• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/kernel/resource.c
4  *
5  * Copyright (C) 1999	Linus Torvalds
6  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
7  *
8  * Arbitrary resource management.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <linux/string.h>
31 #include <linux/vmalloc.h>
32 #include <asm/io.h>
33 
34 
35 struct resource ioport_resource = {
36 	.name	= "PCI IO",
37 	.start	= 0,
38 	.end	= IO_SPACE_LIMIT,
39 	.flags	= IORESOURCE_IO,
40 };
41 EXPORT_SYMBOL(ioport_resource);
42 
43 struct resource iomem_resource = {
44 	.name	= "PCI mem",
45 	.start	= 0,
46 	.end	= -1,
47 	.flags	= IORESOURCE_MEM,
48 };
49 EXPORT_SYMBOL(iomem_resource);
50 
51 static DEFINE_RWLOCK(resource_lock);
52 
next_resource(struct resource * p,bool skip_children)53 static struct resource *next_resource(struct resource *p, bool skip_children)
54 {
55 	if (!skip_children && p->child)
56 		return p->child;
57 	while (!p->sibling && p->parent)
58 		p = p->parent;
59 	return p->sibling;
60 }
61 
62 #define for_each_resource(_root, _p, _skip_children) \
63 	for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children))
64 
65 #ifdef CONFIG_PROC_FS
66 
67 enum { MAX_IORES_LEVEL = 5 };
68 
r_start(struct seq_file * m,loff_t * pos)69 static void *r_start(struct seq_file *m, loff_t *pos)
70 	__acquires(resource_lock)
71 {
72 	struct resource *root = pde_data(file_inode(m->file));
73 	struct resource *p;
74 	loff_t l = *pos;
75 
76 	read_lock(&resource_lock);
77 	for_each_resource(root, p, false) {
78 		if (l-- == 0)
79 			break;
80 	}
81 
82 	return p;
83 }
84 
r_next(struct seq_file * m,void * v,loff_t * pos)85 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
86 {
87 	struct resource *p = v;
88 
89 	(*pos)++;
90 
91 	return (void *)next_resource(p, false);
92 }
93 
r_stop(struct seq_file * m,void * v)94 static void r_stop(struct seq_file *m, void *v)
95 	__releases(resource_lock)
96 {
97 	read_unlock(&resource_lock);
98 }
99 
r_show(struct seq_file * m,void * v)100 static int r_show(struct seq_file *m, void *v)
101 {
102 	struct resource *root = pde_data(file_inode(m->file));
103 	struct resource *r = v, *p;
104 	unsigned long long start, end;
105 	int width = root->end < 0x10000 ? 4 : 8;
106 	int depth;
107 
108 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
109 		if (p->parent == root)
110 			break;
111 
112 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
113 		start = r->start;
114 		end = r->end;
115 	} else {
116 		start = end = 0;
117 	}
118 
119 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
120 			depth * 2, "",
121 			width, start,
122 			width, end,
123 			r->name ? r->name : "<BAD>");
124 	return 0;
125 }
126 
127 static const struct seq_operations resource_op = {
128 	.start	= r_start,
129 	.next	= r_next,
130 	.stop	= r_stop,
131 	.show	= r_show,
132 };
133 
ioresources_init(void)134 static int __init ioresources_init(void)
135 {
136 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
137 			&ioport_resource);
138 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
139 	return 0;
140 }
141 __initcall(ioresources_init);
142 
143 #endif /* CONFIG_PROC_FS */
144 
free_resource(struct resource * res)145 static void free_resource(struct resource *res)
146 {
147 	/**
148 	 * If the resource was allocated using memblock early during boot
149 	 * we'll leak it here: we can only return full pages back to the
150 	 * buddy and trying to be smart and reusing them eventually in
151 	 * alloc_resource() overcomplicates resource handling.
152 	 */
153 	if (res && PageSlab(virt_to_head_page(res)))
154 		kfree(res);
155 }
156 
alloc_resource(gfp_t flags)157 static struct resource *alloc_resource(gfp_t flags)
158 {
159 	return kzalloc(sizeof(struct resource), flags);
160 }
161 
162 /* Return the conflict entry if you can't request it */
__request_resource(struct resource * root,struct resource * new)163 static struct resource * __request_resource(struct resource *root, struct resource *new)
164 {
165 	resource_size_t start = new->start;
166 	resource_size_t end = new->end;
167 	struct resource *tmp, **p;
168 
169 	if (end < start)
170 		return root;
171 	if (start < root->start)
172 		return root;
173 	if (end > root->end)
174 		return root;
175 	p = &root->child;
176 	for (;;) {
177 		tmp = *p;
178 		if (!tmp || tmp->start > end) {
179 			new->sibling = tmp;
180 			*p = new;
181 			new->parent = root;
182 			return NULL;
183 		}
184 		p = &tmp->sibling;
185 		if (tmp->end < start)
186 			continue;
187 		return tmp;
188 	}
189 }
190 
__release_resource(struct resource * old,bool release_child)191 static int __release_resource(struct resource *old, bool release_child)
192 {
193 	struct resource *tmp, **p, *chd;
194 
195 	p = &old->parent->child;
196 	for (;;) {
197 		tmp = *p;
198 		if (!tmp)
199 			break;
200 		if (tmp == old) {
201 			if (release_child || !(tmp->child)) {
202 				*p = tmp->sibling;
203 			} else {
204 				for (chd = tmp->child;; chd = chd->sibling) {
205 					chd->parent = tmp->parent;
206 					if (!(chd->sibling))
207 						break;
208 				}
209 				*p = tmp->child;
210 				chd->sibling = tmp->sibling;
211 			}
212 			old->parent = NULL;
213 			return 0;
214 		}
215 		p = &tmp->sibling;
216 	}
217 	return -EINVAL;
218 }
219 
__release_child_resources(struct resource * r)220 static void __release_child_resources(struct resource *r)
221 {
222 	struct resource *tmp, *p;
223 	resource_size_t size;
224 
225 	p = r->child;
226 	r->child = NULL;
227 	while (p) {
228 		tmp = p;
229 		p = p->sibling;
230 
231 		tmp->parent = NULL;
232 		tmp->sibling = NULL;
233 		__release_child_resources(tmp);
234 
235 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
236 		/* need to restore size, and keep flags */
237 		size = resource_size(tmp);
238 		tmp->start = 0;
239 		tmp->end = size - 1;
240 	}
241 }
242 
release_child_resources(struct resource * r)243 void release_child_resources(struct resource *r)
244 {
245 	write_lock(&resource_lock);
246 	__release_child_resources(r);
247 	write_unlock(&resource_lock);
248 }
249 
250 /**
251  * request_resource_conflict - request and reserve an I/O or memory resource
252  * @root: root resource descriptor
253  * @new: resource descriptor desired by caller
254  *
255  * Returns 0 for success, conflict resource on error.
256  */
request_resource_conflict(struct resource * root,struct resource * new)257 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
258 {
259 	struct resource *conflict;
260 
261 	write_lock(&resource_lock);
262 	conflict = __request_resource(root, new);
263 	write_unlock(&resource_lock);
264 	return conflict;
265 }
266 
267 /**
268  * request_resource - request and reserve an I/O or memory resource
269  * @root: root resource descriptor
270  * @new: resource descriptor desired by caller
271  *
272  * Returns 0 for success, negative error code on error.
273  */
request_resource(struct resource * root,struct resource * new)274 int request_resource(struct resource *root, struct resource *new)
275 {
276 	struct resource *conflict;
277 
278 	conflict = request_resource_conflict(root, new);
279 	return conflict ? -EBUSY : 0;
280 }
281 
282 EXPORT_SYMBOL(request_resource);
283 
284 /**
285  * release_resource - release a previously reserved resource
286  * @old: resource pointer
287  */
release_resource(struct resource * old)288 int release_resource(struct resource *old)
289 {
290 	int retval;
291 
292 	write_lock(&resource_lock);
293 	retval = __release_resource(old, true);
294 	write_unlock(&resource_lock);
295 	return retval;
296 }
297 
298 EXPORT_SYMBOL(release_resource);
299 
300 /**
301  * find_next_iomem_res - Finds the lowest iomem resource that covers part of
302  *			 [@start..@end].
303  *
304  * If a resource is found, returns 0 and @*res is overwritten with the part
305  * of the resource that's within [@start..@end]; if none is found, returns
306  * -ENODEV.  Returns -EINVAL for invalid parameters.
307  *
308  * @start:	start address of the resource searched for
309  * @end:	end address of same resource
310  * @flags:	flags which the resource must have
311  * @desc:	descriptor the resource must have
312  * @res:	return ptr, if resource found
313  *
314  * The caller must specify @start, @end, @flags, and @desc
315  * (which may be IORES_DESC_NONE).
316  */
find_next_iomem_res(resource_size_t start,resource_size_t end,unsigned long flags,unsigned long desc,struct resource * res)317 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
318 			       unsigned long flags, unsigned long desc,
319 			       struct resource *res)
320 {
321 	struct resource *p;
322 
323 	if (!res)
324 		return -EINVAL;
325 
326 	if (start >= end)
327 		return -EINVAL;
328 
329 	read_lock(&resource_lock);
330 
331 	for_each_resource(&iomem_resource, p, false) {
332 		/* If we passed the resource we are looking for, stop */
333 		if (p->start > end) {
334 			p = NULL;
335 			break;
336 		}
337 
338 		/* Skip until we find a range that matches what we look for */
339 		if (p->end < start)
340 			continue;
341 
342 		if ((p->flags & flags) != flags)
343 			continue;
344 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
345 			continue;
346 
347 		/* Found a match, break */
348 		break;
349 	}
350 
351 	if (p) {
352 		/* copy data */
353 		*res = (struct resource) {
354 			.start = max(start, p->start),
355 			.end = min(end, p->end),
356 			.flags = p->flags,
357 			.desc = p->desc,
358 			.parent = p->parent,
359 		};
360 	}
361 
362 	read_unlock(&resource_lock);
363 	return p ? 0 : -ENODEV;
364 }
365 
__walk_iomem_res_desc(resource_size_t start,resource_size_t end,unsigned long flags,unsigned long desc,void * arg,int (* func)(struct resource *,void *))366 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
367 				 unsigned long flags, unsigned long desc,
368 				 void *arg,
369 				 int (*func)(struct resource *, void *))
370 {
371 	struct resource res;
372 	int ret = -EINVAL;
373 
374 	while (start < end &&
375 	       !find_next_iomem_res(start, end, flags, desc, &res)) {
376 		ret = (*func)(&res, arg);
377 		if (ret)
378 			break;
379 
380 		start = res.end + 1;
381 	}
382 
383 	return ret;
384 }
385 
386 /**
387  * walk_iomem_res_desc - Walks through iomem resources and calls func()
388  *			 with matching resource ranges.
389  * *
390  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
391  * @flags: I/O resource flags
392  * @start: start addr
393  * @end: end addr
394  * @arg: function argument for the callback @func
395  * @func: callback function that is called for each qualifying resource area
396  *
397  * All the memory ranges which overlap start,end and also match flags and
398  * desc are valid candidates.
399  *
400  * NOTE: For a new descriptor search, define a new IORES_DESC in
401  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
402  */
walk_iomem_res_desc(unsigned long desc,unsigned long flags,u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))403 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
404 		u64 end, void *arg, int (*func)(struct resource *, void *))
405 {
406 	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
407 }
408 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
409 
410 /*
411  * This function calls the @func callback against all memory ranges of type
412  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
413  * Now, this function is only for System RAM, it deals with full ranges and
414  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
415  * ranges.
416  */
walk_system_ram_res(u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))417 int walk_system_ram_res(u64 start, u64 end, void *arg,
418 			int (*func)(struct resource *, void *))
419 {
420 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
421 
422 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
423 				     func);
424 }
425 
426 /*
427  * This function, being a variant of walk_system_ram_res(), calls the @func
428  * callback against all memory ranges of type System RAM which are marked as
429  * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
430  * higher to lower.
431  */
walk_system_ram_res_rev(u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))432 int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
433 				int (*func)(struct resource *, void *))
434 {
435 	struct resource res, *rams;
436 	int rams_size = 16, i;
437 	unsigned long flags;
438 	int ret = -1;
439 
440 	/* create a list */
441 	rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
442 	if (!rams)
443 		return ret;
444 
445 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
446 	i = 0;
447 	while ((start < end) &&
448 		(!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
449 		if (i >= rams_size) {
450 			/* re-alloc */
451 			struct resource *rams_new;
452 
453 			rams_new = kvrealloc(rams, (rams_size + 16) * sizeof(struct resource),
454 					     GFP_KERNEL);
455 			if (!rams_new)
456 				goto out;
457 
458 			rams = rams_new;
459 			rams_size += 16;
460 		}
461 
462 		rams[i++] = res;
463 		start = res.end + 1;
464 	}
465 
466 	/* go reverse */
467 	for (i--; i >= 0; i--) {
468 		ret = (*func)(&rams[i], arg);
469 		if (ret)
470 			break;
471 	}
472 
473 out:
474 	kvfree(rams);
475 	return ret;
476 }
477 
478 /*
479  * This function calls the @func callback against all memory ranges, which
480  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
481  */
walk_mem_res(u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))482 int walk_mem_res(u64 start, u64 end, void *arg,
483 		 int (*func)(struct resource *, void *))
484 {
485 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
486 
487 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
488 				     func);
489 }
490 
491 /*
492  * This function calls the @func callback against all memory ranges of type
493  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
494  * It is to be used only for System RAM.
495  */
walk_system_ram_range(unsigned long start_pfn,unsigned long nr_pages,void * arg,int (* func)(unsigned long,unsigned long,void *))496 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
497 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
498 {
499 	resource_size_t start, end;
500 	unsigned long flags;
501 	struct resource res;
502 	unsigned long pfn, end_pfn;
503 	int ret = -EINVAL;
504 
505 	start = (u64) start_pfn << PAGE_SHIFT;
506 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
507 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
508 	while (start < end &&
509 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
510 		pfn = PFN_UP(res.start);
511 		end_pfn = PFN_DOWN(res.end + 1);
512 		if (end_pfn > pfn)
513 			ret = (*func)(pfn, end_pfn - pfn, arg);
514 		if (ret)
515 			break;
516 		start = res.end + 1;
517 	}
518 	return ret;
519 }
520 
__is_ram(unsigned long pfn,unsigned long nr_pages,void * arg)521 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
522 {
523 	return 1;
524 }
525 
526 /*
527  * This generic page_is_ram() returns true if specified address is
528  * registered as System RAM in iomem_resource list.
529  */
page_is_ram(unsigned long pfn)530 int __weak page_is_ram(unsigned long pfn)
531 {
532 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
533 }
534 EXPORT_SYMBOL_GPL(page_is_ram);
535 
__region_intersects(struct resource * parent,resource_size_t start,size_t size,unsigned long flags,unsigned long desc)536 static int __region_intersects(struct resource *parent, resource_size_t start,
537 			       size_t size, unsigned long flags,
538 			       unsigned long desc)
539 {
540 	resource_size_t ostart, oend;
541 	int type = 0; int other = 0;
542 	struct resource *p, *dp;
543 	bool is_type, covered;
544 	struct resource res;
545 
546 	res.start = start;
547 	res.end = start + size - 1;
548 
549 	for (p = parent->child; p ; p = p->sibling) {
550 		if (!resource_overlaps(p, &res))
551 			continue;
552 		is_type = (p->flags & flags) == flags &&
553 			(desc == IORES_DESC_NONE || desc == p->desc);
554 		if (is_type) {
555 			type++;
556 			continue;
557 		}
558 		/*
559 		 * Continue to search in descendant resources as if the
560 		 * matched descendant resources cover some ranges of 'p'.
561 		 *
562 		 * |------------- "CXL Window 0" ------------|
563 		 * |-- "System RAM" --|
564 		 *
565 		 * will behave similar as the following fake resource
566 		 * tree when searching "System RAM".
567 		 *
568 		 * |-- "System RAM" --||-- "CXL Window 0a" --|
569 		 */
570 		covered = false;
571 		ostart = max(res.start, p->start);
572 		oend = min(res.end, p->end);
573 		for_each_resource(p, dp, false) {
574 			if (!resource_overlaps(dp, &res))
575 				continue;
576 			is_type = (dp->flags & flags) == flags &&
577 				(desc == IORES_DESC_NONE || desc == dp->desc);
578 			if (is_type) {
579 				type++;
580 				/*
581 				 * Range from 'ostart' to 'dp->start'
582 				 * isn't covered by matched resource.
583 				 */
584 				if (dp->start > ostart)
585 					break;
586 				if (dp->end >= oend) {
587 					covered = true;
588 					break;
589 				}
590 				/* Remove covered range */
591 				ostart = max(ostart, dp->end + 1);
592 			}
593 		}
594 		if (!covered)
595 			other++;
596 	}
597 
598 	if (type == 0)
599 		return REGION_DISJOINT;
600 
601 	if (other == 0)
602 		return REGION_INTERSECTS;
603 
604 	return REGION_MIXED;
605 }
606 
607 /**
608  * region_intersects() - determine intersection of region with known resources
609  * @start: region start address
610  * @size: size of region
611  * @flags: flags of resource (in iomem_resource)
612  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
613  *
614  * Check if the specified region partially overlaps or fully eclipses a
615  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
616  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
617  * return REGION_MIXED if the region overlaps @flags/@desc and another
618  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
619  * and no other defined resource. Note that REGION_INTERSECTS is also
620  * returned in the case when the specified region overlaps RAM and undefined
621  * memory holes.
622  *
623  * region_intersect() is used by memory remapping functions to ensure
624  * the user is not remapping RAM and is a vast speed up over walking
625  * through the resource table page by page.
626  */
region_intersects(resource_size_t start,size_t size,unsigned long flags,unsigned long desc)627 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
628 		      unsigned long desc)
629 {
630 	int ret;
631 
632 	read_lock(&resource_lock);
633 	ret = __region_intersects(&iomem_resource, start, size, flags, desc);
634 	read_unlock(&resource_lock);
635 
636 	return ret;
637 }
638 EXPORT_SYMBOL_GPL(region_intersects);
639 
arch_remove_reservations(struct resource * avail)640 void __weak arch_remove_reservations(struct resource *avail)
641 {
642 }
643 
resource_clip(struct resource * res,resource_size_t min,resource_size_t max)644 static void resource_clip(struct resource *res, resource_size_t min,
645 			  resource_size_t max)
646 {
647 	if (res->start < min)
648 		res->start = min;
649 	if (res->end > max)
650 		res->end = max;
651 }
652 
653 /*
654  * Find empty space in the resource tree with the given range and
655  * alignment constraints
656  */
__find_resource_space(struct resource * root,struct resource * old,struct resource * new,resource_size_t size,struct resource_constraint * constraint)657 static int __find_resource_space(struct resource *root, struct resource *old,
658 				 struct resource *new, resource_size_t size,
659 				 struct resource_constraint *constraint)
660 {
661 	struct resource *this = root->child;
662 	struct resource tmp = *new, avail, alloc;
663 	resource_alignf alignf = constraint->alignf;
664 
665 	tmp.start = root->start;
666 	/*
667 	 * Skip past an allocated resource that starts at 0, since the assignment
668 	 * of this->start - 1 to tmp->end below would cause an underflow.
669 	 */
670 	if (this && this->start == root->start) {
671 		tmp.start = (this == old) ? old->start : this->end + 1;
672 		this = this->sibling;
673 	}
674 	for(;;) {
675 		if (this)
676 			tmp.end = (this == old) ?  this->end : this->start - 1;
677 		else
678 			tmp.end = root->end;
679 
680 		if (tmp.end < tmp.start)
681 			goto next;
682 
683 		resource_clip(&tmp, constraint->min, constraint->max);
684 		arch_remove_reservations(&tmp);
685 
686 		/* Check for overflow after ALIGN() */
687 		avail.start = ALIGN(tmp.start, constraint->align);
688 		avail.end = tmp.end;
689 		avail.flags = new->flags & ~IORESOURCE_UNSET;
690 		if (avail.start >= tmp.start) {
691 			alloc.flags = avail.flags;
692 			if (alignf) {
693 				alloc.start = alignf(constraint->alignf_data,
694 						     &avail, size, constraint->align);
695 			} else {
696 				alloc.start = avail.start;
697 			}
698 			alloc.end = alloc.start + size - 1;
699 			if (alloc.start <= alloc.end &&
700 			    resource_contains(&avail, &alloc)) {
701 				new->start = alloc.start;
702 				new->end = alloc.end;
703 				return 0;
704 			}
705 		}
706 
707 next:		if (!this || this->end == root->end)
708 			break;
709 
710 		if (this != old)
711 			tmp.start = this->end + 1;
712 		this = this->sibling;
713 	}
714 	return -EBUSY;
715 }
716 
717 /**
718  * find_resource_space - Find empty space in the resource tree
719  * @root:	Root resource descriptor
720  * @new:	Resource descriptor awaiting an empty resource space
721  * @size:	The minimum size of the empty space
722  * @constraint:	The range and alignment constraints to be met
723  *
724  * Finds an empty space under @root in the resource tree satisfying range and
725  * alignment @constraints.
726  *
727  * Return:
728  * * %0		- if successful, @new members start, end, and flags are altered.
729  * * %-EBUSY	- if no empty space was found.
730  */
find_resource_space(struct resource * root,struct resource * new,resource_size_t size,struct resource_constraint * constraint)731 int find_resource_space(struct resource *root, struct resource *new,
732 			resource_size_t size,
733 			struct resource_constraint *constraint)
734 {
735 	return  __find_resource_space(root, NULL, new, size, constraint);
736 }
737 EXPORT_SYMBOL_GPL(find_resource_space);
738 
739 /**
740  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
741  *	The resource will be relocated if the new size cannot be reallocated in the
742  *	current location.
743  *
744  * @root: root resource descriptor
745  * @old:  resource descriptor desired by caller
746  * @newsize: new size of the resource descriptor
747  * @constraint: the size and alignment constraints to be met.
748  */
reallocate_resource(struct resource * root,struct resource * old,resource_size_t newsize,struct resource_constraint * constraint)749 static int reallocate_resource(struct resource *root, struct resource *old,
750 			       resource_size_t newsize,
751 			       struct resource_constraint *constraint)
752 {
753 	int err=0;
754 	struct resource new = *old;
755 	struct resource *conflict;
756 
757 	write_lock(&resource_lock);
758 
759 	if ((err = __find_resource_space(root, old, &new, newsize, constraint)))
760 		goto out;
761 
762 	if (resource_contains(&new, old)) {
763 		old->start = new.start;
764 		old->end = new.end;
765 		goto out;
766 	}
767 
768 	if (old->child) {
769 		err = -EBUSY;
770 		goto out;
771 	}
772 
773 	if (resource_contains(old, &new)) {
774 		old->start = new.start;
775 		old->end = new.end;
776 	} else {
777 		__release_resource(old, true);
778 		*old = new;
779 		conflict = __request_resource(root, old);
780 		BUG_ON(conflict);
781 	}
782 out:
783 	write_unlock(&resource_lock);
784 	return err;
785 }
786 
787 
788 /**
789  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
790  * 	The resource will be reallocated with a new size if it was already allocated
791  * @root: root resource descriptor
792  * @new: resource descriptor desired by caller
793  * @size: requested resource region size
794  * @min: minimum boundary to allocate
795  * @max: maximum boundary to allocate
796  * @align: alignment requested, in bytes
797  * @alignf: alignment function, optional, called if not NULL
798  * @alignf_data: arbitrary data to pass to the @alignf function
799  */
allocate_resource(struct resource * root,struct resource * new,resource_size_t size,resource_size_t min,resource_size_t max,resource_size_t align,resource_alignf alignf,void * alignf_data)800 int allocate_resource(struct resource *root, struct resource *new,
801 		      resource_size_t size, resource_size_t min,
802 		      resource_size_t max, resource_size_t align,
803 		      resource_alignf alignf,
804 		      void *alignf_data)
805 {
806 	int err;
807 	struct resource_constraint constraint;
808 
809 	constraint.min = min;
810 	constraint.max = max;
811 	constraint.align = align;
812 	constraint.alignf = alignf;
813 	constraint.alignf_data = alignf_data;
814 
815 	if ( new->parent ) {
816 		/* resource is already allocated, try reallocating with
817 		   the new constraints */
818 		return reallocate_resource(root, new, size, &constraint);
819 	}
820 
821 	write_lock(&resource_lock);
822 	err = find_resource_space(root, new, size, &constraint);
823 	if (err >= 0 && __request_resource(root, new))
824 		err = -EBUSY;
825 	write_unlock(&resource_lock);
826 	return err;
827 }
828 
829 EXPORT_SYMBOL(allocate_resource);
830 
831 /**
832  * lookup_resource - find an existing resource by a resource start address
833  * @root: root resource descriptor
834  * @start: resource start address
835  *
836  * Returns a pointer to the resource if found, NULL otherwise
837  */
lookup_resource(struct resource * root,resource_size_t start)838 struct resource *lookup_resource(struct resource *root, resource_size_t start)
839 {
840 	struct resource *res;
841 
842 	read_lock(&resource_lock);
843 	for (res = root->child; res; res = res->sibling) {
844 		if (res->start == start)
845 			break;
846 	}
847 	read_unlock(&resource_lock);
848 
849 	return res;
850 }
851 
852 /*
853  * Insert a resource into the resource tree. If successful, return NULL,
854  * otherwise return the conflicting resource (compare to __request_resource())
855  */
__insert_resource(struct resource * parent,struct resource * new)856 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
857 {
858 	struct resource *first, *next;
859 
860 	for (;; parent = first) {
861 		first = __request_resource(parent, new);
862 		if (!first)
863 			return first;
864 
865 		if (first == parent)
866 			return first;
867 		if (WARN_ON(first == new))	/* duplicated insertion */
868 			return first;
869 
870 		if ((first->start > new->start) || (first->end < new->end))
871 			break;
872 		if ((first->start == new->start) && (first->end == new->end))
873 			break;
874 	}
875 
876 	for (next = first; ; next = next->sibling) {
877 		/* Partial overlap? Bad, and unfixable */
878 		if (next->start < new->start || next->end > new->end)
879 			return next;
880 		if (!next->sibling)
881 			break;
882 		if (next->sibling->start > new->end)
883 			break;
884 	}
885 
886 	new->parent = parent;
887 	new->sibling = next->sibling;
888 	new->child = first;
889 
890 	next->sibling = NULL;
891 	for (next = first; next; next = next->sibling)
892 		next->parent = new;
893 
894 	if (parent->child == first) {
895 		parent->child = new;
896 	} else {
897 		next = parent->child;
898 		while (next->sibling != first)
899 			next = next->sibling;
900 		next->sibling = new;
901 	}
902 	return NULL;
903 }
904 
905 /**
906  * insert_resource_conflict - Inserts resource in the resource tree
907  * @parent: parent of the new resource
908  * @new: new resource to insert
909  *
910  * Returns 0 on success, conflict resource if the resource can't be inserted.
911  *
912  * This function is equivalent to request_resource_conflict when no conflict
913  * happens. If a conflict happens, and the conflicting resources
914  * entirely fit within the range of the new resource, then the new
915  * resource is inserted and the conflicting resources become children of
916  * the new resource.
917  *
918  * This function is intended for producers of resources, such as FW modules
919  * and bus drivers.
920  */
insert_resource_conflict(struct resource * parent,struct resource * new)921 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
922 {
923 	struct resource *conflict;
924 
925 	write_lock(&resource_lock);
926 	conflict = __insert_resource(parent, new);
927 	write_unlock(&resource_lock);
928 	return conflict;
929 }
930 
931 /**
932  * insert_resource - Inserts a resource in the resource tree
933  * @parent: parent of the new resource
934  * @new: new resource to insert
935  *
936  * Returns 0 on success, -EBUSY if the resource can't be inserted.
937  *
938  * This function is intended for producers of resources, such as FW modules
939  * and bus drivers.
940  */
insert_resource(struct resource * parent,struct resource * new)941 int insert_resource(struct resource *parent, struct resource *new)
942 {
943 	struct resource *conflict;
944 
945 	conflict = insert_resource_conflict(parent, new);
946 	return conflict ? -EBUSY : 0;
947 }
948 EXPORT_SYMBOL_GPL(insert_resource);
949 
950 /**
951  * insert_resource_expand_to_fit - Insert a resource into the resource tree
952  * @root: root resource descriptor
953  * @new: new resource to insert
954  *
955  * Insert a resource into the resource tree, possibly expanding it in order
956  * to make it encompass any conflicting resources.
957  */
insert_resource_expand_to_fit(struct resource * root,struct resource * new)958 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
959 {
960 	if (new->parent)
961 		return;
962 
963 	write_lock(&resource_lock);
964 	for (;;) {
965 		struct resource *conflict;
966 
967 		conflict = __insert_resource(root, new);
968 		if (!conflict)
969 			break;
970 		if (conflict == root)
971 			break;
972 
973 		/* Ok, expand resource to cover the conflict, then try again .. */
974 		if (conflict->start < new->start)
975 			new->start = conflict->start;
976 		if (conflict->end > new->end)
977 			new->end = conflict->end;
978 
979 		pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
980 	}
981 	write_unlock(&resource_lock);
982 }
983 /*
984  * Not for general consumption, only early boot memory map parsing, PCI
985  * resource discovery, and late discovery of CXL resources are expected
986  * to use this interface. The former are built-in and only the latter,
987  * CXL, is a module.
988  */
989 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL);
990 
991 /**
992  * remove_resource - Remove a resource in the resource tree
993  * @old: resource to remove
994  *
995  * Returns 0 on success, -EINVAL if the resource is not valid.
996  *
997  * This function removes a resource previously inserted by insert_resource()
998  * or insert_resource_conflict(), and moves the children (if any) up to
999  * where they were before.  insert_resource() and insert_resource_conflict()
1000  * insert a new resource, and move any conflicting resources down to the
1001  * children of the new resource.
1002  *
1003  * insert_resource(), insert_resource_conflict() and remove_resource() are
1004  * intended for producers of resources, such as FW modules and bus drivers.
1005  */
remove_resource(struct resource * old)1006 int remove_resource(struct resource *old)
1007 {
1008 	int retval;
1009 
1010 	write_lock(&resource_lock);
1011 	retval = __release_resource(old, false);
1012 	write_unlock(&resource_lock);
1013 	return retval;
1014 }
1015 EXPORT_SYMBOL_GPL(remove_resource);
1016 
__adjust_resource(struct resource * res,resource_size_t start,resource_size_t size)1017 static int __adjust_resource(struct resource *res, resource_size_t start,
1018 				resource_size_t size)
1019 {
1020 	struct resource *tmp, *parent = res->parent;
1021 	resource_size_t end = start + size - 1;
1022 	int result = -EBUSY;
1023 
1024 	if (!parent)
1025 		goto skip;
1026 
1027 	if ((start < parent->start) || (end > parent->end))
1028 		goto out;
1029 
1030 	if (res->sibling && (res->sibling->start <= end))
1031 		goto out;
1032 
1033 	tmp = parent->child;
1034 	if (tmp != res) {
1035 		while (tmp->sibling != res)
1036 			tmp = tmp->sibling;
1037 		if (start <= tmp->end)
1038 			goto out;
1039 	}
1040 
1041 skip:
1042 	for (tmp = res->child; tmp; tmp = tmp->sibling)
1043 		if ((tmp->start < start) || (tmp->end > end))
1044 			goto out;
1045 
1046 	res->start = start;
1047 	res->end = end;
1048 	result = 0;
1049 
1050  out:
1051 	return result;
1052 }
1053 
1054 /**
1055  * adjust_resource - modify a resource's start and size
1056  * @res: resource to modify
1057  * @start: new start value
1058  * @size: new size
1059  *
1060  * Given an existing resource, change its start and size to match the
1061  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
1062  * Existing children of the resource are assumed to be immutable.
1063  */
adjust_resource(struct resource * res,resource_size_t start,resource_size_t size)1064 int adjust_resource(struct resource *res, resource_size_t start,
1065 		    resource_size_t size)
1066 {
1067 	int result;
1068 
1069 	write_lock(&resource_lock);
1070 	result = __adjust_resource(res, start, size);
1071 	write_unlock(&resource_lock);
1072 	return result;
1073 }
1074 EXPORT_SYMBOL(adjust_resource);
1075 
1076 static void __init
__reserve_region_with_split(struct resource * root,resource_size_t start,resource_size_t end,const char * name)1077 __reserve_region_with_split(struct resource *root, resource_size_t start,
1078 			    resource_size_t end, const char *name)
1079 {
1080 	struct resource *parent = root;
1081 	struct resource *conflict;
1082 	struct resource *res = alloc_resource(GFP_ATOMIC);
1083 	struct resource *next_res = NULL;
1084 	int type = resource_type(root);
1085 
1086 	if (!res)
1087 		return;
1088 
1089 	res->name = name;
1090 	res->start = start;
1091 	res->end = end;
1092 	res->flags = type | IORESOURCE_BUSY;
1093 	res->desc = IORES_DESC_NONE;
1094 
1095 	while (1) {
1096 
1097 		conflict = __request_resource(parent, res);
1098 		if (!conflict) {
1099 			if (!next_res)
1100 				break;
1101 			res = next_res;
1102 			next_res = NULL;
1103 			continue;
1104 		}
1105 
1106 		/* conflict covered whole area */
1107 		if (conflict->start <= res->start &&
1108 				conflict->end >= res->end) {
1109 			free_resource(res);
1110 			WARN_ON(next_res);
1111 			break;
1112 		}
1113 
1114 		/* failed, split and try again */
1115 		if (conflict->start > res->start) {
1116 			end = res->end;
1117 			res->end = conflict->start - 1;
1118 			if (conflict->end < end) {
1119 				next_res = alloc_resource(GFP_ATOMIC);
1120 				if (!next_res) {
1121 					free_resource(res);
1122 					break;
1123 				}
1124 				next_res->name = name;
1125 				next_res->start = conflict->end + 1;
1126 				next_res->end = end;
1127 				next_res->flags = type | IORESOURCE_BUSY;
1128 				next_res->desc = IORES_DESC_NONE;
1129 			}
1130 		} else {
1131 			res->start = conflict->end + 1;
1132 		}
1133 	}
1134 
1135 }
1136 
1137 void __init
reserve_region_with_split(struct resource * root,resource_size_t start,resource_size_t end,const char * name)1138 reserve_region_with_split(struct resource *root, resource_size_t start,
1139 			  resource_size_t end, const char *name)
1140 {
1141 	int abort = 0;
1142 
1143 	write_lock(&resource_lock);
1144 	if (root->start > start || root->end < end) {
1145 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1146 		       (unsigned long long)start, (unsigned long long)end,
1147 		       root);
1148 		if (start > root->end || end < root->start)
1149 			abort = 1;
1150 		else {
1151 			if (end > root->end)
1152 				end = root->end;
1153 			if (start < root->start)
1154 				start = root->start;
1155 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1156 			       (unsigned long long)start,
1157 			       (unsigned long long)end);
1158 		}
1159 		dump_stack();
1160 	}
1161 	if (!abort)
1162 		__reserve_region_with_split(root, start, end, name);
1163 	write_unlock(&resource_lock);
1164 }
1165 
1166 /**
1167  * resource_alignment - calculate resource's alignment
1168  * @res: resource pointer
1169  *
1170  * Returns alignment on success, 0 (invalid alignment) on failure.
1171  */
resource_alignment(struct resource * res)1172 resource_size_t resource_alignment(struct resource *res)
1173 {
1174 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1175 	case IORESOURCE_SIZEALIGN:
1176 		return resource_size(res);
1177 	case IORESOURCE_STARTALIGN:
1178 		return res->start;
1179 	default:
1180 		return 0;
1181 	}
1182 }
1183 
1184 /*
1185  * This is compatibility stuff for IO resources.
1186  *
1187  * Note how this, unlike the above, knows about
1188  * the IO flag meanings (busy etc).
1189  *
1190  * request_region creates a new busy region.
1191  *
1192  * release_region releases a matching busy region.
1193  */
1194 
1195 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1196 
1197 static struct inode *iomem_inode;
1198 
1199 #ifdef CONFIG_IO_STRICT_DEVMEM
revoke_iomem(struct resource * res)1200 static void revoke_iomem(struct resource *res)
1201 {
1202 	/* pairs with smp_store_release() in iomem_init_inode() */
1203 	struct inode *inode = smp_load_acquire(&iomem_inode);
1204 
1205 	/*
1206 	 * Check that the initialization has completed. Losing the race
1207 	 * is ok because it means drivers are claiming resources before
1208 	 * the fs_initcall level of init and prevent iomem_get_mapping users
1209 	 * from establishing mappings.
1210 	 */
1211 	if (!inode)
1212 		return;
1213 
1214 	/*
1215 	 * The expectation is that the driver has successfully marked
1216 	 * the resource busy by this point, so devmem_is_allowed()
1217 	 * should start returning false, however for performance this
1218 	 * does not iterate the entire resource range.
1219 	 */
1220 	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1221 	    devmem_is_allowed(PHYS_PFN(res->end))) {
1222 		/*
1223 		 * *cringe* iomem=relaxed says "go ahead, what's the
1224 		 * worst that can happen?"
1225 		 */
1226 		return;
1227 	}
1228 
1229 	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1230 }
1231 #else
revoke_iomem(struct resource * res)1232 static void revoke_iomem(struct resource *res) {}
1233 #endif
1234 
iomem_get_mapping(void)1235 struct address_space *iomem_get_mapping(void)
1236 {
1237 	/*
1238 	 * This function is only called from file open paths, hence guaranteed
1239 	 * that fs_initcalls have completed and no need to check for NULL. But
1240 	 * since revoke_iomem can be called before the initcall we still need
1241 	 * the barrier to appease checkers.
1242 	 */
1243 	return smp_load_acquire(&iomem_inode)->i_mapping;
1244 }
1245 
__request_region_locked(struct resource * res,struct resource * parent,resource_size_t start,resource_size_t n,const char * name,int flags)1246 static int __request_region_locked(struct resource *res, struct resource *parent,
1247 				   resource_size_t start, resource_size_t n,
1248 				   const char *name, int flags)
1249 {
1250 	DECLARE_WAITQUEUE(wait, current);
1251 
1252 	res->name = name;
1253 	res->start = start;
1254 	res->end = start + n - 1;
1255 
1256 	for (;;) {
1257 		struct resource *conflict;
1258 
1259 		res->flags = resource_type(parent) | resource_ext_type(parent);
1260 		res->flags |= IORESOURCE_BUSY | flags;
1261 		res->desc = parent->desc;
1262 
1263 		conflict = __request_resource(parent, res);
1264 		if (!conflict)
1265 			break;
1266 		/*
1267 		 * mm/hmm.c reserves physical addresses which then
1268 		 * become unavailable to other users.  Conflicts are
1269 		 * not expected.  Warn to aid debugging if encountered.
1270 		 */
1271 		if (parent == &iomem_resource &&
1272 		    conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1273 			pr_warn("Unaddressable device %s %pR conflicts with %pR\n",
1274 				conflict->name, conflict, res);
1275 		}
1276 		if (conflict != parent) {
1277 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1278 				parent = conflict;
1279 				continue;
1280 			}
1281 		}
1282 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1283 			add_wait_queue(&muxed_resource_wait, &wait);
1284 			write_unlock(&resource_lock);
1285 			set_current_state(TASK_UNINTERRUPTIBLE);
1286 			schedule();
1287 			remove_wait_queue(&muxed_resource_wait, &wait);
1288 			write_lock(&resource_lock);
1289 			continue;
1290 		}
1291 		/* Uhhuh, that didn't work out.. */
1292 		return -EBUSY;
1293 	}
1294 
1295 	return 0;
1296 }
1297 
1298 /**
1299  * __request_region - create a new busy resource region
1300  * @parent: parent resource descriptor
1301  * @start: resource start address
1302  * @n: resource region size
1303  * @name: reserving caller's ID string
1304  * @flags: IO resource flags
1305  */
__request_region(struct resource * parent,resource_size_t start,resource_size_t n,const char * name,int flags)1306 struct resource *__request_region(struct resource *parent,
1307 				  resource_size_t start, resource_size_t n,
1308 				  const char *name, int flags)
1309 {
1310 	struct resource *res = alloc_resource(GFP_KERNEL);
1311 	int ret;
1312 
1313 	if (!res)
1314 		return NULL;
1315 
1316 	write_lock(&resource_lock);
1317 	ret = __request_region_locked(res, parent, start, n, name, flags);
1318 	write_unlock(&resource_lock);
1319 
1320 	if (ret) {
1321 		free_resource(res);
1322 		return NULL;
1323 	}
1324 
1325 	if (parent == &iomem_resource)
1326 		revoke_iomem(res);
1327 
1328 	return res;
1329 }
1330 EXPORT_SYMBOL(__request_region);
1331 
1332 /**
1333  * __release_region - release a previously reserved resource region
1334  * @parent: parent resource descriptor
1335  * @start: resource start address
1336  * @n: resource region size
1337  *
1338  * The described resource region must match a currently busy region.
1339  */
__release_region(struct resource * parent,resource_size_t start,resource_size_t n)1340 void __release_region(struct resource *parent, resource_size_t start,
1341 		      resource_size_t n)
1342 {
1343 	struct resource **p;
1344 	resource_size_t end;
1345 
1346 	p = &parent->child;
1347 	end = start + n - 1;
1348 
1349 	write_lock(&resource_lock);
1350 
1351 	for (;;) {
1352 		struct resource *res = *p;
1353 
1354 		if (!res)
1355 			break;
1356 		if (res->start <= start && res->end >= end) {
1357 			if (!(res->flags & IORESOURCE_BUSY)) {
1358 				p = &res->child;
1359 				continue;
1360 			}
1361 			if (res->start != start || res->end != end)
1362 				break;
1363 			*p = res->sibling;
1364 			write_unlock(&resource_lock);
1365 			if (res->flags & IORESOURCE_MUXED)
1366 				wake_up(&muxed_resource_wait);
1367 			free_resource(res);
1368 			return;
1369 		}
1370 		p = &res->sibling;
1371 	}
1372 
1373 	write_unlock(&resource_lock);
1374 
1375 	pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
1376 }
1377 EXPORT_SYMBOL(__release_region);
1378 
1379 #ifdef CONFIG_MEMORY_HOTREMOVE
1380 /**
1381  * release_mem_region_adjustable - release a previously reserved memory region
1382  * @start: resource start address
1383  * @size: resource region size
1384  *
1385  * This interface is intended for memory hot-delete.  The requested region
1386  * is released from a currently busy memory resource.  The requested region
1387  * must either match exactly or fit into a single busy resource entry.  In
1388  * the latter case, the remaining resource is adjusted accordingly.
1389  * Existing children of the busy memory resource must be immutable in the
1390  * request.
1391  *
1392  * Note:
1393  * - Additional release conditions, such as overlapping region, can be
1394  *   supported after they are confirmed as valid cases.
1395  * - When a busy memory resource gets split into two entries, the code
1396  *   assumes that all children remain in the lower address entry for
1397  *   simplicity.  Enhance this logic when necessary.
1398  */
release_mem_region_adjustable(resource_size_t start,resource_size_t size)1399 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1400 {
1401 	struct resource *parent = &iomem_resource;
1402 	struct resource *new_res = NULL;
1403 	bool alloc_nofail = false;
1404 	struct resource **p;
1405 	struct resource *res;
1406 	resource_size_t end;
1407 
1408 	end = start + size - 1;
1409 	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1410 		return;
1411 
1412 	/*
1413 	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1414 	 * just before releasing the region. This is highly unlikely to
1415 	 * fail - let's play save and make it never fail as the caller cannot
1416 	 * perform any error handling (e.g., trying to re-add memory will fail
1417 	 * similarly).
1418 	 */
1419 retry:
1420 	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1421 
1422 	p = &parent->child;
1423 	write_lock(&resource_lock);
1424 
1425 	while ((res = *p)) {
1426 		if (res->start >= end)
1427 			break;
1428 
1429 		/* look for the next resource if it does not fit into */
1430 		if (res->start > start || res->end < end) {
1431 			p = &res->sibling;
1432 			continue;
1433 		}
1434 
1435 		if (!(res->flags & IORESOURCE_MEM))
1436 			break;
1437 
1438 		if (!(res->flags & IORESOURCE_BUSY)) {
1439 			p = &res->child;
1440 			continue;
1441 		}
1442 
1443 		/* found the target resource; let's adjust accordingly */
1444 		if (res->start == start && res->end == end) {
1445 			/* free the whole entry */
1446 			*p = res->sibling;
1447 			free_resource(res);
1448 		} else if (res->start == start && res->end != end) {
1449 			/* adjust the start */
1450 			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1451 						       res->end - end));
1452 		} else if (res->start != start && res->end == end) {
1453 			/* adjust the end */
1454 			WARN_ON_ONCE(__adjust_resource(res, res->start,
1455 						       start - res->start));
1456 		} else {
1457 			/* split into two entries - we need a new resource */
1458 			if (!new_res) {
1459 				new_res = alloc_resource(GFP_ATOMIC);
1460 				if (!new_res) {
1461 					alloc_nofail = true;
1462 					write_unlock(&resource_lock);
1463 					goto retry;
1464 				}
1465 			}
1466 			new_res->name = res->name;
1467 			new_res->start = end + 1;
1468 			new_res->end = res->end;
1469 			new_res->flags = res->flags;
1470 			new_res->desc = res->desc;
1471 			new_res->parent = res->parent;
1472 			new_res->sibling = res->sibling;
1473 			new_res->child = NULL;
1474 
1475 			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1476 							   start - res->start)))
1477 				break;
1478 			res->sibling = new_res;
1479 			new_res = NULL;
1480 		}
1481 
1482 		break;
1483 	}
1484 
1485 	write_unlock(&resource_lock);
1486 	free_resource(new_res);
1487 }
1488 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1489 
1490 #ifdef CONFIG_MEMORY_HOTPLUG
system_ram_resources_mergeable(struct resource * r1,struct resource * r2)1491 static bool system_ram_resources_mergeable(struct resource *r1,
1492 					   struct resource *r2)
1493 {
1494 	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1495 	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1496 	       r1->name == r2->name && r1->desc == r2->desc &&
1497 	       !r1->child && !r2->child;
1498 }
1499 
1500 /**
1501  * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1502  *	merge it with adjacent, mergeable resources
1503  * @res: resource descriptor
1504  *
1505  * This interface is intended for memory hotplug, whereby lots of contiguous
1506  * system ram resources are added (e.g., via add_memory*()) by a driver, and
1507  * the actual resource boundaries are not of interest (e.g., it might be
1508  * relevant for DIMMs). Only resources that are marked mergeable, that have the
1509  * same parent, and that don't have any children are considered. All mergeable
1510  * resources must be immutable during the request.
1511  *
1512  * Note:
1513  * - The caller has to make sure that no pointers to resources that are
1514  *   marked mergeable are used anymore after this call - the resource might
1515  *   be freed and the pointer might be stale!
1516  * - release_mem_region_adjustable() will split on demand on memory hotunplug
1517  */
merge_system_ram_resource(struct resource * res)1518 void merge_system_ram_resource(struct resource *res)
1519 {
1520 	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1521 	struct resource *cur;
1522 
1523 	if (WARN_ON_ONCE((res->flags & flags) != flags))
1524 		return;
1525 
1526 	write_lock(&resource_lock);
1527 	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1528 
1529 	/* Try to merge with next item in the list. */
1530 	cur = res->sibling;
1531 	if (cur && system_ram_resources_mergeable(res, cur)) {
1532 		res->end = cur->end;
1533 		res->sibling = cur->sibling;
1534 		free_resource(cur);
1535 	}
1536 
1537 	/* Try to merge with previous item in the list. */
1538 	cur = res->parent->child;
1539 	while (cur && cur->sibling != res)
1540 		cur = cur->sibling;
1541 	if (cur && system_ram_resources_mergeable(cur, res)) {
1542 		cur->end = res->end;
1543 		cur->sibling = res->sibling;
1544 		free_resource(res);
1545 	}
1546 	write_unlock(&resource_lock);
1547 }
1548 #endif	/* CONFIG_MEMORY_HOTPLUG */
1549 
1550 /*
1551  * Managed region resource
1552  */
devm_resource_release(struct device * dev,void * ptr)1553 static void devm_resource_release(struct device *dev, void *ptr)
1554 {
1555 	struct resource **r = ptr;
1556 
1557 	release_resource(*r);
1558 }
1559 
1560 /**
1561  * devm_request_resource() - request and reserve an I/O or memory resource
1562  * @dev: device for which to request the resource
1563  * @root: root of the resource tree from which to request the resource
1564  * @new: descriptor of the resource to request
1565  *
1566  * This is a device-managed version of request_resource(). There is usually
1567  * no need to release resources requested by this function explicitly since
1568  * that will be taken care of when the device is unbound from its driver.
1569  * If for some reason the resource needs to be released explicitly, because
1570  * of ordering issues for example, drivers must call devm_release_resource()
1571  * rather than the regular release_resource().
1572  *
1573  * When a conflict is detected between any existing resources and the newly
1574  * requested resource, an error message will be printed.
1575  *
1576  * Returns 0 on success or a negative error code on failure.
1577  */
devm_request_resource(struct device * dev,struct resource * root,struct resource * new)1578 int devm_request_resource(struct device *dev, struct resource *root,
1579 			  struct resource *new)
1580 {
1581 	struct resource *conflict, **ptr;
1582 
1583 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1584 	if (!ptr)
1585 		return -ENOMEM;
1586 
1587 	*ptr = new;
1588 
1589 	conflict = request_resource_conflict(root, new);
1590 	if (conflict) {
1591 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1592 			new, conflict->name, conflict);
1593 		devres_free(ptr);
1594 		return -EBUSY;
1595 	}
1596 
1597 	devres_add(dev, ptr);
1598 	return 0;
1599 }
1600 EXPORT_SYMBOL(devm_request_resource);
1601 
devm_resource_match(struct device * dev,void * res,void * data)1602 static int devm_resource_match(struct device *dev, void *res, void *data)
1603 {
1604 	struct resource **ptr = res;
1605 
1606 	return *ptr == data;
1607 }
1608 
1609 /**
1610  * devm_release_resource() - release a previously requested resource
1611  * @dev: device for which to release the resource
1612  * @new: descriptor of the resource to release
1613  *
1614  * Releases a resource previously requested using devm_request_resource().
1615  */
devm_release_resource(struct device * dev,struct resource * new)1616 void devm_release_resource(struct device *dev, struct resource *new)
1617 {
1618 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1619 			       new));
1620 }
1621 EXPORT_SYMBOL(devm_release_resource);
1622 
1623 struct region_devres {
1624 	struct resource *parent;
1625 	resource_size_t start;
1626 	resource_size_t n;
1627 };
1628 
devm_region_release(struct device * dev,void * res)1629 static void devm_region_release(struct device *dev, void *res)
1630 {
1631 	struct region_devres *this = res;
1632 
1633 	__release_region(this->parent, this->start, this->n);
1634 }
1635 
devm_region_match(struct device * dev,void * res,void * match_data)1636 static int devm_region_match(struct device *dev, void *res, void *match_data)
1637 {
1638 	struct region_devres *this = res, *match = match_data;
1639 
1640 	return this->parent == match->parent &&
1641 		this->start == match->start && this->n == match->n;
1642 }
1643 
1644 struct resource *
__devm_request_region(struct device * dev,struct resource * parent,resource_size_t start,resource_size_t n,const char * name)1645 __devm_request_region(struct device *dev, struct resource *parent,
1646 		      resource_size_t start, resource_size_t n, const char *name)
1647 {
1648 	struct region_devres *dr = NULL;
1649 	struct resource *res;
1650 
1651 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1652 			  GFP_KERNEL);
1653 	if (!dr)
1654 		return NULL;
1655 
1656 	dr->parent = parent;
1657 	dr->start = start;
1658 	dr->n = n;
1659 
1660 	res = __request_region(parent, start, n, name, 0);
1661 	if (res)
1662 		devres_add(dev, dr);
1663 	else
1664 		devres_free(dr);
1665 
1666 	return res;
1667 }
1668 EXPORT_SYMBOL(__devm_request_region);
1669 
__devm_release_region(struct device * dev,struct resource * parent,resource_size_t start,resource_size_t n)1670 void __devm_release_region(struct device *dev, struct resource *parent,
1671 			   resource_size_t start, resource_size_t n)
1672 {
1673 	struct region_devres match_data = { parent, start, n };
1674 
1675 	__release_region(parent, start, n);
1676 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1677 			       &match_data));
1678 }
1679 EXPORT_SYMBOL(__devm_release_region);
1680 
1681 /*
1682  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1683  */
1684 #define MAXRESERVE 4
reserve_setup(char * str)1685 static int __init reserve_setup(char *str)
1686 {
1687 	static int reserved;
1688 	static struct resource reserve[MAXRESERVE];
1689 
1690 	for (;;) {
1691 		unsigned int io_start, io_num;
1692 		int x = reserved;
1693 		struct resource *parent;
1694 
1695 		if (get_option(&str, &io_start) != 2)
1696 			break;
1697 		if (get_option(&str, &io_num) == 0)
1698 			break;
1699 		if (x < MAXRESERVE) {
1700 			struct resource *res = reserve + x;
1701 
1702 			/*
1703 			 * If the region starts below 0x10000, we assume it's
1704 			 * I/O port space; otherwise assume it's memory.
1705 			 */
1706 			if (io_start < 0x10000) {
1707 				res->flags = IORESOURCE_IO;
1708 				parent = &ioport_resource;
1709 			} else {
1710 				res->flags = IORESOURCE_MEM;
1711 				parent = &iomem_resource;
1712 			}
1713 			res->name = "reserved";
1714 			res->start = io_start;
1715 			res->end = io_start + io_num - 1;
1716 			res->flags |= IORESOURCE_BUSY;
1717 			res->desc = IORES_DESC_NONE;
1718 			res->child = NULL;
1719 			if (request_resource(parent, res) == 0)
1720 				reserved = x+1;
1721 		}
1722 	}
1723 	return 1;
1724 }
1725 __setup("reserve=", reserve_setup);
1726 
1727 /*
1728  * Check if the requested addr and size spans more than any slot in the
1729  * iomem resource tree.
1730  */
iomem_map_sanity_check(resource_size_t addr,unsigned long size)1731 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1732 {
1733 	resource_size_t end = addr + size - 1;
1734 	struct resource *p;
1735 	int err = 0;
1736 
1737 	read_lock(&resource_lock);
1738 	for_each_resource(&iomem_resource, p, false) {
1739 		/*
1740 		 * We can probably skip the resources without
1741 		 * IORESOURCE_IO attribute?
1742 		 */
1743 		if (p->start > end)
1744 			continue;
1745 		if (p->end < addr)
1746 			continue;
1747 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1748 		    PFN_DOWN(p->end) >= PFN_DOWN(end))
1749 			continue;
1750 		/*
1751 		 * if a resource is "BUSY", it's not a hardware resource
1752 		 * but a driver mapping of such a resource; we don't want
1753 		 * to warn for those; some drivers legitimately map only
1754 		 * partial hardware resources. (example: vesafb)
1755 		 */
1756 		if (p->flags & IORESOURCE_BUSY)
1757 			continue;
1758 
1759 		pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1760 			&addr, &end, p->name, p);
1761 		err = -1;
1762 		break;
1763 	}
1764 	read_unlock(&resource_lock);
1765 
1766 	return err;
1767 }
1768 
1769 #ifdef CONFIG_STRICT_DEVMEM
1770 static int strict_iomem_checks = 1;
1771 #else
1772 static int strict_iomem_checks;
1773 #endif
1774 
1775 /*
1776  * Check if an address is exclusive to the kernel and must not be mapped to
1777  * user space, for example, via /dev/mem.
1778  *
1779  * Returns true if exclusive to the kernel, otherwise returns false.
1780  */
resource_is_exclusive(struct resource * root,u64 addr,resource_size_t size)1781 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1782 {
1783 	const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1784 						  IORESOURCE_EXCLUSIVE;
1785 	bool skip_children = false, err = false;
1786 	struct resource *p;
1787 
1788 	read_lock(&resource_lock);
1789 	for_each_resource(root, p, skip_children) {
1790 		if (p->start >= addr + size)
1791 			break;
1792 		if (p->end < addr) {
1793 			skip_children = true;
1794 			continue;
1795 		}
1796 		skip_children = false;
1797 
1798 		/*
1799 		 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1800 		 * IORESOURCE_EXCLUSIVE is set, even if they
1801 		 * are not busy and even if "iomem=relaxed" is set. The
1802 		 * responsible driver dynamically adds/removes system RAM within
1803 		 * such an area and uncontrolled access is dangerous.
1804 		 */
1805 		if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1806 			err = true;
1807 			break;
1808 		}
1809 
1810 		/*
1811 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1812 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1813 		 * resource is busy.
1814 		 */
1815 		if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1816 			continue;
1817 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1818 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1819 			err = true;
1820 			break;
1821 		}
1822 	}
1823 	read_unlock(&resource_lock);
1824 
1825 	return err;
1826 }
1827 
iomem_is_exclusive(u64 addr)1828 bool iomem_is_exclusive(u64 addr)
1829 {
1830 	return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1831 				     PAGE_SIZE);
1832 }
1833 
resource_list_create_entry(struct resource * res,size_t extra_size)1834 struct resource_entry *resource_list_create_entry(struct resource *res,
1835 						  size_t extra_size)
1836 {
1837 	struct resource_entry *entry;
1838 
1839 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1840 	if (entry) {
1841 		INIT_LIST_HEAD(&entry->node);
1842 		entry->res = res ? res : &entry->__res;
1843 	}
1844 
1845 	return entry;
1846 }
1847 EXPORT_SYMBOL(resource_list_create_entry);
1848 
resource_list_free(struct list_head * head)1849 void resource_list_free(struct list_head *head)
1850 {
1851 	struct resource_entry *entry, *tmp;
1852 
1853 	list_for_each_entry_safe(entry, tmp, head, node)
1854 		resource_list_destroy_entry(entry);
1855 }
1856 EXPORT_SYMBOL(resource_list_free);
1857 
1858 #ifdef CONFIG_GET_FREE_REGION
1859 #define GFR_DESCENDING		(1UL << 0)
1860 #define GFR_REQUEST_REGION	(1UL << 1)
1861 #ifdef PA_SECTION_SHIFT
1862 #define GFR_DEFAULT_ALIGN	(1UL << PA_SECTION_SHIFT)
1863 #else
1864 #define GFR_DEFAULT_ALIGN	PAGE_SIZE
1865 #endif
1866 
gfr_start(struct resource * base,resource_size_t size,resource_size_t align,unsigned long flags)1867 static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1868 				 resource_size_t align, unsigned long flags)
1869 {
1870 	if (flags & GFR_DESCENDING) {
1871 		resource_size_t end;
1872 
1873 		end = min_t(resource_size_t, base->end, PHYSMEM_END);
1874 		return end - size + 1;
1875 	}
1876 
1877 	return ALIGN(max(base->start, align), align);
1878 }
1879 
gfr_continue(struct resource * base,resource_size_t addr,resource_size_t size,unsigned long flags)1880 static bool gfr_continue(struct resource *base, resource_size_t addr,
1881 			 resource_size_t size, unsigned long flags)
1882 {
1883 	if (flags & GFR_DESCENDING)
1884 		return addr > size && addr >= base->start;
1885 	/*
1886 	 * In the ascend case be careful that the last increment by
1887 	 * @size did not wrap 0.
1888 	 */
1889 	return addr > addr - size &&
1890 	       addr <= min_t(resource_size_t, base->end, PHYSMEM_END);
1891 }
1892 
gfr_next(resource_size_t addr,resource_size_t size,unsigned long flags)1893 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1894 				unsigned long flags)
1895 {
1896 	if (flags & GFR_DESCENDING)
1897 		return addr - size;
1898 	return addr + size;
1899 }
1900 
remove_free_mem_region(void * _res)1901 static void remove_free_mem_region(void *_res)
1902 {
1903 	struct resource *res = _res;
1904 
1905 	if (res->parent)
1906 		remove_resource(res);
1907 	free_resource(res);
1908 }
1909 
1910 static struct resource *
get_free_mem_region(struct device * dev,struct resource * base,resource_size_t size,const unsigned long align,const char * name,const unsigned long desc,const unsigned long flags)1911 get_free_mem_region(struct device *dev, struct resource *base,
1912 		    resource_size_t size, const unsigned long align,
1913 		    const char *name, const unsigned long desc,
1914 		    const unsigned long flags)
1915 {
1916 	resource_size_t addr;
1917 	struct resource *res;
1918 	struct region_devres *dr = NULL;
1919 
1920 	size = ALIGN(size, align);
1921 
1922 	res = alloc_resource(GFP_KERNEL);
1923 	if (!res)
1924 		return ERR_PTR(-ENOMEM);
1925 
1926 	if (dev && (flags & GFR_REQUEST_REGION)) {
1927 		dr = devres_alloc(devm_region_release,
1928 				sizeof(struct region_devres), GFP_KERNEL);
1929 		if (!dr) {
1930 			free_resource(res);
1931 			return ERR_PTR(-ENOMEM);
1932 		}
1933 	} else if (dev) {
1934 		if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1935 			return ERR_PTR(-ENOMEM);
1936 	}
1937 
1938 	write_lock(&resource_lock);
1939 	for (addr = gfr_start(base, size, align, flags);
1940 	     gfr_continue(base, addr, align, flags);
1941 	     addr = gfr_next(addr, align, flags)) {
1942 		if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1943 		    REGION_DISJOINT)
1944 			continue;
1945 
1946 		if (flags & GFR_REQUEST_REGION) {
1947 			if (__request_region_locked(res, &iomem_resource, addr,
1948 						    size, name, 0))
1949 				break;
1950 
1951 			if (dev) {
1952 				dr->parent = &iomem_resource;
1953 				dr->start = addr;
1954 				dr->n = size;
1955 				devres_add(dev, dr);
1956 			}
1957 
1958 			res->desc = desc;
1959 			write_unlock(&resource_lock);
1960 
1961 
1962 			/*
1963 			 * A driver is claiming this region so revoke any
1964 			 * mappings.
1965 			 */
1966 			revoke_iomem(res);
1967 		} else {
1968 			res->start = addr;
1969 			res->end = addr + size - 1;
1970 			res->name = name;
1971 			res->desc = desc;
1972 			res->flags = IORESOURCE_MEM;
1973 
1974 			/*
1975 			 * Only succeed if the resource hosts an exclusive
1976 			 * range after the insert
1977 			 */
1978 			if (__insert_resource(base, res) || res->child)
1979 				break;
1980 
1981 			write_unlock(&resource_lock);
1982 		}
1983 
1984 		return res;
1985 	}
1986 	write_unlock(&resource_lock);
1987 
1988 	if (flags & GFR_REQUEST_REGION) {
1989 		free_resource(res);
1990 		devres_free(dr);
1991 	} else if (dev)
1992 		devm_release_action(dev, remove_free_mem_region, res);
1993 
1994 	return ERR_PTR(-ERANGE);
1995 }
1996 
1997 /**
1998  * devm_request_free_mem_region - find free region for device private memory
1999  *
2000  * @dev: device struct to bind the resource to
2001  * @size: size in bytes of the device memory to add
2002  * @base: resource tree to look in
2003  *
2004  * This function tries to find an empty range of physical address big enough to
2005  * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
2006  * memory, which in turn allocates struct pages.
2007  */
devm_request_free_mem_region(struct device * dev,struct resource * base,unsigned long size)2008 struct resource *devm_request_free_mem_region(struct device *dev,
2009 		struct resource *base, unsigned long size)
2010 {
2011 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2012 
2013 	return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
2014 				   dev_name(dev),
2015 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2016 }
2017 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
2018 
request_free_mem_region(struct resource * base,unsigned long size,const char * name)2019 struct resource *request_free_mem_region(struct resource *base,
2020 		unsigned long size, const char *name)
2021 {
2022 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2023 
2024 	return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
2025 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2026 }
2027 EXPORT_SYMBOL_GPL(request_free_mem_region);
2028 
2029 /**
2030  * alloc_free_mem_region - find a free region relative to @base
2031  * @base: resource that will parent the new resource
2032  * @size: size in bytes of memory to allocate from @base
2033  * @align: alignment requirements for the allocation
2034  * @name: resource name
2035  *
2036  * Buses like CXL, that can dynamically instantiate new memory regions,
2037  * need a method to allocate physical address space for those regions.
2038  * Allocate and insert a new resource to cover a free, unclaimed by a
2039  * descendant of @base, range in the span of @base.
2040  */
alloc_free_mem_region(struct resource * base,unsigned long size,unsigned long align,const char * name)2041 struct resource *alloc_free_mem_region(struct resource *base,
2042 				       unsigned long size, unsigned long align,
2043 				       const char *name)
2044 {
2045 	/* Default of ascending direction and insert resource */
2046 	unsigned long flags = 0;
2047 
2048 	return get_free_mem_region(NULL, base, size, align, name,
2049 				   IORES_DESC_NONE, flags);
2050 }
2051 EXPORT_SYMBOL_GPL(alloc_free_mem_region);
2052 #endif /* CONFIG_GET_FREE_REGION */
2053 
strict_iomem(char * str)2054 static int __init strict_iomem(char *str)
2055 {
2056 	if (strstr(str, "relaxed"))
2057 		strict_iomem_checks = 0;
2058 	if (strstr(str, "strict"))
2059 		strict_iomem_checks = 1;
2060 	return 1;
2061 }
2062 
iomem_fs_init_fs_context(struct fs_context * fc)2063 static int iomem_fs_init_fs_context(struct fs_context *fc)
2064 {
2065 	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2066 }
2067 
2068 static struct file_system_type iomem_fs_type = {
2069 	.name		= "iomem",
2070 	.owner		= THIS_MODULE,
2071 	.init_fs_context = iomem_fs_init_fs_context,
2072 	.kill_sb	= kill_anon_super,
2073 };
2074 
iomem_init_inode(void)2075 static int __init iomem_init_inode(void)
2076 {
2077 	static struct vfsmount *iomem_vfs_mount;
2078 	static int iomem_fs_cnt;
2079 	struct inode *inode;
2080 	int rc;
2081 
2082 	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2083 	if (rc < 0) {
2084 		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2085 		return rc;
2086 	}
2087 
2088 	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2089 	if (IS_ERR(inode)) {
2090 		rc = PTR_ERR(inode);
2091 		pr_err("Cannot allocate inode for iomem: %d\n", rc);
2092 		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2093 		return rc;
2094 	}
2095 
2096 	/*
2097 	 * Publish iomem revocation inode initialized.
2098 	 * Pairs with smp_load_acquire() in revoke_iomem().
2099 	 */
2100 	smp_store_release(&iomem_inode, inode);
2101 
2102 	return 0;
2103 }
2104 
2105 fs_initcall(iomem_init_inode);
2106 
2107 __setup("iomem=", strict_iomem);
2108