1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Per Entity Load Tracking (PELT)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 *
23 * Move PELT related code from fair.c into this pelt.c file
24 * Author: Vincent Guittot <vincent.guittot@linaro.org>
25 */
26
27 /*
28 * Approximate:
29 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
30 */
decay_load(u64 val,u64 n)31 static u64 decay_load(u64 val, u64 n)
32 {
33 unsigned int local_n;
34
35 if (unlikely(n > LOAD_AVG_PERIOD * 63))
36 return 0;
37
38 /* after bounds checking we can collapse to 32-bit */
39 local_n = n;
40
41 /*
42 * As y^PERIOD = 1/2, we can combine
43 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
44 * With a look-up table which covers y^n (n<PERIOD)
45 *
46 * To achieve constant time decay_load.
47 */
48 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
49 val >>= local_n / LOAD_AVG_PERIOD;
50 local_n %= LOAD_AVG_PERIOD;
51 }
52
53 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
54 return val;
55 }
56
__accumulate_pelt_segments(u64 periods,u32 d1,u32 d3)57 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
58 {
59 u32 c1, c2, c3 = d3; /* y^0 == 1 */
60
61 /*
62 * c1 = d1 y^p
63 */
64 c1 = decay_load((u64)d1, periods);
65
66 /*
67 * p-1
68 * c2 = 1024 \Sum y^n
69 * n=1
70 *
71 * inf inf
72 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
73 * n=0 n=p
74 */
75 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
76
77 return c1 + c2 + c3;
78 }
79
80 /*
81 * Accumulate the three separate parts of the sum; d1 the remainder
82 * of the last (incomplete) period, d2 the span of full periods and d3
83 * the remainder of the (incomplete) current period.
84 *
85 * d1 d2 d3
86 * ^ ^ ^
87 * | | |
88 * |<->|<----------------->|<--->|
89 * ... |---x---|------| ... |------|-----x (now)
90 *
91 * p-1
92 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
93 * n=1
94 *
95 * = u y^p + (Step 1)
96 *
97 * p-1
98 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
99 * n=1
100 */
101 static __always_inline u32
accumulate_sum(u64 delta,struct sched_avg * sa,unsigned long load,unsigned long runnable,int running)102 accumulate_sum(u64 delta, struct sched_avg *sa,
103 unsigned long load, unsigned long runnable, int running)
104 {
105 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
106 u64 periods;
107
108 delta += sa->period_contrib;
109 periods = delta / 1024; /* A period is 1024us (~1ms) */
110
111 /*
112 * Step 1: decay old *_sum if we crossed period boundaries.
113 */
114 if (periods) {
115 sa->load_sum = decay_load(sa->load_sum, periods);
116 sa->runnable_sum =
117 decay_load(sa->runnable_sum, periods);
118 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
119
120 /*
121 * Step 2
122 */
123 delta %= 1024;
124 if (load) {
125 /*
126 * This relies on the:
127 *
128 * if (!load)
129 * runnable = running = 0;
130 *
131 * clause from ___update_load_sum(); this results in
132 * the below usage of @contrib to disappear entirely,
133 * so no point in calculating it.
134 */
135 contrib = __accumulate_pelt_segments(periods,
136 1024 - sa->period_contrib, delta);
137 }
138 }
139 sa->period_contrib = delta;
140
141 if (load)
142 sa->load_sum += load * contrib;
143 if (runnable)
144 sa->runnable_sum += runnable * contrib << SCHED_CAPACITY_SHIFT;
145 if (running)
146 sa->util_sum += contrib << SCHED_CAPACITY_SHIFT;
147
148 return periods;
149 }
150
151 /*
152 * We can represent the historical contribution to runnable average as the
153 * coefficients of a geometric series. To do this we sub-divide our runnable
154 * history into segments of approximately 1ms (1024us); label the segment that
155 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
156 *
157 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
158 * p0 p1 p2
159 * (now) (~1ms ago) (~2ms ago)
160 *
161 * Let u_i denote the fraction of p_i that the entity was runnable.
162 *
163 * We then designate the fractions u_i as our co-efficients, yielding the
164 * following representation of historical load:
165 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
166 *
167 * We choose y based on the with of a reasonably scheduling period, fixing:
168 * y^32 = 0.5
169 *
170 * This means that the contribution to load ~32ms ago (u_32) will be weighted
171 * approximately half as much as the contribution to load within the last ms
172 * (u_0).
173 *
174 * When a period "rolls over" and we have new u_0`, multiplying the previous
175 * sum again by y is sufficient to update:
176 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
177 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
178 */
179 __always_inline int
___update_load_sum(u64 now,struct sched_avg * sa,unsigned long load,unsigned long runnable,int running)180 ___update_load_sum(u64 now, struct sched_avg *sa,
181 unsigned long load, unsigned long runnable, int running)
182 {
183 u64 delta;
184
185 delta = now - sa->last_update_time;
186 /*
187 * This should only happen when time goes backwards, which it
188 * unfortunately does during sched clock init when we swap over to TSC.
189 */
190 if ((s64)delta < 0) {
191 sa->last_update_time = now;
192 return 0;
193 }
194
195 /*
196 * Use 1024ns as the unit of measurement since it's a reasonable
197 * approximation of 1us and fast to compute.
198 */
199 delta >>= 10;
200 if (!delta)
201 return 0;
202
203 sa->last_update_time += delta << 10;
204
205 /*
206 * running is a subset of runnable (weight) so running can't be set if
207 * runnable is clear. But there are some corner cases where the current
208 * se has been already dequeued but cfs_rq->curr still points to it.
209 * This means that weight will be 0 but not running for a sched_entity
210 * but also for a cfs_rq if the latter becomes idle. As an example,
211 * this happens during sched_balance_newidle() which calls
212 * sched_balance_update_blocked_averages().
213 *
214 * Also see the comment in accumulate_sum().
215 */
216 if (!load)
217 runnable = running = 0;
218
219 /*
220 * Now we know we crossed measurement unit boundaries. The *_avg
221 * accrues by two steps:
222 *
223 * Step 1: accumulate *_sum since last_update_time. If we haven't
224 * crossed period boundaries, finish.
225 */
226 if (!accumulate_sum(delta, sa, load, runnable, running))
227 return 0;
228
229 return 1;
230 }
231 EXPORT_SYMBOL_GPL(___update_load_sum);
232
233 /*
234 * When syncing *_avg with *_sum, we must take into account the current
235 * position in the PELT segment otherwise the remaining part of the segment
236 * will be considered as idle time whereas it's not yet elapsed and this will
237 * generate unwanted oscillation in the range [1002..1024[.
238 *
239 * The max value of *_sum varies with the position in the time segment and is
240 * equals to :
241 *
242 * LOAD_AVG_MAX*y + sa->period_contrib
243 *
244 * which can be simplified into:
245 *
246 * LOAD_AVG_MAX - 1024 + sa->period_contrib
247 *
248 * because LOAD_AVG_MAX*y == LOAD_AVG_MAX-1024
249 *
250 * The same care must be taken when a sched entity is added, updated or
251 * removed from a cfs_rq and we need to update sched_avg. Scheduler entities
252 * and the cfs rq, to which they are attached, have the same position in the
253 * time segment because they use the same clock. This means that we can use
254 * the period_contrib of cfs_rq when updating the sched_avg of a sched_entity
255 * if it's more convenient.
256 */
257 static __always_inline void
___update_load_avg(struct sched_avg * sa,unsigned long load)258 ___update_load_avg(struct sched_avg *sa, unsigned long load)
259 {
260 u32 divider = get_pelt_divider(sa);
261
262 /*
263 * Step 2: update *_avg.
264 */
265 sa->load_avg = div_u64(load * sa->load_sum, divider);
266 sa->runnable_avg = div_u64(sa->runnable_sum, divider);
267 WRITE_ONCE(sa->util_avg, sa->util_sum / divider);
268 }
269
270 /*
271 * sched_entity:
272 *
273 * task:
274 * se_weight() = se->load.weight
275 * se_runnable() = !!on_rq
276 *
277 * group: [ see update_cfs_group() ]
278 * se_weight() = tg->weight * grq->load_avg / tg->load_avg
279 * se_runnable() = grq->h_nr_running
280 *
281 * runnable_sum = se_runnable() * runnable = grq->runnable_sum
282 * runnable_avg = runnable_sum
283 *
284 * load_sum := runnable
285 * load_avg = se_weight(se) * load_sum
286 *
287 * cfq_rq:
288 *
289 * runnable_sum = \Sum se->avg.runnable_sum
290 * runnable_avg = \Sum se->avg.runnable_avg
291 *
292 * load_sum = \Sum se_weight(se) * se->avg.load_sum
293 * load_avg = \Sum se->avg.load_avg
294 */
295
__update_load_avg_blocked_se(u64 now,struct sched_entity * se)296 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se)
297 {
298 int ret = -1;
299
300 trace_android_rvh_update_load_avg_blocked_se(now, se, &ret);
301 if (ret != -1)
302 return ret;
303
304 if (___update_load_sum(now, &se->avg, 0, 0, 0)) {
305 ___update_load_avg(&se->avg, se_weight(se));
306 trace_pelt_se_tp(se);
307 return 1;
308 }
309
310 return 0;
311 }
312 EXPORT_SYMBOL_GPL(__update_load_avg_blocked_se);
313
__update_load_avg_se(u64 now,struct cfs_rq * cfs_rq,struct sched_entity * se)314 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se)
315 {
316 int ret = -1;
317
318 trace_android_rvh_update_load_avg_se(now, cfs_rq, se, &ret);
319 if (ret != -1)
320 return ret;
321
322 if (___update_load_sum(now, &se->avg, !!se->on_rq, se_runnable(se),
323 cfs_rq->curr == se)) {
324
325 ___update_load_avg(&se->avg, se_weight(se));
326 cfs_se_util_change(&se->avg);
327 trace_pelt_se_tp(se);
328 return 1;
329 }
330
331 return 0;
332 }
333
__update_load_avg_cfs_rq(u64 now,struct cfs_rq * cfs_rq)334 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq)
335 {
336 int ret = -1;
337
338 trace_android_rvh_update_load_avg_cfs_rq(now, cfs_rq, &ret);
339 if (ret != -1)
340 return ret;
341
342 if (___update_load_sum(now, &cfs_rq->avg,
343 scale_load_down(cfs_rq->load.weight),
344 cfs_rq->h_nr_running - cfs_rq->h_nr_delayed,
345 cfs_rq->curr != NULL)) {
346
347 ___update_load_avg(&cfs_rq->avg, 1);
348 trace_pelt_cfs_tp(cfs_rq);
349 return 1;
350 }
351
352 return 0;
353 }
354
355 /*
356 * rt_rq:
357 *
358 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
359 * util_sum = cpu_scale * load_sum
360 * runnable_sum = util_sum
361 *
362 * load_avg and runnable_avg are not supported and meaningless.
363 *
364 */
365
update_rt_rq_load_avg(u64 now,struct rq * rq,int running)366 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
367 {
368 int ret = -1;
369
370 trace_android_rvh_update_rt_rq_load_avg_internal(now, rq, running, &ret);
371 if (ret != -1)
372 return ret;
373
374 if (___update_load_sum(now, &rq->avg_rt,
375 running,
376 running,
377 running)) {
378
379 ___update_load_avg(&rq->avg_rt, 1);
380 trace_pelt_rt_tp(rq);
381 return 1;
382 }
383
384 return 0;
385 }
386
387 /*
388 * dl_rq:
389 *
390 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
391 * util_sum = cpu_scale * load_sum
392 * runnable_sum = util_sum
393 *
394 * load_avg and runnable_avg are not supported and meaningless.
395 *
396 */
397
update_dl_rq_load_avg(u64 now,struct rq * rq,int running)398 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
399 {
400 if (___update_load_sum(now, &rq->avg_dl,
401 running,
402 running,
403 running)) {
404
405 ___update_load_avg(&rq->avg_dl, 1);
406 trace_pelt_dl_tp(rq);
407 return 1;
408 }
409
410 return 0;
411 }
412
413 #ifdef CONFIG_SCHED_HW_PRESSURE
414 /*
415 * hardware:
416 *
417 * load_sum = \Sum se->avg.load_sum but se->avg.load_sum is not tracked
418 *
419 * util_avg and runnable_load_avg are not supported and meaningless.
420 *
421 * Unlike rt/dl utilization tracking that track time spent by a cpu
422 * running a rt/dl task through util_avg, the average HW pressure is
423 * tracked through load_avg. This is because HW pressure signal is
424 * time weighted "delta" capacity unlike util_avg which is binary.
425 * "delta capacity" = actual capacity -
426 * capped capacity a cpu due to a HW event.
427 */
428
update_hw_load_avg(u64 now,struct rq * rq,u64 capacity)429 int update_hw_load_avg(u64 now, struct rq *rq, u64 capacity)
430 {
431 if (___update_load_sum(now, &rq->avg_hw,
432 capacity,
433 capacity,
434 capacity)) {
435 ___update_load_avg(&rq->avg_hw, 1);
436 trace_pelt_hw_tp(rq);
437 return 1;
438 }
439
440 return 0;
441 }
442 #endif
443
444 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
445 /*
446 * IRQ:
447 *
448 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
449 * util_sum = cpu_scale * load_sum
450 * runnable_sum = util_sum
451 *
452 * load_avg and runnable_avg are not supported and meaningless.
453 *
454 */
455
update_irq_load_avg(struct rq * rq,u64 running)456 int update_irq_load_avg(struct rq *rq, u64 running)
457 {
458 int ret = 0;
459
460 /*
461 * We can't use clock_pelt because IRQ time is not accounted in
462 * clock_task. Instead we directly scale the running time to
463 * reflect the real amount of computation
464 */
465 running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq)));
466 running = cap_scale(running, arch_scale_cpu_capacity(cpu_of(rq)));
467
468 /*
469 * We know the time that has been used by interrupt since last update
470 * but we don't when. Let be pessimistic and assume that interrupt has
471 * happened just before the update. This is not so far from reality
472 * because interrupt will most probably wake up task and trig an update
473 * of rq clock during which the metric is updated.
474 * We start to decay with normal context time and then we add the
475 * interrupt context time.
476 * We can safely remove running from rq->clock because
477 * rq->clock += delta with delta >= running
478 */
479 ret = ___update_load_sum(rq->clock - running, &rq->avg_irq,
480 0,
481 0,
482 0);
483 ret += ___update_load_sum(rq->clock, &rq->avg_irq,
484 1,
485 1,
486 1);
487
488 if (ret) {
489 ___update_load_avg(&rq->avg_irq, 1);
490 trace_pelt_irq_tp(rq);
491 }
492
493 return ret;
494 }
495 #endif
496
497 /*
498 * Load avg and utiliztion metrics need to be updated periodically and before
499 * consumption. This function updates the metrics for all subsystems except for
500 * the fair class. @rq must be locked and have its clock updated.
501 */
update_other_load_avgs(struct rq * rq)502 bool update_other_load_avgs(struct rq *rq)
503 {
504 u64 now = rq_clock_pelt(rq);
505 const struct sched_class *curr_class = rq->donor->sched_class;
506 unsigned long hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
507
508 lockdep_assert_rq_held(rq);
509
510 /* hw_pressure doesn't care about invariance */
511 return update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
512 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
513 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure) |
514 update_irq_load_avg(rq, 0);
515 }
516
517 __read_mostly unsigned int sched_pelt_lshift;
518
519 #ifdef CONFIG_SYSCTL
520 #include <trace/hooks/sched.h>
521 static unsigned int sysctl_sched_pelt_multiplier = 1;
522
sched_pelt_multiplier(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)523 int sched_pelt_multiplier(const struct ctl_table *table, int write, void *buffer,
524 size_t *lenp, loff_t *ppos)
525 {
526 static DEFINE_MUTEX(mutex);
527 unsigned int old;
528 int ret;
529
530 mutex_lock(&mutex);
531 old = sysctl_sched_pelt_multiplier;
532 ret = proc_dointvec(table, write, buffer, lenp, ppos);
533 if (ret)
534 goto undo;
535 if (!write)
536 goto done;
537
538 trace_android_vh_sched_pelt_multiplier(old, sysctl_sched_pelt_multiplier, &ret);
539 if (ret)
540 goto undo;
541
542 switch (sysctl_sched_pelt_multiplier) {
543 case 1:
544 fallthrough;
545 case 2:
546 fallthrough;
547 case 4:
548 WRITE_ONCE(sched_pelt_lshift,
549 sysctl_sched_pelt_multiplier >> 1);
550 goto done;
551 default:
552 ret = -EINVAL;
553 }
554
555 undo:
556 sysctl_sched_pelt_multiplier = old;
557 done:
558 mutex_unlock(&mutex);
559
560 return ret;
561 }
562
563 static struct ctl_table sched_pelt_sysctls[] = {
564 {
565 .procname = "sched_pelt_multiplier",
566 .data = &sysctl_sched_pelt_multiplier,
567 .maxlen = sizeof(unsigned int),
568 .mode = 0644,
569 .proc_handler = sched_pelt_multiplier,
570 },
571 };
572
sched_pelt_sysctl_init(void)573 static int __init sched_pelt_sysctl_init(void)
574 {
575 register_sysctl_init("kernel", sched_pelt_sysctls);
576 return 0;
577 }
578 late_initcall(sched_pelt_sysctl_init);
579 #endif
580