1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic pidhash and scalable, time-bounded PID allocator
4 *
5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
6 * (C) 2004 Nadia Yvette Chambers, Oracle
7 * (C) 2002-2004 Ingo Molnar, Red Hat
8 *
9 * pid-structures are backing objects for tasks sharing a given ID to chain
10 * against. There is very little to them aside from hashing them and
11 * parking tasks using given ID's on a list.
12 *
13 * The hash is always changed with the tasklist_lock write-acquired,
14 * and the hash is only accessed with the tasklist_lock at least
15 * read-acquired, so there's no additional SMP locking needed here.
16 *
17 * We have a list of bitmap pages, which bitmaps represent the PID space.
18 * Allocating and freeing PIDs is completely lockless. The worst-case
19 * allocation scenario when all but one out of 1 million PIDs possible are
20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22 *
23 * Pid namespaces:
24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26 * Many thanks to Oleg Nesterov for comments and help
27 *
28 */
29
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 #include <linux/pidfs.h>
46 #include <net/sock.h>
47 #include <uapi/linux/pidfd.h>
48
49 struct pid init_struct_pid = {
50 .count = REFCOUNT_INIT(1),
51 .tasks = {
52 { .first = NULL },
53 { .first = NULL },
54 { .first = NULL },
55 },
56 .level = 0,
57 .numbers = { {
58 .nr = 0,
59 .ns = &init_pid_ns,
60 }, }
61 };
62
63 int pid_max = PID_MAX_DEFAULT;
64
65 int pid_max_min = RESERVED_PIDS + 1;
66 int pid_max_max = PID_MAX_LIMIT;
67 /*
68 * Pseudo filesystems start inode numbering after one. We use Reserved
69 * PIDs as a natural offset.
70 */
71 static u64 pidfs_ino = RESERVED_PIDS;
72
73 /*
74 * PID-map pages start out as NULL, they get allocated upon
75 * first use and are never deallocated. This way a low pid_max
76 * value does not cause lots of bitmaps to be allocated, but
77 * the scheme scales to up to 4 million PIDs, runtime.
78 */
79 struct pid_namespace init_pid_ns = {
80 .ns.count = REFCOUNT_INIT(2),
81 .idr = IDR_INIT(init_pid_ns.idr),
82 .pid_allocated = PIDNS_ADDING,
83 .level = 0,
84 .child_reaper = &init_task,
85 .user_ns = &init_user_ns,
86 .ns.inum = PROC_PID_INIT_INO,
87 #ifdef CONFIG_PID_NS
88 .ns.ops = &pidns_operations,
89 #endif
90 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
91 .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
92 #endif
93 };
94 EXPORT_SYMBOL_GPL(init_pid_ns);
95
96 /*
97 * Note: disable interrupts while the pidmap_lock is held as an
98 * interrupt might come in and do read_lock(&tasklist_lock).
99 *
100 * If we don't disable interrupts there is a nasty deadlock between
101 * detach_pid()->free_pid() and another cpu that does
102 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
103 * read_lock(&tasklist_lock);
104 *
105 * After we clean up the tasklist_lock and know there are no
106 * irq handlers that take it we can leave the interrupts enabled.
107 * For now it is easier to be safe than to prove it can't happen.
108 */
109
110 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
111
put_pid(struct pid * pid)112 void put_pid(struct pid *pid)
113 {
114 struct pid_namespace *ns;
115
116 if (!pid)
117 return;
118
119 ns = pid->numbers[pid->level].ns;
120 if (refcount_dec_and_test(&pid->count)) {
121 kmem_cache_free(ns->pid_cachep, pid);
122 put_pid_ns(ns);
123 }
124 }
125 EXPORT_SYMBOL_GPL(put_pid);
126
delayed_put_pid(struct rcu_head * rhp)127 static void delayed_put_pid(struct rcu_head *rhp)
128 {
129 struct pid *pid = container_of(rhp, struct pid, rcu);
130 put_pid(pid);
131 }
132
free_pid(struct pid * pid)133 void free_pid(struct pid *pid)
134 {
135 /* We can be called with write_lock_irq(&tasklist_lock) held */
136 int i;
137 unsigned long flags;
138
139 spin_lock_irqsave(&pidmap_lock, flags);
140 for (i = 0; i <= pid->level; i++) {
141 struct upid *upid = pid->numbers + i;
142 struct pid_namespace *ns = upid->ns;
143 switch (--ns->pid_allocated) {
144 case 2:
145 case 1:
146 /* When all that is left in the pid namespace
147 * is the reaper wake up the reaper. The reaper
148 * may be sleeping in zap_pid_ns_processes().
149 */
150 wake_up_process(ns->child_reaper);
151 break;
152 case PIDNS_ADDING:
153 /* Handle a fork failure of the first process */
154 WARN_ON(ns->child_reaper);
155 ns->pid_allocated = 0;
156 break;
157 }
158
159 idr_remove(&ns->idr, upid->nr);
160 }
161 spin_unlock_irqrestore(&pidmap_lock, flags);
162
163 call_rcu(&pid->rcu, delayed_put_pid);
164 }
165
alloc_pid(struct pid_namespace * ns,pid_t * set_tid,size_t set_tid_size)166 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
167 size_t set_tid_size)
168 {
169 struct pid *pid;
170 enum pid_type type;
171 int i, nr;
172 struct pid_namespace *tmp;
173 struct upid *upid;
174 int retval = -ENOMEM;
175
176 /*
177 * set_tid_size contains the size of the set_tid array. Starting at
178 * the most nested currently active PID namespace it tells alloc_pid()
179 * which PID to set for a process in that most nested PID namespace
180 * up to set_tid_size PID namespaces. It does not have to set the PID
181 * for a process in all nested PID namespaces but set_tid_size must
182 * never be greater than the current ns->level + 1.
183 */
184 if (set_tid_size > ns->level + 1)
185 return ERR_PTR(-EINVAL);
186
187 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
188 if (!pid)
189 return ERR_PTR(retval);
190
191 tmp = ns;
192 pid->level = ns->level;
193
194 for (i = ns->level; i >= 0; i--) {
195 int tid = 0;
196
197 if (set_tid_size) {
198 tid = set_tid[ns->level - i];
199
200 retval = -EINVAL;
201 if (tid < 1 || tid >= pid_max)
202 goto out_free;
203 /*
204 * Also fail if a PID != 1 is requested and
205 * no PID 1 exists.
206 */
207 if (tid != 1 && !tmp->child_reaper)
208 goto out_free;
209 retval = -EPERM;
210 if (!checkpoint_restore_ns_capable(tmp->user_ns))
211 goto out_free;
212 set_tid_size--;
213 }
214
215 idr_preload(GFP_KERNEL);
216 spin_lock_irq(&pidmap_lock);
217
218 if (tid) {
219 nr = idr_alloc(&tmp->idr, NULL, tid,
220 tid + 1, GFP_ATOMIC);
221 /*
222 * If ENOSPC is returned it means that the PID is
223 * alreay in use. Return EEXIST in that case.
224 */
225 if (nr == -ENOSPC)
226 nr = -EEXIST;
227 } else {
228 int pid_min = 1;
229 /*
230 * init really needs pid 1, but after reaching the
231 * maximum wrap back to RESERVED_PIDS
232 */
233 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
234 pid_min = RESERVED_PIDS;
235
236 /*
237 * Store a null pointer so find_pid_ns does not find
238 * a partially initialized PID (see below).
239 */
240 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
241 pid_max, GFP_ATOMIC);
242 }
243 spin_unlock_irq(&pidmap_lock);
244 idr_preload_end();
245
246 if (nr < 0) {
247 retval = (nr == -ENOSPC) ? -EAGAIN : nr;
248 goto out_free;
249 }
250
251 pid->numbers[i].nr = nr;
252 pid->numbers[i].ns = tmp;
253 tmp = tmp->parent;
254 }
255
256 /*
257 * ENOMEM is not the most obvious choice especially for the case
258 * where the child subreaper has already exited and the pid
259 * namespace denies the creation of any new processes. But ENOMEM
260 * is what we have exposed to userspace for a long time and it is
261 * documented behavior for pid namespaces. So we can't easily
262 * change it even if there were an error code better suited.
263 */
264 retval = -ENOMEM;
265
266 get_pid_ns(ns);
267 refcount_set(&pid->count, 1);
268 spin_lock_init(&pid->lock);
269 for (type = 0; type < PIDTYPE_MAX; ++type)
270 INIT_HLIST_HEAD(&pid->tasks[type]);
271
272 init_waitqueue_head(&pid->wait_pidfd);
273 INIT_HLIST_HEAD(&pid->inodes);
274
275 upid = pid->numbers + ns->level;
276 spin_lock_irq(&pidmap_lock);
277 if (!(ns->pid_allocated & PIDNS_ADDING))
278 goto out_unlock;
279 pid->stashed = NULL;
280 pid->ino = ++pidfs_ino;
281 for ( ; upid >= pid->numbers; --upid) {
282 /* Make the PID visible to find_pid_ns. */
283 idr_replace(&upid->ns->idr, pid, upid->nr);
284 upid->ns->pid_allocated++;
285 }
286 spin_unlock_irq(&pidmap_lock);
287
288 return pid;
289
290 out_unlock:
291 spin_unlock_irq(&pidmap_lock);
292 put_pid_ns(ns);
293
294 out_free:
295 spin_lock_irq(&pidmap_lock);
296 while (++i <= ns->level) {
297 upid = pid->numbers + i;
298 idr_remove(&upid->ns->idr, upid->nr);
299 }
300
301 /* On failure to allocate the first pid, reset the state */
302 if (ns->pid_allocated == PIDNS_ADDING)
303 idr_set_cursor(&ns->idr, 0);
304
305 spin_unlock_irq(&pidmap_lock);
306
307 kmem_cache_free(ns->pid_cachep, pid);
308 return ERR_PTR(retval);
309 }
310
disable_pid_allocation(struct pid_namespace * ns)311 void disable_pid_allocation(struct pid_namespace *ns)
312 {
313 spin_lock_irq(&pidmap_lock);
314 ns->pid_allocated &= ~PIDNS_ADDING;
315 spin_unlock_irq(&pidmap_lock);
316 }
317
find_pid_ns(int nr,struct pid_namespace * ns)318 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
319 {
320 return idr_find(&ns->idr, nr);
321 }
322 EXPORT_SYMBOL_GPL(find_pid_ns);
323
find_vpid(int nr)324 struct pid *find_vpid(int nr)
325 {
326 return find_pid_ns(nr, task_active_pid_ns(current));
327 }
328 EXPORT_SYMBOL_GPL(find_vpid);
329
task_pid_ptr(struct task_struct * task,enum pid_type type)330 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
331 {
332 return (type == PIDTYPE_PID) ?
333 &task->thread_pid :
334 &task->signal->pids[type];
335 }
336
337 /*
338 * attach_pid() must be called with the tasklist_lock write-held.
339 */
attach_pid(struct task_struct * task,enum pid_type type)340 void attach_pid(struct task_struct *task, enum pid_type type)
341 {
342 struct pid *pid = *task_pid_ptr(task, type);
343 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
344 }
345
__change_pid(struct task_struct * task,enum pid_type type,struct pid * new)346 static void __change_pid(struct task_struct *task, enum pid_type type,
347 struct pid *new)
348 {
349 struct pid **pid_ptr = task_pid_ptr(task, type);
350 struct pid *pid;
351 int tmp;
352
353 pid = *pid_ptr;
354
355 hlist_del_rcu(&task->pid_links[type]);
356 *pid_ptr = new;
357
358 if (type == PIDTYPE_PID) {
359 WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID));
360 wake_up_all(&pid->wait_pidfd);
361 }
362
363 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
364 if (pid_has_task(pid, tmp))
365 return;
366
367 free_pid(pid);
368 }
369
detach_pid(struct task_struct * task,enum pid_type type)370 void detach_pid(struct task_struct *task, enum pid_type type)
371 {
372 __change_pid(task, type, NULL);
373 }
374
change_pid(struct task_struct * task,enum pid_type type,struct pid * pid)375 void change_pid(struct task_struct *task, enum pid_type type,
376 struct pid *pid)
377 {
378 __change_pid(task, type, pid);
379 attach_pid(task, type);
380 }
381
exchange_tids(struct task_struct * left,struct task_struct * right)382 void exchange_tids(struct task_struct *left, struct task_struct *right)
383 {
384 struct pid *pid1 = left->thread_pid;
385 struct pid *pid2 = right->thread_pid;
386 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
387 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
388
389 /* Swap the single entry tid lists */
390 hlists_swap_heads_rcu(head1, head2);
391
392 /* Swap the per task_struct pid */
393 rcu_assign_pointer(left->thread_pid, pid2);
394 rcu_assign_pointer(right->thread_pid, pid1);
395
396 /* Swap the cached value */
397 WRITE_ONCE(left->pid, pid_nr(pid2));
398 WRITE_ONCE(right->pid, pid_nr(pid1));
399 }
400
401 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
transfer_pid(struct task_struct * old,struct task_struct * new,enum pid_type type)402 void transfer_pid(struct task_struct *old, struct task_struct *new,
403 enum pid_type type)
404 {
405 WARN_ON_ONCE(type == PIDTYPE_PID);
406 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
407 }
408
pid_task(struct pid * pid,enum pid_type type)409 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
410 {
411 struct task_struct *result = NULL;
412 if (pid) {
413 struct hlist_node *first;
414 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
415 lockdep_tasklist_lock_is_held());
416 if (first)
417 result = hlist_entry(first, struct task_struct, pid_links[(type)]);
418 }
419 return result;
420 }
421 EXPORT_SYMBOL(pid_task);
422
423 /*
424 * Must be called under rcu_read_lock().
425 */
find_task_by_pid_ns(pid_t nr,struct pid_namespace * ns)426 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
427 {
428 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
429 "find_task_by_pid_ns() needs rcu_read_lock() protection");
430 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
431 }
432
find_task_by_vpid(pid_t vnr)433 struct task_struct *find_task_by_vpid(pid_t vnr)
434 {
435 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
436 }
437 EXPORT_SYMBOL_GPL(find_task_by_vpid);
438
find_get_task_by_vpid(pid_t nr)439 struct task_struct *find_get_task_by_vpid(pid_t nr)
440 {
441 struct task_struct *task;
442
443 rcu_read_lock();
444 task = find_task_by_vpid(nr);
445 if (task)
446 get_task_struct(task);
447 rcu_read_unlock();
448
449 return task;
450 }
451
get_task_pid(struct task_struct * task,enum pid_type type)452 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
453 {
454 struct pid *pid;
455 rcu_read_lock();
456 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
457 rcu_read_unlock();
458 return pid;
459 }
460 EXPORT_SYMBOL_GPL(get_task_pid);
461
get_pid_task(struct pid * pid,enum pid_type type)462 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
463 {
464 struct task_struct *result;
465 rcu_read_lock();
466 result = pid_task(pid, type);
467 if (result)
468 get_task_struct(result);
469 rcu_read_unlock();
470 return result;
471 }
472 EXPORT_SYMBOL_GPL(get_pid_task);
473
find_get_pid(pid_t nr)474 struct pid *find_get_pid(pid_t nr)
475 {
476 struct pid *pid;
477
478 rcu_read_lock();
479 pid = get_pid(find_vpid(nr));
480 rcu_read_unlock();
481
482 return pid;
483 }
484 EXPORT_SYMBOL_GPL(find_get_pid);
485
pid_nr_ns(struct pid * pid,struct pid_namespace * ns)486 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
487 {
488 struct upid *upid;
489 pid_t nr = 0;
490
491 if (pid && ns->level <= pid->level) {
492 upid = &pid->numbers[ns->level];
493 if (upid->ns == ns)
494 nr = upid->nr;
495 }
496 return nr;
497 }
498 EXPORT_SYMBOL_GPL(pid_nr_ns);
499
pid_vnr(struct pid * pid)500 pid_t pid_vnr(struct pid *pid)
501 {
502 return pid_nr_ns(pid, task_active_pid_ns(current));
503 }
504 EXPORT_SYMBOL_GPL(pid_vnr);
505
__task_pid_nr_ns(struct task_struct * task,enum pid_type type,struct pid_namespace * ns)506 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
507 struct pid_namespace *ns)
508 {
509 pid_t nr = 0;
510
511 rcu_read_lock();
512 if (!ns)
513 ns = task_active_pid_ns(current);
514 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
515 rcu_read_unlock();
516
517 return nr;
518 }
519 EXPORT_SYMBOL(__task_pid_nr_ns);
520
task_active_pid_ns(struct task_struct * tsk)521 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
522 {
523 return ns_of_pid(task_pid(tsk));
524 }
525 EXPORT_SYMBOL_GPL(task_active_pid_ns);
526
527 /*
528 * Used by proc to find the first pid that is greater than or equal to nr.
529 *
530 * If there is a pid at nr this function is exactly the same as find_pid_ns.
531 */
find_ge_pid(int nr,struct pid_namespace * ns)532 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
533 {
534 return idr_get_next(&ns->idr, &nr);
535 }
536 EXPORT_SYMBOL_GPL(find_ge_pid);
537
pidfd_get_pid(unsigned int fd,unsigned int * flags)538 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
539 {
540 struct fd f;
541 struct pid *pid;
542
543 f = fdget(fd);
544 if (!fd_file(f))
545 return ERR_PTR(-EBADF);
546
547 pid = pidfd_pid(fd_file(f));
548 if (!IS_ERR(pid)) {
549 get_pid(pid);
550 *flags = fd_file(f)->f_flags;
551 }
552
553 fdput(f);
554 return pid;
555 }
556 EXPORT_SYMBOL_GPL(pidfd_get_pid);
557
558 /**
559 * pidfd_get_task() - Get the task associated with a pidfd
560 *
561 * @pidfd: pidfd for which to get the task
562 * @flags: flags associated with this pidfd
563 *
564 * Return the task associated with @pidfd. The function takes a reference on
565 * the returned task. The caller is responsible for releasing that reference.
566 *
567 * Return: On success, the task_struct associated with the pidfd.
568 * On error, a negative errno number will be returned.
569 */
pidfd_get_task(int pidfd,unsigned int * flags)570 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
571 {
572 unsigned int f_flags = 0;
573 struct pid *pid;
574 struct task_struct *task;
575 enum pid_type type;
576
577 switch (pidfd) {
578 case PIDFD_SELF_THREAD:
579 type = PIDTYPE_PID;
580 pid = get_task_pid(current, type);
581 break;
582 case PIDFD_SELF_THREAD_GROUP:
583 type = PIDTYPE_TGID;
584 pid = get_task_pid(current, type);
585 break;
586 default:
587 pid = pidfd_get_pid(pidfd, &f_flags);
588 if (IS_ERR(pid))
589 return ERR_CAST(pid);
590 type = PIDTYPE_TGID;
591 break;
592 }
593
594 task = get_pid_task(pid, type);
595 put_pid(pid);
596 if (!task)
597 return ERR_PTR(-ESRCH);
598
599 *flags = f_flags;
600 return task;
601 }
602
603 /**
604 * pidfd_create() - Create a new pid file descriptor.
605 *
606 * @pid: struct pid that the pidfd will reference
607 * @flags: flags to pass
608 *
609 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
610 *
611 * Note, that this function can only be called after the fd table has
612 * been unshared to avoid leaking the pidfd to the new process.
613 *
614 * This symbol should not be explicitly exported to loadable modules.
615 *
616 * Return: On success, a cloexec pidfd is returned.
617 * On error, a negative errno number will be returned.
618 */
pidfd_create(struct pid * pid,unsigned int flags)619 static int pidfd_create(struct pid *pid, unsigned int flags)
620 {
621 int pidfd;
622 struct file *pidfd_file;
623
624 pidfd = pidfd_prepare(pid, flags, &pidfd_file);
625 if (pidfd < 0)
626 return pidfd;
627
628 fd_install(pidfd, pidfd_file);
629 return pidfd;
630 }
631
632 /**
633 * sys_pidfd_open() - Open new pid file descriptor.
634 *
635 * @pid: pid for which to retrieve a pidfd
636 * @flags: flags to pass
637 *
638 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
639 * the task identified by @pid. Without PIDFD_THREAD flag the target task
640 * must be a thread-group leader.
641 *
642 * Return: On success, a cloexec pidfd is returned.
643 * On error, a negative errno number will be returned.
644 */
SYSCALL_DEFINE2(pidfd_open,pid_t,pid,unsigned int,flags)645 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
646 {
647 int fd;
648 struct pid *p;
649
650 if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD))
651 return -EINVAL;
652
653 if (pid <= 0)
654 return -EINVAL;
655
656 p = find_get_pid(pid);
657 if (!p)
658 return -ESRCH;
659
660 fd = pidfd_create(p, flags);
661
662 put_pid(p);
663 return fd;
664 }
665
pid_idr_init(void)666 void __init pid_idr_init(void)
667 {
668 /* Verify no one has done anything silly: */
669 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
670
671 /* bump default and minimum pid_max based on number of cpus */
672 pid_max = min(pid_max_max, max_t(int, pid_max,
673 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
674 pid_max_min = max_t(int, pid_max_min,
675 PIDS_PER_CPU_MIN * num_possible_cpus());
676 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
677
678 idr_init(&init_pid_ns.idr);
679
680 init_pid_ns.pid_cachep = kmem_cache_create("pid",
681 struct_size_t(struct pid, numbers, 1),
682 __alignof__(struct pid),
683 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
684 NULL);
685 }
686
__pidfd_fget(struct task_struct * task,int fd)687 static struct file *__pidfd_fget(struct task_struct *task, int fd)
688 {
689 struct file *file;
690 int ret;
691
692 ret = down_read_killable(&task->signal->exec_update_lock);
693 if (ret)
694 return ERR_PTR(ret);
695
696 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
697 file = fget_task(task, fd);
698 else
699 file = ERR_PTR(-EPERM);
700
701 up_read(&task->signal->exec_update_lock);
702
703 if (!file) {
704 /*
705 * It is possible that the target thread is exiting; it can be
706 * either:
707 * 1. before exit_signals(), which gives a real fd
708 * 2. before exit_files() takes the task_lock() gives a real fd
709 * 3. after exit_files() releases task_lock(), ->files is NULL;
710 * this has PF_EXITING, since it was set in exit_signals(),
711 * __pidfd_fget() returns EBADF.
712 * In case 3 we get EBADF, but that really means ESRCH, since
713 * the task is currently exiting and has freed its files
714 * struct, so we fix it up.
715 */
716 if (task->flags & PF_EXITING)
717 file = ERR_PTR(-ESRCH);
718 else
719 file = ERR_PTR(-EBADF);
720 }
721
722 return file;
723 }
724
pidfd_getfd(struct pid * pid,int fd)725 static int pidfd_getfd(struct pid *pid, int fd)
726 {
727 struct task_struct *task;
728 struct file *file;
729 int ret;
730
731 task = get_pid_task(pid, PIDTYPE_PID);
732 if (!task)
733 return -ESRCH;
734
735 file = __pidfd_fget(task, fd);
736 put_task_struct(task);
737 if (IS_ERR(file))
738 return PTR_ERR(file);
739
740 ret = receive_fd(file, NULL, O_CLOEXEC);
741 fput(file);
742
743 return ret;
744 }
745
746 /**
747 * sys_pidfd_getfd() - Get a file descriptor from another process
748 *
749 * @pidfd: the pidfd file descriptor of the process
750 * @fd: the file descriptor number to get
751 * @flags: flags on how to get the fd (reserved)
752 *
753 * This syscall gets a copy of a file descriptor from another process
754 * based on the pidfd, and file descriptor number. It requires that
755 * the calling process has the ability to ptrace the process represented
756 * by the pidfd. The process which is having its file descriptor copied
757 * is otherwise unaffected.
758 *
759 * Return: On success, a cloexec file descriptor is returned.
760 * On error, a negative errno number will be returned.
761 */
SYSCALL_DEFINE3(pidfd_getfd,int,pidfd,int,fd,unsigned int,flags)762 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
763 unsigned int, flags)
764 {
765 struct pid *pid;
766 struct fd f;
767 int ret;
768
769 /* flags is currently unused - make sure it's unset */
770 if (flags)
771 return -EINVAL;
772
773 f = fdget(pidfd);
774 if (!fd_file(f))
775 return -EBADF;
776
777 pid = pidfd_pid(fd_file(f));
778 if (IS_ERR(pid))
779 ret = PTR_ERR(pid);
780 else
781 ret = pidfd_getfd(pid, fd);
782
783 fdput(f);
784 return ret;
785 }
786