• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Pressure stall information for CPU, memory and IO
4  *
5  * Copyright (c) 2018 Facebook, Inc.
6  * Author: Johannes Weiner <hannes@cmpxchg.org>
7  *
8  * Polling support by Suren Baghdasaryan <surenb@google.com>
9  * Copyright (c) 2018 Google, Inc.
10  *
11  * When CPU, memory and IO are contended, tasks experience delays that
12  * reduce throughput and introduce latencies into the workload. Memory
13  * and IO contention, in addition, can cause a full loss of forward
14  * progress in which the CPU goes idle.
15  *
16  * This code aggregates individual task delays into resource pressure
17  * metrics that indicate problems with both workload health and
18  * resource utilization.
19  *
20  *			Model
21  *
22  * The time in which a task can execute on a CPU is our baseline for
23  * productivity. Pressure expresses the amount of time in which this
24  * potential cannot be realized due to resource contention.
25  *
26  * This concept of productivity has two components: the workload and
27  * the CPU. To measure the impact of pressure on both, we define two
28  * contention states for a resource: SOME and FULL.
29  *
30  * In the SOME state of a given resource, one or more tasks are
31  * delayed on that resource. This affects the workload's ability to
32  * perform work, but the CPU may still be executing other tasks.
33  *
34  * In the FULL state of a given resource, all non-idle tasks are
35  * delayed on that resource such that nobody is advancing and the CPU
36  * goes idle. This leaves both workload and CPU unproductive.
37  *
38  *	SOME = nr_delayed_tasks != 0
39  *	FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
40  *
41  * What it means for a task to be productive is defined differently
42  * for each resource. For IO, productive means a running task. For
43  * memory, productive means a running task that isn't a reclaimer. For
44  * CPU, productive means an on-CPU task.
45  *
46  * Naturally, the FULL state doesn't exist for the CPU resource at the
47  * system level, but exist at the cgroup level. At the cgroup level,
48  * FULL means all non-idle tasks in the cgroup are delayed on the CPU
49  * resource which is being used by others outside of the cgroup or
50  * throttled by the cgroup cpu.max configuration.
51  *
52  * The percentage of wall clock time spent in those compound stall
53  * states gives pressure numbers between 0 and 100 for each resource,
54  * where the SOME percentage indicates workload slowdowns and the FULL
55  * percentage indicates reduced CPU utilization:
56  *
57  *	%SOME = time(SOME) / period
58  *	%FULL = time(FULL) / period
59  *
60  *			Multiple CPUs
61  *
62  * The more tasks and available CPUs there are, the more work can be
63  * performed concurrently. This means that the potential that can go
64  * unrealized due to resource contention *also* scales with non-idle
65  * tasks and CPUs.
66  *
67  * Consider a scenario where 257 number crunching tasks are trying to
68  * run concurrently on 256 CPUs. If we simply aggregated the task
69  * states, we would have to conclude a CPU SOME pressure number of
70  * 100%, since *somebody* is waiting on a runqueue at all
71  * times. However, that is clearly not the amount of contention the
72  * workload is experiencing: only one out of 256 possible execution
73  * threads will be contended at any given time, or about 0.4%.
74  *
75  * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
76  * given time *one* of the tasks is delayed due to a lack of memory.
77  * Again, looking purely at the task state would yield a memory FULL
78  * pressure number of 0%, since *somebody* is always making forward
79  * progress. But again this wouldn't capture the amount of execution
80  * potential lost, which is 1 out of 4 CPUs, or 25%.
81  *
82  * To calculate wasted potential (pressure) with multiple processors,
83  * we have to base our calculation on the number of non-idle tasks in
84  * conjunction with the number of available CPUs, which is the number
85  * of potential execution threads. SOME becomes then the proportion of
86  * delayed tasks to possible threads, and FULL is the share of possible
87  * threads that are unproductive due to delays:
88  *
89  *	threads = min(nr_nonidle_tasks, nr_cpus)
90  *	   SOME = min(nr_delayed_tasks / threads, 1)
91  *	   FULL = (threads - min(nr_productive_tasks, threads)) / threads
92  *
93  * For the 257 number crunchers on 256 CPUs, this yields:
94  *
95  *	threads = min(257, 256)
96  *	   SOME = min(1 / 256, 1)             = 0.4%
97  *	   FULL = (256 - min(256, 256)) / 256 = 0%
98  *
99  * For the 1 out of 4 memory-delayed tasks, this yields:
100  *
101  *	threads = min(4, 4)
102  *	   SOME = min(1 / 4, 1)               = 25%
103  *	   FULL = (4 - min(3, 4)) / 4         = 25%
104  *
105  * [ Substitute nr_cpus with 1, and you can see that it's a natural
106  *   extension of the single-CPU model. ]
107  *
108  *			Implementation
109  *
110  * To assess the precise time spent in each such state, we would have
111  * to freeze the system on task changes and start/stop the state
112  * clocks accordingly. Obviously that doesn't scale in practice.
113  *
114  * Because the scheduler aims to distribute the compute load evenly
115  * among the available CPUs, we can track task state locally to each
116  * CPU and, at much lower frequency, extrapolate the global state for
117  * the cumulative stall times and the running averages.
118  *
119  * For each runqueue, we track:
120  *
121  *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
122  *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
123  *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
124  *
125  * and then periodically aggregate:
126  *
127  *	tNONIDLE = sum(tNONIDLE[i])
128  *
129  *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
130  *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
131  *
132  *	   %SOME = tSOME / period
133  *	   %FULL = tFULL / period
134  *
135  * This gives us an approximation of pressure that is practical
136  * cost-wise, yet way more sensitive and accurate than periodic
137  * sampling of the aggregate task states would be.
138  */
139 #include <trace/hooks/psi.h>
140 
141 static int psi_bug __read_mostly;
142 
143 DEFINE_STATIC_KEY_FALSE(psi_disabled);
144 static DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
145 
146 #ifdef CONFIG_PSI_DEFAULT_DISABLED
147 static bool psi_enable;
148 #else
149 static bool psi_enable = true;
150 #endif
setup_psi(char * str)151 static int __init setup_psi(char *str)
152 {
153 	return kstrtobool(str, &psi_enable) == 0;
154 }
155 __setup("psi=", setup_psi);
156 
157 /* Running averages - we need to be higher-res than loadavg */
158 #define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
159 #define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
160 #define EXP_60s		1981		/* 1/exp(2s/60s) */
161 #define EXP_300s	2034		/* 1/exp(2s/300s) */
162 
163 /* PSI trigger definitions */
164 #define WINDOW_MAX_US 10000000	/* Max window size is 10s */
165 #define UPDATES_PER_WINDOW 10	/* 10 updates per window */
166 
167 /* Sampling frequency in nanoseconds */
168 static u64 psi_period __read_mostly;
169 
170 /* System-level pressure and stall tracking */
171 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
172 struct psi_group psi_system = {
173 	.pcpu = &system_group_pcpu,
174 };
175 
176 static void psi_avgs_work(struct work_struct *work);
177 
178 static void poll_timer_fn(struct timer_list *t);
179 
group_init(struct psi_group * group)180 static void group_init(struct psi_group *group)
181 {
182 	int cpu;
183 
184 	group->enabled = true;
185 	for_each_possible_cpu(cpu)
186 		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
187 	group->avg_last_update = sched_clock();
188 	group->avg_next_update = group->avg_last_update + psi_period;
189 	mutex_init(&group->avgs_lock);
190 
191 	/* Init avg trigger-related members */
192 	INIT_LIST_HEAD(&group->avg_triggers);
193 	memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers));
194 	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
195 
196 	/* Init rtpoll trigger-related members */
197 	atomic_set(&group->rtpoll_scheduled, 0);
198 	mutex_init(&group->rtpoll_trigger_lock);
199 	INIT_LIST_HEAD(&group->rtpoll_triggers);
200 	group->rtpoll_min_period = U32_MAX;
201 	group->rtpoll_next_update = ULLONG_MAX;
202 	init_waitqueue_head(&group->rtpoll_wait);
203 	timer_setup(&group->rtpoll_timer, poll_timer_fn, 0);
204 	rcu_assign_pointer(group->rtpoll_task, NULL);
205 }
206 
psi_init(void)207 void __init psi_init(void)
208 {
209 	if (!psi_enable) {
210 		static_branch_enable(&psi_disabled);
211 		static_branch_disable(&psi_cgroups_enabled);
212 		return;
213 	}
214 
215 	if (!cgroup_psi_enabled())
216 		static_branch_disable(&psi_cgroups_enabled);
217 
218 	psi_period = jiffies_to_nsecs(PSI_FREQ);
219 	group_init(&psi_system);
220 }
221 
test_states(unsigned int * tasks,u32 state_mask)222 static u32 test_states(unsigned int *tasks, u32 state_mask)
223 {
224 	const bool oncpu = state_mask & PSI_ONCPU;
225 
226 	if (tasks[NR_IOWAIT]) {
227 		state_mask |= BIT(PSI_IO_SOME);
228 		if (!tasks[NR_RUNNING])
229 			state_mask |= BIT(PSI_IO_FULL);
230 	}
231 
232 	if (tasks[NR_MEMSTALL]) {
233 		state_mask |= BIT(PSI_MEM_SOME);
234 		if (tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING])
235 			state_mask |= BIT(PSI_MEM_FULL);
236 	}
237 
238 	if (tasks[NR_RUNNING] > oncpu)
239 		state_mask |= BIT(PSI_CPU_SOME);
240 
241 	if (tasks[NR_RUNNING] && !oncpu)
242 		state_mask |= BIT(PSI_CPU_FULL);
243 
244 	if (tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || tasks[NR_RUNNING])
245 		state_mask |= BIT(PSI_NONIDLE);
246 
247 	return state_mask;
248 }
249 
get_recent_times(struct psi_group * group,int cpu,enum psi_aggregators aggregator,u32 * times,u32 * pchanged_states)250 static void get_recent_times(struct psi_group *group, int cpu,
251 			     enum psi_aggregators aggregator, u32 *times,
252 			     u32 *pchanged_states)
253 {
254 	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
255 	int current_cpu = raw_smp_processor_id();
256 	unsigned int tasks[NR_PSI_TASK_COUNTS];
257 	u64 now, state_start;
258 	enum psi_states s;
259 	unsigned int seq;
260 	u32 state_mask;
261 
262 	*pchanged_states = 0;
263 
264 	/* Snapshot a coherent view of the CPU state */
265 	do {
266 		seq = read_seqcount_begin(&groupc->seq);
267 		now = cpu_clock(cpu);
268 		memcpy(times, groupc->times, sizeof(groupc->times));
269 		state_mask = groupc->state_mask;
270 		state_start = groupc->state_start;
271 		if (cpu == current_cpu)
272 			memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
273 	} while (read_seqcount_retry(&groupc->seq, seq));
274 
275 	/* Calculate state time deltas against the previous snapshot */
276 	for (s = 0; s < NR_PSI_STATES; s++) {
277 		u32 delta;
278 		/*
279 		 * In addition to already concluded states, we also
280 		 * incorporate currently active states on the CPU,
281 		 * since states may last for many sampling periods.
282 		 *
283 		 * This way we keep our delta sampling buckets small
284 		 * (u32) and our reported pressure close to what's
285 		 * actually happening.
286 		 */
287 		if (state_mask & (1 << s))
288 			times[s] += now - state_start;
289 
290 		delta = times[s] - groupc->times_prev[aggregator][s];
291 		groupc->times_prev[aggregator][s] = times[s];
292 
293 		times[s] = delta;
294 		if (delta)
295 			*pchanged_states |= (1 << s);
296 	}
297 
298 	/*
299 	 * When collect_percpu_times() from the avgs_work, we don't want to
300 	 * re-arm avgs_work when all CPUs are IDLE. But the current CPU running
301 	 * this avgs_work is never IDLE, cause avgs_work can't be shut off.
302 	 * So for the current CPU, we need to re-arm avgs_work only when
303 	 * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs
304 	 * we can just check PSI_NONIDLE delta.
305 	 */
306 	if (current_work() == &group->avgs_work.work) {
307 		bool reschedule;
308 
309 		if (cpu == current_cpu)
310 			reschedule = tasks[NR_RUNNING] +
311 				     tasks[NR_IOWAIT] +
312 				     tasks[NR_MEMSTALL] > 1;
313 		else
314 			reschedule = *pchanged_states & (1 << PSI_NONIDLE);
315 
316 		if (reschedule)
317 			*pchanged_states |= PSI_STATE_RESCHEDULE;
318 	}
319 }
320 
calc_avgs(unsigned long avg[3],int missed_periods,u64 time,u64 period)321 static void calc_avgs(unsigned long avg[3], int missed_periods,
322 		      u64 time, u64 period)
323 {
324 	unsigned long pct;
325 
326 	/* Fill in zeroes for periods of no activity */
327 	if (missed_periods) {
328 		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
329 		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
330 		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
331 	}
332 
333 	/* Sample the most recent active period */
334 	pct = div_u64(time * 100, period);
335 	pct *= FIXED_1;
336 	avg[0] = calc_load(avg[0], EXP_10s, pct);
337 	avg[1] = calc_load(avg[1], EXP_60s, pct);
338 	avg[2] = calc_load(avg[2], EXP_300s, pct);
339 }
340 
collect_percpu_times(struct psi_group * group,enum psi_aggregators aggregator,u32 * pchanged_states)341 static void collect_percpu_times(struct psi_group *group,
342 				 enum psi_aggregators aggregator,
343 				 u32 *pchanged_states)
344 {
345 	u64 deltas[NR_PSI_STATES - 1] = { 0, };
346 	unsigned long nonidle_total = 0;
347 	u32 changed_states = 0;
348 	int cpu;
349 	int s;
350 
351 	/*
352 	 * Collect the per-cpu time buckets and average them into a
353 	 * single time sample that is normalized to wall clock time.
354 	 *
355 	 * For averaging, each CPU is weighted by its non-idle time in
356 	 * the sampling period. This eliminates artifacts from uneven
357 	 * loading, or even entirely idle CPUs.
358 	 */
359 	for_each_possible_cpu(cpu) {
360 		u32 times[NR_PSI_STATES];
361 		u32 nonidle;
362 		u32 cpu_changed_states;
363 
364 		get_recent_times(group, cpu, aggregator, times,
365 				&cpu_changed_states);
366 		changed_states |= cpu_changed_states;
367 
368 		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
369 		nonidle_total += nonidle;
370 
371 		for (s = 0; s < PSI_NONIDLE; s++)
372 			deltas[s] += (u64)times[s] * nonidle;
373 	}
374 
375 	/*
376 	 * Integrate the sample into the running statistics that are
377 	 * reported to userspace: the cumulative stall times and the
378 	 * decaying averages.
379 	 *
380 	 * Pressure percentages are sampled at PSI_FREQ. We might be
381 	 * called more often when the user polls more frequently than
382 	 * that; we might be called less often when there is no task
383 	 * activity, thus no data, and clock ticks are sporadic. The
384 	 * below handles both.
385 	 */
386 
387 	/* total= */
388 	for (s = 0; s < NR_PSI_STATES - 1; s++)
389 		group->total[aggregator][s] +=
390 				div_u64(deltas[s], max(nonidle_total, 1UL));
391 
392 	if (pchanged_states)
393 		*pchanged_states = changed_states;
394 }
395 
396 /* Trigger tracking window manipulations */
window_reset(struct psi_window * win,u64 now,u64 value,u64 prev_growth)397 static void window_reset(struct psi_window *win, u64 now, u64 value,
398 			 u64 prev_growth)
399 {
400 	win->start_time = now;
401 	win->start_value = value;
402 	win->prev_growth = prev_growth;
403 }
404 
405 /*
406  * PSI growth tracking window update and growth calculation routine.
407  *
408  * This approximates a sliding tracking window by interpolating
409  * partially elapsed windows using historical growth data from the
410  * previous intervals. This minimizes memory requirements (by not storing
411  * all the intermediate values in the previous window) and simplifies
412  * the calculations. It works well because PSI signal changes only in
413  * positive direction and over relatively small window sizes the growth
414  * is close to linear.
415  */
window_update(struct psi_window * win,u64 now,u64 value)416 static u64 window_update(struct psi_window *win, u64 now, u64 value)
417 {
418 	u64 elapsed;
419 	u64 growth;
420 
421 	elapsed = now - win->start_time;
422 	growth = value - win->start_value;
423 	/*
424 	 * After each tracking window passes win->start_value and
425 	 * win->start_time get reset and win->prev_growth stores
426 	 * the average per-window growth of the previous window.
427 	 * win->prev_growth is then used to interpolate additional
428 	 * growth from the previous window assuming it was linear.
429 	 */
430 	if (elapsed > win->size)
431 		window_reset(win, now, value, growth);
432 	else {
433 		u32 remaining;
434 
435 		remaining = win->size - elapsed;
436 		growth += div64_u64(win->prev_growth * remaining, win->size);
437 	}
438 
439 	return growth;
440 }
441 
update_triggers(struct psi_group * group,u64 now,enum psi_aggregators aggregator)442 static void update_triggers(struct psi_group *group, u64 now,
443 						   enum psi_aggregators aggregator)
444 {
445 	struct psi_trigger *t;
446 	u64 *total = group->total[aggregator];
447 	struct list_head *triggers;
448 	u64 *aggregator_total;
449 
450 	if (aggregator == PSI_AVGS) {
451 		triggers = &group->avg_triggers;
452 		aggregator_total = group->avg_total;
453 	} else {
454 		triggers = &group->rtpoll_triggers;
455 		aggregator_total = group->rtpoll_total;
456 	}
457 
458 	/*
459 	 * On subsequent updates, calculate growth deltas and let
460 	 * watchers know when their specified thresholds are exceeded.
461 	 */
462 	list_for_each_entry(t, triggers, node) {
463 		u64 growth;
464 		bool new_stall;
465 
466 		new_stall = aggregator_total[t->state] != total[t->state];
467 
468 		/* Check for stall activity or a previous threshold breach */
469 		if (!new_stall && !t->pending_event)
470 			continue;
471 		/*
472 		 * Check for new stall activity, as well as deferred
473 		 * events that occurred in the last window after the
474 		 * trigger had already fired (we want to ratelimit
475 		 * events without dropping any).
476 		 */
477 		if (new_stall) {
478 			/* Calculate growth since last update */
479 			growth = window_update(&t->win, now, total[t->state]);
480 			if (!t->pending_event) {
481 				if (growth < t->threshold)
482 					continue;
483 
484 				t->pending_event = true;
485 			}
486 		}
487 		/* Limit event signaling to once per window */
488 		if (now < t->last_event_time + t->win.size)
489 			continue;
490 
491 		trace_android_vh_psi_event(t);
492 
493 		/* Generate an event */
494 		if (cmpxchg(&t->event, 0, 1) == 0) {
495 			if (t->of)
496 				kernfs_notify(t->of->kn);
497 			else
498 				wake_up_interruptible(&t->event_wait);
499 		}
500 		t->last_event_time = now;
501 		/* Reset threshold breach flag once event got generated */
502 		t->pending_event = false;
503 	}
504 
505 	trace_android_vh_psi_group(group);
506 }
507 
update_averages(struct psi_group * group,u64 now)508 static u64 update_averages(struct psi_group *group, u64 now)
509 {
510 	unsigned long missed_periods = 0;
511 	u64 expires, period;
512 	u64 avg_next_update;
513 	int s;
514 
515 	/* avgX= */
516 	expires = group->avg_next_update;
517 	if (now - expires >= psi_period)
518 		missed_periods = div_u64(now - expires, psi_period);
519 
520 	/*
521 	 * The periodic clock tick can get delayed for various
522 	 * reasons, especially on loaded systems. To avoid clock
523 	 * drift, we schedule the clock in fixed psi_period intervals.
524 	 * But the deltas we sample out of the per-cpu buckets above
525 	 * are based on the actual time elapsing between clock ticks.
526 	 */
527 	avg_next_update = expires + ((1 + missed_periods) * psi_period);
528 	period = now - (group->avg_last_update + (missed_periods * psi_period));
529 	group->avg_last_update = now;
530 
531 	for (s = 0; s < NR_PSI_STATES - 1; s++) {
532 		u32 sample;
533 
534 		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
535 		/*
536 		 * Due to the lockless sampling of the time buckets,
537 		 * recorded time deltas can slip into the next period,
538 		 * which under full pressure can result in samples in
539 		 * excess of the period length.
540 		 *
541 		 * We don't want to report non-sensical pressures in
542 		 * excess of 100%, nor do we want to drop such events
543 		 * on the floor. Instead we punt any overage into the
544 		 * future until pressure subsides. By doing this we
545 		 * don't underreport the occurring pressure curve, we
546 		 * just report it delayed by one period length.
547 		 *
548 		 * The error isn't cumulative. As soon as another
549 		 * delta slips from a period P to P+1, by definition
550 		 * it frees up its time T in P.
551 		 */
552 		if (sample > period)
553 			sample = period;
554 		group->avg_total[s] += sample;
555 		calc_avgs(group->avg[s], missed_periods, sample, period);
556 	}
557 
558 	return avg_next_update;
559 }
560 
psi_avgs_work(struct work_struct * work)561 static void psi_avgs_work(struct work_struct *work)
562 {
563 	struct delayed_work *dwork;
564 	struct psi_group *group;
565 	u32 changed_states;
566 	u64 now;
567 
568 	dwork = to_delayed_work(work);
569 	group = container_of(dwork, struct psi_group, avgs_work);
570 
571 	mutex_lock(&group->avgs_lock);
572 
573 	now = sched_clock();
574 
575 	collect_percpu_times(group, PSI_AVGS, &changed_states);
576 	/*
577 	 * If there is task activity, periodically fold the per-cpu
578 	 * times and feed samples into the running averages. If things
579 	 * are idle and there is no data to process, stop the clock.
580 	 * Once restarted, we'll catch up the running averages in one
581 	 * go - see calc_avgs() and missed_periods.
582 	 */
583 	if (now >= group->avg_next_update) {
584 		update_triggers(group, now, PSI_AVGS);
585 		group->avg_next_update = update_averages(group, now);
586 	}
587 
588 	if (changed_states & PSI_STATE_RESCHEDULE) {
589 		schedule_delayed_work(dwork, nsecs_to_jiffies(
590 				group->avg_next_update - now) + 1);
591 	}
592 
593 	mutex_unlock(&group->avgs_lock);
594 }
595 
init_rtpoll_triggers(struct psi_group * group,u64 now)596 static void init_rtpoll_triggers(struct psi_group *group, u64 now)
597 {
598 	struct psi_trigger *t;
599 
600 	list_for_each_entry(t, &group->rtpoll_triggers, node)
601 		window_reset(&t->win, now,
602 				group->total[PSI_POLL][t->state], 0);
603 	memcpy(group->rtpoll_total, group->total[PSI_POLL],
604 		   sizeof(group->rtpoll_total));
605 	group->rtpoll_next_update = now + group->rtpoll_min_period;
606 }
607 
608 /* Schedule rtpolling if it's not already scheduled or forced. */
psi_schedule_rtpoll_work(struct psi_group * group,unsigned long delay,bool force)609 static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay,
610 				   bool force)
611 {
612 	struct task_struct *task;
613 
614 	/*
615 	 * atomic_xchg should be called even when !force to provide a
616 	 * full memory barrier (see the comment inside psi_rtpoll_work).
617 	 */
618 	if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force)
619 		return;
620 
621 	rcu_read_lock();
622 
623 	task = rcu_dereference(group->rtpoll_task);
624 	/*
625 	 * kworker might be NULL in case psi_trigger_destroy races with
626 	 * psi_task_change (hotpath) which can't use locks
627 	 */
628 	if (likely(task))
629 		mod_timer(&group->rtpoll_timer, jiffies + delay);
630 	else
631 		atomic_set(&group->rtpoll_scheduled, 0);
632 
633 	rcu_read_unlock();
634 }
635 
psi_rtpoll_work(struct psi_group * group)636 static void psi_rtpoll_work(struct psi_group *group)
637 {
638 	bool force_reschedule = false;
639 	u32 changed_states;
640 	u64 now;
641 
642 	mutex_lock(&group->rtpoll_trigger_lock);
643 
644 	now = sched_clock();
645 
646 	if (now > group->rtpoll_until) {
647 		/*
648 		 * We are either about to start or might stop rtpolling if no
649 		 * state change was recorded. Resetting rtpoll_scheduled leaves
650 		 * a small window for psi_group_change to sneak in and schedule
651 		 * an immediate rtpoll_work before we get to rescheduling. One
652 		 * potential extra wakeup at the end of the rtpolling window
653 		 * should be negligible and rtpoll_next_update still keeps
654 		 * updates correctly on schedule.
655 		 */
656 		atomic_set(&group->rtpoll_scheduled, 0);
657 		/*
658 		 * A task change can race with the rtpoll worker that is supposed to
659 		 * report on it. To avoid missing events, ensure ordering between
660 		 * rtpoll_scheduled and the task state accesses, such that if the
661 		 * rtpoll worker misses the state update, the task change is
662 		 * guaranteed to reschedule the rtpoll worker:
663 		 *
664 		 * rtpoll worker:
665 		 *   atomic_set(rtpoll_scheduled, 0)
666 		 *   smp_mb()
667 		 *   LOAD states
668 		 *
669 		 * task change:
670 		 *   STORE states
671 		 *   if atomic_xchg(rtpoll_scheduled, 1) == 0:
672 		 *     schedule rtpoll worker
673 		 *
674 		 * The atomic_xchg() implies a full barrier.
675 		 */
676 		smp_mb();
677 	} else {
678 		/* The rtpolling window is not over, keep rescheduling */
679 		force_reschedule = true;
680 	}
681 
682 
683 	collect_percpu_times(group, PSI_POLL, &changed_states);
684 
685 	if (changed_states & group->rtpoll_states) {
686 		/* Initialize trigger windows when entering rtpolling mode */
687 		if (now > group->rtpoll_until)
688 			init_rtpoll_triggers(group, now);
689 
690 		/*
691 		 * Keep the monitor active for at least the duration of the
692 		 * minimum tracking window as long as monitor states are
693 		 * changing.
694 		 */
695 		group->rtpoll_until = now +
696 			group->rtpoll_min_period * UPDATES_PER_WINDOW;
697 	}
698 
699 	if (now > group->rtpoll_until) {
700 		group->rtpoll_next_update = ULLONG_MAX;
701 		goto out;
702 	}
703 
704 	if (now >= group->rtpoll_next_update) {
705 		if (changed_states & group->rtpoll_states) {
706 			update_triggers(group, now, PSI_POLL);
707 			memcpy(group->rtpoll_total, group->total[PSI_POLL],
708 				   sizeof(group->rtpoll_total));
709 		}
710 		group->rtpoll_next_update = now + group->rtpoll_min_period;
711 	}
712 
713 	psi_schedule_rtpoll_work(group,
714 		nsecs_to_jiffies(group->rtpoll_next_update - now) + 1,
715 		force_reschedule);
716 
717 out:
718 	mutex_unlock(&group->rtpoll_trigger_lock);
719 }
720 
psi_rtpoll_worker(void * data)721 static int psi_rtpoll_worker(void *data)
722 {
723 	struct psi_group *group = (struct psi_group *)data;
724 
725 	sched_set_fifo_low(current);
726 
727 	while (true) {
728 		wait_event_interruptible(group->rtpoll_wait,
729 				atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) ||
730 				kthread_should_stop());
731 		if (kthread_should_stop())
732 			break;
733 
734 		psi_rtpoll_work(group);
735 	}
736 	return 0;
737 }
738 
poll_timer_fn(struct timer_list * t)739 static void poll_timer_fn(struct timer_list *t)
740 {
741 	struct psi_group *group = from_timer(group, t, rtpoll_timer);
742 
743 	atomic_set(&group->rtpoll_wakeup, 1);
744 	wake_up_interruptible(&group->rtpoll_wait);
745 }
746 
record_times(struct psi_group_cpu * groupc,u64 now)747 static void record_times(struct psi_group_cpu *groupc, u64 now)
748 {
749 	u32 delta;
750 
751 	delta = now - groupc->state_start;
752 	groupc->state_start = now;
753 
754 	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
755 		groupc->times[PSI_IO_SOME] += delta;
756 		if (groupc->state_mask & (1 << PSI_IO_FULL))
757 			groupc->times[PSI_IO_FULL] += delta;
758 	}
759 
760 	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
761 		groupc->times[PSI_MEM_SOME] += delta;
762 		if (groupc->state_mask & (1 << PSI_MEM_FULL))
763 			groupc->times[PSI_MEM_FULL] += delta;
764 	}
765 
766 	if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
767 		groupc->times[PSI_CPU_SOME] += delta;
768 		if (groupc->state_mask & (1 << PSI_CPU_FULL))
769 			groupc->times[PSI_CPU_FULL] += delta;
770 	}
771 
772 	if (groupc->state_mask & (1 << PSI_NONIDLE))
773 		groupc->times[PSI_NONIDLE] += delta;
774 }
775 
psi_group_change(struct psi_group * group,int cpu,unsigned int clear,unsigned int set,bool wake_clock)776 static void psi_group_change(struct psi_group *group, int cpu,
777 			     unsigned int clear, unsigned int set,
778 			     bool wake_clock)
779 {
780 	struct psi_group_cpu *groupc;
781 	unsigned int t, m;
782 	u32 state_mask;
783 	u64 now;
784 
785 	lockdep_assert_rq_held(cpu_rq(cpu));
786 	groupc = per_cpu_ptr(group->pcpu, cpu);
787 
788 	/*
789 	 * First we update the task counts according to the state
790 	 * change requested through the @clear and @set bits.
791 	 *
792 	 * Then if the cgroup PSI stats accounting enabled, we
793 	 * assess the aggregate resource states this CPU's tasks
794 	 * have been in since the last change, and account any
795 	 * SOME and FULL time these may have resulted in.
796 	 */
797 	write_seqcount_begin(&groupc->seq);
798 	now = cpu_clock(cpu);
799 
800 	/*
801 	 * Start with TSK_ONCPU, which doesn't have a corresponding
802 	 * task count - it's just a boolean flag directly encoded in
803 	 * the state mask. Clear, set, or carry the current state if
804 	 * no changes are requested.
805 	 */
806 	if (unlikely(clear & TSK_ONCPU)) {
807 		state_mask = 0;
808 		clear &= ~TSK_ONCPU;
809 	} else if (unlikely(set & TSK_ONCPU)) {
810 		state_mask = PSI_ONCPU;
811 		set &= ~TSK_ONCPU;
812 	} else {
813 		state_mask = groupc->state_mask & PSI_ONCPU;
814 	}
815 
816 	/*
817 	 * The rest of the state mask is calculated based on the task
818 	 * counts. Update those first, then construct the mask.
819 	 */
820 	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
821 		if (!(m & (1 << t)))
822 			continue;
823 		if (groupc->tasks[t]) {
824 			groupc->tasks[t]--;
825 		} else if (!psi_bug) {
826 			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
827 					cpu, t, groupc->tasks[0],
828 					groupc->tasks[1], groupc->tasks[2],
829 					groupc->tasks[3], clear, set);
830 			psi_bug = 1;
831 		}
832 	}
833 
834 	for (t = 0; set; set &= ~(1 << t), t++)
835 		if (set & (1 << t))
836 			groupc->tasks[t]++;
837 
838 	if (!group->enabled) {
839 		/*
840 		 * On the first group change after disabling PSI, conclude
841 		 * the current state and flush its time. This is unlikely
842 		 * to matter to the user, but aggregation (get_recent_times)
843 		 * may have already incorporated the live state into times_prev;
844 		 * avoid a delta sample underflow when PSI is later re-enabled.
845 		 */
846 		if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE)))
847 			record_times(groupc, now);
848 
849 		groupc->state_mask = state_mask;
850 
851 		write_seqcount_end(&groupc->seq);
852 		return;
853 	}
854 
855 	state_mask = test_states(groupc->tasks, state_mask);
856 
857 	/*
858 	 * Since we care about lost potential, a memstall is FULL
859 	 * when there are no other working tasks, but also when
860 	 * the CPU is actively reclaiming and nothing productive
861 	 * could run even if it were runnable. So when the current
862 	 * task in a cgroup is in_memstall, the corresponding groupc
863 	 * on that cpu is in PSI_MEM_FULL state.
864 	 */
865 	if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall))
866 		state_mask |= (1 << PSI_MEM_FULL);
867 
868 	record_times(groupc, now);
869 
870 	groupc->state_mask = state_mask;
871 
872 	write_seqcount_end(&groupc->seq);
873 
874 	if (state_mask & group->rtpoll_states)
875 		psi_schedule_rtpoll_work(group, 1, false);
876 
877 	if (wake_clock && !delayed_work_pending(&group->avgs_work))
878 		schedule_delayed_work(&group->avgs_work, PSI_FREQ);
879 }
880 
task_psi_group(struct task_struct * task)881 static inline struct psi_group *task_psi_group(struct task_struct *task)
882 {
883 #ifdef CONFIG_CGROUPS
884 	if (static_branch_likely(&psi_cgroups_enabled))
885 		return cgroup_psi(task_dfl_cgroup(task));
886 #endif
887 	return &psi_system;
888 }
889 
psi_flags_change(struct task_struct * task,int clear,int set)890 static void psi_flags_change(struct task_struct *task, int clear, int set)
891 {
892 	if (((task->psi_flags & set) ||
893 	     (task->psi_flags & clear) != clear) &&
894 	    !psi_bug) {
895 		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
896 				task->pid, task->comm, task_cpu(task),
897 				task->psi_flags, clear, set);
898 		psi_bug = 1;
899 	}
900 
901 	task->psi_flags &= ~clear;
902 	task->psi_flags |= set;
903 }
904 
psi_task_change(struct task_struct * task,int clear,int set)905 void psi_task_change(struct task_struct *task, int clear, int set)
906 {
907 	int cpu = task_cpu(task);
908 	struct psi_group *group;
909 
910 	if (!task->pid)
911 		return;
912 
913 	psi_flags_change(task, clear, set);
914 
915 	group = task_psi_group(task);
916 	do {
917 		psi_group_change(group, cpu, clear, set, true);
918 	} while ((group = group->parent));
919 }
920 
psi_task_switch(struct task_struct * prev,struct task_struct * next,bool sleep)921 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
922 		     bool sleep)
923 {
924 	struct psi_group *group, *common = NULL;
925 	int cpu = task_cpu(prev);
926 
927 	if (next->pid) {
928 		psi_flags_change(next, 0, TSK_ONCPU);
929 		/*
930 		 * Set TSK_ONCPU on @next's cgroups. If @next shares any
931 		 * ancestors with @prev, those will already have @prev's
932 		 * TSK_ONCPU bit set, and we can stop the iteration there.
933 		 */
934 		group = task_psi_group(next);
935 		do {
936 			if (per_cpu_ptr(group->pcpu, cpu)->state_mask &
937 			    PSI_ONCPU) {
938 				common = group;
939 				break;
940 			}
941 
942 			psi_group_change(group, cpu, 0, TSK_ONCPU, true);
943 		} while ((group = group->parent));
944 	}
945 
946 	if (prev->pid) {
947 		int clear = TSK_ONCPU, set = 0;
948 		bool wake_clock = true;
949 
950 		/*
951 		 * When we're going to sleep, psi_dequeue() lets us
952 		 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
953 		 * TSK_IOWAIT here, where we can combine it with
954 		 * TSK_ONCPU and save walking common ancestors twice.
955 		 */
956 		if (sleep) {
957 			clear |= TSK_RUNNING;
958 			if (prev->in_memstall)
959 				clear |= TSK_MEMSTALL_RUNNING;
960 			if (prev->in_iowait)
961 				set |= TSK_IOWAIT;
962 
963 			/*
964 			 * Periodic aggregation shuts off if there is a period of no
965 			 * task changes, so we wake it back up if necessary. However,
966 			 * don't do this if the task change is the aggregation worker
967 			 * itself going to sleep, or we'll ping-pong forever.
968 			 */
969 			if (unlikely((prev->flags & PF_WQ_WORKER) &&
970 				     wq_worker_last_func(prev) == psi_avgs_work))
971 				wake_clock = false;
972 		}
973 
974 		psi_flags_change(prev, clear, set);
975 
976 		group = task_psi_group(prev);
977 		do {
978 			if (group == common)
979 				break;
980 			psi_group_change(group, cpu, clear, set, wake_clock);
981 		} while ((group = group->parent));
982 
983 		/*
984 		 * TSK_ONCPU is handled up to the common ancestor. If there are
985 		 * any other differences between the two tasks (e.g. prev goes
986 		 * to sleep, or only one task is memstall), finish propagating
987 		 * those differences all the way up to the root.
988 		 */
989 		if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) {
990 			clear &= ~TSK_ONCPU;
991 			for (; group; group = group->parent)
992 				psi_group_change(group, cpu, clear, set, wake_clock);
993 		}
994 	}
995 }
996 
997 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
psi_account_irqtime(struct rq * rq,struct task_struct * curr,struct task_struct * prev)998 void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev)
999 {
1000 	int cpu = task_cpu(curr);
1001 	struct psi_group *group;
1002 	struct psi_group_cpu *groupc;
1003 	s64 delta;
1004 	u64 irq;
1005 
1006 	if (static_branch_likely(&psi_disabled))
1007 		return;
1008 
1009 	if (!curr->pid)
1010 		return;
1011 
1012 	lockdep_assert_rq_held(rq);
1013 	group = task_psi_group(curr);
1014 	if (prev && task_psi_group(prev) == group)
1015 		return;
1016 
1017 	irq = irq_time_read(cpu);
1018 	delta = (s64)(irq - rq->psi_irq_time);
1019 	if (delta < 0)
1020 		return;
1021 	rq->psi_irq_time = irq;
1022 
1023 	do {
1024 		u64 now;
1025 
1026 		if (!group->enabled)
1027 			continue;
1028 
1029 		groupc = per_cpu_ptr(group->pcpu, cpu);
1030 
1031 		write_seqcount_begin(&groupc->seq);
1032 		now = cpu_clock(cpu);
1033 
1034 		record_times(groupc, now);
1035 		groupc->times[PSI_IRQ_FULL] += delta;
1036 
1037 		write_seqcount_end(&groupc->seq);
1038 
1039 		if (group->rtpoll_states & (1 << PSI_IRQ_FULL))
1040 			psi_schedule_rtpoll_work(group, 1, false);
1041 	} while ((group = group->parent));
1042 }
1043 #endif
1044 
1045 /**
1046  * psi_memstall_enter - mark the beginning of a memory stall section
1047  * @flags: flags to handle nested sections
1048  *
1049  * Marks the calling task as being stalled due to a lack of memory,
1050  * such as waiting for a refault or performing reclaim.
1051  */
psi_memstall_enter(unsigned long * flags)1052 void psi_memstall_enter(unsigned long *flags)
1053 {
1054 	struct rq_flags rf;
1055 	struct rq *rq;
1056 
1057 	if (static_branch_likely(&psi_disabled))
1058 		return;
1059 
1060 	*flags = current->in_memstall;
1061 	if (*flags)
1062 		return;
1063 	/*
1064 	 * in_memstall setting & accounting needs to be atomic wrt
1065 	 * changes to the task's scheduling state, otherwise we can
1066 	 * race with CPU migration.
1067 	 */
1068 	rq = this_rq_lock_irq(&rf);
1069 
1070 	current->in_memstall = 1;
1071 	psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
1072 
1073 	rq_unlock_irq(rq, &rf);
1074 }
1075 EXPORT_SYMBOL_GPL(psi_memstall_enter);
1076 
1077 /**
1078  * psi_memstall_leave - mark the end of an memory stall section
1079  * @flags: flags to handle nested memdelay sections
1080  *
1081  * Marks the calling task as no longer stalled due to lack of memory.
1082  */
psi_memstall_leave(unsigned long * flags)1083 void psi_memstall_leave(unsigned long *flags)
1084 {
1085 	struct rq_flags rf;
1086 	struct rq *rq;
1087 
1088 	if (static_branch_likely(&psi_disabled))
1089 		return;
1090 
1091 	if (*flags)
1092 		return;
1093 	/*
1094 	 * in_memstall clearing & accounting needs to be atomic wrt
1095 	 * changes to the task's scheduling state, otherwise we could
1096 	 * race with CPU migration.
1097 	 */
1098 	rq = this_rq_lock_irq(&rf);
1099 
1100 	current->in_memstall = 0;
1101 	psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
1102 
1103 	rq_unlock_irq(rq, &rf);
1104 }
1105 EXPORT_SYMBOL_GPL(psi_memstall_leave);
1106 
1107 #ifdef CONFIG_CGROUPS
psi_cgroup_alloc(struct cgroup * cgroup)1108 int psi_cgroup_alloc(struct cgroup *cgroup)
1109 {
1110 	if (!static_branch_likely(&psi_cgroups_enabled))
1111 		return 0;
1112 
1113 	cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL);
1114 	if (!cgroup->psi)
1115 		return -ENOMEM;
1116 
1117 	cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu);
1118 	if (!cgroup->psi->pcpu) {
1119 		kfree(cgroup->psi);
1120 		return -ENOMEM;
1121 	}
1122 	group_init(cgroup->psi);
1123 	cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup));
1124 	return 0;
1125 }
1126 
psi_cgroup_free(struct cgroup * cgroup)1127 void psi_cgroup_free(struct cgroup *cgroup)
1128 {
1129 	if (!static_branch_likely(&psi_cgroups_enabled))
1130 		return;
1131 
1132 	cancel_delayed_work_sync(&cgroup->psi->avgs_work);
1133 	free_percpu(cgroup->psi->pcpu);
1134 	/* All triggers must be removed by now */
1135 	WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n");
1136 	kfree(cgroup->psi);
1137 }
1138 
1139 /**
1140  * cgroup_move_task - move task to a different cgroup
1141  * @task: the task
1142  * @to: the target css_set
1143  *
1144  * Move task to a new cgroup and safely migrate its associated stall
1145  * state between the different groups.
1146  *
1147  * This function acquires the task's rq lock to lock out concurrent
1148  * changes to the task's scheduling state and - in case the task is
1149  * running - concurrent changes to its stall state.
1150  */
cgroup_move_task(struct task_struct * task,struct css_set * to)1151 void cgroup_move_task(struct task_struct *task, struct css_set *to)
1152 {
1153 	unsigned int task_flags;
1154 	struct rq_flags rf;
1155 	struct rq *rq;
1156 
1157 	if (!static_branch_likely(&psi_cgroups_enabled)) {
1158 		/*
1159 		 * Lame to do this here, but the scheduler cannot be locked
1160 		 * from the outside, so we move cgroups from inside sched/.
1161 		 */
1162 		rcu_assign_pointer(task->cgroups, to);
1163 		return;
1164 	}
1165 
1166 	rq = task_rq_lock(task, &rf);
1167 
1168 	/*
1169 	 * We may race with schedule() dropping the rq lock between
1170 	 * deactivating prev and switching to next. Because the psi
1171 	 * updates from the deactivation are deferred to the switch
1172 	 * callback to save cgroup tree updates, the task's scheduling
1173 	 * state here is not coherent with its psi state:
1174 	 *
1175 	 * schedule()                   cgroup_move_task()
1176 	 *   rq_lock()
1177 	 *   deactivate_task()
1178 	 *     p->on_rq = 0
1179 	 *     psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1180 	 *   pick_next_task()
1181 	 *     rq_unlock()
1182 	 *                                rq_lock()
1183 	 *                                psi_task_change() // old cgroup
1184 	 *                                task->cgroups = to
1185 	 *                                psi_task_change() // new cgroup
1186 	 *                                rq_unlock()
1187 	 *     rq_lock()
1188 	 *   psi_sched_switch() // does deferred updates in new cgroup
1189 	 *
1190 	 * Don't rely on the scheduling state. Use psi_flags instead.
1191 	 */
1192 	task_flags = task->psi_flags;
1193 
1194 	if (task_flags)
1195 		psi_task_change(task, task_flags, 0);
1196 
1197 	/* See comment above */
1198 	rcu_assign_pointer(task->cgroups, to);
1199 
1200 	if (task_flags)
1201 		psi_task_change(task, 0, task_flags);
1202 
1203 	task_rq_unlock(rq, task, &rf);
1204 }
1205 
psi_cgroup_restart(struct psi_group * group)1206 void psi_cgroup_restart(struct psi_group *group)
1207 {
1208 	int cpu;
1209 
1210 	/*
1211 	 * After we disable psi_group->enabled, we don't actually
1212 	 * stop percpu tasks accounting in each psi_group_cpu,
1213 	 * instead only stop test_states() loop, record_times()
1214 	 * and averaging worker, see psi_group_change() for details.
1215 	 *
1216 	 * When disable cgroup PSI, this function has nothing to sync
1217 	 * since cgroup pressure files are hidden and percpu psi_group_cpu
1218 	 * would see !psi_group->enabled and only do task accounting.
1219 	 *
1220 	 * When re-enable cgroup PSI, this function use psi_group_change()
1221 	 * to get correct state mask from test_states() loop on tasks[],
1222 	 * and restart groupc->state_start from now, use .clear = .set = 0
1223 	 * here since no task status really changed.
1224 	 */
1225 	if (!group->enabled)
1226 		return;
1227 
1228 	for_each_possible_cpu(cpu) {
1229 		struct rq *rq = cpu_rq(cpu);
1230 		struct rq_flags rf;
1231 
1232 		rq_lock_irq(rq, &rf);
1233 		psi_group_change(group, cpu, 0, 0, true);
1234 		rq_unlock_irq(rq, &rf);
1235 	}
1236 }
1237 #endif /* CONFIG_CGROUPS */
1238 
psi_show(struct seq_file * m,struct psi_group * group,enum psi_res res)1239 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1240 {
1241 	bool only_full = false;
1242 	int full;
1243 	u64 now;
1244 
1245 	if (static_branch_likely(&psi_disabled))
1246 		return -EOPNOTSUPP;
1247 
1248 	/* Update averages before reporting them */
1249 	mutex_lock(&group->avgs_lock);
1250 	now = sched_clock();
1251 	collect_percpu_times(group, PSI_AVGS, NULL);
1252 	if (now >= group->avg_next_update)
1253 		group->avg_next_update = update_averages(group, now);
1254 	mutex_unlock(&group->avgs_lock);
1255 
1256 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1257 	only_full = res == PSI_IRQ;
1258 #endif
1259 
1260 	for (full = 0; full < 2 - only_full; full++) {
1261 		unsigned long avg[3] = { 0, };
1262 		u64 total = 0;
1263 		int w;
1264 
1265 		/* CPU FULL is undefined at the system level */
1266 		if (!(group == &psi_system && res == PSI_CPU && full)) {
1267 			for (w = 0; w < 3; w++)
1268 				avg[w] = group->avg[res * 2 + full][w];
1269 			total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1270 					NSEC_PER_USEC);
1271 		}
1272 
1273 		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1274 			   full || only_full ? "full" : "some",
1275 			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1276 			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1277 			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1278 			   total);
1279 	}
1280 
1281 	return 0;
1282 }
1283 
psi_trigger_create(struct psi_group * group,char * buf,enum psi_res res,struct file * file,struct kernfs_open_file * of)1284 struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf,
1285 				       enum psi_res res, struct file *file,
1286 				       struct kernfs_open_file *of)
1287 {
1288 	struct psi_trigger *t;
1289 	enum psi_states state;
1290 	u32 threshold_us;
1291 	bool privileged;
1292 	u32 window_us;
1293 
1294 	if (static_branch_likely(&psi_disabled))
1295 		return ERR_PTR(-EOPNOTSUPP);
1296 
1297 	/*
1298 	 * Checking the privilege on file->f_cred or selinux enabled here imply
1299 	 * that a privileged user could open the file and delegate the write
1300 	 * to an unprivileged one.
1301 	 */
1302 	privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE) ||
1303 		IS_ENABLED(CONFIG_DEFAULT_SECURITY_SELINUX);
1304 
1305 	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1306 		state = PSI_IO_SOME + res * 2;
1307 	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1308 		state = PSI_IO_FULL + res * 2;
1309 	else
1310 		return ERR_PTR(-EINVAL);
1311 
1312 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1313 	if (res == PSI_IRQ && --state != PSI_IRQ_FULL)
1314 		return ERR_PTR(-EINVAL);
1315 #endif
1316 
1317 	if (state >= PSI_NONIDLE)
1318 		return ERR_PTR(-EINVAL);
1319 
1320 	if (window_us == 0 || window_us > WINDOW_MAX_US)
1321 		return ERR_PTR(-EINVAL);
1322 
1323 	/*
1324 	 * Unprivileged users can only use 2s windows so that averages aggregation
1325 	 * work is used, and no RT threads need to be spawned.
1326 	 */
1327 	if (!privileged && window_us % 2000000)
1328 		return ERR_PTR(-EINVAL);
1329 
1330 	/* Check threshold */
1331 	if (threshold_us == 0 || threshold_us > window_us)
1332 		return ERR_PTR(-EINVAL);
1333 
1334 	t = kmalloc(sizeof(*t), GFP_KERNEL);
1335 	if (!t)
1336 		return ERR_PTR(-ENOMEM);
1337 
1338 	t->group = group;
1339 	t->state = state;
1340 	t->threshold = threshold_us * NSEC_PER_USEC;
1341 	t->win.size = window_us * NSEC_PER_USEC;
1342 	window_reset(&t->win, sched_clock(),
1343 			group->total[PSI_POLL][t->state], 0);
1344 
1345 	t->event = 0;
1346 	t->last_event_time = 0;
1347 	t->of = of;
1348 	if (!of)
1349 		init_waitqueue_head(&t->event_wait);
1350 	t->pending_event = false;
1351 	t->aggregator = privileged ? PSI_POLL : PSI_AVGS;
1352 
1353 	if (privileged) {
1354 		mutex_lock(&group->rtpoll_trigger_lock);
1355 
1356 		if (!rcu_access_pointer(group->rtpoll_task)) {
1357 			struct task_struct *task;
1358 
1359 			task = kthread_create(psi_rtpoll_worker, group, "psimon");
1360 			if (IS_ERR(task)) {
1361 				kfree(t);
1362 				mutex_unlock(&group->rtpoll_trigger_lock);
1363 				return ERR_CAST(task);
1364 			}
1365 			atomic_set(&group->rtpoll_wakeup, 0);
1366 			wake_up_process(task);
1367 			rcu_assign_pointer(group->rtpoll_task, task);
1368 		}
1369 
1370 		list_add(&t->node, &group->rtpoll_triggers);
1371 		group->rtpoll_min_period = min(group->rtpoll_min_period,
1372 			div_u64(t->win.size, UPDATES_PER_WINDOW));
1373 		group->rtpoll_nr_triggers[t->state]++;
1374 		group->rtpoll_states |= (1 << t->state);
1375 
1376 		mutex_unlock(&group->rtpoll_trigger_lock);
1377 	} else {
1378 		mutex_lock(&group->avgs_lock);
1379 
1380 		list_add(&t->node, &group->avg_triggers);
1381 		group->avg_nr_triggers[t->state]++;
1382 
1383 		mutex_unlock(&group->avgs_lock);
1384 	}
1385 	return t;
1386 }
1387 
psi_trigger_destroy(struct psi_trigger * t)1388 void psi_trigger_destroy(struct psi_trigger *t)
1389 {
1390 	struct psi_group *group;
1391 	struct task_struct *task_to_destroy = NULL;
1392 
1393 	/*
1394 	 * We do not check psi_disabled since it might have been disabled after
1395 	 * the trigger got created.
1396 	 */
1397 	if (!t)
1398 		return;
1399 
1400 	group = t->group;
1401 	/*
1402 	 * Wakeup waiters to stop polling and clear the queue to prevent it from
1403 	 * being accessed later. Can happen if cgroup is deleted from under a
1404 	 * polling process.
1405 	 */
1406 	if (t->of)
1407 		kernfs_notify(t->of->kn);
1408 	else
1409 		wake_up_interruptible(&t->event_wait);
1410 
1411 	if (t->aggregator == PSI_AVGS) {
1412 		mutex_lock(&group->avgs_lock);
1413 		if (!list_empty(&t->node)) {
1414 			list_del(&t->node);
1415 			group->avg_nr_triggers[t->state]--;
1416 		}
1417 		mutex_unlock(&group->avgs_lock);
1418 	} else {
1419 		mutex_lock(&group->rtpoll_trigger_lock);
1420 		if (!list_empty(&t->node)) {
1421 			struct psi_trigger *tmp;
1422 			u64 period = ULLONG_MAX;
1423 
1424 			list_del(&t->node);
1425 			group->rtpoll_nr_triggers[t->state]--;
1426 			if (!group->rtpoll_nr_triggers[t->state])
1427 				group->rtpoll_states &= ~(1 << t->state);
1428 			/*
1429 			 * Reset min update period for the remaining triggers
1430 			 * iff the destroying trigger had the min window size.
1431 			 */
1432 			if (group->rtpoll_min_period == div_u64(t->win.size, UPDATES_PER_WINDOW)) {
1433 				list_for_each_entry(tmp, &group->rtpoll_triggers, node)
1434 					period = min(period, div_u64(tmp->win.size,
1435 							UPDATES_PER_WINDOW));
1436 				group->rtpoll_min_period = period;
1437 			}
1438 			/* Destroy rtpoll_task when the last trigger is destroyed */
1439 			if (group->rtpoll_states == 0) {
1440 				group->rtpoll_until = 0;
1441 				task_to_destroy = rcu_dereference_protected(
1442 						group->rtpoll_task,
1443 						lockdep_is_held(&group->rtpoll_trigger_lock));
1444 				rcu_assign_pointer(group->rtpoll_task, NULL);
1445 				del_timer(&group->rtpoll_timer);
1446 			}
1447 		}
1448 		mutex_unlock(&group->rtpoll_trigger_lock);
1449 	}
1450 
1451 	/*
1452 	 * Wait for psi_schedule_rtpoll_work RCU to complete its read-side
1453 	 * critical section before destroying the trigger and optionally the
1454 	 * rtpoll_task.
1455 	 */
1456 	synchronize_rcu();
1457 	/*
1458 	 * Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent
1459 	 * a deadlock while waiting for psi_rtpoll_work to acquire
1460 	 * rtpoll_trigger_lock
1461 	 */
1462 	if (task_to_destroy) {
1463 		/*
1464 		 * After the RCU grace period has expired, the worker
1465 		 * can no longer be found through group->rtpoll_task.
1466 		 */
1467 		kthread_stop(task_to_destroy);
1468 		atomic_set(&group->rtpoll_scheduled, 0);
1469 	}
1470 	kfree(t);
1471 }
1472 
psi_trigger_poll(void ** trigger_ptr,struct file * file,poll_table * wait)1473 __poll_t psi_trigger_poll(void **trigger_ptr,
1474 				struct file *file, poll_table *wait)
1475 {
1476 	__poll_t ret = DEFAULT_POLLMASK;
1477 	struct psi_trigger *t;
1478 
1479 	if (static_branch_likely(&psi_disabled))
1480 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1481 
1482 	t = smp_load_acquire(trigger_ptr);
1483 	if (!t)
1484 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1485 
1486 	if (t->of)
1487 		kernfs_generic_poll(t->of, wait);
1488 	else
1489 		poll_wait(file, &t->event_wait, wait);
1490 
1491 	if (cmpxchg(&t->event, 1, 0) == 1)
1492 		ret |= EPOLLPRI;
1493 
1494 	return ret;
1495 }
1496 
1497 #ifdef CONFIG_PROC_FS
psi_io_show(struct seq_file * m,void * v)1498 static int psi_io_show(struct seq_file *m, void *v)
1499 {
1500 	return psi_show(m, &psi_system, PSI_IO);
1501 }
1502 
psi_memory_show(struct seq_file * m,void * v)1503 static int psi_memory_show(struct seq_file *m, void *v)
1504 {
1505 	return psi_show(m, &psi_system, PSI_MEM);
1506 }
1507 
psi_cpu_show(struct seq_file * m,void * v)1508 static int psi_cpu_show(struct seq_file *m, void *v)
1509 {
1510 	return psi_show(m, &psi_system, PSI_CPU);
1511 }
1512 
psi_io_open(struct inode * inode,struct file * file)1513 static int psi_io_open(struct inode *inode, struct file *file)
1514 {
1515 	return single_open(file, psi_io_show, NULL);
1516 }
1517 
psi_memory_open(struct inode * inode,struct file * file)1518 static int psi_memory_open(struct inode *inode, struct file *file)
1519 {
1520 	return single_open(file, psi_memory_show, NULL);
1521 }
1522 
psi_cpu_open(struct inode * inode,struct file * file)1523 static int psi_cpu_open(struct inode *inode, struct file *file)
1524 {
1525 	return single_open(file, psi_cpu_show, NULL);
1526 }
1527 
psi_write(struct file * file,const char __user * user_buf,size_t nbytes,enum psi_res res)1528 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1529 			 size_t nbytes, enum psi_res res)
1530 {
1531 	char buf[32];
1532 	size_t buf_size;
1533 	struct seq_file *seq;
1534 	struct psi_trigger *new;
1535 
1536 	if (static_branch_likely(&psi_disabled))
1537 		return -EOPNOTSUPP;
1538 
1539 	if (!nbytes)
1540 		return -EINVAL;
1541 
1542 	buf_size = min(nbytes, sizeof(buf));
1543 	if (copy_from_user(buf, user_buf, buf_size))
1544 		return -EFAULT;
1545 
1546 	buf[buf_size - 1] = '\0';
1547 
1548 	seq = file->private_data;
1549 
1550 	/* Take seq->lock to protect seq->private from concurrent writes */
1551 	mutex_lock(&seq->lock);
1552 
1553 	/* Allow only one trigger per file descriptor */
1554 	if (seq->private) {
1555 		mutex_unlock(&seq->lock);
1556 		return -EBUSY;
1557 	}
1558 
1559 	new = psi_trigger_create(&psi_system, buf, res, file, NULL);
1560 	if (IS_ERR(new)) {
1561 		mutex_unlock(&seq->lock);
1562 		return PTR_ERR(new);
1563 	}
1564 
1565 	smp_store_release(&seq->private, new);
1566 	mutex_unlock(&seq->lock);
1567 
1568 	return nbytes;
1569 }
1570 
psi_io_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1571 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1572 			    size_t nbytes, loff_t *ppos)
1573 {
1574 	return psi_write(file, user_buf, nbytes, PSI_IO);
1575 }
1576 
psi_memory_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1577 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1578 				size_t nbytes, loff_t *ppos)
1579 {
1580 	return psi_write(file, user_buf, nbytes, PSI_MEM);
1581 }
1582 
psi_cpu_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1583 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1584 			     size_t nbytes, loff_t *ppos)
1585 {
1586 	return psi_write(file, user_buf, nbytes, PSI_CPU);
1587 }
1588 
psi_fop_poll(struct file * file,poll_table * wait)1589 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1590 {
1591 	struct seq_file *seq = file->private_data;
1592 
1593 	return psi_trigger_poll(&seq->private, file, wait);
1594 }
1595 
psi_fop_release(struct inode * inode,struct file * file)1596 static int psi_fop_release(struct inode *inode, struct file *file)
1597 {
1598 	struct seq_file *seq = file->private_data;
1599 
1600 	psi_trigger_destroy(seq->private);
1601 	return single_release(inode, file);
1602 }
1603 
1604 static const struct proc_ops psi_io_proc_ops = {
1605 	.proc_open	= psi_io_open,
1606 	.proc_read	= seq_read,
1607 	.proc_lseek	= seq_lseek,
1608 	.proc_write	= psi_io_write,
1609 	.proc_poll	= psi_fop_poll,
1610 	.proc_release	= psi_fop_release,
1611 };
1612 
1613 static const struct proc_ops psi_memory_proc_ops = {
1614 	.proc_open	= psi_memory_open,
1615 	.proc_read	= seq_read,
1616 	.proc_lseek	= seq_lseek,
1617 	.proc_write	= psi_memory_write,
1618 	.proc_poll	= psi_fop_poll,
1619 	.proc_release	= psi_fop_release,
1620 };
1621 
1622 static const struct proc_ops psi_cpu_proc_ops = {
1623 	.proc_open	= psi_cpu_open,
1624 	.proc_read	= seq_read,
1625 	.proc_lseek	= seq_lseek,
1626 	.proc_write	= psi_cpu_write,
1627 	.proc_poll	= psi_fop_poll,
1628 	.proc_release	= psi_fop_release,
1629 };
1630 
1631 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
psi_irq_show(struct seq_file * m,void * v)1632 static int psi_irq_show(struct seq_file *m, void *v)
1633 {
1634 	return psi_show(m, &psi_system, PSI_IRQ);
1635 }
1636 
psi_irq_open(struct inode * inode,struct file * file)1637 static int psi_irq_open(struct inode *inode, struct file *file)
1638 {
1639 	return single_open(file, psi_irq_show, NULL);
1640 }
1641 
psi_irq_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1642 static ssize_t psi_irq_write(struct file *file, const char __user *user_buf,
1643 			     size_t nbytes, loff_t *ppos)
1644 {
1645 	return psi_write(file, user_buf, nbytes, PSI_IRQ);
1646 }
1647 
1648 static const struct proc_ops psi_irq_proc_ops = {
1649 	.proc_open	= psi_irq_open,
1650 	.proc_read	= seq_read,
1651 	.proc_lseek	= seq_lseek,
1652 	.proc_write	= psi_irq_write,
1653 	.proc_poll	= psi_fop_poll,
1654 	.proc_release	= psi_fop_release,
1655 };
1656 #endif
1657 
psi_proc_init(void)1658 static int __init psi_proc_init(void)
1659 {
1660 	if (psi_enable) {
1661 		proc_mkdir("pressure", NULL);
1662 		proc_create("pressure/io", 0, NULL, &psi_io_proc_ops);
1663 		proc_create("pressure/memory", 0, NULL, &psi_memory_proc_ops);
1664 		proc_create("pressure/cpu", 0, NULL, &psi_cpu_proc_ops);
1665 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1666 		proc_create("pressure/irq", 0, NULL, &psi_irq_proc_ops);
1667 #endif
1668 	}
1669 	return 0;
1670 }
1671 module_init(psi_proc_init);
1672 
1673 #endif /* CONFIG_PROC_FS */
1674