• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3 
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18 
19 #include <trace/events/cgroup.h>
20 #include <trace/hooks/cgroup.h>
21 
22 /*
23  * pidlists linger the following amount before being destroyed.  The goal
24  * is avoiding frequent destruction in the middle of consecutive read calls
25  * Expiring in the middle is a performance problem not a correctness one.
26  * 1 sec should be enough.
27  */
28 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
29 
30 /* Controllers blocked by the commandline in v1 */
31 static u16 cgroup_no_v1_mask;
32 
33 /* disable named v1 mounts */
34 static bool cgroup_no_v1_named;
35 
36 /*
37  * pidlist destructions need to be flushed on cgroup destruction.  Use a
38  * separate workqueue as flush domain.
39  */
40 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
41 
42 /* protects cgroup_subsys->release_agent_path */
43 static DEFINE_SPINLOCK(release_agent_path_lock);
44 
cgroup1_ssid_disabled(int ssid)45 bool cgroup1_ssid_disabled(int ssid)
46 {
47 	return cgroup_no_v1_mask & (1 << ssid);
48 }
49 
cgroup1_subsys_absent(struct cgroup_subsys * ss)50 static bool cgroup1_subsys_absent(struct cgroup_subsys *ss)
51 {
52 	/* Check also dfl_cftypes for file-less controllers, i.e. perf_event */
53 	return ss->legacy_cftypes == NULL && ss->dfl_cftypes;
54 }
55 
56 /**
57  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
58  * @from: attach to all cgroups of a given task
59  * @tsk: the task to be attached
60  *
61  * Return: %0 on success or a negative errno code on failure
62  */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)63 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
64 {
65 	struct cgroup_root *root;
66 	int retval = 0;
67 
68 	cgroup_lock();
69 	cgroup_attach_lock(true);
70 	for_each_root(root) {
71 		struct cgroup *from_cgrp;
72 
73 		spin_lock_irq(&css_set_lock);
74 		from_cgrp = task_cgroup_from_root(from, root);
75 		spin_unlock_irq(&css_set_lock);
76 
77 		retval = cgroup_attach_task(from_cgrp, tsk, false);
78 		if (retval)
79 			break;
80 	}
81 	cgroup_attach_unlock(true);
82 	cgroup_unlock();
83 
84 	return retval;
85 }
86 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
87 
88 /**
89  * cgroup_transfer_tasks - move tasks from one cgroup to another
90  * @to: cgroup to which the tasks will be moved
91  * @from: cgroup in which the tasks currently reside
92  *
93  * Locking rules between cgroup_post_fork() and the migration path
94  * guarantee that, if a task is forking while being migrated, the new child
95  * is guaranteed to be either visible in the source cgroup after the
96  * parent's migration is complete or put into the target cgroup.  No task
97  * can slip out of migration through forking.
98  *
99  * Return: %0 on success or a negative errno code on failure
100  */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)101 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
102 {
103 	DEFINE_CGROUP_MGCTX(mgctx);
104 	struct cgrp_cset_link *link;
105 	struct css_task_iter it;
106 	struct task_struct *task;
107 	int ret;
108 
109 	if (cgroup_on_dfl(to))
110 		return -EINVAL;
111 
112 	ret = cgroup_migrate_vet_dst(to);
113 	if (ret)
114 		return ret;
115 
116 	cgroup_lock();
117 
118 	cgroup_attach_lock(true);
119 
120 	/* all tasks in @from are being moved, all csets are source */
121 	spin_lock_irq(&css_set_lock);
122 	list_for_each_entry(link, &from->cset_links, cset_link)
123 		cgroup_migrate_add_src(link->cset, to, &mgctx);
124 	spin_unlock_irq(&css_set_lock);
125 
126 	ret = cgroup_migrate_prepare_dst(&mgctx);
127 	if (ret)
128 		goto out_err;
129 
130 	/*
131 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
132 	 * ->can_attach() fails.
133 	 */
134 	do {
135 		css_task_iter_start(&from->self, 0, &it);
136 
137 		do {
138 			task = css_task_iter_next(&it);
139 		} while (task && (task->flags & PF_EXITING));
140 
141 		if (task)
142 			get_task_struct(task);
143 		css_task_iter_end(&it);
144 
145 		if (task) {
146 			ret = cgroup_migrate(task, false, &mgctx);
147 			if (!ret)
148 				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
149 			put_task_struct(task);
150 		}
151 	} while (task && !ret);
152 out_err:
153 	cgroup_migrate_finish(&mgctx);
154 	cgroup_attach_unlock(true);
155 	cgroup_unlock();
156 	return ret;
157 }
158 
159 /*
160  * Stuff for reading the 'tasks'/'procs' files.
161  *
162  * Reading this file can return large amounts of data if a cgroup has
163  * *lots* of attached tasks. So it may need several calls to read(),
164  * but we cannot guarantee that the information we produce is correct
165  * unless we produce it entirely atomically.
166  *
167  */
168 
169 /* which pidlist file are we talking about? */
170 enum cgroup_filetype {
171 	CGROUP_FILE_PROCS,
172 	CGROUP_FILE_TASKS,
173 };
174 
175 /*
176  * A pidlist is a list of pids that virtually represents the contents of one
177  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
178  * a pair (one each for procs, tasks) for each pid namespace that's relevant
179  * to the cgroup.
180  */
181 struct cgroup_pidlist {
182 	/*
183 	 * used to find which pidlist is wanted. doesn't change as long as
184 	 * this particular list stays in the list.
185 	*/
186 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
187 	/* array of xids */
188 	pid_t *list;
189 	/* how many elements the above list has */
190 	int length;
191 	/* each of these stored in a list by its cgroup */
192 	struct list_head links;
193 	/* pointer to the cgroup we belong to, for list removal purposes */
194 	struct cgroup *owner;
195 	/* for delayed destruction */
196 	struct delayed_work destroy_dwork;
197 };
198 
199 /*
200  * Used to destroy all pidlists lingering waiting for destroy timer.  None
201  * should be left afterwards.
202  */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)203 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
204 {
205 	struct cgroup_pidlist *l, *tmp_l;
206 
207 	mutex_lock(&cgrp->pidlist_mutex);
208 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
209 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
210 	mutex_unlock(&cgrp->pidlist_mutex);
211 
212 	flush_workqueue(cgroup_pidlist_destroy_wq);
213 	BUG_ON(!list_empty(&cgrp->pidlists));
214 }
215 
cgroup_pidlist_destroy_work_fn(struct work_struct * work)216 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
217 {
218 	struct delayed_work *dwork = to_delayed_work(work);
219 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
220 						destroy_dwork);
221 	struct cgroup_pidlist *tofree = NULL;
222 
223 	mutex_lock(&l->owner->pidlist_mutex);
224 
225 	/*
226 	 * Destroy iff we didn't get queued again.  The state won't change
227 	 * as destroy_dwork can only be queued while locked.
228 	 */
229 	if (!delayed_work_pending(dwork)) {
230 		list_del(&l->links);
231 		kvfree(l->list);
232 		put_pid_ns(l->key.ns);
233 		tofree = l;
234 	}
235 
236 	mutex_unlock(&l->owner->pidlist_mutex);
237 	kfree(tofree);
238 }
239 
240 /*
241  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
242  * Returns the number of unique elements.
243  */
pidlist_uniq(pid_t * list,int length)244 static int pidlist_uniq(pid_t *list, int length)
245 {
246 	int src, dest = 1;
247 
248 	/*
249 	 * we presume the 0th element is unique, so i starts at 1. trivial
250 	 * edge cases first; no work needs to be done for either
251 	 */
252 	if (length == 0 || length == 1)
253 		return length;
254 	/* src and dest walk down the list; dest counts unique elements */
255 	for (src = 1; src < length; src++) {
256 		/* find next unique element */
257 		while (list[src] == list[src-1]) {
258 			src++;
259 			if (src == length)
260 				goto after;
261 		}
262 		/* dest always points to where the next unique element goes */
263 		list[dest] = list[src];
264 		dest++;
265 	}
266 after:
267 	return dest;
268 }
269 
270 /*
271  * The two pid files - task and cgroup.procs - guaranteed that the result
272  * is sorted, which forced this whole pidlist fiasco.  As pid order is
273  * different per namespace, each namespace needs differently sorted list,
274  * making it impossible to use, for example, single rbtree of member tasks
275  * sorted by task pointer.  As pidlists can be fairly large, allocating one
276  * per open file is dangerous, so cgroup had to implement shared pool of
277  * pidlists keyed by cgroup and namespace.
278  */
cmppid(const void * a,const void * b)279 static int cmppid(const void *a, const void *b)
280 {
281 	return *(pid_t *)a - *(pid_t *)b;
282 }
283 
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)284 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
285 						  enum cgroup_filetype type)
286 {
287 	struct cgroup_pidlist *l;
288 	/* don't need task_nsproxy() if we're looking at ourself */
289 	struct pid_namespace *ns = task_active_pid_ns(current);
290 
291 	lockdep_assert_held(&cgrp->pidlist_mutex);
292 
293 	list_for_each_entry(l, &cgrp->pidlists, links)
294 		if (l->key.type == type && l->key.ns == ns)
295 			return l;
296 	return NULL;
297 }
298 
299 /*
300  * find the appropriate pidlist for our purpose (given procs vs tasks)
301  * returns with the lock on that pidlist already held, and takes care
302  * of the use count, or returns NULL with no locks held if we're out of
303  * memory.
304  */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)305 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
306 						enum cgroup_filetype type)
307 {
308 	struct cgroup_pidlist *l;
309 
310 	lockdep_assert_held(&cgrp->pidlist_mutex);
311 
312 	l = cgroup_pidlist_find(cgrp, type);
313 	if (l)
314 		return l;
315 
316 	/* entry not found; create a new one */
317 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
318 	if (!l)
319 		return l;
320 
321 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
322 	l->key.type = type;
323 	/* don't need task_nsproxy() if we're looking at ourself */
324 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
325 	l->owner = cgrp;
326 	list_add(&l->links, &cgrp->pidlists);
327 	return l;
328 }
329 
330 /*
331  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
332  */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)333 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
334 			      struct cgroup_pidlist **lp)
335 {
336 	pid_t *array;
337 	int length;
338 	int pid, n = 0; /* used for populating the array */
339 	struct css_task_iter it;
340 	struct task_struct *tsk;
341 	struct cgroup_pidlist *l;
342 
343 	lockdep_assert_held(&cgrp->pidlist_mutex);
344 
345 	/*
346 	 * If cgroup gets more users after we read count, we won't have
347 	 * enough space - tough.  This race is indistinguishable to the
348 	 * caller from the case that the additional cgroup users didn't
349 	 * show up until sometime later on.
350 	 */
351 	length = cgroup_task_count(cgrp);
352 	array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
353 	if (!array)
354 		return -ENOMEM;
355 	/* now, populate the array */
356 	css_task_iter_start(&cgrp->self, 0, &it);
357 	while ((tsk = css_task_iter_next(&it))) {
358 		if (unlikely(n == length))
359 			break;
360 		/* get tgid or pid for procs or tasks file respectively */
361 		if (type == CGROUP_FILE_PROCS)
362 			pid = task_tgid_vnr(tsk);
363 		else
364 			pid = task_pid_vnr(tsk);
365 		if (pid > 0) /* make sure to only use valid results */
366 			array[n++] = pid;
367 	}
368 	css_task_iter_end(&it);
369 	length = n;
370 	/* now sort & strip out duplicates (tgids or recycled thread PIDs) */
371 	sort(array, length, sizeof(pid_t), cmppid, NULL);
372 	length = pidlist_uniq(array, length);
373 
374 	l = cgroup_pidlist_find_create(cgrp, type);
375 	if (!l) {
376 		kvfree(array);
377 		return -ENOMEM;
378 	}
379 
380 	/* store array, freeing old if necessary */
381 	kvfree(l->list);
382 	l->list = array;
383 	l->length = length;
384 	*lp = l;
385 	return 0;
386 }
387 
388 /*
389  * seq_file methods for the tasks/procs files. The seq_file position is the
390  * next pid to display; the seq_file iterator is a pointer to the pid
391  * in the cgroup->l->list array.
392  */
393 
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)394 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
395 {
396 	/*
397 	 * Initially we receive a position value that corresponds to
398 	 * one more than the last pid shown (or 0 on the first call or
399 	 * after a seek to the start). Use a binary-search to find the
400 	 * next pid to display, if any
401 	 */
402 	struct kernfs_open_file *of = s->private;
403 	struct cgroup_file_ctx *ctx = of->priv;
404 	struct cgroup *cgrp = seq_css(s)->cgroup;
405 	struct cgroup_pidlist *l;
406 	enum cgroup_filetype type = seq_cft(s)->private;
407 	int index = 0, pid = *pos;
408 	int *iter, ret;
409 
410 	mutex_lock(&cgrp->pidlist_mutex);
411 
412 	/*
413 	 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
414 	 * start() after open. If the matching pidlist is around, we can use
415 	 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
416 	 * directly. It could already have been destroyed.
417 	 */
418 	if (ctx->procs1.pidlist)
419 		ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
420 
421 	/*
422 	 * Either this is the first start() after open or the matching
423 	 * pidlist has been destroyed inbetween.  Create a new one.
424 	 */
425 	if (!ctx->procs1.pidlist) {
426 		ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
427 		if (ret)
428 			return ERR_PTR(ret);
429 	}
430 	l = ctx->procs1.pidlist;
431 
432 	if (pid) {
433 		int end = l->length;
434 
435 		while (index < end) {
436 			int mid = (index + end) / 2;
437 			if (l->list[mid] == pid) {
438 				index = mid;
439 				break;
440 			} else if (l->list[mid] < pid)
441 				index = mid + 1;
442 			else
443 				end = mid;
444 		}
445 	}
446 	/* If we're off the end of the array, we're done */
447 	if (index >= l->length)
448 		return NULL;
449 	/* Update the abstract position to be the actual pid that we found */
450 	iter = l->list + index;
451 	*pos = *iter;
452 	return iter;
453 }
454 
cgroup_pidlist_stop(struct seq_file * s,void * v)455 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
456 {
457 	struct kernfs_open_file *of = s->private;
458 	struct cgroup_file_ctx *ctx = of->priv;
459 	struct cgroup_pidlist *l = ctx->procs1.pidlist;
460 
461 	if (l)
462 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
463 				 CGROUP_PIDLIST_DESTROY_DELAY);
464 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
465 }
466 
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)467 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
468 {
469 	struct kernfs_open_file *of = s->private;
470 	struct cgroup_file_ctx *ctx = of->priv;
471 	struct cgroup_pidlist *l = ctx->procs1.pidlist;
472 	pid_t *p = v;
473 	pid_t *end = l->list + l->length;
474 	/*
475 	 * Advance to the next pid in the array. If this goes off the
476 	 * end, we're done
477 	 */
478 	p++;
479 	if (p >= end) {
480 		(*pos)++;
481 		return NULL;
482 	} else {
483 		*pos = *p;
484 		return p;
485 	}
486 }
487 
cgroup_pidlist_show(struct seq_file * s,void * v)488 static int cgroup_pidlist_show(struct seq_file *s, void *v)
489 {
490 	seq_printf(s, "%d\n", *(int *)v);
491 
492 	return 0;
493 }
494 
__cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)495 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
496 				     char *buf, size_t nbytes, loff_t off,
497 				     bool threadgroup)
498 {
499 	struct cgroup *cgrp;
500 	struct task_struct *task;
501 	const struct cred *cred, *tcred;
502 	ssize_t ret;
503 	bool locked;
504 
505 	cgrp = cgroup_kn_lock_live(of->kn, false);
506 	if (!cgrp)
507 		return -ENODEV;
508 
509 	task = cgroup_procs_write_start(buf, threadgroup, &locked, cgrp);
510 	ret = PTR_ERR_OR_ZERO(task);
511 	if (ret)
512 		goto out_unlock;
513 
514 	/*
515 	 * Even if we're attaching all tasks in the thread group, we only need
516 	 * to check permissions on one of them. Check permissions using the
517 	 * credentials from file open to protect against inherited fd attacks.
518 	 */
519 	cred = of->file->f_cred;
520 	tcred = get_task_cred(task);
521 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
522 	    !uid_eq(cred->euid, tcred->uid) &&
523 	    !uid_eq(cred->euid, tcred->suid) &&
524 	    !ns_capable(tcred->user_ns, CAP_SYS_NICE))
525 		ret = -EACCES;
526 	put_cred(tcred);
527 	if (ret)
528 		goto out_finish;
529 
530 	ret = cgroup_attach_task(cgrp, task, threadgroup);
531 	trace_android_vh_cgroup_set_task(ret, cgrp, task, threadgroup);
532 
533 out_finish:
534 	cgroup_procs_write_finish(task, locked);
535 out_unlock:
536 	cgroup_kn_unlock(of->kn);
537 
538 	return ret ?: nbytes;
539 }
540 
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)541 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
542 				   char *buf, size_t nbytes, loff_t off)
543 {
544 	return __cgroup1_procs_write(of, buf, nbytes, off, true);
545 }
546 
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)547 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
548 				   char *buf, size_t nbytes, loff_t off)
549 {
550 	return __cgroup1_procs_write(of, buf, nbytes, off, false);
551 }
552 
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)553 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
554 					  char *buf, size_t nbytes, loff_t off)
555 {
556 	struct cgroup *cgrp;
557 	struct cgroup_file_ctx *ctx;
558 
559 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
560 
561 	/*
562 	 * Release agent gets called with all capabilities,
563 	 * require capabilities to set release agent.
564 	 */
565 	ctx = of->priv;
566 	if ((ctx->ns->user_ns != &init_user_ns) ||
567 	    !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
568 		return -EPERM;
569 
570 	cgrp = cgroup_kn_lock_live(of->kn, false);
571 	if (!cgrp)
572 		return -ENODEV;
573 	spin_lock(&release_agent_path_lock);
574 	strscpy(cgrp->root->release_agent_path, strstrip(buf),
575 		sizeof(cgrp->root->release_agent_path));
576 	spin_unlock(&release_agent_path_lock);
577 	cgroup_kn_unlock(of->kn);
578 	return nbytes;
579 }
580 
cgroup_release_agent_show(struct seq_file * seq,void * v)581 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
582 {
583 	struct cgroup *cgrp = seq_css(seq)->cgroup;
584 
585 	spin_lock(&release_agent_path_lock);
586 	seq_puts(seq, cgrp->root->release_agent_path);
587 	spin_unlock(&release_agent_path_lock);
588 	seq_putc(seq, '\n');
589 	return 0;
590 }
591 
cgroup_sane_behavior_show(struct seq_file * seq,void * v)592 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
593 {
594 	seq_puts(seq, "0\n");
595 	return 0;
596 }
597 
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)598 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
599 					 struct cftype *cft)
600 {
601 	return notify_on_release(css->cgroup);
602 }
603 
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)604 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
605 					  struct cftype *cft, u64 val)
606 {
607 	if (val)
608 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
609 	else
610 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
611 	return 0;
612 }
613 
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)614 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
615 				      struct cftype *cft)
616 {
617 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
618 }
619 
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)620 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
621 				       struct cftype *cft, u64 val)
622 {
623 	if (val)
624 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
625 	else
626 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
627 	return 0;
628 }
629 
630 /* cgroup core interface files for the legacy hierarchies */
631 struct cftype cgroup1_base_files[] = {
632 	{
633 		.name = "cgroup.procs",
634 		.seq_start = cgroup_pidlist_start,
635 		.seq_next = cgroup_pidlist_next,
636 		.seq_stop = cgroup_pidlist_stop,
637 		.seq_show = cgroup_pidlist_show,
638 		.private = CGROUP_FILE_PROCS,
639 		.write = cgroup1_procs_write,
640 	},
641 	{
642 		.name = "cgroup.clone_children",
643 		.read_u64 = cgroup_clone_children_read,
644 		.write_u64 = cgroup_clone_children_write,
645 	},
646 	{
647 		.name = "cgroup.sane_behavior",
648 		.flags = CFTYPE_ONLY_ON_ROOT,
649 		.seq_show = cgroup_sane_behavior_show,
650 	},
651 	{
652 		.name = "tasks",
653 		.seq_start = cgroup_pidlist_start,
654 		.seq_next = cgroup_pidlist_next,
655 		.seq_stop = cgroup_pidlist_stop,
656 		.seq_show = cgroup_pidlist_show,
657 		.private = CGROUP_FILE_TASKS,
658 		.write = cgroup1_tasks_write,
659 	},
660 	{
661 		.name = "notify_on_release",
662 		.read_u64 = cgroup_read_notify_on_release,
663 		.write_u64 = cgroup_write_notify_on_release,
664 	},
665 	{
666 		.name = "release_agent",
667 		.flags = CFTYPE_ONLY_ON_ROOT,
668 		.seq_show = cgroup_release_agent_show,
669 		.write = cgroup_release_agent_write,
670 		.max_write_len = PATH_MAX - 1,
671 	},
672 	{ }	/* terminate */
673 };
674 
675 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)676 int proc_cgroupstats_show(struct seq_file *m, void *v)
677 {
678 	struct cgroup_subsys *ss;
679 	int i;
680 
681 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
682 	/*
683 	 * Grab the subsystems state racily. No need to add avenue to
684 	 * cgroup_mutex contention.
685 	 */
686 
687 	for_each_subsys(ss, i) {
688 		if (cgroup1_subsys_absent(ss))
689 			continue;
690 		seq_printf(m, "%s\t%d\t%d\t%d\n",
691 			   ss->legacy_name, ss->root->hierarchy_id,
692 			   atomic_read(&ss->root->nr_cgrps),
693 			   cgroup_ssid_enabled(i));
694 	}
695 
696 	return 0;
697 }
698 
699 /**
700  * cgroupstats_build - build and fill cgroupstats
701  * @stats: cgroupstats to fill information into
702  * @dentry: A dentry entry belonging to the cgroup for which stats have
703  * been requested.
704  *
705  * Build and fill cgroupstats so that taskstats can export it to user
706  * space.
707  *
708  * Return: %0 on success or a negative errno code on failure
709  */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)710 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
711 {
712 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
713 	struct cgroup *cgrp;
714 	struct css_task_iter it;
715 	struct task_struct *tsk;
716 
717 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
718 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
719 	    kernfs_type(kn) != KERNFS_DIR)
720 		return -EINVAL;
721 
722 	/*
723 	 * We aren't being called from kernfs and there's no guarantee on
724 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
725 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
726 	 */
727 	rcu_read_lock();
728 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
729 	if (!cgrp || !cgroup_tryget(cgrp)) {
730 		rcu_read_unlock();
731 		return -ENOENT;
732 	}
733 	rcu_read_unlock();
734 
735 	css_task_iter_start(&cgrp->self, 0, &it);
736 	while ((tsk = css_task_iter_next(&it))) {
737 		switch (READ_ONCE(tsk->__state)) {
738 		case TASK_RUNNING:
739 			stats->nr_running++;
740 			break;
741 		case TASK_INTERRUPTIBLE:
742 			stats->nr_sleeping++;
743 			break;
744 		case TASK_UNINTERRUPTIBLE:
745 			stats->nr_uninterruptible++;
746 			break;
747 		case TASK_STOPPED:
748 			stats->nr_stopped++;
749 			break;
750 		default:
751 			if (tsk->in_iowait)
752 				stats->nr_io_wait++;
753 			break;
754 		}
755 	}
756 	css_task_iter_end(&it);
757 
758 	cgroup_put(cgrp);
759 	return 0;
760 }
761 
cgroup1_check_for_release(struct cgroup * cgrp)762 void cgroup1_check_for_release(struct cgroup *cgrp)
763 {
764 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
765 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
766 		schedule_work(&cgrp->release_agent_work);
767 }
768 
769 /*
770  * Notify userspace when a cgroup is released, by running the
771  * configured release agent with the name of the cgroup (path
772  * relative to the root of cgroup file system) as the argument.
773  *
774  * Most likely, this user command will try to rmdir this cgroup.
775  *
776  * This races with the possibility that some other task will be
777  * attached to this cgroup before it is removed, or that some other
778  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
779  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
780  * unused, and this cgroup will be reprieved from its death sentence,
781  * to continue to serve a useful existence.  Next time it's released,
782  * we will get notified again, if it still has 'notify_on_release' set.
783  *
784  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
785  * means only wait until the task is successfully execve()'d.  The
786  * separate release agent task is forked by call_usermodehelper(),
787  * then control in this thread returns here, without waiting for the
788  * release agent task.  We don't bother to wait because the caller of
789  * this routine has no use for the exit status of the release agent
790  * task, so no sense holding our caller up for that.
791  */
cgroup1_release_agent(struct work_struct * work)792 void cgroup1_release_agent(struct work_struct *work)
793 {
794 	struct cgroup *cgrp =
795 		container_of(work, struct cgroup, release_agent_work);
796 	char *pathbuf, *agentbuf;
797 	char *argv[3], *envp[3];
798 	int ret;
799 
800 	/* snoop agent path and exit early if empty */
801 	if (!cgrp->root->release_agent_path[0])
802 		return;
803 
804 	/* prepare argument buffers */
805 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
806 	agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
807 	if (!pathbuf || !agentbuf)
808 		goto out_free;
809 
810 	spin_lock(&release_agent_path_lock);
811 	strscpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
812 	spin_unlock(&release_agent_path_lock);
813 	if (!agentbuf[0])
814 		goto out_free;
815 
816 	ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
817 	if (ret < 0)
818 		goto out_free;
819 
820 	argv[0] = agentbuf;
821 	argv[1] = pathbuf;
822 	argv[2] = NULL;
823 
824 	/* minimal command environment */
825 	envp[0] = "HOME=/";
826 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
827 	envp[2] = NULL;
828 
829 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
830 out_free:
831 	kfree(agentbuf);
832 	kfree(pathbuf);
833 }
834 
835 /*
836  * cgroup_rename - Only allow simple rename of directories in place.
837  */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)838 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
839 			  const char *new_name_str)
840 {
841 	struct cgroup *cgrp = kn->priv;
842 	int ret;
843 
844 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
845 	if (strchr(new_name_str, '\n'))
846 		return -EINVAL;
847 
848 	if (kernfs_type(kn) != KERNFS_DIR)
849 		return -ENOTDIR;
850 	if (kn->parent != new_parent)
851 		return -EIO;
852 
853 	/*
854 	 * We're gonna grab cgroup_mutex which nests outside kernfs
855 	 * active_ref.  kernfs_rename() doesn't require active_ref
856 	 * protection.  Break them before grabbing cgroup_mutex.
857 	 */
858 	kernfs_break_active_protection(new_parent);
859 	kernfs_break_active_protection(kn);
860 
861 	cgroup_lock();
862 
863 	ret = kernfs_rename(kn, new_parent, new_name_str);
864 	if (!ret)
865 		TRACE_CGROUP_PATH(rename, cgrp);
866 
867 	cgroup_unlock();
868 
869 	kernfs_unbreak_active_protection(kn);
870 	kernfs_unbreak_active_protection(new_parent);
871 	return ret;
872 }
873 
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)874 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
875 {
876 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
877 	struct cgroup_subsys *ss;
878 	int ssid;
879 
880 	for_each_subsys(ss, ssid)
881 		if (root->subsys_mask & (1 << ssid))
882 			seq_show_option(seq, ss->legacy_name, NULL);
883 	if (root->flags & CGRP_ROOT_NOPREFIX)
884 		seq_puts(seq, ",noprefix");
885 	if (root->flags & CGRP_ROOT_XATTR)
886 		seq_puts(seq, ",xattr");
887 	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
888 		seq_puts(seq, ",cpuset_v2_mode");
889 	if (root->flags & CGRP_ROOT_FAVOR_DYNMODS)
890 		seq_puts(seq, ",favordynmods");
891 
892 	spin_lock(&release_agent_path_lock);
893 	if (strlen(root->release_agent_path))
894 		seq_show_option(seq, "release_agent",
895 				root->release_agent_path);
896 	spin_unlock(&release_agent_path_lock);
897 
898 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
899 		seq_puts(seq, ",clone_children");
900 	if (strlen(root->name))
901 		seq_show_option(seq, "name", root->name);
902 	return 0;
903 }
904 
905 enum cgroup1_param {
906 	Opt_all,
907 	Opt_clone_children,
908 	Opt_cpuset_v2_mode,
909 	Opt_name,
910 	Opt_none,
911 	Opt_noprefix,
912 	Opt_release_agent,
913 	Opt_xattr,
914 	Opt_favordynmods,
915 	Opt_nofavordynmods,
916 };
917 
918 const struct fs_parameter_spec cgroup1_fs_parameters[] = {
919 	fsparam_flag  ("all",		Opt_all),
920 	fsparam_flag  ("clone_children", Opt_clone_children),
921 	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
922 	fsparam_string("name",		Opt_name),
923 	fsparam_flag  ("none",		Opt_none),
924 	fsparam_flag  ("noprefix",	Opt_noprefix),
925 	fsparam_string("release_agent",	Opt_release_agent),
926 	fsparam_flag  ("xattr",		Opt_xattr),
927 	fsparam_flag  ("favordynmods",	Opt_favordynmods),
928 	fsparam_flag  ("nofavordynmods", Opt_nofavordynmods),
929 	{}
930 };
931 
cgroup1_parse_param(struct fs_context * fc,struct fs_parameter * param)932 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
933 {
934 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
935 	struct cgroup_subsys *ss;
936 	struct fs_parse_result result;
937 	int opt, i;
938 
939 	opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
940 	if (opt == -ENOPARAM) {
941 		int ret;
942 
943 		ret = vfs_parse_fs_param_source(fc, param);
944 		if (ret != -ENOPARAM)
945 			return ret;
946 		for_each_subsys(ss, i) {
947 			if (strcmp(param->key, ss->legacy_name) ||
948 			    cgroup1_subsys_absent(ss))
949 				continue;
950 			if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
951 				return invalfc(fc, "Disabled controller '%s'",
952 					       param->key);
953 			ctx->subsys_mask |= (1 << i);
954 			return 0;
955 		}
956 		return invalfc(fc, "Unknown subsys name '%s'", param->key);
957 	}
958 	if (opt < 0)
959 		return opt;
960 
961 	switch (opt) {
962 	case Opt_none:
963 		/* Explicitly have no subsystems */
964 		ctx->none = true;
965 		break;
966 	case Opt_all:
967 		ctx->all_ss = true;
968 		break;
969 	case Opt_noprefix:
970 		ctx->flags |= CGRP_ROOT_NOPREFIX;
971 		break;
972 	case Opt_clone_children:
973 		ctx->cpuset_clone_children = true;
974 		break;
975 	case Opt_cpuset_v2_mode:
976 		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
977 		break;
978 	case Opt_xattr:
979 		ctx->flags |= CGRP_ROOT_XATTR;
980 		break;
981 	case Opt_favordynmods:
982 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
983 		break;
984 	case Opt_nofavordynmods:
985 		ctx->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
986 		break;
987 	case Opt_release_agent:
988 		/* Specifying two release agents is forbidden */
989 		if (ctx->release_agent)
990 			return invalfc(fc, "release_agent respecified");
991 		/*
992 		 * Release agent gets called with all capabilities,
993 		 * require capabilities to set release agent.
994 		 */
995 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
996 			return invalfc(fc, "Setting release_agent not allowed");
997 		ctx->release_agent = param->string;
998 		param->string = NULL;
999 		break;
1000 	case Opt_name:
1001 		/* blocked by boot param? */
1002 		if (cgroup_no_v1_named)
1003 			return -ENOENT;
1004 		/* Can't specify an empty name */
1005 		if (!param->size)
1006 			return invalfc(fc, "Empty name");
1007 		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
1008 			return invalfc(fc, "Name too long");
1009 		/* Must match [\w.-]+ */
1010 		for (i = 0; i < param->size; i++) {
1011 			char c = param->string[i];
1012 			if (isalnum(c))
1013 				continue;
1014 			if ((c == '.') || (c == '-') || (c == '_'))
1015 				continue;
1016 			return invalfc(fc, "Invalid name");
1017 		}
1018 		/* Specifying two names is forbidden */
1019 		if (ctx->name)
1020 			return invalfc(fc, "name respecified");
1021 		ctx->name = param->string;
1022 		param->string = NULL;
1023 		break;
1024 	}
1025 	return 0;
1026 }
1027 
check_cgroupfs_options(struct fs_context * fc)1028 static int check_cgroupfs_options(struct fs_context *fc)
1029 {
1030 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1031 	u16 mask = U16_MAX;
1032 	u16 enabled = 0;
1033 	struct cgroup_subsys *ss;
1034 	int i;
1035 
1036 #ifdef CONFIG_CPUSETS
1037 	mask = ~((u16)1 << cpuset_cgrp_id);
1038 #endif
1039 	for_each_subsys(ss, i)
1040 		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i) &&
1041 		    !cgroup1_subsys_absent(ss))
1042 			enabled |= 1 << i;
1043 
1044 	ctx->subsys_mask &= enabled;
1045 
1046 	/*
1047 	 * In absence of 'none', 'name=' and subsystem name options,
1048 	 * let's default to 'all'.
1049 	 */
1050 	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1051 		ctx->all_ss = true;
1052 
1053 	if (ctx->all_ss) {
1054 		/* Mutually exclusive option 'all' + subsystem name */
1055 		if (ctx->subsys_mask)
1056 			return invalfc(fc, "subsys name conflicts with all");
1057 		/* 'all' => select all the subsystems */
1058 		ctx->subsys_mask = enabled;
1059 	}
1060 
1061 	/*
1062 	 * We either have to specify by name or by subsystems. (So all
1063 	 * empty hierarchies must have a name).
1064 	 */
1065 	if (!ctx->subsys_mask && !ctx->name)
1066 		return invalfc(fc, "Need name or subsystem set");
1067 
1068 	/*
1069 	 * Option noprefix was introduced just for backward compatibility
1070 	 * with the old cpuset, so we allow noprefix only if mounting just
1071 	 * the cpuset subsystem.
1072 	 */
1073 	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1074 		return invalfc(fc, "noprefix used incorrectly");
1075 
1076 	/* Can't specify "none" and some subsystems */
1077 	if (ctx->subsys_mask && ctx->none)
1078 		return invalfc(fc, "none used incorrectly");
1079 
1080 	return 0;
1081 }
1082 
cgroup1_reconfigure(struct fs_context * fc)1083 int cgroup1_reconfigure(struct fs_context *fc)
1084 {
1085 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1086 	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1087 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1088 	int ret = 0;
1089 	u16 added_mask, removed_mask;
1090 
1091 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1092 
1093 	/* See what subsystems are wanted */
1094 	ret = check_cgroupfs_options(fc);
1095 	if (ret)
1096 		goto out_unlock;
1097 
1098 	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1099 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1100 			task_tgid_nr(current), current->comm);
1101 
1102 	added_mask = ctx->subsys_mask & ~root->subsys_mask;
1103 	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1104 
1105 	/* Don't allow flags or name to change at remount */
1106 	if ((ctx->flags ^ root->flags) ||
1107 	    (ctx->name && strcmp(ctx->name, root->name))) {
1108 		errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1109 		       ctx->flags, ctx->name ?: "", root->flags, root->name);
1110 		ret = -EINVAL;
1111 		goto out_unlock;
1112 	}
1113 
1114 	/* remounting is not allowed for populated hierarchies */
1115 	if (!list_empty(&root->cgrp.self.children)) {
1116 		ret = -EBUSY;
1117 		goto out_unlock;
1118 	}
1119 
1120 	ret = rebind_subsystems(root, added_mask);
1121 	if (ret)
1122 		goto out_unlock;
1123 
1124 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1125 
1126 	if (ctx->release_agent) {
1127 		spin_lock(&release_agent_path_lock);
1128 		strcpy(root->release_agent_path, ctx->release_agent);
1129 		spin_unlock(&release_agent_path_lock);
1130 	}
1131 
1132 	trace_cgroup_remount(root);
1133 
1134  out_unlock:
1135 	cgroup_unlock();
1136 	return ret;
1137 }
1138 
1139 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1140 	.rename			= cgroup1_rename,
1141 	.show_options		= cgroup1_show_options,
1142 	.mkdir			= cgroup_mkdir,
1143 	.rmdir			= cgroup_rmdir,
1144 	.show_path		= cgroup_show_path,
1145 };
1146 
1147 /*
1148  * The guts of cgroup1 mount - find or create cgroup_root to use.
1149  * Called with cgroup_mutex held; returns 0 on success, -E... on
1150  * error and positive - in case when the candidate is busy dying.
1151  * On success it stashes a reference to cgroup_root into given
1152  * cgroup_fs_context; that reference is *NOT* counting towards the
1153  * cgroup_root refcount.
1154  */
cgroup1_root_to_use(struct fs_context * fc)1155 static int cgroup1_root_to_use(struct fs_context *fc)
1156 {
1157 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1158 	struct cgroup_root *root;
1159 	struct cgroup_subsys *ss;
1160 	int i, ret;
1161 
1162 	/* First find the desired set of subsystems */
1163 	ret = check_cgroupfs_options(fc);
1164 	if (ret)
1165 		return ret;
1166 
1167 	/*
1168 	 * Destruction of cgroup root is asynchronous, so subsystems may
1169 	 * still be dying after the previous unmount.  Let's drain the
1170 	 * dying subsystems.  We just need to ensure that the ones
1171 	 * unmounted previously finish dying and don't care about new ones
1172 	 * starting.  Testing ref liveliness is good enough.
1173 	 */
1174 	for_each_subsys(ss, i) {
1175 		if (!(ctx->subsys_mask & (1 << i)) ||
1176 		    ss->root == &cgrp_dfl_root)
1177 			continue;
1178 
1179 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1180 			return 1;	/* restart */
1181 		cgroup_put(&ss->root->cgrp);
1182 	}
1183 
1184 	for_each_root(root) {
1185 		bool name_match = false;
1186 
1187 		if (root == &cgrp_dfl_root)
1188 			continue;
1189 
1190 		/*
1191 		 * If we asked for a name then it must match.  Also, if
1192 		 * name matches but sybsys_mask doesn't, we should fail.
1193 		 * Remember whether name matched.
1194 		 */
1195 		if (ctx->name) {
1196 			if (strcmp(ctx->name, root->name))
1197 				continue;
1198 			name_match = true;
1199 		}
1200 
1201 		/*
1202 		 * If we asked for subsystems (or explicitly for no
1203 		 * subsystems) then they must match.
1204 		 */
1205 		if ((ctx->subsys_mask || ctx->none) &&
1206 		    (ctx->subsys_mask != root->subsys_mask)) {
1207 			if (!name_match)
1208 				continue;
1209 			return -EBUSY;
1210 		}
1211 
1212 		if (root->flags ^ ctx->flags)
1213 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1214 
1215 		ctx->root = root;
1216 		return 0;
1217 	}
1218 
1219 	/*
1220 	 * No such thing, create a new one.  name= matching without subsys
1221 	 * specification is allowed for already existing hierarchies but we
1222 	 * can't create new one without subsys specification.
1223 	 */
1224 	if (!ctx->subsys_mask && !ctx->none)
1225 		return invalfc(fc, "No subsys list or none specified");
1226 
1227 	/* Hierarchies may only be created in the initial cgroup namespace. */
1228 	if (ctx->ns != &init_cgroup_ns)
1229 		return -EPERM;
1230 
1231 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1232 	if (!root)
1233 		return -ENOMEM;
1234 
1235 	ctx->root = root;
1236 	init_cgroup_root(ctx);
1237 
1238 	ret = cgroup_setup_root(root, ctx->subsys_mask);
1239 	if (!ret)
1240 		cgroup_favor_dynmods(root, ctx->flags & CGRP_ROOT_FAVOR_DYNMODS);
1241 	else
1242 		cgroup_free_root(root);
1243 
1244 	return ret;
1245 }
1246 
cgroup1_get_tree(struct fs_context * fc)1247 int cgroup1_get_tree(struct fs_context *fc)
1248 {
1249 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1250 	int ret;
1251 
1252 	/* Check if the caller has permission to mount. */
1253 	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1254 		return -EPERM;
1255 
1256 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1257 
1258 	ret = cgroup1_root_to_use(fc);
1259 	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1260 		ret = 1;	/* restart */
1261 
1262 	cgroup_unlock();
1263 
1264 	if (!ret)
1265 		ret = cgroup_do_get_tree(fc);
1266 
1267 	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1268 		fc_drop_locked(fc);
1269 		ret = 1;
1270 	}
1271 
1272 	if (unlikely(ret > 0)) {
1273 		msleep(10);
1274 		return restart_syscall();
1275 	}
1276 	return ret;
1277 }
1278 
1279 /**
1280  * task_get_cgroup1 - Acquires the associated cgroup of a task within a
1281  * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
1282  * hierarchy ID.
1283  * @tsk: The target task
1284  * @hierarchy_id: The ID of a cgroup1 hierarchy
1285  *
1286  * On success, the cgroup is returned. On failure, ERR_PTR is returned.
1287  * We limit it to cgroup1 only.
1288  */
task_get_cgroup1(struct task_struct * tsk,int hierarchy_id)1289 struct cgroup *task_get_cgroup1(struct task_struct *tsk, int hierarchy_id)
1290 {
1291 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
1292 	struct cgroup_root *root;
1293 	unsigned long flags;
1294 
1295 	rcu_read_lock();
1296 	for_each_root(root) {
1297 		/* cgroup1 only*/
1298 		if (root == &cgrp_dfl_root)
1299 			continue;
1300 		if (root->hierarchy_id != hierarchy_id)
1301 			continue;
1302 		spin_lock_irqsave(&css_set_lock, flags);
1303 		cgrp = task_cgroup_from_root(tsk, root);
1304 		if (!cgrp || !cgroup_tryget(cgrp))
1305 			cgrp = ERR_PTR(-ENOENT);
1306 		spin_unlock_irqrestore(&css_set_lock, flags);
1307 		break;
1308 	}
1309 	rcu_read_unlock();
1310 	return cgrp;
1311 }
1312 
cgroup1_wq_init(void)1313 static int __init cgroup1_wq_init(void)
1314 {
1315 	/*
1316 	 * Used to destroy pidlists and separate to serve as flush domain.
1317 	 * Cap @max_active to 1 too.
1318 	 */
1319 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1320 						    0, 1);
1321 	BUG_ON(!cgroup_pidlist_destroy_wq);
1322 	return 0;
1323 }
1324 core_initcall(cgroup1_wq_init);
1325 
cgroup_no_v1(char * str)1326 static int __init cgroup_no_v1(char *str)
1327 {
1328 	struct cgroup_subsys *ss;
1329 	char *token;
1330 	int i;
1331 
1332 	while ((token = strsep(&str, ",")) != NULL) {
1333 		if (!*token)
1334 			continue;
1335 
1336 		if (!strcmp(token, "all")) {
1337 			cgroup_no_v1_mask = U16_MAX;
1338 			continue;
1339 		}
1340 
1341 		if (!strcmp(token, "named")) {
1342 			cgroup_no_v1_named = true;
1343 			continue;
1344 		}
1345 
1346 		for_each_subsys(ss, i) {
1347 			if (strcmp(token, ss->name) &&
1348 			    strcmp(token, ss->legacy_name))
1349 				continue;
1350 
1351 			cgroup_no_v1_mask |= 1 << i;
1352 			break;
1353 		}
1354 	}
1355 	return 1;
1356 }
1357 __setup("cgroup_no_v1=", cgroup_no_v1);
1358