1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/debug.c
4 *
5 * Print the CFS rbtree and other debugging details
6 *
7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 */
9
10 /*
11 * This allows printing both to /sys/kernel/debug/sched/debug and
12 * to the console
13 */
14 #define SEQ_printf(m, x...) \
15 do { \
16 if (m) \
17 seq_printf(m, x); \
18 else \
19 pr_cont(x); \
20 } while (0)
21
22 /*
23 * Ease the printing of nsec fields:
24 */
nsec_high(unsigned long long nsec)25 static long long nsec_high(unsigned long long nsec)
26 {
27 if ((long long)nsec < 0) {
28 nsec = -nsec;
29 do_div(nsec, 1000000);
30 return -nsec;
31 }
32 do_div(nsec, 1000000);
33
34 return nsec;
35 }
36
nsec_low(unsigned long long nsec)37 static unsigned long nsec_low(unsigned long long nsec)
38 {
39 if ((long long)nsec < 0)
40 nsec = -nsec;
41
42 return do_div(nsec, 1000000);
43 }
44
45 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
46
47 #define SCHED_FEAT(name, enabled) \
48 #name ,
49
50 const char * const sched_feat_names[] = {
51 #include "features.h"
52 };
53 EXPORT_SYMBOL_GPL(sched_feat_names);
54
55 #undef SCHED_FEAT
56
sched_feat_show(struct seq_file * m,void * v)57 static int sched_feat_show(struct seq_file *m, void *v)
58 {
59 int i;
60
61 for (i = 0; i < __SCHED_FEAT_NR; i++) {
62 if (!(sysctl_sched_features & (1UL << i)))
63 seq_puts(m, "NO_");
64 seq_printf(m, "%s ", sched_feat_names[i]);
65 }
66 seq_puts(m, "\n");
67
68 return 0;
69 }
70
71 #ifdef CONFIG_JUMP_LABEL
72
73 #define jump_label_key__true STATIC_KEY_INIT_TRUE
74 #define jump_label_key__false STATIC_KEY_INIT_FALSE
75
76 #define SCHED_FEAT(name, enabled) \
77 jump_label_key__##enabled ,
78
79 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
80 #include "features.h"
81 };
82 EXPORT_SYMBOL_GPL(sched_feat_keys);
83
84 #undef SCHED_FEAT
85
sched_feat_disable(int i)86 static void sched_feat_disable(int i)
87 {
88 static_key_disable_cpuslocked(&sched_feat_keys[i]);
89 }
90
sched_feat_enable(int i)91 static void sched_feat_enable(int i)
92 {
93 static_key_enable_cpuslocked(&sched_feat_keys[i]);
94 }
95 #else
sched_feat_disable(int i)96 static void sched_feat_disable(int i) { };
sched_feat_enable(int i)97 static void sched_feat_enable(int i) { };
98 #endif /* CONFIG_JUMP_LABEL */
99
sched_feat_set(char * cmp)100 static int sched_feat_set(char *cmp)
101 {
102 int i;
103 int neg = 0;
104
105 if (strncmp(cmp, "NO_", 3) == 0) {
106 neg = 1;
107 cmp += 3;
108 }
109
110 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
111 if (i < 0)
112 return i;
113
114 if (neg) {
115 sysctl_sched_features &= ~(1UL << i);
116 sched_feat_disable(i);
117 } else {
118 sysctl_sched_features |= (1UL << i);
119 sched_feat_enable(i);
120 }
121
122 return 0;
123 }
124
125 static ssize_t
sched_feat_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)126 sched_feat_write(struct file *filp, const char __user *ubuf,
127 size_t cnt, loff_t *ppos)
128 {
129 char buf[64];
130 char *cmp;
131 int ret;
132 struct inode *inode;
133
134 if (cnt > 63)
135 cnt = 63;
136
137 if (copy_from_user(&buf, ubuf, cnt))
138 return -EFAULT;
139
140 buf[cnt] = 0;
141 cmp = strstrip(buf);
142
143 /* Ensure the static_key remains in a consistent state */
144 inode = file_inode(filp);
145 cpus_read_lock();
146 inode_lock(inode);
147 ret = sched_feat_set(cmp);
148 inode_unlock(inode);
149 cpus_read_unlock();
150 if (ret < 0)
151 return ret;
152
153 *ppos += cnt;
154
155 return cnt;
156 }
157
sched_feat_open(struct inode * inode,struct file * filp)158 static int sched_feat_open(struct inode *inode, struct file *filp)
159 {
160 return single_open(filp, sched_feat_show, NULL);
161 }
162
163 static const struct file_operations sched_feat_fops = {
164 .open = sched_feat_open,
165 .write = sched_feat_write,
166 .read = seq_read,
167 .llseek = seq_lseek,
168 .release = single_release,
169 };
170
171 #ifdef CONFIG_SMP
172
sched_scaling_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)173 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
174 size_t cnt, loff_t *ppos)
175 {
176 char buf[16];
177 unsigned int scaling;
178
179 if (cnt > 15)
180 cnt = 15;
181
182 if (copy_from_user(&buf, ubuf, cnt))
183 return -EFAULT;
184 buf[cnt] = '\0';
185
186 if (kstrtouint(buf, 10, &scaling))
187 return -EINVAL;
188
189 if (scaling >= SCHED_TUNABLESCALING_END)
190 return -EINVAL;
191
192 sysctl_sched_tunable_scaling = scaling;
193 if (sched_update_scaling())
194 return -EINVAL;
195
196 *ppos += cnt;
197 return cnt;
198 }
199
sched_scaling_show(struct seq_file * m,void * v)200 static int sched_scaling_show(struct seq_file *m, void *v)
201 {
202 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
203 return 0;
204 }
205
sched_scaling_open(struct inode * inode,struct file * filp)206 static int sched_scaling_open(struct inode *inode, struct file *filp)
207 {
208 return single_open(filp, sched_scaling_show, NULL);
209 }
210
211 static const struct file_operations sched_scaling_fops = {
212 .open = sched_scaling_open,
213 .write = sched_scaling_write,
214 .read = seq_read,
215 .llseek = seq_lseek,
216 .release = single_release,
217 };
218
219 #endif /* SMP */
220
221 #ifdef CONFIG_PREEMPT_DYNAMIC
222
sched_dynamic_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)223 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[16];
227 int mode;
228
229 if (cnt > 15)
230 cnt = 15;
231
232 if (copy_from_user(&buf, ubuf, cnt))
233 return -EFAULT;
234
235 buf[cnt] = 0;
236 mode = sched_dynamic_mode(strstrip(buf));
237 if (mode < 0)
238 return mode;
239
240 sched_dynamic_update(mode);
241
242 *ppos += cnt;
243
244 return cnt;
245 }
246
sched_dynamic_show(struct seq_file * m,void * v)247 static int sched_dynamic_show(struct seq_file *m, void *v)
248 {
249 static const char * preempt_modes[] = {
250 "none", "voluntary", "full"
251 };
252 int i;
253
254 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
255 if (preempt_dynamic_mode == i)
256 seq_puts(m, "(");
257 seq_puts(m, preempt_modes[i]);
258 if (preempt_dynamic_mode == i)
259 seq_puts(m, ")");
260
261 seq_puts(m, " ");
262 }
263
264 seq_puts(m, "\n");
265 return 0;
266 }
267
sched_dynamic_open(struct inode * inode,struct file * filp)268 static int sched_dynamic_open(struct inode *inode, struct file *filp)
269 {
270 return single_open(filp, sched_dynamic_show, NULL);
271 }
272
273 static const struct file_operations sched_dynamic_fops = {
274 .open = sched_dynamic_open,
275 .write = sched_dynamic_write,
276 .read = seq_read,
277 .llseek = seq_lseek,
278 .release = single_release,
279 };
280
281 #endif /* CONFIG_PREEMPT_DYNAMIC */
282
283 __read_mostly bool sched_debug_verbose;
284
285 #ifdef CONFIG_SMP
286 static struct dentry *sd_dentry;
287
288
sched_verbose_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)289 static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf,
290 size_t cnt, loff_t *ppos)
291 {
292 ssize_t result;
293 bool orig;
294
295 cpus_read_lock();
296 mutex_lock(&sched_domains_mutex);
297
298 orig = sched_debug_verbose;
299 result = debugfs_write_file_bool(filp, ubuf, cnt, ppos);
300
301 if (sched_debug_verbose && !orig)
302 update_sched_domain_debugfs();
303 else if (!sched_debug_verbose && orig) {
304 debugfs_remove(sd_dentry);
305 sd_dentry = NULL;
306 }
307
308 mutex_unlock(&sched_domains_mutex);
309 cpus_read_unlock();
310
311 return result;
312 }
313 #else
314 #define sched_verbose_write debugfs_write_file_bool
315 #endif
316
317 static const struct file_operations sched_verbose_fops = {
318 .read = debugfs_read_file_bool,
319 .write = sched_verbose_write,
320 .open = simple_open,
321 .llseek = default_llseek,
322 };
323
324 static const struct seq_operations sched_debug_sops;
325
sched_debug_open(struct inode * inode,struct file * filp)326 static int sched_debug_open(struct inode *inode, struct file *filp)
327 {
328 return seq_open(filp, &sched_debug_sops);
329 }
330
331 static const struct file_operations sched_debug_fops = {
332 .open = sched_debug_open,
333 .read = seq_read,
334 .llseek = seq_lseek,
335 .release = seq_release,
336 };
337
338 enum dl_param {
339 DL_RUNTIME = 0,
340 DL_PERIOD,
341 };
342
343 static unsigned long fair_server_period_max = (1UL << 22) * NSEC_PER_USEC; /* ~4 seconds */
344 static unsigned long fair_server_period_min = (100) * NSEC_PER_USEC; /* 100 us */
345
sched_fair_server_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos,enum dl_param param)346 static ssize_t sched_fair_server_write(struct file *filp, const char __user *ubuf,
347 size_t cnt, loff_t *ppos, enum dl_param param)
348 {
349 long cpu = (long) ((struct seq_file *) filp->private_data)->private;
350 struct rq *rq = cpu_rq(cpu);
351 u64 runtime, period;
352 size_t err;
353 int retval;
354 u64 value;
355
356 err = kstrtoull_from_user(ubuf, cnt, 10, &value);
357 if (err)
358 return err;
359
360 scoped_guard (rq_lock_irqsave, rq) {
361 runtime = rq->fair_server.dl_runtime;
362 period = rq->fair_server.dl_period;
363
364 switch (param) {
365 case DL_RUNTIME:
366 if (runtime == value)
367 break;
368 runtime = value;
369 break;
370 case DL_PERIOD:
371 if (value == period)
372 break;
373 period = value;
374 break;
375 }
376
377 if (runtime > period ||
378 period > fair_server_period_max ||
379 period < fair_server_period_min) {
380 return -EINVAL;
381 }
382
383 update_rq_clock(rq);
384 dl_server_stop(&rq->fair_server);
385
386 retval = dl_server_apply_params(&rq->fair_server, runtime, period, 0);
387 if (retval)
388 cnt = retval;
389
390 if (!runtime)
391 printk_deferred("Fair server disabled in CPU %d, system may crash due to starvation.\n",
392 cpu_of(rq));
393
394 if (rq->cfs.h_nr_running)
395 dl_server_start(&rq->fair_server);
396 }
397
398 *ppos += cnt;
399 return cnt;
400 }
401
sched_fair_server_show(struct seq_file * m,void * v,enum dl_param param)402 static size_t sched_fair_server_show(struct seq_file *m, void *v, enum dl_param param)
403 {
404 unsigned long cpu = (unsigned long) m->private;
405 struct rq *rq = cpu_rq(cpu);
406 u64 value;
407
408 switch (param) {
409 case DL_RUNTIME:
410 value = rq->fair_server.dl_runtime;
411 break;
412 case DL_PERIOD:
413 value = rq->fair_server.dl_period;
414 break;
415 }
416
417 seq_printf(m, "%llu\n", value);
418 return 0;
419
420 }
421
422 static ssize_t
sched_fair_server_runtime_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)423 sched_fair_server_runtime_write(struct file *filp, const char __user *ubuf,
424 size_t cnt, loff_t *ppos)
425 {
426 return sched_fair_server_write(filp, ubuf, cnt, ppos, DL_RUNTIME);
427 }
428
sched_fair_server_runtime_show(struct seq_file * m,void * v)429 static int sched_fair_server_runtime_show(struct seq_file *m, void *v)
430 {
431 return sched_fair_server_show(m, v, DL_RUNTIME);
432 }
433
sched_fair_server_runtime_open(struct inode * inode,struct file * filp)434 static int sched_fair_server_runtime_open(struct inode *inode, struct file *filp)
435 {
436 return single_open(filp, sched_fair_server_runtime_show, inode->i_private);
437 }
438
439 static const struct file_operations fair_server_runtime_fops = {
440 .open = sched_fair_server_runtime_open,
441 .write = sched_fair_server_runtime_write,
442 .read = seq_read,
443 .llseek = seq_lseek,
444 .release = single_release,
445 };
446
447 static ssize_t
sched_fair_server_period_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)448 sched_fair_server_period_write(struct file *filp, const char __user *ubuf,
449 size_t cnt, loff_t *ppos)
450 {
451 return sched_fair_server_write(filp, ubuf, cnt, ppos, DL_PERIOD);
452 }
453
sched_fair_server_period_show(struct seq_file * m,void * v)454 static int sched_fair_server_period_show(struct seq_file *m, void *v)
455 {
456 return sched_fair_server_show(m, v, DL_PERIOD);
457 }
458
sched_fair_server_period_open(struct inode * inode,struct file * filp)459 static int sched_fair_server_period_open(struct inode *inode, struct file *filp)
460 {
461 return single_open(filp, sched_fair_server_period_show, inode->i_private);
462 }
463
464 static const struct file_operations fair_server_period_fops = {
465 .open = sched_fair_server_period_open,
466 .write = sched_fair_server_period_write,
467 .read = seq_read,
468 .llseek = seq_lseek,
469 .release = single_release,
470 };
471
472 static struct dentry *debugfs_sched;
473
debugfs_fair_server_init(void)474 static void debugfs_fair_server_init(void)
475 {
476 struct dentry *d_fair;
477 unsigned long cpu;
478
479 d_fair = debugfs_create_dir("fair_server", debugfs_sched);
480 if (!d_fair)
481 return;
482
483 for_each_possible_cpu(cpu) {
484 struct dentry *d_cpu;
485 char buf[32];
486
487 snprintf(buf, sizeof(buf), "cpu%lu", cpu);
488 d_cpu = debugfs_create_dir(buf, d_fair);
489
490 debugfs_create_file("runtime", 0644, d_cpu, (void *) cpu, &fair_server_runtime_fops);
491 debugfs_create_file("period", 0644, d_cpu, (void *) cpu, &fair_server_period_fops);
492 }
493 }
494
sched_init_debug(void)495 static __init int sched_init_debug(void)
496 {
497 struct dentry __maybe_unused *numa;
498
499 debugfs_sched = debugfs_create_dir("sched", NULL);
500
501 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
502 debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops);
503 #ifdef CONFIG_PREEMPT_DYNAMIC
504 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
505 #endif
506
507 debugfs_create_u32("base_slice_ns", 0644, debugfs_sched, &sysctl_sched_base_slice);
508
509 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
510 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
511
512 #ifdef CONFIG_SMP
513 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
514 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
515 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
516
517 mutex_lock(&sched_domains_mutex);
518 update_sched_domain_debugfs();
519 mutex_unlock(&sched_domains_mutex);
520 #endif
521
522 #ifdef CONFIG_NUMA_BALANCING
523 numa = debugfs_create_dir("numa_balancing", debugfs_sched);
524
525 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
526 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
527 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
528 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
529 debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold);
530 #endif
531
532 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
533
534 debugfs_fair_server_init();
535
536 return 0;
537 }
538 late_initcall(sched_init_debug);
539
540 #ifdef CONFIG_SMP
541
542 static cpumask_var_t sd_sysctl_cpus;
543
sd_flags_show(struct seq_file * m,void * v)544 static int sd_flags_show(struct seq_file *m, void *v)
545 {
546 unsigned long flags = *(unsigned int *)m->private;
547 int idx;
548
549 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
550 seq_puts(m, sd_flag_debug[idx].name);
551 seq_puts(m, " ");
552 }
553 seq_puts(m, "\n");
554
555 return 0;
556 }
557
sd_flags_open(struct inode * inode,struct file * file)558 static int sd_flags_open(struct inode *inode, struct file *file)
559 {
560 return single_open(file, sd_flags_show, inode->i_private);
561 }
562
563 static const struct file_operations sd_flags_fops = {
564 .open = sd_flags_open,
565 .read = seq_read,
566 .llseek = seq_lseek,
567 .release = single_release,
568 };
569
register_sd(struct sched_domain * sd,struct dentry * parent)570 static void register_sd(struct sched_domain *sd, struct dentry *parent)
571 {
572 #define SDM(type, mode, member) \
573 debugfs_create_##type(#member, mode, parent, &sd->member)
574
575 SDM(ulong, 0644, min_interval);
576 SDM(ulong, 0644, max_interval);
577 SDM(u64, 0644, max_newidle_lb_cost);
578 SDM(u32, 0644, busy_factor);
579 SDM(u32, 0644, imbalance_pct);
580 SDM(u32, 0644, cache_nice_tries);
581 SDM(str, 0444, name);
582
583 #undef SDM
584
585 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
586 debugfs_create_file("groups_flags", 0444, parent, &sd->groups->flags, &sd_flags_fops);
587 debugfs_create_u32("level", 0444, parent, (u32 *)&sd->level);
588 }
589
update_sched_domain_debugfs(void)590 void update_sched_domain_debugfs(void)
591 {
592 int cpu, i;
593
594 /*
595 * This can unfortunately be invoked before sched_debug_init() creates
596 * the debug directory. Don't touch sd_sysctl_cpus until then.
597 */
598 if (!debugfs_sched)
599 return;
600
601 if (!sched_debug_verbose)
602 return;
603
604 if (!cpumask_available(sd_sysctl_cpus)) {
605 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
606 return;
607 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
608 }
609
610 if (!sd_dentry) {
611 sd_dentry = debugfs_create_dir("domains", debugfs_sched);
612
613 /* rebuild sd_sysctl_cpus if empty since it gets cleared below */
614 if (cpumask_empty(sd_sysctl_cpus))
615 cpumask_copy(sd_sysctl_cpus, cpu_online_mask);
616 }
617
618 for_each_cpu(cpu, sd_sysctl_cpus) {
619 struct sched_domain *sd;
620 struct dentry *d_cpu;
621 char buf[32];
622
623 snprintf(buf, sizeof(buf), "cpu%d", cpu);
624 debugfs_lookup_and_remove(buf, sd_dentry);
625 d_cpu = debugfs_create_dir(buf, sd_dentry);
626
627 i = 0;
628 for_each_domain(cpu, sd) {
629 struct dentry *d_sd;
630
631 snprintf(buf, sizeof(buf), "domain%d", i);
632 d_sd = debugfs_create_dir(buf, d_cpu);
633
634 register_sd(sd, d_sd);
635 i++;
636 }
637
638 __cpumask_clear_cpu(cpu, sd_sysctl_cpus);
639 }
640 }
641
dirty_sched_domain_sysctl(int cpu)642 void dirty_sched_domain_sysctl(int cpu)
643 {
644 if (cpumask_available(sd_sysctl_cpus))
645 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
646 }
647
648 #endif /* CONFIG_SMP */
649
650 #ifdef CONFIG_FAIR_GROUP_SCHED
print_cfs_group_stats(struct seq_file * m,int cpu,struct task_group * tg)651 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
652 {
653 struct sched_entity *se = tg->se[cpu];
654
655 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
656 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", \
657 #F, (long long)schedstat_val(stats->F))
658 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
659 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", \
660 #F, SPLIT_NS((long long)schedstat_val(stats->F)))
661
662 if (!se)
663 return;
664
665 PN(se->exec_start);
666 PN(se->vruntime);
667 PN(se->sum_exec_runtime);
668
669 if (schedstat_enabled()) {
670 struct sched_statistics *stats;
671 stats = __schedstats_from_se(se);
672
673 PN_SCHEDSTAT(wait_start);
674 PN_SCHEDSTAT(sleep_start);
675 PN_SCHEDSTAT(block_start);
676 PN_SCHEDSTAT(sleep_max);
677 PN_SCHEDSTAT(block_max);
678 PN_SCHEDSTAT(exec_max);
679 PN_SCHEDSTAT(slice_max);
680 PN_SCHEDSTAT(wait_max);
681 PN_SCHEDSTAT(wait_sum);
682 P_SCHEDSTAT(wait_count);
683 }
684
685 P(se->load.weight);
686 #ifdef CONFIG_SMP
687 P(se->avg.load_avg);
688 P(se->avg.util_avg);
689 P(se->avg.runnable_avg);
690 #endif
691
692 #undef PN_SCHEDSTAT
693 #undef PN
694 #undef P_SCHEDSTAT
695 #undef P
696 }
697 #endif
698
699 #ifdef CONFIG_CGROUP_SCHED
700 static DEFINE_SPINLOCK(sched_debug_lock);
701 static char group_path[PATH_MAX];
702
task_group_path(struct task_group * tg,char * path,int plen)703 static void task_group_path(struct task_group *tg, char *path, int plen)
704 {
705 if (autogroup_path(tg, path, plen))
706 return;
707
708 cgroup_path(tg->css.cgroup, path, plen);
709 }
710
711 /*
712 * Only 1 SEQ_printf_task_group_path() caller can use the full length
713 * group_path[] for cgroup path. Other simultaneous callers will have
714 * to use a shorter stack buffer. A "..." suffix is appended at the end
715 * of the stack buffer so that it will show up in case the output length
716 * matches the given buffer size to indicate possible path name truncation.
717 */
718 #define SEQ_printf_task_group_path(m, tg, fmt...) \
719 { \
720 if (spin_trylock(&sched_debug_lock)) { \
721 task_group_path(tg, group_path, sizeof(group_path)); \
722 SEQ_printf(m, fmt, group_path); \
723 spin_unlock(&sched_debug_lock); \
724 } else { \
725 char buf[128]; \
726 char *bufend = buf + sizeof(buf) - 3; \
727 task_group_path(tg, buf, bufend - buf); \
728 strcpy(bufend - 1, "..."); \
729 SEQ_printf(m, fmt, buf); \
730 } \
731 }
732 #endif
733
734 static void
print_task(struct seq_file * m,struct rq * rq,struct task_struct * p)735 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
736 {
737 if (task_current(rq, p))
738 SEQ_printf(m, ">R");
739 else
740 SEQ_printf(m, " %c", task_state_to_char(p));
741
742 SEQ_printf(m, " %15s %5d %9Ld.%06ld %c %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld %5d ",
743 p->comm, task_pid_nr(p),
744 SPLIT_NS(p->se.vruntime),
745 entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N',
746 SPLIT_NS(p->se.deadline),
747 p->se.custom_slice ? 'S' : ' ',
748 SPLIT_NS(p->se.slice),
749 SPLIT_NS(p->se.sum_exec_runtime),
750 (long long)(p->nvcsw + p->nivcsw),
751 p->prio);
752
753 SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld",
754 SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)),
755 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)),
756 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime)));
757
758 #ifdef CONFIG_NUMA_BALANCING
759 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
760 #endif
761 #ifdef CONFIG_CGROUP_SCHED
762 SEQ_printf_task_group_path(m, task_group(p), " %s")
763 #endif
764
765 SEQ_printf(m, "\n");
766 }
767
print_rq(struct seq_file * m,struct rq * rq,int rq_cpu)768 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
769 {
770 struct task_struct *g, *p;
771
772 SEQ_printf(m, "\n");
773 SEQ_printf(m, "runnable tasks:\n");
774 SEQ_printf(m, " S task PID vruntime eligible "
775 "deadline slice sum-exec switches "
776 "prio wait-time sum-sleep sum-block"
777 #ifdef CONFIG_NUMA_BALANCING
778 " node group-id"
779 #endif
780 #ifdef CONFIG_CGROUP_SCHED
781 " group-path"
782 #endif
783 "\n");
784 SEQ_printf(m, "-------------------------------------------------------"
785 "------------------------------------------------------"
786 "------------------------------------------------------"
787 #ifdef CONFIG_NUMA_BALANCING
788 "--------------"
789 #endif
790 #ifdef CONFIG_CGROUP_SCHED
791 "--------------"
792 #endif
793 "\n");
794
795 rcu_read_lock();
796 for_each_process_thread(g, p) {
797 if (task_cpu(p) != rq_cpu)
798 continue;
799
800 print_task(m, rq, p);
801 }
802 rcu_read_unlock();
803 }
804
print_cfs_rq(struct seq_file * m,int cpu,struct cfs_rq * cfs_rq)805 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
806 {
807 s64 left_vruntime = -1, min_vruntime, right_vruntime = -1, left_deadline = -1, spread;
808 struct sched_entity *last, *first, *root;
809 struct rq *rq = cpu_rq(cpu);
810 unsigned long flags;
811
812 #ifdef CONFIG_FAIR_GROUP_SCHED
813 SEQ_printf(m, "\n");
814 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
815 #else
816 SEQ_printf(m, "\n");
817 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
818 #endif
819
820 raw_spin_rq_lock_irqsave(rq, flags);
821 root = __pick_root_entity(cfs_rq);
822 if (root)
823 left_vruntime = root->min_vruntime;
824 first = __pick_first_entity(cfs_rq);
825 if (first)
826 left_deadline = first->deadline;
827 last = __pick_last_entity(cfs_rq);
828 if (last)
829 right_vruntime = last->vruntime;
830 min_vruntime = cfs_rq->min_vruntime;
831 raw_spin_rq_unlock_irqrestore(rq, flags);
832
833 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_deadline",
834 SPLIT_NS(left_deadline));
835 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_vruntime",
836 SPLIT_NS(left_vruntime));
837 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
838 SPLIT_NS(min_vruntime));
839 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "avg_vruntime",
840 SPLIT_NS(avg_vruntime(cfs_rq)));
841 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "right_vruntime",
842 SPLIT_NS(right_vruntime));
843 spread = right_vruntime - left_vruntime;
844 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread));
845 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
846 SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
847 SEQ_printf(m, " .%-30s: %d\n", "h_nr_delayed", cfs_rq->h_nr_delayed);
848 SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running",
849 cfs_rq->idle_nr_running);
850 SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running",
851 cfs_rq->idle_h_nr_running);
852 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
853 #ifdef CONFIG_SMP
854 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
855 cfs_rq->avg.load_avg);
856 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg",
857 cfs_rq->avg.runnable_avg);
858 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
859 cfs_rq->avg.util_avg);
860 SEQ_printf(m, " .%-30s: %u\n", "util_est",
861 cfs_rq->avg.util_est);
862 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
863 cfs_rq->removed.load_avg);
864 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
865 cfs_rq->removed.util_avg);
866 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg",
867 cfs_rq->removed.runnable_avg);
868 #ifdef CONFIG_FAIR_GROUP_SCHED
869 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
870 cfs_rq->tg_load_avg_contrib);
871 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
872 atomic_long_read(&cfs_rq->tg->load_avg));
873 #endif
874 #endif
875 #ifdef CONFIG_CFS_BANDWIDTH
876 SEQ_printf(m, " .%-30s: %d\n", "throttled",
877 cfs_rq->throttled);
878 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
879 cfs_rq->throttle_count);
880 #endif
881
882 #ifdef CONFIG_FAIR_GROUP_SCHED
883 print_cfs_group_stats(m, cpu, cfs_rq->tg);
884 #endif
885 }
886
print_rt_rq(struct seq_file * m,int cpu,struct rt_rq * rt_rq)887 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
888 {
889 #ifdef CONFIG_RT_GROUP_SCHED
890 SEQ_printf(m, "\n");
891 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
892 #else
893 SEQ_printf(m, "\n");
894 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
895 #endif
896
897 #define P(x) \
898 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
899 #define PU(x) \
900 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
901 #define PN(x) \
902 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
903
904 PU(rt_nr_running);
905
906 #ifdef CONFIG_RT_GROUP_SCHED
907 P(rt_throttled);
908 PN(rt_time);
909 PN(rt_runtime);
910 #endif
911
912 #undef PN
913 #undef PU
914 #undef P
915 }
916
print_dl_rq(struct seq_file * m,int cpu,struct dl_rq * dl_rq)917 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
918 {
919 struct dl_bw *dl_bw;
920
921 SEQ_printf(m, "\n");
922 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
923
924 #define PU(x) \
925 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
926
927 PU(dl_nr_running);
928 #ifdef CONFIG_SMP
929 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
930 #else
931 dl_bw = &dl_rq->dl_bw;
932 #endif
933 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
934 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
935
936 #undef PU
937 }
938
print_cpu(struct seq_file * m,int cpu)939 static void print_cpu(struct seq_file *m, int cpu)
940 {
941 struct rq *rq = cpu_rq(cpu);
942
943 #ifdef CONFIG_X86
944 {
945 unsigned int freq = cpu_khz ? : 1;
946
947 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
948 cpu, freq / 1000, (freq % 1000));
949 }
950 #else
951 SEQ_printf(m, "cpu#%d\n", cpu);
952 #endif
953
954 #define P(x) \
955 do { \
956 if (sizeof(rq->x) == 4) \
957 SEQ_printf(m, " .%-30s: %d\n", #x, (int)(rq->x)); \
958 else \
959 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
960 } while (0)
961
962 #define PN(x) \
963 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
964
965 P(nr_running);
966 P(nr_switches);
967 P(nr_uninterruptible);
968 PN(next_balance);
969 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
970 PN(clock);
971 PN(clock_task);
972 #undef P
973 #undef PN
974
975 #ifdef CONFIG_SMP
976 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
977 P64(avg_idle);
978 P64(max_idle_balance_cost);
979 #undef P64
980 #endif
981
982 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
983 if (schedstat_enabled()) {
984 P(yld_count);
985 P(sched_count);
986 P(sched_goidle);
987 P(ttwu_count);
988 P(ttwu_local);
989 }
990 #undef P
991
992 print_cfs_stats(m, cpu);
993 print_rt_stats(m, cpu);
994 print_dl_stats(m, cpu);
995
996 print_rq(m, rq, cpu);
997 SEQ_printf(m, "\n");
998 }
999
1000 static const char *sched_tunable_scaling_names[] = {
1001 "none",
1002 "logarithmic",
1003 "linear"
1004 };
1005
sched_debug_header(struct seq_file * m)1006 static void sched_debug_header(struct seq_file *m)
1007 {
1008 u64 ktime, sched_clk, cpu_clk;
1009 unsigned long flags;
1010
1011 local_irq_save(flags);
1012 ktime = ktime_to_ns(ktime_get());
1013 sched_clk = sched_clock();
1014 cpu_clk = local_clock();
1015 local_irq_restore(flags);
1016
1017 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
1018 init_utsname()->release,
1019 (int)strcspn(init_utsname()->version, " "),
1020 init_utsname()->version);
1021
1022 #define P(x) \
1023 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
1024 #define PN(x) \
1025 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
1026 PN(ktime);
1027 PN(sched_clk);
1028 PN(cpu_clk);
1029 P(jiffies);
1030 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1031 P(sched_clock_stable());
1032 #endif
1033 #undef PN
1034 #undef P
1035
1036 SEQ_printf(m, "\n");
1037 SEQ_printf(m, "sysctl_sched\n");
1038
1039 #define P(x) \
1040 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
1041 #define PN(x) \
1042 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
1043 PN(sysctl_sched_base_slice);
1044 P(sysctl_sched_child_runs_first);
1045 P(sysctl_sched_features);
1046 #undef PN
1047 #undef P
1048
1049 SEQ_printf(m, " .%-40s: %d (%s)\n",
1050 "sysctl_sched_tunable_scaling",
1051 sysctl_sched_tunable_scaling,
1052 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
1053 SEQ_printf(m, "\n");
1054 }
1055
sched_debug_show(struct seq_file * m,void * v)1056 static int sched_debug_show(struct seq_file *m, void *v)
1057 {
1058 int cpu = (unsigned long)(v - 2);
1059
1060 if (cpu != -1)
1061 print_cpu(m, cpu);
1062 else
1063 sched_debug_header(m);
1064
1065 return 0;
1066 }
1067
sysrq_sched_debug_show(void)1068 void sysrq_sched_debug_show(void)
1069 {
1070 int cpu;
1071
1072 sched_debug_header(NULL);
1073 for_each_online_cpu(cpu) {
1074 /*
1075 * Need to reset softlockup watchdogs on all CPUs, because
1076 * another CPU might be blocked waiting for us to process
1077 * an IPI or stop_machine.
1078 */
1079 touch_nmi_watchdog();
1080 touch_all_softlockup_watchdogs();
1081 print_cpu(NULL, cpu);
1082 }
1083 }
1084
1085 /*
1086 * This iterator needs some explanation.
1087 * It returns 1 for the header position.
1088 * This means 2 is CPU 0.
1089 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
1090 * to use cpumask_* to iterate over the CPUs.
1091 */
sched_debug_start(struct seq_file * file,loff_t * offset)1092 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
1093 {
1094 unsigned long n = *offset;
1095
1096 if (n == 0)
1097 return (void *) 1;
1098
1099 n--;
1100
1101 if (n > 0)
1102 n = cpumask_next(n - 1, cpu_online_mask);
1103 else
1104 n = cpumask_first(cpu_online_mask);
1105
1106 *offset = n + 1;
1107
1108 if (n < nr_cpu_ids)
1109 return (void *)(unsigned long)(n + 2);
1110
1111 return NULL;
1112 }
1113
sched_debug_next(struct seq_file * file,void * data,loff_t * offset)1114 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
1115 {
1116 (*offset)++;
1117 return sched_debug_start(file, offset);
1118 }
1119
sched_debug_stop(struct seq_file * file,void * data)1120 static void sched_debug_stop(struct seq_file *file, void *data)
1121 {
1122 }
1123
1124 static const struct seq_operations sched_debug_sops = {
1125 .start = sched_debug_start,
1126 .next = sched_debug_next,
1127 .stop = sched_debug_stop,
1128 .show = sched_debug_show,
1129 };
1130
1131 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
1132 #define __P(F) __PS(#F, F)
1133 #define P(F) __PS(#F, p->F)
1134 #define PM(F, M) __PS(#F, p->F & (M))
1135 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
1136 #define __PN(F) __PSN(#F, F)
1137 #define PN(F) __PSN(#F, p->F)
1138
1139
1140 #ifdef CONFIG_NUMA_BALANCING
print_numa_stats(struct seq_file * m,int node,unsigned long tsf,unsigned long tpf,unsigned long gsf,unsigned long gpf)1141 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1142 unsigned long tpf, unsigned long gsf, unsigned long gpf)
1143 {
1144 SEQ_printf(m, "numa_faults node=%d ", node);
1145 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
1146 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
1147 }
1148 #endif
1149
1150
sched_show_numa(struct task_struct * p,struct seq_file * m)1151 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
1152 {
1153 #ifdef CONFIG_NUMA_BALANCING
1154 if (p->mm)
1155 P(mm->numa_scan_seq);
1156
1157 P(numa_pages_migrated);
1158 P(numa_preferred_nid);
1159 P(total_numa_faults);
1160 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
1161 task_node(p), task_numa_group_id(p));
1162 show_numa_stats(p, m);
1163 #endif
1164 }
1165
proc_sched_show_task(struct task_struct * p,struct pid_namespace * ns,struct seq_file * m)1166 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
1167 struct seq_file *m)
1168 {
1169 unsigned long nr_switches;
1170
1171 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
1172 get_nr_threads(p));
1173 SEQ_printf(m,
1174 "---------------------------------------------------------"
1175 "----------\n");
1176
1177 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->stats.F))
1178 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F))
1179
1180 PN(se.exec_start);
1181 PN(se.vruntime);
1182 PN(se.sum_exec_runtime);
1183
1184 nr_switches = p->nvcsw + p->nivcsw;
1185
1186 P(se.nr_migrations);
1187
1188 if (schedstat_enabled()) {
1189 u64 avg_atom, avg_per_cpu;
1190
1191 PN_SCHEDSTAT(sum_sleep_runtime);
1192 PN_SCHEDSTAT(sum_block_runtime);
1193 PN_SCHEDSTAT(wait_start);
1194 PN_SCHEDSTAT(sleep_start);
1195 PN_SCHEDSTAT(block_start);
1196 PN_SCHEDSTAT(sleep_max);
1197 PN_SCHEDSTAT(block_max);
1198 PN_SCHEDSTAT(exec_max);
1199 PN_SCHEDSTAT(slice_max);
1200 PN_SCHEDSTAT(wait_max);
1201 PN_SCHEDSTAT(wait_sum);
1202 P_SCHEDSTAT(wait_count);
1203 PN_SCHEDSTAT(iowait_sum);
1204 P_SCHEDSTAT(iowait_count);
1205 P_SCHEDSTAT(nr_migrations_cold);
1206 P_SCHEDSTAT(nr_failed_migrations_affine);
1207 P_SCHEDSTAT(nr_failed_migrations_running);
1208 P_SCHEDSTAT(nr_failed_migrations_hot);
1209 P_SCHEDSTAT(nr_forced_migrations);
1210 P_SCHEDSTAT(nr_wakeups);
1211 P_SCHEDSTAT(nr_wakeups_sync);
1212 P_SCHEDSTAT(nr_wakeups_migrate);
1213 P_SCHEDSTAT(nr_wakeups_local);
1214 P_SCHEDSTAT(nr_wakeups_remote);
1215 P_SCHEDSTAT(nr_wakeups_affine);
1216 P_SCHEDSTAT(nr_wakeups_affine_attempts);
1217 P_SCHEDSTAT(nr_wakeups_passive);
1218 P_SCHEDSTAT(nr_wakeups_idle);
1219
1220 avg_atom = p->se.sum_exec_runtime;
1221 if (nr_switches)
1222 avg_atom = div64_ul(avg_atom, nr_switches);
1223 else
1224 avg_atom = -1LL;
1225
1226 avg_per_cpu = p->se.sum_exec_runtime;
1227 if (p->se.nr_migrations) {
1228 avg_per_cpu = div64_u64(avg_per_cpu,
1229 p->se.nr_migrations);
1230 } else {
1231 avg_per_cpu = -1LL;
1232 }
1233
1234 __PN(avg_atom);
1235 __PN(avg_per_cpu);
1236
1237 #ifdef CONFIG_SCHED_CORE
1238 PN_SCHEDSTAT(core_forceidle_sum);
1239 #endif
1240 }
1241
1242 __P(nr_switches);
1243 __PS("nr_voluntary_switches", p->nvcsw);
1244 __PS("nr_involuntary_switches", p->nivcsw);
1245
1246 P(se.load.weight);
1247 #ifdef CONFIG_SMP
1248 P(se.avg.load_sum);
1249 P(se.avg.runnable_sum);
1250 P(se.avg.util_sum);
1251 P(se.avg.load_avg);
1252 P(se.avg.runnable_avg);
1253 P(se.avg.util_avg);
1254 P(se.avg.last_update_time);
1255 PM(se.avg.util_est, ~UTIL_AVG_UNCHANGED);
1256 #endif
1257 #ifdef CONFIG_UCLAMP_TASK
1258 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1259 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1260 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1261 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1262 #endif
1263 P(policy);
1264 P(prio);
1265 if (task_has_dl_policy(p)) {
1266 P(dl.runtime);
1267 P(dl.deadline);
1268 } else if (fair_policy(p->policy)) {
1269 P(se.slice);
1270 }
1271 #ifdef CONFIG_SCHED_CLASS_EXT
1272 __PS("ext.enabled", task_on_scx(p));
1273 #endif
1274 #undef PN_SCHEDSTAT
1275 #undef P_SCHEDSTAT
1276
1277 {
1278 unsigned int this_cpu = raw_smp_processor_id();
1279 u64 t0, t1;
1280
1281 t0 = cpu_clock(this_cpu);
1282 t1 = cpu_clock(this_cpu);
1283 __PS("clock-delta", t1-t0);
1284 }
1285
1286 sched_show_numa(p, m);
1287 }
1288
proc_sched_set_task(struct task_struct * p)1289 void proc_sched_set_task(struct task_struct *p)
1290 {
1291 #ifdef CONFIG_SCHEDSTATS
1292 memset(&p->stats, 0, sizeof(p->stats));
1293 #endif
1294 }
1295
resched_latency_warn(int cpu,u64 latency)1296 void resched_latency_warn(int cpu, u64 latency)
1297 {
1298 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
1299
1300 WARN(__ratelimit(&latency_check_ratelimit),
1301 "sched: CPU %d need_resched set for > %llu ns (%d ticks) "
1302 "without schedule\n",
1303 cpu, latency, cpu_rq(cpu)->ticks_without_resched);
1304 }
1305