• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/reboot.c
4  *
5  *  Copyright (C) 2013  Linus Torvalds
6  */
7 
8 #define pr_fmt(fmt)	"reboot: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/ctype.h>
12 #include <linux/export.h>
13 #include <linux/kexec.h>
14 #include <linux/kmod.h>
15 #include <linux/kmsg_dump.h>
16 #include <linux/reboot.h>
17 #include <linux/suspend.h>
18 #include <linux/syscalls.h>
19 #include <linux/syscore_ops.h>
20 #include <linux/uaccess.h>
21 
22 #include <trace/hooks/reboot.h>
23 
24 /*
25  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
26  */
27 
28 static int C_A_D = 1;
29 struct pid *cad_pid;
30 EXPORT_SYMBOL(cad_pid);
31 
32 #if defined(CONFIG_ARM)
33 #define DEFAULT_REBOOT_MODE		= REBOOT_HARD
34 #else
35 #define DEFAULT_REBOOT_MODE
36 #endif
37 enum reboot_mode reboot_mode DEFAULT_REBOOT_MODE;
38 EXPORT_SYMBOL_GPL(reboot_mode);
39 enum reboot_mode panic_reboot_mode = REBOOT_UNDEFINED;
40 EXPORT_SYMBOL_GPL(panic_reboot_mode);
41 
42 /*
43  * This variable is used privately to keep track of whether or not
44  * reboot_type is still set to its default value (i.e., reboot= hasn't
45  * been set on the command line).  This is needed so that we can
46  * suppress DMI scanning for reboot quirks.  Without it, it's
47  * impossible to override a faulty reboot quirk without recompiling.
48  */
49 int reboot_default = 1;
50 int reboot_cpu;
51 enum reboot_type reboot_type = BOOT_ACPI;
52 int reboot_force;
53 
54 struct sys_off_handler {
55 	struct notifier_block nb;
56 	int (*sys_off_cb)(struct sys_off_data *data);
57 	void *cb_data;
58 	enum sys_off_mode mode;
59 	bool blocking;
60 	void *list;
61 	struct device *dev;
62 };
63 
64 /*
65  * This variable is used to indicate if a halt was initiated instead of a
66  * reboot when the reboot call was invoked with LINUX_REBOOT_CMD_POWER_OFF, but
67  * the system cannot be powered off. This allowes kernel_halt() to notify users
68  * of that.
69  */
70 static bool poweroff_fallback_to_halt;
71 
72 /*
73  * Temporary stub that prevents linkage failure while we're in process
74  * of removing all uses of legacy pm_power_off() around the kernel.
75  */
76 void __weak (*pm_power_off)(void);
77 
78 /**
79  *	emergency_restart - reboot the system
80  *
81  *	Without shutting down any hardware or taking any locks
82  *	reboot the system.  This is called when we know we are in
83  *	trouble so this is our best effort to reboot.  This is
84  *	safe to call in interrupt context.
85  */
emergency_restart(void)86 void emergency_restart(void)
87 {
88 	kmsg_dump(KMSG_DUMP_EMERG);
89 	system_state = SYSTEM_RESTART;
90 	machine_emergency_restart();
91 }
92 EXPORT_SYMBOL_GPL(emergency_restart);
93 
kernel_restart_prepare(char * cmd)94 void kernel_restart_prepare(char *cmd)
95 {
96 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
97 	system_state = SYSTEM_RESTART;
98 	usermodehelper_disable();
99 	device_shutdown();
100 }
101 
102 /**
103  *	register_reboot_notifier - Register function to be called at reboot time
104  *	@nb: Info about notifier function to be called
105  *
106  *	Registers a function with the list of functions
107  *	to be called at reboot time.
108  *
109  *	Currently always returns zero, as blocking_notifier_chain_register()
110  *	always returns zero.
111  */
register_reboot_notifier(struct notifier_block * nb)112 int register_reboot_notifier(struct notifier_block *nb)
113 {
114 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
115 }
116 EXPORT_SYMBOL(register_reboot_notifier);
117 
118 /**
119  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
120  *	@nb: Hook to be unregistered
121  *
122  *	Unregisters a previously registered reboot
123  *	notifier function.
124  *
125  *	Returns zero on success, or %-ENOENT on failure.
126  */
unregister_reboot_notifier(struct notifier_block * nb)127 int unregister_reboot_notifier(struct notifier_block *nb)
128 {
129 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
130 }
131 EXPORT_SYMBOL(unregister_reboot_notifier);
132 
devm_unregister_reboot_notifier(struct device * dev,void * res)133 static void devm_unregister_reboot_notifier(struct device *dev, void *res)
134 {
135 	WARN_ON(unregister_reboot_notifier(*(struct notifier_block **)res));
136 }
137 
devm_register_reboot_notifier(struct device * dev,struct notifier_block * nb)138 int devm_register_reboot_notifier(struct device *dev, struct notifier_block *nb)
139 {
140 	struct notifier_block **rcnb;
141 	int ret;
142 
143 	rcnb = devres_alloc(devm_unregister_reboot_notifier,
144 			    sizeof(*rcnb), GFP_KERNEL);
145 	if (!rcnb)
146 		return -ENOMEM;
147 
148 	ret = register_reboot_notifier(nb);
149 	if (!ret) {
150 		*rcnb = nb;
151 		devres_add(dev, rcnb);
152 	} else {
153 		devres_free(rcnb);
154 	}
155 
156 	return ret;
157 }
158 EXPORT_SYMBOL(devm_register_reboot_notifier);
159 
160 /*
161  *	Notifier list for kernel code which wants to be called
162  *	to restart the system.
163  */
164 static ATOMIC_NOTIFIER_HEAD(restart_handler_list);
165 
166 /**
167  *	register_restart_handler - Register function to be called to reset
168  *				   the system
169  *	@nb: Info about handler function to be called
170  *	@nb->priority:	Handler priority. Handlers should follow the
171  *			following guidelines for setting priorities.
172  *			0:	Restart handler of last resort,
173  *				with limited restart capabilities
174  *			128:	Default restart handler; use if no other
175  *				restart handler is expected to be available,
176  *				and/or if restart functionality is
177  *				sufficient to restart the entire system
178  *			255:	Highest priority restart handler, will
179  *				preempt all other restart handlers
180  *
181  *	Registers a function with code to be called to restart the
182  *	system.
183  *
184  *	Registered functions will be called from machine_restart as last
185  *	step of the restart sequence (if the architecture specific
186  *	machine_restart function calls do_kernel_restart - see below
187  *	for details).
188  *	Registered functions are expected to restart the system immediately.
189  *	If more than one function is registered, the restart handler priority
190  *	selects which function will be called first.
191  *
192  *	Restart handlers are expected to be registered from non-architecture
193  *	code, typically from drivers. A typical use case would be a system
194  *	where restart functionality is provided through a watchdog. Multiple
195  *	restart handlers may exist; for example, one restart handler might
196  *	restart the entire system, while another only restarts the CPU.
197  *	In such cases, the restart handler which only restarts part of the
198  *	hardware is expected to register with low priority to ensure that
199  *	it only runs if no other means to restart the system is available.
200  *
201  *	Currently always returns zero, as atomic_notifier_chain_register()
202  *	always returns zero.
203  */
register_restart_handler(struct notifier_block * nb)204 int register_restart_handler(struct notifier_block *nb)
205 {
206 	return atomic_notifier_chain_register(&restart_handler_list, nb);
207 }
208 EXPORT_SYMBOL(register_restart_handler);
209 
210 /**
211  *	unregister_restart_handler - Unregister previously registered
212  *				     restart handler
213  *	@nb: Hook to be unregistered
214  *
215  *	Unregisters a previously registered restart handler function.
216  *
217  *	Returns zero on success, or %-ENOENT on failure.
218  */
unregister_restart_handler(struct notifier_block * nb)219 int unregister_restart_handler(struct notifier_block *nb)
220 {
221 	return atomic_notifier_chain_unregister(&restart_handler_list, nb);
222 }
223 EXPORT_SYMBOL(unregister_restart_handler);
224 
225 /**
226  *	do_kernel_restart - Execute kernel restart handler call chain
227  *
228  *	Calls functions registered with register_restart_handler.
229  *
230  *	Expected to be called from machine_restart as last step of the restart
231  *	sequence.
232  *
233  *	Restarts the system immediately if a restart handler function has been
234  *	registered. Otherwise does nothing.
235  */
do_kernel_restart(char * cmd)236 void do_kernel_restart(char *cmd)
237 {
238 	atomic_notifier_call_chain(&restart_handler_list, reboot_mode, cmd);
239 }
240 
migrate_to_reboot_cpu(void)241 void migrate_to_reboot_cpu(void)
242 {
243 	/* The boot cpu is always logical cpu 0 */
244 	int cpu = reboot_cpu;
245 
246 	cpu_hotplug_disable();
247 
248 	/* Make certain the cpu I'm about to reboot on is online */
249 	if (!cpu_online(cpu))
250 		cpu = cpumask_first(cpu_online_mask);
251 
252 	/* Prevent races with other tasks migrating this task */
253 	current->flags |= PF_NO_SETAFFINITY;
254 
255 	/* Make certain I only run on the appropriate processor */
256 	set_cpus_allowed_ptr(current, cpumask_of(cpu));
257 }
258 
259 /*
260  *	Notifier list for kernel code which wants to be called
261  *	to prepare system for restart.
262  */
263 static BLOCKING_NOTIFIER_HEAD(restart_prep_handler_list);
264 
do_kernel_restart_prepare(void)265 static void do_kernel_restart_prepare(void)
266 {
267 	blocking_notifier_call_chain(&restart_prep_handler_list, 0, NULL);
268 }
269 
270 /**
271  *	kernel_restart - reboot the system
272  *	@cmd: pointer to buffer containing command to execute for restart
273  *		or %NULL
274  *
275  *	Shutdown everything and perform a clean reboot.
276  *	This is not safe to call in interrupt context.
277  */
kernel_restart(char * cmd)278 void kernel_restart(char *cmd)
279 {
280 	kernel_restart_prepare(cmd);
281 	do_kernel_restart_prepare();
282 	migrate_to_reboot_cpu();
283 	syscore_shutdown();
284 	if (!cmd)
285 		pr_emerg("Restarting system\n");
286 	else
287 		pr_emerg("Restarting system with command '%s'\n", cmd);
288 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
289 	machine_restart(cmd);
290 }
291 EXPORT_SYMBOL_GPL(kernel_restart);
292 
kernel_shutdown_prepare(enum system_states state)293 static void kernel_shutdown_prepare(enum system_states state)
294 {
295 	blocking_notifier_call_chain(&reboot_notifier_list,
296 		(state == SYSTEM_HALT) ? SYS_HALT : SYS_POWER_OFF, NULL);
297 	system_state = state;
298 	usermodehelper_disable();
299 	device_shutdown();
300 }
301 /**
302  *	kernel_halt - halt the system
303  *
304  *	Shutdown everything and perform a clean system halt.
305  */
kernel_halt(void)306 void kernel_halt(void)
307 {
308 	kernel_shutdown_prepare(SYSTEM_HALT);
309 	migrate_to_reboot_cpu();
310 	syscore_shutdown();
311 	if (poweroff_fallback_to_halt)
312 		pr_emerg("Power off not available: System halted instead\n");
313 	else
314 		pr_emerg("System halted\n");
315 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
316 	machine_halt();
317 }
318 EXPORT_SYMBOL_GPL(kernel_halt);
319 
320 /*
321  *	Notifier list for kernel code which wants to be called
322  *	to prepare system for power off.
323  */
324 static BLOCKING_NOTIFIER_HEAD(power_off_prep_handler_list);
325 
326 /*
327  *	Notifier list for kernel code which wants to be called
328  *	to power off system.
329  */
330 static ATOMIC_NOTIFIER_HEAD(power_off_handler_list);
331 
sys_off_notify(struct notifier_block * nb,unsigned long mode,void * cmd)332 static int sys_off_notify(struct notifier_block *nb,
333 			  unsigned long mode, void *cmd)
334 {
335 	struct sys_off_handler *handler;
336 	struct sys_off_data data = {};
337 
338 	handler = container_of(nb, struct sys_off_handler, nb);
339 	data.cb_data = handler->cb_data;
340 	data.mode = mode;
341 	data.cmd = cmd;
342 	data.dev = handler->dev;
343 
344 	return handler->sys_off_cb(&data);
345 }
346 
347 static struct sys_off_handler platform_sys_off_handler;
348 
alloc_sys_off_handler(int priority)349 static struct sys_off_handler *alloc_sys_off_handler(int priority)
350 {
351 	struct sys_off_handler *handler;
352 	gfp_t flags;
353 
354 	/*
355 	 * Platforms like m68k can't allocate sys_off handler dynamically
356 	 * at the early boot time because memory allocator isn't available yet.
357 	 */
358 	if (priority == SYS_OFF_PRIO_PLATFORM) {
359 		handler = &platform_sys_off_handler;
360 		if (handler->cb_data)
361 			return ERR_PTR(-EBUSY);
362 	} else {
363 		if (system_state > SYSTEM_RUNNING)
364 			flags = GFP_ATOMIC;
365 		else
366 			flags = GFP_KERNEL;
367 
368 		handler = kzalloc(sizeof(*handler), flags);
369 		if (!handler)
370 			return ERR_PTR(-ENOMEM);
371 	}
372 
373 	return handler;
374 }
375 
free_sys_off_handler(struct sys_off_handler * handler)376 static void free_sys_off_handler(struct sys_off_handler *handler)
377 {
378 	if (handler == &platform_sys_off_handler)
379 		memset(handler, 0, sizeof(*handler));
380 	else
381 		kfree(handler);
382 }
383 
384 /**
385  *	register_sys_off_handler - Register sys-off handler
386  *	@mode: Sys-off mode
387  *	@priority: Handler priority
388  *	@callback: Callback function
389  *	@cb_data: Callback argument
390  *
391  *	Registers system power-off or restart handler that will be invoked
392  *	at the step corresponding to the given sys-off mode. Handler's callback
393  *	should return NOTIFY_DONE to permit execution of the next handler in
394  *	the call chain or NOTIFY_STOP to break the chain (in error case for
395  *	example).
396  *
397  *	Multiple handlers can be registered at the default priority level.
398  *
399  *	Only one handler can be registered at the non-default priority level,
400  *	otherwise ERR_PTR(-EBUSY) is returned.
401  *
402  *	Returns a new instance of struct sys_off_handler on success, or
403  *	an ERR_PTR()-encoded error code otherwise.
404  */
405 struct sys_off_handler *
register_sys_off_handler(enum sys_off_mode mode,int priority,int (* callback)(struct sys_off_data * data),void * cb_data)406 register_sys_off_handler(enum sys_off_mode mode,
407 			 int priority,
408 			 int (*callback)(struct sys_off_data *data),
409 			 void *cb_data)
410 {
411 	struct sys_off_handler *handler;
412 	int err;
413 
414 	handler = alloc_sys_off_handler(priority);
415 	if (IS_ERR(handler))
416 		return handler;
417 
418 	switch (mode) {
419 	case SYS_OFF_MODE_POWER_OFF_PREPARE:
420 		handler->list = &power_off_prep_handler_list;
421 		handler->blocking = true;
422 		break;
423 
424 	case SYS_OFF_MODE_POWER_OFF:
425 		handler->list = &power_off_handler_list;
426 		break;
427 
428 	case SYS_OFF_MODE_RESTART_PREPARE:
429 		handler->list = &restart_prep_handler_list;
430 		handler->blocking = true;
431 		break;
432 
433 	case SYS_OFF_MODE_RESTART:
434 		handler->list = &restart_handler_list;
435 		break;
436 
437 	default:
438 		free_sys_off_handler(handler);
439 		return ERR_PTR(-EINVAL);
440 	}
441 
442 	handler->nb.notifier_call = sys_off_notify;
443 	handler->nb.priority = priority;
444 	handler->sys_off_cb = callback;
445 	handler->cb_data = cb_data;
446 	handler->mode = mode;
447 
448 	if (handler->blocking) {
449 		if (priority == SYS_OFF_PRIO_DEFAULT)
450 			err = blocking_notifier_chain_register(handler->list,
451 							       &handler->nb);
452 		else
453 			err = blocking_notifier_chain_register_unique_prio(handler->list,
454 									   &handler->nb);
455 	} else {
456 		if (priority == SYS_OFF_PRIO_DEFAULT)
457 			err = atomic_notifier_chain_register(handler->list,
458 							     &handler->nb);
459 		else
460 			err = atomic_notifier_chain_register_unique_prio(handler->list,
461 									 &handler->nb);
462 	}
463 
464 	if (err) {
465 		free_sys_off_handler(handler);
466 		return ERR_PTR(err);
467 	}
468 
469 	return handler;
470 }
471 EXPORT_SYMBOL_GPL(register_sys_off_handler);
472 
473 /**
474  *	unregister_sys_off_handler - Unregister sys-off handler
475  *	@handler: Sys-off handler
476  *
477  *	Unregisters given sys-off handler.
478  */
unregister_sys_off_handler(struct sys_off_handler * handler)479 void unregister_sys_off_handler(struct sys_off_handler *handler)
480 {
481 	int err;
482 
483 	if (IS_ERR_OR_NULL(handler))
484 		return;
485 
486 	if (handler->blocking)
487 		err = blocking_notifier_chain_unregister(handler->list,
488 							 &handler->nb);
489 	else
490 		err = atomic_notifier_chain_unregister(handler->list,
491 						       &handler->nb);
492 
493 	/* sanity check, shall never happen */
494 	WARN_ON(err);
495 
496 	free_sys_off_handler(handler);
497 }
498 EXPORT_SYMBOL_GPL(unregister_sys_off_handler);
499 
devm_unregister_sys_off_handler(void * data)500 static void devm_unregister_sys_off_handler(void *data)
501 {
502 	struct sys_off_handler *handler = data;
503 
504 	unregister_sys_off_handler(handler);
505 }
506 
507 /**
508  *	devm_register_sys_off_handler - Register sys-off handler
509  *	@dev: Device that registers handler
510  *	@mode: Sys-off mode
511  *	@priority: Handler priority
512  *	@callback: Callback function
513  *	@cb_data: Callback argument
514  *
515  *	Registers resource-managed sys-off handler.
516  *
517  *	Returns zero on success, or error code on failure.
518  */
devm_register_sys_off_handler(struct device * dev,enum sys_off_mode mode,int priority,int (* callback)(struct sys_off_data * data),void * cb_data)519 int devm_register_sys_off_handler(struct device *dev,
520 				  enum sys_off_mode mode,
521 				  int priority,
522 				  int (*callback)(struct sys_off_data *data),
523 				  void *cb_data)
524 {
525 	struct sys_off_handler *handler;
526 
527 	handler = register_sys_off_handler(mode, priority, callback, cb_data);
528 	if (IS_ERR(handler))
529 		return PTR_ERR(handler);
530 	handler->dev = dev;
531 
532 	return devm_add_action_or_reset(dev, devm_unregister_sys_off_handler,
533 					handler);
534 }
535 EXPORT_SYMBOL_GPL(devm_register_sys_off_handler);
536 
537 /**
538  *	devm_register_power_off_handler - Register power-off handler
539  *	@dev: Device that registers callback
540  *	@callback: Callback function
541  *	@cb_data: Callback's argument
542  *
543  *	Registers resource-managed sys-off handler with a default priority
544  *	and using power-off mode.
545  *
546  *	Returns zero on success, or error code on failure.
547  */
devm_register_power_off_handler(struct device * dev,int (* callback)(struct sys_off_data * data),void * cb_data)548 int devm_register_power_off_handler(struct device *dev,
549 				    int (*callback)(struct sys_off_data *data),
550 				    void *cb_data)
551 {
552 	return devm_register_sys_off_handler(dev,
553 					     SYS_OFF_MODE_POWER_OFF,
554 					     SYS_OFF_PRIO_DEFAULT,
555 					     callback, cb_data);
556 }
557 EXPORT_SYMBOL_GPL(devm_register_power_off_handler);
558 
559 /**
560  *	devm_register_restart_handler - Register restart handler
561  *	@dev: Device that registers callback
562  *	@callback: Callback function
563  *	@cb_data: Callback's argument
564  *
565  *	Registers resource-managed sys-off handler with a default priority
566  *	and using restart mode.
567  *
568  *	Returns zero on success, or error code on failure.
569  */
devm_register_restart_handler(struct device * dev,int (* callback)(struct sys_off_data * data),void * cb_data)570 int devm_register_restart_handler(struct device *dev,
571 				  int (*callback)(struct sys_off_data *data),
572 				  void *cb_data)
573 {
574 	return devm_register_sys_off_handler(dev,
575 					     SYS_OFF_MODE_RESTART,
576 					     SYS_OFF_PRIO_DEFAULT,
577 					     callback, cb_data);
578 }
579 EXPORT_SYMBOL_GPL(devm_register_restart_handler);
580 
581 static struct sys_off_handler *platform_power_off_handler;
582 
platform_power_off_notify(struct sys_off_data * data)583 static int platform_power_off_notify(struct sys_off_data *data)
584 {
585 	void (*platform_power_power_off_cb)(void) = data->cb_data;
586 
587 	platform_power_power_off_cb();
588 
589 	return NOTIFY_DONE;
590 }
591 
592 /**
593  *	register_platform_power_off - Register platform-level power-off callback
594  *	@power_off: Power-off callback
595  *
596  *	Registers power-off callback that will be called as last step
597  *	of the power-off sequence. This callback is expected to be invoked
598  *	for the last resort. Only one platform power-off callback is allowed
599  *	to be registered at a time.
600  *
601  *	Returns zero on success, or error code on failure.
602  */
register_platform_power_off(void (* power_off)(void))603 int register_platform_power_off(void (*power_off)(void))
604 {
605 	struct sys_off_handler *handler;
606 
607 	handler = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
608 					   SYS_OFF_PRIO_PLATFORM,
609 					   platform_power_off_notify,
610 					   power_off);
611 	if (IS_ERR(handler))
612 		return PTR_ERR(handler);
613 
614 	platform_power_off_handler = handler;
615 
616 	return 0;
617 }
618 EXPORT_SYMBOL_GPL(register_platform_power_off);
619 
620 /**
621  *	unregister_platform_power_off - Unregister platform-level power-off callback
622  *	@power_off: Power-off callback
623  *
624  *	Unregisters previously registered platform power-off callback.
625  */
unregister_platform_power_off(void (* power_off)(void))626 void unregister_platform_power_off(void (*power_off)(void))
627 {
628 	if (platform_power_off_handler &&
629 	    platform_power_off_handler->cb_data == power_off) {
630 		unregister_sys_off_handler(platform_power_off_handler);
631 		platform_power_off_handler = NULL;
632 	}
633 }
634 EXPORT_SYMBOL_GPL(unregister_platform_power_off);
635 
legacy_pm_power_off(struct sys_off_data * data)636 static int legacy_pm_power_off(struct sys_off_data *data)
637 {
638 	if (pm_power_off)
639 		pm_power_off();
640 
641 	return NOTIFY_DONE;
642 }
643 
do_kernel_power_off_prepare(void)644 static void do_kernel_power_off_prepare(void)
645 {
646 	blocking_notifier_call_chain(&power_off_prep_handler_list, 0, NULL);
647 }
648 
649 /**
650  *	do_kernel_power_off - Execute kernel power-off handler call chain
651  *
652  *	Expected to be called as last step of the power-off sequence.
653  *
654  *	Powers off the system immediately if a power-off handler function has
655  *	been registered. Otherwise does nothing.
656  */
do_kernel_power_off(void)657 void do_kernel_power_off(void)
658 {
659 	struct sys_off_handler *sys_off = NULL;
660 
661 	/*
662 	 * Register sys-off handlers for legacy PM callback. This allows
663 	 * legacy PM callbacks temporary co-exist with the new sys-off API.
664 	 *
665 	 * TODO: Remove legacy handlers once all legacy PM users will be
666 	 *       switched to the sys-off based APIs.
667 	 */
668 	if (pm_power_off)
669 		sys_off = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
670 						   SYS_OFF_PRIO_DEFAULT,
671 						   legacy_pm_power_off, NULL);
672 
673 	atomic_notifier_call_chain(&power_off_handler_list, 0, NULL);
674 
675 	unregister_sys_off_handler(sys_off);
676 }
677 
678 /**
679  *	kernel_can_power_off - check whether system can be powered off
680  *
681  *	Returns true if power-off handler is registered and system can be
682  *	powered off, false otherwise.
683  */
kernel_can_power_off(void)684 bool kernel_can_power_off(void)
685 {
686 	return !atomic_notifier_call_chain_is_empty(&power_off_handler_list) ||
687 		pm_power_off;
688 }
689 EXPORT_SYMBOL_GPL(kernel_can_power_off);
690 
691 /**
692  *	kernel_power_off - power_off the system
693  *
694  *	Shutdown everything and perform a clean system power_off.
695  */
kernel_power_off(void)696 void kernel_power_off(void)
697 {
698 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
699 	do_kernel_power_off_prepare();
700 	migrate_to_reboot_cpu();
701 	syscore_shutdown();
702 	pr_emerg("Power down\n");
703 	pr_flush(1000, true);
704 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
705 	machine_power_off();
706 }
707 EXPORT_SYMBOL_GPL(kernel_power_off);
708 
709 DEFINE_MUTEX(system_transition_mutex);
710 
711 /*
712  * Reboot system call: for obvious reasons only root may call it,
713  * and even root needs to set up some magic numbers in the registers
714  * so that some mistake won't make this reboot the whole machine.
715  * You can also set the meaning of the ctrl-alt-del-key here.
716  *
717  * reboot doesn't sync: do that yourself before calling this.
718  */
SYSCALL_DEFINE4(reboot,int,magic1,int,magic2,unsigned int,cmd,void __user *,arg)719 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
720 		void __user *, arg)
721 {
722 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
723 	char buffer[256];
724 	int ret = 0;
725 
726 	/* We only trust the superuser with rebooting the system. */
727 	if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
728 		return -EPERM;
729 
730 	/* For safety, we require "magic" arguments. */
731 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
732 			(magic2 != LINUX_REBOOT_MAGIC2 &&
733 			magic2 != LINUX_REBOOT_MAGIC2A &&
734 			magic2 != LINUX_REBOOT_MAGIC2B &&
735 			magic2 != LINUX_REBOOT_MAGIC2C))
736 		return -EINVAL;
737 
738 	/*
739 	 * If pid namespaces are enabled and the current task is in a child
740 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
741 	 * call do_exit().
742 	 */
743 	ret = reboot_pid_ns(pid_ns, cmd);
744 	if (ret)
745 		return ret;
746 
747 	/* Instead of trying to make the power_off code look like
748 	 * halt when pm_power_off is not set do it the easy way.
749 	 */
750 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !kernel_can_power_off()) {
751 		poweroff_fallback_to_halt = true;
752 		cmd = LINUX_REBOOT_CMD_HALT;
753 	}
754 
755 	mutex_lock(&system_transition_mutex);
756 	switch (cmd) {
757 	case LINUX_REBOOT_CMD_RESTART:
758 		kernel_restart(NULL);
759 		break;
760 
761 	case LINUX_REBOOT_CMD_CAD_ON:
762 		C_A_D = 1;
763 		break;
764 
765 	case LINUX_REBOOT_CMD_CAD_OFF:
766 		C_A_D = 0;
767 		break;
768 
769 	case LINUX_REBOOT_CMD_HALT:
770 		kernel_halt();
771 		do_exit(0);
772 
773 	case LINUX_REBOOT_CMD_POWER_OFF:
774 		kernel_power_off();
775 		do_exit(0);
776 		break;
777 
778 	case LINUX_REBOOT_CMD_RESTART2:
779 		ret = strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1);
780 		if (ret < 0) {
781 			ret = -EFAULT;
782 			break;
783 		}
784 		buffer[sizeof(buffer) - 1] = '\0';
785 
786 		kernel_restart(buffer);
787 		break;
788 
789 #ifdef CONFIG_KEXEC_CORE
790 	case LINUX_REBOOT_CMD_KEXEC:
791 		ret = kernel_kexec();
792 		break;
793 #endif
794 
795 #ifdef CONFIG_HIBERNATION
796 	case LINUX_REBOOT_CMD_SW_SUSPEND:
797 		ret = hibernate();
798 		break;
799 #endif
800 
801 	default:
802 		ret = -EINVAL;
803 		break;
804 	}
805 	mutex_unlock(&system_transition_mutex);
806 	return ret;
807 }
808 
deferred_cad(struct work_struct * dummy)809 static void deferred_cad(struct work_struct *dummy)
810 {
811 	kernel_restart(NULL);
812 }
813 
814 /*
815  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
816  * As it's called within an interrupt, it may NOT sync: the only choice
817  * is whether to reboot at once, or just ignore the ctrl-alt-del.
818  */
ctrl_alt_del(void)819 void ctrl_alt_del(void)
820 {
821 	static DECLARE_WORK(cad_work, deferred_cad);
822 
823 	if (C_A_D)
824 		schedule_work(&cad_work);
825 	else
826 		kill_cad_pid(SIGINT, 1);
827 }
828 
829 #define POWEROFF_CMD_PATH_LEN  256
830 static char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
831 static const char reboot_cmd[] = "/sbin/reboot";
832 
run_cmd(const char * cmd)833 static int run_cmd(const char *cmd)
834 {
835 	char **argv;
836 	static char *envp[] = {
837 		"HOME=/",
838 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
839 		NULL
840 	};
841 	int ret;
842 	argv = argv_split(GFP_KERNEL, cmd, NULL);
843 	if (argv) {
844 		ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
845 		argv_free(argv);
846 	} else {
847 		ret = -ENOMEM;
848 	}
849 
850 	return ret;
851 }
852 
__orderly_reboot(void)853 static int __orderly_reboot(void)
854 {
855 	int ret;
856 
857 	ret = run_cmd(reboot_cmd);
858 
859 	if (ret) {
860 		pr_warn("Failed to start orderly reboot: forcing the issue\n");
861 		emergency_sync();
862 		kernel_restart(NULL);
863 	}
864 
865 	return ret;
866 }
867 
__orderly_poweroff(bool force)868 static int __orderly_poweroff(bool force)
869 {
870 	int ret;
871 
872 	ret = run_cmd(poweroff_cmd);
873 
874 	if (ret && force) {
875 		pr_warn("Failed to start orderly shutdown: forcing the issue\n");
876 
877 		/*
878 		 * I guess this should try to kick off some daemon to sync and
879 		 * poweroff asap.  Or not even bother syncing if we're doing an
880 		 * emergency shutdown?
881 		 */
882 		emergency_sync();
883 		kernel_power_off();
884 	}
885 
886 	return ret;
887 }
888 
889 static bool poweroff_force;
890 
poweroff_work_func(struct work_struct * work)891 static void poweroff_work_func(struct work_struct *work)
892 {
893 	__orderly_poweroff(poweroff_force);
894 }
895 
896 static DECLARE_WORK(poweroff_work, poweroff_work_func);
897 
898 /**
899  * orderly_poweroff - Trigger an orderly system poweroff
900  * @force: force poweroff if command execution fails
901  *
902  * This may be called from any context to trigger a system shutdown.
903  * If the orderly shutdown fails, it will force an immediate shutdown.
904  */
orderly_poweroff(bool force)905 void orderly_poweroff(bool force)
906 {
907 	if (force) /* do not override the pending "true" */
908 		poweroff_force = true;
909 	schedule_work(&poweroff_work);
910 }
911 EXPORT_SYMBOL_GPL(orderly_poweroff);
912 
reboot_work_func(struct work_struct * work)913 static void reboot_work_func(struct work_struct *work)
914 {
915 	__orderly_reboot();
916 }
917 
918 static DECLARE_WORK(reboot_work, reboot_work_func);
919 
920 /**
921  * orderly_reboot - Trigger an orderly system reboot
922  *
923  * This may be called from any context to trigger a system reboot.
924  * If the orderly reboot fails, it will force an immediate reboot.
925  */
orderly_reboot(void)926 void orderly_reboot(void)
927 {
928 	schedule_work(&reboot_work);
929 }
930 EXPORT_SYMBOL_GPL(orderly_reboot);
931 
932 /**
933  * hw_failure_emergency_poweroff_func - emergency poweroff work after a known delay
934  * @work: work_struct associated with the emergency poweroff function
935  *
936  * This function is called in very critical situations to force
937  * a kernel poweroff after a configurable timeout value.
938  */
hw_failure_emergency_poweroff_func(struct work_struct * work)939 static void hw_failure_emergency_poweroff_func(struct work_struct *work)
940 {
941 	/*
942 	 * We have reached here after the emergency shutdown waiting period has
943 	 * expired. This means orderly_poweroff has not been able to shut off
944 	 * the system for some reason.
945 	 *
946 	 * Try to shut down the system immediately using kernel_power_off
947 	 * if populated
948 	 */
949 	pr_emerg("Hardware protection timed-out. Trying forced poweroff\n");
950 	kernel_power_off();
951 
952 	/*
953 	 * Worst of the worst case trigger emergency restart
954 	 */
955 	pr_emerg("Hardware protection shutdown failed. Trying emergency restart\n");
956 	emergency_restart();
957 }
958 
959 static DECLARE_DELAYED_WORK(hw_failure_emergency_poweroff_work,
960 			    hw_failure_emergency_poweroff_func);
961 
962 /**
963  * hw_failure_emergency_poweroff - Trigger an emergency system poweroff
964  *
965  * This may be called from any critical situation to trigger a system shutdown
966  * after a given period of time. If time is negative this is not scheduled.
967  */
hw_failure_emergency_poweroff(int poweroff_delay_ms)968 static void hw_failure_emergency_poweroff(int poweroff_delay_ms)
969 {
970 	if (poweroff_delay_ms <= 0)
971 		return;
972 	schedule_delayed_work(&hw_failure_emergency_poweroff_work,
973 			      msecs_to_jiffies(poweroff_delay_ms));
974 }
975 
976 /**
977  * __hw_protection_shutdown - Trigger an emergency system shutdown or reboot
978  *
979  * @reason:		Reason of emergency shutdown or reboot to be printed.
980  * @ms_until_forced:	Time to wait for orderly shutdown or reboot before
981  *			triggering it. Negative value disables the forced
982  *			shutdown or reboot.
983  * @shutdown:		If true, indicates that a shutdown will happen
984  *			after the critical tempeature is reached.
985  *			If false, indicates that a reboot will happen
986  *			after the critical tempeature is reached.
987  *
988  * Initiate an emergency system shutdown or reboot in order to protect
989  * hardware from further damage. Usage examples include a thermal protection.
990  * NOTE: The request is ignored if protection shutdown or reboot is already
991  * pending even if the previous request has given a large timeout for forced
992  * shutdown/reboot.
993  */
__hw_protection_shutdown(const char * reason,int ms_until_forced,bool shutdown)994 void __hw_protection_shutdown(const char *reason, int ms_until_forced, bool shutdown)
995 {
996 	static atomic_t allow_proceed = ATOMIC_INIT(1);
997 
998 	pr_emerg("HARDWARE PROTECTION shutdown (%s)\n", reason);
999 
1000 	/* Shutdown should be initiated only once. */
1001 	if (!atomic_dec_and_test(&allow_proceed))
1002 		return;
1003 
1004 	trace_android_rvh_hw_protection_shutdown(reason);
1005 
1006 	/*
1007 	 * Queue a backup emergency shutdown in the event of
1008 	 * orderly_poweroff failure
1009 	 */
1010 	hw_failure_emergency_poweroff(ms_until_forced);
1011 	if (shutdown)
1012 		orderly_poweroff(true);
1013 	else
1014 		orderly_reboot();
1015 }
1016 EXPORT_SYMBOL_GPL(__hw_protection_shutdown);
1017 
reboot_setup(char * str)1018 static int __init reboot_setup(char *str)
1019 {
1020 	for (;;) {
1021 		enum reboot_mode *mode;
1022 
1023 		/*
1024 		 * Having anything passed on the command line via
1025 		 * reboot= will cause us to disable DMI checking
1026 		 * below.
1027 		 */
1028 		reboot_default = 0;
1029 
1030 		if (!strncmp(str, "panic_", 6)) {
1031 			mode = &panic_reboot_mode;
1032 			str += 6;
1033 		} else {
1034 			mode = &reboot_mode;
1035 		}
1036 
1037 		switch (*str) {
1038 		case 'w':
1039 			*mode = REBOOT_WARM;
1040 			break;
1041 
1042 		case 'c':
1043 			*mode = REBOOT_COLD;
1044 			break;
1045 
1046 		case 'h':
1047 			*mode = REBOOT_HARD;
1048 			break;
1049 
1050 		case 's':
1051 			/*
1052 			 * reboot_cpu is s[mp]#### with #### being the processor
1053 			 * to be used for rebooting. Skip 's' or 'smp' prefix.
1054 			 */
1055 			str += str[1] == 'm' && str[2] == 'p' ? 3 : 1;
1056 
1057 			if (isdigit(str[0])) {
1058 				int cpu = simple_strtoul(str, NULL, 0);
1059 
1060 				if (cpu >= num_possible_cpus()) {
1061 					pr_err("Ignoring the CPU number in reboot= option. "
1062 					"CPU %d exceeds possible cpu number %d\n",
1063 					cpu, num_possible_cpus());
1064 					break;
1065 				}
1066 				reboot_cpu = cpu;
1067 			} else
1068 				*mode = REBOOT_SOFT;
1069 			break;
1070 
1071 		case 'g':
1072 			*mode = REBOOT_GPIO;
1073 			break;
1074 
1075 		case 'b':
1076 		case 'a':
1077 		case 'k':
1078 		case 't':
1079 		case 'e':
1080 		case 'p':
1081 			reboot_type = *str;
1082 			break;
1083 
1084 		case 'f':
1085 			reboot_force = 1;
1086 			break;
1087 		}
1088 
1089 		str = strchr(str, ',');
1090 		if (str)
1091 			str++;
1092 		else
1093 			break;
1094 	}
1095 	return 1;
1096 }
1097 __setup("reboot=", reboot_setup);
1098 
1099 #ifdef CONFIG_SYSFS
1100 
1101 #define REBOOT_COLD_STR		"cold"
1102 #define REBOOT_WARM_STR		"warm"
1103 #define REBOOT_HARD_STR		"hard"
1104 #define REBOOT_SOFT_STR		"soft"
1105 #define REBOOT_GPIO_STR		"gpio"
1106 #define REBOOT_UNDEFINED_STR	"undefined"
1107 
1108 #define BOOT_TRIPLE_STR		"triple"
1109 #define BOOT_KBD_STR		"kbd"
1110 #define BOOT_BIOS_STR		"bios"
1111 #define BOOT_ACPI_STR		"acpi"
1112 #define BOOT_EFI_STR		"efi"
1113 #define BOOT_PCI_STR		"pci"
1114 
mode_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1115 static ssize_t mode_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1116 {
1117 	const char *val;
1118 
1119 	switch (reboot_mode) {
1120 	case REBOOT_COLD:
1121 		val = REBOOT_COLD_STR;
1122 		break;
1123 	case REBOOT_WARM:
1124 		val = REBOOT_WARM_STR;
1125 		break;
1126 	case REBOOT_HARD:
1127 		val = REBOOT_HARD_STR;
1128 		break;
1129 	case REBOOT_SOFT:
1130 		val = REBOOT_SOFT_STR;
1131 		break;
1132 	case REBOOT_GPIO:
1133 		val = REBOOT_GPIO_STR;
1134 		break;
1135 	default:
1136 		val = REBOOT_UNDEFINED_STR;
1137 	}
1138 
1139 	return sprintf(buf, "%s\n", val);
1140 }
mode_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1141 static ssize_t mode_store(struct kobject *kobj, struct kobj_attribute *attr,
1142 			  const char *buf, size_t count)
1143 {
1144 	if (!capable(CAP_SYS_BOOT))
1145 		return -EPERM;
1146 
1147 	if (!strncmp(buf, REBOOT_COLD_STR, strlen(REBOOT_COLD_STR)))
1148 		reboot_mode = REBOOT_COLD;
1149 	else if (!strncmp(buf, REBOOT_WARM_STR, strlen(REBOOT_WARM_STR)))
1150 		reboot_mode = REBOOT_WARM;
1151 	else if (!strncmp(buf, REBOOT_HARD_STR, strlen(REBOOT_HARD_STR)))
1152 		reboot_mode = REBOOT_HARD;
1153 	else if (!strncmp(buf, REBOOT_SOFT_STR, strlen(REBOOT_SOFT_STR)))
1154 		reboot_mode = REBOOT_SOFT;
1155 	else if (!strncmp(buf, REBOOT_GPIO_STR, strlen(REBOOT_GPIO_STR)))
1156 		reboot_mode = REBOOT_GPIO;
1157 	else
1158 		return -EINVAL;
1159 
1160 	reboot_default = 0;
1161 
1162 	return count;
1163 }
1164 static struct kobj_attribute reboot_mode_attr = __ATTR_RW(mode);
1165 
1166 #ifdef CONFIG_X86
force_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1167 static ssize_t force_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1168 {
1169 	return sprintf(buf, "%d\n", reboot_force);
1170 }
force_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1171 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
1172 			  const char *buf, size_t count)
1173 {
1174 	bool res;
1175 
1176 	if (!capable(CAP_SYS_BOOT))
1177 		return -EPERM;
1178 
1179 	if (kstrtobool(buf, &res))
1180 		return -EINVAL;
1181 
1182 	reboot_default = 0;
1183 	reboot_force = res;
1184 
1185 	return count;
1186 }
1187 static struct kobj_attribute reboot_force_attr = __ATTR_RW(force);
1188 
type_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1189 static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1190 {
1191 	const char *val;
1192 
1193 	switch (reboot_type) {
1194 	case BOOT_TRIPLE:
1195 		val = BOOT_TRIPLE_STR;
1196 		break;
1197 	case BOOT_KBD:
1198 		val = BOOT_KBD_STR;
1199 		break;
1200 	case BOOT_BIOS:
1201 		val = BOOT_BIOS_STR;
1202 		break;
1203 	case BOOT_ACPI:
1204 		val = BOOT_ACPI_STR;
1205 		break;
1206 	case BOOT_EFI:
1207 		val = BOOT_EFI_STR;
1208 		break;
1209 	case BOOT_CF9_FORCE:
1210 		val = BOOT_PCI_STR;
1211 		break;
1212 	default:
1213 		val = REBOOT_UNDEFINED_STR;
1214 	}
1215 
1216 	return sprintf(buf, "%s\n", val);
1217 }
type_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1218 static ssize_t type_store(struct kobject *kobj, struct kobj_attribute *attr,
1219 			  const char *buf, size_t count)
1220 {
1221 	if (!capable(CAP_SYS_BOOT))
1222 		return -EPERM;
1223 
1224 	if (!strncmp(buf, BOOT_TRIPLE_STR, strlen(BOOT_TRIPLE_STR)))
1225 		reboot_type = BOOT_TRIPLE;
1226 	else if (!strncmp(buf, BOOT_KBD_STR, strlen(BOOT_KBD_STR)))
1227 		reboot_type = BOOT_KBD;
1228 	else if (!strncmp(buf, BOOT_BIOS_STR, strlen(BOOT_BIOS_STR)))
1229 		reboot_type = BOOT_BIOS;
1230 	else if (!strncmp(buf, BOOT_ACPI_STR, strlen(BOOT_ACPI_STR)))
1231 		reboot_type = BOOT_ACPI;
1232 	else if (!strncmp(buf, BOOT_EFI_STR, strlen(BOOT_EFI_STR)))
1233 		reboot_type = BOOT_EFI;
1234 	else if (!strncmp(buf, BOOT_PCI_STR, strlen(BOOT_PCI_STR)))
1235 		reboot_type = BOOT_CF9_FORCE;
1236 	else
1237 		return -EINVAL;
1238 
1239 	reboot_default = 0;
1240 
1241 	return count;
1242 }
1243 static struct kobj_attribute reboot_type_attr = __ATTR_RW(type);
1244 #endif
1245 
1246 #ifdef CONFIG_SMP
cpu_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1247 static ssize_t cpu_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1248 {
1249 	return sprintf(buf, "%d\n", reboot_cpu);
1250 }
cpu_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1251 static ssize_t cpu_store(struct kobject *kobj, struct kobj_attribute *attr,
1252 			  const char *buf, size_t count)
1253 {
1254 	unsigned int cpunum;
1255 	int rc;
1256 
1257 	if (!capable(CAP_SYS_BOOT))
1258 		return -EPERM;
1259 
1260 	rc = kstrtouint(buf, 0, &cpunum);
1261 
1262 	if (rc)
1263 		return rc;
1264 
1265 	if (cpunum >= num_possible_cpus())
1266 		return -ERANGE;
1267 
1268 	reboot_default = 0;
1269 	reboot_cpu = cpunum;
1270 
1271 	return count;
1272 }
1273 static struct kobj_attribute reboot_cpu_attr = __ATTR_RW(cpu);
1274 #endif
1275 
1276 static struct attribute *reboot_attrs[] = {
1277 	&reboot_mode_attr.attr,
1278 #ifdef CONFIG_X86
1279 	&reboot_force_attr.attr,
1280 	&reboot_type_attr.attr,
1281 #endif
1282 #ifdef CONFIG_SMP
1283 	&reboot_cpu_attr.attr,
1284 #endif
1285 	NULL,
1286 };
1287 
1288 #ifdef CONFIG_SYSCTL
1289 static struct ctl_table kern_reboot_table[] = {
1290 	{
1291 		.procname       = "poweroff_cmd",
1292 		.data           = &poweroff_cmd,
1293 		.maxlen         = POWEROFF_CMD_PATH_LEN,
1294 		.mode           = 0644,
1295 		.proc_handler   = proc_dostring,
1296 	},
1297 	{
1298 		.procname       = "ctrl-alt-del",
1299 		.data           = &C_A_D,
1300 		.maxlen         = sizeof(int),
1301 		.mode           = 0644,
1302 		.proc_handler   = proc_dointvec,
1303 	},
1304 };
1305 
kernel_reboot_sysctls_init(void)1306 static void __init kernel_reboot_sysctls_init(void)
1307 {
1308 	register_sysctl_init("kernel", kern_reboot_table);
1309 }
1310 #else
1311 #define kernel_reboot_sysctls_init() do { } while (0)
1312 #endif /* CONFIG_SYSCTL */
1313 
1314 static const struct attribute_group reboot_attr_group = {
1315 	.attrs = reboot_attrs,
1316 };
1317 
reboot_ksysfs_init(void)1318 static int __init reboot_ksysfs_init(void)
1319 {
1320 	struct kobject *reboot_kobj;
1321 	int ret;
1322 
1323 	reboot_kobj = kobject_create_and_add("reboot", kernel_kobj);
1324 	if (!reboot_kobj)
1325 		return -ENOMEM;
1326 
1327 	ret = sysfs_create_group(reboot_kobj, &reboot_attr_group);
1328 	if (ret) {
1329 		kobject_put(reboot_kobj);
1330 		return ret;
1331 	}
1332 
1333 	kernel_reboot_sysctls_init();
1334 
1335 	return 0;
1336 }
1337 late_initcall(reboot_ksysfs_init);
1338 
1339 #endif
1340