• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 #include <trace/events/lock.h>
31 
32 #ifndef CONFIG_PREEMPT_RT
33 #include "lock_events.h"
34 #include <trace/hooks/dtask.h>
35 #include <trace/hooks/rwsem.h>
36 
37 /*
38  * The least significant 2 bits of the owner value has the following
39  * meanings when set.
40  *  - Bit 0: RWSEM_READER_OWNED - rwsem may be owned by readers (just a hint)
41  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
42  *
43  * When the rwsem is reader-owned and a spinning writer has timed out,
44  * the nonspinnable bit will be set to disable optimistic spinning.
45 
46  * When a writer acquires a rwsem, it puts its task_struct pointer
47  * into the owner field. It is cleared after an unlock.
48  *
49  * When a reader acquires a rwsem, it will also puts its task_struct
50  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
51  * On unlock, the owner field will largely be left untouched. So
52  * for a free or reader-owned rwsem, the owner value may contain
53  * information about the last reader that acquires the rwsem.
54  *
55  * That information may be helpful in debugging cases where the system
56  * seems to hang on a reader owned rwsem especially if only one reader
57  * is involved. Ideally we would like to track all the readers that own
58  * a rwsem, but the overhead is simply too big.
59  *
60  * A fast path reader optimistic lock stealing is supported when the rwsem
61  * is previously owned by a writer and the following conditions are met:
62  *  - rwsem is not currently writer owned
63  *  - the handoff isn't set.
64  */
65 #define RWSEM_READER_OWNED	(1UL << 0)
66 #define RWSEM_NONSPINNABLE	(1UL << 1)
67 #define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
68 
69 #ifdef CONFIG_DEBUG_RWSEMS
70 # define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
71 	if (!debug_locks_silent &&				\
72 	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
73 		#c, atomic_long_read(&(sem)->count),		\
74 		(unsigned long) sem->magic,			\
75 		atomic_long_read(&(sem)->owner), (long)current,	\
76 		list_empty(&(sem)->wait_list) ? "" : "not "))	\
77 			debug_locks_off();			\
78 	} while (0)
79 #else
80 # define DEBUG_RWSEMS_WARN_ON(c, sem)
81 #endif
82 
83 /*
84  * On 64-bit architectures, the bit definitions of the count are:
85  *
86  * Bit  0    - writer locked bit
87  * Bit  1    - waiters present bit
88  * Bit  2    - lock handoff bit
89  * Bits 3-7  - reserved
90  * Bits 8-62 - 55-bit reader count
91  * Bit  63   - read fail bit
92  *
93  * On 32-bit architectures, the bit definitions of the count are:
94  *
95  * Bit  0    - writer locked bit
96  * Bit  1    - waiters present bit
97  * Bit  2    - lock handoff bit
98  * Bits 3-7  - reserved
99  * Bits 8-30 - 23-bit reader count
100  * Bit  31   - read fail bit
101  *
102  * It is not likely that the most significant bit (read fail bit) will ever
103  * be set. This guard bit is still checked anyway in the down_read() fastpath
104  * just in case we need to use up more of the reader bits for other purpose
105  * in the future.
106  *
107  * atomic_long_fetch_add() is used to obtain reader lock, whereas
108  * atomic_long_cmpxchg() will be used to obtain writer lock.
109  *
110  * There are three places where the lock handoff bit may be set or cleared.
111  * 1) rwsem_mark_wake() for readers		-- set, clear
112  * 2) rwsem_try_write_lock() for writers	-- set, clear
113  * 3) rwsem_del_waiter()			-- clear
114  *
115  * For all the above cases, wait_lock will be held. A writer must also
116  * be the first one in the wait_list to be eligible for setting the handoff
117  * bit. So concurrent setting/clearing of handoff bit is not possible.
118  */
119 #define RWSEM_WRITER_LOCKED	(1UL << 0)
120 #define RWSEM_FLAG_WAITERS	(1UL << 1)
121 #define RWSEM_FLAG_HANDOFF	(1UL << 2)
122 #define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
123 
124 #define RWSEM_READER_SHIFT	8
125 #define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
126 #define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
127 #define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
128 #define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
129 #define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
130 				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
131 
132 /*
133  * All writes to owner are protected by WRITE_ONCE() to make sure that
134  * store tearing can't happen as optimistic spinners may read and use
135  * the owner value concurrently without lock. Read from owner, however,
136  * may not need READ_ONCE() as long as the pointer value is only used
137  * for comparison and isn't being dereferenced.
138  *
139  * Both rwsem_{set,clear}_owner() functions should be in the same
140  * preempt disable section as the atomic op that changes sem->count.
141  */
rwsem_set_owner(struct rw_semaphore * sem)142 static inline void rwsem_set_owner(struct rw_semaphore *sem)
143 {
144 	lockdep_assert_preemption_disabled();
145 	atomic_long_set(&sem->owner, (long)current);
146 	trace_android_vh_record_rwsem_writer_owned(sem);
147 }
148 
rwsem_clear_owner(struct rw_semaphore * sem)149 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
150 {
151 	lockdep_assert_preemption_disabled();
152 	atomic_long_set(&sem->owner, 0);
153 	trace_android_vh_clear_rwsem_writer_owned(sem);
154 }
155 
156 /*
157  * Test the flags in the owner field.
158  */
rwsem_test_oflags(struct rw_semaphore * sem,long flags)159 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
160 {
161 	return atomic_long_read(&sem->owner) & flags;
162 }
163 
164 /*
165  * The task_struct pointer of the last owning reader will be left in
166  * the owner field.
167  *
168  * Note that the owner value just indicates the task has owned the rwsem
169  * previously, it may not be the real owner or one of the real owners
170  * anymore when that field is examined, so take it with a grain of salt.
171  *
172  * The reader non-spinnable bit is preserved.
173  */
__rwsem_set_reader_owned(struct rw_semaphore * sem,struct task_struct * owner)174 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
175 					    struct task_struct *owner)
176 {
177 	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
178 		(atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
179 
180 	atomic_long_set(&sem->owner, val);
181 }
182 
rwsem_set_reader_owned(struct rw_semaphore * sem)183 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
184 {
185 	__rwsem_set_reader_owned(sem, current);
186 	trace_android_vh_record_rwsem_reader_owned(sem, NULL);
187 }
188 
189 #ifdef CONFIG_DEBUG_RWSEMS
190 /*
191  * Return just the real task structure pointer of the owner
192  */
rwsem_owner(struct rw_semaphore * sem)193 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
194 {
195 	return (struct task_struct *)
196 		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
197 }
198 
199 /*
200  * Return true if the rwsem is owned by a reader.
201  */
is_rwsem_reader_owned(struct rw_semaphore * sem)202 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
203 {
204 	/*
205 	 * Check the count to see if it is write-locked.
206 	 */
207 	long count = atomic_long_read(&sem->count);
208 
209 	if (count & RWSEM_WRITER_MASK)
210 		return false;
211 	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
212 }
213 
214 /*
215  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
216  * is a task pointer in owner of a reader-owned rwsem, it will be the
217  * real owner or one of the real owners. The only exception is when the
218  * unlock is done by up_read_non_owner().
219  */
rwsem_clear_reader_owned(struct rw_semaphore * sem)220 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
221 {
222 	unsigned long val = atomic_long_read(&sem->owner);
223 
224 	trace_android_vh_clear_rwsem_reader_owned(sem);
225 	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
226 		if (atomic_long_try_cmpxchg(&sem->owner, &val,
227 					    val & RWSEM_OWNER_FLAGS_MASK))
228 			return;
229 	}
230 }
231 #else
rwsem_clear_reader_owned(struct rw_semaphore * sem)232 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
233 {
234 	trace_android_vh_clear_rwsem_reader_owned(sem);
235 }
236 #endif
237 
238 /*
239  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
240  * remains set. Otherwise, the operation will be aborted.
241  */
rwsem_set_nonspinnable(struct rw_semaphore * sem)242 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
243 {
244 	unsigned long owner = atomic_long_read(&sem->owner);
245 
246 	do {
247 		if (!(owner & RWSEM_READER_OWNED))
248 			break;
249 		if (owner & RWSEM_NONSPINNABLE)
250 			break;
251 	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
252 					  owner | RWSEM_NONSPINNABLE));
253 }
254 
rwsem_read_trylock(struct rw_semaphore * sem,long * cntp)255 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
256 {
257 	int ret = 0;
258 
259 	*cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
260 
261 	if (WARN_ON_ONCE(*cntp < 0))
262 		rwsem_set_nonspinnable(sem);
263 
264 	if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
265 		rwsem_set_reader_owned(sem);
266 		trace_android_vh_record_rwsem_lock_starttime(sem, jiffies);
267 		return true;
268 	}
269 
270 	trace_android_vh_rwsem_read_trylock_failed(sem, cntp, &ret);
271 	if (ret) {
272 		rwsem_set_reader_owned(sem);
273 		trace_android_vh_record_rwsem_lock_starttime(sem, jiffies);
274 		return true;
275 	}
276 
277 	return false;
278 }
279 
rwsem_write_trylock(struct rw_semaphore * sem)280 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
281 {
282 	long tmp = RWSEM_UNLOCKED_VALUE;
283 
284 	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
285 		trace_android_vh_record_rwsem_lock_starttime(sem, jiffies);
286 		rwsem_set_owner(sem);
287 		return true;
288 	}
289 
290 	return false;
291 }
292 
293 /*
294  * Return the real task structure pointer of the owner and the embedded
295  * flags in the owner. pflags must be non-NULL.
296  */
297 static inline struct task_struct *
rwsem_owner_flags(struct rw_semaphore * sem,unsigned long * pflags)298 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
299 {
300 	unsigned long owner = atomic_long_read(&sem->owner);
301 
302 	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
303 	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
304 }
305 
306 /*
307  * Guide to the rw_semaphore's count field.
308  *
309  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
310  * by a writer.
311  *
312  * The lock is owned by readers when
313  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
314  * (2) some of the reader bits are set in count, and
315  * (3) the owner field has RWSEM_READ_OWNED bit set.
316  *
317  * Having some reader bits set is not enough to guarantee a readers owned
318  * lock as the readers may be in the process of backing out from the count
319  * and a writer has just released the lock. So another writer may steal
320  * the lock immediately after that.
321  */
322 
323 /*
324  * Initialize an rwsem:
325  */
__init_rwsem(struct rw_semaphore * sem,const char * name,struct lock_class_key * key)326 void __init_rwsem(struct rw_semaphore *sem, const char *name,
327 		  struct lock_class_key *key)
328 {
329 #ifdef CONFIG_DEBUG_LOCK_ALLOC
330 	/*
331 	 * Make sure we are not reinitializing a held semaphore:
332 	 */
333 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
334 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
335 #endif
336 #ifdef CONFIG_DEBUG_RWSEMS
337 	sem->magic = sem;
338 #endif
339 	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
340 	raw_spin_lock_init(&sem->wait_lock);
341 	INIT_LIST_HEAD(&sem->wait_list);
342 	atomic_long_set(&sem->owner, 0L);
343 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
344 	osq_lock_init(&sem->osq);
345 #endif
346 	android_init_vendor_data(sem, 1);
347 	android_init_oem_data(sem, 1);
348 	trace_android_vh_rwsem_init(sem);
349 }
350 EXPORT_SYMBOL(__init_rwsem);
351 
352 enum rwsem_waiter_type {
353 	RWSEM_WAITING_FOR_WRITE,
354 	RWSEM_WAITING_FOR_READ
355 };
356 
357 struct rwsem_waiter {
358 	struct list_head list;
359 	struct task_struct *task;
360 	enum rwsem_waiter_type type;
361 	unsigned long timeout;
362 	bool handoff_set;
363 };
364 #define rwsem_first_waiter(sem) \
365 	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
366 
367 enum rwsem_wake_type {
368 	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
369 	RWSEM_WAKE_READERS,	/* Wake readers only */
370 	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
371 };
372 
373 /*
374  * The typical HZ value is either 250 or 1000. So set the minimum waiting
375  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
376  * queue before initiating the handoff protocol.
377  */
378 #define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
379 
380 /*
381  * Magic number to batch-wakeup waiting readers, even when writers are
382  * also present in the queue. This both limits the amount of work the
383  * waking thread must do and also prevents any potential counter overflow,
384  * however unlikely.
385  */
386 #define MAX_READERS_WAKEUP	0x100
387 
388 static inline void
rwsem_add_waiter(struct rw_semaphore * sem,struct rwsem_waiter * waiter)389 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
390 {
391 	lockdep_assert_held(&sem->wait_lock);
392 	list_add_tail(&waiter->list, &sem->wait_list);
393 	/* caller will set RWSEM_FLAG_WAITERS */
394 }
395 
396 /*
397  * Remove a waiter from the wait_list and clear flags.
398  *
399  * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
400  * this function. Modify with care.
401  *
402  * Return: true if wait_list isn't empty and false otherwise
403  */
404 static inline bool
rwsem_del_waiter(struct rw_semaphore * sem,struct rwsem_waiter * waiter)405 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
406 {
407 	lockdep_assert_held(&sem->wait_lock);
408 	list_del(&waiter->list);
409 	if (likely(!list_empty(&sem->wait_list)))
410 		return true;
411 
412 	atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
413 	return false;
414 }
415 
416 /*
417  * handle the lock release when processes blocked on it that can now run
418  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
419  *   have been set.
420  * - there must be someone on the queue
421  * - the wait_lock must be held by the caller
422  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
423  *   to actually wakeup the blocked task(s) and drop the reference count,
424  *   preferably when the wait_lock is released
425  * - woken process blocks are discarded from the list after having task zeroed
426  * - writers are only marked woken if downgrading is false
427  *
428  * Implies rwsem_del_waiter() for all woken readers.
429  */
rwsem_mark_wake(struct rw_semaphore * sem,enum rwsem_wake_type wake_type,struct wake_q_head * wake_q)430 static void rwsem_mark_wake(struct rw_semaphore *sem,
431 			    enum rwsem_wake_type wake_type,
432 			    struct wake_q_head *wake_q)
433 {
434 	struct rwsem_waiter *waiter, *tmp;
435 	long oldcount, woken = 0, adjustment = 0;
436 	struct list_head wlist;
437 
438 	lockdep_assert_held(&sem->wait_lock);
439 
440 	/*
441 	 * Take a peek at the queue head waiter such that we can determine
442 	 * the wakeup(s) to perform.
443 	 */
444 	waiter = rwsem_first_waiter(sem);
445 
446 	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
447 		if (wake_type == RWSEM_WAKE_ANY) {
448 			/*
449 			 * Mark writer at the front of the queue for wakeup.
450 			 * Until the task is actually later awoken later by
451 			 * the caller, other writers are able to steal it.
452 			 * Readers, on the other hand, will block as they
453 			 * will notice the queued writer.
454 			 */
455 			wake_q_add(wake_q, waiter->task);
456 			lockevent_inc(rwsem_wake_writer);
457 		}
458 
459 		return;
460 	}
461 
462 	/*
463 	 * No reader wakeup if there are too many of them already.
464 	 */
465 	if (unlikely(atomic_long_read(&sem->count) < 0))
466 		return;
467 
468 	/*
469 	 * Writers might steal the lock before we grant it to the next reader.
470 	 * We prefer to do the first reader grant before counting readers
471 	 * so we can bail out early if a writer stole the lock.
472 	 */
473 	if (wake_type != RWSEM_WAKE_READ_OWNED) {
474 		struct task_struct *owner;
475 
476 		adjustment = RWSEM_READER_BIAS;
477 		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
478 		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
479 			/*
480 			 * When we've been waiting "too" long (for writers
481 			 * to give up the lock), request a HANDOFF to
482 			 * force the issue.
483 			 */
484 			if (time_after(jiffies, waiter->timeout)) {
485 				if (!(oldcount & RWSEM_FLAG_HANDOFF)) {
486 					adjustment -= RWSEM_FLAG_HANDOFF;
487 					lockevent_inc(rwsem_rlock_handoff);
488 				}
489 				waiter->handoff_set = true;
490 			}
491 
492 			atomic_long_add(-adjustment, &sem->count);
493 			return;
494 		}
495 		/*
496 		 * Set it to reader-owned to give spinners an early
497 		 * indication that readers now have the lock.
498 		 * The reader nonspinnable bit seen at slowpath entry of
499 		 * the reader is copied over.
500 		 */
501 		owner = waiter->task;
502 		__rwsem_set_reader_owned(sem, owner);
503 	}
504 
505 	/*
506 	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
507 	 * queue. We know that the woken will be at least 1 as we accounted
508 	 * for above. Note we increment the 'active part' of the count by the
509 	 * number of readers before waking any processes up.
510 	 *
511 	 * This is an adaptation of the phase-fair R/W locks where at the
512 	 * reader phase (first waiter is a reader), all readers are eligible
513 	 * to acquire the lock at the same time irrespective of their order
514 	 * in the queue. The writers acquire the lock according to their
515 	 * order in the queue.
516 	 *
517 	 * We have to do wakeup in 2 passes to prevent the possibility that
518 	 * the reader count may be decremented before it is incremented. It
519 	 * is because the to-be-woken waiter may not have slept yet. So it
520 	 * may see waiter->task got cleared, finish its critical section and
521 	 * do an unlock before the reader count increment.
522 	 *
523 	 * 1) Collect the read-waiters in a separate list, count them and
524 	 *    fully increment the reader count in rwsem.
525 	 * 2) For each waiters in the new list, clear waiter->task and
526 	 *    put them into wake_q to be woken up later.
527 	 */
528 	INIT_LIST_HEAD(&wlist);
529 	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
530 		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
531 			continue;
532 
533 		woken++;
534 		list_move_tail(&waiter->list, &wlist);
535 
536 		/*
537 		 * Limit # of readers that can be woken up per wakeup call.
538 		 */
539 		if (unlikely(woken >= MAX_READERS_WAKEUP))
540 			break;
541 	}
542 
543 	adjustment = woken * RWSEM_READER_BIAS - adjustment;
544 	lockevent_cond_inc(rwsem_wake_reader, woken);
545 
546 	oldcount = atomic_long_read(&sem->count);
547 	if (list_empty(&sem->wait_list)) {
548 		/*
549 		 * Combined with list_move_tail() above, this implies
550 		 * rwsem_del_waiter().
551 		 */
552 		adjustment -= RWSEM_FLAG_WAITERS;
553 		if (oldcount & RWSEM_FLAG_HANDOFF)
554 			adjustment -= RWSEM_FLAG_HANDOFF;
555 	} else if (woken) {
556 		/*
557 		 * When we've woken a reader, we no longer need to force
558 		 * writers to give up the lock and we can clear HANDOFF.
559 		 */
560 		if (oldcount & RWSEM_FLAG_HANDOFF)
561 			adjustment -= RWSEM_FLAG_HANDOFF;
562 	}
563 
564 	if (adjustment)
565 		atomic_long_add(adjustment, &sem->count);
566 	trace_android_vh_record_rwsem_reader_owned(sem, &wlist);
567 
568 	/* 2nd pass */
569 	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
570 		struct task_struct *tsk;
571 
572 		tsk = waiter->task;
573 		get_task_struct(tsk);
574 
575 		/*
576 		 * Ensure calling get_task_struct() before setting the reader
577 		 * waiter to nil such that rwsem_down_read_slowpath() cannot
578 		 * race with do_exit() by always holding a reference count
579 		 * to the task to wakeup.
580 		 */
581 		smp_store_release(&waiter->task, NULL);
582 		/*
583 		 * Ensure issuing the wakeup (either by us or someone else)
584 		 * after setting the reader waiter to nil.
585 		 */
586 		wake_q_add_safe(wake_q, tsk);
587 	}
588 }
589 
590 /*
591  * Remove a waiter and try to wake up other waiters in the wait queue
592  * This function is called from the out_nolock path of both the reader and
593  * writer slowpaths with wait_lock held. It releases the wait_lock and
594  * optionally wake up waiters before it returns.
595  */
596 static inline void
rwsem_del_wake_waiter(struct rw_semaphore * sem,struct rwsem_waiter * waiter,struct wake_q_head * wake_q)597 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter,
598 		      struct wake_q_head *wake_q)
599 		      __releases(&sem->wait_lock)
600 {
601 	bool first = rwsem_first_waiter(sem) == waiter;
602 
603 	wake_q_init(wake_q);
604 
605 	/*
606 	 * If the wait_list isn't empty and the waiter to be deleted is
607 	 * the first waiter, we wake up the remaining waiters as they may
608 	 * be eligible to acquire or spin on the lock.
609 	 */
610 	if (rwsem_del_waiter(sem, waiter) && first)
611 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q);
612 	raw_spin_unlock_irq(&sem->wait_lock);
613 	if (!wake_q_empty(wake_q))
614 		wake_up_q(wake_q);
615 }
616 
617 /*
618  * This function must be called with the sem->wait_lock held to prevent
619  * race conditions between checking the rwsem wait list and setting the
620  * sem->count accordingly.
621  *
622  * Implies rwsem_del_waiter() on success.
623  */
rwsem_try_write_lock(struct rw_semaphore * sem,struct rwsem_waiter * waiter)624 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
625 					struct rwsem_waiter *waiter)
626 {
627 	struct rwsem_waiter *first = rwsem_first_waiter(sem);
628 	long count, new;
629 
630 	lockdep_assert_held(&sem->wait_lock);
631 
632 	count = atomic_long_read(&sem->count);
633 	do {
634 		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
635 
636 		if (has_handoff) {
637 			/*
638 			 * Honor handoff bit and yield only when the first
639 			 * waiter is the one that set it. Otherwisee, we
640 			 * still try to acquire the rwsem.
641 			 */
642 			if (first->handoff_set && (waiter != first))
643 				return false;
644 		}
645 
646 		new = count;
647 
648 		if (count & RWSEM_LOCK_MASK) {
649 			/*
650 			 * A waiter (first or not) can set the handoff bit
651 			 * if it is an RT task or wait in the wait queue
652 			 * for too long.
653 			 */
654 			if (has_handoff || (!rt_or_dl_task(waiter->task) &&
655 					    !time_after(jiffies, waiter->timeout)))
656 				return false;
657 
658 			new |= RWSEM_FLAG_HANDOFF;
659 		} else {
660 			new |= RWSEM_WRITER_LOCKED;
661 			new &= ~RWSEM_FLAG_HANDOFF;
662 
663 			if (list_is_singular(&sem->wait_list))
664 				new &= ~RWSEM_FLAG_WAITERS;
665 		}
666 	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
667 
668 	/*
669 	 * We have either acquired the lock with handoff bit cleared or set
670 	 * the handoff bit. Only the first waiter can have its handoff_set
671 	 * set here to enable optimistic spinning in slowpath loop.
672 	 */
673 	if (new & RWSEM_FLAG_HANDOFF) {
674 		first->handoff_set = true;
675 		lockevent_inc(rwsem_wlock_handoff);
676 		return false;
677 	}
678 
679 	/*
680 	 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
681 	 * success.
682 	 */
683 	list_del(&waiter->list);
684 	rwsem_set_owner(sem);
685 	return true;
686 }
687 
688 /*
689  * The rwsem_spin_on_owner() function returns the following 4 values
690  * depending on the lock owner state.
691  *   OWNER_NULL  : owner is currently NULL
692  *   OWNER_WRITER: when owner changes and is a writer
693  *   OWNER_READER: when owner changes and the new owner may be a reader.
694  *   OWNER_NONSPINNABLE:
695  *		   when optimistic spinning has to stop because either the
696  *		   owner stops running, is unknown, or its timeslice has
697  *		   been used up.
698  */
699 enum owner_state {
700 	OWNER_NULL		= 1 << 0,
701 	OWNER_WRITER		= 1 << 1,
702 	OWNER_READER		= 1 << 2,
703 	OWNER_NONSPINNABLE	= 1 << 3,
704 };
705 
706 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
707 /*
708  * Try to acquire write lock before the writer has been put on wait queue.
709  */
rwsem_try_write_lock_unqueued(struct rw_semaphore * sem)710 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
711 {
712 	long count = atomic_long_read(&sem->count);
713 
714 	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
715 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
716 					count | RWSEM_WRITER_LOCKED)) {
717 			rwsem_set_owner(sem);
718 			lockevent_inc(rwsem_opt_lock);
719 			return true;
720 		}
721 	}
722 	return false;
723 }
724 
rwsem_can_spin_on_owner(struct rw_semaphore * sem)725 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
726 {
727 	struct task_struct *owner;
728 	unsigned long flags;
729 	bool ret = true;
730 
731 	if (need_resched()) {
732 		lockevent_inc(rwsem_opt_fail);
733 		return false;
734 	}
735 
736 	/*
737 	 * Disable preemption is equal to the RCU read-side crital section,
738 	 * thus the task_strcut structure won't go away.
739 	 */
740 	owner = rwsem_owner_flags(sem, &flags);
741 	/*
742 	 * Don't check the read-owner as the entry may be stale.
743 	 */
744 	if ((flags & RWSEM_NONSPINNABLE) ||
745 	    (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
746 		ret = false;
747 	trace_android_vh_rwsem_can_spin_on_owner(sem, &ret);
748 
749 	lockevent_cond_inc(rwsem_opt_fail, !ret);
750 	return ret;
751 }
752 
753 #define OWNER_SPINNABLE		(OWNER_NULL | OWNER_WRITER | OWNER_READER)
754 
755 static inline enum owner_state
rwsem_owner_state(struct task_struct * owner,unsigned long flags)756 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
757 {
758 	if (flags & RWSEM_NONSPINNABLE)
759 		return OWNER_NONSPINNABLE;
760 
761 	if (flags & RWSEM_READER_OWNED)
762 		return OWNER_READER;
763 
764 	return owner ? OWNER_WRITER : OWNER_NULL;
765 }
766 
767 static noinline enum owner_state
rwsem_spin_on_owner(struct rw_semaphore * sem)768 rwsem_spin_on_owner(struct rw_semaphore *sem)
769 {
770 	struct task_struct *new, *owner;
771 	unsigned long flags, new_flags;
772 	enum owner_state state;
773 	int cnt = 0;
774 	bool time_out = false;
775 
776 	lockdep_assert_preemption_disabled();
777 
778 	owner = rwsem_owner_flags(sem, &flags);
779 	state = rwsem_owner_state(owner, flags);
780 	if (state != OWNER_WRITER)
781 		return state;
782 
783 	for (;;) {
784 		trace_android_vh_rwsem_opt_spin_start(sem, &time_out, &cnt, true);
785 		if (time_out)
786 			break;
787 		/*
788 		 * When a waiting writer set the handoff flag, it may spin
789 		 * on the owner as well. Once that writer acquires the lock,
790 		 * we can spin on it. So we don't need to quit even when the
791 		 * handoff bit is set.
792 		 */
793 		new = rwsem_owner_flags(sem, &new_flags);
794 		if ((new != owner) || (new_flags != flags)) {
795 			state = rwsem_owner_state(new, new_flags);
796 			break;
797 		}
798 
799 		/*
800 		 * Ensure we emit the owner->on_cpu, dereference _after_
801 		 * checking sem->owner still matches owner, if that fails,
802 		 * owner might point to free()d memory, if it still matches,
803 		 * our spinning context already disabled preemption which is
804 		 * equal to RCU read-side crital section ensures the memory
805 		 * stays valid.
806 		 */
807 		barrier();
808 
809 		if (need_resched() || !owner_on_cpu(owner)) {
810 			state = OWNER_NONSPINNABLE;
811 			break;
812 		}
813 
814 		cpu_relax();
815 	}
816 
817 	return state;
818 }
819 
820 /*
821  * Calculate reader-owned rwsem spinning threshold for writer
822  *
823  * The more readers own the rwsem, the longer it will take for them to
824  * wind down and free the rwsem. So the empirical formula used to
825  * determine the actual spinning time limit here is:
826  *
827  *   Spinning threshold = (10 + nr_readers/2)us
828  *
829  * The limit is capped to a maximum of 25us (30 readers). This is just
830  * a heuristic and is subjected to change in the future.
831  */
rwsem_rspin_threshold(struct rw_semaphore * sem)832 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
833 {
834 	long count = atomic_long_read(&sem->count);
835 	int readers = count >> RWSEM_READER_SHIFT;
836 	u64 delta;
837 
838 	if (readers > 30)
839 		readers = 30;
840 	delta = (20 + readers) * NSEC_PER_USEC / 2;
841 
842 	return sched_clock() + delta;
843 }
844 
rwsem_optimistic_spin(struct rw_semaphore * sem)845 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
846 {
847 	bool taken = false;
848 	int prev_owner_state = OWNER_NULL;
849 	int loop = 0;
850 	u64 rspin_threshold = 0;
851 	int cnt = 0;
852 	bool time_out = false;
853 
854 	/* sem->wait_lock should not be held when doing optimistic spinning */
855 	if (!osq_lock(&sem->osq))
856 		goto done;
857 
858 	/*
859 	 * Optimistically spin on the owner field and attempt to acquire the
860 	 * lock whenever the owner changes. Spinning will be stopped when:
861 	 *  1) the owning writer isn't running; or
862 	 *  2) readers own the lock and spinning time has exceeded limit.
863 	 */
864 	for (;;) {
865 		enum owner_state owner_state;
866 
867 		trace_android_vh_rwsem_opt_spin_start(sem, &time_out, &cnt, false);
868 		if (time_out)
869 			break;
870 		owner_state = rwsem_spin_on_owner(sem);
871 		if (!(owner_state & OWNER_SPINNABLE))
872 			break;
873 
874 		/*
875 		 * Try to acquire the lock
876 		 */
877 		taken = rwsem_try_write_lock_unqueued(sem);
878 
879 		if (taken)
880 			break;
881 
882 		/*
883 		 * Time-based reader-owned rwsem optimistic spinning
884 		 */
885 		if (owner_state == OWNER_READER) {
886 			/*
887 			 * Re-initialize rspin_threshold every time when
888 			 * the owner state changes from non-reader to reader.
889 			 * This allows a writer to steal the lock in between
890 			 * 2 reader phases and have the threshold reset at
891 			 * the beginning of the 2nd reader phase.
892 			 */
893 			if (prev_owner_state != OWNER_READER) {
894 				if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
895 					break;
896 				rspin_threshold = rwsem_rspin_threshold(sem);
897 				loop = 0;
898 			}
899 
900 			/*
901 			 * Check time threshold once every 16 iterations to
902 			 * avoid calling sched_clock() too frequently so
903 			 * as to reduce the average latency between the times
904 			 * when the lock becomes free and when the spinner
905 			 * is ready to do a trylock.
906 			 */
907 			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
908 				rwsem_set_nonspinnable(sem);
909 				lockevent_inc(rwsem_opt_nospin);
910 				break;
911 			}
912 		}
913 
914 		/*
915 		 * An RT task cannot do optimistic spinning if it cannot
916 		 * be sure the lock holder is running or live-lock may
917 		 * happen if the current task and the lock holder happen
918 		 * to run in the same CPU. However, aborting optimistic
919 		 * spinning while a NULL owner is detected may miss some
920 		 * opportunity where spinning can continue without causing
921 		 * problem.
922 		 *
923 		 * There are 2 possible cases where an RT task may be able
924 		 * to continue spinning.
925 		 *
926 		 * 1) The lock owner is in the process of releasing the
927 		 *    lock, sem->owner is cleared but the lock has not
928 		 *    been released yet.
929 		 * 2) The lock was free and owner cleared, but another
930 		 *    task just comes in and acquire the lock before
931 		 *    we try to get it. The new owner may be a spinnable
932 		 *    writer.
933 		 *
934 		 * To take advantage of two scenarios listed above, the RT
935 		 * task is made to retry one more time to see if it can
936 		 * acquire the lock or continue spinning on the new owning
937 		 * writer. Of course, if the time lag is long enough or the
938 		 * new owner is not a writer or spinnable, the RT task will
939 		 * quit spinning.
940 		 *
941 		 * If the owner is a writer, the need_resched() check is
942 		 * done inside rwsem_spin_on_owner(). If the owner is not
943 		 * a writer, need_resched() check needs to be done here.
944 		 */
945 		if (owner_state != OWNER_WRITER) {
946 			if (need_resched())
947 				break;
948 			if (rt_or_dl_task(current) &&
949 			   (prev_owner_state != OWNER_WRITER))
950 				break;
951 		}
952 		prev_owner_state = owner_state;
953 
954 		/*
955 		 * The cpu_relax() call is a compiler barrier which forces
956 		 * everything in this loop to be re-loaded. We don't need
957 		 * memory barriers as we'll eventually observe the right
958 		 * values at the cost of a few extra spins.
959 		 */
960 		cpu_relax();
961 	}
962 	osq_unlock(&sem->osq);
963 	trace_android_vh_rwsem_opt_spin_finish(sem, taken);
964 done:
965 	lockevent_cond_inc(rwsem_opt_fail, !taken);
966 	return taken;
967 }
968 
969 /*
970  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
971  * only be called when the reader count reaches 0.
972  */
clear_nonspinnable(struct rw_semaphore * sem)973 static inline void clear_nonspinnable(struct rw_semaphore *sem)
974 {
975 	if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)))
976 		atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
977 }
978 
979 #else
rwsem_can_spin_on_owner(struct rw_semaphore * sem)980 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
981 {
982 	return false;
983 }
984 
rwsem_optimistic_spin(struct rw_semaphore * sem)985 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
986 {
987 	return false;
988 }
989 
clear_nonspinnable(struct rw_semaphore * sem)990 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
991 
992 static inline enum owner_state
rwsem_spin_on_owner(struct rw_semaphore * sem)993 rwsem_spin_on_owner(struct rw_semaphore *sem)
994 {
995 	return OWNER_NONSPINNABLE;
996 }
997 #endif
998 
999 /*
1000  * Prepare to wake up waiter(s) in the wait queue by putting them into the
1001  * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely
1002  * reader-owned, wake up read lock waiters in queue front or wake up any
1003  * front waiter otherwise.
1004 
1005  * This is being called from both reader and writer slow paths.
1006  */
rwsem_cond_wake_waiter(struct rw_semaphore * sem,long count,struct wake_q_head * wake_q)1007 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count,
1008 					  struct wake_q_head *wake_q)
1009 {
1010 	enum rwsem_wake_type wake_type;
1011 
1012 	if (count & RWSEM_WRITER_MASK)
1013 		return;
1014 
1015 	if (count & RWSEM_READER_MASK) {
1016 		wake_type = RWSEM_WAKE_READERS;
1017 	} else {
1018 		wake_type = RWSEM_WAKE_ANY;
1019 		clear_nonspinnable(sem);
1020 	}
1021 	rwsem_mark_wake(sem, wake_type, wake_q);
1022 }
1023 
1024 /*
1025  * Wait for the read lock to be granted
1026  */
1027 static struct rw_semaphore __sched *
rwsem_down_read_slowpath(struct rw_semaphore * sem,long count,unsigned int state)1028 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
1029 {
1030 	long adjustment = -RWSEM_READER_BIAS;
1031 	long rcnt = (count >> RWSEM_READER_SHIFT);
1032 	struct rwsem_waiter waiter;
1033 	DEFINE_WAKE_Q(wake_q);
1034 	bool already_on_list = false;
1035 	bool steal = true;
1036 	bool rspin = false;
1037 
1038 	/*
1039 	 * To prevent a constant stream of readers from starving a sleeping
1040 	 * writer, don't attempt optimistic lock stealing if the lock is
1041 	 * very likely owned by readers.
1042 	 */
1043 	if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
1044 	    (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
1045 		goto queue;
1046 
1047 	/*
1048 	 * Reader optimistic lock stealing.
1049 	 */
1050 	trace_android_vh_rwsem_direct_rsteal(sem, &steal);
1051 	if (steal && !(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
1052 		rwsem_set_reader_owned(sem);
1053 		lockevent_inc(rwsem_rlock_steal);
1054 
1055 		/*
1056 		 * Wake up other readers in the wait queue if it is
1057 		 * the first reader.
1058 		 */
1059 wake_readers:
1060 		if ((rcnt == 1 || rspin) && (count & RWSEM_FLAG_WAITERS)) {
1061 			raw_spin_lock_irq(&sem->wait_lock);
1062 			if (!list_empty(&sem->wait_list))
1063 				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1064 						&wake_q);
1065 			raw_spin_unlock_irq(&sem->wait_lock);
1066 			wake_up_q(&wake_q);
1067 		}
1068 		trace_android_vh_record_rwsem_lock_starttime(sem, jiffies);
1069 		return sem;
1070 	}
1071 	/*
1072 	 * Reader optimistic spinning and stealing.
1073 	 */
1074 	trace_android_vh_rwsem_optimistic_rspin(sem, &adjustment, &rspin);
1075 	if (rspin)
1076 		goto wake_readers;
1077 
1078 queue:
1079 	waiter.task = current;
1080 	waiter.type = RWSEM_WAITING_FOR_READ;
1081 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1082 	waiter.handoff_set = false;
1083 
1084 	raw_spin_lock_irq(&sem->wait_lock);
1085 	if (list_empty(&sem->wait_list)) {
1086 		/*
1087 		 * In case the wait queue is empty and the lock isn't owned
1088 		 * by a writer, this reader can exit the slowpath and return
1089 		 * immediately as its RWSEM_READER_BIAS has already been set
1090 		 * in the count.
1091 		 */
1092 		if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) {
1093 			/* Provide lock ACQUIRE */
1094 			smp_acquire__after_ctrl_dep();
1095 			raw_spin_unlock_irq(&sem->wait_lock);
1096 			rwsem_set_reader_owned(sem);
1097 			lockevent_inc(rwsem_rlock_fast);
1098 			return sem;
1099 		}
1100 		adjustment += RWSEM_FLAG_WAITERS;
1101 	}
1102 	trace_android_vh_alter_rwsem_list_add(
1103 					&waiter,
1104 					sem, &already_on_list);
1105 	if (!already_on_list)
1106 		rwsem_add_waiter(sem, &waiter);
1107 
1108 	/* we're now waiting on the lock, but no longer actively locking */
1109 	count = atomic_long_add_return(adjustment, &sem->count);
1110 
1111 	rwsem_cond_wake_waiter(sem, count, &wake_q);
1112 	trace_android_vh_rwsem_wake(sem);
1113 	raw_spin_unlock_irq(&sem->wait_lock);
1114 
1115 	if (!wake_q_empty(&wake_q))
1116 		wake_up_q(&wake_q);
1117 
1118 	trace_contention_begin(sem, LCB_F_READ);
1119 
1120 	/* wait to be given the lock */
1121 	trace_android_vh_rwsem_read_wait_start(sem);
1122 	for (;;) {
1123 		set_current_state(state);
1124 		if (!smp_load_acquire(&waiter.task)) {
1125 			/* Matches rwsem_mark_wake()'s smp_store_release(). */
1126 			break;
1127 		}
1128 		if (signal_pending_state(state, current)) {
1129 			raw_spin_lock_irq(&sem->wait_lock);
1130 			if (waiter.task)
1131 				goto out_nolock;
1132 			raw_spin_unlock_irq(&sem->wait_lock);
1133 			/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1134 			break;
1135 		}
1136 		schedule_preempt_disabled();
1137 		lockevent_inc(rwsem_sleep_reader);
1138 	}
1139 
1140 	__set_current_state(TASK_RUNNING);
1141 	trace_android_vh_rwsem_read_wait_finish(sem);
1142 	lockevent_inc(rwsem_rlock);
1143 	trace_contention_end(sem, 0);
1144 	trace_android_vh_record_rwsem_lock_starttime(sem, jiffies);
1145 	return sem;
1146 
1147 out_nolock:
1148 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1149 	__set_current_state(TASK_RUNNING);
1150 	trace_android_vh_rwsem_read_wait_finish(sem);
1151 	lockevent_inc(rwsem_rlock_fail);
1152 	trace_contention_end(sem, -EINTR);
1153 	return ERR_PTR(-EINTR);
1154 }
1155 
1156 /*
1157  * Wait until we successfully acquire the write lock
1158  */
1159 static struct rw_semaphore __sched *
rwsem_down_write_slowpath(struct rw_semaphore * sem,int state)1160 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1161 {
1162 	struct rwsem_waiter waiter;
1163 	DEFINE_WAKE_Q(wake_q);
1164 	bool already_on_list = false;
1165 
1166 	/* do optimistic spinning and steal lock if possible */
1167 	if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1168 		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1169 		trace_android_vh_record_rwsem_lock_starttime(sem, jiffies);
1170 		return sem;
1171 	}
1172 
1173 	/*
1174 	 * Optimistic spinning failed, proceed to the slowpath
1175 	 * and block until we can acquire the sem.
1176 	 */
1177 	waiter.task = current;
1178 	waiter.type = RWSEM_WAITING_FOR_WRITE;
1179 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1180 	waiter.handoff_set = false;
1181 
1182 	raw_spin_lock_irq(&sem->wait_lock);
1183 	trace_android_vh_alter_rwsem_list_add(
1184 					&waiter,
1185 					sem, &already_on_list);
1186 	if (!already_on_list)
1187 		rwsem_add_waiter(sem, &waiter);
1188 
1189 	/* we're now waiting on the lock */
1190 	if (rwsem_first_waiter(sem) != &waiter) {
1191 		rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count),
1192 				       &wake_q);
1193 		if (!wake_q_empty(&wake_q)) {
1194 			/*
1195 			 * We want to minimize wait_lock hold time especially
1196 			 * when a large number of readers are to be woken up.
1197 			 */
1198 			raw_spin_unlock_irq(&sem->wait_lock);
1199 			wake_up_q(&wake_q);
1200 			raw_spin_lock_irq(&sem->wait_lock);
1201 		}
1202 	} else {
1203 		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1204 	}
1205 
1206 	trace_android_vh_rwsem_wake(sem);
1207 	/* wait until we successfully acquire the lock */
1208 	trace_android_vh_rwsem_write_wait_start(sem);
1209 	set_current_state(state);
1210 	trace_contention_begin(sem, LCB_F_WRITE);
1211 
1212 	for (;;) {
1213 		if (rwsem_try_write_lock(sem, &waiter)) {
1214 			/* rwsem_try_write_lock() implies ACQUIRE on success */
1215 			break;
1216 		}
1217 
1218 		raw_spin_unlock_irq(&sem->wait_lock);
1219 
1220 		if (signal_pending_state(state, current))
1221 			goto out_nolock;
1222 
1223 		/*
1224 		 * After setting the handoff bit and failing to acquire
1225 		 * the lock, attempt to spin on owner to accelerate lock
1226 		 * transfer. If the previous owner is a on-cpu writer and it
1227 		 * has just released the lock, OWNER_NULL will be returned.
1228 		 * In this case, we attempt to acquire the lock again
1229 		 * without sleeping.
1230 		 */
1231 		if (waiter.handoff_set) {
1232 			enum owner_state owner_state;
1233 
1234 			owner_state = rwsem_spin_on_owner(sem);
1235 			if (owner_state == OWNER_NULL)
1236 				goto trylock_again;
1237 		}
1238 
1239 		schedule_preempt_disabled();
1240 		lockevent_inc(rwsem_sleep_writer);
1241 		set_current_state(state);
1242 trylock_again:
1243 		raw_spin_lock_irq(&sem->wait_lock);
1244 	}
1245 	__set_current_state(TASK_RUNNING);
1246 	trace_android_vh_rwsem_write_wait_finish(sem);
1247 	raw_spin_unlock_irq(&sem->wait_lock);
1248 	lockevent_inc(rwsem_wlock);
1249 	trace_contention_end(sem, 0);
1250 	trace_android_vh_record_rwsem_lock_starttime(sem, jiffies);
1251 	return sem;
1252 
1253 out_nolock:
1254 	__set_current_state(TASK_RUNNING);
1255 	trace_android_vh_rwsem_write_wait_finish(sem);
1256 	raw_spin_lock_irq(&sem->wait_lock);
1257 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1258 	lockevent_inc(rwsem_wlock_fail);
1259 	trace_contention_end(sem, -EINTR);
1260 	return ERR_PTR(-EINTR);
1261 }
1262 
1263 /*
1264  * handle waking up a waiter on the semaphore
1265  * - up_read/up_write has decremented the active part of count if we come here
1266  */
rwsem_wake(struct rw_semaphore * sem)1267 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1268 {
1269 	unsigned long flags;
1270 	DEFINE_WAKE_Q(wake_q);
1271 
1272 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1273 
1274 	if (!list_empty(&sem->wait_list))
1275 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1276 	trace_android_vh_rwsem_wake_finish(sem);
1277 
1278 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1279 	wake_up_q(&wake_q);
1280 
1281 	return sem;
1282 }
1283 
1284 /*
1285  * downgrade a write lock into a read lock
1286  * - caller incremented waiting part of count and discovered it still negative
1287  * - just wake up any readers at the front of the queue
1288  */
rwsem_downgrade_wake(struct rw_semaphore * sem)1289 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1290 {
1291 	unsigned long flags;
1292 	DEFINE_WAKE_Q(wake_q);
1293 
1294 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1295 
1296 	if (!list_empty(&sem->wait_list))
1297 		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1298 
1299 	trace_android_vh_rwsem_downgrade_wake_finish(sem);
1300 
1301 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1302 	wake_up_q(&wake_q);
1303 
1304 	return sem;
1305 }
1306 
1307 /*
1308  * lock for reading
1309  */
__down_read_common(struct rw_semaphore * sem,int state)1310 static __always_inline int __down_read_common(struct rw_semaphore *sem, int state)
1311 {
1312 	int ret = 0;
1313 	long count;
1314 
1315 	preempt_disable();
1316 	if (!rwsem_read_trylock(sem, &count)) {
1317 		if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) {
1318 			ret = -EINTR;
1319 			goto out;
1320 		}
1321 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1322 	}
1323 out:
1324 	preempt_enable();
1325 	return ret;
1326 }
1327 
__down_read(struct rw_semaphore * sem)1328 static __always_inline void __down_read(struct rw_semaphore *sem)
1329 {
1330 	__down_read_common(sem, TASK_UNINTERRUPTIBLE);
1331 }
1332 
__down_read_interruptible(struct rw_semaphore * sem)1333 static __always_inline int __down_read_interruptible(struct rw_semaphore *sem)
1334 {
1335 	return __down_read_common(sem, TASK_INTERRUPTIBLE);
1336 }
1337 
__down_read_killable(struct rw_semaphore * sem)1338 static __always_inline int __down_read_killable(struct rw_semaphore *sem)
1339 {
1340 	return __down_read_common(sem, TASK_KILLABLE);
1341 }
1342 
__down_read_trylock(struct rw_semaphore * sem)1343 static inline int __down_read_trylock(struct rw_semaphore *sem)
1344 {
1345 	int ret = 0;
1346 	long tmp;
1347 
1348 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1349 
1350 	preempt_disable();
1351 	tmp = atomic_long_read(&sem->count);
1352 	while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1353 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1354 						    tmp + RWSEM_READER_BIAS)) {
1355 			rwsem_set_reader_owned(sem);
1356 			ret = 1;
1357 			trace_android_vh_record_rwsem_lock_starttime(sem, jiffies);
1358 			break;
1359 		}
1360 	}
1361 
1362 	if (!ret) {
1363 		trace_android_vh_rwsem_read_trylock_failed(sem, NULL, &ret);
1364 		if (ret) {
1365 			rwsem_set_reader_owned(sem);
1366 			trace_android_vh_record_rwsem_lock_starttime(sem, jiffies);
1367 		}
1368 	}
1369 
1370 	preempt_enable();
1371 	return ret;
1372 }
1373 
1374 /*
1375  * lock for writing
1376  */
__down_write_common(struct rw_semaphore * sem,int state)1377 static __always_inline int __down_write_common(struct rw_semaphore *sem, int state)
1378 {
1379 	int ret = 0;
1380 
1381 	preempt_disable();
1382 	if (unlikely(!rwsem_write_trylock(sem))) {
1383 		if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1384 			ret = -EINTR;
1385 	}
1386 	preempt_enable();
1387 	return ret;
1388 }
1389 
__down_write(struct rw_semaphore * sem)1390 static __always_inline void __down_write(struct rw_semaphore *sem)
1391 {
1392 	__down_write_common(sem, TASK_UNINTERRUPTIBLE);
1393 }
1394 
__down_write_killable(struct rw_semaphore * sem)1395 static __always_inline int __down_write_killable(struct rw_semaphore *sem)
1396 {
1397 	return __down_write_common(sem, TASK_KILLABLE);
1398 }
1399 
__down_write_trylock(struct rw_semaphore * sem)1400 static inline int __down_write_trylock(struct rw_semaphore *sem)
1401 {
1402 	int ret;
1403 
1404 	preempt_disable();
1405 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1406 	ret = rwsem_write_trylock(sem);
1407 	preempt_enable();
1408 
1409 	return ret;
1410 }
1411 
1412 /*
1413  * unlock after reading
1414  */
__up_read(struct rw_semaphore * sem)1415 static inline void __up_read(struct rw_semaphore *sem)
1416 {
1417 	long tmp;
1418 
1419 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1420 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1421 
1422 	preempt_disable();
1423 	rwsem_clear_reader_owned(sem);
1424 	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1425 	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1426 	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1427 		      RWSEM_FLAG_WAITERS)) {
1428 		clear_nonspinnable(sem);
1429 		rwsem_wake(sem);
1430 	}
1431 	trace_android_vh_record_rwsem_lock_starttime(sem, 0);
1432 	preempt_enable();
1433 }
1434 
1435 /*
1436  * unlock after writing
1437  */
__up_write(struct rw_semaphore * sem)1438 static inline void __up_write(struct rw_semaphore *sem)
1439 {
1440 	long tmp;
1441 
1442 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1443 	/*
1444 	 * sem->owner may differ from current if the ownership is transferred
1445 	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1446 	 */
1447 	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1448 			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1449 
1450 	preempt_disable();
1451 	rwsem_clear_owner(sem);
1452 	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1453 	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1454 		rwsem_wake(sem);
1455 	trace_android_vh_record_rwsem_lock_starttime(sem, 0);
1456 	preempt_enable();
1457 }
1458 
1459 /*
1460  * downgrade write lock to read lock
1461  */
__downgrade_write(struct rw_semaphore * sem)1462 static inline void __downgrade_write(struct rw_semaphore *sem)
1463 {
1464 	long tmp;
1465 
1466 	/*
1467 	 * When downgrading from exclusive to shared ownership,
1468 	 * anything inside the write-locked region cannot leak
1469 	 * into the read side. In contrast, anything in the
1470 	 * read-locked region is ok to be re-ordered into the
1471 	 * write side. As such, rely on RELEASE semantics.
1472 	 */
1473 	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1474 	preempt_disable();
1475 	tmp = atomic_long_fetch_add_release(
1476 		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1477 	rwsem_set_reader_owned(sem);
1478 	if (tmp & RWSEM_FLAG_WAITERS)
1479 		rwsem_downgrade_wake(sem);
1480 	preempt_enable();
1481 }
1482 
1483 #else /* !CONFIG_PREEMPT_RT */
1484 
1485 #define RT_MUTEX_BUILD_MUTEX
1486 #include "rtmutex.c"
1487 
1488 #define rwbase_set_and_save_current_state(state)	\
1489 	set_current_state(state)
1490 
1491 #define rwbase_restore_current_state()			\
1492 	__set_current_state(TASK_RUNNING)
1493 
1494 #define rwbase_rtmutex_lock_state(rtm, state)		\
1495 	__rt_mutex_lock(rtm, state)
1496 
1497 #define rwbase_rtmutex_slowlock_locked(rtm, state, wq)	\
1498 	__rt_mutex_slowlock_locked(rtm, NULL, state, wq)
1499 
1500 #define rwbase_rtmutex_unlock(rtm)			\
1501 	__rt_mutex_unlock(rtm)
1502 
1503 #define rwbase_rtmutex_trylock(rtm)			\
1504 	__rt_mutex_trylock(rtm)
1505 
1506 #define rwbase_signal_pending_state(state, current)	\
1507 	signal_pending_state(state, current)
1508 
1509 #define rwbase_pre_schedule()				\
1510 	rt_mutex_pre_schedule()
1511 
1512 #define rwbase_schedule()				\
1513 	rt_mutex_schedule()
1514 
1515 #define rwbase_post_schedule()				\
1516 	rt_mutex_post_schedule()
1517 
1518 #include "rwbase_rt.c"
1519 
__init_rwsem(struct rw_semaphore * sem,const char * name,struct lock_class_key * key)1520 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1521 		  struct lock_class_key *key)
1522 {
1523 	init_rwbase_rt(&(sem)->rwbase);
1524 
1525 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1526 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1527 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1528 #endif
1529 }
1530 EXPORT_SYMBOL(__init_rwsem);
1531 
__down_read(struct rw_semaphore * sem)1532 static inline void __down_read(struct rw_semaphore *sem)
1533 {
1534 	rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1535 }
1536 
__down_read_interruptible(struct rw_semaphore * sem)1537 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1538 {
1539 	return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1540 }
1541 
__down_read_killable(struct rw_semaphore * sem)1542 static inline int __down_read_killable(struct rw_semaphore *sem)
1543 {
1544 	return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1545 }
1546 
__down_read_trylock(struct rw_semaphore * sem)1547 static inline int __down_read_trylock(struct rw_semaphore *sem)
1548 {
1549 	return rwbase_read_trylock(&sem->rwbase);
1550 }
1551 
__up_read(struct rw_semaphore * sem)1552 static inline void __up_read(struct rw_semaphore *sem)
1553 {
1554 	rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1555 }
1556 
__down_write(struct rw_semaphore * sem)1557 static inline void __sched __down_write(struct rw_semaphore *sem)
1558 {
1559 	rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1560 }
1561 
__down_write_killable(struct rw_semaphore * sem)1562 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1563 {
1564 	return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1565 }
1566 
__down_write_trylock(struct rw_semaphore * sem)1567 static inline int __down_write_trylock(struct rw_semaphore *sem)
1568 {
1569 	return rwbase_write_trylock(&sem->rwbase);
1570 }
1571 
__up_write(struct rw_semaphore * sem)1572 static inline void __up_write(struct rw_semaphore *sem)
1573 {
1574 	rwbase_write_unlock(&sem->rwbase);
1575 }
1576 
__downgrade_write(struct rw_semaphore * sem)1577 static inline void __downgrade_write(struct rw_semaphore *sem)
1578 {
1579 	rwbase_write_downgrade(&sem->rwbase);
1580 }
1581 
1582 /* Debug stubs for the common API */
1583 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1584 
__rwsem_set_reader_owned(struct rw_semaphore * sem,struct task_struct * owner)1585 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1586 					    struct task_struct *owner)
1587 {
1588 }
1589 
is_rwsem_reader_owned(struct rw_semaphore * sem)1590 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1591 {
1592 	int count = atomic_read(&sem->rwbase.readers);
1593 
1594 	return count < 0 && count != READER_BIAS;
1595 }
1596 
1597 #endif /* CONFIG_PREEMPT_RT */
1598 
1599 /*
1600  * lock for reading
1601  */
down_read(struct rw_semaphore * sem)1602 void __sched down_read(struct rw_semaphore *sem)
1603 {
1604 	might_sleep();
1605 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1606 
1607 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1608 }
1609 EXPORT_SYMBOL(down_read);
1610 
down_read_interruptible(struct rw_semaphore * sem)1611 int __sched down_read_interruptible(struct rw_semaphore *sem)
1612 {
1613 	might_sleep();
1614 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1615 
1616 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1617 		rwsem_release(&sem->dep_map, _RET_IP_);
1618 		return -EINTR;
1619 	}
1620 
1621 	return 0;
1622 }
1623 EXPORT_SYMBOL(down_read_interruptible);
1624 
down_read_killable(struct rw_semaphore * sem)1625 int __sched down_read_killable(struct rw_semaphore *sem)
1626 {
1627 	might_sleep();
1628 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1629 
1630 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1631 		rwsem_release(&sem->dep_map, _RET_IP_);
1632 		return -EINTR;
1633 	}
1634 
1635 	return 0;
1636 }
1637 EXPORT_SYMBOL(down_read_killable);
1638 
1639 /*
1640  * trylock for reading -- returns 1 if successful, 0 if contention
1641  */
down_read_trylock(struct rw_semaphore * sem)1642 int down_read_trylock(struct rw_semaphore *sem)
1643 {
1644 	int ret = __down_read_trylock(sem);
1645 
1646 	if (ret == 1)
1647 		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1648 	return ret;
1649 }
1650 EXPORT_SYMBOL(down_read_trylock);
1651 
1652 /*
1653  * lock for writing
1654  */
down_write(struct rw_semaphore * sem)1655 void __sched down_write(struct rw_semaphore *sem)
1656 {
1657 	might_sleep();
1658 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1659 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1660 }
1661 EXPORT_SYMBOL(down_write);
1662 
1663 /*
1664  * lock for writing
1665  */
down_write_killable(struct rw_semaphore * sem)1666 int __sched down_write_killable(struct rw_semaphore *sem)
1667 {
1668 	might_sleep();
1669 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1670 
1671 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1672 				  __down_write_killable)) {
1673 		rwsem_release(&sem->dep_map, _RET_IP_);
1674 		return -EINTR;
1675 	}
1676 
1677 	return 0;
1678 }
1679 EXPORT_SYMBOL(down_write_killable);
1680 
1681 /*
1682  * trylock for writing -- returns 1 if successful, 0 if contention
1683  */
down_write_trylock(struct rw_semaphore * sem)1684 int down_write_trylock(struct rw_semaphore *sem)
1685 {
1686 	int ret = __down_write_trylock(sem);
1687 
1688 	if (ret == 1)
1689 		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1690 
1691 	return ret;
1692 }
1693 EXPORT_SYMBOL(down_write_trylock);
1694 
1695 /*
1696  * release a read lock
1697  */
up_read(struct rw_semaphore * sem)1698 void up_read(struct rw_semaphore *sem)
1699 {
1700 	rwsem_release(&sem->dep_map, _RET_IP_);
1701 	__up_read(sem);
1702 }
1703 EXPORT_SYMBOL(up_read);
1704 
1705 /*
1706  * release a write lock
1707  */
up_write(struct rw_semaphore * sem)1708 void up_write(struct rw_semaphore *sem)
1709 {
1710 	rwsem_release(&sem->dep_map, _RET_IP_);
1711 	trace_android_vh_rwsem_write_finished(sem);
1712 	__up_write(sem);
1713 }
1714 EXPORT_SYMBOL(up_write);
1715 
1716 /*
1717  * downgrade write lock to read lock
1718  */
downgrade_write(struct rw_semaphore * sem)1719 void downgrade_write(struct rw_semaphore *sem)
1720 {
1721 	lock_downgrade(&sem->dep_map, _RET_IP_);
1722 	trace_android_vh_rwsem_write_finished(sem);
1723 	__downgrade_write(sem);
1724 }
1725 EXPORT_SYMBOL(downgrade_write);
1726 
1727 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1728 
down_read_nested(struct rw_semaphore * sem,int subclass)1729 void down_read_nested(struct rw_semaphore *sem, int subclass)
1730 {
1731 	might_sleep();
1732 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1733 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1734 }
1735 EXPORT_SYMBOL(down_read_nested);
1736 
down_read_killable_nested(struct rw_semaphore * sem,int subclass)1737 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1738 {
1739 	might_sleep();
1740 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1741 
1742 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1743 		rwsem_release(&sem->dep_map, _RET_IP_);
1744 		return -EINTR;
1745 	}
1746 
1747 	return 0;
1748 }
1749 EXPORT_SYMBOL(down_read_killable_nested);
1750 
_down_write_nest_lock(struct rw_semaphore * sem,struct lockdep_map * nest)1751 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1752 {
1753 	might_sleep();
1754 	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1755 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1756 }
1757 EXPORT_SYMBOL(_down_write_nest_lock);
1758 
down_read_non_owner(struct rw_semaphore * sem)1759 void down_read_non_owner(struct rw_semaphore *sem)
1760 {
1761 	might_sleep();
1762 	__down_read(sem);
1763 	/*
1764 	 * The owner value for a reader-owned lock is mostly for debugging
1765 	 * purpose only and is not critical to the correct functioning of
1766 	 * rwsem. So it is perfectly fine to set it in a preempt-enabled
1767 	 * context here.
1768 	 */
1769 	__rwsem_set_reader_owned(sem, NULL);
1770 }
1771 EXPORT_SYMBOL(down_read_non_owner);
1772 
down_write_nested(struct rw_semaphore * sem,int subclass)1773 void down_write_nested(struct rw_semaphore *sem, int subclass)
1774 {
1775 	might_sleep();
1776 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1777 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1778 }
1779 EXPORT_SYMBOL(down_write_nested);
1780 
down_write_killable_nested(struct rw_semaphore * sem,int subclass)1781 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1782 {
1783 	might_sleep();
1784 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1785 
1786 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1787 				  __down_write_killable)) {
1788 		rwsem_release(&sem->dep_map, _RET_IP_);
1789 		return -EINTR;
1790 	}
1791 
1792 	return 0;
1793 }
1794 EXPORT_SYMBOL(down_write_killable_nested);
1795 
up_read_non_owner(struct rw_semaphore * sem)1796 void up_read_non_owner(struct rw_semaphore *sem)
1797 {
1798 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1799 	__up_read(sem);
1800 }
1801 EXPORT_SYMBOL(up_read_non_owner);
1802 
1803 #endif
1804