 	bpf_jit_uncharge_modmem(size);
1227 }
1228 
1229 struct bpf_binary_header *
bpf_jit_binary_pack_hdr(const struct bpf_prog * fp)1230 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1231 {
1232 	unsigned long real_start = (unsigned long)fp->bpf_func;
1233 	unsigned long addr;
1234 
1235 	addr = real_start & BPF_PROG_CHUNK_MASK;
1236 	return (void *)addr;
1237 }
1238 
1239 static inline struct bpf_binary_header *
bpf_jit_binary_hdr(const struct bpf_prog * fp)1240 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1241 {
1242 	unsigned long real_start = (unsigned long)fp->bpf_func;
1243 	unsigned long addr;
1244 
1245 	addr = real_start & PAGE_MASK;
1246 	return (void *)addr;
1247 }
1248 
1249 /* This symbol is only overridden by archs that have different
1250  * requirements than the usual eBPF JITs, f.e. when they only
1251  * implement cBPF JIT, do not set images read-only, etc.
1252  */
bpf_jit_free(struct bpf_prog * fp)1253 void __weak bpf_jit_free(struct bpf_prog *fp)
1254 {
1255 	if (fp->jited) {
1256 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1257 
1258 		bpf_jit_binary_free(hdr);
1259 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1260 	}
1261 
1262 	bpf_prog_unlock_free(fp);
1263 }
1264 
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)1265 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1266 			  const struct bpf_insn *insn, bool extra_pass,
1267 			  u64 *func_addr, bool *func_addr_fixed)
1268 {
1269 	s16 off = insn->off;
1270 	s32 imm = insn->imm;
1271 	u8 *addr;
1272 	int err;
1273 
1274 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1275 	if (!*func_addr_fixed) {
1276 		/* Place-holder address till the last pass has collected
1277 		 * all addresses for JITed subprograms in which case we
1278 		 * can pick them up from prog->aux.
1279 		 */
1280 		if (!extra_pass)
1281 			addr = NULL;
1282 		else if (prog->aux->func &&
1283 			 off >= 0 && off < prog->aux->real_func_cnt)
1284 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1285 		else
1286 			return -EINVAL;
1287 	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1288 		   bpf_jit_supports_far_kfunc_call()) {
1289 		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1290 		if (err)
1291 			return err;
1292 	} else {
1293 		/* Address of a BPF helper call. Since part of the core
1294 		 * kernel, it's always at a fixed location. __bpf_call_base
1295 		 * and the helper with imm relative to it are both in core
1296 		 * kernel.
1297 		 */
1298 		addr = (u8 *)__bpf_call_base + imm;
1299 	}
1300 
1301 	*func_addr = (unsigned long)addr;
1302 	return 0;
1303 }
1304 
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)1305 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1306 			      const struct bpf_insn *aux,
1307 			      struct bpf_insn *to_buff,
1308 			      bool emit_zext)
1309 {
1310 	struct bpf_insn *to = to_buff;
1311 	u32 imm_rnd = get_random_u32();
1312 	s16 off;
1313 
1314 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1315 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1316 
1317 	/* Constraints on AX register:
1318 	 *
1319 	 * AX register is inaccessible from user space. It is mapped in
1320 	 * all JITs, and used here for constant blinding rewrites. It is
1321 	 * typically "stateless" meaning its contents are only valid within
1322 	 * the executed instruction, but not across several instructions.
1323 	 * There are a few exceptions however which are further detailed
1324 	 * below.
1325 	 *
1326 	 * Constant blinding is only used by JITs, not in the interpreter.
1327 	 * The interpreter uses AX in some occasions as a local temporary
1328 	 * register e.g. in DIV or MOD instructions.
1329 	 *
1330 	 * In restricted circumstances, the verifier can also use the AX
1331 	 * register for rewrites as long as they do not interfere with
1332 	 * the above cases!
1333 	 */
1334 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1335 		goto out;
1336 
1337 	if (from->imm == 0 &&
1338 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1339 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1340 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1341 		goto out;
1342 	}
1343 
1344 	switch (from->code) {
1345 	case BPF_ALU | BPF_ADD | BPF_K:
1346 	case BPF_ALU | BPF_SUB | BPF_K:
1347 	case BPF_ALU | BPF_AND | BPF_K:
1348 	case BPF_ALU | BPF_OR  | BPF_K:
1349 	case BPF_ALU | BPF_XOR | BPF_K:
1350 	case BPF_ALU | BPF_MUL | BPF_K:
1351 	case BPF_ALU | BPF_MOV | BPF_K:
1352 	case BPF_ALU | BPF_DIV | BPF_K:
1353 	case BPF_ALU | BPF_MOD | BPF_K:
1354 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1355 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1356 		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1357 		break;
1358 
1359 	case BPF_ALU64 | BPF_ADD | BPF_K:
1360 	case BPF_ALU64 | BPF_SUB | BPF_K:
1361 	case BPF_ALU64 | BPF_AND | BPF_K:
1362 	case BPF_ALU64 | BPF_OR  | BPF_K:
1363 	case BPF_ALU64 | BPF_XOR | BPF_K:
1364 	case BPF_ALU64 | BPF_MUL | BPF_K:
1365 	case BPF_ALU64 | BPF_MOV | BPF_K:
1366 	case BPF_ALU64 | BPF_DIV | BPF_K:
1367 	case BPF_ALU64 | BPF_MOD | BPF_K:
1368 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1369 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1370 		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1371 		break;
1372 
1373 	case BPF_JMP | BPF_JEQ  | BPF_K:
1374 	case BPF_JMP | BPF_JNE  | BPF_K:
1375 	case BPF_JMP | BPF_JGT  | BPF_K:
1376 	case BPF_JMP | BPF_JLT  | BPF_K:
1377 	case BPF_JMP | BPF_JGE  | BPF_K:
1378 	case BPF_JMP | BPF_JLE  | BPF_K:
1379 	case BPF_JMP | BPF_JSGT | BPF_K:
1380 	case BPF_JMP | BPF_JSLT | BPF_K:
1381 	case BPF_JMP | BPF_JSGE | BPF_K:
1382 	case BPF_JMP | BPF_JSLE | BPF_K:
1383 	case BPF_JMP | BPF_JSET | BPF_K:
1384 		/* Accommodate for extra offset in case of a backjump. */
1385 		off = from->off;
1386 		if (off < 0)
1387 			off -= 2;
1388 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1389 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1390 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1391 		break;
1392 
1393 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1394 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1395 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1396 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1397 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1398 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1399 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1400 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1401 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1402 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1403 	case BPF_JMP32 | BPF_JSET | BPF_K:
1404 		/* Accommodate for extra offset in case of a backjump. */
1405 		off = from->off;
1406 		if (off < 0)
1407 			off -= 2;
1408 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1409 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1410 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1411 				      off);
1412 		break;
1413 
1414 	case BPF_LD | BPF_IMM | BPF_DW:
1415 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1416 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1417 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1418 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1419 		break;
1420 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1421 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1422 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1423 		if (emit_zext)
1424 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1425 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1426 		break;
1427 
1428 	case BPF_ST | BPF_MEM | BPF_DW:
1429 	case BPF_ST | BPF_MEM | BPF_W:
1430 	case BPF_ST | BPF_MEM | BPF_H:
1431 	case BPF_ST | BPF_MEM | BPF_B:
1432 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1433 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1434 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1435 		break;
1436 	}
1437 out:
1438 	return to - to_buff;
1439 }
1440 
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1441 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1442 					      gfp_t gfp_extra_flags)
1443 {
1444 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1445 	struct bpf_prog *fp;
1446 
1447 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1448 	if (fp != NULL) {
1449 		/* aux->prog still points to the fp_other one, so
1450 		 * when promoting the clone to the real program,
1451 		 * this still needs to be adapted.
1452 		 */
1453 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1454 	}
1455 
1456 	return fp;
1457 }
1458 
bpf_prog_clone_free(struct bpf_prog * fp)1459 static void bpf_prog_clone_free(struct bpf_prog *fp)
1460 {
1461 	/* aux was stolen by the other clone, so we cannot free
1462 	 * it from this path! It will be freed eventually by the
1463 	 * other program on release.
1464 	 *
1465 	 * At this point, we don't need a deferred release since
1466 	 * clone is guaranteed to not be locked.
1467 	 */
1468 	fp->aux = NULL;
1469 	fp->stats = NULL;
1470 	fp->active = NULL;
1471 	__bpf_prog_free(fp);
1472 }
1473 
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1474 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1475 {
1476 	/* We have to repoint aux->prog to self, as we don't
1477 	 * know whether fp here is the clone or the original.
1478 	 */
1479 	fp->aux->prog = fp;
1480 	bpf_prog_clone_free(fp_other);
1481 }
1482 
bpf_jit_blind_constants(struct bpf_prog * prog)1483 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1484 {
1485 	struct bpf_insn insn_buff[16], aux[2];
1486 	struct bpf_prog *clone, *tmp;
1487 	int insn_delta, insn_cnt;
1488 	struct bpf_insn *insn;
1489 	int i, rewritten;
1490 
1491 	if (!prog->blinding_requested || prog->blinded)
1492 		return prog;
1493 
1494 	clone = bpf_prog_clone_create(prog, GFP_USER);
1495 	if (!clone)
1496 		return ERR_PTR(-ENOMEM);
1497 
1498 	insn_cnt = clone->len;
1499 	insn = clone->insnsi;
1500 
1501 	for (i = 0; i < insn_cnt; i++, insn++) {
1502 		if (bpf_pseudo_func(insn)) {
1503 			/* ld_imm64 with an address of bpf subprog is not
1504 			 * a user controlled constant. Don't randomize it,
1505 			 * since it will conflict with jit_subprogs() logic.
1506 			 */
1507 			insn++;
1508 			i++;
1509 			continue;
1510 		}
1511 
1512 		/* We temporarily need to hold the original ld64 insn
1513 		 * so that we can still access the first part in the
1514 		 * second blinding run.
1515 		 */
1516 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1517 		    insn[1].code == 0)
1518 			memcpy(aux, insn, sizeof(aux));
1519 
1520 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1521 						clone->aux->verifier_zext);
1522 		if (!rewritten)
1523 			continue;
1524 
1525 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1526 		if (IS_ERR(tmp)) {
1527 			/* Patching may have repointed aux->prog during
1528 			 * realloc from the original one, so we need to
1529 			 * fix it up here on error.
1530 			 */
1531 			bpf_jit_prog_release_other(prog, clone);
1532 			return tmp;
1533 		}
1534 
1535 		clone = tmp;
1536 		insn_delta = rewritten - 1;
1537 
1538 		/* Walk new program and skip insns we just inserted. */
1539 		insn = clone->insnsi + i + insn_delta;
1540 		insn_cnt += insn_delta;
1541 		i        += insn_delta;
1542 	}
1543 
1544 	clone->blinded = 1;
1545 	return clone;
1546 }
1547 #endif /* CONFIG_BPF_JIT */
1548 
1549 /* Base function for offset calculation. Needs to go into .text section,
1550  * therefore keeping it non-static as well; will also be used by JITs
1551  * anyway later on, so do not let the compiler omit it. This also needs
1552  * to go into kallsyms for correlation from e.g. bpftool, so naming
1553  * must not change.
1554  */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1555 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1556 {
1557 	return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(__bpf_call_base);
1560 
1561 /* All UAPI available opcodes. */
1562 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1563 	/* 32 bit ALU operations. */		\
1564 	/*   Register based. */			\
1565 	INSN_3(ALU, ADD,  X),			\
1566 	INSN_3(ALU, SUB,  X),			\
1567 	INSN_3(ALU, AND,  X),			\
1568 	INSN_3(ALU, OR,   X),			\
1569 	INSN_3(ALU, LSH,  X),			\
1570 	INSN_3(ALU, RSH,  X),			\
1571 	INSN_3(ALU, XOR,  X),			\
1572 	INSN_3(ALU, MUL,  X),			\
1573 	INSN_3(ALU, MOV,  X),			\
1574 	INSN_3(ALU, ARSH, X),			\
1575 	INSN_3(ALU, DIV,  X),			\
1576 	INSN_3(ALU, MOD,  X),			\
1577 	INSN_2(ALU, NEG),			\
1578 	INSN_3(ALU, END, TO_BE),		\
1579 	INSN_3(ALU, END, TO_LE),		\
1580 	/*   Immediate based. */		\
1581 	INSN_3(ALU, ADD,  K),			\
1582 	INSN_3(ALU, SUB,  K),			\
1583 	INSN_3(ALU, AND,  K),			\
1584 	INSN_3(ALU, OR,   K),			\
1585 	INSN_3(ALU, LSH,  K),			\
1586 	INSN_3(ALU, RSH,  K),			\
1587 	INSN_3(ALU, XOR,  K),			\
1588 	INSN_3(ALU, MUL,  K),			\
1589 	INSN_3(ALU, MOV,  K),			\
1590 	INSN_3(ALU, ARSH, K),			\
1591 	INSN_3(ALU, DIV,  K),			\
1592 	INSN_3(ALU, MOD,  K),			\
1593 	/* 64 bit ALU operations. */		\
1594 	/*   Register based. */			\
1595 	INSN_3(ALU64, ADD,  X),			\
1596 	INSN_3(ALU64, SUB,  X),			\
1597 	INSN_3(ALU64, AND,  X),			\
1598 	INSN_3(ALU64, OR,   X),			\
1599 	INSN_3(ALU64, LSH,  X),			\
1600 	INSN_3(ALU64, RSH,  X),			\
1601 	INSN_3(ALU64, XOR,  X),			\
1602 	INSN_3(ALU64, MUL,  X),			\
1603 	INSN_3(ALU64, MOV,  X),			\
1604 	INSN_3(ALU64, ARSH, X),			\
1605 	INSN_3(ALU64, DIV,  X),			\
1606 	INSN_3(ALU64, MOD,  X),			\
1607 	INSN_2(ALU64, NEG),			\
1608 	INSN_3(ALU64, END, TO_LE),		\
1609 	/*   Immediate based. */		\
1610 	INSN_3(ALU64, ADD,  K),			\
1611 	INSN_3(ALU64, SUB,  K),			\
1612 	INSN_3(ALU64, AND,  K),			\
1613 	INSN_3(ALU64, OR,   K),			\
1614 	INSN_3(ALU64, LSH,  K),			\
1615 	INSN_3(ALU64, RSH,  K),			\
1616 	INSN_3(ALU64, XOR,  K),			\
1617 	INSN_3(ALU64, MUL,  K),			\
1618 	INSN_3(ALU64, MOV,  K),			\
1619 	INSN_3(ALU64, ARSH, K),			\
1620 	INSN_3(ALU64, DIV,  K),			\
1621 	INSN_3(ALU64, MOD,  K),			\
1622 	/* Call instruction. */			\
1623 	INSN_2(JMP, CALL),			\
1624 	/* Exit instruction. */			\
1625 	INSN_2(JMP, EXIT),			\
1626 	/* 32-bit Jump instructions. */		\
1627 	/*   Register based. */			\
1628 	INSN_3(JMP32, JEQ,  X),			\
1629 	INSN_3(JMP32, JNE,  X),			\
1630 	INSN_3(JMP32, JGT,  X),			\
1631 	INSN_3(JMP32, JLT,  X),			\
1632 	INSN_3(JMP32, JGE,  X),			\
1633 	INSN_3(JMP32, JLE,  X),			\
1634 	INSN_3(JMP32, JSGT, X),			\
1635 	INSN_3(JMP32, JSLT, X),			\
1636 	INSN_3(JMP32, JSGE, X),			\
1637 	INSN_3(JMP32, JSLE, X),			\
1638 	INSN_3(JMP32, JSET, X),			\
1639 	/*   Immediate based. */		\
1640 	INSN_3(JMP32, JEQ,  K),			\
1641 	INSN_3(JMP32, JNE,  K),			\
1642 	INSN_3(JMP32, JGT,  K),			\
1643 	INSN_3(JMP32, JLT,  K),			\
1644 	INSN_3(JMP32, JGE,  K),			\
1645 	INSN_3(JMP32, JLE,  K),			\
1646 	INSN_3(JMP32, JSGT, K),			\
1647 	INSN_3(JMP32, JSLT, K),			\
1648 	INSN_3(JMP32, JSGE, K),			\
1649 	INSN_3(JMP32, JSLE, K),			\
1650 	INSN_3(JMP32, JSET, K),			\
1651 	/* Jump instructions. */		\
1652 	/*   Register based. */			\
1653 	INSN_3(JMP, JEQ,  X),			\
1654 	INSN_3(JMP, JNE,  X),			\
1655 	INSN_3(JMP, JGT,  X),			\
1656 	INSN_3(JMP, JLT,  X),			\
1657 	INSN_3(JMP, JGE,  X),			\
1658 	INSN_3(JMP, JLE,  X),			\
1659 	INSN_3(JMP, JSGT, X),			\
1660 	INSN_3(JMP, JSLT, X),			\
1661 	INSN_3(JMP, JSGE, X),			\
1662 	INSN_3(JMP, JSLE, X),			\
1663 	INSN_3(JMP, JSET, X),			\
1664 	/*   Immediate based. */		\
1665 	INSN_3(JMP, JEQ,  K),			\
1666 	INSN_3(JMP, JNE,  K),			\
1667 	INSN_3(JMP, JGT,  K),			\
1668 	INSN_3(JMP, JLT,  K),			\
1669 	INSN_3(JMP, JGE,  K),			\
1670 	INSN_3(JMP, JLE,  K),			\
1671 	INSN_3(JMP, JSGT, K),			\
1672 	INSN_3(JMP, JSLT, K),			\
1673 	INSN_3(JMP, JSGE, K),			\
1674 	INSN_3(JMP, JSLE, K),			\
1675 	INSN_3(JMP, JSET, K),			\
1676 	INSN_2(JMP, JA),			\
1677 	INSN_2(JMP32, JA),			\
1678 	/* Store instructions. */		\
1679 	/*   Register based. */			\
1680 	INSN_3(STX, MEM,  B),			\
1681 	INSN_3(STX, MEM,  H),			\
1682 	INSN_3(STX, MEM,  W),			\
1683 	INSN_3(STX, MEM,  DW),			\
1684 	INSN_3(STX, ATOMIC, W),			\
1685 	INSN_3(STX, ATOMIC, DW),		\
1686 	/*   Immediate based. */		\
1687 	INSN_3(ST, MEM, B),			\
1688 	INSN_3(ST, MEM, H),			\
1689 	INSN_3(ST, MEM, W),			\
1690 	INSN_3(ST, MEM, DW),			\
1691 	/* Load instructions. */		\
1692 	/*   Register based. */			\
1693 	INSN_3(LDX, MEM, B),			\
1694 	INSN_3(LDX, MEM, H),			\
1695 	INSN_3(LDX, MEM, W),			\
1696 	INSN_3(LDX, MEM, DW),			\
1697 	INSN_3(LDX, MEMSX, B),			\
1698 	INSN_3(LDX, MEMSX, H),			\
1699 	INSN_3(LDX, MEMSX, W),			\
1700 	/*   Immediate based. */		\
1701 	INSN_3(LD, IMM, DW)
1702 
bpf_opcode_in_insntable(u8 code)1703 bool bpf_opcode_in_insntable(u8 code)
1704 {
1705 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1706 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1707 	static const bool public_insntable[256] = {
1708 		[0 ... 255] = false,
1709 		/* Now overwrite non-defaults ... */
1710 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1711 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1712 		[BPF_LD | BPF_ABS | BPF_B] = true,
1713 		[BPF_LD | BPF_ABS | BPF_H] = true,
1714 		[BPF_LD | BPF_ABS | BPF_W] = true,
1715 		[BPF_LD | BPF_IND | BPF_B] = true,
1716 		[BPF_LD | BPF_IND | BPF_H] = true,
1717 		[BPF_LD | BPF_IND | BPF_W] = true,
1718 		[BPF_JMP | BPF_JCOND] = true,
1719 	};
1720 #undef BPF_INSN_3_TBL
1721 #undef BPF_INSN_2_TBL
1722 	return public_insntable[code];
1723 }
1724 
1725 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1726 /**
1727  *	___bpf_prog_run - run eBPF program on a given context
1728  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1729  *	@insn: is the array of eBPF instructions
1730  *
1731  * Decode and execute eBPF instructions.
1732  *
1733  * Return: whatever value is in %BPF_R0 at program exit
1734  */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn)1735 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1736 {
1737 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1738 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1739 	static const void * const jumptable[256] __annotate_jump_table = {
1740 		[0 ... 255] = &&default_label,
1741 		/* Now overwrite non-defaults ... */
1742 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1743 		/* Non-UAPI available opcodes. */
1744 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1745 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1746 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1747 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1748 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1749 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1750 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1751 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1752 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1753 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1754 	};
1755 #undef BPF_INSN_3_LBL
1756 #undef BPF_INSN_2_LBL
1757 	u32 tail_call_cnt = 0;
1758 
1759 #define CONT	 ({ insn++; goto select_insn; })
1760 #define CONT_JMP ({ insn++; goto select_insn; })
1761 
1762 select_insn:
1763 	goto *jumptable[insn->code];
1764 
1765 	/* Explicitly mask the register-based shift amounts with 63 or 31
1766 	 * to avoid undefined behavior. Normally this won't affect the
1767 	 * generated code, for example, in case of native 64 bit archs such
1768 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1769 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1770 	 * the BPF shift operations to machine instructions which produce
1771 	 * implementation-defined results in such a case; the resulting
1772 	 * contents of the register may be arbitrary, but program behaviour
1773 	 * as a whole remains defined. In other words, in case of JIT backends,
1774 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1775 	 */
1776 	/* ALU (shifts) */
1777 #define SHT(OPCODE, OP)					\
1778 	ALU64_##OPCODE##_X:				\
1779 		DST = DST OP (SRC & 63);		\
1780 		CONT;					\
1781 	ALU_##OPCODE##_X:				\
1782 		DST = (u32) DST OP ((u32) SRC & 31);	\
1783 		CONT;					\
1784 	ALU64_##OPCODE##_K:				\
1785 		DST = DST OP IMM;			\
1786 		CONT;					\
1787 	ALU_##OPCODE##_K:				\
1788 		DST = (u32) DST OP (u32) IMM;		\
1789 		CONT;
1790 	/* ALU (rest) */
1791 #define ALU(OPCODE, OP)					\
1792 	ALU64_##OPCODE##_X:				\
1793 		DST = DST OP SRC;			\
1794 		CONT;					\
1795 	ALU_##OPCODE##_X:				\
1796 		DST = (u32) DST OP (u32) SRC;		\
1797 		CONT;					\
1798 	ALU64_##OPCODE##_K:				\
1799 		DST = DST OP IMM;			\
1800 		CONT;					\
1801 	ALU_##OPCODE##_K:				\
1802 		DST = (u32) DST OP (u32) IMM;		\
1803 		CONT;
1804 	ALU(ADD,  +)
1805 	ALU(SUB,  -)
1806 	ALU(AND,  &)
1807 	ALU(OR,   |)
1808 	ALU(XOR,  ^)
1809 	ALU(MUL,  *)
1810 	SHT(LSH, <<)
1811 	SHT(RSH, >>)
1812 #undef SHT
1813 #undef ALU
1814 	ALU_NEG:
1815 		DST = (u32) -DST;
1816 		CONT;
1817 	ALU64_NEG:
1818 		DST = -DST;
1819 		CONT;
1820 	ALU_MOV_X:
1821 		switch (OFF) {
1822 		case 0:
1823 			DST = (u32) SRC;
1824 			break;
1825 		case 8:
1826 			DST = (u32)(s8) SRC;
1827 			break;
1828 		case 16:
1829 			DST = (u32)(s16) SRC;
1830 			break;
1831 		}
1832 		CONT;
1833 	ALU_MOV_K:
1834 		DST = (u32) IMM;
1835 		CONT;
1836 	ALU64_MOV_X:
1837 		switch (OFF) {
1838 		case 0:
1839 			DST = SRC;
1840 			break;
1841 		case 8:
1842 			DST = (s8) SRC;
1843 			break;
1844 		case 16:
1845 			DST = (s16) SRC;
1846 			break;
1847 		case 32:
1848 			DST = (s32) SRC;
1849 			break;
1850 		}
1851 		CONT;
1852 	ALU64_MOV_K:
1853 		DST = IMM;
1854 		CONT;
1855 	LD_IMM_DW:
1856 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1857 		insn++;
1858 		CONT;
1859 	ALU_ARSH_X:
1860 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1861 		CONT;
1862 	ALU_ARSH_K:
1863 		DST = (u64) (u32) (((s32) DST) >> IMM);
1864 		CONT;
1865 	ALU64_ARSH_X:
1866 		(*(s64 *) &DST) >>= (SRC & 63);
1867 		CONT;
1868 	ALU64_ARSH_K:
1869 		(*(s64 *) &DST) >>= IMM;
1870 		CONT;
1871 	ALU64_MOD_X:
1872 		switch (OFF) {
1873 		case 0:
1874 			div64_u64_rem(DST, SRC, &AX);
1875 			DST = AX;
1876 			break;
1877 		case 1:
1878 			AX = div64_s64(DST, SRC);
1879 			DST = DST - AX * SRC;
1880 			break;
1881 		}
1882 		CONT;
1883 	ALU_MOD_X:
1884 		switch (OFF) {
1885 		case 0:
1886 			AX = (u32) DST;
1887 			DST = do_div(AX, (u32) SRC);
1888 			break;
1889 		case 1:
1890 			AX = abs((s32)DST);
1891 			AX = do_div(AX, abs((s32)SRC));
1892 			if ((s32)DST < 0)
1893 				DST = (u32)-AX;
1894 			else
1895 				DST = (u32)AX;
1896 			break;
1897 		}
1898 		CONT;
1899 	ALU64_MOD_K:
1900 		switch (OFF) {
1901 		case 0:
1902 			div64_u64_rem(DST, IMM, &AX);
1903 			DST = AX;
1904 			break;
1905 		case 1:
1906 			AX = div64_s64(DST, IMM);
1907 			DST = DST - AX * IMM;
1908 			break;
1909 		}
1910 		CONT;
1911 	ALU_MOD_K:
1912 		switch (OFF) {
1913 		case 0:
1914 			AX = (u32) DST;
1915 			DST = do_div(AX, (u32) IMM);
1916 			break;
1917 		case 1:
1918 			AX = abs((s32)DST);
1919 			AX = do_div(AX, abs((s32)IMM));
1920 			if ((s32)DST < 0)
1921 				DST = (u32)-AX;
1922 			else
1923 				DST = (u32)AX;
1924 			break;
1925 		}
1926 		CONT;
1927 	ALU64_DIV_X:
1928 		switch (OFF) {
1929 		case 0:
1930 			DST = div64_u64(DST, SRC);
1931 			break;
1932 		case 1:
1933 			DST = div64_s64(DST, SRC);
1934 			break;
1935 		}
1936 		CONT;
1937 	ALU_DIV_X:
1938 		switch (OFF) {
1939 		case 0:
1940 			AX = (u32) DST;
1941 			do_div(AX, (u32) SRC);
1942 			DST = (u32) AX;
1943 			break;
1944 		case 1:
1945 			AX = abs((s32)DST);
1946 			do_div(AX, abs((s32)SRC));
1947 			if (((s32)DST < 0) == ((s32)SRC < 0))
1948 				DST = (u32)AX;
1949 			else
1950 				DST = (u32)-AX;
1951 			break;
1952 		}
1953 		CONT;
1954 	ALU64_DIV_K:
1955 		switch (OFF) {
1956 		case 0:
1957 			DST = div64_u64(DST, IMM);
1958 			break;
1959 		case 1:
1960 			DST = div64_s64(DST, IMM);
1961 			break;
1962 		}
1963 		CONT;
1964 	ALU_DIV_K:
1965 		switch (OFF) {
1966 		case 0:
1967 			AX = (u32) DST;
1968 			do_div(AX, (u32) IMM);
1969 			DST = (u32) AX;
1970 			break;
1971 		case 1:
1972 			AX = abs((s32)DST);
1973 			do_div(AX, abs((s32)IMM));
1974 			if (((s32)DST < 0) == ((s32)IMM < 0))
1975 				DST = (u32)AX;
1976 			else
1977 				DST = (u32)-AX;
1978 			break;
1979 		}
1980 		CONT;
1981 	ALU_END_TO_BE:
1982 		switch (IMM) {
1983 		case 16:
1984 			DST = (__force u16) cpu_to_be16(DST);
1985 			break;
1986 		case 32:
1987 			DST = (__force u32) cpu_to_be32(DST);
1988 			break;
1989 		case 64:
1990 			DST = (__force u64) cpu_to_be64(DST);
1991 			break;
1992 		}
1993 		CONT;
1994 	ALU_END_TO_LE:
1995 		switch (IMM) {
1996 		case 16:
1997 			DST = (__force u16) cpu_to_le16(DST);
1998 			break;
1999 		case 32:
2000 			DST = (__force u32) cpu_to_le32(DST);
2001 			break;
2002 		case 64:
2003 			DST = (__force u64) cpu_to_le64(DST);
2004 			break;
2005 		}
2006 		CONT;
2007 	ALU64_END_TO_LE:
2008 		switch (IMM) {
2009 		case 16:
2010 			DST = (__force u16) __swab16(DST);
2011 			break;
2012 		case 32:
2013 			DST = (__force u32) __swab32(DST);
2014 			break;
2015 		case 64:
2016 			DST = (__force u64) __swab64(DST);
2017 			break;
2018 		}
2019 		CONT;
2020 
2021 	/* CALL */
2022 	JMP_CALL:
2023 		/* Function call scratches BPF_R1-BPF_R5 registers,
2024 		 * preserves BPF_R6-BPF_R9, and stores return value
2025 		 * into BPF_R0.
2026 		 */
2027 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
2028 						       BPF_R4, BPF_R5);
2029 		CONT;
2030 
2031 	JMP_CALL_ARGS:
2032 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
2033 							    BPF_R3, BPF_R4,
2034 							    BPF_R5,
2035 							    insn + insn->off + 1);
2036 		CONT;
2037 
2038 	JMP_TAIL_CALL: {
2039 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
2040 		struct bpf_array *array = container_of(map, struct bpf_array, map);
2041 		struct bpf_prog *prog;
2042 		u32 index = BPF_R3;
2043 
2044 		if (unlikely(index >= array->map.max_entries))
2045 			goto out;
2046 
2047 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2048 			goto out;
2049 
2050 		tail_call_cnt++;
2051 
2052 		prog = READ_ONCE(array->ptrs[index]);
2053 		if (!prog)
2054 			goto out;
2055 
2056 		/* ARG1 at this point is guaranteed to point to CTX from
2057 		 * the verifier side due to the fact that the tail call is
2058 		 * handled like a helper, that is, bpf_tail_call_proto,
2059 		 * where arg1_type is ARG_PTR_TO_CTX.
2060 		 */
2061 		insn = prog->insnsi;
2062 		goto select_insn;
2063 out:
2064 		CONT;
2065 	}
2066 	JMP_JA:
2067 		insn += insn->off;
2068 		CONT;
2069 	JMP32_JA:
2070 		insn += insn->imm;
2071 		CONT;
2072 	JMP_EXIT:
2073 		return BPF_R0;
2074 	/* JMP */
2075 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2076 	JMP_##OPCODE##_X:					\
2077 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2078 			insn += insn->off;			\
2079 			CONT_JMP;				\
2080 		}						\
2081 		CONT;						\
2082 	JMP32_##OPCODE##_X:					\
2083 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2084 			insn += insn->off;			\
2085 			CONT_JMP;				\
2086 		}						\
2087 		CONT;						\
2088 	JMP_##OPCODE##_K:					\
2089 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2090 			insn += insn->off;			\
2091 			CONT_JMP;				\
2092 		}						\
2093 		CONT;						\
2094 	JMP32_##OPCODE##_K:					\
2095 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2096 			insn += insn->off;			\
2097 			CONT_JMP;				\
2098 		}						\
2099 		CONT;
2100 	COND_JMP(u, JEQ, ==)
2101 	COND_JMP(u, JNE, !=)
2102 	COND_JMP(u, JGT, >)
2103 	COND_JMP(u, JLT, <)
2104 	COND_JMP(u, JGE, >=)
2105 	COND_JMP(u, JLE, <=)
2106 	COND_JMP(u, JSET, &)
2107 	COND_JMP(s, JSGT, >)
2108 	COND_JMP(s, JSLT, <)
2109 	COND_JMP(s, JSGE, >=)
2110 	COND_JMP(s, JSLE, <=)
2111 #undef COND_JMP
2112 	/* ST, STX and LDX*/
2113 	ST_NOSPEC:
2114 		/* Speculation barrier for mitigating Speculative Store Bypass.
2115 		 * In case of arm64, we rely on the firmware mitigation as
2116 		 * controlled via the ssbd kernel parameter. Whenever the
2117 		 * mitigation is enabled, it works for all of the kernel code
2118 		 * with no need to provide any additional instructions here.
2119 		 * In case of x86, we use 'lfence' insn for mitigation. We
2120 		 * reuse preexisting logic from Spectre v1 mitigation that
2121 		 * happens to produce the required code on x86 for v4 as well.
2122 		 */
2123 		barrier_nospec();
2124 		CONT;
2125 #define LDST(SIZEOP, SIZE)						\
2126 	STX_MEM_##SIZEOP:						\
2127 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2128 		CONT;							\
2129 	ST_MEM_##SIZEOP:						\
2130 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2131 		CONT;							\
2132 	LDX_MEM_##SIZEOP:						\
2133 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2134 		CONT;							\
2135 	LDX_PROBE_MEM_##SIZEOP:						\
2136 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2137 			      (const void *)(long) (SRC + insn->off));	\
2138 		DST = *((SIZE *)&DST);					\
2139 		CONT;
2140 
2141 	LDST(B,   u8)
2142 	LDST(H,  u16)
2143 	LDST(W,  u32)
2144 	LDST(DW, u64)
2145 #undef LDST
2146 
2147 #define LDSX(SIZEOP, SIZE)						\
2148 	LDX_MEMSX_##SIZEOP:						\
2149 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2150 		CONT;							\
2151 	LDX_PROBE_MEMSX_##SIZEOP:					\
2152 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2153 				      (const void *)(long) (SRC + insn->off));	\
2154 		DST = *((SIZE *)&DST);					\
2155 		CONT;
2156 
2157 	LDSX(B,   s8)
2158 	LDSX(H,  s16)
2159 	LDSX(W,  s32)
2160 #undef LDSX
2161 
2162 #define ATOMIC_ALU_OP(BOP, KOP)						\
2163 		case BOP:						\
2164 			if (BPF_SIZE(insn->code) == BPF_W)		\
2165 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2166 					     (DST + insn->off));	\
2167 			else						\
2168 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2169 					       (DST + insn->off));	\
2170 			break;						\
2171 		case BOP | BPF_FETCH:					\
2172 			if (BPF_SIZE(insn->code) == BPF_W)		\
2173 				SRC = (u32) atomic_fetch_##KOP(		\
2174 					(u32) SRC,			\
2175 					(atomic_t *)(unsigned long) (DST + insn->off)); \
2176 			else						\
2177 				SRC = (u64) atomic64_fetch_##KOP(	\
2178 					(u64) SRC,			\
2179 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2180 			break;
2181 
2182 	STX_ATOMIC_DW:
2183 	STX_ATOMIC_W:
2184 		switch (IMM) {
2185 		ATOMIC_ALU_OP(BPF_ADD, add)
2186 		ATOMIC_ALU_OP(BPF_AND, and)
2187 		ATOMIC_ALU_OP(BPF_OR, or)
2188 		ATOMIC_ALU_OP(BPF_XOR, xor)
2189 #undef ATOMIC_ALU_OP
2190 
2191 		case BPF_XCHG:
2192 			if (BPF_SIZE(insn->code) == BPF_W)
2193 				SRC = (u32) atomic_xchg(
2194 					(atomic_t *)(unsigned long) (DST + insn->off),
2195 					(u32) SRC);
2196 			else
2197 				SRC = (u64) atomic64_xchg(
2198 					(atomic64_t *)(unsigned long) (DST + insn->off),
2199 					(u64) SRC);
2200 			break;
2201 		case BPF_CMPXCHG:
2202 			if (BPF_SIZE(insn->code) == BPF_W)
2203 				BPF_R0 = (u32) atomic_cmpxchg(
2204 					(atomic_t *)(unsigned long) (DST + insn->off),
2205 					(u32) BPF_R0, (u32) SRC);
2206 			else
2207 				BPF_R0 = (u64) atomic64_cmpxchg(
2208 					(atomic64_t *)(unsigned long) (DST + insn->off),
2209 					(u64) BPF_R0, (u64) SRC);
2210 			break;
2211 
2212 		default:
2213 			goto default_label;
2214 		}
2215 		CONT;
2216 
2217 	default_label:
2218 		/* If we ever reach this, we have a bug somewhere. Die hard here
2219 		 * instead of just returning 0; we could be somewhere in a subprog,
2220 		 * so execution could continue otherwise which we do /not/ want.
2221 		 *
2222 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2223 		 */
2224 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2225 			insn->code, insn->imm);
2226 		BUG_ON(1);
2227 		return 0;
2228 }
2229 
2230 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2231 #define DEFINE_BPF_PROG_RUN(stack_size) \
2232 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2233 { \
2234 	u64 stack[stack_size / sizeof(u64)]; \
2235 	u64 regs[MAX_BPF_EXT_REG] = {}; \
2236 \
2237 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2238 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2239 	ARG1 = (u64) (unsigned long) ctx; \
2240 	return ___bpf_prog_run(regs, insn); \
2241 }
2242 
2243 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2244 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2245 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2246 				      const struct bpf_insn *insn) \
2247 { \
2248 	u64 stack[stack_size / sizeof(u64)]; \
2249 	u64 regs[MAX_BPF_EXT_REG]; \
2250 \
2251 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2252 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2253 	BPF_R1 = r1; \
2254 	BPF_R2 = r2; \
2255 	BPF_R3 = r3; \
2256 	BPF_R4 = r4; \
2257 	BPF_R5 = r5; \
2258 	return ___bpf_prog_run(regs, insn); \
2259 }
2260 
2261 #define EVAL1(FN, X) FN(X)
2262 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2263 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2264 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2265 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2266 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2267 
2268 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2269 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2270 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2271 
2272 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2273 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2274 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2275 
2276 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2277 
2278 static unsigned int (*interpreters[])(const void *ctx,
2279 				      const struct bpf_insn *insn) = {
2280 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2281 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2282 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2283 };
2284 #undef PROG_NAME_LIST
2285 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2286 static __maybe_unused
2287 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2288 			   const struct bpf_insn *insn) = {
2289 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2290 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2291 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2292 };
2293 #undef PROG_NAME_LIST
2294 
2295 #ifdef CONFIG_BPF_SYSCALL
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)2296 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2297 {
2298 	stack_depth = max_t(u32, stack_depth, 1);
2299 	insn->off = (s16) insn->imm;
2300 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2301 		__bpf_call_base_args;
2302 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2303 }
2304 #endif
2305 #endif
2306 
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)2307 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2308 					 const struct bpf_insn *insn)
2309 {
2310 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2311 	 * is not working properly, so warn about it!
2312 	 */
2313 	WARN_ON_ONCE(1);
2314 	return 0;
2315 }
2316 
__bpf_prog_map_compatible(struct bpf_map * map,const struct bpf_prog * fp)2317 static bool __bpf_prog_map_compatible(struct bpf_map *map,
2318 				      const struct bpf_prog *fp)
2319 {
2320 	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2321 	bool ret;
2322 	struct bpf_prog_aux *aux = fp->aux;
2323 
2324 	if (fp->kprobe_override)
2325 		return false;
2326 
2327 	spin_lock(&map->owner.lock);
2328 	if (!map->owner.type) {
2329 		/* There's no owner yet where we could check for
2330 		 * compatibility.
2331 		 */
2332 		map->owner.type  = prog_type;
2333 		map->owner.jited = fp->jited;
2334 		map->owner.xdp_has_frags = aux->xdp_has_frags;
2335 		map->owner.attach_func_proto = aux->attach_func_proto;
2336 		ret = true;
2337 	} else {
2338 		ret = map->owner.type  == prog_type &&
2339 		      map->owner.jited == fp->jited &&
2340 		      map->owner.xdp_has_frags == aux->xdp_has_frags;
2341 		if (ret &&
2342 		    map->owner.attach_func_proto != aux->attach_func_proto) {
2343 			switch (prog_type) {
2344 			case BPF_PROG_TYPE_TRACING:
2345 			case BPF_PROG_TYPE_LSM:
2346 			case BPF_PROG_TYPE_EXT:
2347 			case BPF_PROG_TYPE_STRUCT_OPS:
2348 				ret = false;
2349 				break;
2350 			default:
2351 				break;
2352 			}
2353 		}
2354 	}
2355 	spin_unlock(&map->owner.lock);
2356 
2357 	return ret;
2358 }
2359 
bpf_prog_map_compatible(struct bpf_map * map,const struct bpf_prog * fp)2360 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp)
2361 {
2362 	/* XDP programs inserted into maps are not guaranteed to run on
2363 	 * a particular netdev (and can run outside driver context entirely
2364 	 * in the case of devmap and cpumap). Until device checks
2365 	 * are implemented, prohibit adding dev-bound programs to program maps.
2366 	 */
2367 	if (bpf_prog_is_dev_bound(fp->aux))
2368 		return false;
2369 
2370 	return __bpf_prog_map_compatible(map, fp);
2371 }
2372 
bpf_check_tail_call(const struct bpf_prog * fp)2373 static int bpf_check_tail_call(const struct bpf_prog *fp)
2374 {
2375 	struct bpf_prog_aux *aux = fp->aux;
2376 	int i, ret = 0;
2377 
2378 	mutex_lock(&aux->used_maps_mutex);
2379 	for (i = 0; i < aux->used_map_cnt; i++) {
2380 		struct bpf_map *map = aux->used_maps[i];
2381 
2382 		if (!map_type_contains_progs(map))
2383 			continue;
2384 
2385 		if (!__bpf_prog_map_compatible(map, fp)) {
2386 			ret = -EINVAL;
2387 			goto out;
2388 		}
2389 	}
2390 
2391 out:
2392 	mutex_unlock(&aux->used_maps_mutex);
2393 	return ret;
2394 }
2395 
bpf_prog_select_interpreter(struct bpf_prog * fp)2396 static bool bpf_prog_select_interpreter(struct bpf_prog *fp)
2397 {
2398 	bool select_interpreter = false;
2399 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2400 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2401 	u32 idx = (round_up(stack_depth, 32) / 32) - 1;
2402 
2403 	/* may_goto may cause stack size > 512, leading to idx out-of-bounds.
2404 	 * But for non-JITed programs, we don't need bpf_func, so no bounds
2405 	 * check needed.
2406 	 */
2407 	if (idx < ARRAY_SIZE(interpreters)) {
2408 		fp->bpf_func = interpreters[idx];
2409 		select_interpreter = true;
2410 	} else {
2411 		fp->bpf_func = __bpf_prog_ret0_warn;
2412 	}
2413 #else
2414 	fp->bpf_func = __bpf_prog_ret0_warn;
2415 #endif
2416 	return select_interpreter;
2417 }
2418 
2419 /**
2420  *	bpf_prog_select_runtime - select exec runtime for BPF program
2421  *	@fp: bpf_prog populated with BPF program
2422  *	@err: pointer to error variable
2423  *
2424  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2425  * The BPF program will be executed via bpf_prog_run() function.
2426  *
2427  * Return: the &fp argument along with &err set to 0 for success or
2428  * a negative errno code on failure
2429  */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)2430 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2431 {
2432 	/* In case of BPF to BPF calls, verifier did all the prep
2433 	 * work with regards to JITing, etc.
2434 	 */
2435 	bool jit_needed = false;
2436 
2437 	if (fp->bpf_func)
2438 		goto finalize;
2439 
2440 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2441 	    bpf_prog_has_kfunc_call(fp))
2442 		jit_needed = true;
2443 
2444 	if (!bpf_prog_select_interpreter(fp))
2445 		jit_needed = true;
2446 
2447 	/* eBPF JITs can rewrite the program in case constant
2448 	 * blinding is active. However, in case of error during
2449 	 * blinding, bpf_int_jit_compile() must always return a
2450 	 * valid program, which in this case would simply not
2451 	 * be JITed, but falls back to the interpreter.
2452 	 */
2453 	if (!bpf_prog_is_offloaded(fp->aux)) {
2454 		*err = bpf_prog_alloc_jited_linfo(fp);
2455 		if (*err)
2456 			return fp;
2457 
2458 		fp = bpf_int_jit_compile(fp);
2459 		bpf_prog_jit_attempt_done(fp);
2460 		if (!fp->jited && jit_needed) {
2461 			*err = -ENOTSUPP;
2462 			return fp;
2463 		}
2464 	} else {
2465 		*err = bpf_prog_offload_compile(fp);
2466 		if (*err)
2467 			return fp;
2468 	}
2469 
2470 finalize:
2471 	*err = bpf_prog_lock_ro(fp);
2472 	if (*err)
2473 		return fp;
2474 
2475 	/* The tail call compatibility check can only be done at
2476 	 * this late stage as we need to determine, if we deal
2477 	 * with JITed or non JITed program concatenations and not
2478 	 * all eBPF JITs might immediately support all features.
2479 	 */
2480 	*err = bpf_check_tail_call(fp);
2481 
2482 	return fp;
2483 }
2484 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2485 
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)2486 static unsigned int __bpf_prog_ret1(const void *ctx,
2487 				    const struct bpf_insn *insn)
2488 {
2489 	return 1;
2490 }
2491 
2492 static struct bpf_prog_dummy {
2493 	struct bpf_prog prog;
2494 } dummy_bpf_prog = {
2495 	.prog = {
2496 		.bpf_func = __bpf_prog_ret1,
2497 	},
2498 };
2499 
2500 struct bpf_empty_prog_array bpf_empty_prog_array = {
2501 	.null_prog = NULL,
2502 };
2503 EXPORT_SYMBOL(bpf_empty_prog_array);
2504 
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)2505 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2506 {
2507 	struct bpf_prog_array *p;
2508 
2509 	if (prog_cnt)
2510 		p = kzalloc(struct_size(p, items, prog_cnt + 1), flags);
2511 	else
2512 		p = &bpf_empty_prog_array.hdr;
2513 
2514 	return p;
2515 }
2516 
bpf_prog_array_free(struct bpf_prog_array * progs)2517 void bpf_prog_array_free(struct bpf_prog_array *progs)
2518 {
2519 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2520 		return;
2521 	kfree_rcu(progs, rcu);
2522 }
2523 
__bpf_prog_array_free_sleepable_cb(struct rcu_head * rcu)2524 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2525 {
2526 	struct bpf_prog_array *progs;
2527 
2528 	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2529 	 * no need to call kfree_rcu(), just call kfree() directly.
2530 	 */
2531 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2532 	if (rcu_trace_implies_rcu_gp())
2533 		kfree(progs);
2534 	else
2535 		kfree_rcu(progs, rcu);
2536 }
2537 
bpf_prog_array_free_sleepable(struct bpf_prog_array * progs)2538 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2539 {
2540 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2541 		return;
2542 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2543 }
2544 
bpf_prog_array_length(struct bpf_prog_array * array)2545 int bpf_prog_array_length(struct bpf_prog_array *array)
2546 {
2547 	struct bpf_prog_array_item *item;
2548 	u32 cnt = 0;
2549 
2550 	for (item = array->items; item->prog; item++)
2551 		if (item->prog != &dummy_bpf_prog.prog)
2552 			cnt++;
2553 	return cnt;
2554 }
2555 
bpf_prog_array_is_empty(struct bpf_prog_array * array)2556 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2557 {
2558 	struct bpf_prog_array_item *item;
2559 
2560 	for (item = array->items; item->prog; item++)
2561 		if (item->prog != &dummy_bpf_prog.prog)
2562 			return false;
2563 	return true;
2564 }
2565 
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)2566 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2567 				     u32 *prog_ids,
2568 				     u32 request_cnt)
2569 {
2570 	struct bpf_prog_array_item *item;
2571 	int i = 0;
2572 
2573 	for (item = array->items; item->prog; item++) {
2574 		if (item->prog == &dummy_bpf_prog.prog)
2575 			continue;
2576 		prog_ids[i] = item->prog->aux->id;
2577 		if (++i == request_cnt) {
2578 			item++;
2579 			break;
2580 		}
2581 	}
2582 
2583 	return !!(item->prog);
2584 }
2585 
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)2586 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2587 				__u32 __user *prog_ids, u32 cnt)
2588 {
2589 	unsigned long err = 0;
2590 	bool nospc;
2591 	u32 *ids;
2592 
2593 	/* users of this function are doing:
2594 	 * cnt = bpf_prog_array_length();
2595 	 * if (cnt > 0)
2596 	 *     bpf_prog_array_copy_to_user(..., cnt);
2597 	 * so below kcalloc doesn't need extra cnt > 0 check.
2598 	 */
2599 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2600 	if (!ids)
2601 		return -ENOMEM;
2602 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2603 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2604 	kfree(ids);
2605 	if (err)
2606 		return -EFAULT;
2607 	if (nospc)
2608 		return -ENOSPC;
2609 	return 0;
2610 }
2611 
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2612 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2613 				struct bpf_prog *old_prog)
2614 {
2615 	struct bpf_prog_array_item *item;
2616 
2617 	for (item = array->items; item->prog; item++)
2618 		if (item->prog == old_prog) {
2619 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2620 			break;
2621 		}
2622 }
2623 
2624 /**
2625  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2626  *                                   index into the program array with
2627  *                                   a dummy no-op program.
2628  * @array: a bpf_prog_array
2629  * @index: the index of the program to replace
2630  *
2631  * Skips over dummy programs, by not counting them, when calculating
2632  * the position of the program to replace.
2633  *
2634  * Return:
2635  * * 0		- Success
2636  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2637  * * -ENOENT	- Index out of range
2638  */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2639 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2640 {
2641 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2642 }
2643 
2644 /**
2645  * bpf_prog_array_update_at() - Updates the program at the given index
2646  *                              into the program array.
2647  * @array: a bpf_prog_array
2648  * @index: the index of the program to update
2649  * @prog: the program to insert into the array
2650  *
2651  * Skips over dummy programs, by not counting them, when calculating
2652  * the position of the program to update.
2653  *
2654  * Return:
2655  * * 0		- Success
2656  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2657  * * -ENOENT	- Index out of range
2658  */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2659 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2660 			     struct bpf_prog *prog)
2661 {
2662 	struct bpf_prog_array_item *item;
2663 
2664 	if (unlikely(index < 0))
2665 		return -EINVAL;
2666 
2667 	for (item = array->items; item->prog; item++) {
2668 		if (item->prog == &dummy_bpf_prog.prog)
2669 			continue;
2670 		if (!index) {
2671 			WRITE_ONCE(item->prog, prog);
2672 			return 0;
2673 		}
2674 		index--;
2675 	}
2676 	return -ENOENT;
2677 }
2678 
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,u64 bpf_cookie,struct bpf_prog_array ** new_array)2679 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2680 			struct bpf_prog *exclude_prog,
2681 			struct bpf_prog *include_prog,
2682 			u64 bpf_cookie,
2683 			struct bpf_prog_array **new_array)
2684 {
2685 	int new_prog_cnt, carry_prog_cnt = 0;
2686 	struct bpf_prog_array_item *existing, *new;
2687 	struct bpf_prog_array *array;
2688 	bool found_exclude = false;
2689 
2690 	/* Figure out how many existing progs we need to carry over to
2691 	 * the new array.
2692 	 */
2693 	if (old_array) {
2694 		existing = old_array->items;
2695 		for (; existing->prog; existing++) {
2696 			if (existing->prog == exclude_prog) {
2697 				found_exclude = true;
2698 				continue;
2699 			}
2700 			if (existing->prog != &dummy_bpf_prog.prog)
2701 				carry_prog_cnt++;
2702 			if (existing->prog == include_prog)
2703 				return -EEXIST;
2704 		}
2705 	}
2706 
2707 	if (exclude_prog && !found_exclude)
2708 		return -ENOENT;
2709 
2710 	/* How many progs (not NULL) will be in the new array? */
2711 	new_prog_cnt = carry_prog_cnt;
2712 	if (include_prog)
2713 		new_prog_cnt += 1;
2714 
2715 	/* Do we have any prog (not NULL) in the new array? */
2716 	if (!new_prog_cnt) {
2717 		*new_array = NULL;
2718 		return 0;
2719 	}
2720 
2721 	/* +1 as the end of prog_array is marked with NULL */
2722 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2723 	if (!array)
2724 		return -ENOMEM;
2725 	new = array->items;
2726 
2727 	/* Fill in the new prog array */
2728 	if (carry_prog_cnt) {
2729 		existing = old_array->items;
2730 		for (; existing->prog; existing++) {
2731 			if (existing->prog == exclude_prog ||
2732 			    existing->prog == &dummy_bpf_prog.prog)
2733 				continue;
2734 
2735 			new->prog = existing->prog;
2736 			new->bpf_cookie = existing->bpf_cookie;
2737 			new++;
2738 		}
2739 	}
2740 	if (include_prog) {
2741 		new->prog = include_prog;
2742 		new->bpf_cookie = bpf_cookie;
2743 		new++;
2744 	}
2745 	new->prog = NULL;
2746 	*new_array = array;
2747 	return 0;
2748 }
2749 
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2750 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2751 			     u32 *prog_ids, u32 request_cnt,
2752 			     u32 *prog_cnt)
2753 {
2754 	u32 cnt = 0;
2755 
2756 	if (array)
2757 		cnt = bpf_prog_array_length(array);
2758 
2759 	*prog_cnt = cnt;
2760 
2761 	/* return early if user requested only program count or nothing to copy */
2762 	if (!request_cnt || !cnt)
2763 		return 0;
2764 
2765 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2766 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2767 								     : 0;
2768 }
2769 
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2770 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2771 			  struct bpf_map **used_maps, u32 len)
2772 {
2773 	struct bpf_map *map;
2774 	bool sleepable;
2775 	u32 i;
2776 
2777 	sleepable = aux->prog->sleepable;
2778 	for (i = 0; i < len; i++) {
2779 		map = used_maps[i];
2780 		if (map->ops->map_poke_untrack)
2781 			map->ops->map_poke_untrack(map, aux);
2782 		if (sleepable)
2783 			atomic64_dec(&map->sleepable_refcnt);
2784 		bpf_map_put(map);
2785 	}
2786 }
2787 
bpf_free_used_maps(struct bpf_prog_aux * aux)2788 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2789 {
2790 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2791 	kfree(aux->used_maps);
2792 }
2793 
__bpf_free_used_btfs(struct btf_mod_pair * used_btfs,u32 len)2794 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len)
2795 {
2796 #ifdef CONFIG_BPF_SYSCALL
2797 	struct btf_mod_pair *btf_mod;
2798 	u32 i;
2799 
2800 	for (i = 0; i < len; i++) {
2801 		btf_mod = &used_btfs[i];
2802 		if (btf_mod->module)
2803 			module_put(btf_mod->module);
2804 		btf_put(btf_mod->btf);
2805 	}
2806 #endif
2807 }
2808 
bpf_free_used_btfs(struct bpf_prog_aux * aux)2809 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2810 {
2811 	__bpf_free_used_btfs(aux->used_btfs, aux->used_btf_cnt);
2812 	kfree(aux->used_btfs);
2813 }
2814 
bpf_prog_free_deferred(struct work_struct * work)2815 static void bpf_prog_free_deferred(struct work_struct *work)
2816 {
2817 	struct bpf_prog_aux *aux;
2818 	int i;
2819 
2820 	aux = container_of(work, struct bpf_prog_aux, work);
2821 #ifdef CONFIG_BPF_SYSCALL
2822 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2823 #endif
2824 #ifdef CONFIG_CGROUP_BPF
2825 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2826 		bpf_cgroup_atype_put(aux->cgroup_atype);
2827 #endif
2828 	bpf_free_used_maps(aux);
2829 	bpf_free_used_btfs(aux);
2830 	if (bpf_prog_is_dev_bound(aux))
2831 		bpf_prog_dev_bound_destroy(aux->prog);
2832 #ifdef CONFIG_PERF_EVENTS
2833 	if (aux->prog->has_callchain_buf)
2834 		put_callchain_buffers();
2835 #endif
2836 	if (aux->dst_trampoline)
2837 		bpf_trampoline_put(aux->dst_trampoline);
2838 	for (i = 0; i < aux->real_func_cnt; i++) {
2839 		/* We can just unlink the subprog poke descriptor table as
2840 		 * it was originally linked to the main program and is also
2841 		 * released along with it.
2842 		 */
2843 		aux->func[i]->aux->poke_tab = NULL;
2844 		bpf_jit_free(aux->func[i]);
2845 	}
2846 	if (aux->real_func_cnt) {
2847 		kfree(aux->func);
2848 		bpf_prog_unlock_free(aux->prog);
2849 	} else {
2850 		bpf_jit_free(aux->prog);
2851 	}
2852 }
2853 
bpf_prog_free(struct bpf_prog * fp)2854 void bpf_prog_free(struct bpf_prog *fp)
2855 {
2856 	struct bpf_prog_aux *aux = fp->aux;
2857 
2858 	if (aux->dst_prog)
2859 		bpf_prog_put(aux->dst_prog);
2860 	bpf_token_put(aux->token);
2861 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2862 	schedule_work(&aux->work);
2863 }
2864 EXPORT_SYMBOL_GPL(bpf_prog_free);
2865 
2866 /* RNG for unprivileged user space with separated state from prandom_u32(). */
2867 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2868 
bpf_user_rnd_init_once(void)2869 void bpf_user_rnd_init_once(void)
2870 {
2871 	prandom_init_once(&bpf_user_rnd_state);
2872 }
2873 
BPF_CALL_0(bpf_user_rnd_u32)2874 BPF_CALL_0(bpf_user_rnd_u32)
2875 {
2876 	/* Should someone ever have the rather unwise idea to use some
2877 	 * of the registers passed into this function, then note that
2878 	 * this function is called from native eBPF and classic-to-eBPF
2879 	 * transformations. Register assignments from both sides are
2880 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2881 	 */
2882 	struct rnd_state *state;
2883 	u32 res;
2884 
2885 	state = &get_cpu_var(bpf_user_rnd_state);
2886 	res = prandom_u32_state(state);
2887 	put_cpu_var(bpf_user_rnd_state);
2888 
2889 	return res;
2890 }
2891 
BPF_CALL_0(bpf_get_raw_cpu_id)2892 BPF_CALL_0(bpf_get_raw_cpu_id)
2893 {
2894 	return raw_smp_processor_id();
2895 }
2896 
2897 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2898 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2899 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2900 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2901 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2902 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2903 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2904 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2905 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2906 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2907 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2908 
2909 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2910 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2911 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2912 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2913 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2914 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2915 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2916 
2917 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2918 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2919 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2920 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2921 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2922 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2923 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2924 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2925 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2926 const struct bpf_func_proto bpf_set_retval_proto __weak;
2927 const struct bpf_func_proto bpf_get_retval_proto __weak;
2928 
bpf_get_trace_printk_proto(void)2929 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2930 {
2931 	return NULL;
2932 }
2933 
bpf_get_trace_vprintk_proto(void)2934 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2935 {
2936 	return NULL;
2937 }
2938 
2939 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)2940 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2941 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2942 {
2943 	return -ENOTSUPP;
2944 }
2945 EXPORT_SYMBOL_GPL(bpf_event_output);
2946 
2947 /* Always built-in helper functions. */
2948 const struct bpf_func_proto bpf_tail_call_proto = {
2949 	/* func is unused for tail_call, we set it to pass the
2950 	 * get_helper_proto check
2951 	 */
2952 	.func		= BPF_PTR_POISON,
2953 	.gpl_only	= false,
2954 	.ret_type	= RET_VOID,
2955 	.arg1_type	= ARG_PTR_TO_CTX,
2956 	.arg2_type	= ARG_CONST_MAP_PTR,
2957 	.arg3_type	= ARG_ANYTHING,
2958 };
2959 
2960 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2961  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2962  * eBPF and implicitly also cBPF can get JITed!
2963  */
bpf_int_jit_compile(struct bpf_prog * prog)2964 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2965 {
2966 	return prog;
2967 }
2968 
2969 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2970  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2971  */
bpf_jit_compile(struct bpf_prog * prog)2972 void __weak bpf_jit_compile(struct bpf_prog *prog)
2973 {
2974 }
2975 
bpf_helper_changes_pkt_data(enum bpf_func_id func_id)2976 bool __weak bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
2977 {
2978 	return false;
2979 }
2980 
2981 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2982  * analysis code and wants explicit zero extension inserted by verifier.
2983  * Otherwise, return FALSE.
2984  *
2985  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2986  * you don't override this. JITs that don't want these extra insns can detect
2987  * them using insn_is_zext.
2988  */
bpf_jit_needs_zext(void)2989 bool __weak bpf_jit_needs_zext(void)
2990 {
2991 	return false;
2992 }
2993 
2994 /* Return true if the JIT inlines the call to the helper corresponding to
2995  * the imm.
2996  *
2997  * The verifier will not patch the insn->imm for the call to the helper if
2998  * this returns true.
2999  */
bpf_jit_inlines_helper_call(s32 imm)3000 bool __weak bpf_jit_inlines_helper_call(s32 imm)
3001 {
3002 	return false;
3003 }
3004 
3005 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
bpf_jit_supports_subprog_tailcalls(void)3006 bool __weak bpf_jit_supports_subprog_tailcalls(void)
3007 {
3008 	return false;
3009 }
3010 
bpf_jit_supports_percpu_insn(void)3011 bool __weak bpf_jit_supports_percpu_insn(void)
3012 {
3013 	return false;
3014 }
3015 
bpf_jit_supports_kfunc_call(void)3016 bool __weak bpf_jit_supports_kfunc_call(void)
3017 {
3018 	return false;
3019 }
3020 
bpf_jit_supports_far_kfunc_call(void)3021 bool __weak bpf_jit_supports_far_kfunc_call(void)
3022 {
3023 	return false;
3024 }
3025 
bpf_jit_supports_arena(void)3026 bool __weak bpf_jit_supports_arena(void)
3027 {
3028 	return false;
3029 }
3030 
bpf_jit_supports_insn(struct bpf_insn * insn,bool in_arena)3031 bool __weak bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3032 {
3033 	return false;
3034 }
3035 
bpf_arch_uaddress_limit(void)3036 u64 __weak bpf_arch_uaddress_limit(void)
3037 {
3038 #if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE)
3039 	return TASK_SIZE;
3040 #else
3041 	return 0;
3042 #endif
3043 }
3044 
3045 /* Return TRUE if the JIT backend satisfies the following two conditions:
3046  * 1) JIT backend supports atomic_xchg() on pointer-sized words.
3047  * 2) Under the specific arch, the implementation of xchg() is the same
3048  *    as atomic_xchg() on pointer-sized words.
3049  */
bpf_jit_supports_ptr_xchg(void)3050 bool __weak bpf_jit_supports_ptr_xchg(void)
3051 {
3052 	return false;
3053 }
3054 
3055 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
3056  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
3057  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)3058 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
3059 			 int len)
3060 {
3061 	return -EFAULT;
3062 }
3063 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * addr1,void * addr2)3064 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3065 			      void *addr1, void *addr2)
3066 {
3067 	return -ENOTSUPP;
3068 }
3069 
bpf_arch_text_copy(void * dst,void * src,size_t len)3070 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
3071 {
3072 	return ERR_PTR(-ENOTSUPP);
3073 }
3074 
bpf_arch_text_invalidate(void * dst,size_t len)3075 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
3076 {
3077 	return -ENOTSUPP;
3078 }
3079 
bpf_jit_supports_exceptions(void)3080 bool __weak bpf_jit_supports_exceptions(void)
3081 {
3082 	return false;
3083 }
3084 
arch_bpf_stack_walk(bool (* consume_fn)(void * cookie,u64 ip,u64 sp,u64 bp),void * cookie)3085 void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3086 {
3087 }
3088 
3089 /* for configs without MMU or 32-bit */
3090 __weak const struct bpf_map_ops arena_map_ops;
bpf_arena_get_user_vm_start(struct bpf_arena * arena)3091 __weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
3092 {
3093 	return 0;
3094 }
bpf_arena_get_kern_vm_start(struct bpf_arena * arena)3095 __weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
3096 {
3097 	return 0;
3098 }
3099 
3100 #ifdef CONFIG_BPF_SYSCALL
bpf_global_ma_init(void)3101 static int __init bpf_global_ma_init(void)
3102 {
3103 	int ret;
3104 
3105 	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
3106 	bpf_global_ma_set = !ret;
3107 	return ret;
3108 }
3109 late_initcall(bpf_global_ma_init);
3110 #endif
3111 
3112 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
3113 EXPORT_SYMBOL(bpf_stats_enabled_key);
3114 
3115 /* All definitions of tracepoints related to BPF. */
3116 #define CREATE_TRACE_POINTS
3117 #include <linux/bpf_trace.h>
3118 
3119 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
3120 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
3121