• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _KERNEL_STATS_H
3 #define _KERNEL_STATS_H
4 
5 #ifdef CONFIG_SCHEDSTATS
6 
7 extern struct static_key_false sched_schedstats;
8 
9 /*
10  * Expects runqueue lock to be held for atomicity of update
11  */
12 static inline void
rq_sched_info_arrive(struct rq * rq,unsigned long long delta)13 rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
14 {
15 	if (rq) {
16 		rq->rq_sched_info.run_delay += delta;
17 		rq->rq_sched_info.pcount++;
18 	}
19 }
20 
21 /*
22  * Expects runqueue lock to be held for atomicity of update
23  */
24 static inline void
rq_sched_info_depart(struct rq * rq,unsigned long long delta)25 rq_sched_info_depart(struct rq *rq, unsigned long long delta)
26 {
27 	if (rq)
28 		rq->rq_cpu_time += delta;
29 }
30 
31 static inline void
rq_sched_info_dequeue(struct rq * rq,unsigned long long delta)32 rq_sched_info_dequeue(struct rq *rq, unsigned long long delta)
33 {
34 	if (rq)
35 		rq->rq_sched_info.run_delay += delta;
36 }
37 #define   schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
38 #define __schedstat_inc(var)		do { var++; } while (0)
39 #define   schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
40 #define __schedstat_add(var, amt)	do { var += (amt); } while (0)
41 #define   schedstat_add(var, amt)	do { if (schedstat_enabled()) { var += (amt); } } while (0)
42 #define __schedstat_set(var, val)	do { var = (val); } while (0)
43 #define   schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0)
44 #define   schedstat_val(var)		(var)
45 #define   schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)
46 
47 void __update_stats_wait_start(struct rq *rq, struct task_struct *p,
48 			       struct sched_statistics *stats);
49 
50 void __update_stats_wait_end(struct rq *rq, struct task_struct *p,
51 			     struct sched_statistics *stats);
52 void __update_stats_enqueue_sleeper(struct rq *rq, struct task_struct *p,
53 				    struct sched_statistics *stats);
54 
55 static inline void
check_schedstat_required(void)56 check_schedstat_required(void)
57 {
58 	if (schedstat_enabled())
59 		return;
60 
61 	/* Force schedstat enabled if a dependent tracepoint is active */
62 	if (trace_sched_stat_wait_enabled()    ||
63 	    trace_sched_stat_sleep_enabled()   ||
64 	    trace_sched_stat_iowait_enabled()  ||
65 	    trace_sched_stat_blocked_enabled() ||
66 	    trace_sched_stat_runtime_enabled())
67 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, stat_blocked and stat_runtime require the kernel parameter schedstats=enable or kernel.sched_schedstats=1\n");
68 }
69 
70 #else /* !CONFIG_SCHEDSTATS: */
71 
rq_sched_info_arrive(struct rq * rq,unsigned long long delta)72 static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
rq_sched_info_dequeue(struct rq * rq,unsigned long long delta)73 static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { }
rq_sched_info_depart(struct rq * rq,unsigned long long delta)74 static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
75 # define   schedstat_enabled()		0
76 # define __schedstat_inc(var)		do { } while (0)
77 # define   schedstat_inc(var)		do { } while (0)
78 # define __schedstat_add(var, amt)	do { } while (0)
79 # define   schedstat_add(var, amt)	do { } while (0)
80 # define __schedstat_set(var, val)	do { } while (0)
81 # define   schedstat_set(var, val)	do { } while (0)
82 # define   schedstat_val(var)		0
83 # define   schedstat_val_or_zero(var)	0
84 
85 # define __update_stats_wait_start(rq, p, stats)       do { } while (0)
86 # define __update_stats_wait_end(rq, p, stats)         do { } while (0)
87 # define __update_stats_enqueue_sleeper(rq, p, stats)  do { } while (0)
88 # define check_schedstat_required()                    do { } while (0)
89 
90 #endif /* CONFIG_SCHEDSTATS */
91 
92 #ifdef CONFIG_FAIR_GROUP_SCHED
93 struct sched_entity_stats {
94 	struct sched_entity     se;
95 	struct sched_statistics stats;
96 } __no_randomize_layout;
97 #endif
98 
99 static inline struct sched_statistics *
__schedstats_from_se(struct sched_entity * se)100 __schedstats_from_se(struct sched_entity *se)
101 {
102 #ifdef CONFIG_FAIR_GROUP_SCHED
103 	if (!entity_is_task(se))
104 		return &container_of(se, struct sched_entity_stats, se)->stats;
105 #endif
106 	return &task_of(se)->stats;
107 }
108 
109 #ifdef CONFIG_PSI
110 void psi_task_change(struct task_struct *task, int clear, int set);
111 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
112 		     bool sleep);
113 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
114 void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev);
115 #else
psi_account_irqtime(struct rq * rq,struct task_struct * curr,struct task_struct * prev)116 static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
117 				       struct task_struct *prev) {}
118 #endif /*CONFIG_IRQ_TIME_ACCOUNTING */
119 /*
120  * PSI tracks state that persists across sleeps, such as iowaits and
121  * memory stalls. As a result, it has to distinguish between sleeps,
122  * where a task's runnable state changes, and migrations, where a task
123  * and its runnable state are being moved between CPUs and runqueues.
124  *
125  * A notable case is a task whose dequeue is delayed. PSI considers
126  * those sleeping, but because they are still on the runqueue they can
127  * go through migration requeues. In this case, *sleeping* states need
128  * to be transferred.
129  */
psi_enqueue(struct task_struct * p,int flags)130 static inline void psi_enqueue(struct task_struct *p, int flags)
131 {
132 	int clear = 0, set = 0;
133 
134 	if (static_branch_likely(&psi_disabled))
135 		return;
136 
137 	/* Same runqueue, nothing changed for psi */
138 	if (flags & ENQUEUE_RESTORE)
139 		return;
140 
141 	/* psi_sched_switch() will handle the flags */
142 	if (task_on_cpu(task_rq(p), p))
143 		return;
144 
145 	if (p->se.sched_delayed) {
146 		/* CPU migration of "sleeping" task */
147 		SCHED_WARN_ON(!(flags & ENQUEUE_MIGRATED));
148 		if (p->in_memstall)
149 			set |= TSK_MEMSTALL;
150 		if (p->in_iowait)
151 			set |= TSK_IOWAIT;
152 	} else if (flags & ENQUEUE_MIGRATED) {
153 		/* CPU migration of runnable task */
154 		set = TSK_RUNNING;
155 		if (p->in_memstall)
156 			set |= TSK_MEMSTALL | TSK_MEMSTALL_RUNNING;
157 	} else {
158 		/* Wakeup of new or sleeping task */
159 		if (p->in_iowait)
160 			clear |= TSK_IOWAIT;
161 		set = TSK_RUNNING;
162 		if (p->in_memstall)
163 			set |= TSK_MEMSTALL_RUNNING;
164 	}
165 
166 	psi_task_change(p, clear, set);
167 }
168 
psi_dequeue(struct task_struct * p,int flags)169 static inline void psi_dequeue(struct task_struct *p, int flags)
170 {
171 	if (static_branch_likely(&psi_disabled))
172 		return;
173 
174 	/* Same runqueue, nothing changed for psi */
175 	if (flags & DEQUEUE_SAVE)
176 		return;
177 
178 	/*
179 	 * A voluntary sleep is a dequeue followed by a task switch. To
180 	 * avoid walking all ancestors twice, psi_task_switch() handles
181 	 * TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
182 	 * Do nothing here.
183 	 * In the SCHED_PROXY_EXECUTION case we may do sleeping
184 	 * dequeues that are not followed by a task switch, so check
185 	 * TSK_ONCPU is set to ensure the task switch is imminent.
186 	 * Otherwise clear the flags as usual.
187 	 */
188 	if ((flags & DEQUEUE_SLEEP) && (p->psi_flags & TSK_ONCPU))
189 		return;
190 
191 	/*
192 	 * When migrating a task to another CPU, clear all psi
193 	 * state. The enqueue callback above will work it out.
194 	 */
195 	psi_task_change(p, p->psi_flags, 0);
196 }
197 
psi_ttwu_dequeue(struct task_struct * p)198 static inline void psi_ttwu_dequeue(struct task_struct *p)
199 {
200 	if (static_branch_likely(&psi_disabled))
201 		return;
202 	/*
203 	 * Is the task being migrated during a wakeup? Make sure to
204 	 * deregister its sleep-persistent psi states from the old
205 	 * queue, and let psi_enqueue() know it has to requeue.
206 	 */
207 	if (unlikely(p->psi_flags)) {
208 		struct rq_flags rf;
209 		struct rq *rq;
210 
211 		rq = __task_rq_lock(p, &rf);
212 		psi_task_change(p, p->psi_flags, 0);
213 		__task_rq_unlock(rq, &rf);
214 	}
215 }
216 
psi_sched_switch(struct task_struct * prev,struct task_struct * next,bool sleep)217 static inline void psi_sched_switch(struct task_struct *prev,
218 				    struct task_struct *next,
219 				    bool sleep)
220 {
221 	if (static_branch_likely(&psi_disabled))
222 		return;
223 
224 	psi_task_switch(prev, next, sleep);
225 }
226 
227 #else /* CONFIG_PSI */
psi_enqueue(struct task_struct * p,bool migrate)228 static inline void psi_enqueue(struct task_struct *p, bool migrate) {}
psi_dequeue(struct task_struct * p,bool migrate)229 static inline void psi_dequeue(struct task_struct *p, bool migrate) {}
psi_ttwu_dequeue(struct task_struct * p)230 static inline void psi_ttwu_dequeue(struct task_struct *p) {}
psi_sched_switch(struct task_struct * prev,struct task_struct * next,bool sleep)231 static inline void psi_sched_switch(struct task_struct *prev,
232 				    struct task_struct *next,
233 				    bool sleep) {}
psi_account_irqtime(struct rq * rq,struct task_struct * curr,struct task_struct * prev)234 static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
235 				       struct task_struct *prev) {}
236 #endif /* CONFIG_PSI */
237 
238 #ifdef CONFIG_SCHED_INFO
239 /*
240  * We are interested in knowing how long it was from the *first* time a
241  * task was queued to the time that it finally hit a CPU, we call this routine
242  * from dequeue_task() to account for possible rq->clock skew across CPUs. The
243  * delta taken on each CPU would annul the skew.
244  */
sched_info_dequeue(struct rq * rq,struct task_struct * t)245 static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t)
246 {
247 	unsigned long long delta = 0;
248 
249 	if (!t->sched_info.last_queued)
250 		return;
251 
252 	delta = rq_clock(rq) - t->sched_info.last_queued;
253 	t->sched_info.last_queued = 0;
254 	t->sched_info.run_delay += delta;
255 
256 	rq_sched_info_dequeue(rq, delta);
257 }
258 
259 /*
260  * Called when a task finally hits the CPU.  We can now calculate how
261  * long it was waiting to run.  We also note when it began so that we
262  * can keep stats on how long its time-slice is.
263  */
sched_info_arrive(struct rq * rq,struct task_struct * t)264 static void sched_info_arrive(struct rq *rq, struct task_struct *t)
265 {
266 	unsigned long long now, delta = 0;
267 
268 	if (!t->sched_info.last_queued)
269 		return;
270 
271 	now = rq_clock(rq);
272 	delta = now - t->sched_info.last_queued;
273 	t->sched_info.last_queued = 0;
274 	t->sched_info.run_delay += delta;
275 	t->sched_info.last_arrival = now;
276 	t->sched_info.pcount++;
277 
278 	rq_sched_info_arrive(rq, delta);
279 }
280 
281 /*
282  * This function is only called from enqueue_task(), but also only updates
283  * the timestamp if it is already not set.  It's assumed that
284  * sched_info_dequeue() will clear that stamp when appropriate.
285  */
sched_info_enqueue(struct rq * rq,struct task_struct * t)286 static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t)
287 {
288 	if (!t->sched_info.last_queued)
289 		t->sched_info.last_queued = rq_clock(rq);
290 }
291 
292 /*
293  * Called when a process ceases being the active-running process involuntarily
294  * due, typically, to expiring its time slice (this may also be called when
295  * switching to the idle task).  Now we can calculate how long we ran.
296  * Also, if the process is still in the TASK_RUNNING state, call
297  * sched_info_enqueue() to mark that it has now again started waiting on
298  * the runqueue.
299  */
sched_info_depart(struct rq * rq,struct task_struct * t)300 static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
301 {
302 	unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
303 
304 	rq_sched_info_depart(rq, delta);
305 
306 	if (task_is_running(t))
307 		sched_info_enqueue(rq, t);
308 }
309 
310 /*
311  * Called when tasks are switched involuntarily due, typically, to expiring
312  * their time slice.  (This may also be called when switching to or from
313  * the idle task.)  We are only called when prev != next.
314  */
315 static inline void
sched_info_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)316 sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
317 {
318 	/*
319 	 * prev now departs the CPU.  It's not interesting to record
320 	 * stats about how efficient we were at scheduling the idle
321 	 * process, however.
322 	 */
323 	if (prev != rq->idle)
324 		sched_info_depart(rq, prev);
325 
326 	if (next != rq->idle)
327 		sched_info_arrive(rq, next);
328 }
329 
330 #else /* !CONFIG_SCHED_INFO: */
331 # define sched_info_enqueue(rq, t)	do { } while (0)
332 # define sched_info_dequeue(rq, t)	do { } while (0)
333 # define sched_info_switch(rq, t, next)	do { } while (0)
334 #endif /* CONFIG_SCHED_INFO */
335 
336 #endif /* _KERNEL_STATS_H */
337