• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 
6 #include <linux/bsearch.h>
7 #include <trace/hooks/sched.h>
8 
9 DEFINE_MUTEX(sched_domains_mutex);
10 #ifdef CONFIG_LOCKDEP
11 EXPORT_SYMBOL_GPL(sched_domains_mutex);
12 #endif
13 
14 /* Protected by sched_domains_mutex: */
15 static cpumask_var_t sched_domains_tmpmask;
16 static cpumask_var_t sched_domains_tmpmask2;
17 
18 #ifdef CONFIG_SCHED_DEBUG
19 
sched_debug_setup(char * str)20 static int __init sched_debug_setup(char *str)
21 {
22 	sched_debug_verbose = true;
23 
24 	return 0;
25 }
26 early_param("sched_verbose", sched_debug_setup);
27 
sched_debug(void)28 static inline bool sched_debug(void)
29 {
30 	return sched_debug_verbose;
31 }
32 
33 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
34 const struct sd_flag_debug sd_flag_debug[] = {
35 #include <linux/sched/sd_flags.h>
36 };
37 #undef SD_FLAG
38 
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)39 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
40 				  struct cpumask *groupmask)
41 {
42 	struct sched_group *group = sd->groups;
43 	unsigned long flags = sd->flags;
44 	unsigned int idx;
45 
46 	cpumask_clear(groupmask);
47 
48 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
49 	printk(KERN_CONT "span=%*pbl level=%s\n",
50 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
51 
52 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
53 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
54 	}
55 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
56 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
57 	}
58 
59 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
60 		unsigned int flag = BIT(idx);
61 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
62 
63 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
64 		    !(sd->child->flags & flag))
65 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
66 			       sd_flag_debug[idx].name);
67 
68 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
69 		    !(sd->parent->flags & flag))
70 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
71 			       sd_flag_debug[idx].name);
72 	}
73 
74 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
75 	do {
76 		if (!group) {
77 			printk("\n");
78 			printk(KERN_ERR "ERROR: group is NULL\n");
79 			break;
80 		}
81 
82 		if (cpumask_empty(sched_group_span(group))) {
83 			printk(KERN_CONT "\n");
84 			printk(KERN_ERR "ERROR: empty group\n");
85 			break;
86 		}
87 
88 		if (!(sd->flags & SD_OVERLAP) &&
89 		    cpumask_intersects(groupmask, sched_group_span(group))) {
90 			printk(KERN_CONT "\n");
91 			printk(KERN_ERR "ERROR: repeated CPUs\n");
92 			break;
93 		}
94 
95 		cpumask_or(groupmask, groupmask, sched_group_span(group));
96 
97 		printk(KERN_CONT " %d:{ span=%*pbl",
98 				group->sgc->id,
99 				cpumask_pr_args(sched_group_span(group)));
100 
101 		if ((sd->flags & SD_OVERLAP) &&
102 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
103 			printk(KERN_CONT " mask=%*pbl",
104 				cpumask_pr_args(group_balance_mask(group)));
105 		}
106 
107 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
108 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
109 
110 		if (group == sd->groups && sd->child &&
111 		    !cpumask_equal(sched_domain_span(sd->child),
112 				   sched_group_span(group))) {
113 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
114 		}
115 
116 		printk(KERN_CONT " }");
117 
118 		group = group->next;
119 
120 		if (group != sd->groups)
121 			printk(KERN_CONT ",");
122 
123 	} while (group != sd->groups);
124 	printk(KERN_CONT "\n");
125 
126 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
127 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
128 
129 	if (sd->parent &&
130 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
131 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
132 	return 0;
133 }
134 
sched_domain_debug(struct sched_domain * sd,int cpu)135 static void sched_domain_debug(struct sched_domain *sd, int cpu)
136 {
137 	int level = 0;
138 
139 	if (!sched_debug_verbose)
140 		return;
141 
142 	if (!sd) {
143 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
144 		return;
145 	}
146 
147 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
148 
149 	for (;;) {
150 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
151 			break;
152 		level++;
153 		sd = sd->parent;
154 		if (!sd)
155 			break;
156 	}
157 }
158 #else /* !CONFIG_SCHED_DEBUG */
159 
160 # define sched_debug_verbose 0
161 # define sched_domain_debug(sd, cpu) do { } while (0)
sched_debug(void)162 static inline bool sched_debug(void)
163 {
164 	return false;
165 }
166 #endif /* CONFIG_SCHED_DEBUG */
167 
168 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
169 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
170 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
171 #include <linux/sched/sd_flags.h>
172 0;
173 #undef SD_FLAG
174 
sd_degenerate(struct sched_domain * sd)175 static int sd_degenerate(struct sched_domain *sd)
176 {
177 	if (cpumask_weight(sched_domain_span(sd)) == 1)
178 		return 1;
179 
180 	/* Following flags need at least 2 groups */
181 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
182 	    (sd->groups != sd->groups->next))
183 		return 0;
184 
185 	/* Following flags don't use groups */
186 	if (sd->flags & (SD_WAKE_AFFINE))
187 		return 0;
188 
189 	return 1;
190 }
191 
192 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)193 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
194 {
195 	unsigned long cflags = sd->flags, pflags = parent->flags;
196 
197 	if (sd_degenerate(parent))
198 		return 1;
199 
200 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
201 		return 0;
202 
203 	/* Flags needing groups don't count if only 1 group in parent */
204 	if (parent->groups == parent->groups->next)
205 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
206 
207 	if (~cflags & pflags)
208 		return 0;
209 
210 	return 1;
211 }
212 
213 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
214 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
215 static unsigned int sysctl_sched_energy_aware = 1;
216 static DEFINE_MUTEX(sched_energy_mutex);
217 static bool sched_energy_update;
218 
sched_is_eas_possible(const struct cpumask * cpu_mask)219 static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
220 {
221 	bool any_asym_capacity = false;
222 	struct cpufreq_policy *policy;
223 	struct cpufreq_governor *gov;
224 	int i;
225 	bool eas_check = false;
226 
227 	trace_android_rvh_build_perf_domains(&eas_check);
228 	if (eas_check)
229 		return true;
230 
231 	/* EAS is enabled for asymmetric CPU capacity topologies. */
232 	for_each_cpu(i, cpu_mask) {
233 		if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
234 			any_asym_capacity = true;
235 			break;
236 		}
237 	}
238 	if (!any_asym_capacity) {
239 		if (sched_debug()) {
240 			pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
241 				cpumask_pr_args(cpu_mask));
242 		}
243 		return false;
244 	}
245 
246 	/* EAS definitely does *not* handle SMT */
247 	if (sched_smt_active()) {
248 		if (sched_debug()) {
249 			pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
250 				cpumask_pr_args(cpu_mask));
251 		}
252 		return false;
253 	}
254 
255 	if (!arch_scale_freq_invariant()) {
256 		if (sched_debug()) {
257 			pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
258 				cpumask_pr_args(cpu_mask));
259 		}
260 		return false;
261 	}
262 
263 	/* Do not attempt EAS if schedutil is not being used. */
264 	for_each_cpu(i, cpu_mask) {
265 		policy = cpufreq_cpu_get(i);
266 		if (!policy) {
267 			if (sched_debug()) {
268 				pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d",
269 					cpumask_pr_args(cpu_mask), i);
270 			}
271 			return false;
272 		}
273 		gov = policy->governor;
274 		cpufreq_cpu_put(policy);
275 		if (gov != &schedutil_gov) {
276 			if (sched_debug()) {
277 				pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n",
278 					cpumask_pr_args(cpu_mask));
279 			}
280 			return false;
281 		}
282 	}
283 
284 	return true;
285 }
286 
rebuild_sched_domains_energy(void)287 void rebuild_sched_domains_energy(void)
288 {
289 	mutex_lock(&sched_energy_mutex);
290 	sched_energy_update = true;
291 	rebuild_sched_domains();
292 	sched_energy_update = false;
293 	mutex_unlock(&sched_energy_mutex);
294 }
295 
296 #ifdef CONFIG_PROC_SYSCTL
sched_energy_aware_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)297 static int sched_energy_aware_handler(const struct ctl_table *table, int write,
298 		void *buffer, size_t *lenp, loff_t *ppos)
299 {
300 	int ret, state;
301 
302 	if (write && !capable(CAP_SYS_ADMIN))
303 		return -EPERM;
304 
305 	if (!sched_is_eas_possible(cpu_active_mask)) {
306 		if (write) {
307 			return -EOPNOTSUPP;
308 		} else {
309 			*lenp = 0;
310 			return 0;
311 		}
312 	}
313 
314 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
315 	if (!ret && write) {
316 		state = static_branch_unlikely(&sched_energy_present);
317 		if (state != sysctl_sched_energy_aware)
318 			rebuild_sched_domains_energy();
319 	}
320 
321 	return ret;
322 }
323 
324 static struct ctl_table sched_energy_aware_sysctls[] = {
325 	{
326 		.procname       = "sched_energy_aware",
327 		.data           = &sysctl_sched_energy_aware,
328 		.maxlen         = sizeof(unsigned int),
329 		.mode           = 0644,
330 		.proc_handler   = sched_energy_aware_handler,
331 		.extra1         = SYSCTL_ZERO,
332 		.extra2         = SYSCTL_ONE,
333 	},
334 };
335 
sched_energy_aware_sysctl_init(void)336 static int __init sched_energy_aware_sysctl_init(void)
337 {
338 	register_sysctl_init("kernel", sched_energy_aware_sysctls);
339 	return 0;
340 }
341 
342 late_initcall(sched_energy_aware_sysctl_init);
343 #endif
344 
free_pd(struct perf_domain * pd)345 static void free_pd(struct perf_domain *pd)
346 {
347 	struct perf_domain *tmp;
348 
349 	while (pd) {
350 		tmp = pd->next;
351 		kfree(pd);
352 		pd = tmp;
353 	}
354 }
355 
find_pd(struct perf_domain * pd,int cpu)356 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
357 {
358 	while (pd) {
359 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
360 			return pd;
361 		pd = pd->next;
362 	}
363 
364 	return NULL;
365 }
366 
pd_init(int cpu)367 static struct perf_domain *pd_init(int cpu)
368 {
369 	struct em_perf_domain *obj = em_cpu_get(cpu);
370 	struct perf_domain *pd;
371 
372 	if (!obj) {
373 		if (sched_debug())
374 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
375 		return NULL;
376 	}
377 
378 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
379 	if (!pd)
380 		return NULL;
381 	pd->em_pd = obj;
382 
383 	return pd;
384 }
385 
perf_domain_debug(const struct cpumask * cpu_map,struct perf_domain * pd)386 static void perf_domain_debug(const struct cpumask *cpu_map,
387 						struct perf_domain *pd)
388 {
389 	if (!sched_debug() || !pd)
390 		return;
391 
392 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
393 
394 	while (pd) {
395 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
396 				cpumask_first(perf_domain_span(pd)),
397 				cpumask_pr_args(perf_domain_span(pd)),
398 				em_pd_nr_perf_states(pd->em_pd));
399 		pd = pd->next;
400 	}
401 
402 	printk(KERN_CONT "\n");
403 }
404 
destroy_perf_domain_rcu(struct rcu_head * rp)405 static void destroy_perf_domain_rcu(struct rcu_head *rp)
406 {
407 	struct perf_domain *pd;
408 
409 	pd = container_of(rp, struct perf_domain, rcu);
410 	free_pd(pd);
411 }
412 
sched_energy_set(bool has_eas)413 static void sched_energy_set(bool has_eas)
414 {
415 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
416 		if (sched_debug())
417 			pr_info("%s: stopping EAS\n", __func__);
418 		static_branch_disable_cpuslocked(&sched_energy_present);
419 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
420 		if (sched_debug())
421 			pr_info("%s: starting EAS\n", __func__);
422 		static_branch_enable_cpuslocked(&sched_energy_present);
423 	}
424 }
425 
426 /*
427  * EAS can be used on a root domain if it meets all the following conditions:
428  *    1. an Energy Model (EM) is available;
429  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
430  *    3. no SMT is detected.
431  *    4. schedutil is driving the frequency of all CPUs of the rd;
432  *    5. frequency invariance support is present;
433  */
build_perf_domains(const struct cpumask * cpu_map)434 static bool build_perf_domains(const struct cpumask *cpu_map)
435 {
436 	int i;
437 	struct perf_domain *pd = NULL, *tmp;
438 	int cpu = cpumask_first(cpu_map);
439 	struct root_domain *rd = cpu_rq(cpu)->rd;
440 
441 	if (!sysctl_sched_energy_aware)
442 		goto free;
443 
444 	if (!sched_is_eas_possible(cpu_map))
445 		goto free;
446 
447 	for_each_cpu(i, cpu_map) {
448 		/* Skip already covered CPUs. */
449 		if (find_pd(pd, i))
450 			continue;
451 
452 		/* Create the new pd and add it to the local list. */
453 		tmp = pd_init(i);
454 		if (!tmp)
455 			goto free;
456 		tmp->next = pd;
457 		pd = tmp;
458 	}
459 
460 	perf_domain_debug(cpu_map, pd);
461 
462 	/* Attach the new list of performance domains to the root domain. */
463 	tmp = rd->pd;
464 	rcu_assign_pointer(rd->pd, pd);
465 	if (tmp)
466 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
467 
468 	return !!pd;
469 
470 free:
471 	free_pd(pd);
472 	tmp = rd->pd;
473 	rcu_assign_pointer(rd->pd, NULL);
474 	if (tmp)
475 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
476 
477 	return false;
478 }
479 #else
free_pd(struct perf_domain * pd)480 static void free_pd(struct perf_domain *pd) { }
481 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
482 
free_rootdomain(struct rcu_head * rcu)483 static void free_rootdomain(struct rcu_head *rcu)
484 {
485 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
486 
487 	cpupri_cleanup(&rd->cpupri);
488 	cpudl_cleanup(&rd->cpudl);
489 	free_cpumask_var(rd->dlo_mask);
490 	free_cpumask_var(rd->rto_mask);
491 	free_cpumask_var(rd->online);
492 	free_cpumask_var(rd->span);
493 	free_pd(rd->pd);
494 	kfree(rd);
495 }
496 
rq_attach_root(struct rq * rq,struct root_domain * rd)497 void rq_attach_root(struct rq *rq, struct root_domain *rd)
498 {
499 	struct root_domain *old_rd = NULL;
500 	struct rq_flags rf;
501 
502 	rq_lock_irqsave(rq, &rf);
503 
504 	if (rq->rd) {
505 		old_rd = rq->rd;
506 
507 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
508 			set_rq_offline(rq);
509 
510 		cpumask_clear_cpu(rq->cpu, old_rd->span);
511 
512 		/*
513 		 * If we don't want to free the old_rd yet then
514 		 * set old_rd to NULL to skip the freeing later
515 		 * in this function:
516 		 */
517 		if (!atomic_dec_and_test(&old_rd->refcount))
518 			old_rd = NULL;
519 	}
520 
521 	atomic_inc(&rd->refcount);
522 	rq->rd = rd;
523 
524 	cpumask_set_cpu(rq->cpu, rd->span);
525 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
526 		set_rq_online(rq);
527 
528 	/*
529 	 * Because the rq is not a task, dl_add_task_root_domain() did not
530 	 * move the fair server bw to the rd if it already started.
531 	 * Add it now.
532 	 */
533 	if (rq->fair_server.dl_server)
534 		__dl_server_attach_root(&rq->fair_server, rq);
535 
536 	rq_unlock_irqrestore(rq, &rf);
537 
538 	if (old_rd)
539 		call_rcu(&old_rd->rcu, free_rootdomain);
540 }
541 
sched_get_rd(struct root_domain * rd)542 void sched_get_rd(struct root_domain *rd)
543 {
544 	atomic_inc(&rd->refcount);
545 }
546 
sched_put_rd(struct root_domain * rd)547 void sched_put_rd(struct root_domain *rd)
548 {
549 	if (!atomic_dec_and_test(&rd->refcount))
550 		return;
551 
552 	call_rcu(&rd->rcu, free_rootdomain);
553 }
554 
init_rootdomain(struct root_domain * rd)555 static int init_rootdomain(struct root_domain *rd)
556 {
557 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
558 		goto out;
559 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
560 		goto free_span;
561 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
562 		goto free_online;
563 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
564 		goto free_dlo_mask;
565 
566 #ifdef HAVE_RT_PUSH_IPI
567 	rd->rto_cpu = -1;
568 	raw_spin_lock_init(&rd->rto_lock);
569 	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
570 #endif
571 
572 	rd->visit_gen = 0;
573 	init_dl_bw(&rd->dl_bw);
574 	if (cpudl_init(&rd->cpudl) != 0)
575 		goto free_rto_mask;
576 
577 	if (cpupri_init(&rd->cpupri) != 0)
578 		goto free_cpudl;
579 	return 0;
580 
581 free_cpudl:
582 	cpudl_cleanup(&rd->cpudl);
583 free_rto_mask:
584 	free_cpumask_var(rd->rto_mask);
585 free_dlo_mask:
586 	free_cpumask_var(rd->dlo_mask);
587 free_online:
588 	free_cpumask_var(rd->online);
589 free_span:
590 	free_cpumask_var(rd->span);
591 out:
592 	return -ENOMEM;
593 }
594 
595 /*
596  * By default the system creates a single root-domain with all CPUs as
597  * members (mimicking the global state we have today).
598  */
599 struct root_domain def_root_domain;
600 
init_defrootdomain(void)601 void __init init_defrootdomain(void)
602 {
603 	init_rootdomain(&def_root_domain);
604 
605 	atomic_set(&def_root_domain.refcount, 1);
606 }
607 
alloc_rootdomain(void)608 static struct root_domain *alloc_rootdomain(void)
609 {
610 	struct root_domain *rd;
611 
612 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
613 	if (!rd)
614 		return NULL;
615 
616 	if (init_rootdomain(rd) != 0) {
617 		kfree(rd);
618 		return NULL;
619 	}
620 
621 	return rd;
622 }
623 
free_sched_groups(struct sched_group * sg,int free_sgc)624 static void free_sched_groups(struct sched_group *sg, int free_sgc)
625 {
626 	struct sched_group *tmp, *first;
627 
628 	if (!sg)
629 		return;
630 
631 	first = sg;
632 	do {
633 		tmp = sg->next;
634 
635 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
636 			kfree(sg->sgc);
637 
638 		if (atomic_dec_and_test(&sg->ref))
639 			kfree(sg);
640 		sg = tmp;
641 	} while (sg != first);
642 }
643 
destroy_sched_domain(struct sched_domain * sd)644 static void destroy_sched_domain(struct sched_domain *sd)
645 {
646 	/*
647 	 * A normal sched domain may have multiple group references, an
648 	 * overlapping domain, having private groups, only one.  Iterate,
649 	 * dropping group/capacity references, freeing where none remain.
650 	 */
651 	free_sched_groups(sd->groups, 1);
652 
653 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
654 		kfree(sd->shared);
655 	kfree(sd);
656 }
657 
destroy_sched_domains_rcu(struct rcu_head * rcu)658 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
659 {
660 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
661 
662 	while (sd) {
663 		struct sched_domain *parent = sd->parent;
664 		destroy_sched_domain(sd);
665 		sd = parent;
666 	}
667 }
668 
destroy_sched_domains(struct sched_domain * sd)669 static void destroy_sched_domains(struct sched_domain *sd)
670 {
671 	if (sd)
672 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
673 }
674 
675 /*
676  * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set
677  * (Last Level Cache Domain) for this allows us to avoid some pointer chasing
678  * select_idle_sibling().
679  *
680  * Also keep a unique ID per domain (we use the first CPU number in the cpumask
681  * of the domain), this allows us to quickly tell if two CPUs are in the same
682  * cache domain, see cpus_share_cache().
683  */
684 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
685 DEFINE_PER_CPU(int, sd_llc_size);
686 DEFINE_PER_CPU(int, sd_llc_id);
687 DEFINE_PER_CPU(int, sd_share_id);
688 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
689 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
690 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
691 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
692 
693 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
694 DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
695 
update_top_cache_domain(int cpu)696 static void update_top_cache_domain(int cpu)
697 {
698 	struct sched_domain_shared *sds = NULL;
699 	struct sched_domain *sd;
700 	int id = cpu;
701 	int size = 1;
702 
703 	sd = highest_flag_domain(cpu, SD_SHARE_LLC);
704 	if (sd) {
705 		id = cpumask_first(sched_domain_span(sd));
706 		size = cpumask_weight(sched_domain_span(sd));
707 		sds = sd->shared;
708 	}
709 
710 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
711 	per_cpu(sd_llc_size, cpu) = size;
712 	per_cpu(sd_llc_id, cpu) = id;
713 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
714 
715 	sd = lowest_flag_domain(cpu, SD_CLUSTER);
716 	if (sd)
717 		id = cpumask_first(sched_domain_span(sd));
718 
719 	/*
720 	 * This assignment should be placed after the sd_llc_id as
721 	 * we want this id equals to cluster id on cluster machines
722 	 * but equals to LLC id on non-Cluster machines.
723 	 */
724 	per_cpu(sd_share_id, cpu) = id;
725 
726 	sd = lowest_flag_domain(cpu, SD_NUMA);
727 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
728 
729 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
730 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
731 
732 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
733 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
734 }
735 
736 /*
737  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
738  * hold the hotplug lock.
739  */
740 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)741 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
742 {
743 	struct rq *rq = cpu_rq(cpu);
744 	struct sched_domain *tmp;
745 
746 	/* Remove the sched domains which do not contribute to scheduling. */
747 	for (tmp = sd; tmp; ) {
748 		struct sched_domain *parent = tmp->parent;
749 		if (!parent)
750 			break;
751 
752 		if (sd_parent_degenerate(tmp, parent)) {
753 			tmp->parent = parent->parent;
754 
755 			if (parent->parent) {
756 				parent->parent->child = tmp;
757 				parent->parent->groups->flags = tmp->flags;
758 			}
759 
760 			/*
761 			 * Transfer SD_PREFER_SIBLING down in case of a
762 			 * degenerate parent; the spans match for this
763 			 * so the property transfers.
764 			 */
765 			if (parent->flags & SD_PREFER_SIBLING)
766 				tmp->flags |= SD_PREFER_SIBLING;
767 			destroy_sched_domain(parent);
768 		} else
769 			tmp = tmp->parent;
770 	}
771 
772 	if (sd && sd_degenerate(sd)) {
773 		tmp = sd;
774 		sd = sd->parent;
775 		destroy_sched_domain(tmp);
776 		if (sd) {
777 			struct sched_group *sg = sd->groups;
778 
779 			/*
780 			 * sched groups hold the flags of the child sched
781 			 * domain for convenience. Clear such flags since
782 			 * the child is being destroyed.
783 			 */
784 			do {
785 				sg->flags = 0;
786 			} while (sg != sd->groups);
787 
788 			sd->child = NULL;
789 		}
790 	}
791 
792 	sched_domain_debug(sd, cpu);
793 
794 	rq_attach_root(rq, rd);
795 	tmp = rq->sd;
796 	rcu_assign_pointer(rq->sd, sd);
797 	dirty_sched_domain_sysctl(cpu);
798 	destroy_sched_domains(tmp);
799 
800 	update_top_cache_domain(cpu);
801 }
802 
803 struct s_data {
804 	struct sched_domain * __percpu *sd;
805 	struct root_domain	*rd;
806 };
807 
808 enum s_alloc {
809 	sa_rootdomain,
810 	sa_sd,
811 	sa_sd_storage,
812 	sa_none,
813 };
814 
815 /*
816  * Return the canonical balance CPU for this group, this is the first CPU
817  * of this group that's also in the balance mask.
818  *
819  * The balance mask are all those CPUs that could actually end up at this
820  * group. See build_balance_mask().
821  *
822  * Also see should_we_balance().
823  */
group_balance_cpu(struct sched_group * sg)824 int group_balance_cpu(struct sched_group *sg)
825 {
826 	return cpumask_first(group_balance_mask(sg));
827 }
828 
829 
830 /*
831  * NUMA topology (first read the regular topology blurb below)
832  *
833  * Given a node-distance table, for example:
834  *
835  *   node   0   1   2   3
836  *     0:  10  20  30  20
837  *     1:  20  10  20  30
838  *     2:  30  20  10  20
839  *     3:  20  30  20  10
840  *
841  * which represents a 4 node ring topology like:
842  *
843  *   0 ----- 1
844  *   |       |
845  *   |       |
846  *   |       |
847  *   3 ----- 2
848  *
849  * We want to construct domains and groups to represent this. The way we go
850  * about doing this is to build the domains on 'hops'. For each NUMA level we
851  * construct the mask of all nodes reachable in @level hops.
852  *
853  * For the above NUMA topology that gives 3 levels:
854  *
855  * NUMA-2	0-3		0-3		0-3		0-3
856  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
857  *
858  * NUMA-1	0-1,3		0-2		1-3		0,2-3
859  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
860  *
861  * NUMA-0	0		1		2		3
862  *
863  *
864  * As can be seen; things don't nicely line up as with the regular topology.
865  * When we iterate a domain in child domain chunks some nodes can be
866  * represented multiple times -- hence the "overlap" naming for this part of
867  * the topology.
868  *
869  * In order to minimize this overlap, we only build enough groups to cover the
870  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
871  *
872  * Because:
873  *
874  *  - the first group of each domain is its child domain; this
875  *    gets us the first 0-1,3
876  *  - the only uncovered node is 2, who's child domain is 1-3.
877  *
878  * However, because of the overlap, computing a unique CPU for each group is
879  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
880  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
881  * end up at those groups (they would end up in group: 0-1,3).
882  *
883  * To correct this we have to introduce the group balance mask. This mask
884  * will contain those CPUs in the group that can reach this group given the
885  * (child) domain tree.
886  *
887  * With this we can once again compute balance_cpu and sched_group_capacity
888  * relations.
889  *
890  * XXX include words on how balance_cpu is unique and therefore can be
891  * used for sched_group_capacity links.
892  *
893  *
894  * Another 'interesting' topology is:
895  *
896  *   node   0   1   2   3
897  *     0:  10  20  20  30
898  *     1:  20  10  20  20
899  *     2:  20  20  10  20
900  *     3:  30  20  20  10
901  *
902  * Which looks a little like:
903  *
904  *   0 ----- 1
905  *   |     / |
906  *   |   /   |
907  *   | /     |
908  *   2 ----- 3
909  *
910  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
911  * are not.
912  *
913  * This leads to a few particularly weird cases where the sched_domain's are
914  * not of the same number for each CPU. Consider:
915  *
916  * NUMA-2	0-3						0-3
917  *  groups:	{0-2},{1-3}					{1-3},{0-2}
918  *
919  * NUMA-1	0-2		0-3		0-3		1-3
920  *
921  * NUMA-0	0		1		2		3
922  *
923  */
924 
925 
926 /*
927  * Build the balance mask; it contains only those CPUs that can arrive at this
928  * group and should be considered to continue balancing.
929  *
930  * We do this during the group creation pass, therefore the group information
931  * isn't complete yet, however since each group represents a (child) domain we
932  * can fully construct this using the sched_domain bits (which are already
933  * complete).
934  */
935 static void
build_balance_mask(struct sched_domain * sd,struct sched_group * sg,struct cpumask * mask)936 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
937 {
938 	const struct cpumask *sg_span = sched_group_span(sg);
939 	struct sd_data *sdd = sd->private;
940 	struct sched_domain *sibling;
941 	int i;
942 
943 	cpumask_clear(mask);
944 
945 	for_each_cpu(i, sg_span) {
946 		sibling = *per_cpu_ptr(sdd->sd, i);
947 
948 		/*
949 		 * Can happen in the asymmetric case, where these siblings are
950 		 * unused. The mask will not be empty because those CPUs that
951 		 * do have the top domain _should_ span the domain.
952 		 */
953 		if (!sibling->child)
954 			continue;
955 
956 		/* If we would not end up here, we can't continue from here */
957 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
958 			continue;
959 
960 		cpumask_set_cpu(i, mask);
961 	}
962 
963 	/* We must not have empty masks here */
964 	WARN_ON_ONCE(cpumask_empty(mask));
965 }
966 
967 /*
968  * XXX: This creates per-node group entries; since the load-balancer will
969  * immediately access remote memory to construct this group's load-balance
970  * statistics having the groups node local is of dubious benefit.
971  */
972 static struct sched_group *
build_group_from_child_sched_domain(struct sched_domain * sd,int cpu)973 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
974 {
975 	struct sched_group *sg;
976 	struct cpumask *sg_span;
977 
978 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
979 			GFP_KERNEL, cpu_to_node(cpu));
980 
981 	if (!sg)
982 		return NULL;
983 
984 	sg_span = sched_group_span(sg);
985 	if (sd->child) {
986 		cpumask_copy(sg_span, sched_domain_span(sd->child));
987 		sg->flags = sd->child->flags;
988 	} else {
989 		cpumask_copy(sg_span, sched_domain_span(sd));
990 	}
991 
992 	atomic_inc(&sg->ref);
993 	return sg;
994 }
995 
init_overlap_sched_group(struct sched_domain * sd,struct sched_group * sg)996 static void init_overlap_sched_group(struct sched_domain *sd,
997 				     struct sched_group *sg)
998 {
999 	struct cpumask *mask = sched_domains_tmpmask2;
1000 	struct sd_data *sdd = sd->private;
1001 	struct cpumask *sg_span;
1002 	int cpu;
1003 
1004 	build_balance_mask(sd, sg, mask);
1005 	cpu = cpumask_first(mask);
1006 
1007 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1008 	if (atomic_inc_return(&sg->sgc->ref) == 1)
1009 		cpumask_copy(group_balance_mask(sg), mask);
1010 	else
1011 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
1012 
1013 	/*
1014 	 * Initialize sgc->capacity such that even if we mess up the
1015 	 * domains and no possible iteration will get us here, we won't
1016 	 * die on a /0 trap.
1017 	 */
1018 	sg_span = sched_group_span(sg);
1019 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
1020 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1021 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1022 }
1023 
1024 static struct sched_domain *
find_descended_sibling(struct sched_domain * sd,struct sched_domain * sibling)1025 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1026 {
1027 	/*
1028 	 * The proper descendant would be the one whose child won't span out
1029 	 * of sd
1030 	 */
1031 	while (sibling->child &&
1032 	       !cpumask_subset(sched_domain_span(sibling->child),
1033 			       sched_domain_span(sd)))
1034 		sibling = sibling->child;
1035 
1036 	/*
1037 	 * As we are referencing sgc across different topology level, we need
1038 	 * to go down to skip those sched_domains which don't contribute to
1039 	 * scheduling because they will be degenerated in cpu_attach_domain
1040 	 */
1041 	while (sibling->child &&
1042 	       cpumask_equal(sched_domain_span(sibling->child),
1043 			     sched_domain_span(sibling)))
1044 		sibling = sibling->child;
1045 
1046 	return sibling;
1047 }
1048 
1049 static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)1050 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1051 {
1052 	struct sched_group *first = NULL, *last = NULL, *sg;
1053 	const struct cpumask *span = sched_domain_span(sd);
1054 	struct cpumask *covered = sched_domains_tmpmask;
1055 	struct sd_data *sdd = sd->private;
1056 	struct sched_domain *sibling;
1057 	int i;
1058 
1059 	cpumask_clear(covered);
1060 
1061 	for_each_cpu_wrap(i, span, cpu) {
1062 		struct cpumask *sg_span;
1063 
1064 		if (cpumask_test_cpu(i, covered))
1065 			continue;
1066 
1067 		sibling = *per_cpu_ptr(sdd->sd, i);
1068 
1069 		/*
1070 		 * Asymmetric node setups can result in situations where the
1071 		 * domain tree is of unequal depth, make sure to skip domains
1072 		 * that already cover the entire range.
1073 		 *
1074 		 * In that case build_sched_domains() will have terminated the
1075 		 * iteration early and our sibling sd spans will be empty.
1076 		 * Domains should always include the CPU they're built on, so
1077 		 * check that.
1078 		 */
1079 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1080 			continue;
1081 
1082 		/*
1083 		 * Usually we build sched_group by sibling's child sched_domain
1084 		 * But for machines whose NUMA diameter are 3 or above, we move
1085 		 * to build sched_group by sibling's proper descendant's child
1086 		 * domain because sibling's child sched_domain will span out of
1087 		 * the sched_domain being built as below.
1088 		 *
1089 		 * Smallest diameter=3 topology is:
1090 		 *
1091 		 *   node   0   1   2   3
1092 		 *     0:  10  20  30  40
1093 		 *     1:  20  10  20  30
1094 		 *     2:  30  20  10  20
1095 		 *     3:  40  30  20  10
1096 		 *
1097 		 *   0 --- 1 --- 2 --- 3
1098 		 *
1099 		 * NUMA-3       0-3             N/A             N/A             0-3
1100 		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1101 		 *
1102 		 * NUMA-2       0-2             0-3             0-3             1-3
1103 		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1104 		 *
1105 		 * NUMA-1       0-1             0-2             1-3             2-3
1106 		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1107 		 *
1108 		 * NUMA-0       0               1               2               3
1109 		 *
1110 		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1111 		 * group span isn't a subset of the domain span.
1112 		 */
1113 		if (sibling->child &&
1114 		    !cpumask_subset(sched_domain_span(sibling->child), span))
1115 			sibling = find_descended_sibling(sd, sibling);
1116 
1117 		sg = build_group_from_child_sched_domain(sibling, cpu);
1118 		if (!sg)
1119 			goto fail;
1120 
1121 		sg_span = sched_group_span(sg);
1122 		cpumask_or(covered, covered, sg_span);
1123 
1124 		init_overlap_sched_group(sibling, sg);
1125 
1126 		if (!first)
1127 			first = sg;
1128 		if (last)
1129 			last->next = sg;
1130 		last = sg;
1131 		last->next = first;
1132 	}
1133 	sd->groups = first;
1134 
1135 	return 0;
1136 
1137 fail:
1138 	free_sched_groups(first, 0);
1139 
1140 	return -ENOMEM;
1141 }
1142 
1143 
1144 /*
1145  * Package topology (also see the load-balance blurb in fair.c)
1146  *
1147  * The scheduler builds a tree structure to represent a number of important
1148  * topology features. By default (default_topology[]) these include:
1149  *
1150  *  - Simultaneous multithreading (SMT)
1151  *  - Multi-Core Cache (MC)
1152  *  - Package (PKG)
1153  *
1154  * Where the last one more or less denotes everything up to a NUMA node.
1155  *
1156  * The tree consists of 3 primary data structures:
1157  *
1158  *	sched_domain -> sched_group -> sched_group_capacity
1159  *	    ^ ^             ^ ^
1160  *          `-'             `-'
1161  *
1162  * The sched_domains are per-CPU and have a two way link (parent & child) and
1163  * denote the ever growing mask of CPUs belonging to that level of topology.
1164  *
1165  * Each sched_domain has a circular (double) linked list of sched_group's, each
1166  * denoting the domains of the level below (or individual CPUs in case of the
1167  * first domain level). The sched_group linked by a sched_domain includes the
1168  * CPU of that sched_domain [*].
1169  *
1170  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1171  *
1172  * CPU   0   1   2   3   4   5   6   7
1173  *
1174  * PKG  [                             ]
1175  * MC   [             ] [             ]
1176  * SMT  [     ] [     ] [     ] [     ]
1177  *
1178  *  - or -
1179  *
1180  * PKG  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1181  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1182  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1183  *
1184  * CPU   0   1   2   3   4   5   6   7
1185  *
1186  * One way to think about it is: sched_domain moves you up and down among these
1187  * topology levels, while sched_group moves you sideways through it, at child
1188  * domain granularity.
1189  *
1190  * sched_group_capacity ensures each unique sched_group has shared storage.
1191  *
1192  * There are two related construction problems, both require a CPU that
1193  * uniquely identify each group (for a given domain):
1194  *
1195  *  - The first is the balance_cpu (see should_we_balance() and the
1196  *    load-balance blurb in fair.c); for each group we only want 1 CPU to
1197  *    continue balancing at a higher domain.
1198  *
1199  *  - The second is the sched_group_capacity; we want all identical groups
1200  *    to share a single sched_group_capacity.
1201  *
1202  * Since these topologies are exclusive by construction. That is, its
1203  * impossible for an SMT thread to belong to multiple cores, and cores to
1204  * be part of multiple caches. There is a very clear and unique location
1205  * for each CPU in the hierarchy.
1206  *
1207  * Therefore computing a unique CPU for each group is trivial (the iteration
1208  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1209  * group), we can simply pick the first CPU in each group.
1210  *
1211  *
1212  * [*] in other words, the first group of each domain is its child domain.
1213  */
1214 
get_group(int cpu,struct sd_data * sdd)1215 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1216 {
1217 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1218 	struct sched_domain *child = sd->child;
1219 	struct sched_group *sg;
1220 	bool already_visited;
1221 
1222 	if (child)
1223 		cpu = cpumask_first(sched_domain_span(child));
1224 
1225 	sg = *per_cpu_ptr(sdd->sg, cpu);
1226 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1227 
1228 	/* Increase refcounts for claim_allocations: */
1229 	already_visited = atomic_inc_return(&sg->ref) > 1;
1230 	/* sgc visits should follow a similar trend as sg */
1231 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1232 
1233 	/* If we have already visited that group, it's already initialized. */
1234 	if (already_visited)
1235 		return sg;
1236 
1237 	if (child) {
1238 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1239 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1240 		sg->flags = child->flags;
1241 	} else {
1242 		cpumask_set_cpu(cpu, sched_group_span(sg));
1243 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1244 	}
1245 
1246 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1247 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1248 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1249 
1250 	return sg;
1251 }
1252 
1253 /*
1254  * build_sched_groups will build a circular linked list of the groups
1255  * covered by the given span, will set each group's ->cpumask correctly,
1256  * and will initialize their ->sgc.
1257  *
1258  * Assumes the sched_domain tree is fully constructed
1259  */
1260 static int
build_sched_groups(struct sched_domain * sd,int cpu)1261 build_sched_groups(struct sched_domain *sd, int cpu)
1262 {
1263 	struct sched_group *first = NULL, *last = NULL;
1264 	struct sd_data *sdd = sd->private;
1265 	const struct cpumask *span = sched_domain_span(sd);
1266 	struct cpumask *covered;
1267 	int i;
1268 
1269 	lockdep_assert_held(&sched_domains_mutex);
1270 	covered = sched_domains_tmpmask;
1271 
1272 	cpumask_clear(covered);
1273 
1274 	for_each_cpu_wrap(i, span, cpu) {
1275 		struct sched_group *sg;
1276 
1277 		if (cpumask_test_cpu(i, covered))
1278 			continue;
1279 
1280 		sg = get_group(i, sdd);
1281 
1282 		cpumask_or(covered, covered, sched_group_span(sg));
1283 
1284 		if (!first)
1285 			first = sg;
1286 		if (last)
1287 			last->next = sg;
1288 		last = sg;
1289 	}
1290 	last->next = first;
1291 	sd->groups = first;
1292 
1293 	return 0;
1294 }
1295 
1296 /*
1297  * Initialize sched groups cpu_capacity.
1298  *
1299  * cpu_capacity indicates the capacity of sched group, which is used while
1300  * distributing the load between different sched groups in a sched domain.
1301  * Typically cpu_capacity for all the groups in a sched domain will be same
1302  * unless there are asymmetries in the topology. If there are asymmetries,
1303  * group having more cpu_capacity will pickup more load compared to the
1304  * group having less cpu_capacity.
1305  */
init_sched_groups_capacity(int cpu,struct sched_domain * sd)1306 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1307 {
1308 	struct sched_group *sg = sd->groups;
1309 	struct cpumask *mask = sched_domains_tmpmask2;
1310 
1311 	WARN_ON(!sg);
1312 
1313 	do {
1314 		int cpu, cores = 0, max_cpu = -1;
1315 
1316 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1317 
1318 		cpumask_copy(mask, sched_group_span(sg));
1319 		for_each_cpu(cpu, mask) {
1320 			cores++;
1321 #ifdef CONFIG_SCHED_SMT
1322 			cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1323 #endif
1324 		}
1325 		sg->cores = cores;
1326 
1327 		if (!(sd->flags & SD_ASYM_PACKING))
1328 			goto next;
1329 
1330 		for_each_cpu(cpu, sched_group_span(sg)) {
1331 			if (max_cpu < 0)
1332 				max_cpu = cpu;
1333 			else if (sched_asym_prefer(cpu, max_cpu))
1334 				max_cpu = cpu;
1335 		}
1336 		sg->asym_prefer_cpu = max_cpu;
1337 
1338 next:
1339 		sg = sg->next;
1340 	} while (sg != sd->groups);
1341 
1342 	if (cpu != group_balance_cpu(sg))
1343 		return;
1344 
1345 	update_group_capacity(sd, cpu);
1346 }
1347 
1348 /*
1349  * Set of available CPUs grouped by their corresponding capacities
1350  * Each list entry contains a CPU mask reflecting CPUs that share the same
1351  * capacity.
1352  * The lifespan of data is unlimited.
1353  */
1354 LIST_HEAD(asym_cap_list);
1355 
1356 /*
1357  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1358  * Provides sd_flags reflecting the asymmetry scope.
1359  */
1360 static inline int
asym_cpu_capacity_classify(const struct cpumask * sd_span,const struct cpumask * cpu_map)1361 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1362 			   const struct cpumask *cpu_map)
1363 {
1364 	struct asym_cap_data *entry;
1365 	int count = 0, miss = 0;
1366 
1367 	/*
1368 	 * Count how many unique CPU capacities this domain spans across
1369 	 * (compare sched_domain CPUs mask with ones representing  available
1370 	 * CPUs capacities). Take into account CPUs that might be offline:
1371 	 * skip those.
1372 	 */
1373 	list_for_each_entry(entry, &asym_cap_list, link) {
1374 		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1375 			++count;
1376 		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1377 			++miss;
1378 	}
1379 
1380 	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1381 
1382 	/* No asymmetry detected */
1383 	if (count < 2)
1384 		return 0;
1385 	/* Some of the available CPU capacity values have not been detected */
1386 	if (miss)
1387 		return SD_ASYM_CPUCAPACITY;
1388 
1389 	/* Full asymmetry */
1390 	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1391 
1392 }
1393 
free_asym_cap_entry(struct rcu_head * head)1394 static void free_asym_cap_entry(struct rcu_head *head)
1395 {
1396 	struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu);
1397 	kfree(entry);
1398 }
1399 
asym_cpu_capacity_update_data(int cpu)1400 static inline void asym_cpu_capacity_update_data(int cpu)
1401 {
1402 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1403 	struct asym_cap_data *insert_entry = NULL;
1404 	struct asym_cap_data *entry;
1405 
1406 	/*
1407 	 * Search if capacity already exits. If not, track which the entry
1408 	 * where we should insert to keep the list ordered descending.
1409 	 */
1410 	list_for_each_entry(entry, &asym_cap_list, link) {
1411 		if (capacity == entry->capacity)
1412 			goto done;
1413 		else if (!insert_entry && capacity > entry->capacity)
1414 			insert_entry = list_prev_entry(entry, link);
1415 	}
1416 
1417 	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1418 	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1419 		return;
1420 	entry->capacity = capacity;
1421 
1422 	/* If NULL then the new capacity is the smallest, add last. */
1423 	if (!insert_entry)
1424 		list_add_tail_rcu(&entry->link, &asym_cap_list);
1425 	else
1426 		list_add_rcu(&entry->link, &insert_entry->link);
1427 done:
1428 	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1429 }
1430 
1431 /*
1432  * Build-up/update list of CPUs grouped by their capacities
1433  * An update requires explicit request to rebuild sched domains
1434  * with state indicating CPU topology changes.
1435  */
asym_cpu_capacity_scan(void)1436 static void asym_cpu_capacity_scan(void)
1437 {
1438 	struct asym_cap_data *entry, *next;
1439 	int cpu;
1440 
1441 	list_for_each_entry(entry, &asym_cap_list, link)
1442 		cpumask_clear(cpu_capacity_span(entry));
1443 
1444 	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1445 		asym_cpu_capacity_update_data(cpu);
1446 
1447 	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1448 		if (cpumask_empty(cpu_capacity_span(entry))) {
1449 			list_del_rcu(&entry->link);
1450 			call_rcu(&entry->rcu, free_asym_cap_entry);
1451 		}
1452 	}
1453 
1454 	/*
1455 	 * Only one capacity value has been detected i.e. this system is symmetric.
1456 	 * No need to keep this data around.
1457 	 */
1458 	if (list_is_singular(&asym_cap_list)) {
1459 		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1460 		list_del_rcu(&entry->link);
1461 		call_rcu(&entry->rcu, free_asym_cap_entry);
1462 	}
1463 }
1464 
1465 /*
1466  * Initializers for schedule domains
1467  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1468  */
1469 
1470 static int default_relax_domain_level = -1;
1471 int sched_domain_level_max;
1472 
setup_relax_domain_level(char * str)1473 static int __init setup_relax_domain_level(char *str)
1474 {
1475 	if (kstrtoint(str, 0, &default_relax_domain_level))
1476 		pr_warn("Unable to set relax_domain_level\n");
1477 
1478 	return 1;
1479 }
1480 __setup("relax_domain_level=", setup_relax_domain_level);
1481 
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)1482 static void set_domain_attribute(struct sched_domain *sd,
1483 				 struct sched_domain_attr *attr)
1484 {
1485 	int request;
1486 
1487 	if (!attr || attr->relax_domain_level < 0) {
1488 		if (default_relax_domain_level < 0)
1489 			return;
1490 		request = default_relax_domain_level;
1491 	} else
1492 		request = attr->relax_domain_level;
1493 
1494 	if (sd->level >= request) {
1495 		/* Turn off idle balance on this domain: */
1496 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1497 	}
1498 }
1499 
1500 static void __sdt_free(const struct cpumask *cpu_map);
1501 static int __sdt_alloc(const struct cpumask *cpu_map);
1502 
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)1503 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1504 				 const struct cpumask *cpu_map)
1505 {
1506 	switch (what) {
1507 	case sa_rootdomain:
1508 		if (!atomic_read(&d->rd->refcount))
1509 			free_rootdomain(&d->rd->rcu);
1510 		fallthrough;
1511 	case sa_sd:
1512 		free_percpu(d->sd);
1513 		fallthrough;
1514 	case sa_sd_storage:
1515 		__sdt_free(cpu_map);
1516 		fallthrough;
1517 	case sa_none:
1518 		break;
1519 	}
1520 }
1521 
1522 static enum s_alloc
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)1523 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1524 {
1525 	memset(d, 0, sizeof(*d));
1526 
1527 	if (__sdt_alloc(cpu_map))
1528 		return sa_sd_storage;
1529 	d->sd = alloc_percpu(struct sched_domain *);
1530 	if (!d->sd)
1531 		return sa_sd_storage;
1532 	d->rd = alloc_rootdomain();
1533 	if (!d->rd)
1534 		return sa_sd;
1535 
1536 	return sa_rootdomain;
1537 }
1538 
1539 /*
1540  * NULL the sd_data elements we've used to build the sched_domain and
1541  * sched_group structure so that the subsequent __free_domain_allocs()
1542  * will not free the data we're using.
1543  */
claim_allocations(int cpu,struct sched_domain * sd)1544 static void claim_allocations(int cpu, struct sched_domain *sd)
1545 {
1546 	struct sd_data *sdd = sd->private;
1547 
1548 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1549 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1550 
1551 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1552 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1553 
1554 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1555 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1556 
1557 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1558 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1559 }
1560 
1561 #ifdef CONFIG_NUMA
1562 enum numa_topology_type sched_numa_topology_type;
1563 
1564 static int			sched_domains_numa_levels;
1565 static int			sched_domains_curr_level;
1566 
1567 int				sched_max_numa_distance;
1568 static int			*sched_domains_numa_distance;
1569 static struct cpumask		***sched_domains_numa_masks;
1570 #endif
1571 
1572 /*
1573  * SD_flags allowed in topology descriptions.
1574  *
1575  * These flags are purely descriptive of the topology and do not prescribe
1576  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1577  * function. For details, see include/linux/sched/sd_flags.h.
1578  *
1579  *   SD_SHARE_CPUCAPACITY
1580  *   SD_SHARE_LLC
1581  *   SD_CLUSTER
1582  *   SD_NUMA
1583  *
1584  * Odd one out, which beside describing the topology has a quirk also
1585  * prescribes the desired behaviour that goes along with it:
1586  *
1587  *   SD_ASYM_PACKING        - describes SMT quirks
1588  */
1589 #define TOPOLOGY_SD_FLAGS		\
1590 	(SD_SHARE_CPUCAPACITY	|	\
1591 	 SD_CLUSTER		|	\
1592 	 SD_SHARE_LLC		|	\
1593 	 SD_NUMA		|	\
1594 	 SD_ASYM_PACKING)
1595 
1596 static struct sched_domain *
sd_init(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain * child,int cpu)1597 sd_init(struct sched_domain_topology_level *tl,
1598 	const struct cpumask *cpu_map,
1599 	struct sched_domain *child, int cpu)
1600 {
1601 	struct sd_data *sdd = &tl->data;
1602 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1603 	int sd_id, sd_weight, sd_flags = 0;
1604 	struct cpumask *sd_span;
1605 
1606 #ifdef CONFIG_NUMA
1607 	/*
1608 	 * Ugly hack to pass state to sd_numa_mask()...
1609 	 */
1610 	sched_domains_curr_level = tl->numa_level;
1611 #endif
1612 
1613 	sd_weight = cpumask_weight(tl->mask(cpu));
1614 
1615 	if (tl->sd_flags)
1616 		sd_flags = (*tl->sd_flags)();
1617 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1618 			"wrong sd_flags in topology description\n"))
1619 		sd_flags &= TOPOLOGY_SD_FLAGS;
1620 
1621 	*sd = (struct sched_domain){
1622 		.min_interval		= sd_weight,
1623 		.max_interval		= 2*sd_weight,
1624 		.busy_factor		= 16,
1625 		.imbalance_pct		= 117,
1626 
1627 		.cache_nice_tries	= 0,
1628 
1629 		.flags			= 1*SD_BALANCE_NEWIDLE
1630 					| 1*SD_BALANCE_EXEC
1631 					| 1*SD_BALANCE_FORK
1632 					| 0*SD_BALANCE_WAKE
1633 					| 1*SD_WAKE_AFFINE
1634 					| 0*SD_SHARE_CPUCAPACITY
1635 					| 0*SD_SHARE_LLC
1636 					| 0*SD_SERIALIZE
1637 					| 1*SD_PREFER_SIBLING
1638 					| 0*SD_NUMA
1639 					| sd_flags
1640 					,
1641 
1642 		.last_balance		= jiffies,
1643 		.balance_interval	= sd_weight,
1644 		.max_newidle_lb_cost	= 0,
1645 		.last_decay_max_lb_cost	= jiffies,
1646 		.child			= child,
1647 #ifdef CONFIG_SCHED_DEBUG
1648 		.name			= tl->name,
1649 #endif
1650 	};
1651 
1652 	sd_span = sched_domain_span(sd);
1653 	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1654 	sd_id = cpumask_first(sd_span);
1655 
1656 	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1657 
1658 	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1659 		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1660 		  "CPU capacity asymmetry not supported on SMT\n");
1661 
1662 	/*
1663 	 * Convert topological properties into behaviour.
1664 	 */
1665 	/* Don't attempt to spread across CPUs of different capacities. */
1666 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1667 		sd->child->flags &= ~SD_PREFER_SIBLING;
1668 
1669 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1670 		sd->imbalance_pct = 110;
1671 
1672 	} else if (sd->flags & SD_SHARE_LLC) {
1673 		sd->imbalance_pct = 117;
1674 		sd->cache_nice_tries = 1;
1675 
1676 #ifdef CONFIG_NUMA
1677 	} else if (sd->flags & SD_NUMA) {
1678 		sd->cache_nice_tries = 2;
1679 
1680 		sd->flags &= ~SD_PREFER_SIBLING;
1681 		sd->flags |= SD_SERIALIZE;
1682 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1683 			sd->flags &= ~(SD_BALANCE_EXEC |
1684 				       SD_BALANCE_FORK |
1685 				       SD_WAKE_AFFINE);
1686 		}
1687 
1688 #endif
1689 	} else {
1690 		sd->cache_nice_tries = 1;
1691 	}
1692 
1693 	/*
1694 	 * For all levels sharing cache; connect a sched_domain_shared
1695 	 * instance.
1696 	 */
1697 	if (sd->flags & SD_SHARE_LLC) {
1698 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1699 		atomic_inc(&sd->shared->ref);
1700 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1701 	}
1702 
1703 	sd->private = sdd;
1704 
1705 	return sd;
1706 }
1707 
1708 /*
1709  * Topology list, bottom-up.
1710  */
1711 static struct sched_domain_topology_level default_topology[] = {
1712 #ifdef CONFIG_SCHED_SMT
1713 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1714 #endif
1715 
1716 #ifdef CONFIG_SCHED_CLUSTER
1717 	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1718 #endif
1719 
1720 #ifdef CONFIG_SCHED_MC
1721 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1722 #endif
1723 	{ cpu_cpu_mask, SD_INIT_NAME(PKG) },
1724 	{ NULL, },
1725 };
1726 
1727 static struct sched_domain_topology_level *sched_domain_topology =
1728 	default_topology;
1729 static struct sched_domain_topology_level *sched_domain_topology_saved;
1730 
1731 #define for_each_sd_topology(tl)			\
1732 	for (tl = sched_domain_topology; tl->mask; tl++)
1733 
set_sched_topology(struct sched_domain_topology_level * tl)1734 void __init set_sched_topology(struct sched_domain_topology_level *tl)
1735 {
1736 	if (WARN_ON_ONCE(sched_smp_initialized))
1737 		return;
1738 
1739 	sched_domain_topology = tl;
1740 	sched_domain_topology_saved = NULL;
1741 }
1742 
1743 #ifdef CONFIG_NUMA
1744 
sd_numa_mask(int cpu)1745 static const struct cpumask *sd_numa_mask(int cpu)
1746 {
1747 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1748 }
1749 
sched_numa_warn(const char * str)1750 static void sched_numa_warn(const char *str)
1751 {
1752 	static int done = false;
1753 	int i,j;
1754 
1755 	if (done)
1756 		return;
1757 
1758 	done = true;
1759 
1760 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1761 
1762 	for (i = 0; i < nr_node_ids; i++) {
1763 		printk(KERN_WARNING "  ");
1764 		for (j = 0; j < nr_node_ids; j++) {
1765 			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1766 				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1767 			else
1768 				printk(KERN_CONT " %02d  ", node_distance(i,j));
1769 		}
1770 		printk(KERN_CONT "\n");
1771 	}
1772 	printk(KERN_WARNING "\n");
1773 }
1774 
find_numa_distance(int distance)1775 bool find_numa_distance(int distance)
1776 {
1777 	bool found = false;
1778 	int i, *distances;
1779 
1780 	if (distance == node_distance(0, 0))
1781 		return true;
1782 
1783 	rcu_read_lock();
1784 	distances = rcu_dereference(sched_domains_numa_distance);
1785 	if (!distances)
1786 		goto unlock;
1787 	for (i = 0; i < sched_domains_numa_levels; i++) {
1788 		if (distances[i] == distance) {
1789 			found = true;
1790 			break;
1791 		}
1792 	}
1793 unlock:
1794 	rcu_read_unlock();
1795 
1796 	return found;
1797 }
1798 
1799 #define for_each_cpu_node_but(n, nbut)		\
1800 	for_each_node_state(n, N_CPU)		\
1801 		if (n == nbut)			\
1802 			continue;		\
1803 		else
1804 
1805 /*
1806  * A system can have three types of NUMA topology:
1807  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1808  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1809  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1810  *
1811  * The difference between a glueless mesh topology and a backplane
1812  * topology lies in whether communication between not directly
1813  * connected nodes goes through intermediary nodes (where programs
1814  * could run), or through backplane controllers. This affects
1815  * placement of programs.
1816  *
1817  * The type of topology can be discerned with the following tests:
1818  * - If the maximum distance between any nodes is 1 hop, the system
1819  *   is directly connected.
1820  * - If for two nodes A and B, located N > 1 hops away from each other,
1821  *   there is an intermediary node C, which is < N hops away from both
1822  *   nodes A and B, the system is a glueless mesh.
1823  */
init_numa_topology_type(int offline_node)1824 static void init_numa_topology_type(int offline_node)
1825 {
1826 	int a, b, c, n;
1827 
1828 	n = sched_max_numa_distance;
1829 
1830 	if (sched_domains_numa_levels <= 2) {
1831 		sched_numa_topology_type = NUMA_DIRECT;
1832 		return;
1833 	}
1834 
1835 	for_each_cpu_node_but(a, offline_node) {
1836 		for_each_cpu_node_but(b, offline_node) {
1837 			/* Find two nodes furthest removed from each other. */
1838 			if (node_distance(a, b) < n)
1839 				continue;
1840 
1841 			/* Is there an intermediary node between a and b? */
1842 			for_each_cpu_node_but(c, offline_node) {
1843 				if (node_distance(a, c) < n &&
1844 				    node_distance(b, c) < n) {
1845 					sched_numa_topology_type =
1846 							NUMA_GLUELESS_MESH;
1847 					return;
1848 				}
1849 			}
1850 
1851 			sched_numa_topology_type = NUMA_BACKPLANE;
1852 			return;
1853 		}
1854 	}
1855 
1856 	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1857 	sched_numa_topology_type = NUMA_DIRECT;
1858 }
1859 
1860 
1861 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1862 
sched_init_numa(int offline_node)1863 void sched_init_numa(int offline_node)
1864 {
1865 	struct sched_domain_topology_level *tl;
1866 	unsigned long *distance_map;
1867 	int nr_levels = 0;
1868 	int i, j;
1869 	int *distances;
1870 	struct cpumask ***masks;
1871 
1872 	/*
1873 	 * O(nr_nodes^2) de-duplicating selection sort -- in order to find the
1874 	 * unique distances in the node_distance() table.
1875 	 */
1876 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1877 	if (!distance_map)
1878 		return;
1879 
1880 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1881 	for_each_cpu_node_but(i, offline_node) {
1882 		for_each_cpu_node_but(j, offline_node) {
1883 			int distance = node_distance(i, j);
1884 
1885 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1886 				sched_numa_warn("Invalid distance value range");
1887 				bitmap_free(distance_map);
1888 				return;
1889 			}
1890 
1891 			bitmap_set(distance_map, distance, 1);
1892 		}
1893 	}
1894 	/*
1895 	 * We can now figure out how many unique distance values there are and
1896 	 * allocate memory accordingly.
1897 	 */
1898 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1899 
1900 	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1901 	if (!distances) {
1902 		bitmap_free(distance_map);
1903 		return;
1904 	}
1905 
1906 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1907 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1908 		distances[i] = j;
1909 	}
1910 	rcu_assign_pointer(sched_domains_numa_distance, distances);
1911 
1912 	bitmap_free(distance_map);
1913 
1914 	/*
1915 	 * 'nr_levels' contains the number of unique distances
1916 	 *
1917 	 * The sched_domains_numa_distance[] array includes the actual distance
1918 	 * numbers.
1919 	 */
1920 
1921 	/*
1922 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1923 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1924 	 * the array will contain less then 'nr_levels' members. This could be
1925 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1926 	 * in other functions.
1927 	 *
1928 	 * We reset it to 'nr_levels' at the end of this function.
1929 	 */
1930 	sched_domains_numa_levels = 0;
1931 
1932 	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1933 	if (!masks)
1934 		return;
1935 
1936 	/*
1937 	 * Now for each level, construct a mask per node which contains all
1938 	 * CPUs of nodes that are that many hops away from us.
1939 	 */
1940 	for (i = 0; i < nr_levels; i++) {
1941 		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1942 		if (!masks[i])
1943 			return;
1944 
1945 		for_each_cpu_node_but(j, offline_node) {
1946 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1947 			int k;
1948 
1949 			if (!mask)
1950 				return;
1951 
1952 			masks[i][j] = mask;
1953 
1954 			for_each_cpu_node_but(k, offline_node) {
1955 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1956 					sched_numa_warn("Node-distance not symmetric");
1957 
1958 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1959 					continue;
1960 
1961 				cpumask_or(mask, mask, cpumask_of_node(k));
1962 			}
1963 		}
1964 	}
1965 	rcu_assign_pointer(sched_domains_numa_masks, masks);
1966 
1967 	/* Compute default topology size */
1968 	for (i = 0; sched_domain_topology[i].mask; i++);
1969 
1970 	tl = kzalloc((i + nr_levels + 1) *
1971 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1972 	if (!tl)
1973 		return;
1974 
1975 	/*
1976 	 * Copy the default topology bits..
1977 	 */
1978 	for (i = 0; sched_domain_topology[i].mask; i++)
1979 		tl[i] = sched_domain_topology[i];
1980 
1981 	/*
1982 	 * Add the NUMA identity distance, aka single NODE.
1983 	 */
1984 	tl[i++] = (struct sched_domain_topology_level){
1985 		.mask = sd_numa_mask,
1986 		.numa_level = 0,
1987 		SD_INIT_NAME(NODE)
1988 	};
1989 
1990 	/*
1991 	 * .. and append 'j' levels of NUMA goodness.
1992 	 */
1993 	for (j = 1; j < nr_levels; i++, j++) {
1994 		tl[i] = (struct sched_domain_topology_level){
1995 			.mask = sd_numa_mask,
1996 			.sd_flags = cpu_numa_flags,
1997 			.flags = SDTL_OVERLAP,
1998 			.numa_level = j,
1999 			SD_INIT_NAME(NUMA)
2000 		};
2001 	}
2002 
2003 	sched_domain_topology_saved = sched_domain_topology;
2004 	sched_domain_topology = tl;
2005 
2006 	sched_domains_numa_levels = nr_levels;
2007 	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
2008 
2009 	init_numa_topology_type(offline_node);
2010 }
2011 
2012 
sched_reset_numa(void)2013 static void sched_reset_numa(void)
2014 {
2015 	int nr_levels, *distances;
2016 	struct cpumask ***masks;
2017 
2018 	nr_levels = sched_domains_numa_levels;
2019 	sched_domains_numa_levels = 0;
2020 	sched_max_numa_distance = 0;
2021 	sched_numa_topology_type = NUMA_DIRECT;
2022 	distances = sched_domains_numa_distance;
2023 	rcu_assign_pointer(sched_domains_numa_distance, NULL);
2024 	masks = sched_domains_numa_masks;
2025 	rcu_assign_pointer(sched_domains_numa_masks, NULL);
2026 	if (distances || masks) {
2027 		int i, j;
2028 
2029 		synchronize_rcu();
2030 		kfree(distances);
2031 		for (i = 0; i < nr_levels && masks; i++) {
2032 			if (!masks[i])
2033 				continue;
2034 			for_each_node(j)
2035 				kfree(masks[i][j]);
2036 			kfree(masks[i]);
2037 		}
2038 		kfree(masks);
2039 	}
2040 	if (sched_domain_topology_saved) {
2041 		kfree(sched_domain_topology);
2042 		sched_domain_topology = sched_domain_topology_saved;
2043 		sched_domain_topology_saved = NULL;
2044 	}
2045 }
2046 
2047 /*
2048  * Call with hotplug lock held
2049  */
sched_update_numa(int cpu,bool online)2050 void sched_update_numa(int cpu, bool online)
2051 {
2052 	int node;
2053 
2054 	node = cpu_to_node(cpu);
2055 	/*
2056 	 * Scheduler NUMA topology is updated when the first CPU of a
2057 	 * node is onlined or the last CPU of a node is offlined.
2058 	 */
2059 	if (cpumask_weight(cpumask_of_node(node)) != 1)
2060 		return;
2061 
2062 	sched_reset_numa();
2063 	sched_init_numa(online ? NUMA_NO_NODE : node);
2064 }
2065 
sched_domains_numa_masks_set(unsigned int cpu)2066 void sched_domains_numa_masks_set(unsigned int cpu)
2067 {
2068 	int node = cpu_to_node(cpu);
2069 	int i, j;
2070 
2071 	for (i = 0; i < sched_domains_numa_levels; i++) {
2072 		for (j = 0; j < nr_node_ids; j++) {
2073 			if (!node_state(j, N_CPU))
2074 				continue;
2075 
2076 			/* Set ourselves in the remote node's masks */
2077 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2078 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2079 		}
2080 	}
2081 }
2082 
sched_domains_numa_masks_clear(unsigned int cpu)2083 void sched_domains_numa_masks_clear(unsigned int cpu)
2084 {
2085 	int i, j;
2086 
2087 	for (i = 0; i < sched_domains_numa_levels; i++) {
2088 		for (j = 0; j < nr_node_ids; j++) {
2089 			if (sched_domains_numa_masks[i][j])
2090 				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2091 		}
2092 	}
2093 }
2094 
2095 /*
2096  * sched_numa_find_closest() - given the NUMA topology, find the cpu
2097  *                             closest to @cpu from @cpumask.
2098  * cpumask: cpumask to find a cpu from
2099  * cpu: cpu to be close to
2100  *
2101  * returns: cpu, or nr_cpu_ids when nothing found.
2102  */
sched_numa_find_closest(const struct cpumask * cpus,int cpu)2103 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2104 {
2105 	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2106 	struct cpumask ***masks;
2107 
2108 	rcu_read_lock();
2109 	masks = rcu_dereference(sched_domains_numa_masks);
2110 	if (!masks)
2111 		goto unlock;
2112 	for (i = 0; i < sched_domains_numa_levels; i++) {
2113 		if (!masks[i][j])
2114 			break;
2115 		cpu = cpumask_any_and(cpus, masks[i][j]);
2116 		if (cpu < nr_cpu_ids) {
2117 			found = cpu;
2118 			break;
2119 		}
2120 	}
2121 unlock:
2122 	rcu_read_unlock();
2123 
2124 	return found;
2125 }
2126 
2127 struct __cmp_key {
2128 	const struct cpumask *cpus;
2129 	struct cpumask ***masks;
2130 	int node;
2131 	int cpu;
2132 	int w;
2133 };
2134 
hop_cmp(const void * a,const void * b)2135 static int hop_cmp(const void *a, const void *b)
2136 {
2137 	struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2138 	struct __cmp_key *k = (struct __cmp_key *)a;
2139 
2140 	if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2141 		return 1;
2142 
2143 	if (b == k->masks) {
2144 		k->w = 0;
2145 		return 0;
2146 	}
2147 
2148 	prev_hop = *((struct cpumask ***)b - 1);
2149 	k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2150 	if (k->w <= k->cpu)
2151 		return 0;
2152 
2153 	return -1;
2154 }
2155 
2156 /**
2157  * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2158  *                             from @cpus to @cpu, taking into account distance
2159  *                             from a given @node.
2160  * @cpus: cpumask to find a cpu from
2161  * @cpu: CPU to start searching
2162  * @node: NUMA node to order CPUs by distance
2163  *
2164  * Return: cpu, or nr_cpu_ids when nothing found.
2165  */
sched_numa_find_nth_cpu(const struct cpumask * cpus,int cpu,int node)2166 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2167 {
2168 	struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2169 	struct cpumask ***hop_masks;
2170 	int hop, ret = nr_cpu_ids;
2171 
2172 	if (node == NUMA_NO_NODE)
2173 		return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2174 
2175 	rcu_read_lock();
2176 
2177 	/* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2178 	node = numa_nearest_node(node, N_CPU);
2179 	k.node = node;
2180 
2181 	k.masks = rcu_dereference(sched_domains_numa_masks);
2182 	if (!k.masks)
2183 		goto unlock;
2184 
2185 	hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2186 	if (!hop_masks)
2187 		goto unlock;
2188 	hop = hop_masks	- k.masks;
2189 
2190 	ret = hop ?
2191 		cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2192 		cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2193 unlock:
2194 	rcu_read_unlock();
2195 	return ret;
2196 }
2197 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2198 
2199 /**
2200  * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2201  *                         @node
2202  * @node: The node to count hops from.
2203  * @hops: Include CPUs up to that many hops away. 0 means local node.
2204  *
2205  * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2206  * @node, an error value otherwise.
2207  *
2208  * Requires rcu_lock to be held. Returned cpumask is only valid within that
2209  * read-side section, copy it if required beyond that.
2210  *
2211  * Note that not all hops are equal in distance; see sched_init_numa() for how
2212  * distances and masks are handled.
2213  * Also note that this is a reflection of sched_domains_numa_masks, which may change
2214  * during the lifetime of the system (offline nodes are taken out of the masks).
2215  */
sched_numa_hop_mask(unsigned int node,unsigned int hops)2216 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2217 {
2218 	struct cpumask ***masks;
2219 
2220 	if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2221 		return ERR_PTR(-EINVAL);
2222 
2223 	masks = rcu_dereference(sched_domains_numa_masks);
2224 	if (!masks)
2225 		return ERR_PTR(-EBUSY);
2226 
2227 	return masks[hops][node];
2228 }
2229 EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2230 
2231 #endif /* CONFIG_NUMA */
2232 
__sdt_alloc(const struct cpumask * cpu_map)2233 static int __sdt_alloc(const struct cpumask *cpu_map)
2234 {
2235 	struct sched_domain_topology_level *tl;
2236 	int j;
2237 
2238 	for_each_sd_topology(tl) {
2239 		struct sd_data *sdd = &tl->data;
2240 
2241 		sdd->sd = alloc_percpu(struct sched_domain *);
2242 		if (!sdd->sd)
2243 			return -ENOMEM;
2244 
2245 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2246 		if (!sdd->sds)
2247 			return -ENOMEM;
2248 
2249 		sdd->sg = alloc_percpu(struct sched_group *);
2250 		if (!sdd->sg)
2251 			return -ENOMEM;
2252 
2253 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2254 		if (!sdd->sgc)
2255 			return -ENOMEM;
2256 
2257 		for_each_cpu(j, cpu_map) {
2258 			struct sched_domain *sd;
2259 			struct sched_domain_shared *sds;
2260 			struct sched_group *sg;
2261 			struct sched_group_capacity *sgc;
2262 
2263 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2264 					GFP_KERNEL, cpu_to_node(j));
2265 			if (!sd)
2266 				return -ENOMEM;
2267 
2268 			*per_cpu_ptr(sdd->sd, j) = sd;
2269 
2270 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2271 					GFP_KERNEL, cpu_to_node(j));
2272 			if (!sds)
2273 				return -ENOMEM;
2274 
2275 			*per_cpu_ptr(sdd->sds, j) = sds;
2276 
2277 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2278 					GFP_KERNEL, cpu_to_node(j));
2279 			if (!sg)
2280 				return -ENOMEM;
2281 
2282 			sg->next = sg;
2283 
2284 			*per_cpu_ptr(sdd->sg, j) = sg;
2285 
2286 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2287 					GFP_KERNEL, cpu_to_node(j));
2288 			if (!sgc)
2289 				return -ENOMEM;
2290 
2291 #ifdef CONFIG_SCHED_DEBUG
2292 			sgc->id = j;
2293 #endif
2294 
2295 			*per_cpu_ptr(sdd->sgc, j) = sgc;
2296 		}
2297 	}
2298 
2299 	return 0;
2300 }
2301 
__sdt_free(const struct cpumask * cpu_map)2302 static void __sdt_free(const struct cpumask *cpu_map)
2303 {
2304 	struct sched_domain_topology_level *tl;
2305 	int j;
2306 
2307 	for_each_sd_topology(tl) {
2308 		struct sd_data *sdd = &tl->data;
2309 
2310 		for_each_cpu(j, cpu_map) {
2311 			struct sched_domain *sd;
2312 
2313 			if (sdd->sd) {
2314 				sd = *per_cpu_ptr(sdd->sd, j);
2315 				if (sd && (sd->flags & SD_OVERLAP))
2316 					free_sched_groups(sd->groups, 0);
2317 				kfree(*per_cpu_ptr(sdd->sd, j));
2318 			}
2319 
2320 			if (sdd->sds)
2321 				kfree(*per_cpu_ptr(sdd->sds, j));
2322 			if (sdd->sg)
2323 				kfree(*per_cpu_ptr(sdd->sg, j));
2324 			if (sdd->sgc)
2325 				kfree(*per_cpu_ptr(sdd->sgc, j));
2326 		}
2327 		free_percpu(sdd->sd);
2328 		sdd->sd = NULL;
2329 		free_percpu(sdd->sds);
2330 		sdd->sds = NULL;
2331 		free_percpu(sdd->sg);
2332 		sdd->sg = NULL;
2333 		free_percpu(sdd->sgc);
2334 		sdd->sgc = NULL;
2335 	}
2336 }
2337 
build_sched_domain(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int cpu)2338 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2339 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2340 		struct sched_domain *child, int cpu)
2341 {
2342 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2343 
2344 	if (child) {
2345 		sd->level = child->level + 1;
2346 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2347 		child->parent = sd;
2348 
2349 		if (!cpumask_subset(sched_domain_span(child),
2350 				    sched_domain_span(sd))) {
2351 			pr_err("BUG: arch topology borken\n");
2352 #ifdef CONFIG_SCHED_DEBUG
2353 			pr_err("     the %s domain not a subset of the %s domain\n",
2354 					child->name, sd->name);
2355 #endif
2356 			/* Fixup, ensure @sd has at least @child CPUs. */
2357 			cpumask_or(sched_domain_span(sd),
2358 				   sched_domain_span(sd),
2359 				   sched_domain_span(child));
2360 		}
2361 
2362 	}
2363 	set_domain_attribute(sd, attr);
2364 
2365 	return sd;
2366 }
2367 
2368 /*
2369  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2370  * any two given CPUs at this (non-NUMA) topology level.
2371  */
topology_span_sane(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,int cpu)2372 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2373 			      const struct cpumask *cpu_map, int cpu)
2374 {
2375 	int i = cpu + 1;
2376 
2377 	/* NUMA levels are allowed to overlap */
2378 	if (tl->flags & SDTL_OVERLAP)
2379 		return true;
2380 
2381 	/*
2382 	 * Non-NUMA levels cannot partially overlap - they must be either
2383 	 * completely equal or completely disjoint. Otherwise we can end up
2384 	 * breaking the sched_group lists - i.e. a later get_group() pass
2385 	 * breaks the linking done for an earlier span.
2386 	 */
2387 	for_each_cpu_from(i, cpu_map) {
2388 		/*
2389 		 * We should 'and' all those masks with 'cpu_map' to exactly
2390 		 * match the topology we're about to build, but that can only
2391 		 * remove CPUs, which only lessens our ability to detect
2392 		 * overlaps
2393 		 */
2394 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2395 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2396 			return false;
2397 	}
2398 
2399 	return true;
2400 }
2401 
2402 /*
2403  * Build sched domains for a given set of CPUs and attach the sched domains
2404  * to the individual CPUs
2405  */
2406 static int
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)2407 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2408 {
2409 	enum s_alloc alloc_state = sa_none;
2410 	struct sched_domain *sd;
2411 	struct s_data d;
2412 	struct rq *rq = NULL;
2413 	int i, ret = -ENOMEM;
2414 	bool has_asym = false;
2415 	bool has_cluster = false;
2416 
2417 	if (WARN_ON(cpumask_empty(cpu_map)))
2418 		goto error;
2419 
2420 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2421 	if (alloc_state != sa_rootdomain)
2422 		goto error;
2423 
2424 	/* Set up domains for CPUs specified by the cpu_map: */
2425 	for_each_cpu(i, cpu_map) {
2426 		struct sched_domain_topology_level *tl;
2427 
2428 		sd = NULL;
2429 		for_each_sd_topology(tl) {
2430 
2431 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2432 				goto error;
2433 
2434 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2435 
2436 			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2437 
2438 			if (tl == sched_domain_topology)
2439 				*per_cpu_ptr(d.sd, i) = sd;
2440 			if (tl->flags & SDTL_OVERLAP)
2441 				sd->flags |= SD_OVERLAP;
2442 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2443 				break;
2444 		}
2445 	}
2446 
2447 	/* Build the groups for the domains */
2448 	for_each_cpu(i, cpu_map) {
2449 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2450 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2451 			if (sd->flags & SD_OVERLAP) {
2452 				if (build_overlap_sched_groups(sd, i))
2453 					goto error;
2454 			} else {
2455 				if (build_sched_groups(sd, i))
2456 					goto error;
2457 			}
2458 		}
2459 	}
2460 
2461 	/*
2462 	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2463 	 * imbalanced.
2464 	 */
2465 	for_each_cpu(i, cpu_map) {
2466 		unsigned int imb = 0;
2467 		unsigned int imb_span = 1;
2468 
2469 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2470 			struct sched_domain *child = sd->child;
2471 
2472 			if (!(sd->flags & SD_SHARE_LLC) && child &&
2473 			    (child->flags & SD_SHARE_LLC)) {
2474 				struct sched_domain __rcu *top_p;
2475 				unsigned int nr_llcs;
2476 
2477 				/*
2478 				 * For a single LLC per node, allow an
2479 				 * imbalance up to 12.5% of the node. This is
2480 				 * arbitrary cutoff based two factors -- SMT and
2481 				 * memory channels. For SMT-2, the intent is to
2482 				 * avoid premature sharing of HT resources but
2483 				 * SMT-4 or SMT-8 *may* benefit from a different
2484 				 * cutoff. For memory channels, this is a very
2485 				 * rough estimate of how many channels may be
2486 				 * active and is based on recent CPUs with
2487 				 * many cores.
2488 				 *
2489 				 * For multiple LLCs, allow an imbalance
2490 				 * until multiple tasks would share an LLC
2491 				 * on one node while LLCs on another node
2492 				 * remain idle. This assumes that there are
2493 				 * enough logical CPUs per LLC to avoid SMT
2494 				 * factors and that there is a correlation
2495 				 * between LLCs and memory channels.
2496 				 */
2497 				nr_llcs = sd->span_weight / child->span_weight;
2498 				if (nr_llcs == 1)
2499 					imb = sd->span_weight >> 3;
2500 				else
2501 					imb = nr_llcs;
2502 				imb = max(1U, imb);
2503 				sd->imb_numa_nr = imb;
2504 
2505 				/* Set span based on the first NUMA domain. */
2506 				top_p = sd->parent;
2507 				while (top_p && !(top_p->flags & SD_NUMA)) {
2508 					top_p = top_p->parent;
2509 				}
2510 				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2511 			} else {
2512 				int factor = max(1U, (sd->span_weight / imb_span));
2513 
2514 				sd->imb_numa_nr = imb * factor;
2515 			}
2516 		}
2517 	}
2518 
2519 	/* Calculate CPU capacity for physical packages and nodes */
2520 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2521 		if (!cpumask_test_cpu(i, cpu_map))
2522 			continue;
2523 
2524 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2525 			claim_allocations(i, sd);
2526 			init_sched_groups_capacity(i, sd);
2527 		}
2528 	}
2529 
2530 	/* Attach the domains */
2531 	rcu_read_lock();
2532 	for_each_cpu(i, cpu_map) {
2533 		rq = cpu_rq(i);
2534 		sd = *per_cpu_ptr(d.sd, i);
2535 
2536 		cpu_attach_domain(sd, d.rd, i);
2537 
2538 		if (lowest_flag_domain(i, SD_CLUSTER))
2539 			has_cluster = true;
2540 	}
2541 	rcu_read_unlock();
2542 
2543 	if (has_asym)
2544 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2545 
2546 	if (has_cluster)
2547 		static_branch_inc_cpuslocked(&sched_cluster_active);
2548 
2549 	if (rq && sched_debug_verbose)
2550 		pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map));
2551 	trace_android_vh_build_sched_domains(has_asym);
2552 
2553 	ret = 0;
2554 error:
2555 	__free_domain_allocs(&d, alloc_state, cpu_map);
2556 
2557 	return ret;
2558 }
2559 
2560 /* Current sched domains: */
2561 static cpumask_var_t			*doms_cur;
2562 
2563 /* Number of sched domains in 'doms_cur': */
2564 static int				ndoms_cur;
2565 
2566 /* Attributes of custom domains in 'doms_cur' */
2567 static struct sched_domain_attr		*dattr_cur;
2568 
2569 /*
2570  * Special case: If a kmalloc() of a doms_cur partition (array of
2571  * cpumask) fails, then fallback to a single sched domain,
2572  * as determined by the single cpumask fallback_doms.
2573  */
2574 static cpumask_var_t			fallback_doms;
2575 
2576 /*
2577  * arch_update_cpu_topology lets virtualized architectures update the
2578  * CPU core maps. It is supposed to return 1 if the topology changed
2579  * or 0 if it stayed the same.
2580  */
arch_update_cpu_topology(void)2581 int __weak arch_update_cpu_topology(void)
2582 {
2583 	return 0;
2584 }
2585 
alloc_sched_domains(unsigned int ndoms)2586 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2587 {
2588 	int i;
2589 	cpumask_var_t *doms;
2590 
2591 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2592 	if (!doms)
2593 		return NULL;
2594 	for (i = 0; i < ndoms; i++) {
2595 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2596 			free_sched_domains(doms, i);
2597 			return NULL;
2598 		}
2599 	}
2600 	return doms;
2601 }
2602 
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)2603 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2604 {
2605 	unsigned int i;
2606 	for (i = 0; i < ndoms; i++)
2607 		free_cpumask_var(doms[i]);
2608 	kfree(doms);
2609 }
2610 
2611 /*
2612  * Set up scheduler domains and groups.  For now this just excludes isolated
2613  * CPUs, but could be used to exclude other special cases in the future.
2614  */
sched_init_domains(const struct cpumask * cpu_map)2615 int __init sched_init_domains(const struct cpumask *cpu_map)
2616 {
2617 	int err;
2618 
2619 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2620 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2621 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2622 
2623 	arch_update_cpu_topology();
2624 	asym_cpu_capacity_scan();
2625 	ndoms_cur = 1;
2626 	doms_cur = alloc_sched_domains(ndoms_cur);
2627 	if (!doms_cur)
2628 		doms_cur = &fallback_doms;
2629 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2630 	err = build_sched_domains(doms_cur[0], NULL);
2631 
2632 	return err;
2633 }
2634 
2635 /*
2636  * Detach sched domains from a group of CPUs specified in cpu_map
2637  * These CPUs will now be attached to the NULL domain
2638  */
detach_destroy_domains(const struct cpumask * cpu_map)2639 static void detach_destroy_domains(const struct cpumask *cpu_map)
2640 {
2641 	unsigned int cpu = cpumask_any(cpu_map);
2642 	int i;
2643 
2644 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2645 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2646 
2647 	if (static_branch_unlikely(&sched_cluster_active))
2648 		static_branch_dec_cpuslocked(&sched_cluster_active);
2649 
2650 	rcu_read_lock();
2651 	for_each_cpu(i, cpu_map)
2652 		cpu_attach_domain(NULL, &def_root_domain, i);
2653 	rcu_read_unlock();
2654 }
2655 
2656 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)2657 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2658 			struct sched_domain_attr *new, int idx_new)
2659 {
2660 	struct sched_domain_attr tmp;
2661 
2662 	/* Fast path: */
2663 	if (!new && !cur)
2664 		return 1;
2665 
2666 	tmp = SD_ATTR_INIT;
2667 
2668 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2669 			new ? (new + idx_new) : &tmp,
2670 			sizeof(struct sched_domain_attr));
2671 }
2672 
2673 /*
2674  * Partition sched domains as specified by the 'ndoms_new'
2675  * cpumasks in the array doms_new[] of cpumasks. This compares
2676  * doms_new[] to the current sched domain partitioning, doms_cur[].
2677  * It destroys each deleted domain and builds each new domain.
2678  *
2679  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2680  * The masks don't intersect (don't overlap.) We should setup one
2681  * sched domain for each mask. CPUs not in any of the cpumasks will
2682  * not be load balanced. If the same cpumask appears both in the
2683  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2684  * it as it is.
2685  *
2686  * The passed in 'doms_new' should be allocated using
2687  * alloc_sched_domains.  This routine takes ownership of it and will
2688  * free_sched_domains it when done with it. If the caller failed the
2689  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2690  * and partition_sched_domains() will fallback to the single partition
2691  * 'fallback_doms', it also forces the domains to be rebuilt.
2692  *
2693  * If doms_new == NULL it will be replaced with cpu_online_mask.
2694  * ndoms_new == 0 is a special case for destroying existing domains,
2695  * and it will not create the default domain.
2696  *
2697  * Call with hotplug lock and sched_domains_mutex held
2698  */
partition_sched_domains_locked(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2699 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2700 				    struct sched_domain_attr *dattr_new)
2701 {
2702 	bool __maybe_unused has_eas = false;
2703 	int i, j, n;
2704 	int new_topology;
2705 
2706 	lockdep_assert_held(&sched_domains_mutex);
2707 
2708 	/* Let the architecture update CPU core mappings: */
2709 	new_topology = arch_update_cpu_topology();
2710 	/* Trigger rebuilding CPU capacity asymmetry data */
2711 	if (new_topology)
2712 		asym_cpu_capacity_scan();
2713 
2714 	if (!doms_new) {
2715 		WARN_ON_ONCE(dattr_new);
2716 		n = 0;
2717 		doms_new = alloc_sched_domains(1);
2718 		if (doms_new) {
2719 			n = 1;
2720 			cpumask_and(doms_new[0], cpu_active_mask,
2721 				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2722 		}
2723 	} else {
2724 		n = ndoms_new;
2725 	}
2726 
2727 	/* Destroy deleted domains: */
2728 	for (i = 0; i < ndoms_cur; i++) {
2729 		for (j = 0; j < n && !new_topology; j++) {
2730 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2731 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2732 				struct root_domain *rd;
2733 
2734 				/*
2735 				 * This domain won't be destroyed and as such
2736 				 * its dl_bw->total_bw needs to be cleared.  It
2737 				 * will be recomputed in function
2738 				 * update_tasks_root_domain().
2739 				 */
2740 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2741 				dl_clear_root_domain(rd);
2742 				goto match1;
2743 			}
2744 		}
2745 		/* No match - a current sched domain not in new doms_new[] */
2746 		detach_destroy_domains(doms_cur[i]);
2747 match1:
2748 		;
2749 	}
2750 
2751 	n = ndoms_cur;
2752 	if (!doms_new) {
2753 		n = 0;
2754 		doms_new = &fallback_doms;
2755 		cpumask_and(doms_new[0], cpu_active_mask,
2756 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2757 	}
2758 
2759 	/* Build new domains: */
2760 	for (i = 0; i < ndoms_new; i++) {
2761 		for (j = 0; j < n && !new_topology; j++) {
2762 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2763 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2764 				goto match2;
2765 		}
2766 		/* No match - add a new doms_new */
2767 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2768 match2:
2769 		;
2770 	}
2771 
2772 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2773 	/* Build perf domains: */
2774 	for (i = 0; i < ndoms_new; i++) {
2775 		for (j = 0; j < n && !sched_energy_update; j++) {
2776 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2777 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2778 				has_eas = true;
2779 				goto match3;
2780 			}
2781 		}
2782 		/* No match - add perf domains for a new rd */
2783 		has_eas |= build_perf_domains(doms_new[i]);
2784 match3:
2785 		;
2786 	}
2787 	sched_energy_set(has_eas);
2788 #endif
2789 
2790 	/* Remember the new sched domains: */
2791 	if (doms_cur != &fallback_doms)
2792 		free_sched_domains(doms_cur, ndoms_cur);
2793 
2794 	kfree(dattr_cur);
2795 	doms_cur = doms_new;
2796 	dattr_cur = dattr_new;
2797 	ndoms_cur = ndoms_new;
2798 
2799 	update_sched_domain_debugfs();
2800 }
2801 
2802 /*
2803  * Call with hotplug lock held
2804  */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2805 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2806 			     struct sched_domain_attr *dattr_new)
2807 {
2808 	mutex_lock(&sched_domains_mutex);
2809 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2810 	mutex_unlock(&sched_domains_mutex);
2811 }
2812