• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic sched_clock() support, to extend low level hardware time
4  * counters to full 64-bit ns values.
5  */
6 #include <linux/clocksource.h>
7 #include <linux/init.h>
8 #include <linux/jiffies.h>
9 #include <linux/ktime.h>
10 #include <linux/kernel.h>
11 #include <linux/math.h>
12 #include <linux/moduleparam.h>
13 #include <linux/sched.h>
14 #include <linux/sched/clock.h>
15 #include <linux/syscore_ops.h>
16 #include <linux/hrtimer.h>
17 #include <linux/sched_clock.h>
18 #include <linux/seqlock.h>
19 #include <linux/bitops.h>
20 #include <trace/hooks/epoch.h>
21 
22 #include "timekeeping.h"
23 
24 /**
25  * struct clock_data - all data needed for sched_clock() (including
26  *                     registration of a new clock source)
27  *
28  * @seq:		Sequence counter for protecting updates. The lowest
29  *			bit is the index for @read_data.
30  * @read_data:		Data required to read from sched_clock.
31  * @wrap_kt:		Duration for which clock can run before wrapping.
32  * @rate:		Tick rate of the registered clock.
33  * @actual_read_sched_clock: Registered hardware level clock read function.
34  *
35  * The ordering of this structure has been chosen to optimize cache
36  * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
37  * into a single 64-byte cache line.
38  */
39 struct clock_data {
40 	seqcount_latch_t	seq;
41 	struct clock_read_data	read_data[2];
42 	ktime_t			wrap_kt;
43 	unsigned long		rate;
44 
45 	u64 (*actual_read_sched_clock)(void);
46 };
47 
48 static struct hrtimer sched_clock_timer;
49 static int irqtime = -1;
50 
51 core_param(irqtime, irqtime, int, 0400);
52 
jiffy_sched_clock_read(void)53 static u64 notrace jiffy_sched_clock_read(void)
54 {
55 	/*
56 	 * We don't need to use get_jiffies_64 on 32-bit arches here
57 	 * because we register with BITS_PER_LONG
58 	 */
59 	return (u64)(jiffies - INITIAL_JIFFIES);
60 }
61 
62 static struct clock_data cd ____cacheline_aligned = {
63 	.read_data[0] = { .mult = NSEC_PER_SEC / HZ,
64 			  .read_sched_clock = jiffy_sched_clock_read, },
65 	.actual_read_sched_clock = jiffy_sched_clock_read,
66 };
67 
cyc_to_ns(u64 cyc,u32 mult,u32 shift)68 static __always_inline u64 cyc_to_ns(u64 cyc, u32 mult, u32 shift)
69 {
70 	return (cyc * mult) >> shift;
71 }
72 
sched_clock_read_begin(unsigned int * seq)73 notrace struct clock_read_data *sched_clock_read_begin(unsigned int *seq)
74 {
75 	*seq = raw_read_seqcount_latch(&cd.seq);
76 	return cd.read_data + (*seq & 1);
77 }
78 EXPORT_SYMBOL_GPL(sched_clock_read_begin);
79 
sched_clock_read_retry(unsigned int seq)80 notrace int sched_clock_read_retry(unsigned int seq)
81 {
82 	return raw_read_seqcount_latch_retry(&cd.seq, seq);
83 }
84 EXPORT_SYMBOL_GPL(sched_clock_read_retry);
85 
sched_clock_noinstr(void)86 unsigned long long noinstr sched_clock_noinstr(void)
87 {
88 	struct clock_read_data *rd;
89 	unsigned int seq;
90 	u64 cyc, res;
91 
92 	do {
93 		seq = raw_read_seqcount_latch(&cd.seq);
94 		rd = cd.read_data + (seq & 1);
95 
96 		cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
97 		      rd->sched_clock_mask;
98 		res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
99 	} while (raw_read_seqcount_latch_retry(&cd.seq, seq));
100 
101 	return res;
102 }
103 
sched_clock(void)104 unsigned long long notrace sched_clock(void)
105 {
106 	unsigned long long ns;
107 	preempt_disable_notrace();
108 	ns = sched_clock_noinstr();
109 	preempt_enable_notrace();
110 	return ns;
111 }
112 
113 /*
114  * Updating the data required to read the clock.
115  *
116  * sched_clock() will never observe mis-matched data even if called from
117  * an NMI. We do this by maintaining an odd/even copy of the data and
118  * steering sched_clock() to one or the other using a sequence counter.
119  * In order to preserve the data cache profile of sched_clock() as much
120  * as possible the system reverts back to the even copy when the update
121  * completes; the odd copy is used *only* during an update.
122  */
update_clock_read_data(struct clock_read_data * rd)123 static void update_clock_read_data(struct clock_read_data *rd)
124 {
125 	/* update the backup (odd) copy with the new data */
126 	cd.read_data[1] = *rd;
127 
128 	/* steer readers towards the odd copy */
129 	raw_write_seqcount_latch(&cd.seq);
130 
131 	/* now its safe for us to update the normal (even) copy */
132 	cd.read_data[0] = *rd;
133 
134 	/* switch readers back to the even copy */
135 	raw_write_seqcount_latch(&cd.seq);
136 }
137 
138 /*
139  * Atomically update the sched_clock() epoch.
140  */
update_sched_clock(void)141 static void update_sched_clock(void)
142 {
143 	u64 cyc;
144 	u64 ns;
145 	struct clock_read_data rd;
146 
147 	rd = cd.read_data[0];
148 
149 	cyc = cd.actual_read_sched_clock();
150 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
151 
152 	rd.epoch_ns = ns;
153 	rd.epoch_cyc = cyc;
154 
155 	update_clock_read_data(&rd);
156 }
157 
sched_clock_poll(struct hrtimer * hrt)158 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
159 {
160 	update_sched_clock();
161 	hrtimer_forward_now(hrt, cd.wrap_kt);
162 
163 	return HRTIMER_RESTART;
164 }
165 
166 void __init
sched_clock_register(u64 (* read)(void),int bits,unsigned long rate)167 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
168 {
169 	u64 res, wrap, new_mask, new_epoch, cyc, ns;
170 	u32 new_mult, new_shift;
171 	unsigned long r, flags;
172 	char r_unit;
173 	struct clock_read_data rd;
174 
175 	if (cd.rate > rate)
176 		return;
177 
178 	/* Cannot register a sched_clock with interrupts on */
179 	local_irq_save(flags);
180 
181 	/* Calculate the mult/shift to convert counter ticks to ns. */
182 	clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
183 
184 	new_mask = CLOCKSOURCE_MASK(bits);
185 	cd.rate = rate;
186 
187 	/* Calculate how many nanosecs until we risk wrapping */
188 	wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
189 	cd.wrap_kt = ns_to_ktime(wrap);
190 
191 	rd = cd.read_data[0];
192 
193 	/* Update epoch for new counter and update 'epoch_ns' from old counter*/
194 	new_epoch = read();
195 	cyc = cd.actual_read_sched_clock();
196 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
197 	cd.actual_read_sched_clock = read;
198 
199 	rd.read_sched_clock	= read;
200 	rd.sched_clock_mask	= new_mask;
201 	rd.mult			= new_mult;
202 	rd.shift		= new_shift;
203 	rd.epoch_cyc		= new_epoch;
204 	rd.epoch_ns		= ns;
205 
206 	update_clock_read_data(&rd);
207 
208 	if (sched_clock_timer.function != NULL) {
209 		/* update timeout for clock wrap */
210 		hrtimer_start(&sched_clock_timer, cd.wrap_kt,
211 			      HRTIMER_MODE_REL_HARD);
212 	}
213 
214 	r = rate;
215 	if (r >= 4000000) {
216 		r = DIV_ROUND_CLOSEST(r, 1000000);
217 		r_unit = 'M';
218 	} else if (r >= 4000) {
219 		r = DIV_ROUND_CLOSEST(r, 1000);
220 		r_unit = 'k';
221 	} else {
222 		r_unit = ' ';
223 	}
224 
225 	/* Calculate the ns resolution of this counter */
226 	res = cyc_to_ns(1ULL, new_mult, new_shift);
227 
228 	pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
229 		bits, r, r_unit, res, wrap);
230 
231 	/* Enable IRQ time accounting if we have a fast enough sched_clock() */
232 	if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
233 		enable_sched_clock_irqtime();
234 
235 	local_irq_restore(flags);
236 
237 	pr_debug("Registered %pS as sched_clock source\n", read);
238 }
239 
generic_sched_clock_init(void)240 void __init generic_sched_clock_init(void)
241 {
242 	/*
243 	 * If no sched_clock() function has been provided at that point,
244 	 * make it the final one.
245 	 */
246 	if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
247 		sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
248 
249 	update_sched_clock();
250 
251 	/*
252 	 * Start the timer to keep sched_clock() properly updated and
253 	 * sets the initial epoch.
254 	 */
255 	hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
256 	sched_clock_timer.function = sched_clock_poll;
257 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
258 }
259 
260 /*
261  * Clock read function for use when the clock is suspended.
262  *
263  * This function makes it appear to sched_clock() as if the clock
264  * stopped counting at its last update.
265  *
266  * This function must only be called from the critical
267  * section in sched_clock(). It relies on the read_seqcount_retry()
268  * at the end of the critical section to be sure we observe the
269  * correct copy of 'epoch_cyc'.
270  */
suspended_sched_clock_read(void)271 static u64 notrace suspended_sched_clock_read(void)
272 {
273 	unsigned int seq = raw_read_seqcount_latch(&cd.seq);
274 
275 	return cd.read_data[seq & 1].epoch_cyc;
276 }
277 
sched_clock_suspend(void)278 int sched_clock_suspend(void)
279 {
280 	struct clock_read_data *rd = &cd.read_data[0];
281 
282 	update_sched_clock();
283 	hrtimer_cancel(&sched_clock_timer);
284 	rd->read_sched_clock = suspended_sched_clock_read;
285 	trace_android_vh_show_suspend_epoch_val(rd->epoch_ns, rd->epoch_cyc);
286 
287 	return 0;
288 }
289 
sched_clock_resume(void)290 void sched_clock_resume(void)
291 {
292 	struct clock_read_data *rd = &cd.read_data[0];
293 
294 	rd->epoch_cyc = cd.actual_read_sched_clock();
295 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
296 	rd->read_sched_clock = cd.actual_read_sched_clock;
297 	trace_android_vh_show_resume_epoch_val(rd->epoch_cyc);
298 }
299 
300 static struct syscore_ops sched_clock_ops = {
301 	.suspend	= sched_clock_suspend,
302 	.resume		= sched_clock_resume,
303 };
304 
sched_clock_syscore_init(void)305 static int __init sched_clock_syscore_init(void)
306 {
307 	register_syscore_ops(&sched_clock_ops);
308 
309 	return 0;
310 }
311 device_initcall(sched_clock_syscore_init);
312