1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/resource.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz>
7 *
8 * Arbitrary resource management.
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <linux/string.h>
31 #include <linux/vmalloc.h>
32 #include <asm/io.h>
33
34
35 struct resource ioport_resource = {
36 .name = "PCI IO",
37 .start = 0,
38 .end = IO_SPACE_LIMIT,
39 .flags = IORESOURCE_IO,
40 };
41 EXPORT_SYMBOL(ioport_resource);
42
43 struct resource iomem_resource = {
44 .name = "PCI mem",
45 .start = 0,
46 .end = -1,
47 .flags = IORESOURCE_MEM,
48 };
49 EXPORT_SYMBOL(iomem_resource);
50
51 static DEFINE_RWLOCK(resource_lock);
52
next_resource(struct resource * p,bool skip_children)53 static struct resource *next_resource(struct resource *p, bool skip_children)
54 {
55 if (!skip_children && p->child)
56 return p->child;
57 while (!p->sibling && p->parent)
58 p = p->parent;
59 return p->sibling;
60 }
61
62 #define for_each_resource(_root, _p, _skip_children) \
63 for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children))
64
65 #ifdef CONFIG_PROC_FS
66
67 enum { MAX_IORES_LEVEL = 5 };
68
r_start(struct seq_file * m,loff_t * pos)69 static void *r_start(struct seq_file *m, loff_t *pos)
70 __acquires(resource_lock)
71 {
72 struct resource *root = pde_data(file_inode(m->file));
73 struct resource *p;
74 loff_t l = *pos;
75
76 read_lock(&resource_lock);
77 for_each_resource(root, p, false) {
78 if (l-- == 0)
79 break;
80 }
81
82 return p;
83 }
84
r_next(struct seq_file * m,void * v,loff_t * pos)85 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
86 {
87 struct resource *p = v;
88
89 (*pos)++;
90
91 return (void *)next_resource(p, false);
92 }
93
r_stop(struct seq_file * m,void * v)94 static void r_stop(struct seq_file *m, void *v)
95 __releases(resource_lock)
96 {
97 read_unlock(&resource_lock);
98 }
99
r_show(struct seq_file * m,void * v)100 static int r_show(struct seq_file *m, void *v)
101 {
102 struct resource *root = pde_data(file_inode(m->file));
103 struct resource *r = v, *p;
104 unsigned long long start, end;
105 int width = root->end < 0x10000 ? 4 : 8;
106 int depth;
107
108 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
109 if (p->parent == root)
110 break;
111
112 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
113 start = r->start;
114 end = r->end;
115 } else {
116 start = end = 0;
117 }
118
119 seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
120 depth * 2, "",
121 width, start,
122 width, end,
123 r->name ? r->name : "<BAD>");
124 return 0;
125 }
126
127 static const struct seq_operations resource_op = {
128 .start = r_start,
129 .next = r_next,
130 .stop = r_stop,
131 .show = r_show,
132 };
133
ioresources_init(void)134 static int __init ioresources_init(void)
135 {
136 proc_create_seq_data("ioports", 0, NULL, &resource_op,
137 &ioport_resource);
138 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
139 return 0;
140 }
141 __initcall(ioresources_init);
142
143 #endif /* CONFIG_PROC_FS */
144
free_resource(struct resource * res)145 static void free_resource(struct resource *res)
146 {
147 /**
148 * If the resource was allocated using memblock early during boot
149 * we'll leak it here: we can only return full pages back to the
150 * buddy and trying to be smart and reusing them eventually in
151 * alloc_resource() overcomplicates resource handling.
152 */
153 if (res && PageSlab(virt_to_head_page(res)))
154 kfree(res);
155 }
156
alloc_resource(gfp_t flags)157 static struct resource *alloc_resource(gfp_t flags)
158 {
159 return kzalloc(sizeof(struct resource), flags);
160 }
161
162 /* Return the conflict entry if you can't request it */
__request_resource(struct resource * root,struct resource * new)163 static struct resource * __request_resource(struct resource *root, struct resource *new)
164 {
165 resource_size_t start = new->start;
166 resource_size_t end = new->end;
167 struct resource *tmp, **p;
168
169 if (end < start)
170 return root;
171 if (start < root->start)
172 return root;
173 if (end > root->end)
174 return root;
175 p = &root->child;
176 for (;;) {
177 tmp = *p;
178 if (!tmp || tmp->start > end) {
179 new->sibling = tmp;
180 *p = new;
181 new->parent = root;
182 return NULL;
183 }
184 p = &tmp->sibling;
185 if (tmp->end < start)
186 continue;
187 return tmp;
188 }
189 }
190
__release_resource(struct resource * old,bool release_child)191 static int __release_resource(struct resource *old, bool release_child)
192 {
193 struct resource *tmp, **p, *chd;
194
195 p = &old->parent->child;
196 for (;;) {
197 tmp = *p;
198 if (!tmp)
199 break;
200 if (tmp == old) {
201 if (release_child || !(tmp->child)) {
202 *p = tmp->sibling;
203 } else {
204 for (chd = tmp->child;; chd = chd->sibling) {
205 chd->parent = tmp->parent;
206 if (!(chd->sibling))
207 break;
208 }
209 *p = tmp->child;
210 chd->sibling = tmp->sibling;
211 }
212 old->parent = NULL;
213 return 0;
214 }
215 p = &tmp->sibling;
216 }
217 return -EINVAL;
218 }
219
__release_child_resources(struct resource * r)220 static void __release_child_resources(struct resource *r)
221 {
222 struct resource *tmp, *p;
223 resource_size_t size;
224
225 p = r->child;
226 r->child = NULL;
227 while (p) {
228 tmp = p;
229 p = p->sibling;
230
231 tmp->parent = NULL;
232 tmp->sibling = NULL;
233 __release_child_resources(tmp);
234
235 printk(KERN_DEBUG "release child resource %pR\n", tmp);
236 /* need to restore size, and keep flags */
237 size = resource_size(tmp);
238 tmp->start = 0;
239 tmp->end = size - 1;
240 }
241 }
242
release_child_resources(struct resource * r)243 void release_child_resources(struct resource *r)
244 {
245 write_lock(&resource_lock);
246 __release_child_resources(r);
247 write_unlock(&resource_lock);
248 }
249
250 /**
251 * request_resource_conflict - request and reserve an I/O or memory resource
252 * @root: root resource descriptor
253 * @new: resource descriptor desired by caller
254 *
255 * Returns 0 for success, conflict resource on error.
256 */
request_resource_conflict(struct resource * root,struct resource * new)257 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
258 {
259 struct resource *conflict;
260
261 write_lock(&resource_lock);
262 conflict = __request_resource(root, new);
263 write_unlock(&resource_lock);
264 return conflict;
265 }
266
267 /**
268 * request_resource - request and reserve an I/O or memory resource
269 * @root: root resource descriptor
270 * @new: resource descriptor desired by caller
271 *
272 * Returns 0 for success, negative error code on error.
273 */
request_resource(struct resource * root,struct resource * new)274 int request_resource(struct resource *root, struct resource *new)
275 {
276 struct resource *conflict;
277
278 conflict = request_resource_conflict(root, new);
279 return conflict ? -EBUSY : 0;
280 }
281
282 EXPORT_SYMBOL(request_resource);
283
284 /**
285 * release_resource - release a previously reserved resource
286 * @old: resource pointer
287 */
release_resource(struct resource * old)288 int release_resource(struct resource *old)
289 {
290 int retval;
291
292 write_lock(&resource_lock);
293 retval = __release_resource(old, true);
294 write_unlock(&resource_lock);
295 return retval;
296 }
297
298 EXPORT_SYMBOL(release_resource);
299
300 /**
301 * find_next_iomem_res - Finds the lowest iomem resource that covers part of
302 * [@start..@end].
303 *
304 * If a resource is found, returns 0 and @*res is overwritten with the part
305 * of the resource that's within [@start..@end]; if none is found, returns
306 * -ENODEV. Returns -EINVAL for invalid parameters.
307 *
308 * @start: start address of the resource searched for
309 * @end: end address of same resource
310 * @flags: flags which the resource must have
311 * @desc: descriptor the resource must have
312 * @res: return ptr, if resource found
313 *
314 * The caller must specify @start, @end, @flags, and @desc
315 * (which may be IORES_DESC_NONE).
316 */
find_next_iomem_res(resource_size_t start,resource_size_t end,unsigned long flags,unsigned long desc,struct resource * res)317 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
318 unsigned long flags, unsigned long desc,
319 struct resource *res)
320 {
321 struct resource *p;
322
323 if (!res)
324 return -EINVAL;
325
326 if (start >= end)
327 return -EINVAL;
328
329 read_lock(&resource_lock);
330
331 for_each_resource(&iomem_resource, p, false) {
332 /* If we passed the resource we are looking for, stop */
333 if (p->start > end) {
334 p = NULL;
335 break;
336 }
337
338 /* Skip until we find a range that matches what we look for */
339 if (p->end < start)
340 continue;
341
342 if ((p->flags & flags) != flags)
343 continue;
344 if ((desc != IORES_DESC_NONE) && (desc != p->desc))
345 continue;
346
347 /* Found a match, break */
348 break;
349 }
350
351 if (p) {
352 /* copy data */
353 *res = (struct resource) {
354 .start = max(start, p->start),
355 .end = min(end, p->end),
356 .flags = p->flags,
357 .desc = p->desc,
358 .parent = p->parent,
359 };
360 }
361
362 read_unlock(&resource_lock);
363 return p ? 0 : -ENODEV;
364 }
365
__walk_iomem_res_desc(resource_size_t start,resource_size_t end,unsigned long flags,unsigned long desc,void * arg,int (* func)(struct resource *,void *))366 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
367 unsigned long flags, unsigned long desc,
368 void *arg,
369 int (*func)(struct resource *, void *))
370 {
371 struct resource res;
372 int ret = -EINVAL;
373
374 while (start < end &&
375 !find_next_iomem_res(start, end, flags, desc, &res)) {
376 ret = (*func)(&res, arg);
377 if (ret)
378 break;
379
380 start = res.end + 1;
381 }
382
383 return ret;
384 }
385
386 /**
387 * walk_iomem_res_desc - Walks through iomem resources and calls func()
388 * with matching resource ranges.
389 * *
390 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
391 * @flags: I/O resource flags
392 * @start: start addr
393 * @end: end addr
394 * @arg: function argument for the callback @func
395 * @func: callback function that is called for each qualifying resource area
396 *
397 * All the memory ranges which overlap start,end and also match flags and
398 * desc are valid candidates.
399 *
400 * NOTE: For a new descriptor search, define a new IORES_DESC in
401 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
402 */
walk_iomem_res_desc(unsigned long desc,unsigned long flags,u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))403 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
404 u64 end, void *arg, int (*func)(struct resource *, void *))
405 {
406 return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
407 }
408 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
409
410 /*
411 * This function calls the @func callback against all memory ranges of type
412 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
413 * Now, this function is only for System RAM, it deals with full ranges and
414 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
415 * ranges.
416 */
walk_system_ram_res(u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))417 int walk_system_ram_res(u64 start, u64 end, void *arg,
418 int (*func)(struct resource *, void *))
419 {
420 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
421
422 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
423 func);
424 }
425
426 /*
427 * This function, being a variant of walk_system_ram_res(), calls the @func
428 * callback against all memory ranges of type System RAM which are marked as
429 * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
430 * higher to lower.
431 */
walk_system_ram_res_rev(u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))432 int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
433 int (*func)(struct resource *, void *))
434 {
435 struct resource res, *rams;
436 int rams_size = 16, i;
437 unsigned long flags;
438 int ret = -1;
439
440 /* create a list */
441 rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
442 if (!rams)
443 return ret;
444
445 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
446 i = 0;
447 while ((start < end) &&
448 (!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
449 if (i >= rams_size) {
450 /* re-alloc */
451 struct resource *rams_new;
452
453 rams_new = kvrealloc(rams, (rams_size + 16) * sizeof(struct resource),
454 GFP_KERNEL);
455 if (!rams_new)
456 goto out;
457
458 rams = rams_new;
459 rams_size += 16;
460 }
461
462 rams[i++] = res;
463 start = res.end + 1;
464 }
465
466 /* go reverse */
467 for (i--; i >= 0; i--) {
468 ret = (*func)(&rams[i], arg);
469 if (ret)
470 break;
471 }
472
473 out:
474 kvfree(rams);
475 return ret;
476 }
477
478 /*
479 * This function calls the @func callback against all memory ranges, which
480 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
481 */
walk_mem_res(u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))482 int walk_mem_res(u64 start, u64 end, void *arg,
483 int (*func)(struct resource *, void *))
484 {
485 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
486
487 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
488 func);
489 }
490
491 /*
492 * This function calls the @func callback against all memory ranges of type
493 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
494 * It is to be used only for System RAM.
495 */
walk_system_ram_range(unsigned long start_pfn,unsigned long nr_pages,void * arg,int (* func)(unsigned long,unsigned long,void *))496 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
497 void *arg, int (*func)(unsigned long, unsigned long, void *))
498 {
499 resource_size_t start, end;
500 unsigned long flags;
501 struct resource res;
502 unsigned long pfn, end_pfn;
503 int ret = -EINVAL;
504
505 start = (u64) start_pfn << PAGE_SHIFT;
506 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
507 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
508 while (start < end &&
509 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
510 pfn = PFN_UP(res.start);
511 end_pfn = PFN_DOWN(res.end + 1);
512 if (end_pfn > pfn)
513 ret = (*func)(pfn, end_pfn - pfn, arg);
514 if (ret)
515 break;
516 start = res.end + 1;
517 }
518 return ret;
519 }
520
__is_ram(unsigned long pfn,unsigned long nr_pages,void * arg)521 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
522 {
523 return 1;
524 }
525
526 /*
527 * This generic page_is_ram() returns true if specified address is
528 * registered as System RAM in iomem_resource list.
529 */
page_is_ram(unsigned long pfn)530 int __weak page_is_ram(unsigned long pfn)
531 {
532 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
533 }
534 EXPORT_SYMBOL_GPL(page_is_ram);
535
__region_intersects(struct resource * parent,resource_size_t start,size_t size,unsigned long flags,unsigned long desc)536 static int __region_intersects(struct resource *parent, resource_size_t start,
537 size_t size, unsigned long flags,
538 unsigned long desc)
539 {
540 resource_size_t ostart, oend;
541 int type = 0; int other = 0;
542 struct resource *p, *dp;
543 bool is_type, covered;
544 struct resource res;
545
546 res.start = start;
547 res.end = start + size - 1;
548
549 for (p = parent->child; p ; p = p->sibling) {
550 if (!resource_overlaps(p, &res))
551 continue;
552 is_type = (p->flags & flags) == flags &&
553 (desc == IORES_DESC_NONE || desc == p->desc);
554 if (is_type) {
555 type++;
556 continue;
557 }
558 /*
559 * Continue to search in descendant resources as if the
560 * matched descendant resources cover some ranges of 'p'.
561 *
562 * |------------- "CXL Window 0" ------------|
563 * |-- "System RAM" --|
564 *
565 * will behave similar as the following fake resource
566 * tree when searching "System RAM".
567 *
568 * |-- "System RAM" --||-- "CXL Window 0a" --|
569 */
570 covered = false;
571 ostart = max(res.start, p->start);
572 oend = min(res.end, p->end);
573 for_each_resource(p, dp, false) {
574 if (!resource_overlaps(dp, &res))
575 continue;
576 is_type = (dp->flags & flags) == flags &&
577 (desc == IORES_DESC_NONE || desc == dp->desc);
578 if (is_type) {
579 type++;
580 /*
581 * Range from 'ostart' to 'dp->start'
582 * isn't covered by matched resource.
583 */
584 if (dp->start > ostart)
585 break;
586 if (dp->end >= oend) {
587 covered = true;
588 break;
589 }
590 /* Remove covered range */
591 ostart = max(ostart, dp->end + 1);
592 }
593 }
594 if (!covered)
595 other++;
596 }
597
598 if (type == 0)
599 return REGION_DISJOINT;
600
601 if (other == 0)
602 return REGION_INTERSECTS;
603
604 return REGION_MIXED;
605 }
606
607 /**
608 * region_intersects() - determine intersection of region with known resources
609 * @start: region start address
610 * @size: size of region
611 * @flags: flags of resource (in iomem_resource)
612 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
613 *
614 * Check if the specified region partially overlaps or fully eclipses a
615 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
616 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
617 * return REGION_MIXED if the region overlaps @flags/@desc and another
618 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
619 * and no other defined resource. Note that REGION_INTERSECTS is also
620 * returned in the case when the specified region overlaps RAM and undefined
621 * memory holes.
622 *
623 * region_intersect() is used by memory remapping functions to ensure
624 * the user is not remapping RAM and is a vast speed up over walking
625 * through the resource table page by page.
626 */
region_intersects(resource_size_t start,size_t size,unsigned long flags,unsigned long desc)627 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
628 unsigned long desc)
629 {
630 int ret;
631
632 read_lock(&resource_lock);
633 ret = __region_intersects(&iomem_resource, start, size, flags, desc);
634 read_unlock(&resource_lock);
635
636 return ret;
637 }
638 EXPORT_SYMBOL_GPL(region_intersects);
639
arch_remove_reservations(struct resource * avail)640 void __weak arch_remove_reservations(struct resource *avail)
641 {
642 }
643
resource_clip(struct resource * res,resource_size_t min,resource_size_t max)644 static void resource_clip(struct resource *res, resource_size_t min,
645 resource_size_t max)
646 {
647 if (res->start < min)
648 res->start = min;
649 if (res->end > max)
650 res->end = max;
651 }
652
653 /*
654 * Find empty space in the resource tree with the given range and
655 * alignment constraints
656 */
__find_resource_space(struct resource * root,struct resource * old,struct resource * new,resource_size_t size,struct resource_constraint * constraint)657 static int __find_resource_space(struct resource *root, struct resource *old,
658 struct resource *new, resource_size_t size,
659 struct resource_constraint *constraint)
660 {
661 struct resource *this = root->child;
662 struct resource tmp = *new, avail, alloc;
663 resource_alignf alignf = constraint->alignf;
664
665 tmp.start = root->start;
666 /*
667 * Skip past an allocated resource that starts at 0, since the assignment
668 * of this->start - 1 to tmp->end below would cause an underflow.
669 */
670 if (this && this->start == root->start) {
671 tmp.start = (this == old) ? old->start : this->end + 1;
672 this = this->sibling;
673 }
674 for(;;) {
675 if (this)
676 tmp.end = (this == old) ? this->end : this->start - 1;
677 else
678 tmp.end = root->end;
679
680 if (tmp.end < tmp.start)
681 goto next;
682
683 resource_clip(&tmp, constraint->min, constraint->max);
684 arch_remove_reservations(&tmp);
685
686 /* Check for overflow after ALIGN() */
687 avail.start = ALIGN(tmp.start, constraint->align);
688 avail.end = tmp.end;
689 avail.flags = new->flags & ~IORESOURCE_UNSET;
690 if (avail.start >= tmp.start) {
691 alloc.flags = avail.flags;
692 if (alignf) {
693 alloc.start = alignf(constraint->alignf_data,
694 &avail, size, constraint->align);
695 } else {
696 alloc.start = avail.start;
697 }
698 alloc.end = alloc.start + size - 1;
699 if (alloc.start <= alloc.end &&
700 resource_contains(&avail, &alloc)) {
701 new->start = alloc.start;
702 new->end = alloc.end;
703 return 0;
704 }
705 }
706
707 next: if (!this || this->end == root->end)
708 break;
709
710 if (this != old)
711 tmp.start = this->end + 1;
712 this = this->sibling;
713 }
714 return -EBUSY;
715 }
716
717 /**
718 * find_resource_space - Find empty space in the resource tree
719 * @root: Root resource descriptor
720 * @new: Resource descriptor awaiting an empty resource space
721 * @size: The minimum size of the empty space
722 * @constraint: The range and alignment constraints to be met
723 *
724 * Finds an empty space under @root in the resource tree satisfying range and
725 * alignment @constraints.
726 *
727 * Return:
728 * * %0 - if successful, @new members start, end, and flags are altered.
729 * * %-EBUSY - if no empty space was found.
730 */
find_resource_space(struct resource * root,struct resource * new,resource_size_t size,struct resource_constraint * constraint)731 int find_resource_space(struct resource *root, struct resource *new,
732 resource_size_t size,
733 struct resource_constraint *constraint)
734 {
735 return __find_resource_space(root, NULL, new, size, constraint);
736 }
737 EXPORT_SYMBOL_GPL(find_resource_space);
738
739 /**
740 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
741 * The resource will be relocated if the new size cannot be reallocated in the
742 * current location.
743 *
744 * @root: root resource descriptor
745 * @old: resource descriptor desired by caller
746 * @newsize: new size of the resource descriptor
747 * @constraint: the size and alignment constraints to be met.
748 */
reallocate_resource(struct resource * root,struct resource * old,resource_size_t newsize,struct resource_constraint * constraint)749 static int reallocate_resource(struct resource *root, struct resource *old,
750 resource_size_t newsize,
751 struct resource_constraint *constraint)
752 {
753 int err=0;
754 struct resource new = *old;
755 struct resource *conflict;
756
757 write_lock(&resource_lock);
758
759 if ((err = __find_resource_space(root, old, &new, newsize, constraint)))
760 goto out;
761
762 if (resource_contains(&new, old)) {
763 old->start = new.start;
764 old->end = new.end;
765 goto out;
766 }
767
768 if (old->child) {
769 err = -EBUSY;
770 goto out;
771 }
772
773 if (resource_contains(old, &new)) {
774 old->start = new.start;
775 old->end = new.end;
776 } else {
777 __release_resource(old, true);
778 *old = new;
779 conflict = __request_resource(root, old);
780 BUG_ON(conflict);
781 }
782 out:
783 write_unlock(&resource_lock);
784 return err;
785 }
786
787
788 /**
789 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
790 * The resource will be reallocated with a new size if it was already allocated
791 * @root: root resource descriptor
792 * @new: resource descriptor desired by caller
793 * @size: requested resource region size
794 * @min: minimum boundary to allocate
795 * @max: maximum boundary to allocate
796 * @align: alignment requested, in bytes
797 * @alignf: alignment function, optional, called if not NULL
798 * @alignf_data: arbitrary data to pass to the @alignf function
799 */
allocate_resource(struct resource * root,struct resource * new,resource_size_t size,resource_size_t min,resource_size_t max,resource_size_t align,resource_alignf alignf,void * alignf_data)800 int allocate_resource(struct resource *root, struct resource *new,
801 resource_size_t size, resource_size_t min,
802 resource_size_t max, resource_size_t align,
803 resource_alignf alignf,
804 void *alignf_data)
805 {
806 int err;
807 struct resource_constraint constraint;
808
809 constraint.min = min;
810 constraint.max = max;
811 constraint.align = align;
812 constraint.alignf = alignf;
813 constraint.alignf_data = alignf_data;
814
815 if ( new->parent ) {
816 /* resource is already allocated, try reallocating with
817 the new constraints */
818 return reallocate_resource(root, new, size, &constraint);
819 }
820
821 write_lock(&resource_lock);
822 err = find_resource_space(root, new, size, &constraint);
823 if (err >= 0 && __request_resource(root, new))
824 err = -EBUSY;
825 write_unlock(&resource_lock);
826 return err;
827 }
828
829 EXPORT_SYMBOL(allocate_resource);
830
831 /**
832 * lookup_resource - find an existing resource by a resource start address
833 * @root: root resource descriptor
834 * @start: resource start address
835 *
836 * Returns a pointer to the resource if found, NULL otherwise
837 */
lookup_resource(struct resource * root,resource_size_t start)838 struct resource *lookup_resource(struct resource *root, resource_size_t start)
839 {
840 struct resource *res;
841
842 read_lock(&resource_lock);
843 for (res = root->child; res; res = res->sibling) {
844 if (res->start == start)
845 break;
846 }
847 read_unlock(&resource_lock);
848
849 return res;
850 }
851
852 /*
853 * Insert a resource into the resource tree. If successful, return NULL,
854 * otherwise return the conflicting resource (compare to __request_resource())
855 */
__insert_resource(struct resource * parent,struct resource * new)856 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
857 {
858 struct resource *first, *next;
859
860 for (;; parent = first) {
861 first = __request_resource(parent, new);
862 if (!first)
863 return first;
864
865 if (first == parent)
866 return first;
867 if (WARN_ON(first == new)) /* duplicated insertion */
868 return first;
869
870 if ((first->start > new->start) || (first->end < new->end))
871 break;
872 if ((first->start == new->start) && (first->end == new->end))
873 break;
874 }
875
876 for (next = first; ; next = next->sibling) {
877 /* Partial overlap? Bad, and unfixable */
878 if (next->start < new->start || next->end > new->end)
879 return next;
880 if (!next->sibling)
881 break;
882 if (next->sibling->start > new->end)
883 break;
884 }
885
886 new->parent = parent;
887 new->sibling = next->sibling;
888 new->child = first;
889
890 next->sibling = NULL;
891 for (next = first; next; next = next->sibling)
892 next->parent = new;
893
894 if (parent->child == first) {
895 parent->child = new;
896 } else {
897 next = parent->child;
898 while (next->sibling != first)
899 next = next->sibling;
900 next->sibling = new;
901 }
902 return NULL;
903 }
904
905 /**
906 * insert_resource_conflict - Inserts resource in the resource tree
907 * @parent: parent of the new resource
908 * @new: new resource to insert
909 *
910 * Returns 0 on success, conflict resource if the resource can't be inserted.
911 *
912 * This function is equivalent to request_resource_conflict when no conflict
913 * happens. If a conflict happens, and the conflicting resources
914 * entirely fit within the range of the new resource, then the new
915 * resource is inserted and the conflicting resources become children of
916 * the new resource.
917 *
918 * This function is intended for producers of resources, such as FW modules
919 * and bus drivers.
920 */
insert_resource_conflict(struct resource * parent,struct resource * new)921 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
922 {
923 struct resource *conflict;
924
925 write_lock(&resource_lock);
926 conflict = __insert_resource(parent, new);
927 write_unlock(&resource_lock);
928 return conflict;
929 }
930
931 /**
932 * insert_resource - Inserts a resource in the resource tree
933 * @parent: parent of the new resource
934 * @new: new resource to insert
935 *
936 * Returns 0 on success, -EBUSY if the resource can't be inserted.
937 *
938 * This function is intended for producers of resources, such as FW modules
939 * and bus drivers.
940 */
insert_resource(struct resource * parent,struct resource * new)941 int insert_resource(struct resource *parent, struct resource *new)
942 {
943 struct resource *conflict;
944
945 conflict = insert_resource_conflict(parent, new);
946 return conflict ? -EBUSY : 0;
947 }
948 EXPORT_SYMBOL_GPL(insert_resource);
949
950 /**
951 * insert_resource_expand_to_fit - Insert a resource into the resource tree
952 * @root: root resource descriptor
953 * @new: new resource to insert
954 *
955 * Insert a resource into the resource tree, possibly expanding it in order
956 * to make it encompass any conflicting resources.
957 */
insert_resource_expand_to_fit(struct resource * root,struct resource * new)958 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
959 {
960 if (new->parent)
961 return;
962
963 write_lock(&resource_lock);
964 for (;;) {
965 struct resource *conflict;
966
967 conflict = __insert_resource(root, new);
968 if (!conflict)
969 break;
970 if (conflict == root)
971 break;
972
973 /* Ok, expand resource to cover the conflict, then try again .. */
974 if (conflict->start < new->start)
975 new->start = conflict->start;
976 if (conflict->end > new->end)
977 new->end = conflict->end;
978
979 pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
980 }
981 write_unlock(&resource_lock);
982 }
983 /*
984 * Not for general consumption, only early boot memory map parsing, PCI
985 * resource discovery, and late discovery of CXL resources are expected
986 * to use this interface. The former are built-in and only the latter,
987 * CXL, is a module.
988 */
989 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL);
990
991 /**
992 * remove_resource - Remove a resource in the resource tree
993 * @old: resource to remove
994 *
995 * Returns 0 on success, -EINVAL if the resource is not valid.
996 *
997 * This function removes a resource previously inserted by insert_resource()
998 * or insert_resource_conflict(), and moves the children (if any) up to
999 * where they were before. insert_resource() and insert_resource_conflict()
1000 * insert a new resource, and move any conflicting resources down to the
1001 * children of the new resource.
1002 *
1003 * insert_resource(), insert_resource_conflict() and remove_resource() are
1004 * intended for producers of resources, such as FW modules and bus drivers.
1005 */
remove_resource(struct resource * old)1006 int remove_resource(struct resource *old)
1007 {
1008 int retval;
1009
1010 write_lock(&resource_lock);
1011 retval = __release_resource(old, false);
1012 write_unlock(&resource_lock);
1013 return retval;
1014 }
1015 EXPORT_SYMBOL_GPL(remove_resource);
1016
__adjust_resource(struct resource * res,resource_size_t start,resource_size_t size)1017 static int __adjust_resource(struct resource *res, resource_size_t start,
1018 resource_size_t size)
1019 {
1020 struct resource *tmp, *parent = res->parent;
1021 resource_size_t end = start + size - 1;
1022 int result = -EBUSY;
1023
1024 if (!parent)
1025 goto skip;
1026
1027 if ((start < parent->start) || (end > parent->end))
1028 goto out;
1029
1030 if (res->sibling && (res->sibling->start <= end))
1031 goto out;
1032
1033 tmp = parent->child;
1034 if (tmp != res) {
1035 while (tmp->sibling != res)
1036 tmp = tmp->sibling;
1037 if (start <= tmp->end)
1038 goto out;
1039 }
1040
1041 skip:
1042 for (tmp = res->child; tmp; tmp = tmp->sibling)
1043 if ((tmp->start < start) || (tmp->end > end))
1044 goto out;
1045
1046 res->start = start;
1047 res->end = end;
1048 result = 0;
1049
1050 out:
1051 return result;
1052 }
1053
1054 /**
1055 * adjust_resource - modify a resource's start and size
1056 * @res: resource to modify
1057 * @start: new start value
1058 * @size: new size
1059 *
1060 * Given an existing resource, change its start and size to match the
1061 * arguments. Returns 0 on success, -EBUSY if it can't fit.
1062 * Existing children of the resource are assumed to be immutable.
1063 */
adjust_resource(struct resource * res,resource_size_t start,resource_size_t size)1064 int adjust_resource(struct resource *res, resource_size_t start,
1065 resource_size_t size)
1066 {
1067 int result;
1068
1069 write_lock(&resource_lock);
1070 result = __adjust_resource(res, start, size);
1071 write_unlock(&resource_lock);
1072 return result;
1073 }
1074 EXPORT_SYMBOL(adjust_resource);
1075
1076 static void __init
__reserve_region_with_split(struct resource * root,resource_size_t start,resource_size_t end,const char * name)1077 __reserve_region_with_split(struct resource *root, resource_size_t start,
1078 resource_size_t end, const char *name)
1079 {
1080 struct resource *parent = root;
1081 struct resource *conflict;
1082 struct resource *res = alloc_resource(GFP_ATOMIC);
1083 struct resource *next_res = NULL;
1084 int type = resource_type(root);
1085
1086 if (!res)
1087 return;
1088
1089 res->name = name;
1090 res->start = start;
1091 res->end = end;
1092 res->flags = type | IORESOURCE_BUSY;
1093 res->desc = IORES_DESC_NONE;
1094
1095 while (1) {
1096
1097 conflict = __request_resource(parent, res);
1098 if (!conflict) {
1099 if (!next_res)
1100 break;
1101 res = next_res;
1102 next_res = NULL;
1103 continue;
1104 }
1105
1106 /* conflict covered whole area */
1107 if (conflict->start <= res->start &&
1108 conflict->end >= res->end) {
1109 free_resource(res);
1110 WARN_ON(next_res);
1111 break;
1112 }
1113
1114 /* failed, split and try again */
1115 if (conflict->start > res->start) {
1116 end = res->end;
1117 res->end = conflict->start - 1;
1118 if (conflict->end < end) {
1119 next_res = alloc_resource(GFP_ATOMIC);
1120 if (!next_res) {
1121 free_resource(res);
1122 break;
1123 }
1124 next_res->name = name;
1125 next_res->start = conflict->end + 1;
1126 next_res->end = end;
1127 next_res->flags = type | IORESOURCE_BUSY;
1128 next_res->desc = IORES_DESC_NONE;
1129 }
1130 } else {
1131 res->start = conflict->end + 1;
1132 }
1133 }
1134
1135 }
1136
1137 void __init
reserve_region_with_split(struct resource * root,resource_size_t start,resource_size_t end,const char * name)1138 reserve_region_with_split(struct resource *root, resource_size_t start,
1139 resource_size_t end, const char *name)
1140 {
1141 int abort = 0;
1142
1143 write_lock(&resource_lock);
1144 if (root->start > start || root->end < end) {
1145 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1146 (unsigned long long)start, (unsigned long long)end,
1147 root);
1148 if (start > root->end || end < root->start)
1149 abort = 1;
1150 else {
1151 if (end > root->end)
1152 end = root->end;
1153 if (start < root->start)
1154 start = root->start;
1155 pr_err("fixing request to [0x%llx-0x%llx]\n",
1156 (unsigned long long)start,
1157 (unsigned long long)end);
1158 }
1159 dump_stack();
1160 }
1161 if (!abort)
1162 __reserve_region_with_split(root, start, end, name);
1163 write_unlock(&resource_lock);
1164 }
1165
1166 /**
1167 * resource_alignment - calculate resource's alignment
1168 * @res: resource pointer
1169 *
1170 * Returns alignment on success, 0 (invalid alignment) on failure.
1171 */
resource_alignment(struct resource * res)1172 resource_size_t resource_alignment(struct resource *res)
1173 {
1174 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1175 case IORESOURCE_SIZEALIGN:
1176 return resource_size(res);
1177 case IORESOURCE_STARTALIGN:
1178 return res->start;
1179 default:
1180 return 0;
1181 }
1182 }
1183
1184 /*
1185 * This is compatibility stuff for IO resources.
1186 *
1187 * Note how this, unlike the above, knows about
1188 * the IO flag meanings (busy etc).
1189 *
1190 * request_region creates a new busy region.
1191 *
1192 * release_region releases a matching busy region.
1193 */
1194
1195 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1196
1197 static struct inode *iomem_inode;
1198
1199 #ifdef CONFIG_IO_STRICT_DEVMEM
revoke_iomem(struct resource * res)1200 static void revoke_iomem(struct resource *res)
1201 {
1202 /* pairs with smp_store_release() in iomem_init_inode() */
1203 struct inode *inode = smp_load_acquire(&iomem_inode);
1204
1205 /*
1206 * Check that the initialization has completed. Losing the race
1207 * is ok because it means drivers are claiming resources before
1208 * the fs_initcall level of init and prevent iomem_get_mapping users
1209 * from establishing mappings.
1210 */
1211 if (!inode)
1212 return;
1213
1214 /*
1215 * The expectation is that the driver has successfully marked
1216 * the resource busy by this point, so devmem_is_allowed()
1217 * should start returning false, however for performance this
1218 * does not iterate the entire resource range.
1219 */
1220 if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1221 devmem_is_allowed(PHYS_PFN(res->end))) {
1222 /*
1223 * *cringe* iomem=relaxed says "go ahead, what's the
1224 * worst that can happen?"
1225 */
1226 return;
1227 }
1228
1229 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1230 }
1231 #else
revoke_iomem(struct resource * res)1232 static void revoke_iomem(struct resource *res) {}
1233 #endif
1234
iomem_get_mapping(void)1235 struct address_space *iomem_get_mapping(void)
1236 {
1237 /*
1238 * This function is only called from file open paths, hence guaranteed
1239 * that fs_initcalls have completed and no need to check for NULL. But
1240 * since revoke_iomem can be called before the initcall we still need
1241 * the barrier to appease checkers.
1242 */
1243 return smp_load_acquire(&iomem_inode)->i_mapping;
1244 }
1245
__request_region_locked(struct resource * res,struct resource * parent,resource_size_t start,resource_size_t n,const char * name,int flags)1246 static int __request_region_locked(struct resource *res, struct resource *parent,
1247 resource_size_t start, resource_size_t n,
1248 const char *name, int flags)
1249 {
1250 DECLARE_WAITQUEUE(wait, current);
1251
1252 res->name = name;
1253 res->start = start;
1254 res->end = start + n - 1;
1255
1256 for (;;) {
1257 struct resource *conflict;
1258
1259 res->flags = resource_type(parent) | resource_ext_type(parent);
1260 res->flags |= IORESOURCE_BUSY | flags;
1261 res->desc = parent->desc;
1262
1263 conflict = __request_resource(parent, res);
1264 if (!conflict)
1265 break;
1266 /*
1267 * mm/hmm.c reserves physical addresses which then
1268 * become unavailable to other users. Conflicts are
1269 * not expected. Warn to aid debugging if encountered.
1270 */
1271 if (parent == &iomem_resource &&
1272 conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1273 pr_warn("Unaddressable device %s %pR conflicts with %pR\n",
1274 conflict->name, conflict, res);
1275 }
1276 if (conflict != parent) {
1277 if (!(conflict->flags & IORESOURCE_BUSY)) {
1278 parent = conflict;
1279 continue;
1280 }
1281 }
1282 if (conflict->flags & flags & IORESOURCE_MUXED) {
1283 add_wait_queue(&muxed_resource_wait, &wait);
1284 write_unlock(&resource_lock);
1285 set_current_state(TASK_UNINTERRUPTIBLE);
1286 schedule();
1287 remove_wait_queue(&muxed_resource_wait, &wait);
1288 write_lock(&resource_lock);
1289 continue;
1290 }
1291 /* Uhhuh, that didn't work out.. */
1292 return -EBUSY;
1293 }
1294
1295 return 0;
1296 }
1297
1298 /**
1299 * __request_region - create a new busy resource region
1300 * @parent: parent resource descriptor
1301 * @start: resource start address
1302 * @n: resource region size
1303 * @name: reserving caller's ID string
1304 * @flags: IO resource flags
1305 */
__request_region(struct resource * parent,resource_size_t start,resource_size_t n,const char * name,int flags)1306 struct resource *__request_region(struct resource *parent,
1307 resource_size_t start, resource_size_t n,
1308 const char *name, int flags)
1309 {
1310 struct resource *res = alloc_resource(GFP_KERNEL);
1311 int ret;
1312
1313 if (!res)
1314 return NULL;
1315
1316 write_lock(&resource_lock);
1317 ret = __request_region_locked(res, parent, start, n, name, flags);
1318 write_unlock(&resource_lock);
1319
1320 if (ret) {
1321 free_resource(res);
1322 return NULL;
1323 }
1324
1325 if (parent == &iomem_resource)
1326 revoke_iomem(res);
1327
1328 return res;
1329 }
1330 EXPORT_SYMBOL(__request_region);
1331
1332 /**
1333 * __release_region - release a previously reserved resource region
1334 * @parent: parent resource descriptor
1335 * @start: resource start address
1336 * @n: resource region size
1337 *
1338 * The described resource region must match a currently busy region.
1339 */
__release_region(struct resource * parent,resource_size_t start,resource_size_t n)1340 void __release_region(struct resource *parent, resource_size_t start,
1341 resource_size_t n)
1342 {
1343 struct resource **p;
1344 resource_size_t end;
1345
1346 p = &parent->child;
1347 end = start + n - 1;
1348
1349 write_lock(&resource_lock);
1350
1351 for (;;) {
1352 struct resource *res = *p;
1353
1354 if (!res)
1355 break;
1356 if (res->start <= start && res->end >= end) {
1357 if (!(res->flags & IORESOURCE_BUSY)) {
1358 p = &res->child;
1359 continue;
1360 }
1361 if (res->start != start || res->end != end)
1362 break;
1363 *p = res->sibling;
1364 write_unlock(&resource_lock);
1365 if (res->flags & IORESOURCE_MUXED)
1366 wake_up(&muxed_resource_wait);
1367 free_resource(res);
1368 return;
1369 }
1370 p = &res->sibling;
1371 }
1372
1373 write_unlock(&resource_lock);
1374
1375 pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
1376 }
1377 EXPORT_SYMBOL(__release_region);
1378
1379 #ifdef CONFIG_MEMORY_HOTREMOVE
1380 /**
1381 * release_mem_region_adjustable - release a previously reserved memory region
1382 * @start: resource start address
1383 * @size: resource region size
1384 *
1385 * This interface is intended for memory hot-delete. The requested region
1386 * is released from a currently busy memory resource. The requested region
1387 * must either match exactly or fit into a single busy resource entry. In
1388 * the latter case, the remaining resource is adjusted accordingly.
1389 * Existing children of the busy memory resource must be immutable in the
1390 * request.
1391 *
1392 * Note:
1393 * - Additional release conditions, such as overlapping region, can be
1394 * supported after they are confirmed as valid cases.
1395 * - When a busy memory resource gets split into two entries, the code
1396 * assumes that all children remain in the lower address entry for
1397 * simplicity. Enhance this logic when necessary.
1398 */
release_mem_region_adjustable(resource_size_t start,resource_size_t size)1399 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1400 {
1401 struct resource *parent = &iomem_resource;
1402 struct resource *new_res = NULL;
1403 bool alloc_nofail = false;
1404 struct resource **p;
1405 struct resource *res;
1406 resource_size_t end;
1407
1408 end = start + size - 1;
1409 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1410 return;
1411
1412 /*
1413 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1414 * just before releasing the region. This is highly unlikely to
1415 * fail - let's play save and make it never fail as the caller cannot
1416 * perform any error handling (e.g., trying to re-add memory will fail
1417 * similarly).
1418 */
1419 retry:
1420 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1421
1422 p = &parent->child;
1423 write_lock(&resource_lock);
1424
1425 while ((res = *p)) {
1426 if (res->start >= end)
1427 break;
1428
1429 /* look for the next resource if it does not fit into */
1430 if (res->start > start || res->end < end) {
1431 p = &res->sibling;
1432 continue;
1433 }
1434
1435 if (!(res->flags & IORESOURCE_MEM))
1436 break;
1437
1438 if (!(res->flags & IORESOURCE_BUSY)) {
1439 p = &res->child;
1440 continue;
1441 }
1442
1443 /* found the target resource; let's adjust accordingly */
1444 if (res->start == start && res->end == end) {
1445 /* free the whole entry */
1446 *p = res->sibling;
1447 free_resource(res);
1448 } else if (res->start == start && res->end != end) {
1449 /* adjust the start */
1450 WARN_ON_ONCE(__adjust_resource(res, end + 1,
1451 res->end - end));
1452 } else if (res->start != start && res->end == end) {
1453 /* adjust the end */
1454 WARN_ON_ONCE(__adjust_resource(res, res->start,
1455 start - res->start));
1456 } else {
1457 /* split into two entries - we need a new resource */
1458 if (!new_res) {
1459 new_res = alloc_resource(GFP_ATOMIC);
1460 if (!new_res) {
1461 alloc_nofail = true;
1462 write_unlock(&resource_lock);
1463 goto retry;
1464 }
1465 }
1466 new_res->name = res->name;
1467 new_res->start = end + 1;
1468 new_res->end = res->end;
1469 new_res->flags = res->flags;
1470 new_res->desc = res->desc;
1471 new_res->parent = res->parent;
1472 new_res->sibling = res->sibling;
1473 new_res->child = NULL;
1474
1475 if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1476 start - res->start)))
1477 break;
1478 res->sibling = new_res;
1479 new_res = NULL;
1480 }
1481
1482 break;
1483 }
1484
1485 write_unlock(&resource_lock);
1486 free_resource(new_res);
1487 }
1488 #endif /* CONFIG_MEMORY_HOTREMOVE */
1489
1490 #ifdef CONFIG_MEMORY_HOTPLUG
system_ram_resources_mergeable(struct resource * r1,struct resource * r2)1491 static bool system_ram_resources_mergeable(struct resource *r1,
1492 struct resource *r2)
1493 {
1494 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1495 return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1496 r1->name == r2->name && r1->desc == r2->desc &&
1497 !r1->child && !r2->child;
1498 }
1499
1500 /**
1501 * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1502 * merge it with adjacent, mergeable resources
1503 * @res: resource descriptor
1504 *
1505 * This interface is intended for memory hotplug, whereby lots of contiguous
1506 * system ram resources are added (e.g., via add_memory*()) by a driver, and
1507 * the actual resource boundaries are not of interest (e.g., it might be
1508 * relevant for DIMMs). Only resources that are marked mergeable, that have the
1509 * same parent, and that don't have any children are considered. All mergeable
1510 * resources must be immutable during the request.
1511 *
1512 * Note:
1513 * - The caller has to make sure that no pointers to resources that are
1514 * marked mergeable are used anymore after this call - the resource might
1515 * be freed and the pointer might be stale!
1516 * - release_mem_region_adjustable() will split on demand on memory hotunplug
1517 */
merge_system_ram_resource(struct resource * res)1518 void merge_system_ram_resource(struct resource *res)
1519 {
1520 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1521 struct resource *cur;
1522
1523 if (WARN_ON_ONCE((res->flags & flags) != flags))
1524 return;
1525
1526 write_lock(&resource_lock);
1527 res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1528
1529 /* Try to merge with next item in the list. */
1530 cur = res->sibling;
1531 if (cur && system_ram_resources_mergeable(res, cur)) {
1532 res->end = cur->end;
1533 res->sibling = cur->sibling;
1534 free_resource(cur);
1535 }
1536
1537 /* Try to merge with previous item in the list. */
1538 cur = res->parent->child;
1539 while (cur && cur->sibling != res)
1540 cur = cur->sibling;
1541 if (cur && system_ram_resources_mergeable(cur, res)) {
1542 cur->end = res->end;
1543 cur->sibling = res->sibling;
1544 free_resource(res);
1545 }
1546 write_unlock(&resource_lock);
1547 }
1548 #endif /* CONFIG_MEMORY_HOTPLUG */
1549
1550 /*
1551 * Managed region resource
1552 */
devm_resource_release(struct device * dev,void * ptr)1553 static void devm_resource_release(struct device *dev, void *ptr)
1554 {
1555 struct resource **r = ptr;
1556
1557 release_resource(*r);
1558 }
1559
1560 /**
1561 * devm_request_resource() - request and reserve an I/O or memory resource
1562 * @dev: device for which to request the resource
1563 * @root: root of the resource tree from which to request the resource
1564 * @new: descriptor of the resource to request
1565 *
1566 * This is a device-managed version of request_resource(). There is usually
1567 * no need to release resources requested by this function explicitly since
1568 * that will be taken care of when the device is unbound from its driver.
1569 * If for some reason the resource needs to be released explicitly, because
1570 * of ordering issues for example, drivers must call devm_release_resource()
1571 * rather than the regular release_resource().
1572 *
1573 * When a conflict is detected between any existing resources and the newly
1574 * requested resource, an error message will be printed.
1575 *
1576 * Returns 0 on success or a negative error code on failure.
1577 */
devm_request_resource(struct device * dev,struct resource * root,struct resource * new)1578 int devm_request_resource(struct device *dev, struct resource *root,
1579 struct resource *new)
1580 {
1581 struct resource *conflict, **ptr;
1582
1583 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1584 if (!ptr)
1585 return -ENOMEM;
1586
1587 *ptr = new;
1588
1589 conflict = request_resource_conflict(root, new);
1590 if (conflict) {
1591 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1592 new, conflict->name, conflict);
1593 devres_free(ptr);
1594 return -EBUSY;
1595 }
1596
1597 devres_add(dev, ptr);
1598 return 0;
1599 }
1600 EXPORT_SYMBOL(devm_request_resource);
1601
devm_resource_match(struct device * dev,void * res,void * data)1602 static int devm_resource_match(struct device *dev, void *res, void *data)
1603 {
1604 struct resource **ptr = res;
1605
1606 return *ptr == data;
1607 }
1608
1609 /**
1610 * devm_release_resource() - release a previously requested resource
1611 * @dev: device for which to release the resource
1612 * @new: descriptor of the resource to release
1613 *
1614 * Releases a resource previously requested using devm_request_resource().
1615 */
devm_release_resource(struct device * dev,struct resource * new)1616 void devm_release_resource(struct device *dev, struct resource *new)
1617 {
1618 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1619 new));
1620 }
1621 EXPORT_SYMBOL(devm_release_resource);
1622
1623 struct region_devres {
1624 struct resource *parent;
1625 resource_size_t start;
1626 resource_size_t n;
1627 };
1628
devm_region_release(struct device * dev,void * res)1629 static void devm_region_release(struct device *dev, void *res)
1630 {
1631 struct region_devres *this = res;
1632
1633 __release_region(this->parent, this->start, this->n);
1634 }
1635
devm_region_match(struct device * dev,void * res,void * match_data)1636 static int devm_region_match(struct device *dev, void *res, void *match_data)
1637 {
1638 struct region_devres *this = res, *match = match_data;
1639
1640 return this->parent == match->parent &&
1641 this->start == match->start && this->n == match->n;
1642 }
1643
1644 struct resource *
__devm_request_region(struct device * dev,struct resource * parent,resource_size_t start,resource_size_t n,const char * name)1645 __devm_request_region(struct device *dev, struct resource *parent,
1646 resource_size_t start, resource_size_t n, const char *name)
1647 {
1648 struct region_devres *dr = NULL;
1649 struct resource *res;
1650
1651 dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1652 GFP_KERNEL);
1653 if (!dr)
1654 return NULL;
1655
1656 dr->parent = parent;
1657 dr->start = start;
1658 dr->n = n;
1659
1660 res = __request_region(parent, start, n, name, 0);
1661 if (res)
1662 devres_add(dev, dr);
1663 else
1664 devres_free(dr);
1665
1666 return res;
1667 }
1668 EXPORT_SYMBOL(__devm_request_region);
1669
__devm_release_region(struct device * dev,struct resource * parent,resource_size_t start,resource_size_t n)1670 void __devm_release_region(struct device *dev, struct resource *parent,
1671 resource_size_t start, resource_size_t n)
1672 {
1673 struct region_devres match_data = { parent, start, n };
1674
1675 __release_region(parent, start, n);
1676 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1677 &match_data));
1678 }
1679 EXPORT_SYMBOL(__devm_release_region);
1680
1681 /*
1682 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1683 */
1684 #define MAXRESERVE 4
reserve_setup(char * str)1685 static int __init reserve_setup(char *str)
1686 {
1687 static int reserved;
1688 static struct resource reserve[MAXRESERVE];
1689
1690 for (;;) {
1691 unsigned int io_start, io_num;
1692 int x = reserved;
1693 struct resource *parent;
1694
1695 if (get_option(&str, &io_start) != 2)
1696 break;
1697 if (get_option(&str, &io_num) == 0)
1698 break;
1699 if (x < MAXRESERVE) {
1700 struct resource *res = reserve + x;
1701
1702 /*
1703 * If the region starts below 0x10000, we assume it's
1704 * I/O port space; otherwise assume it's memory.
1705 */
1706 if (io_start < 0x10000) {
1707 res->flags = IORESOURCE_IO;
1708 parent = &ioport_resource;
1709 } else {
1710 res->flags = IORESOURCE_MEM;
1711 parent = &iomem_resource;
1712 }
1713 res->name = "reserved";
1714 res->start = io_start;
1715 res->end = io_start + io_num - 1;
1716 res->flags |= IORESOURCE_BUSY;
1717 res->desc = IORES_DESC_NONE;
1718 res->child = NULL;
1719 if (request_resource(parent, res) == 0)
1720 reserved = x+1;
1721 }
1722 }
1723 return 1;
1724 }
1725 __setup("reserve=", reserve_setup);
1726
1727 /*
1728 * Check if the requested addr and size spans more than any slot in the
1729 * iomem resource tree.
1730 */
iomem_map_sanity_check(resource_size_t addr,unsigned long size)1731 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1732 {
1733 resource_size_t end = addr + size - 1;
1734 struct resource *p;
1735 int err = 0;
1736
1737 read_lock(&resource_lock);
1738 for_each_resource(&iomem_resource, p, false) {
1739 /*
1740 * We can probably skip the resources without
1741 * IORESOURCE_IO attribute?
1742 */
1743 if (p->start > end)
1744 continue;
1745 if (p->end < addr)
1746 continue;
1747 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1748 PFN_DOWN(p->end) >= PFN_DOWN(end))
1749 continue;
1750 /*
1751 * if a resource is "BUSY", it's not a hardware resource
1752 * but a driver mapping of such a resource; we don't want
1753 * to warn for those; some drivers legitimately map only
1754 * partial hardware resources. (example: vesafb)
1755 */
1756 if (p->flags & IORESOURCE_BUSY)
1757 continue;
1758
1759 pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1760 &addr, &end, p->name, p);
1761 err = -1;
1762 break;
1763 }
1764 read_unlock(&resource_lock);
1765
1766 return err;
1767 }
1768
1769 #ifdef CONFIG_STRICT_DEVMEM
1770 static int strict_iomem_checks = 1;
1771 #else
1772 static int strict_iomem_checks;
1773 #endif
1774
1775 /*
1776 * Check if an address is exclusive to the kernel and must not be mapped to
1777 * user space, for example, via /dev/mem.
1778 *
1779 * Returns true if exclusive to the kernel, otherwise returns false.
1780 */
resource_is_exclusive(struct resource * root,u64 addr,resource_size_t size)1781 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1782 {
1783 const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1784 IORESOURCE_EXCLUSIVE;
1785 bool skip_children = false, err = false;
1786 struct resource *p;
1787
1788 read_lock(&resource_lock);
1789 for_each_resource(root, p, skip_children) {
1790 if (p->start >= addr + size)
1791 break;
1792 if (p->end < addr) {
1793 skip_children = true;
1794 continue;
1795 }
1796 skip_children = false;
1797
1798 /*
1799 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1800 * IORESOURCE_EXCLUSIVE is set, even if they
1801 * are not busy and even if "iomem=relaxed" is set. The
1802 * responsible driver dynamically adds/removes system RAM within
1803 * such an area and uncontrolled access is dangerous.
1804 */
1805 if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1806 err = true;
1807 break;
1808 }
1809
1810 /*
1811 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1812 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1813 * resource is busy.
1814 */
1815 if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1816 continue;
1817 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1818 || p->flags & IORESOURCE_EXCLUSIVE) {
1819 err = true;
1820 break;
1821 }
1822 }
1823 read_unlock(&resource_lock);
1824
1825 return err;
1826 }
1827
iomem_is_exclusive(u64 addr)1828 bool iomem_is_exclusive(u64 addr)
1829 {
1830 return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1831 PAGE_SIZE);
1832 }
1833
resource_list_create_entry(struct resource * res,size_t extra_size)1834 struct resource_entry *resource_list_create_entry(struct resource *res,
1835 size_t extra_size)
1836 {
1837 struct resource_entry *entry;
1838
1839 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1840 if (entry) {
1841 INIT_LIST_HEAD(&entry->node);
1842 entry->res = res ? res : &entry->__res;
1843 }
1844
1845 return entry;
1846 }
1847 EXPORT_SYMBOL(resource_list_create_entry);
1848
resource_list_free(struct list_head * head)1849 void resource_list_free(struct list_head *head)
1850 {
1851 struct resource_entry *entry, *tmp;
1852
1853 list_for_each_entry_safe(entry, tmp, head, node)
1854 resource_list_destroy_entry(entry);
1855 }
1856 EXPORT_SYMBOL(resource_list_free);
1857
1858 #ifdef CONFIG_GET_FREE_REGION
1859 #define GFR_DESCENDING (1UL << 0)
1860 #define GFR_REQUEST_REGION (1UL << 1)
1861 #ifdef PA_SECTION_SHIFT
1862 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT)
1863 #else
1864 #define GFR_DEFAULT_ALIGN PAGE_SIZE
1865 #endif
1866
gfr_start(struct resource * base,resource_size_t size,resource_size_t align,unsigned long flags)1867 static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1868 resource_size_t align, unsigned long flags)
1869 {
1870 if (flags & GFR_DESCENDING) {
1871 resource_size_t end;
1872
1873 end = min_t(resource_size_t, base->end, PHYSMEM_END);
1874 return end - size + 1;
1875 }
1876
1877 return ALIGN(max(base->start, align), align);
1878 }
1879
gfr_continue(struct resource * base,resource_size_t addr,resource_size_t size,unsigned long flags)1880 static bool gfr_continue(struct resource *base, resource_size_t addr,
1881 resource_size_t size, unsigned long flags)
1882 {
1883 if (flags & GFR_DESCENDING)
1884 return addr > size && addr >= base->start;
1885 /*
1886 * In the ascend case be careful that the last increment by
1887 * @size did not wrap 0.
1888 */
1889 return addr > addr - size &&
1890 addr <= min_t(resource_size_t, base->end, PHYSMEM_END);
1891 }
1892
gfr_next(resource_size_t addr,resource_size_t size,unsigned long flags)1893 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1894 unsigned long flags)
1895 {
1896 if (flags & GFR_DESCENDING)
1897 return addr - size;
1898 return addr + size;
1899 }
1900
remove_free_mem_region(void * _res)1901 static void remove_free_mem_region(void *_res)
1902 {
1903 struct resource *res = _res;
1904
1905 if (res->parent)
1906 remove_resource(res);
1907 free_resource(res);
1908 }
1909
1910 static struct resource *
get_free_mem_region(struct device * dev,struct resource * base,resource_size_t size,const unsigned long align,const char * name,const unsigned long desc,const unsigned long flags)1911 get_free_mem_region(struct device *dev, struct resource *base,
1912 resource_size_t size, const unsigned long align,
1913 const char *name, const unsigned long desc,
1914 const unsigned long flags)
1915 {
1916 resource_size_t addr;
1917 struct resource *res;
1918 struct region_devres *dr = NULL;
1919
1920 size = ALIGN(size, align);
1921
1922 res = alloc_resource(GFP_KERNEL);
1923 if (!res)
1924 return ERR_PTR(-ENOMEM);
1925
1926 if (dev && (flags & GFR_REQUEST_REGION)) {
1927 dr = devres_alloc(devm_region_release,
1928 sizeof(struct region_devres), GFP_KERNEL);
1929 if (!dr) {
1930 free_resource(res);
1931 return ERR_PTR(-ENOMEM);
1932 }
1933 } else if (dev) {
1934 if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1935 return ERR_PTR(-ENOMEM);
1936 }
1937
1938 write_lock(&resource_lock);
1939 for (addr = gfr_start(base, size, align, flags);
1940 gfr_continue(base, addr, align, flags);
1941 addr = gfr_next(addr, align, flags)) {
1942 if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1943 REGION_DISJOINT)
1944 continue;
1945
1946 if (flags & GFR_REQUEST_REGION) {
1947 if (__request_region_locked(res, &iomem_resource, addr,
1948 size, name, 0))
1949 break;
1950
1951 if (dev) {
1952 dr->parent = &iomem_resource;
1953 dr->start = addr;
1954 dr->n = size;
1955 devres_add(dev, dr);
1956 }
1957
1958 res->desc = desc;
1959 write_unlock(&resource_lock);
1960
1961
1962 /*
1963 * A driver is claiming this region so revoke any
1964 * mappings.
1965 */
1966 revoke_iomem(res);
1967 } else {
1968 res->start = addr;
1969 res->end = addr + size - 1;
1970 res->name = name;
1971 res->desc = desc;
1972 res->flags = IORESOURCE_MEM;
1973
1974 /*
1975 * Only succeed if the resource hosts an exclusive
1976 * range after the insert
1977 */
1978 if (__insert_resource(base, res) || res->child)
1979 break;
1980
1981 write_unlock(&resource_lock);
1982 }
1983
1984 return res;
1985 }
1986 write_unlock(&resource_lock);
1987
1988 if (flags & GFR_REQUEST_REGION) {
1989 free_resource(res);
1990 devres_free(dr);
1991 } else if (dev)
1992 devm_release_action(dev, remove_free_mem_region, res);
1993
1994 return ERR_PTR(-ERANGE);
1995 }
1996
1997 /**
1998 * devm_request_free_mem_region - find free region for device private memory
1999 *
2000 * @dev: device struct to bind the resource to
2001 * @size: size in bytes of the device memory to add
2002 * @base: resource tree to look in
2003 *
2004 * This function tries to find an empty range of physical address big enough to
2005 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
2006 * memory, which in turn allocates struct pages.
2007 */
devm_request_free_mem_region(struct device * dev,struct resource * base,unsigned long size)2008 struct resource *devm_request_free_mem_region(struct device *dev,
2009 struct resource *base, unsigned long size)
2010 {
2011 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2012
2013 return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
2014 dev_name(dev),
2015 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2016 }
2017 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
2018
request_free_mem_region(struct resource * base,unsigned long size,const char * name)2019 struct resource *request_free_mem_region(struct resource *base,
2020 unsigned long size, const char *name)
2021 {
2022 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2023
2024 return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
2025 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2026 }
2027 EXPORT_SYMBOL_GPL(request_free_mem_region);
2028
2029 /**
2030 * alloc_free_mem_region - find a free region relative to @base
2031 * @base: resource that will parent the new resource
2032 * @size: size in bytes of memory to allocate from @base
2033 * @align: alignment requirements for the allocation
2034 * @name: resource name
2035 *
2036 * Buses like CXL, that can dynamically instantiate new memory regions,
2037 * need a method to allocate physical address space for those regions.
2038 * Allocate and insert a new resource to cover a free, unclaimed by a
2039 * descendant of @base, range in the span of @base.
2040 */
alloc_free_mem_region(struct resource * base,unsigned long size,unsigned long align,const char * name)2041 struct resource *alloc_free_mem_region(struct resource *base,
2042 unsigned long size, unsigned long align,
2043 const char *name)
2044 {
2045 /* Default of ascending direction and insert resource */
2046 unsigned long flags = 0;
2047
2048 return get_free_mem_region(NULL, base, size, align, name,
2049 IORES_DESC_NONE, flags);
2050 }
2051 EXPORT_SYMBOL_GPL(alloc_free_mem_region);
2052 #endif /* CONFIG_GET_FREE_REGION */
2053
strict_iomem(char * str)2054 static int __init strict_iomem(char *str)
2055 {
2056 if (strstr(str, "relaxed"))
2057 strict_iomem_checks = 0;
2058 if (strstr(str, "strict"))
2059 strict_iomem_checks = 1;
2060 return 1;
2061 }
2062
iomem_fs_init_fs_context(struct fs_context * fc)2063 static int iomem_fs_init_fs_context(struct fs_context *fc)
2064 {
2065 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2066 }
2067
2068 static struct file_system_type iomem_fs_type = {
2069 .name = "iomem",
2070 .owner = THIS_MODULE,
2071 .init_fs_context = iomem_fs_init_fs_context,
2072 .kill_sb = kill_anon_super,
2073 };
2074
iomem_init_inode(void)2075 static int __init iomem_init_inode(void)
2076 {
2077 static struct vfsmount *iomem_vfs_mount;
2078 static int iomem_fs_cnt;
2079 struct inode *inode;
2080 int rc;
2081
2082 rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2083 if (rc < 0) {
2084 pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2085 return rc;
2086 }
2087
2088 inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2089 if (IS_ERR(inode)) {
2090 rc = PTR_ERR(inode);
2091 pr_err("Cannot allocate inode for iomem: %d\n", rc);
2092 simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2093 return rc;
2094 }
2095
2096 /*
2097 * Publish iomem revocation inode initialized.
2098 * Pairs with smp_load_acquire() in revoke_iomem().
2099 */
2100 smp_store_release(&iomem_inode, inode);
2101
2102 return 0;
2103 }
2104
2105 fs_initcall(iomem_init_inode);
2106
2107 __setup("iomem=", strict_iomem);
2108