• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/cpupri.c
4  *
5  *  CPU priority management
6  *
7  *  Copyright (C) 2007-2008 Novell
8  *
9  *  Author: Gregory Haskins <ghaskins@novell.com>
10  *
11  *  This code tracks the priority of each CPU so that global migration
12  *  decisions are easy to calculate.  Each CPU can be in a state as follows:
13  *
14  *                 (INVALID), NORMAL, RT1, ... RT99, HIGHER
15  *
16  *  going from the lowest priority to the highest.  CPUs in the INVALID state
17  *  are not eligible for routing.  The system maintains this state with
18  *  a 2 dimensional bitmap (the first for priority class, the second for CPUs
19  *  in that class).  Therefore a typical application without affinity
20  *  restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
21  *  searches).  For tasks with affinity restrictions, the algorithm has a
22  *  worst case complexity of O(min(101, nr_domcpus)), though the scenario that
23  *  yields the worst case search is fairly contrived.
24  */
25 
26 /*
27  * p->rt_priority   p->prio   newpri   cpupri
28  *
29  *				  -1       -1 (CPUPRI_INVALID)
30  *
31  *				  99        0 (CPUPRI_NORMAL)
32  *
33  *		1        98       98        1
34  *	      ...
35  *	       49        50       50       49
36  *	       50        49       49       50
37  *	      ...
38  *	       99         0        0       99
39  *
40  *				 100	  100 (CPUPRI_HIGHER)
41  */
convert_prio(int prio)42 static int convert_prio(int prio)
43 {
44 	int cpupri;
45 
46 	switch (prio) {
47 	case CPUPRI_INVALID:
48 		cpupri = CPUPRI_INVALID;	/* -1 */
49 		break;
50 
51 	case 0 ... 98:
52 		cpupri = MAX_RT_PRIO-1 - prio;	/* 1 ... 99 */
53 		break;
54 
55 	case MAX_RT_PRIO-1:
56 		cpupri = CPUPRI_NORMAL;		/*  0 */
57 		break;
58 
59 	case MAX_RT_PRIO:
60 		cpupri = CPUPRI_HIGHER;		/* 100 */
61 		break;
62 	}
63 
64 	return cpupri;
65 }
66 
__cpupri_find(struct cpupri * cp,struct task_struct * p,struct cpumask * lowest_mask,int idx)67 static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p,
68 				struct cpumask *lowest_mask, int idx)
69 {
70 	struct cpupri_vec *vec  = &cp->pri_to_cpu[idx];
71 	int skip = 0;
72 
73 	if (!atomic_read(&(vec)->count))
74 		skip = 1;
75 	/*
76 	 * When looking at the vector, we need to read the counter,
77 	 * do a memory barrier, then read the mask.
78 	 *
79 	 * Note: This is still all racy, but we can deal with it.
80 	 *  Ideally, we only want to look at masks that are set.
81 	 *
82 	 *  If a mask is not set, then the only thing wrong is that we
83 	 *  did a little more work than necessary.
84 	 *
85 	 *  If we read a zero count but the mask is set, because of the
86 	 *  memory barriers, that can only happen when the highest prio
87 	 *  task for a run queue has left the run queue, in which case,
88 	 *  it will be followed by a pull. If the task we are processing
89 	 *  fails to find a proper place to go, that pull request will
90 	 *  pull this task if the run queue is running at a lower
91 	 *  priority.
92 	 */
93 	smp_rmb();
94 
95 	/* Need to do the rmb for every iteration */
96 	if (skip)
97 		return 0;
98 
99 	if ((p && cpumask_any_and(&p->cpus_mask, vec->mask) >= nr_cpu_ids) ||
100 	    (!p && cpumask_any(vec->mask) >= nr_cpu_ids))
101 		return 0;
102 
103 	if (lowest_mask) {
104 		if (p) {
105 			cpumask_and(lowest_mask, &p->cpus_mask, vec->mask);
106 			cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
107 		} else {
108 			cpumask_copy(lowest_mask, vec->mask);
109 		}
110 
111 		/*
112 		 * We have to ensure that we have at least one bit
113 		 * still set in the array, since the map could have
114 		 * been concurrently emptied between the first and
115 		 * second reads of vec->mask.  If we hit this
116 		 * condition, simply act as though we never hit this
117 		 * priority level and continue on.
118 		 */
119 		if (cpumask_empty(lowest_mask))
120 			return 0;
121 	}
122 
123 	return 1;
124 }
125 
cpupri_find(struct cpupri * cp,struct task_struct * sched_ctx,struct task_struct * exec_ctx,struct cpumask * lowest_mask)126 int cpupri_find(struct cpupri *cp, struct task_struct *sched_ctx,
127 		struct task_struct *exec_ctx,
128 		struct cpumask *lowest_mask)
129 {
130 	return cpupri_find_fitness(cp, sched_ctx, exec_ctx, lowest_mask, NULL);
131 }
132 
133 /**
134  * cpupri_find_fitness - find the best (lowest-pri) CPU in the system
135  * @cp: The cpupri context
136  * @p: The task
137  * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
138  * @fitness_fn: A pointer to a function to do custom checks whether the CPU
139  *              fits a specific criteria so that we only return those CPUs.
140  *
141  * Note: This function returns the recommended CPUs as calculated during the
142  * current invocation.  By the time the call returns, the CPUs may have in
143  * fact changed priorities any number of times.  While not ideal, it is not
144  * an issue of correctness since the normal rebalancer logic will correct
145  * any discrepancies created by racing against the uncertainty of the current
146  * priority configuration.
147  *
148  * Return: (int)bool - CPUs were found
149  */
cpupri_find_fitness(struct cpupri * cp,struct task_struct * sched_ctx,struct task_struct * exec_ctx,struct cpumask * lowest_mask,bool (* fitness_fn)(struct task_struct * p,int cpu))150 int cpupri_find_fitness(struct cpupri *cp, struct task_struct *sched_ctx,
151 			struct task_struct *exec_ctx,
152 			struct cpumask *lowest_mask,
153 			bool (*fitness_fn)(struct task_struct *p, int cpu))
154 {
155 	int task_pri = convert_prio(sched_ctx->prio);
156 	int idx, cpu;
157 
158 	WARN_ON_ONCE(task_pri >= CPUPRI_NR_PRIORITIES);
159 
160 	for (idx = 0; idx < task_pri; idx++) {
161 
162 		if (!__cpupri_find(cp, exec_ctx, lowest_mask, idx))
163 			continue;
164 
165 		if (!lowest_mask || !fitness_fn)
166 			return 1;
167 
168 		/* Ensure the capacity of the CPUs fit the task */
169 		for_each_cpu(cpu, lowest_mask) {
170 			if (!fitness_fn(sched_ctx, cpu))
171 				cpumask_clear_cpu(cpu, lowest_mask);
172 		}
173 
174 		/*
175 		 * If no CPU at the current priority can fit the task
176 		 * continue looking
177 		 */
178 		if (cpumask_empty(lowest_mask))
179 			continue;
180 
181 		return 1;
182 	}
183 
184 	/*
185 	 * If we failed to find a fitting lowest_mask, kick off a new search
186 	 * but without taking into account any fitness criteria this time.
187 	 *
188 	 * This rule favours honouring priority over fitting the task in the
189 	 * correct CPU (Capacity Awareness being the only user now).
190 	 * The idea is that if a higher priority task can run, then it should
191 	 * run even if this ends up being on unfitting CPU.
192 	 *
193 	 * The cost of this trade-off is not entirely clear and will probably
194 	 * be good for some workloads and bad for others.
195 	 *
196 	 * The main idea here is that if some CPUs were over-committed, we try
197 	 * to spread which is what the scheduler traditionally did. Sys admins
198 	 * must do proper RT planning to avoid overloading the system if they
199 	 * really care.
200 	 */
201 	if (fitness_fn)
202 		return cpupri_find(cp, sched_ctx, exec_ctx, lowest_mask);
203 
204 	return 0;
205 }
206 EXPORT_SYMBOL_GPL(cpupri_find_fitness);
207 
208 /**
209  * cpupri_set - update the CPU priority setting
210  * @cp: The cpupri context
211  * @cpu: The target CPU
212  * @newpri: The priority (INVALID,NORMAL,RT1-RT99,HIGHER) to assign to this CPU
213  *
214  * Note: Assumes cpu_rq(cpu)->lock is locked
215  *
216  * Returns: (void)
217  */
cpupri_set(struct cpupri * cp,int cpu,int newpri)218 void cpupri_set(struct cpupri *cp, int cpu, int newpri)
219 {
220 	int *currpri = &cp->cpu_to_pri[cpu];
221 	int oldpri = *currpri;
222 	int do_mb = 0;
223 
224 	newpri = convert_prio(newpri);
225 
226 	BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
227 
228 	if (newpri == oldpri)
229 		return;
230 
231 	/*
232 	 * If the CPU was currently mapped to a different value, we
233 	 * need to map it to the new value then remove the old value.
234 	 * Note, we must add the new value first, otherwise we risk the
235 	 * cpu being missed by the priority loop in cpupri_find.
236 	 */
237 	if (likely(newpri != CPUPRI_INVALID)) {
238 		struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
239 
240 		cpumask_set_cpu(cpu, vec->mask);
241 		/*
242 		 * When adding a new vector, we update the mask first,
243 		 * do a write memory barrier, and then update the count, to
244 		 * make sure the vector is visible when count is set.
245 		 */
246 		smp_mb__before_atomic();
247 		atomic_inc(&(vec)->count);
248 		do_mb = 1;
249 	}
250 	if (likely(oldpri != CPUPRI_INVALID)) {
251 		struct cpupri_vec *vec  = &cp->pri_to_cpu[oldpri];
252 
253 		/*
254 		 * Because the order of modification of the vec->count
255 		 * is important, we must make sure that the update
256 		 * of the new prio is seen before we decrement the
257 		 * old prio. This makes sure that the loop sees
258 		 * one or the other when we raise the priority of
259 		 * the run queue. We don't care about when we lower the
260 		 * priority, as that will trigger an rt pull anyway.
261 		 *
262 		 * We only need to do a memory barrier if we updated
263 		 * the new priority vec.
264 		 */
265 		if (do_mb)
266 			smp_mb__after_atomic();
267 
268 		/*
269 		 * When removing from the vector, we decrement the counter first
270 		 * do a memory barrier and then clear the mask.
271 		 */
272 		atomic_dec(&(vec)->count);
273 		smp_mb__after_atomic();
274 		cpumask_clear_cpu(cpu, vec->mask);
275 	}
276 
277 	*currpri = newpri;
278 }
279 
280 /**
281  * cpupri_init - initialize the cpupri structure
282  * @cp: The cpupri context
283  *
284  * Return: -ENOMEM on memory allocation failure.
285  */
cpupri_init(struct cpupri * cp)286 int cpupri_init(struct cpupri *cp)
287 {
288 	int i;
289 
290 	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
291 		struct cpupri_vec *vec = &cp->pri_to_cpu[i];
292 
293 		atomic_set(&vec->count, 0);
294 		if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
295 			goto cleanup;
296 	}
297 
298 	cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL);
299 	if (!cp->cpu_to_pri)
300 		goto cleanup;
301 
302 	for_each_possible_cpu(i)
303 		cp->cpu_to_pri[i] = CPUPRI_INVALID;
304 
305 	return 0;
306 
307 cleanup:
308 	for (i--; i >= 0; i--)
309 		free_cpumask_var(cp->pri_to_cpu[i].mask);
310 	return -ENOMEM;
311 }
312 
313 /**
314  * cpupri_cleanup - clean up the cpupri structure
315  * @cp: The cpupri context
316  */
cpupri_cleanup(struct cpupri * cp)317 void cpupri_cleanup(struct cpupri *cp)
318 {
319 	int i;
320 
321 	kfree(cp->cpu_to_pri);
322 	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
323 		free_cpumask_var(cp->pri_to_cpu[i].mask);
324 }
325