1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * 2002-10-15 Posix Clocks & timers
4 * by George Anzinger george@mvista.com
5 * Copyright (C) 2002 2003 by MontaVista Software.
6 *
7 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
8 * Copyright (C) 2004 Boris Hu
9 *
10 * These are all the functions necessary to implement POSIX clocks & timers
11 */
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/slab.h>
15 #include <linux/time.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/task.h>
18
19 #include <linux/uaccess.h>
20 #include <linux/list.h>
21 #include <linux/init.h>
22 #include <linux/compiler.h>
23 #include <linux/hash.h>
24 #include <linux/posix-clock.h>
25 #include <linux/posix-timers.h>
26 #include <linux/syscalls.h>
27 #include <linux/wait.h>
28 #include <linux/workqueue.h>
29 #include <linux/export.h>
30 #include <linux/hashtable.h>
31 #include <linux/compat.h>
32 #include <linux/nospec.h>
33 #include <linux/time_namespace.h>
34
35 #include "timekeeping.h"
36 #include "posix-timers.h"
37
38 static struct kmem_cache *posix_timers_cache;
39
40 /*
41 * Timers are managed in a hash table for lockless lookup. The hash key is
42 * constructed from current::signal and the timer ID and the timer is
43 * matched against current::signal and the timer ID when walking the hash
44 * bucket list.
45 *
46 * This allows checkpoint/restore to reconstruct the exact timer IDs for
47 * a process.
48 */
49 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
50 static DEFINE_SPINLOCK(hash_lock);
51
52 static const struct k_clock * const posix_clocks[];
53 static const struct k_clock *clockid_to_kclock(const clockid_t id);
54 static const struct k_clock clock_realtime, clock_monotonic;
55
56 /* SIGEV_THREAD_ID cannot share a bit with the other SIGEV values. */
57 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
58 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
59 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
60 #endif
61
62 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
63
64 #define lock_timer(tid, flags) \
65 ({ struct k_itimer *__timr; \
66 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
67 __timr; \
68 })
69
hash(struct signal_struct * sig,unsigned int nr)70 static int hash(struct signal_struct *sig, unsigned int nr)
71 {
72 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
73 }
74
__posix_timers_find(struct hlist_head * head,struct signal_struct * sig,timer_t id)75 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
76 struct signal_struct *sig,
77 timer_t id)
78 {
79 struct k_itimer *timer;
80
81 hlist_for_each_entry_rcu(timer, head, t_hash, lockdep_is_held(&hash_lock)) {
82 /* timer->it_signal can be set concurrently */
83 if ((READ_ONCE(timer->it_signal) == sig) && (timer->it_id == id))
84 return timer;
85 }
86 return NULL;
87 }
88
posix_timer_by_id(timer_t id)89 static struct k_itimer *posix_timer_by_id(timer_t id)
90 {
91 struct signal_struct *sig = current->signal;
92 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
93
94 return __posix_timers_find(head, sig, id);
95 }
96
posix_timer_add(struct k_itimer * timer)97 static int posix_timer_add(struct k_itimer *timer)
98 {
99 struct signal_struct *sig = current->signal;
100 struct hlist_head *head;
101 unsigned int cnt, id;
102
103 /*
104 * FIXME: Replace this by a per signal struct xarray once there is
105 * a plan to handle the resulting CRIU regression gracefully.
106 */
107 for (cnt = 0; cnt <= INT_MAX; cnt++) {
108 spin_lock(&hash_lock);
109 id = sig->next_posix_timer_id;
110
111 /* Write the next ID back. Clamp it to the positive space */
112 sig->next_posix_timer_id = (id + 1) & INT_MAX;
113
114 head = &posix_timers_hashtable[hash(sig, id)];
115 if (!__posix_timers_find(head, sig, id)) {
116 hlist_add_head_rcu(&timer->t_hash, head);
117 spin_unlock(&hash_lock);
118 return id;
119 }
120 spin_unlock(&hash_lock);
121 cond_resched();
122 }
123 /* POSIX return code when no timer ID could be allocated */
124 return -EAGAIN;
125 }
126
unlock_timer(struct k_itimer * timr,unsigned long flags)127 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
128 {
129 spin_unlock_irqrestore(&timr->it_lock, flags);
130 }
131
posix_get_realtime_timespec(clockid_t which_clock,struct timespec64 * tp)132 static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
133 {
134 ktime_get_real_ts64(tp);
135 return 0;
136 }
137
posix_get_realtime_ktime(clockid_t which_clock)138 static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
139 {
140 return ktime_get_real();
141 }
142
posix_clock_realtime_set(const clockid_t which_clock,const struct timespec64 * tp)143 static int posix_clock_realtime_set(const clockid_t which_clock,
144 const struct timespec64 *tp)
145 {
146 return do_sys_settimeofday64(tp, NULL);
147 }
148
posix_clock_realtime_adj(const clockid_t which_clock,struct __kernel_timex * t)149 static int posix_clock_realtime_adj(const clockid_t which_clock,
150 struct __kernel_timex *t)
151 {
152 return do_adjtimex(t);
153 }
154
posix_get_monotonic_timespec(clockid_t which_clock,struct timespec64 * tp)155 static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
156 {
157 ktime_get_ts64(tp);
158 timens_add_monotonic(tp);
159 return 0;
160 }
161
posix_get_monotonic_ktime(clockid_t which_clock)162 static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
163 {
164 return ktime_get();
165 }
166
posix_get_monotonic_raw(clockid_t which_clock,struct timespec64 * tp)167 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
168 {
169 ktime_get_raw_ts64(tp);
170 timens_add_monotonic(tp);
171 return 0;
172 }
173
posix_get_realtime_coarse(clockid_t which_clock,struct timespec64 * tp)174 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
175 {
176 ktime_get_coarse_real_ts64(tp);
177 return 0;
178 }
179
posix_get_monotonic_coarse(clockid_t which_clock,struct timespec64 * tp)180 static int posix_get_monotonic_coarse(clockid_t which_clock,
181 struct timespec64 *tp)
182 {
183 ktime_get_coarse_ts64(tp);
184 timens_add_monotonic(tp);
185 return 0;
186 }
187
posix_get_coarse_res(const clockid_t which_clock,struct timespec64 * tp)188 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
189 {
190 *tp = ktime_to_timespec64(KTIME_LOW_RES);
191 return 0;
192 }
193
posix_get_boottime_timespec(const clockid_t which_clock,struct timespec64 * tp)194 static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
195 {
196 ktime_get_boottime_ts64(tp);
197 timens_add_boottime(tp);
198 return 0;
199 }
200
posix_get_boottime_ktime(const clockid_t which_clock)201 static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
202 {
203 return ktime_get_boottime();
204 }
205
posix_get_tai_timespec(clockid_t which_clock,struct timespec64 * tp)206 static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
207 {
208 ktime_get_clocktai_ts64(tp);
209 return 0;
210 }
211
posix_get_tai_ktime(clockid_t which_clock)212 static ktime_t posix_get_tai_ktime(clockid_t which_clock)
213 {
214 return ktime_get_clocktai();
215 }
216
posix_get_hrtimer_res(clockid_t which_clock,struct timespec64 * tp)217 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
218 {
219 tp->tv_sec = 0;
220 tp->tv_nsec = hrtimer_resolution;
221 return 0;
222 }
223
init_posix_timers(void)224 static __init int init_posix_timers(void)
225 {
226 posix_timers_cache = kmem_cache_create("posix_timers_cache",
227 sizeof(struct k_itimer), 0,
228 SLAB_PANIC | SLAB_ACCOUNT, NULL);
229 return 0;
230 }
231 __initcall(init_posix_timers);
232
233 /*
234 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
235 * are of type int. Clamp the overrun value to INT_MAX
236 */
timer_overrun_to_int(struct k_itimer * timr,int baseval)237 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
238 {
239 s64 sum = timr->it_overrun_last + (s64)baseval;
240
241 return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
242 }
243
common_hrtimer_rearm(struct k_itimer * timr)244 static void common_hrtimer_rearm(struct k_itimer *timr)
245 {
246 struct hrtimer *timer = &timr->it.real.timer;
247
248 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
249 timr->it_interval);
250 hrtimer_restart(timer);
251 }
252
253 /*
254 * This function is called from the signal delivery code if
255 * info->si_sys_private is not zero, which indicates that the timer has to
256 * be rearmed. Restart the timer and update info::si_overrun.
257 */
posixtimer_rearm(struct kernel_siginfo * info)258 void posixtimer_rearm(struct kernel_siginfo *info)
259 {
260 struct k_itimer *timr;
261 unsigned long flags;
262
263 timr = lock_timer(info->si_tid, &flags);
264 if (!timr)
265 return;
266
267 if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
268 timr->kclock->timer_rearm(timr);
269
270 timr->it_active = 1;
271 timr->it_overrun_last = timr->it_overrun;
272 timr->it_overrun = -1LL;
273 ++timr->it_requeue_pending;
274
275 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
276 }
277
278 unlock_timer(timr, flags);
279 }
280
posix_timer_queue_signal(struct k_itimer * timr)281 int posix_timer_queue_signal(struct k_itimer *timr)
282 {
283 int ret, si_private = 0;
284 enum pid_type type;
285
286 lockdep_assert_held(&timr->it_lock);
287
288 timr->it_active = 0;
289 if (timr->it_interval)
290 si_private = ++timr->it_requeue_pending;
291
292 /*
293 * FIXME: if ->sigq is queued we can race with
294 * dequeue_signal()->posixtimer_rearm().
295 *
296 * If dequeue_signal() sees the "right" value of
297 * si_sys_private it calls posixtimer_rearm().
298 * We re-queue ->sigq and drop ->it_lock().
299 * posixtimer_rearm() locks the timer
300 * and re-schedules it while ->sigq is pending.
301 * Not really bad, but not that we want.
302 */
303 timr->sigq->info.si_sys_private = si_private;
304
305 type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
306 ret = send_sigqueue(timr->sigq, timr->it_pid, type);
307 /* If we failed to send the signal the timer stops. */
308 return ret > 0;
309 }
310
311 /*
312 * This function gets called when a POSIX.1b interval timer expires from
313 * the HRTIMER interrupt (soft interrupt on RT kernels).
314 *
315 * Handles CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME and CLOCK_TAI
316 * based timers.
317 */
posix_timer_fn(struct hrtimer * timer)318 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
319 {
320 struct k_itimer *timr = container_of(timer, struct k_itimer, it.real.timer);
321 enum hrtimer_restart ret = HRTIMER_NORESTART;
322 unsigned long flags;
323
324 spin_lock_irqsave(&timr->it_lock, flags);
325
326 if (posix_timer_queue_signal(timr)) {
327 /*
328 * The signal was not queued due to SIG_IGN. As a
329 * consequence the timer is not going to be rearmed from
330 * the signal delivery path. But as a real signal handler
331 * can be installed later the timer must be rearmed here.
332 */
333 if (timr->it_interval != 0) {
334 ktime_t now = hrtimer_cb_get_time(timer);
335
336 /*
337 * FIXME: What we really want, is to stop this
338 * timer completely and restart it in case the
339 * SIG_IGN is removed. This is a non trivial
340 * change to the signal handling code.
341 *
342 * For now let timers with an interval less than a
343 * jiffy expire every jiffy and recheck for a
344 * valid signal handler.
345 *
346 * This avoids interrupt starvation in case of a
347 * very small interval, which would expire the
348 * timer immediately again.
349 *
350 * Moving now ahead of time by one jiffy tricks
351 * hrtimer_forward() to expire the timer later,
352 * while it still maintains the overrun accuracy
353 * for the price of a slight inconsistency in the
354 * timer_gettime() case. This is at least better
355 * than a timer storm.
356 *
357 * Only required when high resolution timers are
358 * enabled as the periodic tick based timers are
359 * automatically aligned to the next tick.
360 */
361 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS)) {
362 ktime_t kj = TICK_NSEC;
363
364 if (timr->it_interval < kj)
365 now = ktime_add(now, kj);
366 }
367
368 timr->it_overrun += hrtimer_forward(timer, now, timr->it_interval);
369 ret = HRTIMER_RESTART;
370 ++timr->it_requeue_pending;
371 timr->it_active = 1;
372 }
373 }
374
375 unlock_timer(timr, flags);
376 return ret;
377 }
378
good_sigevent(sigevent_t * event)379 static struct pid *good_sigevent(sigevent_t * event)
380 {
381 struct pid *pid = task_tgid(current);
382 struct task_struct *rtn;
383
384 switch (event->sigev_notify) {
385 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
386 pid = find_vpid(event->sigev_notify_thread_id);
387 rtn = pid_task(pid, PIDTYPE_PID);
388 if (!rtn || !same_thread_group(rtn, current))
389 return NULL;
390 fallthrough;
391 case SIGEV_SIGNAL:
392 case SIGEV_THREAD:
393 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
394 return NULL;
395 fallthrough;
396 case SIGEV_NONE:
397 return pid;
398 default:
399 return NULL;
400 }
401 }
402
alloc_posix_timer(void)403 static struct k_itimer * alloc_posix_timer(void)
404 {
405 struct k_itimer *tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
406
407 if (!tmr)
408 return tmr;
409 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
410 kmem_cache_free(posix_timers_cache, tmr);
411 return NULL;
412 }
413 clear_siginfo(&tmr->sigq->info);
414 return tmr;
415 }
416
k_itimer_rcu_free(struct rcu_head * head)417 static void k_itimer_rcu_free(struct rcu_head *head)
418 {
419 struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
420
421 kmem_cache_free(posix_timers_cache, tmr);
422 }
423
posix_timer_free(struct k_itimer * tmr)424 static void posix_timer_free(struct k_itimer *tmr)
425 {
426 put_pid(tmr->it_pid);
427 sigqueue_free(tmr->sigq);
428 call_rcu(&tmr->rcu, k_itimer_rcu_free);
429 }
430
posix_timer_unhash_and_free(struct k_itimer * tmr)431 static void posix_timer_unhash_and_free(struct k_itimer *tmr)
432 {
433 spin_lock(&hash_lock);
434 hlist_del_rcu(&tmr->t_hash);
435 spin_unlock(&hash_lock);
436 posix_timer_free(tmr);
437 }
438
common_timer_create(struct k_itimer * new_timer)439 static int common_timer_create(struct k_itimer *new_timer)
440 {
441 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
442 return 0;
443 }
444
445 /* Create a POSIX.1b interval timer. */
do_timer_create(clockid_t which_clock,struct sigevent * event,timer_t __user * created_timer_id)446 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
447 timer_t __user *created_timer_id)
448 {
449 const struct k_clock *kc = clockid_to_kclock(which_clock);
450 struct k_itimer *new_timer;
451 int error, new_timer_id;
452
453 if (!kc)
454 return -EINVAL;
455 if (!kc->timer_create)
456 return -EOPNOTSUPP;
457
458 new_timer = alloc_posix_timer();
459 if (unlikely(!new_timer))
460 return -EAGAIN;
461
462 spin_lock_init(&new_timer->it_lock);
463
464 /*
465 * Add the timer to the hash table. The timer is not yet valid
466 * because new_timer::it_signal is still NULL. The timer id is also
467 * not yet visible to user space.
468 */
469 new_timer_id = posix_timer_add(new_timer);
470 if (new_timer_id < 0) {
471 posix_timer_free(new_timer);
472 return new_timer_id;
473 }
474
475 new_timer->it_id = (timer_t) new_timer_id;
476 new_timer->it_clock = which_clock;
477 new_timer->kclock = kc;
478 new_timer->it_overrun = -1LL;
479
480 if (event) {
481 rcu_read_lock();
482 new_timer->it_pid = get_pid(good_sigevent(event));
483 rcu_read_unlock();
484 if (!new_timer->it_pid) {
485 error = -EINVAL;
486 goto out;
487 }
488 new_timer->it_sigev_notify = event->sigev_notify;
489 new_timer->sigq->info.si_signo = event->sigev_signo;
490 new_timer->sigq->info.si_value = event->sigev_value;
491 } else {
492 new_timer->it_sigev_notify = SIGEV_SIGNAL;
493 new_timer->sigq->info.si_signo = SIGALRM;
494 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
495 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
496 new_timer->it_pid = get_pid(task_tgid(current));
497 }
498
499 new_timer->sigq->info.si_tid = new_timer->it_id;
500 new_timer->sigq->info.si_code = SI_TIMER;
501
502 if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) {
503 error = -EFAULT;
504 goto out;
505 }
506 /*
507 * After succesful copy out, the timer ID is visible to user space
508 * now but not yet valid because new_timer::signal is still NULL.
509 *
510 * Complete the initialization with the clock specific create
511 * callback.
512 */
513 error = kc->timer_create(new_timer);
514 if (error)
515 goto out;
516
517 /*
518 * timer::it_lock ensures that __lock_timer() observes a fully
519 * initialized timer when it observes a valid timer::it_signal.
520 *
521 * sighand::siglock is required to protect signal::posix_timers.
522 */
523 scoped_guard (spinlock_irq, &new_timer->it_lock) {
524 guard(spinlock)(¤t->sighand->siglock);
525 /* This makes the timer valid in the hash table */
526 WRITE_ONCE(new_timer->it_signal, current->signal);
527 hlist_add_head(&new_timer->list, ¤t->signal->posix_timers);
528 }
529 /*
530 * After unlocking @new_timer is subject to concurrent removal and
531 * cannot be touched anymore
532 */
533 return 0;
534 out:
535 posix_timer_unhash_and_free(new_timer);
536 return error;
537 }
538
SYSCALL_DEFINE3(timer_create,const clockid_t,which_clock,struct sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)539 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
540 struct sigevent __user *, timer_event_spec,
541 timer_t __user *, created_timer_id)
542 {
543 if (timer_event_spec) {
544 sigevent_t event;
545
546 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
547 return -EFAULT;
548 return do_timer_create(which_clock, &event, created_timer_id);
549 }
550 return do_timer_create(which_clock, NULL, created_timer_id);
551 }
552
553 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(timer_create,clockid_t,which_clock,struct compat_sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)554 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
555 struct compat_sigevent __user *, timer_event_spec,
556 timer_t __user *, created_timer_id)
557 {
558 if (timer_event_spec) {
559 sigevent_t event;
560
561 if (get_compat_sigevent(&event, timer_event_spec))
562 return -EFAULT;
563 return do_timer_create(which_clock, &event, created_timer_id);
564 }
565 return do_timer_create(which_clock, NULL, created_timer_id);
566 }
567 #endif
568
__lock_timer(timer_t timer_id,unsigned long * flags)569 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
570 {
571 struct k_itimer *timr;
572
573 /*
574 * timer_t could be any type >= int and we want to make sure any
575 * @timer_id outside positive int range fails lookup.
576 */
577 if ((unsigned long long)timer_id > INT_MAX)
578 return NULL;
579
580 /*
581 * The hash lookup and the timers are RCU protected.
582 *
583 * Timers are added to the hash in invalid state where
584 * timr::it_signal == NULL. timer::it_signal is only set after the
585 * rest of the initialization succeeded.
586 *
587 * Timer destruction happens in steps:
588 * 1) Set timr::it_signal to NULL with timr::it_lock held
589 * 2) Release timr::it_lock
590 * 3) Remove from the hash under hash_lock
591 * 4) Call RCU for removal after the grace period
592 *
593 * Holding rcu_read_lock() accross the lookup ensures that
594 * the timer cannot be freed.
595 *
596 * The lookup validates locklessly that timr::it_signal ==
597 * current::it_signal and timr::it_id == @timer_id. timr::it_id
598 * can't change, but timr::it_signal becomes NULL during
599 * destruction.
600 */
601 rcu_read_lock();
602 timr = posix_timer_by_id(timer_id);
603 if (timr) {
604 spin_lock_irqsave(&timr->it_lock, *flags);
605 /*
606 * Validate under timr::it_lock that timr::it_signal is
607 * still valid. Pairs with #1 above.
608 */
609 if (timr->it_signal == current->signal) {
610 rcu_read_unlock();
611 return timr;
612 }
613 spin_unlock_irqrestore(&timr->it_lock, *flags);
614 }
615 rcu_read_unlock();
616
617 return NULL;
618 }
619
common_hrtimer_remaining(struct k_itimer * timr,ktime_t now)620 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
621 {
622 struct hrtimer *timer = &timr->it.real.timer;
623
624 return __hrtimer_expires_remaining_adjusted(timer, now);
625 }
626
common_hrtimer_forward(struct k_itimer * timr,ktime_t now)627 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
628 {
629 struct hrtimer *timer = &timr->it.real.timer;
630
631 return hrtimer_forward(timer, now, timr->it_interval);
632 }
633
634 /*
635 * Get the time remaining on a POSIX.1b interval timer.
636 *
637 * Two issues to handle here:
638 *
639 * 1) The timer has a requeue pending. The return value must appear as
640 * if the timer has been requeued right now.
641 *
642 * 2) The timer is a SIGEV_NONE timer. These timers are never enqueued
643 * into the hrtimer queue and therefore never expired. Emulate expiry
644 * here taking #1 into account.
645 */
common_timer_get(struct k_itimer * timr,struct itimerspec64 * cur_setting)646 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
647 {
648 const struct k_clock *kc = timr->kclock;
649 ktime_t now, remaining, iv;
650 bool sig_none;
651
652 sig_none = timr->it_sigev_notify == SIGEV_NONE;
653 iv = timr->it_interval;
654
655 /* interval timer ? */
656 if (iv) {
657 cur_setting->it_interval = ktime_to_timespec64(iv);
658 } else if (!timr->it_active) {
659 /*
660 * SIGEV_NONE oneshot timers are never queued and therefore
661 * timr->it_active is always false. The check below
662 * vs. remaining time will handle this case.
663 *
664 * For all other timers there is nothing to update here, so
665 * return.
666 */
667 if (!sig_none)
668 return;
669 }
670
671 now = kc->clock_get_ktime(timr->it_clock);
672
673 /*
674 * If this is an interval timer and either has requeue pending or
675 * is a SIGEV_NONE timer move the expiry time forward by intervals,
676 * so expiry is > now.
677 */
678 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
679 timr->it_overrun += kc->timer_forward(timr, now);
680
681 remaining = kc->timer_remaining(timr, now);
682 /*
683 * As @now is retrieved before a possible timer_forward() and
684 * cannot be reevaluated by the compiler @remaining is based on the
685 * same @now value. Therefore @remaining is consistent vs. @now.
686 *
687 * Consequently all interval timers, i.e. @iv > 0, cannot have a
688 * remaining time <= 0 because timer_forward() guarantees to move
689 * them forward so that the next timer expiry is > @now.
690 */
691 if (remaining <= 0) {
692 /*
693 * A single shot SIGEV_NONE timer must return 0, when it is
694 * expired! Timers which have a real signal delivery mode
695 * must return a remaining time greater than 0 because the
696 * signal has not yet been delivered.
697 */
698 if (!sig_none)
699 cur_setting->it_value.tv_nsec = 1;
700 } else {
701 cur_setting->it_value = ktime_to_timespec64(remaining);
702 }
703 }
704
do_timer_gettime(timer_t timer_id,struct itimerspec64 * setting)705 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
706 {
707 const struct k_clock *kc;
708 struct k_itimer *timr;
709 unsigned long flags;
710 int ret = 0;
711
712 timr = lock_timer(timer_id, &flags);
713 if (!timr)
714 return -EINVAL;
715
716 memset(setting, 0, sizeof(*setting));
717 kc = timr->kclock;
718 if (WARN_ON_ONCE(!kc || !kc->timer_get))
719 ret = -EINVAL;
720 else
721 kc->timer_get(timr, setting);
722
723 unlock_timer(timr, flags);
724 return ret;
725 }
726
727 /* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime,timer_t,timer_id,struct __kernel_itimerspec __user *,setting)728 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
729 struct __kernel_itimerspec __user *, setting)
730 {
731 struct itimerspec64 cur_setting;
732
733 int ret = do_timer_gettime(timer_id, &cur_setting);
734 if (!ret) {
735 if (put_itimerspec64(&cur_setting, setting))
736 ret = -EFAULT;
737 }
738 return ret;
739 }
740
741 #ifdef CONFIG_COMPAT_32BIT_TIME
742
SYSCALL_DEFINE2(timer_gettime32,timer_t,timer_id,struct old_itimerspec32 __user *,setting)743 SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
744 struct old_itimerspec32 __user *, setting)
745 {
746 struct itimerspec64 cur_setting;
747
748 int ret = do_timer_gettime(timer_id, &cur_setting);
749 if (!ret) {
750 if (put_old_itimerspec32(&cur_setting, setting))
751 ret = -EFAULT;
752 }
753 return ret;
754 }
755
756 #endif
757
758 /**
759 * sys_timer_getoverrun - Get the number of overruns of a POSIX.1b interval timer
760 * @timer_id: The timer ID which identifies the timer
761 *
762 * The "overrun count" of a timer is one plus the number of expiration
763 * intervals which have elapsed between the first expiry, which queues the
764 * signal and the actual signal delivery. On signal delivery the "overrun
765 * count" is calculated and cached, so it can be returned directly here.
766 *
767 * As this is relative to the last queued signal the returned overrun count
768 * is meaningless outside of the signal delivery path and even there it
769 * does not accurately reflect the current state when user space evaluates
770 * it.
771 *
772 * Returns:
773 * -EINVAL @timer_id is invalid
774 * 1..INT_MAX The number of overruns related to the last delivered signal
775 */
SYSCALL_DEFINE1(timer_getoverrun,timer_t,timer_id)776 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
777 {
778 struct k_itimer *timr;
779 unsigned long flags;
780 int overrun;
781
782 timr = lock_timer(timer_id, &flags);
783 if (!timr)
784 return -EINVAL;
785
786 overrun = timer_overrun_to_int(timr, 0);
787 unlock_timer(timr, flags);
788
789 return overrun;
790 }
791
common_hrtimer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)792 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
793 bool absolute, bool sigev_none)
794 {
795 struct hrtimer *timer = &timr->it.real.timer;
796 enum hrtimer_mode mode;
797
798 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
799 /*
800 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
801 * clock modifications, so they become CLOCK_MONOTONIC based under the
802 * hood. See hrtimer_init(). Update timr->kclock, so the generic
803 * functions which use timr->kclock->clock_get_*() work.
804 *
805 * Note: it_clock stays unmodified, because the next timer_set() might
806 * use ABSTIME, so it needs to switch back.
807 */
808 if (timr->it_clock == CLOCK_REALTIME)
809 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
810
811 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
812 timr->it.real.timer.function = posix_timer_fn;
813
814 if (!absolute)
815 expires = ktime_add_safe(expires, timer->base->get_time());
816 hrtimer_set_expires(timer, expires);
817
818 if (!sigev_none)
819 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
820 }
821
common_hrtimer_try_to_cancel(struct k_itimer * timr)822 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
823 {
824 return hrtimer_try_to_cancel(&timr->it.real.timer);
825 }
826
common_timer_wait_running(struct k_itimer * timer)827 static void common_timer_wait_running(struct k_itimer *timer)
828 {
829 hrtimer_cancel_wait_running(&timer->it.real.timer);
830 }
831
832 /*
833 * On PREEMPT_RT this prevents priority inversion and a potential livelock
834 * against the ksoftirqd thread in case that ksoftirqd gets preempted while
835 * executing a hrtimer callback.
836 *
837 * See the comments in hrtimer_cancel_wait_running(). For PREEMPT_RT=n this
838 * just results in a cpu_relax().
839 *
840 * For POSIX CPU timers with CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n this is
841 * just a cpu_relax(). With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y this
842 * prevents spinning on an eventually scheduled out task and a livelock
843 * when the task which tries to delete or disarm the timer has preempted
844 * the task which runs the expiry in task work context.
845 */
timer_wait_running(struct k_itimer * timer,unsigned long * flags)846 static struct k_itimer *timer_wait_running(struct k_itimer *timer,
847 unsigned long *flags)
848 {
849 const struct k_clock *kc = READ_ONCE(timer->kclock);
850 timer_t timer_id = READ_ONCE(timer->it_id);
851
852 /* Prevent kfree(timer) after dropping the lock */
853 rcu_read_lock();
854 unlock_timer(timer, *flags);
855
856 /*
857 * kc->timer_wait_running() might drop RCU lock. So @timer
858 * cannot be touched anymore after the function returns!
859 */
860 if (!WARN_ON_ONCE(!kc->timer_wait_running))
861 kc->timer_wait_running(timer);
862
863 rcu_read_unlock();
864 /* Relock the timer. It might be not longer hashed. */
865 return lock_timer(timer_id, flags);
866 }
867
868 /*
869 * Set up the new interval and reset the signal delivery data
870 */
posix_timer_set_common(struct k_itimer * timer,struct itimerspec64 * new_setting)871 void posix_timer_set_common(struct k_itimer *timer, struct itimerspec64 *new_setting)
872 {
873 if (new_setting->it_value.tv_sec || new_setting->it_value.tv_nsec)
874 timer->it_interval = timespec64_to_ktime(new_setting->it_interval);
875 else
876 timer->it_interval = 0;
877
878 /* Prevent reloading in case there is a signal pending */
879 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & ~REQUEUE_PENDING;
880 /* Reset overrun accounting */
881 timer->it_overrun_last = 0;
882 timer->it_overrun = -1LL;
883 }
884
885 /* Set a POSIX.1b interval timer. */
common_timer_set(struct k_itimer * timr,int flags,struct itimerspec64 * new_setting,struct itimerspec64 * old_setting)886 int common_timer_set(struct k_itimer *timr, int flags,
887 struct itimerspec64 *new_setting,
888 struct itimerspec64 *old_setting)
889 {
890 const struct k_clock *kc = timr->kclock;
891 bool sigev_none;
892 ktime_t expires;
893
894 if (old_setting)
895 common_timer_get(timr, old_setting);
896
897 /* Prevent rearming by clearing the interval */
898 timr->it_interval = 0;
899 /*
900 * Careful here. On SMP systems the timer expiry function could be
901 * active and spinning on timr->it_lock.
902 */
903 if (kc->timer_try_to_cancel(timr) < 0)
904 return TIMER_RETRY;
905
906 timr->it_active = 0;
907 posix_timer_set_common(timr, new_setting);
908
909 /* Keep timer disarmed when it_value is zero */
910 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
911 return 0;
912
913 expires = timespec64_to_ktime(new_setting->it_value);
914 if (flags & TIMER_ABSTIME)
915 expires = timens_ktime_to_host(timr->it_clock, expires);
916 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
917
918 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
919 timr->it_active = !sigev_none;
920 return 0;
921 }
922
do_timer_settime(timer_t timer_id,int tmr_flags,struct itimerspec64 * new_spec64,struct itimerspec64 * old_spec64)923 static int do_timer_settime(timer_t timer_id, int tmr_flags,
924 struct itimerspec64 *new_spec64,
925 struct itimerspec64 *old_spec64)
926 {
927 const struct k_clock *kc;
928 struct k_itimer *timr;
929 unsigned long flags;
930 int error;
931
932 if (!timespec64_valid(&new_spec64->it_interval) ||
933 !timespec64_valid(&new_spec64->it_value))
934 return -EINVAL;
935
936 if (old_spec64)
937 memset(old_spec64, 0, sizeof(*old_spec64));
938
939 timr = lock_timer(timer_id, &flags);
940 retry:
941 if (!timr)
942 return -EINVAL;
943
944 if (old_spec64)
945 old_spec64->it_interval = ktime_to_timespec64(timr->it_interval);
946
947 kc = timr->kclock;
948 if (WARN_ON_ONCE(!kc || !kc->timer_set))
949 error = -EINVAL;
950 else
951 error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
952
953 if (error == TIMER_RETRY) {
954 // We already got the old time...
955 old_spec64 = NULL;
956 /* Unlocks and relocks the timer if it still exists */
957 timr = timer_wait_running(timr, &flags);
958 goto retry;
959 }
960 unlock_timer(timr, flags);
961
962 return error;
963 }
964
965 /* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime,timer_t,timer_id,int,flags,const struct __kernel_itimerspec __user *,new_setting,struct __kernel_itimerspec __user *,old_setting)966 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
967 const struct __kernel_itimerspec __user *, new_setting,
968 struct __kernel_itimerspec __user *, old_setting)
969 {
970 struct itimerspec64 new_spec, old_spec, *rtn;
971 int error = 0;
972
973 if (!new_setting)
974 return -EINVAL;
975
976 if (get_itimerspec64(&new_spec, new_setting))
977 return -EFAULT;
978
979 rtn = old_setting ? &old_spec : NULL;
980 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
981 if (!error && old_setting) {
982 if (put_itimerspec64(&old_spec, old_setting))
983 error = -EFAULT;
984 }
985 return error;
986 }
987
988 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(timer_settime32,timer_t,timer_id,int,flags,struct old_itimerspec32 __user *,new,struct old_itimerspec32 __user *,old)989 SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
990 struct old_itimerspec32 __user *, new,
991 struct old_itimerspec32 __user *, old)
992 {
993 struct itimerspec64 new_spec, old_spec;
994 struct itimerspec64 *rtn = old ? &old_spec : NULL;
995 int error = 0;
996
997 if (!new)
998 return -EINVAL;
999 if (get_old_itimerspec32(&new_spec, new))
1000 return -EFAULT;
1001
1002 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1003 if (!error && old) {
1004 if (put_old_itimerspec32(&old_spec, old))
1005 error = -EFAULT;
1006 }
1007 return error;
1008 }
1009 #endif
1010
common_timer_del(struct k_itimer * timer)1011 int common_timer_del(struct k_itimer *timer)
1012 {
1013 const struct k_clock *kc = timer->kclock;
1014
1015 timer->it_interval = 0;
1016 if (kc->timer_try_to_cancel(timer) < 0)
1017 return TIMER_RETRY;
1018 timer->it_active = 0;
1019 return 0;
1020 }
1021
timer_delete_hook(struct k_itimer * timer)1022 static inline int timer_delete_hook(struct k_itimer *timer)
1023 {
1024 const struct k_clock *kc = timer->kclock;
1025
1026 if (WARN_ON_ONCE(!kc || !kc->timer_del))
1027 return -EINVAL;
1028 return kc->timer_del(timer);
1029 }
1030
1031 /* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete,timer_t,timer_id)1032 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1033 {
1034 struct k_itimer *timer;
1035 unsigned long flags;
1036
1037 timer = lock_timer(timer_id, &flags);
1038
1039 retry_delete:
1040 if (!timer)
1041 return -EINVAL;
1042
1043 if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
1044 /* Unlocks and relocks the timer if it still exists */
1045 timer = timer_wait_running(timer, &flags);
1046 goto retry_delete;
1047 }
1048
1049 spin_lock(¤t->sighand->siglock);
1050 hlist_del(&timer->list);
1051 spin_unlock(¤t->sighand->siglock);
1052 /*
1053 * A concurrent lookup could check timer::it_signal lockless. It
1054 * will reevaluate with timer::it_lock held and observe the NULL.
1055 */
1056 WRITE_ONCE(timer->it_signal, NULL);
1057
1058 unlock_timer(timer, flags);
1059 posix_timer_unhash_and_free(timer);
1060 return 0;
1061 }
1062
1063 /*
1064 * Delete a timer if it is armed, remove it from the hash and schedule it
1065 * for RCU freeing.
1066 */
itimer_delete(struct k_itimer * timer)1067 static void itimer_delete(struct k_itimer *timer)
1068 {
1069 unsigned long flags;
1070
1071 /*
1072 * irqsave is required to make timer_wait_running() work.
1073 */
1074 spin_lock_irqsave(&timer->it_lock, flags);
1075
1076 retry_delete:
1077 /*
1078 * Even if the timer is not longer accessible from other tasks
1079 * it still might be armed and queued in the underlying timer
1080 * mechanism. Worse, that timer mechanism might run the expiry
1081 * function concurrently.
1082 */
1083 if (timer_delete_hook(timer) == TIMER_RETRY) {
1084 /*
1085 * Timer is expired concurrently, prevent livelocks
1086 * and pointless spinning on RT.
1087 *
1088 * timer_wait_running() drops timer::it_lock, which opens
1089 * the possibility for another task to delete the timer.
1090 *
1091 * That's not possible here because this is invoked from
1092 * do_exit() only for the last thread of the thread group.
1093 * So no other task can access and delete that timer.
1094 */
1095 if (WARN_ON_ONCE(timer_wait_running(timer, &flags) != timer))
1096 return;
1097
1098 goto retry_delete;
1099 }
1100 hlist_del(&timer->list);
1101
1102 /*
1103 * Setting timer::it_signal to NULL is technically not required
1104 * here as nothing can access the timer anymore legitimately via
1105 * the hash table. Set it to NULL nevertheless so that all deletion
1106 * paths are consistent.
1107 */
1108 WRITE_ONCE(timer->it_signal, NULL);
1109
1110 spin_unlock_irqrestore(&timer->it_lock, flags);
1111 posix_timer_unhash_and_free(timer);
1112 }
1113
1114 /*
1115 * Invoked from do_exit() when the last thread of a thread group exits.
1116 * At that point no other task can access the timers of the dying
1117 * task anymore.
1118 */
exit_itimers(struct task_struct * tsk)1119 void exit_itimers(struct task_struct *tsk)
1120 {
1121 struct hlist_head timers;
1122
1123 if (hlist_empty(&tsk->signal->posix_timers))
1124 return;
1125
1126 /* Protect against concurrent read via /proc/$PID/timers */
1127 spin_lock_irq(&tsk->sighand->siglock);
1128 hlist_move_list(&tsk->signal->posix_timers, &timers);
1129 spin_unlock_irq(&tsk->sighand->siglock);
1130
1131 /* The timers are not longer accessible via tsk::signal */
1132 while (!hlist_empty(&timers))
1133 itimer_delete(hlist_entry(timers.first, struct k_itimer, list));
1134 }
1135
SYSCALL_DEFINE2(clock_settime,const clockid_t,which_clock,const struct __kernel_timespec __user *,tp)1136 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1137 const struct __kernel_timespec __user *, tp)
1138 {
1139 const struct k_clock *kc = clockid_to_kclock(which_clock);
1140 struct timespec64 new_tp;
1141
1142 if (!kc || !kc->clock_set)
1143 return -EINVAL;
1144
1145 if (get_timespec64(&new_tp, tp))
1146 return -EFAULT;
1147
1148 /*
1149 * Permission checks have to be done inside the clock specific
1150 * setter callback.
1151 */
1152 return kc->clock_set(which_clock, &new_tp);
1153 }
1154
SYSCALL_DEFINE2(clock_gettime,const clockid_t,which_clock,struct __kernel_timespec __user *,tp)1155 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1156 struct __kernel_timespec __user *, tp)
1157 {
1158 const struct k_clock *kc = clockid_to_kclock(which_clock);
1159 struct timespec64 kernel_tp;
1160 int error;
1161
1162 if (!kc)
1163 return -EINVAL;
1164
1165 error = kc->clock_get_timespec(which_clock, &kernel_tp);
1166
1167 if (!error && put_timespec64(&kernel_tp, tp))
1168 error = -EFAULT;
1169
1170 return error;
1171 }
1172
do_clock_adjtime(const clockid_t which_clock,struct __kernel_timex * ktx)1173 int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
1174 {
1175 const struct k_clock *kc = clockid_to_kclock(which_clock);
1176
1177 if (!kc)
1178 return -EINVAL;
1179 if (!kc->clock_adj)
1180 return -EOPNOTSUPP;
1181
1182 return kc->clock_adj(which_clock, ktx);
1183 }
1184
SYSCALL_DEFINE2(clock_adjtime,const clockid_t,which_clock,struct __kernel_timex __user *,utx)1185 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1186 struct __kernel_timex __user *, utx)
1187 {
1188 struct __kernel_timex ktx;
1189 int err;
1190
1191 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1192 return -EFAULT;
1193
1194 err = do_clock_adjtime(which_clock, &ktx);
1195
1196 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1197 return -EFAULT;
1198
1199 return err;
1200 }
1201
1202 /**
1203 * sys_clock_getres - Get the resolution of a clock
1204 * @which_clock: The clock to get the resolution for
1205 * @tp: Pointer to a a user space timespec64 for storage
1206 *
1207 * POSIX defines:
1208 *
1209 * "The clock_getres() function shall return the resolution of any
1210 * clock. Clock resolutions are implementation-defined and cannot be set by
1211 * a process. If the argument res is not NULL, the resolution of the
1212 * specified clock shall be stored in the location pointed to by res. If
1213 * res is NULL, the clock resolution is not returned. If the time argument
1214 * of clock_settime() is not a multiple of res, then the value is truncated
1215 * to a multiple of res."
1216 *
1217 * Due to the various hardware constraints the real resolution can vary
1218 * wildly and even change during runtime when the underlying devices are
1219 * replaced. The kernel also can use hardware devices with different
1220 * resolutions for reading the time and for arming timers.
1221 *
1222 * The kernel therefore deviates from the POSIX spec in various aspects:
1223 *
1224 * 1) The resolution returned to user space
1225 *
1226 * For CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_TAI,
1227 * CLOCK_REALTIME_ALARM, CLOCK_BOOTTIME_ALAREM and CLOCK_MONOTONIC_RAW
1228 * the kernel differentiates only two cases:
1229 *
1230 * I) Low resolution mode:
1231 *
1232 * When high resolution timers are disabled at compile or runtime
1233 * the resolution returned is nanoseconds per tick, which represents
1234 * the precision at which timers expire.
1235 *
1236 * II) High resolution mode:
1237 *
1238 * When high resolution timers are enabled the resolution returned
1239 * is always one nanosecond independent of the actual resolution of
1240 * the underlying hardware devices.
1241 *
1242 * For CLOCK_*_ALARM the actual resolution depends on system
1243 * state. When system is running the resolution is the same as the
1244 * resolution of the other clocks. During suspend the actual
1245 * resolution is the resolution of the underlying RTC device which
1246 * might be way less precise than the clockevent device used during
1247 * running state.
1248 *
1249 * For CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE the resolution
1250 * returned is always nanoseconds per tick.
1251 *
1252 * For CLOCK_PROCESS_CPUTIME and CLOCK_THREAD_CPUTIME the resolution
1253 * returned is always one nanosecond under the assumption that the
1254 * underlying scheduler clock has a better resolution than nanoseconds
1255 * per tick.
1256 *
1257 * For dynamic POSIX clocks (PTP devices) the resolution returned is
1258 * always one nanosecond.
1259 *
1260 * 2) Affect on sys_clock_settime()
1261 *
1262 * The kernel does not truncate the time which is handed in to
1263 * sys_clock_settime(). The kernel internal timekeeping is always using
1264 * nanoseconds precision independent of the clocksource device which is
1265 * used to read the time from. The resolution of that device only
1266 * affects the presicion of the time returned by sys_clock_gettime().
1267 *
1268 * Returns:
1269 * 0 Success. @tp contains the resolution
1270 * -EINVAL @which_clock is not a valid clock ID
1271 * -EFAULT Copying the resolution to @tp faulted
1272 * -ENODEV Dynamic POSIX clock is not backed by a device
1273 * -EOPNOTSUPP Dynamic POSIX clock does not support getres()
1274 */
SYSCALL_DEFINE2(clock_getres,const clockid_t,which_clock,struct __kernel_timespec __user *,tp)1275 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1276 struct __kernel_timespec __user *, tp)
1277 {
1278 const struct k_clock *kc = clockid_to_kclock(which_clock);
1279 struct timespec64 rtn_tp;
1280 int error;
1281
1282 if (!kc)
1283 return -EINVAL;
1284
1285 error = kc->clock_getres(which_clock, &rtn_tp);
1286
1287 if (!error && tp && put_timespec64(&rtn_tp, tp))
1288 error = -EFAULT;
1289
1290 return error;
1291 }
1292
1293 #ifdef CONFIG_COMPAT_32BIT_TIME
1294
SYSCALL_DEFINE2(clock_settime32,clockid_t,which_clock,struct old_timespec32 __user *,tp)1295 SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1296 struct old_timespec32 __user *, tp)
1297 {
1298 const struct k_clock *kc = clockid_to_kclock(which_clock);
1299 struct timespec64 ts;
1300
1301 if (!kc || !kc->clock_set)
1302 return -EINVAL;
1303
1304 if (get_old_timespec32(&ts, tp))
1305 return -EFAULT;
1306
1307 return kc->clock_set(which_clock, &ts);
1308 }
1309
SYSCALL_DEFINE2(clock_gettime32,clockid_t,which_clock,struct old_timespec32 __user *,tp)1310 SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1311 struct old_timespec32 __user *, tp)
1312 {
1313 const struct k_clock *kc = clockid_to_kclock(which_clock);
1314 struct timespec64 ts;
1315 int err;
1316
1317 if (!kc)
1318 return -EINVAL;
1319
1320 err = kc->clock_get_timespec(which_clock, &ts);
1321
1322 if (!err && put_old_timespec32(&ts, tp))
1323 err = -EFAULT;
1324
1325 return err;
1326 }
1327
SYSCALL_DEFINE2(clock_adjtime32,clockid_t,which_clock,struct old_timex32 __user *,utp)1328 SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1329 struct old_timex32 __user *, utp)
1330 {
1331 struct __kernel_timex ktx;
1332 int err;
1333
1334 err = get_old_timex32(&ktx, utp);
1335 if (err)
1336 return err;
1337
1338 err = do_clock_adjtime(which_clock, &ktx);
1339
1340 if (err >= 0 && put_old_timex32(utp, &ktx))
1341 return -EFAULT;
1342
1343 return err;
1344 }
1345
SYSCALL_DEFINE2(clock_getres_time32,clockid_t,which_clock,struct old_timespec32 __user *,tp)1346 SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1347 struct old_timespec32 __user *, tp)
1348 {
1349 const struct k_clock *kc = clockid_to_kclock(which_clock);
1350 struct timespec64 ts;
1351 int err;
1352
1353 if (!kc)
1354 return -EINVAL;
1355
1356 err = kc->clock_getres(which_clock, &ts);
1357 if (!err && tp && put_old_timespec32(&ts, tp))
1358 return -EFAULT;
1359
1360 return err;
1361 }
1362
1363 #endif
1364
1365 /*
1366 * sys_clock_nanosleep() for CLOCK_REALTIME and CLOCK_TAI
1367 */
common_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1368 static int common_nsleep(const clockid_t which_clock, int flags,
1369 const struct timespec64 *rqtp)
1370 {
1371 ktime_t texp = timespec64_to_ktime(*rqtp);
1372
1373 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1374 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1375 which_clock);
1376 }
1377
1378 /*
1379 * sys_clock_nanosleep() for CLOCK_MONOTONIC and CLOCK_BOOTTIME
1380 *
1381 * Absolute nanosleeps for these clocks are time-namespace adjusted.
1382 */
common_nsleep_timens(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1383 static int common_nsleep_timens(const clockid_t which_clock, int flags,
1384 const struct timespec64 *rqtp)
1385 {
1386 ktime_t texp = timespec64_to_ktime(*rqtp);
1387
1388 if (flags & TIMER_ABSTIME)
1389 texp = timens_ktime_to_host(which_clock, texp);
1390
1391 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1392 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1393 which_clock);
1394 }
1395
SYSCALL_DEFINE4(clock_nanosleep,const clockid_t,which_clock,int,flags,const struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)1396 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1397 const struct __kernel_timespec __user *, rqtp,
1398 struct __kernel_timespec __user *, rmtp)
1399 {
1400 const struct k_clock *kc = clockid_to_kclock(which_clock);
1401 struct timespec64 t;
1402
1403 if (!kc)
1404 return -EINVAL;
1405 if (!kc->nsleep)
1406 return -EOPNOTSUPP;
1407
1408 if (get_timespec64(&t, rqtp))
1409 return -EFAULT;
1410
1411 if (!timespec64_valid(&t))
1412 return -EINVAL;
1413 if (flags & TIMER_ABSTIME)
1414 rmtp = NULL;
1415 current->restart_block.fn = do_no_restart_syscall;
1416 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1417 current->restart_block.nanosleep.rmtp = rmtp;
1418
1419 return kc->nsleep(which_clock, flags, &t);
1420 }
1421
1422 #ifdef CONFIG_COMPAT_32BIT_TIME
1423
SYSCALL_DEFINE4(clock_nanosleep_time32,clockid_t,which_clock,int,flags,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)1424 SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1425 struct old_timespec32 __user *, rqtp,
1426 struct old_timespec32 __user *, rmtp)
1427 {
1428 const struct k_clock *kc = clockid_to_kclock(which_clock);
1429 struct timespec64 t;
1430
1431 if (!kc)
1432 return -EINVAL;
1433 if (!kc->nsleep)
1434 return -EOPNOTSUPP;
1435
1436 if (get_old_timespec32(&t, rqtp))
1437 return -EFAULT;
1438
1439 if (!timespec64_valid(&t))
1440 return -EINVAL;
1441 if (flags & TIMER_ABSTIME)
1442 rmtp = NULL;
1443 current->restart_block.fn = do_no_restart_syscall;
1444 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1445 current->restart_block.nanosleep.compat_rmtp = rmtp;
1446
1447 return kc->nsleep(which_clock, flags, &t);
1448 }
1449
1450 #endif
1451
1452 static const struct k_clock clock_realtime = {
1453 .clock_getres = posix_get_hrtimer_res,
1454 .clock_get_timespec = posix_get_realtime_timespec,
1455 .clock_get_ktime = posix_get_realtime_ktime,
1456 .clock_set = posix_clock_realtime_set,
1457 .clock_adj = posix_clock_realtime_adj,
1458 .nsleep = common_nsleep,
1459 .timer_create = common_timer_create,
1460 .timer_set = common_timer_set,
1461 .timer_get = common_timer_get,
1462 .timer_del = common_timer_del,
1463 .timer_rearm = common_hrtimer_rearm,
1464 .timer_forward = common_hrtimer_forward,
1465 .timer_remaining = common_hrtimer_remaining,
1466 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1467 .timer_wait_running = common_timer_wait_running,
1468 .timer_arm = common_hrtimer_arm,
1469 };
1470
1471 static const struct k_clock clock_monotonic = {
1472 .clock_getres = posix_get_hrtimer_res,
1473 .clock_get_timespec = posix_get_monotonic_timespec,
1474 .clock_get_ktime = posix_get_monotonic_ktime,
1475 .nsleep = common_nsleep_timens,
1476 .timer_create = common_timer_create,
1477 .timer_set = common_timer_set,
1478 .timer_get = common_timer_get,
1479 .timer_del = common_timer_del,
1480 .timer_rearm = common_hrtimer_rearm,
1481 .timer_forward = common_hrtimer_forward,
1482 .timer_remaining = common_hrtimer_remaining,
1483 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1484 .timer_wait_running = common_timer_wait_running,
1485 .timer_arm = common_hrtimer_arm,
1486 };
1487
1488 static const struct k_clock clock_monotonic_raw = {
1489 .clock_getres = posix_get_hrtimer_res,
1490 .clock_get_timespec = posix_get_monotonic_raw,
1491 };
1492
1493 static const struct k_clock clock_realtime_coarse = {
1494 .clock_getres = posix_get_coarse_res,
1495 .clock_get_timespec = posix_get_realtime_coarse,
1496 };
1497
1498 static const struct k_clock clock_monotonic_coarse = {
1499 .clock_getres = posix_get_coarse_res,
1500 .clock_get_timespec = posix_get_monotonic_coarse,
1501 };
1502
1503 static const struct k_clock clock_tai = {
1504 .clock_getres = posix_get_hrtimer_res,
1505 .clock_get_ktime = posix_get_tai_ktime,
1506 .clock_get_timespec = posix_get_tai_timespec,
1507 .nsleep = common_nsleep,
1508 .timer_create = common_timer_create,
1509 .timer_set = common_timer_set,
1510 .timer_get = common_timer_get,
1511 .timer_del = common_timer_del,
1512 .timer_rearm = common_hrtimer_rearm,
1513 .timer_forward = common_hrtimer_forward,
1514 .timer_remaining = common_hrtimer_remaining,
1515 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1516 .timer_wait_running = common_timer_wait_running,
1517 .timer_arm = common_hrtimer_arm,
1518 };
1519
1520 static const struct k_clock clock_boottime = {
1521 .clock_getres = posix_get_hrtimer_res,
1522 .clock_get_ktime = posix_get_boottime_ktime,
1523 .clock_get_timespec = posix_get_boottime_timespec,
1524 .nsleep = common_nsleep_timens,
1525 .timer_create = common_timer_create,
1526 .timer_set = common_timer_set,
1527 .timer_get = common_timer_get,
1528 .timer_del = common_timer_del,
1529 .timer_rearm = common_hrtimer_rearm,
1530 .timer_forward = common_hrtimer_forward,
1531 .timer_remaining = common_hrtimer_remaining,
1532 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1533 .timer_wait_running = common_timer_wait_running,
1534 .timer_arm = common_hrtimer_arm,
1535 };
1536
1537 static const struct k_clock * const posix_clocks[] = {
1538 [CLOCK_REALTIME] = &clock_realtime,
1539 [CLOCK_MONOTONIC] = &clock_monotonic,
1540 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1541 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1542 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1543 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1544 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
1545 [CLOCK_BOOTTIME] = &clock_boottime,
1546 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1547 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1548 [CLOCK_TAI] = &clock_tai,
1549 };
1550
clockid_to_kclock(const clockid_t id)1551 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1552 {
1553 clockid_t idx = id;
1554
1555 if (id < 0) {
1556 return (id & CLOCKFD_MASK) == CLOCKFD ?
1557 &clock_posix_dynamic : &clock_posix_cpu;
1558 }
1559
1560 if (id >= ARRAY_SIZE(posix_clocks))
1561 return NULL;
1562
1563 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1564 }
1565