1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _KERNEL_STATS_H
3 #define _KERNEL_STATS_H
4
5 #ifdef CONFIG_SCHEDSTATS
6
7 extern struct static_key_false sched_schedstats;
8
9 /*
10 * Expects runqueue lock to be held for atomicity of update
11 */
12 static inline void
rq_sched_info_arrive(struct rq * rq,unsigned long long delta)13 rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
14 {
15 if (rq) {
16 rq->rq_sched_info.run_delay += delta;
17 rq->rq_sched_info.pcount++;
18 }
19 }
20
21 /*
22 * Expects runqueue lock to be held for atomicity of update
23 */
24 static inline void
rq_sched_info_depart(struct rq * rq,unsigned long long delta)25 rq_sched_info_depart(struct rq *rq, unsigned long long delta)
26 {
27 if (rq)
28 rq->rq_cpu_time += delta;
29 }
30
31 static inline void
rq_sched_info_dequeue(struct rq * rq,unsigned long long delta)32 rq_sched_info_dequeue(struct rq *rq, unsigned long long delta)
33 {
34 if (rq)
35 rq->rq_sched_info.run_delay += delta;
36 }
37 #define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
38 #define __schedstat_inc(var) do { var++; } while (0)
39 #define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0)
40 #define __schedstat_add(var, amt) do { var += (amt); } while (0)
41 #define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0)
42 #define __schedstat_set(var, val) do { var = (val); } while (0)
43 #define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
44 #define schedstat_val(var) (var)
45 #define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0)
46
47 void __update_stats_wait_start(struct rq *rq, struct task_struct *p,
48 struct sched_statistics *stats);
49
50 void __update_stats_wait_end(struct rq *rq, struct task_struct *p,
51 struct sched_statistics *stats);
52 void __update_stats_enqueue_sleeper(struct rq *rq, struct task_struct *p,
53 struct sched_statistics *stats);
54
55 static inline void
check_schedstat_required(void)56 check_schedstat_required(void)
57 {
58 if (schedstat_enabled())
59 return;
60
61 /* Force schedstat enabled if a dependent tracepoint is active */
62 if (trace_sched_stat_wait_enabled() ||
63 trace_sched_stat_sleep_enabled() ||
64 trace_sched_stat_iowait_enabled() ||
65 trace_sched_stat_blocked_enabled() ||
66 trace_sched_stat_runtime_enabled())
67 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, stat_blocked and stat_runtime require the kernel parameter schedstats=enable or kernel.sched_schedstats=1\n");
68 }
69
70 #else /* !CONFIG_SCHEDSTATS: */
71
rq_sched_info_arrive(struct rq * rq,unsigned long long delta)72 static inline void rq_sched_info_arrive (struct rq *rq, unsigned long long delta) { }
rq_sched_info_dequeue(struct rq * rq,unsigned long long delta)73 static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { }
rq_sched_info_depart(struct rq * rq,unsigned long long delta)74 static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delta) { }
75 # define schedstat_enabled() 0
76 # define __schedstat_inc(var) do { } while (0)
77 # define schedstat_inc(var) do { } while (0)
78 # define __schedstat_add(var, amt) do { } while (0)
79 # define schedstat_add(var, amt) do { } while (0)
80 # define __schedstat_set(var, val) do { } while (0)
81 # define schedstat_set(var, val) do { } while (0)
82 # define schedstat_val(var) 0
83 # define schedstat_val_or_zero(var) 0
84
85 # define __update_stats_wait_start(rq, p, stats) do { } while (0)
86 # define __update_stats_wait_end(rq, p, stats) do { } while (0)
87 # define __update_stats_enqueue_sleeper(rq, p, stats) do { } while (0)
88 # define check_schedstat_required() do { } while (0)
89
90 #endif /* CONFIG_SCHEDSTATS */
91
92 #ifdef CONFIG_FAIR_GROUP_SCHED
93 struct sched_entity_stats {
94 struct sched_entity se;
95 struct sched_statistics stats;
96 } __no_randomize_layout;
97 #endif
98
99 static inline struct sched_statistics *
__schedstats_from_se(struct sched_entity * se)100 __schedstats_from_se(struct sched_entity *se)
101 {
102 #ifdef CONFIG_FAIR_GROUP_SCHED
103 if (!entity_is_task(se))
104 return &container_of(se, struct sched_entity_stats, se)->stats;
105 #endif
106 return &task_of(se)->stats;
107 }
108
109 #ifdef CONFIG_PSI
110 void psi_task_change(struct task_struct *task, int clear, int set);
111 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
112 bool sleep);
113 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
114 void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev);
115 #else
psi_account_irqtime(struct rq * rq,struct task_struct * curr,struct task_struct * prev)116 static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
117 struct task_struct *prev) {}
118 #endif /*CONFIG_IRQ_TIME_ACCOUNTING */
119 /*
120 * PSI tracks state that persists across sleeps, such as iowaits and
121 * memory stalls. As a result, it has to distinguish between sleeps,
122 * where a task's runnable state changes, and migrations, where a task
123 * and its runnable state are being moved between CPUs and runqueues.
124 *
125 * A notable case is a task whose dequeue is delayed. PSI considers
126 * those sleeping, but because they are still on the runqueue they can
127 * go through migration requeues. In this case, *sleeping* states need
128 * to be transferred.
129 */
psi_enqueue(struct task_struct * p,int flags)130 static inline void psi_enqueue(struct task_struct *p, int flags)
131 {
132 int clear = 0, set = 0;
133
134 if (static_branch_likely(&psi_disabled))
135 return;
136
137 /* Same runqueue, nothing changed for psi */
138 if (flags & ENQUEUE_RESTORE)
139 return;
140
141 /* psi_sched_switch() will handle the flags */
142 if (task_on_cpu(task_rq(p), p))
143 return;
144
145 if (p->se.sched_delayed) {
146 /* CPU migration of "sleeping" task */
147 SCHED_WARN_ON(!(flags & ENQUEUE_MIGRATED));
148 if (p->in_memstall)
149 set |= TSK_MEMSTALL;
150 if (p->in_iowait)
151 set |= TSK_IOWAIT;
152 } else if (flags & ENQUEUE_MIGRATED) {
153 /* CPU migration of runnable task */
154 set = TSK_RUNNING;
155 if (p->in_memstall)
156 set |= TSK_MEMSTALL | TSK_MEMSTALL_RUNNING;
157 } else {
158 /* Wakeup of new or sleeping task */
159 if (p->in_iowait)
160 clear |= TSK_IOWAIT;
161 set = TSK_RUNNING;
162 if (p->in_memstall)
163 set |= TSK_MEMSTALL_RUNNING;
164 }
165
166 psi_task_change(p, clear, set);
167 }
168
psi_dequeue(struct task_struct * p,int flags)169 static inline void psi_dequeue(struct task_struct *p, int flags)
170 {
171 if (static_branch_likely(&psi_disabled))
172 return;
173
174 /* Same runqueue, nothing changed for psi */
175 if (flags & DEQUEUE_SAVE)
176 return;
177
178 /*
179 * A voluntary sleep is a dequeue followed by a task switch. To
180 * avoid walking all ancestors twice, psi_task_switch() handles
181 * TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
182 * Do nothing here.
183 * In the SCHED_PROXY_EXECUTION case we may do sleeping
184 * dequeues that are not followed by a task switch, so check
185 * TSK_ONCPU is set to ensure the task switch is imminent.
186 * Otherwise clear the flags as usual.
187 */
188 if ((flags & DEQUEUE_SLEEP) && (p->psi_flags & TSK_ONCPU))
189 return;
190
191 /*
192 * When migrating a task to another CPU, clear all psi
193 * state. The enqueue callback above will work it out.
194 */
195 psi_task_change(p, p->psi_flags, 0);
196 }
197
psi_ttwu_dequeue(struct task_struct * p)198 static inline void psi_ttwu_dequeue(struct task_struct *p)
199 {
200 if (static_branch_likely(&psi_disabled))
201 return;
202 /*
203 * Is the task being migrated during a wakeup? Make sure to
204 * deregister its sleep-persistent psi states from the old
205 * queue, and let psi_enqueue() know it has to requeue.
206 */
207 if (unlikely(p->psi_flags)) {
208 struct rq_flags rf;
209 struct rq *rq;
210
211 rq = __task_rq_lock(p, &rf);
212 psi_task_change(p, p->psi_flags, 0);
213 __task_rq_unlock(rq, &rf);
214 }
215 }
216
psi_sched_switch(struct task_struct * prev,struct task_struct * next,bool sleep)217 static inline void psi_sched_switch(struct task_struct *prev,
218 struct task_struct *next,
219 bool sleep)
220 {
221 if (static_branch_likely(&psi_disabled))
222 return;
223
224 psi_task_switch(prev, next, sleep);
225 }
226
227 #else /* CONFIG_PSI */
psi_enqueue(struct task_struct * p,bool migrate)228 static inline void psi_enqueue(struct task_struct *p, bool migrate) {}
psi_dequeue(struct task_struct * p,bool migrate)229 static inline void psi_dequeue(struct task_struct *p, bool migrate) {}
psi_ttwu_dequeue(struct task_struct * p)230 static inline void psi_ttwu_dequeue(struct task_struct *p) {}
psi_sched_switch(struct task_struct * prev,struct task_struct * next,bool sleep)231 static inline void psi_sched_switch(struct task_struct *prev,
232 struct task_struct *next,
233 bool sleep) {}
psi_account_irqtime(struct rq * rq,struct task_struct * curr,struct task_struct * prev)234 static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
235 struct task_struct *prev) {}
236 #endif /* CONFIG_PSI */
237
238 #ifdef CONFIG_SCHED_INFO
239 /*
240 * We are interested in knowing how long it was from the *first* time a
241 * task was queued to the time that it finally hit a CPU, we call this routine
242 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
243 * delta taken on each CPU would annul the skew.
244 */
sched_info_dequeue(struct rq * rq,struct task_struct * t)245 static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t)
246 {
247 unsigned long long delta = 0;
248
249 if (!t->sched_info.last_queued)
250 return;
251
252 delta = rq_clock(rq) - t->sched_info.last_queued;
253 t->sched_info.last_queued = 0;
254 t->sched_info.run_delay += delta;
255
256 rq_sched_info_dequeue(rq, delta);
257 }
258
259 /*
260 * Called when a task finally hits the CPU. We can now calculate how
261 * long it was waiting to run. We also note when it began so that we
262 * can keep stats on how long its time-slice is.
263 */
sched_info_arrive(struct rq * rq,struct task_struct * t)264 static void sched_info_arrive(struct rq *rq, struct task_struct *t)
265 {
266 unsigned long long now, delta = 0;
267
268 if (!t->sched_info.last_queued)
269 return;
270
271 now = rq_clock(rq);
272 delta = now - t->sched_info.last_queued;
273 t->sched_info.last_queued = 0;
274 t->sched_info.run_delay += delta;
275 t->sched_info.last_arrival = now;
276 t->sched_info.pcount++;
277
278 rq_sched_info_arrive(rq, delta);
279 }
280
281 /*
282 * This function is only called from enqueue_task(), but also only updates
283 * the timestamp if it is already not set. It's assumed that
284 * sched_info_dequeue() will clear that stamp when appropriate.
285 */
sched_info_enqueue(struct rq * rq,struct task_struct * t)286 static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t)
287 {
288 if (!t->sched_info.last_queued)
289 t->sched_info.last_queued = rq_clock(rq);
290 }
291
292 /*
293 * Called when a process ceases being the active-running process involuntarily
294 * due, typically, to expiring its time slice (this may also be called when
295 * switching to the idle task). Now we can calculate how long we ran.
296 * Also, if the process is still in the TASK_RUNNING state, call
297 * sched_info_enqueue() to mark that it has now again started waiting on
298 * the runqueue.
299 */
sched_info_depart(struct rq * rq,struct task_struct * t)300 static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
301 {
302 unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
303
304 rq_sched_info_depart(rq, delta);
305
306 if (task_is_running(t))
307 sched_info_enqueue(rq, t);
308 }
309
310 /*
311 * Called when tasks are switched involuntarily due, typically, to expiring
312 * their time slice. (This may also be called when switching to or from
313 * the idle task.) We are only called when prev != next.
314 */
315 static inline void
sched_info_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)316 sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
317 {
318 /*
319 * prev now departs the CPU. It's not interesting to record
320 * stats about how efficient we were at scheduling the idle
321 * process, however.
322 */
323 if (prev != rq->idle)
324 sched_info_depart(rq, prev);
325
326 if (next != rq->idle)
327 sched_info_arrive(rq, next);
328 }
329
330 #else /* !CONFIG_SCHED_INFO: */
331 # define sched_info_enqueue(rq, t) do { } while (0)
332 # define sched_info_dequeue(rq, t) do { } while (0)
333 # define sched_info_switch(rq, t, next) do { } while (0)
334 #endif /* CONFIG_SCHED_INFO */
335
336 #endif /* _KERNEL_STATS_H */
337