• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Dynamic DMA mapping support.
4  *
5  * This implementation is a fallback for platforms that do not support
6  * I/O TLBs (aka DMA address translation hardware).
7  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9  * Copyright (C) 2000, 2003 Hewlett-Packard Co
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *
12  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
13  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
14  *			unnecessary i-cache flushing.
15  * 04/07/.. ak		Better overflow handling. Assorted fixes.
16  * 05/09/10 linville	Add support for syncing ranges, support syncing for
17  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18  * 08/12/11 beckyb	Add highmem support
19  */
20 
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22 
23 #include <linux/cache.h>
24 #include <linux/cc_platform.h>
25 #include <linux/ctype.h>
26 #include <linux/debugfs.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/export.h>
30 #include <linux/gfp.h>
31 #include <linux/highmem.h>
32 #include <linux/io.h>
33 #include <linux/iommu-helper.h>
34 #include <linux/init.h>
35 #include <linux/memblock.h>
36 #include <linux/mm.h>
37 #include <linux/pfn.h>
38 #include <linux/rculist.h>
39 #include <linux/scatterlist.h>
40 #include <linux/set_memory.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/swiotlb.h>
44 #include <linux/types.h>
45 #ifdef CONFIG_DMA_RESTRICTED_POOL
46 #include <linux/of.h>
47 #include <linux/of_fdt.h>
48 #include <linux/of_reserved_mem.h>
49 #include <linux/slab.h>
50 #endif
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/swiotlb.h>
54 
55 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
56 
57 /*
58  * Minimum IO TLB size to bother booting with.  Systems with mainly
59  * 64bit capable cards will only lightly use the swiotlb.  If we can't
60  * allocate a contiguous 1MB, we're probably in trouble anyway.
61  */
62 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
63 
64 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
65 
66 /**
67  * struct io_tlb_slot - IO TLB slot descriptor
68  * @orig_addr:	The original address corresponding to a mapped entry.
69  * @alloc_size:	Size of the allocated buffer.
70  * @list:	The free list describing the number of free entries available
71  *		from each index.
72  * @pad_slots:	Number of preceding padding slots. Valid only in the first
73  *		allocated non-padding slot.
74  */
75 struct io_tlb_slot {
76 	phys_addr_t orig_addr;
77 	size_t alloc_size;
78 	unsigned short list;
79 	unsigned short pad_slots;
80 };
81 
82 static bool swiotlb_force_bounce;
83 static bool swiotlb_force_disable;
84 
85 #ifdef CONFIG_SWIOTLB_DYNAMIC
86 
87 static void swiotlb_dyn_alloc(struct work_struct *work);
88 
89 static struct io_tlb_mem io_tlb_default_mem = {
90 	.lock = __SPIN_LOCK_UNLOCKED(io_tlb_default_mem.lock),
91 	.pools = LIST_HEAD_INIT(io_tlb_default_mem.pools),
92 	.dyn_alloc = __WORK_INITIALIZER(io_tlb_default_mem.dyn_alloc,
93 					swiotlb_dyn_alloc),
94 };
95 
96 #else  /* !CONFIG_SWIOTLB_DYNAMIC */
97 
98 static struct io_tlb_mem io_tlb_default_mem;
99 
100 #endif	/* CONFIG_SWIOTLB_DYNAMIC */
101 
102 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
103 static unsigned long default_nareas;
104 
105 /**
106  * struct io_tlb_area - IO TLB memory area descriptor
107  *
108  * This is a single area with a single lock.
109  *
110  * @used:	The number of used IO TLB block.
111  * @index:	The slot index to start searching in this area for next round.
112  * @lock:	The lock to protect the above data structures in the map and
113  *		unmap calls.
114  */
115 struct io_tlb_area {
116 	unsigned long used;
117 	unsigned int index;
118 	spinlock_t lock;
119 };
120 
121 /*
122  * Round up number of slabs to the next power of 2. The last area is going
123  * be smaller than the rest if default_nslabs is not power of two.
124  * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE,
125  * otherwise a segment may span two or more areas. It conflicts with free
126  * contiguous slots tracking: free slots are treated contiguous no matter
127  * whether they cross an area boundary.
128  *
129  * Return true if default_nslabs is rounded up.
130  */
round_up_default_nslabs(void)131 static bool round_up_default_nslabs(void)
132 {
133 	if (!default_nareas)
134 		return false;
135 
136 	if (default_nslabs < IO_TLB_SEGSIZE * default_nareas)
137 		default_nslabs = IO_TLB_SEGSIZE * default_nareas;
138 	else if (is_power_of_2(default_nslabs))
139 		return false;
140 	default_nslabs = roundup_pow_of_two(default_nslabs);
141 	return true;
142 }
143 
144 /**
145  * swiotlb_adjust_nareas() - adjust the number of areas and slots
146  * @nareas:	Desired number of areas. Zero is treated as 1.
147  *
148  * Adjust the default number of areas in a memory pool.
149  * The default size of the memory pool may also change to meet minimum area
150  * size requirements.
151  */
swiotlb_adjust_nareas(unsigned int nareas)152 static void swiotlb_adjust_nareas(unsigned int nareas)
153 {
154 	if (!nareas)
155 		nareas = 1;
156 	else if (!is_power_of_2(nareas))
157 		nareas = roundup_pow_of_two(nareas);
158 
159 	default_nareas = nareas;
160 
161 	pr_info("area num %d.\n", nareas);
162 	if (round_up_default_nslabs())
163 		pr_info("SWIOTLB bounce buffer size roundup to %luMB",
164 			(default_nslabs << IO_TLB_SHIFT) >> 20);
165 }
166 
167 /**
168  * limit_nareas() - get the maximum number of areas for a given memory pool size
169  * @nareas:	Desired number of areas.
170  * @nslots:	Total number of slots in the memory pool.
171  *
172  * Limit the number of areas to the maximum possible number of areas in
173  * a memory pool of the given size.
174  *
175  * Return: Maximum possible number of areas.
176  */
limit_nareas(unsigned int nareas,unsigned long nslots)177 static unsigned int limit_nareas(unsigned int nareas, unsigned long nslots)
178 {
179 	if (nslots < nareas * IO_TLB_SEGSIZE)
180 		return nslots / IO_TLB_SEGSIZE;
181 	return nareas;
182 }
183 
184 static int __init
setup_io_tlb_npages(char * str)185 setup_io_tlb_npages(char *str)
186 {
187 	if (isdigit(*str)) {
188 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
189 		default_nslabs =
190 			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
191 	}
192 	if (*str == ',')
193 		++str;
194 	if (isdigit(*str))
195 		swiotlb_adjust_nareas(simple_strtoul(str, &str, 0));
196 	if (*str == ',')
197 		++str;
198 	if (!strcmp(str, "force"))
199 		swiotlb_force_bounce = true;
200 	else if (!strcmp(str, "noforce"))
201 		swiotlb_force_disable = true;
202 
203 	return 0;
204 }
205 early_param("swiotlb", setup_io_tlb_npages);
206 
swiotlb_size_or_default(void)207 unsigned long swiotlb_size_or_default(void)
208 {
209 	return default_nslabs << IO_TLB_SHIFT;
210 }
211 
swiotlb_adjust_size(unsigned long size)212 void __init swiotlb_adjust_size(unsigned long size)
213 {
214 	/*
215 	 * If swiotlb parameter has not been specified, give a chance to
216 	 * architectures such as those supporting memory encryption to
217 	 * adjust/expand SWIOTLB size for their use.
218 	 */
219 	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
220 		return;
221 
222 	size = ALIGN(size, IO_TLB_SIZE);
223 	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
224 	if (round_up_default_nslabs())
225 		size = default_nslabs << IO_TLB_SHIFT;
226 	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
227 }
228 
swiotlb_print_info(void)229 void swiotlb_print_info(void)
230 {
231 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
232 
233 	if (!mem->nslabs) {
234 		pr_warn("No low mem\n");
235 		return;
236 	}
237 
238 	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
239 	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
240 }
241 
io_tlb_offset(unsigned long val)242 static inline unsigned long io_tlb_offset(unsigned long val)
243 {
244 	return val & (IO_TLB_SEGSIZE - 1);
245 }
246 
nr_slots(u64 val)247 static inline unsigned long nr_slots(u64 val)
248 {
249 	return DIV_ROUND_UP(val, IO_TLB_SIZE);
250 }
251 
252 /*
253  * Early SWIOTLB allocation may be too early to allow an architecture to
254  * perform the desired operations.  This function allows the architecture to
255  * call SWIOTLB when the operations are possible.  It needs to be called
256  * before the SWIOTLB memory is used.
257  */
swiotlb_update_mem_attributes(void)258 void __init swiotlb_update_mem_attributes(void)
259 {
260 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
261 	unsigned long bytes;
262 
263 	if (!mem->nslabs || mem->late_alloc)
264 		return;
265 	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
266 	set_memory_decrypted((unsigned long)mem->vaddr, bytes >> PAGE_SHIFT);
267 }
268 
swiotlb_init_io_tlb_pool(struct io_tlb_pool * mem,phys_addr_t start,unsigned long nslabs,bool late_alloc,unsigned int nareas)269 static void swiotlb_init_io_tlb_pool(struct io_tlb_pool *mem, phys_addr_t start,
270 		unsigned long nslabs, bool late_alloc, unsigned int nareas)
271 {
272 	void *vaddr = phys_to_virt(start);
273 	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
274 
275 	mem->nslabs = nslabs;
276 	mem->start = start;
277 	mem->end = mem->start + bytes;
278 	mem->late_alloc = late_alloc;
279 	mem->nareas = nareas;
280 	mem->area_nslabs = nslabs / mem->nareas;
281 
282 	for (i = 0; i < mem->nareas; i++) {
283 		spin_lock_init(&mem->areas[i].lock);
284 		mem->areas[i].index = 0;
285 		mem->areas[i].used = 0;
286 	}
287 
288 	for (i = 0; i < mem->nslabs; i++) {
289 		mem->slots[i].list = min(IO_TLB_SEGSIZE - io_tlb_offset(i),
290 					 mem->nslabs - i);
291 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
292 		mem->slots[i].alloc_size = 0;
293 		mem->slots[i].pad_slots = 0;
294 	}
295 
296 	memset(vaddr, 0, bytes);
297 	mem->vaddr = vaddr;
298 	return;
299 }
300 
301 /**
302  * add_mem_pool() - add a memory pool to the allocator
303  * @mem:	Software IO TLB allocator.
304  * @pool:	Memory pool to be added.
305  */
add_mem_pool(struct io_tlb_mem * mem,struct io_tlb_pool * pool)306 static void add_mem_pool(struct io_tlb_mem *mem, struct io_tlb_pool *pool)
307 {
308 #ifdef CONFIG_SWIOTLB_DYNAMIC
309 	spin_lock(&mem->lock);
310 	list_add_rcu(&pool->node, &mem->pools);
311 	mem->nslabs += pool->nslabs;
312 	spin_unlock(&mem->lock);
313 #else
314 	mem->nslabs = pool->nslabs;
315 #endif
316 }
317 
swiotlb_memblock_alloc(unsigned long nslabs,unsigned int flags,int (* remap)(void * tlb,unsigned long nslabs))318 static void __init *swiotlb_memblock_alloc(unsigned long nslabs,
319 		unsigned int flags,
320 		int (*remap)(void *tlb, unsigned long nslabs))
321 {
322 	size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
323 	void *tlb;
324 
325 	/*
326 	 * By default allocate the bounce buffer memory from low memory, but
327 	 * allow to pick a location everywhere for hypervisors with guest
328 	 * memory encryption.
329 	 */
330 	if (flags & SWIOTLB_ANY)
331 		tlb = memblock_alloc(bytes, PAGE_SIZE);
332 	else
333 		tlb = memblock_alloc_low(bytes, PAGE_SIZE);
334 
335 	if (!tlb) {
336 		pr_warn("%s: Failed to allocate %zu bytes tlb structure\n",
337 			__func__, bytes);
338 		return NULL;
339 	}
340 
341 	if (remap && remap(tlb, nslabs) < 0) {
342 		memblock_free(tlb, PAGE_ALIGN(bytes));
343 		pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes);
344 		return NULL;
345 	}
346 
347 	return tlb;
348 }
349 
350 /*
351  * Statically reserve bounce buffer space and initialize bounce buffer data
352  * structures for the software IO TLB used to implement the DMA API.
353  */
swiotlb_init_remap(bool addressing_limit,unsigned int flags,int (* remap)(void * tlb,unsigned long nslabs))354 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
355 		int (*remap)(void *tlb, unsigned long nslabs))
356 {
357 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
358 	unsigned long nslabs;
359 	unsigned int nareas;
360 	size_t alloc_size;
361 	void *tlb;
362 
363 	if (!addressing_limit && !swiotlb_force_bounce)
364 		return;
365 	if (swiotlb_force_disable)
366 		return;
367 
368 	io_tlb_default_mem.force_bounce =
369 		swiotlb_force_bounce || (flags & SWIOTLB_FORCE);
370 
371 #ifdef CONFIG_SWIOTLB_DYNAMIC
372 	if (!remap)
373 		io_tlb_default_mem.can_grow = true;
374 	if (flags & SWIOTLB_ANY)
375 		io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
376 	else
377 		io_tlb_default_mem.phys_limit = ARCH_LOW_ADDRESS_LIMIT;
378 #endif
379 
380 	if (!default_nareas)
381 		swiotlb_adjust_nareas(num_possible_cpus());
382 
383 	nslabs = default_nslabs;
384 	nareas = limit_nareas(default_nareas, nslabs);
385 	while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) {
386 		if (nslabs <= IO_TLB_MIN_SLABS)
387 			return;
388 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
389 		nareas = limit_nareas(nareas, nslabs);
390 	}
391 
392 	if (default_nslabs != nslabs) {
393 		pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs",
394 			default_nslabs, nslabs);
395 		default_nslabs = nslabs;
396 	}
397 
398 	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
399 	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
400 	if (!mem->slots) {
401 		pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n",
402 			__func__, alloc_size, PAGE_SIZE);
403 		return;
404 	}
405 
406 	mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area),
407 		nareas), SMP_CACHE_BYTES);
408 	if (!mem->areas) {
409 		pr_warn("%s: Failed to allocate mem->areas.\n", __func__);
410 		return;
411 	}
412 
413 	swiotlb_init_io_tlb_pool(mem, __pa(tlb), nslabs, false, nareas);
414 	add_mem_pool(&io_tlb_default_mem, mem);
415 
416 	if (flags & SWIOTLB_VERBOSE)
417 		swiotlb_print_info();
418 }
419 
swiotlb_init(bool addressing_limit,unsigned int flags)420 void __init swiotlb_init(bool addressing_limit, unsigned int flags)
421 {
422 	swiotlb_init_remap(addressing_limit, flags, NULL);
423 }
424 
425 /*
426  * Systems with larger DMA zones (those that don't support ISA) can
427  * initialize the swiotlb later using the slab allocator if needed.
428  * This should be just like above, but with some error catching.
429  */
swiotlb_init_late(size_t size,gfp_t gfp_mask,int (* remap)(void * tlb,unsigned long nslabs))430 int swiotlb_init_late(size_t size, gfp_t gfp_mask,
431 		int (*remap)(void *tlb, unsigned long nslabs))
432 {
433 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
434 	unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
435 	unsigned int nareas;
436 	unsigned char *vstart = NULL;
437 	unsigned int order, area_order;
438 	bool retried = false;
439 	int rc = 0;
440 
441 	if (io_tlb_default_mem.nslabs)
442 		return 0;
443 
444 	if (swiotlb_force_disable)
445 		return 0;
446 
447 	io_tlb_default_mem.force_bounce = swiotlb_force_bounce;
448 
449 #ifdef CONFIG_SWIOTLB_DYNAMIC
450 	if (!remap)
451 		io_tlb_default_mem.can_grow = true;
452 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp_mask & __GFP_DMA))
453 		io_tlb_default_mem.phys_limit = zone_dma_limit;
454 	else if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp_mask & __GFP_DMA32))
455 		io_tlb_default_mem.phys_limit = max(DMA_BIT_MASK(32), zone_dma_limit);
456 	else
457 		io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
458 #endif
459 
460 	if (!default_nareas)
461 		swiotlb_adjust_nareas(num_possible_cpus());
462 
463 retry:
464 	order = get_order(nslabs << IO_TLB_SHIFT);
465 	nslabs = SLABS_PER_PAGE << order;
466 
467 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
468 		vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
469 						  order);
470 		if (vstart)
471 			break;
472 		order--;
473 		nslabs = SLABS_PER_PAGE << order;
474 		retried = true;
475 	}
476 
477 	if (!vstart)
478 		return -ENOMEM;
479 
480 	if (remap)
481 		rc = remap(vstart, nslabs);
482 	if (rc) {
483 		free_pages((unsigned long)vstart, order);
484 
485 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
486 		if (nslabs < IO_TLB_MIN_SLABS)
487 			return rc;
488 		retried = true;
489 		goto retry;
490 	}
491 
492 	if (retried) {
493 		pr_warn("only able to allocate %ld MB\n",
494 			(PAGE_SIZE << order) >> 20);
495 	}
496 
497 	nareas = limit_nareas(default_nareas, nslabs);
498 	area_order = get_order(array_size(sizeof(*mem->areas), nareas));
499 	mem->areas = (struct io_tlb_area *)
500 		__get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order);
501 	if (!mem->areas)
502 		goto error_area;
503 
504 	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
505 		get_order(array_size(sizeof(*mem->slots), nslabs)));
506 	if (!mem->slots)
507 		goto error_slots;
508 
509 	set_memory_decrypted((unsigned long)vstart,
510 			     (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
511 	swiotlb_init_io_tlb_pool(mem, virt_to_phys(vstart), nslabs, true,
512 				 nareas);
513 	add_mem_pool(&io_tlb_default_mem, mem);
514 
515 	swiotlb_print_info();
516 	return 0;
517 
518 error_slots:
519 	free_pages((unsigned long)mem->areas, area_order);
520 error_area:
521 	free_pages((unsigned long)vstart, order);
522 	return -ENOMEM;
523 }
524 
swiotlb_exit(void)525 void __init swiotlb_exit(void)
526 {
527 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
528 	unsigned long tbl_vaddr;
529 	size_t tbl_size, slots_size;
530 	unsigned int area_order;
531 
532 	if (swiotlb_force_bounce)
533 		return;
534 
535 	if (!mem->nslabs)
536 		return;
537 
538 	pr_info("tearing down default memory pool\n");
539 	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
540 	tbl_size = PAGE_ALIGN(mem->end - mem->start);
541 	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
542 
543 	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
544 	if (mem->late_alloc) {
545 		area_order = get_order(array_size(sizeof(*mem->areas),
546 			mem->nareas));
547 		free_pages((unsigned long)mem->areas, area_order);
548 		free_pages(tbl_vaddr, get_order(tbl_size));
549 		free_pages((unsigned long)mem->slots, get_order(slots_size));
550 	} else {
551 		memblock_free_late(__pa(mem->areas),
552 			array_size(sizeof(*mem->areas), mem->nareas));
553 		memblock_free_late(mem->start, tbl_size);
554 		memblock_free_late(__pa(mem->slots), slots_size);
555 	}
556 
557 	memset(mem, 0, sizeof(*mem));
558 }
559 
560 #ifdef CONFIG_SWIOTLB_DYNAMIC
561 
562 /**
563  * alloc_dma_pages() - allocate pages to be used for DMA
564  * @gfp:	GFP flags for the allocation.
565  * @bytes:	Size of the buffer.
566  * @phys_limit:	Maximum allowed physical address of the buffer.
567  *
568  * Allocate pages from the buddy allocator. If successful, make the allocated
569  * pages decrypted that they can be used for DMA.
570  *
571  * Return: Decrypted pages, %NULL on allocation failure, or ERR_PTR(-EAGAIN)
572  * if the allocated physical address was above @phys_limit.
573  */
alloc_dma_pages(gfp_t gfp,size_t bytes,u64 phys_limit)574 static struct page *alloc_dma_pages(gfp_t gfp, size_t bytes, u64 phys_limit)
575 {
576 	unsigned int order = get_order(bytes);
577 	struct page *page;
578 	phys_addr_t paddr;
579 	void *vaddr;
580 
581 	page = alloc_pages(gfp, order);
582 	if (!page)
583 		return NULL;
584 
585 	paddr = page_to_phys(page);
586 	if (paddr + bytes - 1 > phys_limit) {
587 		__free_pages(page, order);
588 		return ERR_PTR(-EAGAIN);
589 	}
590 
591 	vaddr = phys_to_virt(paddr);
592 	if (set_memory_decrypted((unsigned long)vaddr, PFN_UP(bytes)))
593 		goto error;
594 	return page;
595 
596 error:
597 	/* Intentional leak if pages cannot be encrypted again. */
598 	if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
599 		__free_pages(page, order);
600 	return NULL;
601 }
602 
603 /**
604  * swiotlb_alloc_tlb() - allocate a dynamic IO TLB buffer
605  * @dev:	Device for which a memory pool is allocated.
606  * @bytes:	Size of the buffer.
607  * @phys_limit:	Maximum allowed physical address of the buffer.
608  * @gfp:	GFP flags for the allocation.
609  *
610  * Return: Allocated pages, or %NULL on allocation failure.
611  */
swiotlb_alloc_tlb(struct device * dev,size_t bytes,u64 phys_limit,gfp_t gfp)612 static struct page *swiotlb_alloc_tlb(struct device *dev, size_t bytes,
613 		u64 phys_limit, gfp_t gfp)
614 {
615 	struct page *page;
616 
617 	/*
618 	 * Allocate from the atomic pools if memory is encrypted and
619 	 * the allocation is atomic, because decrypting may block.
620 	 */
621 	if (!gfpflags_allow_blocking(gfp) && dev && force_dma_unencrypted(dev)) {
622 		void *vaddr;
623 
624 		if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
625 			return NULL;
626 
627 		return dma_alloc_from_pool(dev, bytes, &vaddr, gfp,
628 					   dma_coherent_ok);
629 	}
630 
631 	gfp &= ~GFP_ZONEMASK;
632 	if (phys_limit <= zone_dma_limit)
633 		gfp |= __GFP_DMA;
634 	else if (phys_limit <= DMA_BIT_MASK(32))
635 		gfp |= __GFP_DMA32;
636 
637 	while (IS_ERR(page = alloc_dma_pages(gfp, bytes, phys_limit))) {
638 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
639 		    phys_limit < DMA_BIT_MASK(64) &&
640 		    !(gfp & (__GFP_DMA32 | __GFP_DMA)))
641 			gfp |= __GFP_DMA32;
642 		else if (IS_ENABLED(CONFIG_ZONE_DMA) &&
643 			 !(gfp & __GFP_DMA))
644 			gfp = (gfp & ~__GFP_DMA32) | __GFP_DMA;
645 		else
646 			return NULL;
647 	}
648 
649 	return page;
650 }
651 
652 /**
653  * swiotlb_free_tlb() - free a dynamically allocated IO TLB buffer
654  * @vaddr:	Virtual address of the buffer.
655  * @bytes:	Size of the buffer.
656  */
swiotlb_free_tlb(void * vaddr,size_t bytes)657 static void swiotlb_free_tlb(void *vaddr, size_t bytes)
658 {
659 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
660 	    dma_free_from_pool(NULL, vaddr, bytes))
661 		return;
662 
663 	/* Intentional leak if pages cannot be encrypted again. */
664 	if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
665 		__free_pages(virt_to_page(vaddr), get_order(bytes));
666 }
667 
668 /**
669  * swiotlb_alloc_pool() - allocate a new IO TLB memory pool
670  * @dev:	Device for which a memory pool is allocated.
671  * @minslabs:	Minimum number of slabs.
672  * @nslabs:	Desired (maximum) number of slabs.
673  * @nareas:	Number of areas.
674  * @phys_limit:	Maximum DMA buffer physical address.
675  * @gfp:	GFP flags for the allocations.
676  *
677  * Allocate and initialize a new IO TLB memory pool. The actual number of
678  * slabs may be reduced if allocation of @nslabs fails. If even
679  * @minslabs cannot be allocated, this function fails.
680  *
681  * Return: New memory pool, or %NULL on allocation failure.
682  */
swiotlb_alloc_pool(struct device * dev,unsigned long minslabs,unsigned long nslabs,unsigned int nareas,u64 phys_limit,gfp_t gfp)683 static struct io_tlb_pool *swiotlb_alloc_pool(struct device *dev,
684 		unsigned long minslabs, unsigned long nslabs,
685 		unsigned int nareas, u64 phys_limit, gfp_t gfp)
686 {
687 	struct io_tlb_pool *pool;
688 	unsigned int slot_order;
689 	struct page *tlb;
690 	size_t pool_size;
691 	size_t tlb_size;
692 
693 	if (nslabs > SLABS_PER_PAGE << MAX_PAGE_ORDER) {
694 		nslabs = SLABS_PER_PAGE << MAX_PAGE_ORDER;
695 		nareas = limit_nareas(nareas, nslabs);
696 	}
697 
698 	pool_size = sizeof(*pool) + array_size(sizeof(*pool->areas), nareas);
699 	pool = kzalloc(pool_size, gfp);
700 	if (!pool)
701 		goto error;
702 	pool->areas = (void *)pool + sizeof(*pool);
703 
704 	tlb_size = nslabs << IO_TLB_SHIFT;
705 	while (!(tlb = swiotlb_alloc_tlb(dev, tlb_size, phys_limit, gfp))) {
706 		if (nslabs <= minslabs)
707 			goto error_tlb;
708 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
709 		nareas = limit_nareas(nareas, nslabs);
710 		tlb_size = nslabs << IO_TLB_SHIFT;
711 	}
712 
713 	slot_order = get_order(array_size(sizeof(*pool->slots), nslabs));
714 	pool->slots = (struct io_tlb_slot *)
715 		__get_free_pages(gfp, slot_order);
716 	if (!pool->slots)
717 		goto error_slots;
718 
719 	swiotlb_init_io_tlb_pool(pool, page_to_phys(tlb), nslabs, true, nareas);
720 	return pool;
721 
722 error_slots:
723 	swiotlb_free_tlb(page_address(tlb), tlb_size);
724 error_tlb:
725 	kfree(pool);
726 error:
727 	return NULL;
728 }
729 
730 /**
731  * swiotlb_dyn_alloc() - dynamic memory pool allocation worker
732  * @work:	Pointer to dyn_alloc in struct io_tlb_mem.
733  */
swiotlb_dyn_alloc(struct work_struct * work)734 static void swiotlb_dyn_alloc(struct work_struct *work)
735 {
736 	struct io_tlb_mem *mem =
737 		container_of(work, struct io_tlb_mem, dyn_alloc);
738 	struct io_tlb_pool *pool;
739 
740 	pool = swiotlb_alloc_pool(NULL, IO_TLB_MIN_SLABS, default_nslabs,
741 				  default_nareas, mem->phys_limit, GFP_KERNEL);
742 	if (!pool) {
743 		pr_warn_ratelimited("Failed to allocate new pool");
744 		return;
745 	}
746 
747 	add_mem_pool(mem, pool);
748 }
749 
750 /**
751  * swiotlb_dyn_free() - RCU callback to free a memory pool
752  * @rcu:	RCU head in the corresponding struct io_tlb_pool.
753  */
swiotlb_dyn_free(struct rcu_head * rcu)754 static void swiotlb_dyn_free(struct rcu_head *rcu)
755 {
756 	struct io_tlb_pool *pool = container_of(rcu, struct io_tlb_pool, rcu);
757 	size_t slots_size = array_size(sizeof(*pool->slots), pool->nslabs);
758 	size_t tlb_size = pool->end - pool->start;
759 
760 	free_pages((unsigned long)pool->slots, get_order(slots_size));
761 	swiotlb_free_tlb(pool->vaddr, tlb_size);
762 	kfree(pool);
763 }
764 
765 /**
766  * __swiotlb_find_pool() - find the IO TLB pool for a physical address
767  * @dev:        Device which has mapped the DMA buffer.
768  * @paddr:      Physical address within the DMA buffer.
769  *
770  * Find the IO TLB memory pool descriptor which contains the given physical
771  * address, if any. This function is for use only when the dev is known to
772  * be using swiotlb. Use swiotlb_find_pool() for the more general case
773  * when this condition is not met.
774  *
775  * Return: Memory pool which contains @paddr, or %NULL if none.
776  */
__swiotlb_find_pool(struct device * dev,phys_addr_t paddr)777 struct io_tlb_pool *__swiotlb_find_pool(struct device *dev, phys_addr_t paddr)
778 {
779 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
780 	struct io_tlb_pool *pool;
781 
782 	rcu_read_lock();
783 	list_for_each_entry_rcu(pool, &mem->pools, node) {
784 		if (paddr >= pool->start && paddr < pool->end)
785 			goto out;
786 	}
787 
788 	list_for_each_entry_rcu(pool, &dev->dma_io_tlb_pools, node) {
789 		if (paddr >= pool->start && paddr < pool->end)
790 			goto out;
791 	}
792 	pool = NULL;
793 out:
794 	rcu_read_unlock();
795 	return pool;
796 }
797 EXPORT_SYMBOL_GPL(__swiotlb_find_pool);
798 
799 /**
800  * swiotlb_del_pool() - remove an IO TLB pool from a device
801  * @dev:	Owning device.
802  * @pool:	Memory pool to be removed.
803  */
swiotlb_del_pool(struct device * dev,struct io_tlb_pool * pool)804 static void swiotlb_del_pool(struct device *dev, struct io_tlb_pool *pool)
805 {
806 	unsigned long flags;
807 
808 	spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
809 	list_del_rcu(&pool->node);
810 	spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
811 
812 	call_rcu(&pool->rcu, swiotlb_dyn_free);
813 }
814 
815 #endif	/* CONFIG_SWIOTLB_DYNAMIC */
816 
817 /**
818  * swiotlb_dev_init() - initialize swiotlb fields in &struct device
819  * @dev:	Device to be initialized.
820  */
swiotlb_dev_init(struct device * dev)821 void swiotlb_dev_init(struct device *dev)
822 {
823 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
824 #ifdef CONFIG_SWIOTLB_DYNAMIC
825 	INIT_LIST_HEAD(&dev->dma_io_tlb_pools);
826 	spin_lock_init(&dev->dma_io_tlb_lock);
827 	dev->dma_uses_io_tlb = false;
828 #endif
829 }
830 
831 /**
832  * swiotlb_align_offset() - Get required offset into an IO TLB allocation.
833  * @dev:         Owning device.
834  * @align_mask:  Allocation alignment mask.
835  * @addr:        DMA address.
836  *
837  * Return the minimum offset from the start of an IO TLB allocation which is
838  * required for a given buffer address and allocation alignment to keep the
839  * device happy.
840  *
841  * First, the address bits covered by min_align_mask must be identical in the
842  * original address and the bounce buffer address. High bits are preserved by
843  * choosing a suitable IO TLB slot, but bits below IO_TLB_SHIFT require extra
844  * padding bytes before the bounce buffer.
845  *
846  * Second, @align_mask specifies which bits of the first allocated slot must
847  * be zero. This may require allocating additional padding slots, and then the
848  * offset (in bytes) from the first such padding slot is returned.
849  */
swiotlb_align_offset(struct device * dev,unsigned int align_mask,u64 addr)850 static unsigned int swiotlb_align_offset(struct device *dev,
851 					 unsigned int align_mask, u64 addr)
852 {
853 	return addr & dma_get_min_align_mask(dev) &
854 		(align_mask | (IO_TLB_SIZE - 1));
855 }
856 
857 /*
858  * Bounce: copy the swiotlb buffer from or back to the original dma location
859  */
swiotlb_bounce(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir,struct io_tlb_pool * mem)860 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
861 			   enum dma_data_direction dir, struct io_tlb_pool *mem)
862 {
863 	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
864 	phys_addr_t orig_addr = mem->slots[index].orig_addr;
865 	size_t alloc_size = mem->slots[index].alloc_size;
866 	unsigned long pfn = PFN_DOWN(orig_addr);
867 	unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
868 	int tlb_offset;
869 
870 	if (orig_addr == INVALID_PHYS_ADDR)
871 		return;
872 
873 	/*
874 	 * It's valid for tlb_offset to be negative. This can happen when the
875 	 * "offset" returned by swiotlb_align_offset() is non-zero, and the
876 	 * tlb_addr is pointing within the first "offset" bytes of the second
877 	 * or subsequent slots of the allocated swiotlb area. While it's not
878 	 * valid for tlb_addr to be pointing within the first "offset" bytes
879 	 * of the first slot, there's no way to check for such an error since
880 	 * this function can't distinguish the first slot from the second and
881 	 * subsequent slots.
882 	 */
883 	tlb_offset = (tlb_addr & (IO_TLB_SIZE - 1)) -
884 		     swiotlb_align_offset(dev, 0, orig_addr);
885 
886 	orig_addr += tlb_offset;
887 	alloc_size -= tlb_offset;
888 
889 	if (size > alloc_size) {
890 		dev_WARN_ONCE(dev, 1,
891 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
892 			alloc_size, size);
893 		size = alloc_size;
894 	}
895 
896 	if (PageHighMem(pfn_to_page(pfn))) {
897 		unsigned int offset = orig_addr & ~PAGE_MASK;
898 		struct page *page;
899 		unsigned int sz = 0;
900 		unsigned long flags;
901 
902 		while (size) {
903 			sz = min_t(size_t, PAGE_SIZE - offset, size);
904 
905 			local_irq_save(flags);
906 			page = pfn_to_page(pfn);
907 			if (dir == DMA_TO_DEVICE)
908 				memcpy_from_page(vaddr, page, offset, sz);
909 			else
910 				memcpy_to_page(page, offset, vaddr, sz);
911 			local_irq_restore(flags);
912 
913 			size -= sz;
914 			pfn++;
915 			vaddr += sz;
916 			offset = 0;
917 		}
918 	} else if (dir == DMA_TO_DEVICE) {
919 		memcpy(vaddr, phys_to_virt(orig_addr), size);
920 	} else {
921 		memcpy(phys_to_virt(orig_addr), vaddr, size);
922 	}
923 }
924 
slot_addr(phys_addr_t start,phys_addr_t idx)925 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
926 {
927 	return start + (idx << IO_TLB_SHIFT);
928 }
929 
930 /*
931  * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
932  */
get_max_slots(unsigned long boundary_mask)933 static inline unsigned long get_max_slots(unsigned long boundary_mask)
934 {
935 	return (boundary_mask >> IO_TLB_SHIFT) + 1;
936 }
937 
wrap_area_index(struct io_tlb_pool * mem,unsigned int index)938 static unsigned int wrap_area_index(struct io_tlb_pool *mem, unsigned int index)
939 {
940 	if (index >= mem->area_nslabs)
941 		return 0;
942 	return index;
943 }
944 
945 /*
946  * Track the total used slots with a global atomic value in order to have
947  * correct information to determine the high water mark. The mem_used()
948  * function gives imprecise results because there's no locking across
949  * multiple areas.
950  */
951 #ifdef CONFIG_DEBUG_FS
inc_used_and_hiwater(struct io_tlb_mem * mem,unsigned int nslots)952 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
953 {
954 	unsigned long old_hiwater, new_used;
955 
956 	new_used = atomic_long_add_return(nslots, &mem->total_used);
957 	old_hiwater = atomic_long_read(&mem->used_hiwater);
958 	do {
959 		if (new_used <= old_hiwater)
960 			break;
961 	} while (!atomic_long_try_cmpxchg(&mem->used_hiwater,
962 					  &old_hiwater, new_used));
963 }
964 
dec_used(struct io_tlb_mem * mem,unsigned int nslots)965 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
966 {
967 	atomic_long_sub(nslots, &mem->total_used);
968 }
969 
970 #else /* !CONFIG_DEBUG_FS */
inc_used_and_hiwater(struct io_tlb_mem * mem,unsigned int nslots)971 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
972 {
973 }
dec_used(struct io_tlb_mem * mem,unsigned int nslots)974 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
975 {
976 }
977 #endif /* CONFIG_DEBUG_FS */
978 
979 #ifdef CONFIG_SWIOTLB_DYNAMIC
980 #ifdef CONFIG_DEBUG_FS
inc_transient_used(struct io_tlb_mem * mem,unsigned int nslots)981 static void inc_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
982 {
983 	atomic_long_add(nslots, &mem->transient_nslabs);
984 }
985 
dec_transient_used(struct io_tlb_mem * mem,unsigned int nslots)986 static void dec_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
987 {
988 	atomic_long_sub(nslots, &mem->transient_nslabs);
989 }
990 
991 #else /* !CONFIG_DEBUG_FS */
inc_transient_used(struct io_tlb_mem * mem,unsigned int nslots)992 static void inc_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
993 {
994 }
dec_transient_used(struct io_tlb_mem * mem,unsigned int nslots)995 static void dec_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
996 {
997 }
998 #endif /* CONFIG_DEBUG_FS */
999 #endif /* CONFIG_SWIOTLB_DYNAMIC */
1000 
1001 /**
1002  * swiotlb_search_pool_area() - search one memory area in one pool
1003  * @dev:	Device which maps the buffer.
1004  * @pool:	Memory pool to be searched.
1005  * @area_index:	Index of the IO TLB memory area to be searched.
1006  * @orig_addr:	Original (non-bounced) IO buffer address.
1007  * @alloc_size: Total requested size of the bounce buffer,
1008  *		including initial alignment padding.
1009  * @alloc_align_mask:	Required alignment of the allocated buffer.
1010  *
1011  * Find a suitable sequence of IO TLB entries for the request and allocate
1012  * a buffer from the given IO TLB memory area.
1013  * This function takes care of locking.
1014  *
1015  * Return: Index of the first allocated slot, or -1 on error.
1016  */
swiotlb_search_pool_area(struct device * dev,struct io_tlb_pool * pool,int area_index,phys_addr_t orig_addr,size_t alloc_size,unsigned int alloc_align_mask)1017 static int swiotlb_search_pool_area(struct device *dev, struct io_tlb_pool *pool,
1018 		int area_index, phys_addr_t orig_addr, size_t alloc_size,
1019 		unsigned int alloc_align_mask)
1020 {
1021 	struct io_tlb_area *area = pool->areas + area_index;
1022 	unsigned long boundary_mask = dma_get_seg_boundary(dev);
1023 	dma_addr_t tbl_dma_addr =
1024 		phys_to_dma_unencrypted(dev, pool->start) & boundary_mask;
1025 	unsigned long max_slots = get_max_slots(boundary_mask);
1026 	unsigned int iotlb_align_mask = dma_get_min_align_mask(dev);
1027 	unsigned int nslots = nr_slots(alloc_size), stride;
1028 	unsigned int offset = swiotlb_align_offset(dev, 0, orig_addr);
1029 	unsigned int index, slots_checked, count = 0, i;
1030 	unsigned long flags;
1031 	unsigned int slot_base;
1032 	unsigned int slot_index;
1033 
1034 	BUG_ON(!nslots);
1035 	BUG_ON(area_index >= pool->nareas);
1036 
1037 	/*
1038 	 * Historically, swiotlb allocations >= PAGE_SIZE were guaranteed to be
1039 	 * page-aligned in the absence of any other alignment requirements.
1040 	 * 'alloc_align_mask' was later introduced to specify the alignment
1041 	 * explicitly, however this is passed as zero for streaming mappings
1042 	 * and so we preserve the old behaviour there in case any drivers are
1043 	 * relying on it.
1044 	 */
1045 	if (!alloc_align_mask && !iotlb_align_mask && alloc_size >= PAGE_SIZE)
1046 		alloc_align_mask = PAGE_SIZE - 1;
1047 
1048 	/*
1049 	 * Ensure that the allocation is at least slot-aligned and update
1050 	 * 'iotlb_align_mask' to ignore bits that will be preserved when
1051 	 * offsetting into the allocation.
1052 	 */
1053 	alloc_align_mask |= (IO_TLB_SIZE - 1);
1054 	iotlb_align_mask &= ~alloc_align_mask;
1055 
1056 	/*
1057 	 * For mappings with an alignment requirement don't bother looping to
1058 	 * unaligned slots once we found an aligned one.
1059 	 */
1060 	stride = get_max_slots(max(alloc_align_mask, iotlb_align_mask));
1061 
1062 	spin_lock_irqsave(&area->lock, flags);
1063 	if (unlikely(nslots > pool->area_nslabs - area->used))
1064 		goto not_found;
1065 
1066 	slot_base = area_index * pool->area_nslabs;
1067 	index = area->index;
1068 
1069 	for (slots_checked = 0; slots_checked < pool->area_nslabs; ) {
1070 		phys_addr_t tlb_addr;
1071 
1072 		slot_index = slot_base + index;
1073 		tlb_addr = slot_addr(tbl_dma_addr, slot_index);
1074 
1075 		if ((tlb_addr & alloc_align_mask) ||
1076 		    (orig_addr && (tlb_addr & iotlb_align_mask) !=
1077 				  (orig_addr & iotlb_align_mask))) {
1078 			index = wrap_area_index(pool, index + 1);
1079 			slots_checked++;
1080 			continue;
1081 		}
1082 
1083 		if (!iommu_is_span_boundary(slot_index, nslots,
1084 					    nr_slots(tbl_dma_addr),
1085 					    max_slots)) {
1086 			if (pool->slots[slot_index].list >= nslots)
1087 				goto found;
1088 		}
1089 		index = wrap_area_index(pool, index + stride);
1090 		slots_checked += stride;
1091 	}
1092 
1093 not_found:
1094 	spin_unlock_irqrestore(&area->lock, flags);
1095 	return -1;
1096 
1097 found:
1098 	/*
1099 	 * If we find a slot that indicates we have 'nslots' number of
1100 	 * contiguous buffers, we allocate the buffers from that slot onwards
1101 	 * and set the list of free entries to '0' indicating unavailable.
1102 	 */
1103 	for (i = slot_index; i < slot_index + nslots; i++) {
1104 		pool->slots[i].list = 0;
1105 		pool->slots[i].alloc_size = alloc_size - (offset +
1106 				((i - slot_index) << IO_TLB_SHIFT));
1107 	}
1108 	for (i = slot_index - 1;
1109 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
1110 	     pool->slots[i].list; i--)
1111 		pool->slots[i].list = ++count;
1112 
1113 	/*
1114 	 * Update the indices to avoid searching in the next round.
1115 	 */
1116 	area->index = wrap_area_index(pool, index + nslots);
1117 	area->used += nslots;
1118 	spin_unlock_irqrestore(&area->lock, flags);
1119 
1120 	inc_used_and_hiwater(dev->dma_io_tlb_mem, nslots);
1121 	return slot_index;
1122 }
1123 
1124 #ifdef CONFIG_SWIOTLB_DYNAMIC
1125 
1126 /**
1127  * swiotlb_search_area() - search one memory area in all pools
1128  * @dev:	Device which maps the buffer.
1129  * @start_cpu:	Start CPU number.
1130  * @cpu_offset:	Offset from @start_cpu.
1131  * @orig_addr:	Original (non-bounced) IO buffer address.
1132  * @alloc_size: Total requested size of the bounce buffer,
1133  *		including initial alignment padding.
1134  * @alloc_align_mask:	Required alignment of the allocated buffer.
1135  * @retpool:	Used memory pool, updated on return.
1136  *
1137  * Search one memory area in all pools for a sequence of slots that match the
1138  * allocation constraints.
1139  *
1140  * Return: Index of the first allocated slot, or -1 on error.
1141  */
swiotlb_search_area(struct device * dev,int start_cpu,int cpu_offset,phys_addr_t orig_addr,size_t alloc_size,unsigned int alloc_align_mask,struct io_tlb_pool ** retpool)1142 static int swiotlb_search_area(struct device *dev, int start_cpu,
1143 		int cpu_offset, phys_addr_t orig_addr, size_t alloc_size,
1144 		unsigned int alloc_align_mask, struct io_tlb_pool **retpool)
1145 {
1146 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1147 	struct io_tlb_pool *pool;
1148 	int area_index;
1149 	int index = -1;
1150 
1151 	rcu_read_lock();
1152 	list_for_each_entry_rcu(pool, &mem->pools, node) {
1153 		if (cpu_offset >= pool->nareas)
1154 			continue;
1155 		area_index = (start_cpu + cpu_offset) & (pool->nareas - 1);
1156 		index = swiotlb_search_pool_area(dev, pool, area_index,
1157 						 orig_addr, alloc_size,
1158 						 alloc_align_mask);
1159 		if (index >= 0) {
1160 			*retpool = pool;
1161 			break;
1162 		}
1163 	}
1164 	rcu_read_unlock();
1165 	return index;
1166 }
1167 
1168 /**
1169  * swiotlb_find_slots() - search for slots in the whole swiotlb
1170  * @dev:	Device which maps the buffer.
1171  * @orig_addr:	Original (non-bounced) IO buffer address.
1172  * @alloc_size: Total requested size of the bounce buffer,
1173  *		including initial alignment padding.
1174  * @alloc_align_mask:	Required alignment of the allocated buffer.
1175  * @retpool:	Used memory pool, updated on return.
1176  *
1177  * Search through the whole software IO TLB to find a sequence of slots that
1178  * match the allocation constraints.
1179  *
1180  * Return: Index of the first allocated slot, or -1 on error.
1181  */
swiotlb_find_slots(struct device * dev,phys_addr_t orig_addr,size_t alloc_size,unsigned int alloc_align_mask,struct io_tlb_pool ** retpool)1182 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
1183 		size_t alloc_size, unsigned int alloc_align_mask,
1184 		struct io_tlb_pool **retpool)
1185 {
1186 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1187 	struct io_tlb_pool *pool;
1188 	unsigned long nslabs;
1189 	unsigned long flags;
1190 	u64 phys_limit;
1191 	int cpu, i;
1192 	int index;
1193 
1194 	if (alloc_size > IO_TLB_SEGSIZE * IO_TLB_SIZE)
1195 		return -1;
1196 
1197 	cpu = raw_smp_processor_id();
1198 	for (i = 0; i < default_nareas; ++i) {
1199 		index = swiotlb_search_area(dev, cpu, i, orig_addr, alloc_size,
1200 					    alloc_align_mask, &pool);
1201 		if (index >= 0)
1202 			goto found;
1203 	}
1204 
1205 	if (!mem->can_grow)
1206 		return -1;
1207 
1208 	schedule_work(&mem->dyn_alloc);
1209 
1210 	nslabs = nr_slots(alloc_size);
1211 	phys_limit = min_not_zero(*dev->dma_mask, dev->bus_dma_limit);
1212 	pool = swiotlb_alloc_pool(dev, nslabs, nslabs, 1, phys_limit,
1213 				  GFP_NOWAIT | __GFP_NOWARN);
1214 	if (!pool)
1215 		return -1;
1216 
1217 	index = swiotlb_search_pool_area(dev, pool, 0, orig_addr,
1218 					 alloc_size, alloc_align_mask);
1219 	if (index < 0) {
1220 		swiotlb_dyn_free(&pool->rcu);
1221 		return -1;
1222 	}
1223 
1224 	pool->transient = true;
1225 	spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
1226 	list_add_rcu(&pool->node, &dev->dma_io_tlb_pools);
1227 	spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
1228 	inc_transient_used(mem, pool->nslabs);
1229 
1230 found:
1231 	WRITE_ONCE(dev->dma_uses_io_tlb, true);
1232 
1233 	/*
1234 	 * The general barrier orders reads and writes against a presumed store
1235 	 * of the SWIOTLB buffer address by a device driver (to a driver private
1236 	 * data structure). It serves two purposes.
1237 	 *
1238 	 * First, the store to dev->dma_uses_io_tlb must be ordered before the
1239 	 * presumed store. This guarantees that the returned buffer address
1240 	 * cannot be passed to another CPU before updating dev->dma_uses_io_tlb.
1241 	 *
1242 	 * Second, the load from mem->pools must be ordered before the same
1243 	 * presumed store. This guarantees that the returned buffer address
1244 	 * cannot be observed by another CPU before an update of the RCU list
1245 	 * that was made by swiotlb_dyn_alloc() on a third CPU (cf. multicopy
1246 	 * atomicity).
1247 	 *
1248 	 * See also the comment in swiotlb_find_pool().
1249 	 */
1250 	smp_mb();
1251 
1252 	*retpool = pool;
1253 	return index;
1254 }
1255 
1256 #else  /* !CONFIG_SWIOTLB_DYNAMIC */
1257 
swiotlb_find_slots(struct device * dev,phys_addr_t orig_addr,size_t alloc_size,unsigned int alloc_align_mask,struct io_tlb_pool ** retpool)1258 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
1259 		size_t alloc_size, unsigned int alloc_align_mask,
1260 		struct io_tlb_pool **retpool)
1261 {
1262 	struct io_tlb_pool *pool;
1263 	int start, i;
1264 	int index;
1265 
1266 	*retpool = pool = &dev->dma_io_tlb_mem->defpool;
1267 	i = start = raw_smp_processor_id() & (pool->nareas - 1);
1268 	do {
1269 		index = swiotlb_search_pool_area(dev, pool, i, orig_addr,
1270 						 alloc_size, alloc_align_mask);
1271 		if (index >= 0)
1272 			return index;
1273 		if (++i >= pool->nareas)
1274 			i = 0;
1275 	} while (i != start);
1276 	return -1;
1277 }
1278 
1279 #endif /* CONFIG_SWIOTLB_DYNAMIC */
1280 
1281 #ifdef CONFIG_DEBUG_FS
1282 
1283 /**
1284  * mem_used() - get number of used slots in an allocator
1285  * @mem:	Software IO TLB allocator.
1286  *
1287  * The result is accurate in this version of the function, because an atomic
1288  * counter is available if CONFIG_DEBUG_FS is set.
1289  *
1290  * Return: Number of used slots.
1291  */
mem_used(struct io_tlb_mem * mem)1292 static unsigned long mem_used(struct io_tlb_mem *mem)
1293 {
1294 	return atomic_long_read(&mem->total_used);
1295 }
1296 
1297 #else /* !CONFIG_DEBUG_FS */
1298 
1299 /**
1300  * mem_pool_used() - get number of used slots in a memory pool
1301  * @pool:	Software IO TLB memory pool.
1302  *
1303  * The result is not accurate, see mem_used().
1304  *
1305  * Return: Approximate number of used slots.
1306  */
mem_pool_used(struct io_tlb_pool * pool)1307 static unsigned long mem_pool_used(struct io_tlb_pool *pool)
1308 {
1309 	int i;
1310 	unsigned long used = 0;
1311 
1312 	for (i = 0; i < pool->nareas; i++)
1313 		used += pool->areas[i].used;
1314 	return used;
1315 }
1316 
1317 /**
1318  * mem_used() - get number of used slots in an allocator
1319  * @mem:	Software IO TLB allocator.
1320  *
1321  * The result is not accurate, because there is no locking of individual
1322  * areas.
1323  *
1324  * Return: Approximate number of used slots.
1325  */
mem_used(struct io_tlb_mem * mem)1326 static unsigned long mem_used(struct io_tlb_mem *mem)
1327 {
1328 #ifdef CONFIG_SWIOTLB_DYNAMIC
1329 	struct io_tlb_pool *pool;
1330 	unsigned long used = 0;
1331 
1332 	rcu_read_lock();
1333 	list_for_each_entry_rcu(pool, &mem->pools, node)
1334 		used += mem_pool_used(pool);
1335 	rcu_read_unlock();
1336 
1337 	return used;
1338 #else
1339 	return mem_pool_used(&mem->defpool);
1340 #endif
1341 }
1342 
1343 #endif /* CONFIG_DEBUG_FS */
1344 
1345 /**
1346  * swiotlb_tbl_map_single() - bounce buffer map a single contiguous physical area
1347  * @dev:		Device which maps the buffer.
1348  * @orig_addr:		Original (non-bounced) physical IO buffer address
1349  * @mapping_size:	Requested size of the actual bounce buffer, excluding
1350  *			any pre- or post-padding for alignment
1351  * @alloc_align_mask:	Required start and end alignment of the allocated buffer
1352  * @dir:		DMA direction
1353  * @attrs:		Optional DMA attributes for the map operation
1354  *
1355  * Find and allocate a suitable sequence of IO TLB slots for the request.
1356  * The allocated space starts at an alignment specified by alloc_align_mask,
1357  * and the size of the allocated space is rounded up so that the total amount
1358  * of allocated space is a multiple of (alloc_align_mask + 1). If
1359  * alloc_align_mask is zero, the allocated space may be at any alignment and
1360  * the size is not rounded up.
1361  *
1362  * The returned address is within the allocated space and matches the bits
1363  * of orig_addr that are specified in the DMA min_align_mask for the device. As
1364  * such, this returned address may be offset from the beginning of the allocated
1365  * space. The bounce buffer space starting at the returned address for
1366  * mapping_size bytes is initialized to the contents of the original IO buffer
1367  * area. Any pre-padding (due to an offset) and any post-padding (due to
1368  * rounding-up the size) is not initialized.
1369  */
swiotlb_tbl_map_single(struct device * dev,phys_addr_t orig_addr,size_t mapping_size,unsigned int alloc_align_mask,enum dma_data_direction dir,unsigned long attrs)1370 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
1371 		size_t mapping_size, unsigned int alloc_align_mask,
1372 		enum dma_data_direction dir, unsigned long attrs)
1373 {
1374 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1375 	unsigned int offset;
1376 	struct io_tlb_pool *pool;
1377 	unsigned int i;
1378 	size_t size;
1379 	int index;
1380 	phys_addr_t tlb_addr;
1381 	unsigned short pad_slots;
1382 
1383 	if (!mem || !mem->nslabs) {
1384 		dev_warn_ratelimited(dev,
1385 			"Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
1386 		return (phys_addr_t)DMA_MAPPING_ERROR;
1387 	}
1388 
1389 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
1390 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
1391 
1392 	/*
1393 	 * The default swiotlb memory pool is allocated with PAGE_SIZE
1394 	 * alignment. If a mapping is requested with larger alignment,
1395 	 * the mapping may be unable to use the initial slot(s) in all
1396 	 * sets of IO_TLB_SEGSIZE slots. In such case, a mapping request
1397 	 * of or near the maximum mapping size would always fail.
1398 	 */
1399 	dev_WARN_ONCE(dev, alloc_align_mask > ~PAGE_MASK,
1400 		"Alloc alignment may prevent fulfilling requests with max mapping_size\n");
1401 
1402 	offset = swiotlb_align_offset(dev, alloc_align_mask, orig_addr);
1403 	size = ALIGN(mapping_size + offset, alloc_align_mask + 1);
1404 	index = swiotlb_find_slots(dev, orig_addr, size, alloc_align_mask, &pool);
1405 	if (index == -1) {
1406 		if (!(attrs & DMA_ATTR_NO_WARN))
1407 			dev_warn_ratelimited(dev,
1408 	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
1409 				 size, mem->nslabs, mem_used(mem));
1410 		return (phys_addr_t)DMA_MAPPING_ERROR;
1411 	}
1412 
1413 	/*
1414 	 * If dma_skip_sync was set, reset it on first SWIOTLB buffer
1415 	 * mapping to always sync SWIOTLB buffers.
1416 	 */
1417 	dma_reset_need_sync(dev);
1418 
1419 	/*
1420 	 * Save away the mapping from the original address to the DMA address.
1421 	 * This is needed when we sync the memory.  Then we sync the buffer if
1422 	 * needed.
1423 	 */
1424 	pad_slots = offset >> IO_TLB_SHIFT;
1425 	offset &= (IO_TLB_SIZE - 1);
1426 	index += pad_slots;
1427 	pool->slots[index].pad_slots = pad_slots;
1428 	for (i = 0; i < (nr_slots(size) - pad_slots); i++)
1429 		pool->slots[index + i].orig_addr = slot_addr(orig_addr, i);
1430 	tlb_addr = slot_addr(pool->start, index) + offset;
1431 	/*
1432 	 * When the device is writing memory, i.e. dir == DMA_FROM_DEVICE, copy
1433 	 * the original buffer to the TLB buffer before initiating DMA in order
1434 	 * to preserve the original's data if the device does a partial write,
1435 	 * i.e. if the device doesn't overwrite the entire buffer.  Preserving
1436 	 * the original data, even if it's garbage, is necessary to match
1437 	 * hardware behavior.  Use of swiotlb is supposed to be transparent,
1438 	 * i.e. swiotlb must not corrupt memory by clobbering unwritten bytes.
1439 	 */
1440 	swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE, pool);
1441 	return tlb_addr;
1442 }
1443 
swiotlb_release_slots(struct device * dev,phys_addr_t tlb_addr,struct io_tlb_pool * mem)1444 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr,
1445 				  struct io_tlb_pool *mem)
1446 {
1447 	unsigned long flags;
1448 	unsigned int offset = swiotlb_align_offset(dev, 0, tlb_addr);
1449 	int index, nslots, aindex;
1450 	struct io_tlb_area *area;
1451 	int count, i;
1452 
1453 	index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
1454 	index -= mem->slots[index].pad_slots;
1455 	nslots = nr_slots(mem->slots[index].alloc_size + offset);
1456 	aindex = index / mem->area_nslabs;
1457 	area = &mem->areas[aindex];
1458 
1459 	/*
1460 	 * Return the buffer to the free list by setting the corresponding
1461 	 * entries to indicate the number of contiguous entries available.
1462 	 * While returning the entries to the free list, we merge the entries
1463 	 * with slots below and above the pool being returned.
1464 	 */
1465 	BUG_ON(aindex >= mem->nareas);
1466 
1467 	spin_lock_irqsave(&area->lock, flags);
1468 	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
1469 		count = mem->slots[index + nslots].list;
1470 	else
1471 		count = 0;
1472 
1473 	/*
1474 	 * Step 1: return the slots to the free list, merging the slots with
1475 	 * superceeding slots
1476 	 */
1477 	for (i = index + nslots - 1; i >= index; i--) {
1478 		mem->slots[i].list = ++count;
1479 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
1480 		mem->slots[i].alloc_size = 0;
1481 		mem->slots[i].pad_slots = 0;
1482 	}
1483 
1484 	/*
1485 	 * Step 2: merge the returned slots with the preceding slots, if
1486 	 * available (non zero)
1487 	 */
1488 	for (i = index - 1;
1489 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
1490 	     i--)
1491 		mem->slots[i].list = ++count;
1492 	area->used -= nslots;
1493 	spin_unlock_irqrestore(&area->lock, flags);
1494 
1495 	dec_used(dev->dma_io_tlb_mem, nslots);
1496 }
1497 
1498 #ifdef CONFIG_SWIOTLB_DYNAMIC
1499 
1500 /**
1501  * swiotlb_del_transient() - delete a transient memory pool
1502  * @dev:	Device which mapped the buffer.
1503  * @tlb_addr:	Physical address within a bounce buffer.
1504  * @pool:       Pointer to the transient memory pool to be checked and deleted.
1505  *
1506  * Check whether the address belongs to a transient SWIOTLB memory pool.
1507  * If yes, then delete the pool.
1508  *
1509  * Return: %true if @tlb_addr belonged to a transient pool that was released.
1510  */
swiotlb_del_transient(struct device * dev,phys_addr_t tlb_addr,struct io_tlb_pool * pool)1511 static bool swiotlb_del_transient(struct device *dev, phys_addr_t tlb_addr,
1512 		struct io_tlb_pool *pool)
1513 {
1514 	if (!pool->transient)
1515 		return false;
1516 
1517 	dec_used(dev->dma_io_tlb_mem, pool->nslabs);
1518 	swiotlb_del_pool(dev, pool);
1519 	dec_transient_used(dev->dma_io_tlb_mem, pool->nslabs);
1520 	return true;
1521 }
1522 
1523 #else  /* !CONFIG_SWIOTLB_DYNAMIC */
1524 
swiotlb_del_transient(struct device * dev,phys_addr_t tlb_addr,struct io_tlb_pool * pool)1525 static inline bool swiotlb_del_transient(struct device *dev,
1526 		phys_addr_t tlb_addr, struct io_tlb_pool *pool)
1527 {
1528 	return false;
1529 }
1530 
1531 #endif	/* CONFIG_SWIOTLB_DYNAMIC */
1532 
1533 /*
1534  * tlb_addr is the physical address of the bounce buffer to unmap.
1535  */
__swiotlb_tbl_unmap_single(struct device * dev,phys_addr_t tlb_addr,size_t mapping_size,enum dma_data_direction dir,unsigned long attrs,struct io_tlb_pool * pool)1536 void __swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
1537 		size_t mapping_size, enum dma_data_direction dir,
1538 		unsigned long attrs, struct io_tlb_pool *pool)
1539 {
1540 	/*
1541 	 * First, sync the memory before unmapping the entry
1542 	 */
1543 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1544 	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
1545 		swiotlb_bounce(dev, tlb_addr, mapping_size,
1546 						DMA_FROM_DEVICE, pool);
1547 
1548 	if (swiotlb_del_transient(dev, tlb_addr, pool))
1549 		return;
1550 	swiotlb_release_slots(dev, tlb_addr, pool);
1551 }
1552 
__swiotlb_sync_single_for_device(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir,struct io_tlb_pool * pool)1553 void __swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
1554 		size_t size, enum dma_data_direction dir,
1555 		struct io_tlb_pool *pool)
1556 {
1557 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
1558 		swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE, pool);
1559 	else
1560 		BUG_ON(dir != DMA_FROM_DEVICE);
1561 }
1562 
__swiotlb_sync_single_for_cpu(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir,struct io_tlb_pool * pool)1563 void __swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
1564 		size_t size, enum dma_data_direction dir,
1565 		struct io_tlb_pool *pool)
1566 {
1567 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
1568 		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE, pool);
1569 	else
1570 		BUG_ON(dir != DMA_TO_DEVICE);
1571 }
1572 
1573 /*
1574  * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
1575  * to the device copy the data into it as well.
1576  */
swiotlb_map(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)1577 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
1578 		enum dma_data_direction dir, unsigned long attrs)
1579 {
1580 	phys_addr_t swiotlb_addr;
1581 	dma_addr_t dma_addr;
1582 
1583 	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
1584 
1585 	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, 0, dir, attrs);
1586 	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
1587 		return DMA_MAPPING_ERROR;
1588 
1589 	/* Ensure that the address returned is DMA'ble */
1590 	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
1591 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
1592 		__swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
1593 			attrs | DMA_ATTR_SKIP_CPU_SYNC,
1594 			swiotlb_find_pool(dev, swiotlb_addr));
1595 		dev_WARN_ONCE(dev, 1,
1596 			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
1597 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
1598 		return DMA_MAPPING_ERROR;
1599 	}
1600 
1601 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1602 		arch_sync_dma_for_device(swiotlb_addr, size, dir);
1603 	return dma_addr;
1604 }
1605 
swiotlb_max_mapping_size(struct device * dev)1606 size_t swiotlb_max_mapping_size(struct device *dev)
1607 {
1608 	int min_align_mask = dma_get_min_align_mask(dev);
1609 	int min_align = 0;
1610 
1611 	/*
1612 	 * swiotlb_find_slots() skips slots according to
1613 	 * min align mask. This affects max mapping size.
1614 	 * Take it into acount here.
1615 	 */
1616 	if (min_align_mask)
1617 		min_align = roundup(min_align_mask, IO_TLB_SIZE);
1618 
1619 	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
1620 }
1621 
1622 /**
1623  * is_swiotlb_allocated() - check if the default software IO TLB is initialized
1624  */
is_swiotlb_allocated(void)1625 bool is_swiotlb_allocated(void)
1626 {
1627 	return io_tlb_default_mem.nslabs;
1628 }
1629 
is_swiotlb_active(struct device * dev)1630 bool is_swiotlb_active(struct device *dev)
1631 {
1632 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1633 
1634 	return mem && mem->nslabs;
1635 }
1636 
1637 /**
1638  * default_swiotlb_base() - get the base address of the default SWIOTLB
1639  *
1640  * Get the lowest physical address used by the default software IO TLB pool.
1641  */
default_swiotlb_base(void)1642 phys_addr_t default_swiotlb_base(void)
1643 {
1644 #ifdef CONFIG_SWIOTLB_DYNAMIC
1645 	io_tlb_default_mem.can_grow = false;
1646 #endif
1647 	return io_tlb_default_mem.defpool.start;
1648 }
1649 
1650 /**
1651  * default_swiotlb_limit() - get the address limit of the default SWIOTLB
1652  *
1653  * Get the highest physical address used by the default software IO TLB pool.
1654  */
default_swiotlb_limit(void)1655 phys_addr_t default_swiotlb_limit(void)
1656 {
1657 #ifdef CONFIG_SWIOTLB_DYNAMIC
1658 	return io_tlb_default_mem.phys_limit;
1659 #else
1660 	return io_tlb_default_mem.defpool.end - 1;
1661 #endif
1662 }
1663 
1664 #ifdef CONFIG_DEBUG_FS
1665 #ifdef CONFIG_SWIOTLB_DYNAMIC
mem_transient_used(struct io_tlb_mem * mem)1666 static unsigned long mem_transient_used(struct io_tlb_mem *mem)
1667 {
1668 	return atomic_long_read(&mem->transient_nslabs);
1669 }
1670 
io_tlb_transient_used_get(void * data,u64 * val)1671 static int io_tlb_transient_used_get(void *data, u64 *val)
1672 {
1673 	struct io_tlb_mem *mem = data;
1674 
1675 	*val = mem_transient_used(mem);
1676 	return 0;
1677 }
1678 
1679 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_transient_used, io_tlb_transient_used_get,
1680 			 NULL, "%llu\n");
1681 #endif /* CONFIG_SWIOTLB_DYNAMIC */
1682 
io_tlb_used_get(void * data,u64 * val)1683 static int io_tlb_used_get(void *data, u64 *val)
1684 {
1685 	struct io_tlb_mem *mem = data;
1686 
1687 	*val = mem_used(mem);
1688 	return 0;
1689 }
1690 
io_tlb_hiwater_get(void * data,u64 * val)1691 static int io_tlb_hiwater_get(void *data, u64 *val)
1692 {
1693 	struct io_tlb_mem *mem = data;
1694 
1695 	*val = atomic_long_read(&mem->used_hiwater);
1696 	return 0;
1697 }
1698 
io_tlb_hiwater_set(void * data,u64 val)1699 static int io_tlb_hiwater_set(void *data, u64 val)
1700 {
1701 	struct io_tlb_mem *mem = data;
1702 
1703 	/* Only allow setting to zero */
1704 	if (val != 0)
1705 		return -EINVAL;
1706 
1707 	atomic_long_set(&mem->used_hiwater, val);
1708 	return 0;
1709 }
1710 
1711 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n");
1712 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_hiwater, io_tlb_hiwater_get,
1713 				io_tlb_hiwater_set, "%llu\n");
1714 
swiotlb_create_debugfs_files(struct io_tlb_mem * mem,const char * dirname)1715 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
1716 					 const char *dirname)
1717 {
1718 	mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
1719 	if (!mem->nslabs)
1720 		return;
1721 
1722 	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
1723 	debugfs_create_file("io_tlb_used", 0400, mem->debugfs, mem,
1724 			&fops_io_tlb_used);
1725 	debugfs_create_file("io_tlb_used_hiwater", 0600, mem->debugfs, mem,
1726 			&fops_io_tlb_hiwater);
1727 #ifdef CONFIG_SWIOTLB_DYNAMIC
1728 	debugfs_create_file("io_tlb_transient_nslabs", 0400, mem->debugfs,
1729 			    mem, &fops_io_tlb_transient_used);
1730 #endif
1731 }
1732 
swiotlb_create_default_debugfs(void)1733 static int __init swiotlb_create_default_debugfs(void)
1734 {
1735 	swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
1736 	return 0;
1737 }
1738 
1739 late_initcall(swiotlb_create_default_debugfs);
1740 
1741 #else  /* !CONFIG_DEBUG_FS */
1742 
swiotlb_create_debugfs_files(struct io_tlb_mem * mem,const char * dirname)1743 static inline void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
1744 						const char *dirname)
1745 {
1746 }
1747 
1748 #endif	/* CONFIG_DEBUG_FS */
1749 
1750 #ifdef CONFIG_DMA_RESTRICTED_POOL
1751 
swiotlb_alloc(struct device * dev,size_t size)1752 struct page *swiotlb_alloc(struct device *dev, size_t size)
1753 {
1754 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1755 	struct io_tlb_pool *pool;
1756 	phys_addr_t tlb_addr;
1757 	unsigned int align;
1758 	int index;
1759 
1760 	if (!mem)
1761 		return NULL;
1762 
1763 	align = (1 << (get_order(size) + PAGE_SHIFT)) - 1;
1764 	index = swiotlb_find_slots(dev, 0, size, align, &pool);
1765 	if (index == -1)
1766 		return NULL;
1767 
1768 	tlb_addr = slot_addr(pool->start, index);
1769 	if (unlikely(!PAGE_ALIGNED(tlb_addr))) {
1770 		dev_WARN_ONCE(dev, 1, "Cannot allocate pages from non page-aligned swiotlb addr 0x%pa.\n",
1771 			      &tlb_addr);
1772 		swiotlb_release_slots(dev, tlb_addr, pool);
1773 		return NULL;
1774 	}
1775 
1776 	return pfn_to_page(PFN_DOWN(tlb_addr));
1777 }
1778 
swiotlb_free(struct device * dev,struct page * page,size_t size)1779 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
1780 {
1781 	phys_addr_t tlb_addr = page_to_phys(page);
1782 	struct io_tlb_pool *pool;
1783 
1784 	pool = swiotlb_find_pool(dev, tlb_addr);
1785 	if (!pool)
1786 		return false;
1787 
1788 	swiotlb_release_slots(dev, tlb_addr, pool);
1789 
1790 	return true;
1791 }
1792 
rmem_swiotlb_device_init(struct reserved_mem * rmem,struct device * dev)1793 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
1794 				    struct device *dev)
1795 {
1796 	struct io_tlb_mem *mem = rmem->priv;
1797 	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
1798 
1799 	/* Set Per-device io tlb area to one */
1800 	unsigned int nareas = 1;
1801 
1802 	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
1803 		dev_err(dev, "Restricted DMA pool must be accessible within the linear mapping.");
1804 		return -EINVAL;
1805 	}
1806 
1807 	/*
1808 	 * Since multiple devices can share the same pool, the private data,
1809 	 * io_tlb_mem struct, will be initialized by the first device attached
1810 	 * to it.
1811 	 */
1812 	if (!mem) {
1813 		struct io_tlb_pool *pool;
1814 
1815 		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1816 		if (!mem)
1817 			return -ENOMEM;
1818 		pool = &mem->defpool;
1819 
1820 		pool->slots = kcalloc(nslabs, sizeof(*pool->slots), GFP_KERNEL);
1821 		if (!pool->slots) {
1822 			kfree(mem);
1823 			return -ENOMEM;
1824 		}
1825 
1826 		pool->areas = kcalloc(nareas, sizeof(*pool->areas),
1827 				GFP_KERNEL);
1828 		if (!pool->areas) {
1829 			kfree(pool->slots);
1830 			kfree(mem);
1831 			return -ENOMEM;
1832 		}
1833 
1834 		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
1835 				     rmem->size >> PAGE_SHIFT);
1836 		swiotlb_init_io_tlb_pool(pool, rmem->base, nslabs,
1837 					 false, nareas);
1838 		mem->force_bounce = true;
1839 		mem->for_alloc = true;
1840 #ifdef CONFIG_SWIOTLB_DYNAMIC
1841 		spin_lock_init(&mem->lock);
1842 		INIT_LIST_HEAD_RCU(&mem->pools);
1843 #endif
1844 		add_mem_pool(mem, pool);
1845 
1846 		rmem->priv = mem;
1847 
1848 		swiotlb_create_debugfs_files(mem, rmem->name);
1849 	}
1850 
1851 	dev->dma_io_tlb_mem = mem;
1852 
1853 	return 0;
1854 }
1855 
rmem_swiotlb_device_release(struct reserved_mem * rmem,struct device * dev)1856 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
1857 					struct device *dev)
1858 {
1859 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
1860 }
1861 
1862 static const struct reserved_mem_ops rmem_swiotlb_ops = {
1863 	.device_init = rmem_swiotlb_device_init,
1864 	.device_release = rmem_swiotlb_device_release,
1865 };
1866 
rmem_swiotlb_setup(struct reserved_mem * rmem)1867 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
1868 {
1869 	unsigned long node = rmem->fdt_node;
1870 
1871 	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
1872 	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
1873 	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
1874 	    of_get_flat_dt_prop(node, "no-map", NULL))
1875 		return -EINVAL;
1876 
1877 	rmem->ops = &rmem_swiotlb_ops;
1878 	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
1879 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
1880 	return 0;
1881 }
1882 
1883 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
1884 #endif /* CONFIG_DMA_RESTRICTED_POOL */
1885