• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/kernel/sys.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kmod.h>
18 #include <linux/ksm.h>
19 #include <linux/perf_event.h>
20 #include <linux/resource.h>
21 #include <linux/kernel.h>
22 #include <linux/workqueue.h>
23 #include <linux/capability.h>
24 #include <linux/device.h>
25 #include <linux/key.h>
26 #include <linux/times.h>
27 #include <linux/posix-timers.h>
28 #include <linux/security.h>
29 #include <linux/random.h>
30 #include <linux/suspend.h>
31 #include <linux/tty.h>
32 #include <linux/signal.h>
33 #include <linux/cn_proc.h>
34 #include <linux/getcpu.h>
35 #include <linux/task_io_accounting_ops.h>
36 #include <linux/seccomp.h>
37 #include <linux/cpu.h>
38 #include <linux/personality.h>
39 #include <linux/ptrace.h>
40 #include <linux/fs_struct.h>
41 #include <linux/file.h>
42 #include <linux/mount.h>
43 #include <linux/gfp.h>
44 #include <linux/syscore_ops.h>
45 #include <linux/version.h>
46 #include <linux/ctype.h>
47 #include <linux/syscall_user_dispatch.h>
48 
49 #include <linux/compat.h>
50 #include <linux/syscalls.h>
51 #include <linux/kprobes.h>
52 #include <linux/user_namespace.h>
53 #include <linux/time_namespace.h>
54 #include <linux/binfmts.h>
55 
56 #include <linux/sched.h>
57 #include <linux/sched/autogroup.h>
58 #include <linux/sched/loadavg.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/mm.h>
61 #include <linux/sched/coredump.h>
62 #include <linux/sched/task.h>
63 #include <linux/sched/cputime.h>
64 #include <linux/rcupdate.h>
65 #include <linux/uidgid.h>
66 #include <linux/cred.h>
67 
68 #include <linux/nospec.h>
69 
70 #include <linux/kmsg_dump.h>
71 /* Move somewhere else to avoid recompiling? */
72 #include <generated/utsrelease.h>
73 
74 #include <linux/uaccess.h>
75 #include <asm/io.h>
76 #include <asm/unistd.h>
77 
78 #include "uid16.h"
79 
80 #include <trace/hooks/sys.h>
81 
82 #ifndef SET_UNALIGN_CTL
83 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
84 #endif
85 #ifndef GET_UNALIGN_CTL
86 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
87 #endif
88 #ifndef SET_FPEMU_CTL
89 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
90 #endif
91 #ifndef GET_FPEMU_CTL
92 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
93 #endif
94 #ifndef SET_FPEXC_CTL
95 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
96 #endif
97 #ifndef GET_FPEXC_CTL
98 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
99 #endif
100 #ifndef GET_ENDIAN
101 # define GET_ENDIAN(a, b)	(-EINVAL)
102 #endif
103 #ifndef SET_ENDIAN
104 # define SET_ENDIAN(a, b)	(-EINVAL)
105 #endif
106 #ifndef GET_TSC_CTL
107 # define GET_TSC_CTL(a)		(-EINVAL)
108 #endif
109 #ifndef SET_TSC_CTL
110 # define SET_TSC_CTL(a)		(-EINVAL)
111 #endif
112 #ifndef GET_FP_MODE
113 # define GET_FP_MODE(a)		(-EINVAL)
114 #endif
115 #ifndef SET_FP_MODE
116 # define SET_FP_MODE(a,b)	(-EINVAL)
117 #endif
118 #ifndef SVE_SET_VL
119 # define SVE_SET_VL(a)		(-EINVAL)
120 #endif
121 #ifndef SVE_GET_VL
122 # define SVE_GET_VL()		(-EINVAL)
123 #endif
124 #ifndef SME_SET_VL
125 # define SME_SET_VL(a)		(-EINVAL)
126 #endif
127 #ifndef SME_GET_VL
128 # define SME_GET_VL()		(-EINVAL)
129 #endif
130 #ifndef PAC_RESET_KEYS
131 # define PAC_RESET_KEYS(a, b)	(-EINVAL)
132 #endif
133 #ifndef PAC_SET_ENABLED_KEYS
134 # define PAC_SET_ENABLED_KEYS(a, b, c)	(-EINVAL)
135 #endif
136 #ifndef PAC_GET_ENABLED_KEYS
137 # define PAC_GET_ENABLED_KEYS(a)	(-EINVAL)
138 #endif
139 #ifndef SET_TAGGED_ADDR_CTRL
140 # define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
141 #endif
142 #ifndef GET_TAGGED_ADDR_CTRL
143 # define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
144 #endif
145 #ifndef RISCV_V_SET_CONTROL
146 # define RISCV_V_SET_CONTROL(a)		(-EINVAL)
147 #endif
148 #ifndef RISCV_V_GET_CONTROL
149 # define RISCV_V_GET_CONTROL()		(-EINVAL)
150 #endif
151 #ifndef RISCV_SET_ICACHE_FLUSH_CTX
152 # define RISCV_SET_ICACHE_FLUSH_CTX(a, b)	(-EINVAL)
153 #endif
154 #ifndef PPC_GET_DEXCR_ASPECT
155 # define PPC_GET_DEXCR_ASPECT(a, b)	(-EINVAL)
156 #endif
157 #ifndef PPC_SET_DEXCR_ASPECT
158 # define PPC_SET_DEXCR_ASPECT(a, b, c)	(-EINVAL)
159 #endif
160 
161 /*
162  * this is where the system-wide overflow UID and GID are defined, for
163  * architectures that now have 32-bit UID/GID but didn't in the past
164  */
165 
166 int overflowuid = DEFAULT_OVERFLOWUID;
167 int overflowgid = DEFAULT_OVERFLOWGID;
168 
169 EXPORT_SYMBOL(overflowuid);
170 EXPORT_SYMBOL(overflowgid);
171 
172 /*
173  * the same as above, but for filesystems which can only store a 16-bit
174  * UID and GID. as such, this is needed on all architectures
175  */
176 
177 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
178 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
179 
180 EXPORT_SYMBOL(fs_overflowuid);
181 EXPORT_SYMBOL(fs_overflowgid);
182 
183 /*
184  * Returns true if current's euid is same as p's uid or euid,
185  * or has CAP_SYS_NICE to p's user_ns.
186  *
187  * Called with rcu_read_lock, creds are safe
188  */
set_one_prio_perm(struct task_struct * p)189 static bool set_one_prio_perm(struct task_struct *p)
190 {
191 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
192 
193 	if (uid_eq(pcred->uid,  cred->euid) ||
194 	    uid_eq(pcred->euid, cred->euid))
195 		return true;
196 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
197 		return true;
198 	return false;
199 }
200 
201 /*
202  * set the priority of a task
203  * - the caller must hold the RCU read lock
204  */
set_one_prio(struct task_struct * p,int niceval,int error)205 static int set_one_prio(struct task_struct *p, int niceval, int error)
206 {
207 	int no_nice;
208 
209 	if (!set_one_prio_perm(p)) {
210 		error = -EPERM;
211 		goto out;
212 	}
213 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
214 		error = -EACCES;
215 		goto out;
216 	}
217 	no_nice = security_task_setnice(p, niceval);
218 	if (no_nice) {
219 		error = no_nice;
220 		goto out;
221 	}
222 	if (error == -ESRCH)
223 		error = 0;
224 	set_user_nice(p, niceval);
225 out:
226 	return error;
227 }
228 
SYSCALL_DEFINE3(setpriority,int,which,int,who,int,niceval)229 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
230 {
231 	struct task_struct *g, *p;
232 	struct user_struct *user;
233 	const struct cred *cred = current_cred();
234 	int error = -EINVAL;
235 	struct pid *pgrp;
236 	kuid_t uid;
237 
238 	if (which > PRIO_USER || which < PRIO_PROCESS)
239 		goto out;
240 
241 	/* normalize: avoid signed division (rounding problems) */
242 	error = -ESRCH;
243 	if (niceval < MIN_NICE)
244 		niceval = MIN_NICE;
245 	if (niceval > MAX_NICE)
246 		niceval = MAX_NICE;
247 
248 	rcu_read_lock();
249 	switch (which) {
250 	case PRIO_PROCESS:
251 		if (who)
252 			p = find_task_by_vpid(who);
253 		else
254 			p = current;
255 		if (p)
256 			error = set_one_prio(p, niceval, error);
257 		break;
258 	case PRIO_PGRP:
259 		if (who)
260 			pgrp = find_vpid(who);
261 		else
262 			pgrp = task_pgrp(current);
263 		read_lock(&tasklist_lock);
264 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
265 			error = set_one_prio(p, niceval, error);
266 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
267 		read_unlock(&tasklist_lock);
268 		break;
269 	case PRIO_USER:
270 		uid = make_kuid(cred->user_ns, who);
271 		user = cred->user;
272 		if (!who)
273 			uid = cred->uid;
274 		else if (!uid_eq(uid, cred->uid)) {
275 			user = find_user(uid);
276 			if (!user)
277 				goto out_unlock;	/* No processes for this user */
278 		}
279 		for_each_process_thread(g, p) {
280 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
281 				error = set_one_prio(p, niceval, error);
282 		}
283 		if (!uid_eq(uid, cred->uid))
284 			free_uid(user);		/* For find_user() */
285 		break;
286 	}
287 out_unlock:
288 	rcu_read_unlock();
289 out:
290 	return error;
291 }
292 
293 /*
294  * Ugh. To avoid negative return values, "getpriority()" will
295  * not return the normal nice-value, but a negated value that
296  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
297  * to stay compatible.
298  */
SYSCALL_DEFINE2(getpriority,int,which,int,who)299 SYSCALL_DEFINE2(getpriority, int, which, int, who)
300 {
301 	struct task_struct *g, *p;
302 	struct user_struct *user;
303 	const struct cred *cred = current_cred();
304 	long niceval, retval = -ESRCH;
305 	struct pid *pgrp;
306 	kuid_t uid;
307 
308 	if (which > PRIO_USER || which < PRIO_PROCESS)
309 		return -EINVAL;
310 
311 	rcu_read_lock();
312 	switch (which) {
313 	case PRIO_PROCESS:
314 		if (who)
315 			p = find_task_by_vpid(who);
316 		else
317 			p = current;
318 		if (p) {
319 			niceval = nice_to_rlimit(task_nice(p));
320 			if (niceval > retval)
321 				retval = niceval;
322 		}
323 		break;
324 	case PRIO_PGRP:
325 		if (who)
326 			pgrp = find_vpid(who);
327 		else
328 			pgrp = task_pgrp(current);
329 		read_lock(&tasklist_lock);
330 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
331 			niceval = nice_to_rlimit(task_nice(p));
332 			if (niceval > retval)
333 				retval = niceval;
334 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
335 		read_unlock(&tasklist_lock);
336 		break;
337 	case PRIO_USER:
338 		uid = make_kuid(cred->user_ns, who);
339 		user = cred->user;
340 		if (!who)
341 			uid = cred->uid;
342 		else if (!uid_eq(uid, cred->uid)) {
343 			user = find_user(uid);
344 			if (!user)
345 				goto out_unlock;	/* No processes for this user */
346 		}
347 		for_each_process_thread(g, p) {
348 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
349 				niceval = nice_to_rlimit(task_nice(p));
350 				if (niceval > retval)
351 					retval = niceval;
352 			}
353 		}
354 		if (!uid_eq(uid, cred->uid))
355 			free_uid(user);		/* for find_user() */
356 		break;
357 	}
358 out_unlock:
359 	rcu_read_unlock();
360 
361 	return retval;
362 }
363 
364 /*
365  * Unprivileged users may change the real gid to the effective gid
366  * or vice versa.  (BSD-style)
367  *
368  * If you set the real gid at all, or set the effective gid to a value not
369  * equal to the real gid, then the saved gid is set to the new effective gid.
370  *
371  * This makes it possible for a setgid program to completely drop its
372  * privileges, which is often a useful assertion to make when you are doing
373  * a security audit over a program.
374  *
375  * The general idea is that a program which uses just setregid() will be
376  * 100% compatible with BSD.  A program which uses just setgid() will be
377  * 100% compatible with POSIX with saved IDs.
378  *
379  * SMP: There are not races, the GIDs are checked only by filesystem
380  *      operations (as far as semantic preservation is concerned).
381  */
382 #ifdef CONFIG_MULTIUSER
__sys_setregid(gid_t rgid,gid_t egid)383 long __sys_setregid(gid_t rgid, gid_t egid)
384 {
385 	struct user_namespace *ns = current_user_ns();
386 	const struct cred *old;
387 	struct cred *new;
388 	int retval;
389 	kgid_t krgid, kegid;
390 
391 	krgid = make_kgid(ns, rgid);
392 	kegid = make_kgid(ns, egid);
393 
394 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
395 		return -EINVAL;
396 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
397 		return -EINVAL;
398 
399 	new = prepare_creds();
400 	if (!new)
401 		return -ENOMEM;
402 	old = current_cred();
403 
404 	retval = -EPERM;
405 	if (rgid != (gid_t) -1) {
406 		if (gid_eq(old->gid, krgid) ||
407 		    gid_eq(old->egid, krgid) ||
408 		    ns_capable_setid(old->user_ns, CAP_SETGID))
409 			new->gid = krgid;
410 		else
411 			goto error;
412 	}
413 	if (egid != (gid_t) -1) {
414 		if (gid_eq(old->gid, kegid) ||
415 		    gid_eq(old->egid, kegid) ||
416 		    gid_eq(old->sgid, kegid) ||
417 		    ns_capable_setid(old->user_ns, CAP_SETGID))
418 			new->egid = kegid;
419 		else
420 			goto error;
421 	}
422 
423 	if (rgid != (gid_t) -1 ||
424 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
425 		new->sgid = new->egid;
426 	new->fsgid = new->egid;
427 
428 	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
429 	if (retval < 0)
430 		goto error;
431 
432 	trace_android_vh_security_audit_log_setid(4, old->gid.val, new->gid.val);
433 
434 	return commit_creds(new);
435 
436 error:
437 	abort_creds(new);
438 	return retval;
439 }
440 
SYSCALL_DEFINE2(setregid,gid_t,rgid,gid_t,egid)441 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
442 {
443 	return __sys_setregid(rgid, egid);
444 }
445 
446 /*
447  * setgid() is implemented like SysV w/ SAVED_IDS
448  *
449  * SMP: Same implicit races as above.
450  */
__sys_setgid(gid_t gid)451 long __sys_setgid(gid_t gid)
452 {
453 	struct user_namespace *ns = current_user_ns();
454 	const struct cred *old;
455 	struct cred *new;
456 	int retval;
457 	kgid_t kgid;
458 
459 	kgid = make_kgid(ns, gid);
460 	if (!gid_valid(kgid))
461 		return -EINVAL;
462 
463 	new = prepare_creds();
464 	if (!new)
465 		return -ENOMEM;
466 	old = current_cred();
467 
468 	retval = -EPERM;
469 	if (ns_capable_setid(old->user_ns, CAP_SETGID))
470 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
471 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
472 		new->egid = new->fsgid = kgid;
473 	else
474 		goto error;
475 
476 	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
477 	if (retval < 0)
478 		goto error;
479 
480 	trace_android_vh_security_audit_log_setid(3, old->gid.val, gid);
481 
482 	return commit_creds(new);
483 
484 error:
485 	abort_creds(new);
486 	return retval;
487 }
488 
SYSCALL_DEFINE1(setgid,gid_t,gid)489 SYSCALL_DEFINE1(setgid, gid_t, gid)
490 {
491 	return __sys_setgid(gid);
492 }
493 
494 /*
495  * change the user struct in a credentials set to match the new UID
496  */
set_user(struct cred * new)497 static int set_user(struct cred *new)
498 {
499 	struct user_struct *new_user;
500 
501 	new_user = alloc_uid(new->uid);
502 	if (!new_user)
503 		return -EAGAIN;
504 
505 	free_uid(new->user);
506 	new->user = new_user;
507 	return 0;
508 }
509 
flag_nproc_exceeded(struct cred * new)510 static void flag_nproc_exceeded(struct cred *new)
511 {
512 	if (new->ucounts == current_ucounts())
513 		return;
514 
515 	/*
516 	 * We don't fail in case of NPROC limit excess here because too many
517 	 * poorly written programs don't check set*uid() return code, assuming
518 	 * it never fails if called by root.  We may still enforce NPROC limit
519 	 * for programs doing set*uid()+execve() by harmlessly deferring the
520 	 * failure to the execve() stage.
521 	 */
522 	if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
523 			new->user != INIT_USER)
524 		current->flags |= PF_NPROC_EXCEEDED;
525 	else
526 		current->flags &= ~PF_NPROC_EXCEEDED;
527 }
528 
529 /*
530  * Unprivileged users may change the real uid to the effective uid
531  * or vice versa.  (BSD-style)
532  *
533  * If you set the real uid at all, or set the effective uid to a value not
534  * equal to the real uid, then the saved uid is set to the new effective uid.
535  *
536  * This makes it possible for a setuid program to completely drop its
537  * privileges, which is often a useful assertion to make when you are doing
538  * a security audit over a program.
539  *
540  * The general idea is that a program which uses just setreuid() will be
541  * 100% compatible with BSD.  A program which uses just setuid() will be
542  * 100% compatible with POSIX with saved IDs.
543  */
__sys_setreuid(uid_t ruid,uid_t euid)544 long __sys_setreuid(uid_t ruid, uid_t euid)
545 {
546 	struct user_namespace *ns = current_user_ns();
547 	const struct cred *old;
548 	struct cred *new;
549 	int retval;
550 	kuid_t kruid, keuid;
551 
552 	kruid = make_kuid(ns, ruid);
553 	keuid = make_kuid(ns, euid);
554 
555 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
556 		return -EINVAL;
557 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
558 		return -EINVAL;
559 
560 	new = prepare_creds();
561 	if (!new)
562 		return -ENOMEM;
563 	old = current_cred();
564 
565 	retval = -EPERM;
566 	if (ruid != (uid_t) -1) {
567 		new->uid = kruid;
568 		if (!uid_eq(old->uid, kruid) &&
569 		    !uid_eq(old->euid, kruid) &&
570 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
571 			goto error;
572 	}
573 
574 	if (euid != (uid_t) -1) {
575 		new->euid = keuid;
576 		if (!uid_eq(old->uid, keuid) &&
577 		    !uid_eq(old->euid, keuid) &&
578 		    !uid_eq(old->suid, keuid) &&
579 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
580 			goto error;
581 	}
582 
583 	if (!uid_eq(new->uid, old->uid)) {
584 		retval = set_user(new);
585 		if (retval < 0)
586 			goto error;
587 	}
588 	if (ruid != (uid_t) -1 ||
589 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
590 		new->suid = new->euid;
591 	new->fsuid = new->euid;
592 
593 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
594 	if (retval < 0)
595 		goto error;
596 
597 	retval = set_cred_ucounts(new);
598 	if (retval < 0)
599 		goto error;
600 
601 	trace_android_vh_security_audit_log_setid(1, old->uid.val, new->uid.val);
602 
603 	flag_nproc_exceeded(new);
604 	return commit_creds(new);
605 
606 error:
607 	abort_creds(new);
608 	return retval;
609 }
610 
SYSCALL_DEFINE2(setreuid,uid_t,ruid,uid_t,euid)611 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
612 {
613 	return __sys_setreuid(ruid, euid);
614 }
615 
616 /*
617  * setuid() is implemented like SysV with SAVED_IDS
618  *
619  * Note that SAVED_ID's is deficient in that a setuid root program
620  * like sendmail, for example, cannot set its uid to be a normal
621  * user and then switch back, because if you're root, setuid() sets
622  * the saved uid too.  If you don't like this, blame the bright people
623  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
624  * will allow a root program to temporarily drop privileges and be able to
625  * regain them by swapping the real and effective uid.
626  */
__sys_setuid(uid_t uid)627 long __sys_setuid(uid_t uid)
628 {
629 	struct user_namespace *ns = current_user_ns();
630 	const struct cred *old;
631 	struct cred *new;
632 	int retval;
633 	kuid_t kuid;
634 
635 	kuid = make_kuid(ns, uid);
636 	if (!uid_valid(kuid))
637 		return -EINVAL;
638 
639 	new = prepare_creds();
640 	if (!new)
641 		return -ENOMEM;
642 	old = current_cred();
643 
644 	retval = -EPERM;
645 	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
646 		new->suid = new->uid = kuid;
647 		if (!uid_eq(kuid, old->uid)) {
648 			retval = set_user(new);
649 			if (retval < 0)
650 				goto error;
651 		}
652 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
653 		goto error;
654 	}
655 
656 	new->fsuid = new->euid = kuid;
657 
658 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
659 	if (retval < 0)
660 		goto error;
661 
662 	retval = set_cred_ucounts(new);
663 	if (retval < 0)
664 		goto error;
665 
666 	trace_android_vh_security_audit_log_setid(0, old->uid.val, uid);
667 
668 	flag_nproc_exceeded(new);
669 	return commit_creds(new);
670 
671 error:
672 	abort_creds(new);
673 	return retval;
674 }
675 
SYSCALL_DEFINE1(setuid,uid_t,uid)676 SYSCALL_DEFINE1(setuid, uid_t, uid)
677 {
678 	return __sys_setuid(uid);
679 }
680 
681 
682 /*
683  * This function implements a generic ability to update ruid, euid,
684  * and suid.  This allows you to implement the 4.4 compatible seteuid().
685  */
__sys_setresuid(uid_t ruid,uid_t euid,uid_t suid)686 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
687 {
688 	struct user_namespace *ns = current_user_ns();
689 	const struct cred *old;
690 	struct cred *new;
691 	int retval;
692 	kuid_t kruid, keuid, ksuid;
693 	bool ruid_new, euid_new, suid_new;
694 
695 	kruid = make_kuid(ns, ruid);
696 	keuid = make_kuid(ns, euid);
697 	ksuid = make_kuid(ns, suid);
698 
699 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
700 		return -EINVAL;
701 
702 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
703 		return -EINVAL;
704 
705 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
706 		return -EINVAL;
707 
708 	old = current_cred();
709 
710 	/* check for no-op */
711 	if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
712 	    (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
713 				    uid_eq(keuid, old->fsuid))) &&
714 	    (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
715 		return 0;
716 
717 	ruid_new = ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
718 		   !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
719 	euid_new = euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
720 		   !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
721 	suid_new = suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
722 		   !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
723 	if ((ruid_new || euid_new || suid_new) &&
724 	    !ns_capable_setid(old->user_ns, CAP_SETUID))
725 		return -EPERM;
726 
727 	new = prepare_creds();
728 	if (!new)
729 		return -ENOMEM;
730 
731 	if (ruid != (uid_t) -1) {
732 		new->uid = kruid;
733 		if (!uid_eq(kruid, old->uid)) {
734 			retval = set_user(new);
735 			if (retval < 0)
736 				goto error;
737 		}
738 	}
739 	if (euid != (uid_t) -1)
740 		new->euid = keuid;
741 	if (suid != (uid_t) -1)
742 		new->suid = ksuid;
743 	new->fsuid = new->euid;
744 
745 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
746 	if (retval < 0)
747 		goto error;
748 
749 	retval = set_cred_ucounts(new);
750 	if (retval < 0)
751 		goto error;
752 
753 	trace_android_vh_security_audit_log_setid(2, old->uid.val, new->uid.val);
754 
755 	flag_nproc_exceeded(new);
756 	return commit_creds(new);
757 
758 error:
759 	abort_creds(new);
760 	return retval;
761 }
762 
SYSCALL_DEFINE3(setresuid,uid_t,ruid,uid_t,euid,uid_t,suid)763 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
764 {
765 	return __sys_setresuid(ruid, euid, suid);
766 }
767 
SYSCALL_DEFINE3(getresuid,uid_t __user *,ruidp,uid_t __user *,euidp,uid_t __user *,suidp)768 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
769 {
770 	const struct cred *cred = current_cred();
771 	int retval;
772 	uid_t ruid, euid, suid;
773 
774 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
775 	euid = from_kuid_munged(cred->user_ns, cred->euid);
776 	suid = from_kuid_munged(cred->user_ns, cred->suid);
777 
778 	retval = put_user(ruid, ruidp);
779 	if (!retval) {
780 		retval = put_user(euid, euidp);
781 		if (!retval)
782 			return put_user(suid, suidp);
783 	}
784 	return retval;
785 }
786 
787 /*
788  * Same as above, but for rgid, egid, sgid.
789  */
__sys_setresgid(gid_t rgid,gid_t egid,gid_t sgid)790 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
791 {
792 	struct user_namespace *ns = current_user_ns();
793 	const struct cred *old;
794 	struct cred *new;
795 	int retval;
796 	kgid_t krgid, kegid, ksgid;
797 	bool rgid_new, egid_new, sgid_new;
798 
799 	krgid = make_kgid(ns, rgid);
800 	kegid = make_kgid(ns, egid);
801 	ksgid = make_kgid(ns, sgid);
802 
803 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
804 		return -EINVAL;
805 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
806 		return -EINVAL;
807 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
808 		return -EINVAL;
809 
810 	old = current_cred();
811 
812 	/* check for no-op */
813 	if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
814 	    (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
815 				    gid_eq(kegid, old->fsgid))) &&
816 	    (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
817 		return 0;
818 
819 	rgid_new = rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
820 		   !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
821 	egid_new = egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
822 		   !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
823 	sgid_new = sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
824 		   !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
825 	if ((rgid_new || egid_new || sgid_new) &&
826 	    !ns_capable_setid(old->user_ns, CAP_SETGID))
827 		return -EPERM;
828 
829 	new = prepare_creds();
830 	if (!new)
831 		return -ENOMEM;
832 
833 	if (rgid != (gid_t) -1)
834 		new->gid = krgid;
835 	if (egid != (gid_t) -1)
836 		new->egid = kegid;
837 	if (sgid != (gid_t) -1)
838 		new->sgid = ksgid;
839 	new->fsgid = new->egid;
840 
841 	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
842 	if (retval < 0)
843 		goto error;
844 
845 	trace_android_vh_security_audit_log_setid(5, old->gid.val, new->gid.val);
846 
847 	return commit_creds(new);
848 
849 error:
850 	abort_creds(new);
851 	return retval;
852 }
853 
SYSCALL_DEFINE3(setresgid,gid_t,rgid,gid_t,egid,gid_t,sgid)854 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
855 {
856 	return __sys_setresgid(rgid, egid, sgid);
857 }
858 
SYSCALL_DEFINE3(getresgid,gid_t __user *,rgidp,gid_t __user *,egidp,gid_t __user *,sgidp)859 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
860 {
861 	const struct cred *cred = current_cred();
862 	int retval;
863 	gid_t rgid, egid, sgid;
864 
865 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
866 	egid = from_kgid_munged(cred->user_ns, cred->egid);
867 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
868 
869 	retval = put_user(rgid, rgidp);
870 	if (!retval) {
871 		retval = put_user(egid, egidp);
872 		if (!retval)
873 			retval = put_user(sgid, sgidp);
874 	}
875 
876 	return retval;
877 }
878 
879 
880 /*
881  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
882  * is used for "access()" and for the NFS daemon (letting nfsd stay at
883  * whatever uid it wants to). It normally shadows "euid", except when
884  * explicitly set by setfsuid() or for access..
885  */
__sys_setfsuid(uid_t uid)886 long __sys_setfsuid(uid_t uid)
887 {
888 	const struct cred *old;
889 	struct cred *new;
890 	uid_t old_fsuid;
891 	kuid_t kuid;
892 
893 	old = current_cred();
894 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
895 
896 	kuid = make_kuid(old->user_ns, uid);
897 	if (!uid_valid(kuid))
898 		return old_fsuid;
899 
900 	new = prepare_creds();
901 	if (!new)
902 		return old_fsuid;
903 
904 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
905 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
906 	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
907 		if (!uid_eq(kuid, old->fsuid)) {
908 			new->fsuid = kuid;
909 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
910 				goto change_okay;
911 		}
912 	}
913 
914 	abort_creds(new);
915 	return old_fsuid;
916 
917 change_okay:
918 	commit_creds(new);
919 	return old_fsuid;
920 }
921 
SYSCALL_DEFINE1(setfsuid,uid_t,uid)922 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
923 {
924 	return __sys_setfsuid(uid);
925 }
926 
927 /*
928  * Samma på svenska..
929  */
__sys_setfsgid(gid_t gid)930 long __sys_setfsgid(gid_t gid)
931 {
932 	const struct cred *old;
933 	struct cred *new;
934 	gid_t old_fsgid;
935 	kgid_t kgid;
936 
937 	old = current_cred();
938 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
939 
940 	kgid = make_kgid(old->user_ns, gid);
941 	if (!gid_valid(kgid))
942 		return old_fsgid;
943 
944 	new = prepare_creds();
945 	if (!new)
946 		return old_fsgid;
947 
948 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
949 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
950 	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
951 		if (!gid_eq(kgid, old->fsgid)) {
952 			new->fsgid = kgid;
953 			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
954 				goto change_okay;
955 		}
956 	}
957 
958 	abort_creds(new);
959 	return old_fsgid;
960 
961 change_okay:
962 	commit_creds(new);
963 	return old_fsgid;
964 }
965 
SYSCALL_DEFINE1(setfsgid,gid_t,gid)966 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
967 {
968 	return __sys_setfsgid(gid);
969 }
970 #endif /* CONFIG_MULTIUSER */
971 
972 /**
973  * sys_getpid - return the thread group id of the current process
974  *
975  * Note, despite the name, this returns the tgid not the pid.  The tgid and
976  * the pid are identical unless CLONE_THREAD was specified on clone() in
977  * which case the tgid is the same in all threads of the same group.
978  *
979  * This is SMP safe as current->tgid does not change.
980  */
SYSCALL_DEFINE0(getpid)981 SYSCALL_DEFINE0(getpid)
982 {
983 	return task_tgid_vnr(current);
984 }
985 
986 /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)987 SYSCALL_DEFINE0(gettid)
988 {
989 	return task_pid_vnr(current);
990 }
991 
992 /*
993  * Accessing ->real_parent is not SMP-safe, it could
994  * change from under us. However, we can use a stale
995  * value of ->real_parent under rcu_read_lock(), see
996  * release_task()->call_rcu(delayed_put_task_struct).
997  */
SYSCALL_DEFINE0(getppid)998 SYSCALL_DEFINE0(getppid)
999 {
1000 	int pid;
1001 
1002 	rcu_read_lock();
1003 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1004 	rcu_read_unlock();
1005 
1006 	return pid;
1007 }
1008 
SYSCALL_DEFINE0(getuid)1009 SYSCALL_DEFINE0(getuid)
1010 {
1011 	/* Only we change this so SMP safe */
1012 	return from_kuid_munged(current_user_ns(), current_uid());
1013 }
1014 
SYSCALL_DEFINE0(geteuid)1015 SYSCALL_DEFINE0(geteuid)
1016 {
1017 	/* Only we change this so SMP safe */
1018 	return from_kuid_munged(current_user_ns(), current_euid());
1019 }
1020 
SYSCALL_DEFINE0(getgid)1021 SYSCALL_DEFINE0(getgid)
1022 {
1023 	/* Only we change this so SMP safe */
1024 	return from_kgid_munged(current_user_ns(), current_gid());
1025 }
1026 
SYSCALL_DEFINE0(getegid)1027 SYSCALL_DEFINE0(getegid)
1028 {
1029 	/* Only we change this so SMP safe */
1030 	return from_kgid_munged(current_user_ns(), current_egid());
1031 }
1032 
do_sys_times(struct tms * tms)1033 static void do_sys_times(struct tms *tms)
1034 {
1035 	u64 tgutime, tgstime, cutime, cstime;
1036 
1037 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1038 	cutime = current->signal->cutime;
1039 	cstime = current->signal->cstime;
1040 	tms->tms_utime = nsec_to_clock_t(tgutime);
1041 	tms->tms_stime = nsec_to_clock_t(tgstime);
1042 	tms->tms_cutime = nsec_to_clock_t(cutime);
1043 	tms->tms_cstime = nsec_to_clock_t(cstime);
1044 }
1045 
SYSCALL_DEFINE1(times,struct tms __user *,tbuf)1046 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1047 {
1048 	if (tbuf) {
1049 		struct tms tmp;
1050 
1051 		do_sys_times(&tmp);
1052 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1053 			return -EFAULT;
1054 	}
1055 	force_successful_syscall_return();
1056 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1057 }
1058 
1059 #ifdef CONFIG_COMPAT
clock_t_to_compat_clock_t(clock_t x)1060 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1061 {
1062 	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1063 }
1064 
COMPAT_SYSCALL_DEFINE1(times,struct compat_tms __user *,tbuf)1065 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1066 {
1067 	if (tbuf) {
1068 		struct tms tms;
1069 		struct compat_tms tmp;
1070 
1071 		do_sys_times(&tms);
1072 		/* Convert our struct tms to the compat version. */
1073 		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1074 		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1075 		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1076 		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1077 		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1078 			return -EFAULT;
1079 	}
1080 	force_successful_syscall_return();
1081 	return compat_jiffies_to_clock_t(jiffies);
1082 }
1083 #endif
1084 
1085 /*
1086  * This needs some heavy checking ...
1087  * I just haven't the stomach for it. I also don't fully
1088  * understand sessions/pgrp etc. Let somebody who does explain it.
1089  *
1090  * OK, I think I have the protection semantics right.... this is really
1091  * only important on a multi-user system anyway, to make sure one user
1092  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1093  *
1094  * !PF_FORKNOEXEC check to conform completely to POSIX.
1095  */
SYSCALL_DEFINE2(setpgid,pid_t,pid,pid_t,pgid)1096 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1097 {
1098 	struct task_struct *p;
1099 	struct task_struct *group_leader = current->group_leader;
1100 	struct pid *pgrp;
1101 	int err;
1102 
1103 	if (!pid)
1104 		pid = task_pid_vnr(group_leader);
1105 	if (!pgid)
1106 		pgid = pid;
1107 	if (pgid < 0)
1108 		return -EINVAL;
1109 	rcu_read_lock();
1110 
1111 	/* From this point forward we keep holding onto the tasklist lock
1112 	 * so that our parent does not change from under us. -DaveM
1113 	 */
1114 	write_lock_irq(&tasklist_lock);
1115 
1116 	err = -ESRCH;
1117 	p = find_task_by_vpid(pid);
1118 	if (!p)
1119 		goto out;
1120 
1121 	err = -EINVAL;
1122 	if (!thread_group_leader(p))
1123 		goto out;
1124 
1125 	if (same_thread_group(p->real_parent, group_leader)) {
1126 		err = -EPERM;
1127 		if (task_session(p) != task_session(group_leader))
1128 			goto out;
1129 		err = -EACCES;
1130 		if (!(p->flags & PF_FORKNOEXEC))
1131 			goto out;
1132 	} else {
1133 		err = -ESRCH;
1134 		if (p != group_leader)
1135 			goto out;
1136 	}
1137 
1138 	err = -EPERM;
1139 	if (p->signal->leader)
1140 		goto out;
1141 
1142 	pgrp = task_pid(p);
1143 	if (pgid != pid) {
1144 		struct task_struct *g;
1145 
1146 		pgrp = find_vpid(pgid);
1147 		g = pid_task(pgrp, PIDTYPE_PGID);
1148 		if (!g || task_session(g) != task_session(group_leader))
1149 			goto out;
1150 	}
1151 
1152 	err = security_task_setpgid(p, pgid);
1153 	if (err)
1154 		goto out;
1155 
1156 	if (task_pgrp(p) != pgrp)
1157 		change_pid(p, PIDTYPE_PGID, pgrp);
1158 
1159 	err = 0;
1160 out:
1161 	/* All paths lead to here, thus we are safe. -DaveM */
1162 	write_unlock_irq(&tasklist_lock);
1163 	rcu_read_unlock();
1164 	return err;
1165 }
1166 
do_getpgid(pid_t pid)1167 static int do_getpgid(pid_t pid)
1168 {
1169 	struct task_struct *p;
1170 	struct pid *grp;
1171 	int retval;
1172 
1173 	rcu_read_lock();
1174 	if (!pid)
1175 		grp = task_pgrp(current);
1176 	else {
1177 		retval = -ESRCH;
1178 		p = find_task_by_vpid(pid);
1179 		if (!p)
1180 			goto out;
1181 		grp = task_pgrp(p);
1182 		if (!grp)
1183 			goto out;
1184 
1185 		retval = security_task_getpgid(p);
1186 		if (retval)
1187 			goto out;
1188 	}
1189 	retval = pid_vnr(grp);
1190 out:
1191 	rcu_read_unlock();
1192 	return retval;
1193 }
1194 
SYSCALL_DEFINE1(getpgid,pid_t,pid)1195 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1196 {
1197 	return do_getpgid(pid);
1198 }
1199 
1200 #ifdef __ARCH_WANT_SYS_GETPGRP
1201 
SYSCALL_DEFINE0(getpgrp)1202 SYSCALL_DEFINE0(getpgrp)
1203 {
1204 	return do_getpgid(0);
1205 }
1206 
1207 #endif
1208 
SYSCALL_DEFINE1(getsid,pid_t,pid)1209 SYSCALL_DEFINE1(getsid, pid_t, pid)
1210 {
1211 	struct task_struct *p;
1212 	struct pid *sid;
1213 	int retval;
1214 
1215 	rcu_read_lock();
1216 	if (!pid)
1217 		sid = task_session(current);
1218 	else {
1219 		retval = -ESRCH;
1220 		p = find_task_by_vpid(pid);
1221 		if (!p)
1222 			goto out;
1223 		sid = task_session(p);
1224 		if (!sid)
1225 			goto out;
1226 
1227 		retval = security_task_getsid(p);
1228 		if (retval)
1229 			goto out;
1230 	}
1231 	retval = pid_vnr(sid);
1232 out:
1233 	rcu_read_unlock();
1234 	return retval;
1235 }
1236 
set_special_pids(struct pid * pid)1237 static void set_special_pids(struct pid *pid)
1238 {
1239 	struct task_struct *curr = current->group_leader;
1240 
1241 	if (task_session(curr) != pid)
1242 		change_pid(curr, PIDTYPE_SID, pid);
1243 
1244 	if (task_pgrp(curr) != pid)
1245 		change_pid(curr, PIDTYPE_PGID, pid);
1246 }
1247 
ksys_setsid(void)1248 int ksys_setsid(void)
1249 {
1250 	struct task_struct *group_leader = current->group_leader;
1251 	struct pid *sid = task_pid(group_leader);
1252 	pid_t session = pid_vnr(sid);
1253 	int err = -EPERM;
1254 
1255 	write_lock_irq(&tasklist_lock);
1256 	/* Fail if I am already a session leader */
1257 	if (group_leader->signal->leader)
1258 		goto out;
1259 
1260 	/* Fail if a process group id already exists that equals the
1261 	 * proposed session id.
1262 	 */
1263 	if (pid_task(sid, PIDTYPE_PGID))
1264 		goto out;
1265 
1266 	group_leader->signal->leader = 1;
1267 	set_special_pids(sid);
1268 
1269 	proc_clear_tty(group_leader);
1270 
1271 	err = session;
1272 out:
1273 	write_unlock_irq(&tasklist_lock);
1274 	if (err > 0) {
1275 		proc_sid_connector(group_leader);
1276 		sched_autogroup_create_attach(group_leader);
1277 	}
1278 	return err;
1279 }
1280 
SYSCALL_DEFINE0(setsid)1281 SYSCALL_DEFINE0(setsid)
1282 {
1283 	return ksys_setsid();
1284 }
1285 
1286 DECLARE_RWSEM(uts_sem);
1287 
1288 #ifdef COMPAT_UTS_MACHINE
1289 #define override_architecture(name) \
1290 	(personality(current->personality) == PER_LINUX32 && \
1291 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1292 		      sizeof(COMPAT_UTS_MACHINE)))
1293 #else
1294 #define override_architecture(name)	0
1295 #endif
1296 
1297 /*
1298  * Work around broken programs that cannot handle "Linux 3.0".
1299  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1300  * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1301  * 2.6.60.
1302  */
override_release(char __user * release,size_t len)1303 static int override_release(char __user *release, size_t len)
1304 {
1305 	int ret = 0;
1306 
1307 	if (current->personality & UNAME26) {
1308 		const char *rest = UTS_RELEASE;
1309 		char buf[65] = { 0 };
1310 		int ndots = 0;
1311 		unsigned v;
1312 		size_t copy;
1313 
1314 		while (*rest) {
1315 			if (*rest == '.' && ++ndots >= 3)
1316 				break;
1317 			if (!isdigit(*rest) && *rest != '.')
1318 				break;
1319 			rest++;
1320 		}
1321 		v = LINUX_VERSION_PATCHLEVEL + 60;
1322 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1323 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1324 		ret = copy_to_user(release, buf, copy + 1);
1325 	}
1326 	return ret;
1327 }
1328 
SYSCALL_DEFINE1(newuname,struct new_utsname __user *,name)1329 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1330 {
1331 	struct new_utsname tmp;
1332 
1333 	down_read(&uts_sem);
1334 	memcpy(&tmp, utsname(), sizeof(tmp));
1335 	up_read(&uts_sem);
1336 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1337 		return -EFAULT;
1338 
1339 	if (override_release(name->release, sizeof(name->release)))
1340 		return -EFAULT;
1341 	if (override_architecture(name))
1342 		return -EFAULT;
1343 	return 0;
1344 }
1345 
1346 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1347 /*
1348  * Old cruft
1349  */
SYSCALL_DEFINE1(uname,struct old_utsname __user *,name)1350 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1351 {
1352 	struct old_utsname tmp;
1353 
1354 	if (!name)
1355 		return -EFAULT;
1356 
1357 	down_read(&uts_sem);
1358 	memcpy(&tmp, utsname(), sizeof(tmp));
1359 	up_read(&uts_sem);
1360 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1361 		return -EFAULT;
1362 
1363 	if (override_release(name->release, sizeof(name->release)))
1364 		return -EFAULT;
1365 	if (override_architecture(name))
1366 		return -EFAULT;
1367 	return 0;
1368 }
1369 
SYSCALL_DEFINE1(olduname,struct oldold_utsname __user *,name)1370 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1371 {
1372 	struct oldold_utsname tmp;
1373 
1374 	if (!name)
1375 		return -EFAULT;
1376 
1377 	memset(&tmp, 0, sizeof(tmp));
1378 
1379 	down_read(&uts_sem);
1380 	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1381 	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1382 	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1383 	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1384 	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1385 	up_read(&uts_sem);
1386 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1387 		return -EFAULT;
1388 
1389 	if (override_architecture(name))
1390 		return -EFAULT;
1391 	if (override_release(name->release, sizeof(name->release)))
1392 		return -EFAULT;
1393 	return 0;
1394 }
1395 #endif
1396 
SYSCALL_DEFINE2(sethostname,char __user *,name,int,len)1397 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1398 {
1399 	int errno;
1400 	char tmp[__NEW_UTS_LEN];
1401 
1402 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1403 		return -EPERM;
1404 
1405 	if (len < 0 || len > __NEW_UTS_LEN)
1406 		return -EINVAL;
1407 	errno = -EFAULT;
1408 	if (!copy_from_user(tmp, name, len)) {
1409 		struct new_utsname *u;
1410 
1411 		add_device_randomness(tmp, len);
1412 		down_write(&uts_sem);
1413 		u = utsname();
1414 		memcpy(u->nodename, tmp, len);
1415 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1416 		errno = 0;
1417 		uts_proc_notify(UTS_PROC_HOSTNAME);
1418 		up_write(&uts_sem);
1419 	}
1420 	return errno;
1421 }
1422 
1423 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1424 
SYSCALL_DEFINE2(gethostname,char __user *,name,int,len)1425 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1426 {
1427 	int i;
1428 	struct new_utsname *u;
1429 	char tmp[__NEW_UTS_LEN + 1];
1430 
1431 	if (len < 0)
1432 		return -EINVAL;
1433 	down_read(&uts_sem);
1434 	u = utsname();
1435 	i = 1 + strlen(u->nodename);
1436 	if (i > len)
1437 		i = len;
1438 	memcpy(tmp, u->nodename, i);
1439 	up_read(&uts_sem);
1440 	if (copy_to_user(name, tmp, i))
1441 		return -EFAULT;
1442 	return 0;
1443 }
1444 
1445 #endif
1446 
1447 /*
1448  * Only setdomainname; getdomainname can be implemented by calling
1449  * uname()
1450  */
SYSCALL_DEFINE2(setdomainname,char __user *,name,int,len)1451 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1452 {
1453 	int errno;
1454 	char tmp[__NEW_UTS_LEN];
1455 
1456 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1457 		return -EPERM;
1458 	if (len < 0 || len > __NEW_UTS_LEN)
1459 		return -EINVAL;
1460 
1461 	errno = -EFAULT;
1462 	if (!copy_from_user(tmp, name, len)) {
1463 		struct new_utsname *u;
1464 
1465 		add_device_randomness(tmp, len);
1466 		down_write(&uts_sem);
1467 		u = utsname();
1468 		memcpy(u->domainname, tmp, len);
1469 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1470 		errno = 0;
1471 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1472 		up_write(&uts_sem);
1473 	}
1474 	return errno;
1475 }
1476 
1477 /* make sure you are allowed to change @tsk limits before calling this */
do_prlimit(struct task_struct * tsk,unsigned int resource,struct rlimit * new_rlim,struct rlimit * old_rlim)1478 static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1479 		      struct rlimit *new_rlim, struct rlimit *old_rlim)
1480 {
1481 	struct rlimit *rlim;
1482 	int retval = 0;
1483 
1484 	if (resource >= RLIM_NLIMITS)
1485 		return -EINVAL;
1486 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1487 
1488 	if (new_rlim) {
1489 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1490 			return -EINVAL;
1491 		if (resource == RLIMIT_NOFILE &&
1492 				new_rlim->rlim_max > sysctl_nr_open)
1493 			return -EPERM;
1494 	}
1495 
1496 	/* Holding a refcount on tsk protects tsk->signal from disappearing. */
1497 	rlim = tsk->signal->rlim + resource;
1498 	task_lock(tsk->group_leader);
1499 	if (new_rlim) {
1500 		/*
1501 		 * Keep the capable check against init_user_ns until cgroups can
1502 		 * contain all limits.
1503 		 */
1504 		if (new_rlim->rlim_max > rlim->rlim_max &&
1505 				!capable(CAP_SYS_RESOURCE))
1506 			retval = -EPERM;
1507 		if (!retval)
1508 			retval = security_task_setrlimit(tsk, resource, new_rlim);
1509 	}
1510 	if (!retval) {
1511 		if (old_rlim)
1512 			*old_rlim = *rlim;
1513 		if (new_rlim)
1514 			*rlim = *new_rlim;
1515 	}
1516 	task_unlock(tsk->group_leader);
1517 
1518 	/*
1519 	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1520 	 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1521 	 * ignores the rlimit.
1522 	 */
1523 	if (!retval && new_rlim && resource == RLIMIT_CPU &&
1524 	    new_rlim->rlim_cur != RLIM_INFINITY &&
1525 	    IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1526 		/*
1527 		 * update_rlimit_cpu can fail if the task is exiting, but there
1528 		 * may be other tasks in the thread group that are not exiting,
1529 		 * and they need their cpu timers adjusted.
1530 		 *
1531 		 * The group_leader is the last task to be released, so if we
1532 		 * cannot update_rlimit_cpu on it, then the entire process is
1533 		 * exiting and we do not need to update at all.
1534 		 */
1535 		update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1536 	}
1537 
1538 	return retval;
1539 }
1540 
SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1541 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1542 {
1543 	struct rlimit value;
1544 	int ret;
1545 
1546 	ret = do_prlimit(current, resource, NULL, &value);
1547 	if (!ret)
1548 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1549 
1550 	return ret;
1551 }
1552 
1553 #ifdef CONFIG_COMPAT
1554 
COMPAT_SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1555 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1556 		       struct compat_rlimit __user *, rlim)
1557 {
1558 	struct rlimit r;
1559 	struct compat_rlimit r32;
1560 
1561 	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1562 		return -EFAULT;
1563 
1564 	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1565 		r.rlim_cur = RLIM_INFINITY;
1566 	else
1567 		r.rlim_cur = r32.rlim_cur;
1568 	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1569 		r.rlim_max = RLIM_INFINITY;
1570 	else
1571 		r.rlim_max = r32.rlim_max;
1572 	return do_prlimit(current, resource, &r, NULL);
1573 }
1574 
COMPAT_SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1575 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1576 		       struct compat_rlimit __user *, rlim)
1577 {
1578 	struct rlimit r;
1579 	int ret;
1580 
1581 	ret = do_prlimit(current, resource, NULL, &r);
1582 	if (!ret) {
1583 		struct compat_rlimit r32;
1584 		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1585 			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1586 		else
1587 			r32.rlim_cur = r.rlim_cur;
1588 		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1589 			r32.rlim_max = COMPAT_RLIM_INFINITY;
1590 		else
1591 			r32.rlim_max = r.rlim_max;
1592 
1593 		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1594 			return -EFAULT;
1595 	}
1596 	return ret;
1597 }
1598 
1599 #endif
1600 
1601 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1602 
1603 /*
1604  *	Back compatibility for getrlimit. Needed for some apps.
1605  */
SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1606 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1607 		struct rlimit __user *, rlim)
1608 {
1609 	struct rlimit x;
1610 	if (resource >= RLIM_NLIMITS)
1611 		return -EINVAL;
1612 
1613 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1614 	task_lock(current->group_leader);
1615 	x = current->signal->rlim[resource];
1616 	task_unlock(current->group_leader);
1617 	if (x.rlim_cur > 0x7FFFFFFF)
1618 		x.rlim_cur = 0x7FFFFFFF;
1619 	if (x.rlim_max > 0x7FFFFFFF)
1620 		x.rlim_max = 0x7FFFFFFF;
1621 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1622 }
1623 
1624 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1625 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1626 		       struct compat_rlimit __user *, rlim)
1627 {
1628 	struct rlimit r;
1629 
1630 	if (resource >= RLIM_NLIMITS)
1631 		return -EINVAL;
1632 
1633 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1634 	task_lock(current->group_leader);
1635 	r = current->signal->rlim[resource];
1636 	task_unlock(current->group_leader);
1637 	if (r.rlim_cur > 0x7FFFFFFF)
1638 		r.rlim_cur = 0x7FFFFFFF;
1639 	if (r.rlim_max > 0x7FFFFFFF)
1640 		r.rlim_max = 0x7FFFFFFF;
1641 
1642 	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1643 	    put_user(r.rlim_max, &rlim->rlim_max))
1644 		return -EFAULT;
1645 	return 0;
1646 }
1647 #endif
1648 
1649 #endif
1650 
rlim64_is_infinity(__u64 rlim64)1651 static inline bool rlim64_is_infinity(__u64 rlim64)
1652 {
1653 #if BITS_PER_LONG < 64
1654 	return rlim64 >= ULONG_MAX;
1655 #else
1656 	return rlim64 == RLIM64_INFINITY;
1657 #endif
1658 }
1659 
rlim_to_rlim64(const struct rlimit * rlim,struct rlimit64 * rlim64)1660 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1661 {
1662 	if (rlim->rlim_cur == RLIM_INFINITY)
1663 		rlim64->rlim_cur = RLIM64_INFINITY;
1664 	else
1665 		rlim64->rlim_cur = rlim->rlim_cur;
1666 	if (rlim->rlim_max == RLIM_INFINITY)
1667 		rlim64->rlim_max = RLIM64_INFINITY;
1668 	else
1669 		rlim64->rlim_max = rlim->rlim_max;
1670 }
1671 
rlim64_to_rlim(const struct rlimit64 * rlim64,struct rlimit * rlim)1672 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1673 {
1674 	if (rlim64_is_infinity(rlim64->rlim_cur))
1675 		rlim->rlim_cur = RLIM_INFINITY;
1676 	else
1677 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1678 	if (rlim64_is_infinity(rlim64->rlim_max))
1679 		rlim->rlim_max = RLIM_INFINITY;
1680 	else
1681 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1682 }
1683 
1684 /* rcu lock must be held */
check_prlimit_permission(struct task_struct * task,unsigned int flags)1685 static int check_prlimit_permission(struct task_struct *task,
1686 				    unsigned int flags)
1687 {
1688 	const struct cred *cred = current_cred(), *tcred;
1689 	bool id_match;
1690 
1691 	if (current == task)
1692 		return 0;
1693 
1694 	tcred = __task_cred(task);
1695 	id_match = (uid_eq(cred->uid, tcred->euid) &&
1696 		    uid_eq(cred->uid, tcred->suid) &&
1697 		    uid_eq(cred->uid, tcred->uid)  &&
1698 		    gid_eq(cred->gid, tcred->egid) &&
1699 		    gid_eq(cred->gid, tcred->sgid) &&
1700 		    gid_eq(cred->gid, tcred->gid));
1701 	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1702 		return -EPERM;
1703 
1704 	return security_task_prlimit(cred, tcred, flags);
1705 }
1706 
SYSCALL_DEFINE4(prlimit64,pid_t,pid,unsigned int,resource,const struct rlimit64 __user *,new_rlim,struct rlimit64 __user *,old_rlim)1707 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1708 		const struct rlimit64 __user *, new_rlim,
1709 		struct rlimit64 __user *, old_rlim)
1710 {
1711 	struct rlimit64 old64, new64;
1712 	struct rlimit old, new;
1713 	struct task_struct *tsk;
1714 	unsigned int checkflags = 0;
1715 	int ret;
1716 
1717 	if (old_rlim)
1718 		checkflags |= LSM_PRLIMIT_READ;
1719 
1720 	if (new_rlim) {
1721 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1722 			return -EFAULT;
1723 		rlim64_to_rlim(&new64, &new);
1724 		checkflags |= LSM_PRLIMIT_WRITE;
1725 	}
1726 
1727 	rcu_read_lock();
1728 	tsk = pid ? find_task_by_vpid(pid) : current;
1729 	if (!tsk) {
1730 		rcu_read_unlock();
1731 		return -ESRCH;
1732 	}
1733 	ret = check_prlimit_permission(tsk, checkflags);
1734 	if (ret) {
1735 		rcu_read_unlock();
1736 		return ret;
1737 	}
1738 	get_task_struct(tsk);
1739 	rcu_read_unlock();
1740 
1741 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1742 			old_rlim ? &old : NULL);
1743 
1744 	if (!ret && old_rlim) {
1745 		rlim_to_rlim64(&old, &old64);
1746 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1747 			ret = -EFAULT;
1748 	}
1749 
1750 	put_task_struct(tsk);
1751 	return ret;
1752 }
1753 
SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct rlimit __user *,rlim)1754 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1755 {
1756 	struct rlimit new_rlim;
1757 
1758 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1759 		return -EFAULT;
1760 	return do_prlimit(current, resource, &new_rlim, NULL);
1761 }
1762 
1763 /*
1764  * It would make sense to put struct rusage in the task_struct,
1765  * except that would make the task_struct be *really big*.  After
1766  * task_struct gets moved into malloc'ed memory, it would
1767  * make sense to do this.  It will make moving the rest of the information
1768  * a lot simpler!  (Which we're not doing right now because we're not
1769  * measuring them yet).
1770  *
1771  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1772  * races with threads incrementing their own counters.  But since word
1773  * reads are atomic, we either get new values or old values and we don't
1774  * care which for the sums.  We always take the siglock to protect reading
1775  * the c* fields from p->signal from races with exit.c updating those
1776  * fields when reaping, so a sample either gets all the additions of a
1777  * given child after it's reaped, or none so this sample is before reaping.
1778  *
1779  * Locking:
1780  * We need to take the siglock for CHILDEREN, SELF and BOTH
1781  * for  the cases current multithreaded, non-current single threaded
1782  * non-current multithreaded.  Thread traversal is now safe with
1783  * the siglock held.
1784  * Strictly speaking, we donot need to take the siglock if we are current and
1785  * single threaded,  as no one else can take our signal_struct away, no one
1786  * else can  reap the  children to update signal->c* counters, and no one else
1787  * can race with the signal-> fields. If we do not take any lock, the
1788  * signal-> fields could be read out of order while another thread was just
1789  * exiting. So we should  place a read memory barrier when we avoid the lock.
1790  * On the writer side,  write memory barrier is implied in  __exit_signal
1791  * as __exit_signal releases  the siglock spinlock after updating the signal->
1792  * fields. But we don't do this yet to keep things simple.
1793  *
1794  */
1795 
accumulate_thread_rusage(struct task_struct * t,struct rusage * r)1796 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1797 {
1798 	r->ru_nvcsw += t->nvcsw;
1799 	r->ru_nivcsw += t->nivcsw;
1800 	r->ru_minflt += t->min_flt;
1801 	r->ru_majflt += t->maj_flt;
1802 	r->ru_inblock += task_io_get_inblock(t);
1803 	r->ru_oublock += task_io_get_oublock(t);
1804 }
1805 
getrusage(struct task_struct * p,int who,struct rusage * r)1806 void getrusage(struct task_struct *p, int who, struct rusage *r)
1807 {
1808 	struct task_struct *t;
1809 	unsigned long flags;
1810 	u64 tgutime, tgstime, utime, stime;
1811 	unsigned long maxrss;
1812 	struct mm_struct *mm;
1813 	struct signal_struct *sig = p->signal;
1814 	unsigned int seq = 0;
1815 
1816 retry:
1817 	memset(r, 0, sizeof(*r));
1818 	utime = stime = 0;
1819 	maxrss = 0;
1820 
1821 	if (who == RUSAGE_THREAD) {
1822 		task_cputime_adjusted(current, &utime, &stime);
1823 		accumulate_thread_rusage(p, r);
1824 		maxrss = sig->maxrss;
1825 		goto out_thread;
1826 	}
1827 
1828 	flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
1829 
1830 	switch (who) {
1831 	case RUSAGE_BOTH:
1832 	case RUSAGE_CHILDREN:
1833 		utime = sig->cutime;
1834 		stime = sig->cstime;
1835 		r->ru_nvcsw = sig->cnvcsw;
1836 		r->ru_nivcsw = sig->cnivcsw;
1837 		r->ru_minflt = sig->cmin_flt;
1838 		r->ru_majflt = sig->cmaj_flt;
1839 		r->ru_inblock = sig->cinblock;
1840 		r->ru_oublock = sig->coublock;
1841 		maxrss = sig->cmaxrss;
1842 
1843 		if (who == RUSAGE_CHILDREN)
1844 			break;
1845 		fallthrough;
1846 
1847 	case RUSAGE_SELF:
1848 		r->ru_nvcsw += sig->nvcsw;
1849 		r->ru_nivcsw += sig->nivcsw;
1850 		r->ru_minflt += sig->min_flt;
1851 		r->ru_majflt += sig->maj_flt;
1852 		r->ru_inblock += sig->inblock;
1853 		r->ru_oublock += sig->oublock;
1854 		if (maxrss < sig->maxrss)
1855 			maxrss = sig->maxrss;
1856 
1857 		rcu_read_lock();
1858 		__for_each_thread(sig, t)
1859 			accumulate_thread_rusage(t, r);
1860 		rcu_read_unlock();
1861 
1862 		break;
1863 
1864 	default:
1865 		BUG();
1866 	}
1867 
1868 	if (need_seqretry(&sig->stats_lock, seq)) {
1869 		seq = 1;
1870 		goto retry;
1871 	}
1872 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1873 
1874 	if (who == RUSAGE_CHILDREN)
1875 		goto out_children;
1876 
1877 	thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1878 	utime += tgutime;
1879 	stime += tgstime;
1880 
1881 out_thread:
1882 	mm = get_task_mm(p);
1883 	if (mm) {
1884 		setmax_mm_hiwater_rss(&maxrss, mm);
1885 		mmput(mm);
1886 	}
1887 
1888 out_children:
1889 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1890 	r->ru_utime = ns_to_kernel_old_timeval(utime);
1891 	r->ru_stime = ns_to_kernel_old_timeval(stime);
1892 }
1893 
SYSCALL_DEFINE2(getrusage,int,who,struct rusage __user *,ru)1894 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1895 {
1896 	struct rusage r;
1897 
1898 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1899 	    who != RUSAGE_THREAD)
1900 		return -EINVAL;
1901 
1902 	getrusage(current, who, &r);
1903 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1904 }
1905 
1906 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(getrusage,int,who,struct compat_rusage __user *,ru)1907 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1908 {
1909 	struct rusage r;
1910 
1911 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1912 	    who != RUSAGE_THREAD)
1913 		return -EINVAL;
1914 
1915 	getrusage(current, who, &r);
1916 	return put_compat_rusage(&r, ru);
1917 }
1918 #endif
1919 
SYSCALL_DEFINE1(umask,int,mask)1920 SYSCALL_DEFINE1(umask, int, mask)
1921 {
1922 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1923 	return mask;
1924 }
1925 
prctl_set_mm_exe_file(struct mm_struct * mm,unsigned int fd)1926 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1927 {
1928 	struct fd exe;
1929 	struct inode *inode;
1930 	int err;
1931 
1932 	exe = fdget(fd);
1933 	if (!fd_file(exe))
1934 		return -EBADF;
1935 
1936 	inode = file_inode(fd_file(exe));
1937 
1938 	/*
1939 	 * Because the original mm->exe_file points to executable file, make
1940 	 * sure that this one is executable as well, to avoid breaking an
1941 	 * overall picture.
1942 	 */
1943 	err = -EACCES;
1944 	if (!S_ISREG(inode->i_mode) || path_noexec(&fd_file(exe)->f_path))
1945 		goto exit;
1946 
1947 	err = file_permission(fd_file(exe), MAY_EXEC);
1948 	if (err)
1949 		goto exit;
1950 
1951 	err = replace_mm_exe_file(mm, fd_file(exe));
1952 exit:
1953 	fdput(exe);
1954 	return err;
1955 }
1956 
1957 /*
1958  * Check arithmetic relations of passed addresses.
1959  *
1960  * WARNING: we don't require any capability here so be very careful
1961  * in what is allowed for modification from userspace.
1962  */
validate_prctl_map_addr(struct prctl_mm_map * prctl_map)1963 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1964 {
1965 	unsigned long mmap_max_addr = TASK_SIZE;
1966 	int error = -EINVAL, i;
1967 
1968 	static const unsigned char offsets[] = {
1969 		offsetof(struct prctl_mm_map, start_code),
1970 		offsetof(struct prctl_mm_map, end_code),
1971 		offsetof(struct prctl_mm_map, start_data),
1972 		offsetof(struct prctl_mm_map, end_data),
1973 		offsetof(struct prctl_mm_map, start_brk),
1974 		offsetof(struct prctl_mm_map, brk),
1975 		offsetof(struct prctl_mm_map, start_stack),
1976 		offsetof(struct prctl_mm_map, arg_start),
1977 		offsetof(struct prctl_mm_map, arg_end),
1978 		offsetof(struct prctl_mm_map, env_start),
1979 		offsetof(struct prctl_mm_map, env_end),
1980 	};
1981 
1982 	/*
1983 	 * Make sure the members are not somewhere outside
1984 	 * of allowed address space.
1985 	 */
1986 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1987 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1988 
1989 		if ((unsigned long)val >= mmap_max_addr ||
1990 		    (unsigned long)val < mmap_min_addr)
1991 			goto out;
1992 	}
1993 
1994 	/*
1995 	 * Make sure the pairs are ordered.
1996 	 */
1997 #define __prctl_check_order(__m1, __op, __m2)				\
1998 	((unsigned long)prctl_map->__m1 __op				\
1999 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
2000 	error  = __prctl_check_order(start_code, <, end_code);
2001 	error |= __prctl_check_order(start_data,<=, end_data);
2002 	error |= __prctl_check_order(start_brk, <=, brk);
2003 	error |= __prctl_check_order(arg_start, <=, arg_end);
2004 	error |= __prctl_check_order(env_start, <=, env_end);
2005 	if (error)
2006 		goto out;
2007 #undef __prctl_check_order
2008 
2009 	error = -EINVAL;
2010 
2011 	/*
2012 	 * Neither we should allow to override limits if they set.
2013 	 */
2014 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
2015 			      prctl_map->start_brk, prctl_map->end_data,
2016 			      prctl_map->start_data))
2017 			goto out;
2018 
2019 	error = 0;
2020 out:
2021 	return error;
2022 }
2023 
2024 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_set_mm_map(int opt,const void __user * addr,unsigned long data_size)2025 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
2026 {
2027 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
2028 	unsigned long user_auxv[AT_VECTOR_SIZE];
2029 	struct mm_struct *mm = current->mm;
2030 	int error;
2031 
2032 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2033 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2034 
2035 	if (opt == PR_SET_MM_MAP_SIZE)
2036 		return put_user((unsigned int)sizeof(prctl_map),
2037 				(unsigned int __user *)addr);
2038 
2039 	if (data_size != sizeof(prctl_map))
2040 		return -EINVAL;
2041 
2042 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2043 		return -EFAULT;
2044 
2045 	error = validate_prctl_map_addr(&prctl_map);
2046 	if (error)
2047 		return error;
2048 
2049 	if (prctl_map.auxv_size) {
2050 		/*
2051 		 * Someone is trying to cheat the auxv vector.
2052 		 */
2053 		if (!prctl_map.auxv ||
2054 				prctl_map.auxv_size > sizeof(mm->saved_auxv))
2055 			return -EINVAL;
2056 
2057 		memset(user_auxv, 0, sizeof(user_auxv));
2058 		if (copy_from_user(user_auxv,
2059 				   (const void __user *)prctl_map.auxv,
2060 				   prctl_map.auxv_size))
2061 			return -EFAULT;
2062 
2063 		/* Last entry must be AT_NULL as specification requires */
2064 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2065 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2066 	}
2067 
2068 	if (prctl_map.exe_fd != (u32)-1) {
2069 		/*
2070 		 * Check if the current user is checkpoint/restore capable.
2071 		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2072 		 * or CAP_CHECKPOINT_RESTORE.
2073 		 * Note that a user with access to ptrace can masquerade an
2074 		 * arbitrary program as any executable, even setuid ones.
2075 		 * This may have implications in the tomoyo subsystem.
2076 		 */
2077 		if (!checkpoint_restore_ns_capable(current_user_ns()))
2078 			return -EPERM;
2079 
2080 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2081 		if (error)
2082 			return error;
2083 	}
2084 
2085 	/*
2086 	 * arg_lock protects concurrent updates but we still need mmap_lock for
2087 	 * read to exclude races with sys_brk.
2088 	 */
2089 	mmap_read_lock(mm);
2090 
2091 	/*
2092 	 * We don't validate if these members are pointing to
2093 	 * real present VMAs because application may have correspond
2094 	 * VMAs already unmapped and kernel uses these members for statistics
2095 	 * output in procfs mostly, except
2096 	 *
2097 	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2098 	 *    for VMAs when updating these members so anything wrong written
2099 	 *    here cause kernel to swear at userspace program but won't lead
2100 	 *    to any problem in kernel itself
2101 	 */
2102 
2103 	spin_lock(&mm->arg_lock);
2104 	mm->start_code	= prctl_map.start_code;
2105 	mm->end_code	= prctl_map.end_code;
2106 	mm->start_data	= prctl_map.start_data;
2107 	mm->end_data	= prctl_map.end_data;
2108 	mm->start_brk	= prctl_map.start_brk;
2109 	mm->brk		= prctl_map.brk;
2110 	mm->start_stack	= prctl_map.start_stack;
2111 	mm->arg_start	= prctl_map.arg_start;
2112 	mm->arg_end	= prctl_map.arg_end;
2113 	mm->env_start	= prctl_map.env_start;
2114 	mm->env_end	= prctl_map.env_end;
2115 	spin_unlock(&mm->arg_lock);
2116 
2117 	/*
2118 	 * Note this update of @saved_auxv is lockless thus
2119 	 * if someone reads this member in procfs while we're
2120 	 * updating -- it may get partly updated results. It's
2121 	 * known and acceptable trade off: we leave it as is to
2122 	 * not introduce additional locks here making the kernel
2123 	 * more complex.
2124 	 */
2125 	if (prctl_map.auxv_size)
2126 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2127 
2128 	mmap_read_unlock(mm);
2129 	return 0;
2130 }
2131 #endif /* CONFIG_CHECKPOINT_RESTORE */
2132 
prctl_set_auxv(struct mm_struct * mm,unsigned long addr,unsigned long len)2133 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2134 			  unsigned long len)
2135 {
2136 	/*
2137 	 * This doesn't move the auxiliary vector itself since it's pinned to
2138 	 * mm_struct, but it permits filling the vector with new values.  It's
2139 	 * up to the caller to provide sane values here, otherwise userspace
2140 	 * tools which use this vector might be unhappy.
2141 	 */
2142 	unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2143 
2144 	if (len > sizeof(user_auxv))
2145 		return -EINVAL;
2146 
2147 	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2148 		return -EFAULT;
2149 
2150 	/* Make sure the last entry is always AT_NULL */
2151 	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2152 	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2153 
2154 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2155 
2156 	task_lock(current);
2157 	memcpy(mm->saved_auxv, user_auxv, len);
2158 	task_unlock(current);
2159 
2160 	return 0;
2161 }
2162 
prctl_set_mm(int opt,unsigned long addr,unsigned long arg4,unsigned long arg5)2163 static int prctl_set_mm(int opt, unsigned long addr,
2164 			unsigned long arg4, unsigned long arg5)
2165 {
2166 	struct mm_struct *mm = current->mm;
2167 	struct prctl_mm_map prctl_map = {
2168 		.auxv = NULL,
2169 		.auxv_size = 0,
2170 		.exe_fd = -1,
2171 	};
2172 	struct vm_area_struct *vma;
2173 	int error;
2174 
2175 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2176 			      opt != PR_SET_MM_MAP &&
2177 			      opt != PR_SET_MM_MAP_SIZE)))
2178 		return -EINVAL;
2179 
2180 #ifdef CONFIG_CHECKPOINT_RESTORE
2181 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2182 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2183 #endif
2184 
2185 	if (!capable(CAP_SYS_RESOURCE))
2186 		return -EPERM;
2187 
2188 	if (opt == PR_SET_MM_EXE_FILE)
2189 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2190 
2191 	if (opt == PR_SET_MM_AUXV)
2192 		return prctl_set_auxv(mm, addr, arg4);
2193 
2194 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2195 		return -EINVAL;
2196 
2197 	error = -EINVAL;
2198 
2199 	/*
2200 	 * arg_lock protects concurrent updates of arg boundaries, we need
2201 	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2202 	 * validation.
2203 	 */
2204 	mmap_read_lock(mm);
2205 	vma = find_vma(mm, addr);
2206 
2207 	spin_lock(&mm->arg_lock);
2208 	prctl_map.start_code	= mm->start_code;
2209 	prctl_map.end_code	= mm->end_code;
2210 	prctl_map.start_data	= mm->start_data;
2211 	prctl_map.end_data	= mm->end_data;
2212 	prctl_map.start_brk	= mm->start_brk;
2213 	prctl_map.brk		= mm->brk;
2214 	prctl_map.start_stack	= mm->start_stack;
2215 	prctl_map.arg_start	= mm->arg_start;
2216 	prctl_map.arg_end	= mm->arg_end;
2217 	prctl_map.env_start	= mm->env_start;
2218 	prctl_map.env_end	= mm->env_end;
2219 
2220 	switch (opt) {
2221 	case PR_SET_MM_START_CODE:
2222 		prctl_map.start_code = addr;
2223 		break;
2224 	case PR_SET_MM_END_CODE:
2225 		prctl_map.end_code = addr;
2226 		break;
2227 	case PR_SET_MM_START_DATA:
2228 		prctl_map.start_data = addr;
2229 		break;
2230 	case PR_SET_MM_END_DATA:
2231 		prctl_map.end_data = addr;
2232 		break;
2233 	case PR_SET_MM_START_STACK:
2234 		prctl_map.start_stack = addr;
2235 		break;
2236 	case PR_SET_MM_START_BRK:
2237 		prctl_map.start_brk = addr;
2238 		break;
2239 	case PR_SET_MM_BRK:
2240 		prctl_map.brk = addr;
2241 		break;
2242 	case PR_SET_MM_ARG_START:
2243 		prctl_map.arg_start = addr;
2244 		break;
2245 	case PR_SET_MM_ARG_END:
2246 		prctl_map.arg_end = addr;
2247 		break;
2248 	case PR_SET_MM_ENV_START:
2249 		prctl_map.env_start = addr;
2250 		break;
2251 	case PR_SET_MM_ENV_END:
2252 		prctl_map.env_end = addr;
2253 		break;
2254 	default:
2255 		goto out;
2256 	}
2257 
2258 	error = validate_prctl_map_addr(&prctl_map);
2259 	if (error)
2260 		goto out;
2261 
2262 	switch (opt) {
2263 	/*
2264 	 * If command line arguments and environment
2265 	 * are placed somewhere else on stack, we can
2266 	 * set them up here, ARG_START/END to setup
2267 	 * command line arguments and ENV_START/END
2268 	 * for environment.
2269 	 */
2270 	case PR_SET_MM_START_STACK:
2271 	case PR_SET_MM_ARG_START:
2272 	case PR_SET_MM_ARG_END:
2273 	case PR_SET_MM_ENV_START:
2274 	case PR_SET_MM_ENV_END:
2275 		if (!vma) {
2276 			error = -EFAULT;
2277 			goto out;
2278 		}
2279 	}
2280 
2281 	mm->start_code	= prctl_map.start_code;
2282 	mm->end_code	= prctl_map.end_code;
2283 	mm->start_data	= prctl_map.start_data;
2284 	mm->end_data	= prctl_map.end_data;
2285 	mm->start_brk	= prctl_map.start_brk;
2286 	mm->brk		= prctl_map.brk;
2287 	mm->start_stack	= prctl_map.start_stack;
2288 	mm->arg_start	= prctl_map.arg_start;
2289 	mm->arg_end	= prctl_map.arg_end;
2290 	mm->env_start	= prctl_map.env_start;
2291 	mm->env_end	= prctl_map.env_end;
2292 
2293 	error = 0;
2294 out:
2295 	spin_unlock(&mm->arg_lock);
2296 	mmap_read_unlock(mm);
2297 	return error;
2298 }
2299 
2300 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2301 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2302 {
2303 	return put_user(me->clear_child_tid, tid_addr);
2304 }
2305 #else
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2306 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2307 {
2308 	return -EINVAL;
2309 }
2310 #endif
2311 
propagate_has_child_subreaper(struct task_struct * p,void * data)2312 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2313 {
2314 	/*
2315 	 * If task has has_child_subreaper - all its descendants
2316 	 * already have these flag too and new descendants will
2317 	 * inherit it on fork, skip them.
2318 	 *
2319 	 * If we've found child_reaper - skip descendants in
2320 	 * it's subtree as they will never get out pidns.
2321 	 */
2322 	if (p->signal->has_child_subreaper ||
2323 	    is_child_reaper(task_pid(p)))
2324 		return 0;
2325 
2326 	p->signal->has_child_subreaper = 1;
2327 	return 1;
2328 }
2329 
arch_prctl_spec_ctrl_get(struct task_struct * t,unsigned long which)2330 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2331 {
2332 	return -EINVAL;
2333 }
2334 
arch_prctl_spec_ctrl_set(struct task_struct * t,unsigned long which,unsigned long ctrl)2335 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2336 				    unsigned long ctrl)
2337 {
2338 	return -EINVAL;
2339 }
2340 
2341 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2342 
2343 #ifdef CONFIG_ANON_VMA_NAME
2344 
2345 #define ANON_VMA_NAME_MAX_LEN		80
2346 #define ANON_VMA_NAME_INVALID_CHARS	"\\`$[]"
2347 
is_valid_name_char(char ch)2348 static inline bool is_valid_name_char(char ch)
2349 {
2350 	/* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2351 	return ch > 0x1f && ch < 0x7f &&
2352 		!strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2353 }
2354 
prctl_set_vma(unsigned long opt,unsigned long addr,unsigned long size,unsigned long arg)2355 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2356 			 unsigned long size, unsigned long arg)
2357 {
2358 	struct mm_struct *mm = current->mm;
2359 	const char __user *uname;
2360 	struct anon_vma_name *anon_name = NULL;
2361 	bool bypass = false;
2362 	int error;
2363 
2364 	switch (opt) {
2365 	case PR_SET_VMA_ANON_NAME:
2366 		uname = (const char __user *)arg;
2367 		if (uname) {
2368 			char *name, *pch;
2369 
2370 			name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2371 			if (IS_ERR(name))
2372 				return PTR_ERR(name);
2373 
2374 			for (pch = name; *pch != '\0'; pch++) {
2375 				if (!is_valid_name_char(*pch)) {
2376 					kfree(name);
2377 					return -EINVAL;
2378 				}
2379 			}
2380 			/* anon_vma has its own copy */
2381 			anon_name = anon_vma_name_alloc(name);
2382 			kfree(name);
2383 			if (!anon_name)
2384 				return -ENOMEM;
2385 
2386 		}
2387 
2388 		trace_android_rvh_pr_set_vma_name_bypass(mm, addr, size, anon_name,
2389 			      &error, &bypass);
2390 		if (bypass)
2391 			return error;
2392 		mmap_write_lock(mm);
2393 		error = madvise_set_anon_name(mm, addr, size, anon_name);
2394 		mmap_write_unlock(mm);
2395 		anon_vma_name_put(anon_name);
2396 		break;
2397 	default:
2398 		error = -EINVAL;
2399 	}
2400 
2401 	return error;
2402 }
2403 
2404 #else /* CONFIG_ANON_VMA_NAME */
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long size,unsigned long arg)2405 static int prctl_set_vma(unsigned long opt, unsigned long start,
2406 			 unsigned long size, unsigned long arg)
2407 {
2408 	return -EINVAL;
2409 }
2410 #endif /* CONFIG_ANON_VMA_NAME */
2411 
get_current_mdwe(void)2412 static inline unsigned long get_current_mdwe(void)
2413 {
2414 	unsigned long ret = 0;
2415 
2416 	if (test_bit(MMF_HAS_MDWE, &current->mm->flags))
2417 		ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2418 	if (test_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags))
2419 		ret |= PR_MDWE_NO_INHERIT;
2420 
2421 	return ret;
2422 }
2423 
prctl_set_mdwe(unsigned long bits,unsigned long arg3,unsigned long arg4,unsigned long arg5)2424 static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2425 				 unsigned long arg4, unsigned long arg5)
2426 {
2427 	unsigned long current_bits;
2428 
2429 	if (arg3 || arg4 || arg5)
2430 		return -EINVAL;
2431 
2432 	if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2433 		return -EINVAL;
2434 
2435 	/* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2436 	if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2437 		return -EINVAL;
2438 
2439 	/*
2440 	 * EOPNOTSUPP might be more appropriate here in principle, but
2441 	 * existing userspace depends on EINVAL specifically.
2442 	 */
2443 	if (!arch_memory_deny_write_exec_supported())
2444 		return -EINVAL;
2445 
2446 	current_bits = get_current_mdwe();
2447 	if (current_bits && current_bits != bits)
2448 		return -EPERM; /* Cannot unset the flags */
2449 
2450 	if (bits & PR_MDWE_NO_INHERIT)
2451 		set_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags);
2452 	if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2453 		set_bit(MMF_HAS_MDWE, &current->mm->flags);
2454 
2455 	return 0;
2456 }
2457 
prctl_get_mdwe(unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)2458 static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2459 				 unsigned long arg4, unsigned long arg5)
2460 {
2461 	if (arg2 || arg3 || arg4 || arg5)
2462 		return -EINVAL;
2463 	return get_current_mdwe();
2464 }
2465 
prctl_get_auxv(void __user * addr,unsigned long len)2466 static int prctl_get_auxv(void __user *addr, unsigned long len)
2467 {
2468 	struct mm_struct *mm = current->mm;
2469 	unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2470 
2471 	if (size && copy_to_user(addr, mm->saved_auxv, size))
2472 		return -EFAULT;
2473 	return sizeof(mm->saved_auxv);
2474 }
2475 
SYSCALL_DEFINE5(prctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)2476 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2477 		unsigned long, arg4, unsigned long, arg5)
2478 {
2479 	struct task_struct *me = current;
2480 	unsigned char comm[sizeof(me->comm)];
2481 	long error;
2482 
2483 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2484 	if (error != -ENOSYS)
2485 		return error;
2486 
2487 	error = 0;
2488 	switch (option) {
2489 	case PR_SET_PDEATHSIG:
2490 		if (!valid_signal(arg2)) {
2491 			error = -EINVAL;
2492 			break;
2493 		}
2494 		me->pdeath_signal = arg2;
2495 		break;
2496 	case PR_GET_PDEATHSIG:
2497 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2498 		break;
2499 	case PR_GET_DUMPABLE:
2500 		error = get_dumpable(me->mm);
2501 		break;
2502 	case PR_SET_DUMPABLE:
2503 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2504 			error = -EINVAL;
2505 			break;
2506 		}
2507 		set_dumpable(me->mm, arg2);
2508 		break;
2509 
2510 	case PR_SET_UNALIGN:
2511 		error = SET_UNALIGN_CTL(me, arg2);
2512 		break;
2513 	case PR_GET_UNALIGN:
2514 		error = GET_UNALIGN_CTL(me, arg2);
2515 		break;
2516 	case PR_SET_FPEMU:
2517 		error = SET_FPEMU_CTL(me, arg2);
2518 		break;
2519 	case PR_GET_FPEMU:
2520 		error = GET_FPEMU_CTL(me, arg2);
2521 		break;
2522 	case PR_SET_FPEXC:
2523 		error = SET_FPEXC_CTL(me, arg2);
2524 		break;
2525 	case PR_GET_FPEXC:
2526 		error = GET_FPEXC_CTL(me, arg2);
2527 		break;
2528 	case PR_GET_TIMING:
2529 		error = PR_TIMING_STATISTICAL;
2530 		break;
2531 	case PR_SET_TIMING:
2532 		if (arg2 != PR_TIMING_STATISTICAL)
2533 			error = -EINVAL;
2534 		break;
2535 	case PR_SET_NAME:
2536 		comm[sizeof(me->comm) - 1] = 0;
2537 		if (strncpy_from_user(comm, (char __user *)arg2,
2538 				      sizeof(me->comm) - 1) < 0)
2539 			return -EFAULT;
2540 		set_task_comm(me, comm);
2541 		proc_comm_connector(me);
2542 		break;
2543 	case PR_GET_NAME:
2544 		get_task_comm(comm, me);
2545 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2546 			return -EFAULT;
2547 		break;
2548 	case PR_GET_ENDIAN:
2549 		error = GET_ENDIAN(me, arg2);
2550 		break;
2551 	case PR_SET_ENDIAN:
2552 		error = SET_ENDIAN(me, arg2);
2553 		break;
2554 	case PR_GET_SECCOMP:
2555 		error = prctl_get_seccomp();
2556 		break;
2557 	case PR_SET_SECCOMP:
2558 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2559 		break;
2560 	case PR_GET_TSC:
2561 		error = GET_TSC_CTL(arg2);
2562 		break;
2563 	case PR_SET_TSC:
2564 		error = SET_TSC_CTL(arg2);
2565 		break;
2566 	case PR_TASK_PERF_EVENTS_DISABLE:
2567 		error = perf_event_task_disable();
2568 		break;
2569 	case PR_TASK_PERF_EVENTS_ENABLE:
2570 		error = perf_event_task_enable();
2571 		break;
2572 	case PR_GET_TIMERSLACK:
2573 		if (current->timer_slack_ns > ULONG_MAX)
2574 			error = ULONG_MAX;
2575 		else
2576 			error = current->timer_slack_ns;
2577 		break;
2578 	case PR_SET_TIMERSLACK:
2579 		if (rt_or_dl_task_policy(current))
2580 			break;
2581 		if (arg2 <= 0)
2582 			current->timer_slack_ns =
2583 					current->default_timer_slack_ns;
2584 		else
2585 			current->timer_slack_ns = arg2;
2586 		break;
2587 	case PR_MCE_KILL:
2588 		if (arg4 | arg5)
2589 			return -EINVAL;
2590 		switch (arg2) {
2591 		case PR_MCE_KILL_CLEAR:
2592 			if (arg3 != 0)
2593 				return -EINVAL;
2594 			current->flags &= ~PF_MCE_PROCESS;
2595 			break;
2596 		case PR_MCE_KILL_SET:
2597 			current->flags |= PF_MCE_PROCESS;
2598 			if (arg3 == PR_MCE_KILL_EARLY)
2599 				current->flags |= PF_MCE_EARLY;
2600 			else if (arg3 == PR_MCE_KILL_LATE)
2601 				current->flags &= ~PF_MCE_EARLY;
2602 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2603 				current->flags &=
2604 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2605 			else
2606 				return -EINVAL;
2607 			break;
2608 		default:
2609 			return -EINVAL;
2610 		}
2611 		break;
2612 	case PR_MCE_KILL_GET:
2613 		if (arg2 | arg3 | arg4 | arg5)
2614 			return -EINVAL;
2615 		if (current->flags & PF_MCE_PROCESS)
2616 			error = (current->flags & PF_MCE_EARLY) ?
2617 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2618 		else
2619 			error = PR_MCE_KILL_DEFAULT;
2620 		break;
2621 	case PR_SET_MM:
2622 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2623 		break;
2624 	case PR_GET_TID_ADDRESS:
2625 		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2626 		break;
2627 	case PR_SET_CHILD_SUBREAPER:
2628 		me->signal->is_child_subreaper = !!arg2;
2629 		if (!arg2)
2630 			break;
2631 
2632 		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2633 		break;
2634 	case PR_GET_CHILD_SUBREAPER:
2635 		error = put_user(me->signal->is_child_subreaper,
2636 				 (int __user *)arg2);
2637 		break;
2638 	case PR_SET_NO_NEW_PRIVS:
2639 		if (arg2 != 1 || arg3 || arg4 || arg5)
2640 			return -EINVAL;
2641 
2642 		task_set_no_new_privs(current);
2643 		break;
2644 	case PR_GET_NO_NEW_PRIVS:
2645 		if (arg2 || arg3 || arg4 || arg5)
2646 			return -EINVAL;
2647 		return task_no_new_privs(current) ? 1 : 0;
2648 	case PR_GET_THP_DISABLE:
2649 		if (arg2 || arg3 || arg4 || arg5)
2650 			return -EINVAL;
2651 		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2652 		break;
2653 	case PR_SET_THP_DISABLE:
2654 		if (arg3 || arg4 || arg5)
2655 			return -EINVAL;
2656 		if (mmap_write_lock_killable(me->mm))
2657 			return -EINTR;
2658 		if (arg2)
2659 			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2660 		else
2661 			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2662 		mmap_write_unlock(me->mm);
2663 		break;
2664 	case PR_MPX_ENABLE_MANAGEMENT:
2665 	case PR_MPX_DISABLE_MANAGEMENT:
2666 		/* No longer implemented: */
2667 		return -EINVAL;
2668 	case PR_SET_FP_MODE:
2669 		error = SET_FP_MODE(me, arg2);
2670 		break;
2671 	case PR_GET_FP_MODE:
2672 		error = GET_FP_MODE(me);
2673 		break;
2674 	case PR_SVE_SET_VL:
2675 		error = SVE_SET_VL(arg2);
2676 		break;
2677 	case PR_SVE_GET_VL:
2678 		error = SVE_GET_VL();
2679 		break;
2680 	case PR_SME_SET_VL:
2681 		error = SME_SET_VL(arg2);
2682 		break;
2683 	case PR_SME_GET_VL:
2684 		error = SME_GET_VL();
2685 		break;
2686 	case PR_GET_SPECULATION_CTRL:
2687 		if (arg3 || arg4 || arg5)
2688 			return -EINVAL;
2689 		error = arch_prctl_spec_ctrl_get(me, arg2);
2690 		break;
2691 	case PR_SET_SPECULATION_CTRL:
2692 		if (arg4 || arg5)
2693 			return -EINVAL;
2694 		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2695 		break;
2696 	case PR_PAC_RESET_KEYS:
2697 		if (arg3 || arg4 || arg5)
2698 			return -EINVAL;
2699 		error = PAC_RESET_KEYS(me, arg2);
2700 		break;
2701 	case PR_PAC_SET_ENABLED_KEYS:
2702 		if (arg4 || arg5)
2703 			return -EINVAL;
2704 		error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2705 		break;
2706 	case PR_PAC_GET_ENABLED_KEYS:
2707 		if (arg2 || arg3 || arg4 || arg5)
2708 			return -EINVAL;
2709 		error = PAC_GET_ENABLED_KEYS(me);
2710 		break;
2711 	case PR_SET_TAGGED_ADDR_CTRL:
2712 		if (arg3 || arg4 || arg5)
2713 			return -EINVAL;
2714 		error = SET_TAGGED_ADDR_CTRL(arg2);
2715 		break;
2716 	case PR_GET_TAGGED_ADDR_CTRL:
2717 		if (arg2 || arg3 || arg4 || arg5)
2718 			return -EINVAL;
2719 		error = GET_TAGGED_ADDR_CTRL();
2720 		break;
2721 	case PR_SET_IO_FLUSHER:
2722 		if (!capable(CAP_SYS_RESOURCE))
2723 			return -EPERM;
2724 
2725 		if (arg3 || arg4 || arg5)
2726 			return -EINVAL;
2727 
2728 		if (arg2 == 1)
2729 			current->flags |= PR_IO_FLUSHER;
2730 		else if (!arg2)
2731 			current->flags &= ~PR_IO_FLUSHER;
2732 		else
2733 			return -EINVAL;
2734 		break;
2735 	case PR_GET_IO_FLUSHER:
2736 		if (!capable(CAP_SYS_RESOURCE))
2737 			return -EPERM;
2738 
2739 		if (arg2 || arg3 || arg4 || arg5)
2740 			return -EINVAL;
2741 
2742 		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2743 		break;
2744 	case PR_SET_SYSCALL_USER_DISPATCH:
2745 		error = set_syscall_user_dispatch(arg2, arg3, arg4,
2746 						  (char __user *) arg5);
2747 		break;
2748 #ifdef CONFIG_SCHED_CORE
2749 	case PR_SCHED_CORE:
2750 		error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2751 		break;
2752 #endif
2753 	case PR_SET_MDWE:
2754 		error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2755 		break;
2756 	case PR_GET_MDWE:
2757 		error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2758 		break;
2759 	case PR_PPC_GET_DEXCR:
2760 		if (arg3 || arg4 || arg5)
2761 			return -EINVAL;
2762 		error = PPC_GET_DEXCR_ASPECT(me, arg2);
2763 		break;
2764 	case PR_PPC_SET_DEXCR:
2765 		if (arg4 || arg5)
2766 			return -EINVAL;
2767 		error = PPC_SET_DEXCR_ASPECT(me, arg2, arg3);
2768 		break;
2769 	case PR_SET_VMA:
2770 		error = prctl_set_vma(arg2, arg3, arg4, arg5);
2771 		break;
2772 	case PR_GET_AUXV:
2773 		if (arg4 || arg5)
2774 			return -EINVAL;
2775 		error = prctl_get_auxv((void __user *)arg2, arg3);
2776 		break;
2777 #ifdef CONFIG_KSM
2778 	case PR_SET_MEMORY_MERGE:
2779 		if (arg3 || arg4 || arg5)
2780 			return -EINVAL;
2781 		if (mmap_write_lock_killable(me->mm))
2782 			return -EINTR;
2783 
2784 		if (arg2)
2785 			error = ksm_enable_merge_any(me->mm);
2786 		else
2787 			error = ksm_disable_merge_any(me->mm);
2788 		mmap_write_unlock(me->mm);
2789 		break;
2790 	case PR_GET_MEMORY_MERGE:
2791 		if (arg2 || arg3 || arg4 || arg5)
2792 			return -EINVAL;
2793 
2794 		error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2795 		break;
2796 #endif
2797 	case PR_RISCV_V_SET_CONTROL:
2798 		error = RISCV_V_SET_CONTROL(arg2);
2799 		break;
2800 	case PR_RISCV_V_GET_CONTROL:
2801 		error = RISCV_V_GET_CONTROL();
2802 		break;
2803 	case PR_RISCV_SET_ICACHE_FLUSH_CTX:
2804 		error = RISCV_SET_ICACHE_FLUSH_CTX(arg2, arg3);
2805 		break;
2806 	default:
2807 		error = -EINVAL;
2808 		break;
2809 	}
2810 	trace_android_vh_syscall_prctl_finished(option, me);
2811 	return error;
2812 }
2813 
SYSCALL_DEFINE3(getcpu,unsigned __user *,cpup,unsigned __user *,nodep,struct getcpu_cache __user *,unused)2814 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2815 		struct getcpu_cache __user *, unused)
2816 {
2817 	int err = 0;
2818 	int cpu = raw_smp_processor_id();
2819 
2820 	if (cpup)
2821 		err |= put_user(cpu, cpup);
2822 	if (nodep)
2823 		err |= put_user(cpu_to_node(cpu), nodep);
2824 	return err ? -EFAULT : 0;
2825 }
2826 
2827 /**
2828  * do_sysinfo - fill in sysinfo struct
2829  * @info: pointer to buffer to fill
2830  */
do_sysinfo(struct sysinfo * info)2831 static int do_sysinfo(struct sysinfo *info)
2832 {
2833 	unsigned long mem_total, sav_total;
2834 	unsigned int mem_unit, bitcount;
2835 	struct timespec64 tp;
2836 
2837 	memset(info, 0, sizeof(struct sysinfo));
2838 
2839 	ktime_get_boottime_ts64(&tp);
2840 	timens_add_boottime(&tp);
2841 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2842 
2843 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2844 
2845 	info->procs = nr_threads;
2846 
2847 	si_meminfo(info);
2848 	si_swapinfo(info);
2849 
2850 	/*
2851 	 * If the sum of all the available memory (i.e. ram + swap)
2852 	 * is less than can be stored in a 32 bit unsigned long then
2853 	 * we can be binary compatible with 2.2.x kernels.  If not,
2854 	 * well, in that case 2.2.x was broken anyways...
2855 	 *
2856 	 *  -Erik Andersen <andersee@debian.org>
2857 	 */
2858 
2859 	mem_total = info->totalram + info->totalswap;
2860 	if (mem_total < info->totalram || mem_total < info->totalswap)
2861 		goto out;
2862 	bitcount = 0;
2863 	mem_unit = info->mem_unit;
2864 	while (mem_unit > 1) {
2865 		bitcount++;
2866 		mem_unit >>= 1;
2867 		sav_total = mem_total;
2868 		mem_total <<= 1;
2869 		if (mem_total < sav_total)
2870 			goto out;
2871 	}
2872 
2873 	/*
2874 	 * If mem_total did not overflow, multiply all memory values by
2875 	 * info->mem_unit and set it to 1.  This leaves things compatible
2876 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2877 	 * kernels...
2878 	 */
2879 
2880 	info->mem_unit = 1;
2881 	info->totalram <<= bitcount;
2882 	info->freeram <<= bitcount;
2883 	info->sharedram <<= bitcount;
2884 	info->bufferram <<= bitcount;
2885 	info->totalswap <<= bitcount;
2886 	info->freeswap <<= bitcount;
2887 	info->totalhigh <<= bitcount;
2888 	info->freehigh <<= bitcount;
2889 
2890 out:
2891 	return 0;
2892 }
2893 
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)2894 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2895 {
2896 	struct sysinfo val;
2897 
2898 	do_sysinfo(&val);
2899 
2900 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2901 		return -EFAULT;
2902 
2903 	return 0;
2904 }
2905 
2906 #ifdef CONFIG_COMPAT
2907 struct compat_sysinfo {
2908 	s32 uptime;
2909 	u32 loads[3];
2910 	u32 totalram;
2911 	u32 freeram;
2912 	u32 sharedram;
2913 	u32 bufferram;
2914 	u32 totalswap;
2915 	u32 freeswap;
2916 	u16 procs;
2917 	u16 pad;
2918 	u32 totalhigh;
2919 	u32 freehigh;
2920 	u32 mem_unit;
2921 	char _f[20-2*sizeof(u32)-sizeof(int)];
2922 };
2923 
COMPAT_SYSCALL_DEFINE1(sysinfo,struct compat_sysinfo __user *,info)2924 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2925 {
2926 	struct sysinfo s;
2927 	struct compat_sysinfo s_32;
2928 
2929 	do_sysinfo(&s);
2930 
2931 	/* Check to see if any memory value is too large for 32-bit and scale
2932 	 *  down if needed
2933 	 */
2934 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2935 		int bitcount = 0;
2936 
2937 		while (s.mem_unit < PAGE_SIZE) {
2938 			s.mem_unit <<= 1;
2939 			bitcount++;
2940 		}
2941 
2942 		s.totalram >>= bitcount;
2943 		s.freeram >>= bitcount;
2944 		s.sharedram >>= bitcount;
2945 		s.bufferram >>= bitcount;
2946 		s.totalswap >>= bitcount;
2947 		s.freeswap >>= bitcount;
2948 		s.totalhigh >>= bitcount;
2949 		s.freehigh >>= bitcount;
2950 	}
2951 
2952 	memset(&s_32, 0, sizeof(s_32));
2953 	s_32.uptime = s.uptime;
2954 	s_32.loads[0] = s.loads[0];
2955 	s_32.loads[1] = s.loads[1];
2956 	s_32.loads[2] = s.loads[2];
2957 	s_32.totalram = s.totalram;
2958 	s_32.freeram = s.freeram;
2959 	s_32.sharedram = s.sharedram;
2960 	s_32.bufferram = s.bufferram;
2961 	s_32.totalswap = s.totalswap;
2962 	s_32.freeswap = s.freeswap;
2963 	s_32.procs = s.procs;
2964 	s_32.totalhigh = s.totalhigh;
2965 	s_32.freehigh = s.freehigh;
2966 	s_32.mem_unit = s.mem_unit;
2967 	if (copy_to_user(info, &s_32, sizeof(s_32)))
2968 		return -EFAULT;
2969 	return 0;
2970 }
2971 #endif /* CONFIG_COMPAT */
2972