• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains the base functions to manage periodic tick
4  * related events.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/nmi.h>
16 #include <linux/percpu.h>
17 #include <linux/profile.h>
18 #include <linux/sched.h>
19 #include <linux/module.h>
20 #include <trace/events/power.h>
21 #include <trace/hooks/sched.h>
22 
23 #include <asm/irq_regs.h>
24 
25 #include "tick-internal.h"
26 
27 /*
28  * Tick devices
29  */
30 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
31 /*
32  * Tick next event: keeps track of the tick time. It's updated by the
33  * CPU which handles the tick and protected by jiffies_lock. There is
34  * no requirement to write hold the jiffies seqcount for it.
35  */
36 ktime_t tick_next_period;
37 
38 /*
39  * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
40  * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
41  * variable has two functions:
42  *
43  * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
44  *    timekeeping lock all at once. Only the CPU which is assigned to do the
45  *    update is handling it.
46  *
47  * 2) Hand off the duty in the NOHZ idle case by setting the value to
48  *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
49  *    at it will take over and keep the time keeping alive.  The handover
50  *    procedure also covers cpu hotplug.
51  */
52 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
53 #ifdef CONFIG_NO_HZ_FULL
54 /*
55  * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
56  * tick_do_timer_cpu and it should be taken over by an eligible secondary
57  * when one comes online.
58  */
59 static int tick_do_timer_boot_cpu __read_mostly = -1;
60 #endif
61 
62 /*
63  * Debugging: see timer_list.c
64  */
tick_get_device(int cpu)65 struct tick_device *tick_get_device(int cpu)
66 {
67 	return &per_cpu(tick_cpu_device, cpu);
68 }
69 
70 /**
71  * tick_is_oneshot_available - check for a oneshot capable event device
72  */
tick_is_oneshot_available(void)73 int tick_is_oneshot_available(void)
74 {
75 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
76 
77 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
78 		return 0;
79 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
80 		return 1;
81 	return tick_broadcast_oneshot_available();
82 }
83 
84 /*
85  * Periodic tick
86  */
tick_periodic(int cpu)87 static void tick_periodic(int cpu)
88 {
89 	if (READ_ONCE(tick_do_timer_cpu) == cpu) {
90 		raw_spin_lock(&jiffies_lock);
91 		write_seqcount_begin(&jiffies_seq);
92 
93 		/* Keep track of the next tick event */
94 		tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
95 
96 		do_timer(1);
97 		write_seqcount_end(&jiffies_seq);
98 		raw_spin_unlock(&jiffies_lock);
99 		update_wall_time();
100 		trace_android_vh_jiffies_update(NULL);
101 	}
102 
103 	update_process_times(user_mode(get_irq_regs()));
104 	profile_tick(CPU_PROFILING);
105 }
106 
107 /*
108  * Event handler for periodic ticks
109  */
tick_handle_periodic(struct clock_event_device * dev)110 void tick_handle_periodic(struct clock_event_device *dev)
111 {
112 	int cpu = smp_processor_id();
113 	ktime_t next = dev->next_event;
114 
115 	tick_periodic(cpu);
116 
117 	/*
118 	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
119 	 * update_process_times() -> run_local_timers() ->
120 	 * hrtimer_run_queues().
121 	 */
122 	if (IS_ENABLED(CONFIG_TICK_ONESHOT) && dev->event_handler != tick_handle_periodic)
123 		return;
124 
125 	if (!clockevent_state_oneshot(dev))
126 		return;
127 	for (;;) {
128 		/*
129 		 * Setup the next period for devices, which do not have
130 		 * periodic mode:
131 		 */
132 		next = ktime_add_ns(next, TICK_NSEC);
133 
134 		if (!clockevents_program_event(dev, next, false))
135 			return;
136 		/*
137 		 * Have to be careful here. If we're in oneshot mode,
138 		 * before we call tick_periodic() in a loop, we need
139 		 * to be sure we're using a real hardware clocksource.
140 		 * Otherwise we could get trapped in an infinite
141 		 * loop, as the tick_periodic() increments jiffies,
142 		 * which then will increment time, possibly causing
143 		 * the loop to trigger again and again.
144 		 */
145 		if (timekeeping_valid_for_hres())
146 			tick_periodic(cpu);
147 	}
148 }
149 
150 /*
151  * Setup the device for a periodic tick
152  */
tick_setup_periodic(struct clock_event_device * dev,int broadcast)153 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
154 {
155 	tick_set_periodic_handler(dev, broadcast);
156 
157 	/* Broadcast setup ? */
158 	if (!tick_device_is_functional(dev))
159 		return;
160 
161 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
162 	    !tick_broadcast_oneshot_active()) {
163 		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
164 	} else {
165 		unsigned int seq;
166 		ktime_t next;
167 
168 		do {
169 			seq = read_seqcount_begin(&jiffies_seq);
170 			next = tick_next_period;
171 		} while (read_seqcount_retry(&jiffies_seq, seq));
172 
173 		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
174 
175 		for (;;) {
176 			if (!clockevents_program_event(dev, next, false))
177 				return;
178 			next = ktime_add_ns(next, TICK_NSEC);
179 		}
180 	}
181 }
182 
183 /*
184  * Setup the tick device
185  */
tick_setup_device(struct tick_device * td,struct clock_event_device * newdev,int cpu,const struct cpumask * cpumask)186 static void tick_setup_device(struct tick_device *td,
187 			      struct clock_event_device *newdev, int cpu,
188 			      const struct cpumask *cpumask)
189 {
190 	void (*handler)(struct clock_event_device *) = NULL;
191 	ktime_t next_event = 0;
192 
193 	/*
194 	 * First device setup ?
195 	 */
196 	if (!td->evtdev) {
197 		/*
198 		 * If no cpu took the do_timer update, assign it to
199 		 * this cpu:
200 		 */
201 		if (READ_ONCE(tick_do_timer_cpu) == TICK_DO_TIMER_BOOT) {
202 			WRITE_ONCE(tick_do_timer_cpu, cpu);
203 			tick_next_period = ktime_get();
204 #ifdef CONFIG_NO_HZ_FULL
205 			/*
206 			 * The boot CPU may be nohz_full, in which case the
207 			 * first housekeeping secondary will take do_timer()
208 			 * from it.
209 			 */
210 			if (tick_nohz_full_cpu(cpu))
211 				tick_do_timer_boot_cpu = cpu;
212 
213 		} else if (tick_do_timer_boot_cpu != -1 && !tick_nohz_full_cpu(cpu)) {
214 			tick_do_timer_boot_cpu = -1;
215 			/*
216 			 * The boot CPU will stay in periodic (NOHZ disabled)
217 			 * mode until clocksource_done_booting() called after
218 			 * smp_init() selects a high resolution clocksource and
219 			 * timekeeping_notify() kicks the NOHZ stuff alive.
220 			 *
221 			 * So this WRITE_ONCE can only race with the READ_ONCE
222 			 * check in tick_periodic() but this race is harmless.
223 			 */
224 			WRITE_ONCE(tick_do_timer_cpu, cpu);
225 #endif
226 		}
227 
228 		/*
229 		 * Startup in periodic mode first.
230 		 */
231 		td->mode = TICKDEV_MODE_PERIODIC;
232 	} else {
233 		handler = td->evtdev->event_handler;
234 		next_event = td->evtdev->next_event;
235 		td->evtdev->event_handler = clockevents_handle_noop;
236 	}
237 
238 	td->evtdev = newdev;
239 
240 	/*
241 	 * When the device is not per cpu, pin the interrupt to the
242 	 * current cpu:
243 	 */
244 	if (!cpumask_equal(newdev->cpumask, cpumask))
245 		irq_set_affinity(newdev->irq, cpumask);
246 
247 	/*
248 	 * When global broadcasting is active, check if the current
249 	 * device is registered as a placeholder for broadcast mode.
250 	 * This allows us to handle this x86 misfeature in a generic
251 	 * way. This function also returns !=0 when we keep the
252 	 * current active broadcast state for this CPU.
253 	 */
254 	if (tick_device_uses_broadcast(newdev, cpu))
255 		return;
256 
257 	if (td->mode == TICKDEV_MODE_PERIODIC)
258 		tick_setup_periodic(newdev, 0);
259 	else
260 		tick_setup_oneshot(newdev, handler, next_event);
261 }
262 
tick_install_replacement(struct clock_event_device * newdev)263 void tick_install_replacement(struct clock_event_device *newdev)
264 {
265 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
266 	int cpu = smp_processor_id();
267 
268 	clockevents_exchange_device(td->evtdev, newdev);
269 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
270 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
271 		tick_oneshot_notify();
272 }
273 
tick_check_percpu(struct clock_event_device * curdev,struct clock_event_device * newdev,int cpu)274 static bool tick_check_percpu(struct clock_event_device *curdev,
275 			      struct clock_event_device *newdev, int cpu)
276 {
277 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
278 		return false;
279 	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
280 		return true;
281 	/* Check if irq affinity can be set */
282 	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
283 		return false;
284 	/* Prefer an existing cpu local device */
285 	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
286 		return false;
287 	return true;
288 }
289 
tick_check_preferred(struct clock_event_device * curdev,struct clock_event_device * newdev)290 static bool tick_check_preferred(struct clock_event_device *curdev,
291 				 struct clock_event_device *newdev)
292 {
293 	/* Prefer oneshot capable device */
294 	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
295 		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
296 			return false;
297 		if (tick_oneshot_mode_active())
298 			return false;
299 	}
300 
301 	/*
302 	 * Use the higher rated one, but prefer a CPU local device with a lower
303 	 * rating than a non-CPU local device
304 	 */
305 	return !curdev ||
306 		newdev->rating > curdev->rating ||
307 	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
308 }
309 
310 /*
311  * Check whether the new device is a better fit than curdev. curdev
312  * can be NULL !
313  */
tick_check_replacement(struct clock_event_device * curdev,struct clock_event_device * newdev)314 bool tick_check_replacement(struct clock_event_device *curdev,
315 			    struct clock_event_device *newdev)
316 {
317 	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
318 		return false;
319 
320 	return tick_check_preferred(curdev, newdev);
321 }
322 
323 /*
324  * Check, if the new registered device should be used. Called with
325  * clockevents_lock held and interrupts disabled.
326  */
tick_check_new_device(struct clock_event_device * newdev)327 void tick_check_new_device(struct clock_event_device *newdev)
328 {
329 	struct clock_event_device *curdev;
330 	struct tick_device *td;
331 	int cpu;
332 
333 	cpu = smp_processor_id();
334 	td = &per_cpu(tick_cpu_device, cpu);
335 	curdev = td->evtdev;
336 
337 	if (!tick_check_replacement(curdev, newdev))
338 		goto out_bc;
339 
340 	if (!try_module_get(newdev->owner))
341 		return;
342 
343 	/*
344 	 * Replace the eventually existing device by the new
345 	 * device. If the current device is the broadcast device, do
346 	 * not give it back to the clockevents layer !
347 	 */
348 	if (tick_is_broadcast_device(curdev)) {
349 		clockevents_shutdown(curdev);
350 		curdev = NULL;
351 	}
352 	clockevents_exchange_device(curdev, newdev);
353 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
354 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
355 		tick_oneshot_notify();
356 	return;
357 
358 out_bc:
359 	/*
360 	 * Can the new device be used as a broadcast device ?
361 	 */
362 	tick_install_broadcast_device(newdev, cpu);
363 }
364 
365 /**
366  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
367  * @state:	The target state (enter/exit)
368  *
369  * The system enters/leaves a state, where affected devices might stop
370  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
371  *
372  * Called with interrupts disabled, so clockevents_lock is not
373  * required here because the local clock event device cannot go away
374  * under us.
375  */
tick_broadcast_oneshot_control(enum tick_broadcast_state state)376 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
377 {
378 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
379 
380 	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
381 		return 0;
382 
383 	return __tick_broadcast_oneshot_control(state);
384 }
385 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
386 
387 #ifdef CONFIG_HOTPLUG_CPU
tick_assert_timekeeping_handover(void)388 void tick_assert_timekeeping_handover(void)
389 {
390 	WARN_ON_ONCE(tick_do_timer_cpu == smp_processor_id());
391 }
392 /*
393  * Stop the tick and transfer the timekeeping job away from a dying cpu.
394  */
tick_cpu_dying(unsigned int dying_cpu)395 int tick_cpu_dying(unsigned int dying_cpu)
396 {
397 	/*
398 	 * If the current CPU is the timekeeper, it's the only one that can
399 	 * safely hand over its duty. Also all online CPUs are in stop
400 	 * machine, guaranteed not to be idle, therefore there is no
401 	 * concurrency and it's safe to pick any online successor.
402 	 */
403 	if (tick_do_timer_cpu == dying_cpu)
404 		tick_do_timer_cpu = cpumask_first(cpu_online_mask);
405 
406 	/* Make sure the CPU won't try to retake the timekeeping duty */
407 	tick_sched_timer_dying(dying_cpu);
408 
409 	/* Remove CPU from timer broadcasting */
410 	tick_offline_cpu(dying_cpu);
411 
412 	return 0;
413 }
414 
415 /*
416  * Shutdown an event device on a given cpu:
417  *
418  * This is called on a life CPU, when a CPU is dead. So we cannot
419  * access the hardware device itself.
420  * We just set the mode and remove it from the lists.
421  */
tick_shutdown(unsigned int cpu)422 void tick_shutdown(unsigned int cpu)
423 {
424 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
425 	struct clock_event_device *dev = td->evtdev;
426 
427 	td->mode = TICKDEV_MODE_PERIODIC;
428 	if (dev) {
429 		/*
430 		 * Prevent that the clock events layer tries to call
431 		 * the set mode function!
432 		 */
433 		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
434 		clockevents_exchange_device(dev, NULL);
435 		dev->event_handler = clockevents_handle_noop;
436 		td->evtdev = NULL;
437 	}
438 }
439 #endif
440 
441 /**
442  * tick_suspend_local - Suspend the local tick device
443  *
444  * Called from the local cpu for freeze with interrupts disabled.
445  *
446  * No locks required. Nothing can change the per cpu device.
447  */
tick_suspend_local(void)448 void tick_suspend_local(void)
449 {
450 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
451 
452 	clockevents_shutdown(td->evtdev);
453 }
454 
455 /**
456  * tick_resume_local - Resume the local tick device
457  *
458  * Called from the local CPU for unfreeze or XEN resume magic.
459  *
460  * No locks required. Nothing can change the per cpu device.
461  */
tick_resume_local(void)462 void tick_resume_local(void)
463 {
464 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
465 	bool broadcast = tick_resume_check_broadcast();
466 
467 	clockevents_tick_resume(td->evtdev);
468 	if (!broadcast) {
469 		if (td->mode == TICKDEV_MODE_PERIODIC)
470 			tick_setup_periodic(td->evtdev, 0);
471 		else
472 			tick_resume_oneshot();
473 	}
474 
475 	/*
476 	 * Ensure that hrtimers are up to date and the clockevents device
477 	 * is reprogrammed correctly when high resolution timers are
478 	 * enabled.
479 	 */
480 	hrtimers_resume_local();
481 }
482 
483 /**
484  * tick_suspend - Suspend the tick and the broadcast device
485  *
486  * Called from syscore_suspend() via timekeeping_suspend with only one
487  * CPU online and interrupts disabled or from tick_unfreeze() under
488  * tick_freeze_lock.
489  *
490  * No locks required. Nothing can change the per cpu device.
491  */
tick_suspend(void)492 void tick_suspend(void)
493 {
494 	tick_suspend_local();
495 	tick_suspend_broadcast();
496 }
497 
498 /**
499  * tick_resume - Resume the tick and the broadcast device
500  *
501  * Called from syscore_resume() via timekeeping_resume with only one
502  * CPU online and interrupts disabled.
503  *
504  * No locks required. Nothing can change the per cpu device.
505  */
tick_resume(void)506 void tick_resume(void)
507 {
508 	tick_resume_broadcast();
509 	tick_resume_local();
510 }
511 
512 #ifdef CONFIG_SUSPEND
513 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
514 static DEFINE_WAIT_OVERRIDE_MAP(tick_freeze_map, LD_WAIT_SLEEP);
515 static unsigned int tick_freeze_depth;
516 
517 /**
518  * tick_freeze - Suspend the local tick and (possibly) timekeeping.
519  *
520  * Check if this is the last online CPU executing the function and if so,
521  * suspend timekeeping.  Otherwise suspend the local tick.
522  *
523  * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
524  * Interrupts must not be enabled before the subsequent %tick_unfreeze().
525  */
tick_freeze(void)526 void tick_freeze(void)
527 {
528 	raw_spin_lock(&tick_freeze_lock);
529 
530 	tick_freeze_depth++;
531 	if (tick_freeze_depth == num_online_cpus()) {
532 		trace_suspend_resume(TPS("timekeeping_freeze"),
533 				     smp_processor_id(), true);
534 		/*
535 		 * All other CPUs have their interrupts disabled and are
536 		 * suspended to idle. Other tasks have been frozen so there
537 		 * is no scheduling happening. This means that there is no
538 		 * concurrency in the system at this point. Therefore it is
539 		 * okay to acquire a sleeping lock on PREEMPT_RT, such as a
540 		 * spinlock, because the lock cannot be held by other CPUs
541 		 * or threads and acquiring it cannot block.
542 		 *
543 		 * Inform lockdep about the situation.
544 		 */
545 		lock_map_acquire_try(&tick_freeze_map);
546 		system_state = SYSTEM_SUSPEND;
547 		sched_clock_suspend();
548 		timekeeping_suspend();
549 		lock_map_release(&tick_freeze_map);
550 	} else {
551 		tick_suspend_local();
552 	}
553 
554 	raw_spin_unlock(&tick_freeze_lock);
555 }
556 
557 /**
558  * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
559  *
560  * Check if this is the first CPU executing the function and if so, resume
561  * timekeeping.  Otherwise resume the local tick.
562  *
563  * Call with interrupts disabled.  Must be balanced with %tick_freeze().
564  * Interrupts must not be enabled after the preceding %tick_freeze().
565  */
tick_unfreeze(void)566 void tick_unfreeze(void)
567 {
568 	raw_spin_lock(&tick_freeze_lock);
569 
570 	if (tick_freeze_depth == num_online_cpus()) {
571 		/*
572 		 * Similar to tick_freeze(). On resumption the first CPU may
573 		 * acquire uncontended sleeping locks while other CPUs block on
574 		 * tick_freeze_lock.
575 		 */
576 		lock_map_acquire_try(&tick_freeze_map);
577 		timekeeping_resume();
578 		sched_clock_resume();
579 		lock_map_release(&tick_freeze_map);
580 
581 		system_state = SYSTEM_RUNNING;
582 		trace_suspend_resume(TPS("timekeeping_freeze"),
583 				     smp_processor_id(), false);
584 	} else {
585 		touch_softlockup_watchdog();
586 		tick_resume_local();
587 	}
588 
589 	tick_freeze_depth--;
590 
591 	raw_spin_unlock(&tick_freeze_lock);
592 }
593 #endif /* CONFIG_SUSPEND */
594 
595 /**
596  * tick_init - initialize the tick control
597  */
tick_init(void)598 void __init tick_init(void)
599 {
600 	tick_broadcast_init();
601 	tick_nohz_init();
602 }
603