1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * NOHZ implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
10 */
11 #include <linux/compiler.h>
12 #include <linux/cpu.h>
13 #include <linux/err.h>
14 #include <linux/hrtimer.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/percpu.h>
18 #include <linux/nmi.h>
19 #include <linux/profile.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/clock.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/nohz.h>
24 #include <linux/sched/loadavg.h>
25 #include <linux/module.h>
26 #include <linux/irq_work.h>
27 #include <linux/posix-timers.h>
28 #include <linux/context_tracking.h>
29 #include <linux/mm.h>
30 #include <trace/hooks/sched.h>
31
32 #include <asm/irq_regs.h>
33
34 #include "tick-internal.h"
35
36 #include <trace/events/timer.h>
37
38 /*
39 * Per-CPU nohz control structure
40 */
41 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
42
tick_get_tick_sched(int cpu)43 struct tick_sched *tick_get_tick_sched(int cpu)
44 {
45 return &per_cpu(tick_cpu_sched, cpu);
46 }
47
48 /*
49 * The time when the last jiffy update happened. Write access must hold
50 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
51 * consistent view of jiffies and last_jiffies_update.
52 */
53 static ktime_t last_jiffies_update;
54
55 /*
56 * Must be called with interrupts disabled !
57 */
tick_do_update_jiffies64(ktime_t now)58 static void tick_do_update_jiffies64(ktime_t now)
59 {
60 unsigned long ticks = 1;
61 ktime_t delta, nextp;
62
63 /*
64 * 64-bit can do a quick check without holding the jiffies lock and
65 * without looking at the sequence count. The smp_load_acquire()
66 * pairs with the update done later in this function.
67 *
68 * 32-bit cannot do that because the store of 'tick_next_period'
69 * consists of two 32-bit stores, and the first store could be
70 * moved by the CPU to a random point in the future.
71 */
72 if (IS_ENABLED(CONFIG_64BIT)) {
73 if (ktime_before(now, smp_load_acquire(&tick_next_period)))
74 return;
75 } else {
76 unsigned int seq;
77
78 /*
79 * Avoid contention on 'jiffies_lock' and protect the quick
80 * check with the sequence count.
81 */
82 do {
83 seq = read_seqcount_begin(&jiffies_seq);
84 nextp = tick_next_period;
85 } while (read_seqcount_retry(&jiffies_seq, seq));
86
87 if (ktime_before(now, nextp))
88 return;
89 }
90
91 /* Quick check failed, i.e. update is required. */
92 raw_spin_lock(&jiffies_lock);
93 /*
94 * Re-evaluate with the lock held. Another CPU might have done the
95 * update already.
96 */
97 if (ktime_before(now, tick_next_period)) {
98 raw_spin_unlock(&jiffies_lock);
99 return;
100 }
101
102 write_seqcount_begin(&jiffies_seq);
103
104 delta = ktime_sub(now, tick_next_period);
105 if (unlikely(delta >= TICK_NSEC)) {
106 /* Slow path for long idle sleep times */
107 s64 incr = TICK_NSEC;
108
109 ticks += ktime_divns(delta, incr);
110
111 last_jiffies_update = ktime_add_ns(last_jiffies_update,
112 incr * ticks);
113 } else {
114 last_jiffies_update = ktime_add_ns(last_jiffies_update,
115 TICK_NSEC);
116 }
117
118 /* Advance jiffies to complete the 'jiffies_seq' protected job */
119 jiffies_64 += ticks;
120
121 /* Keep the tick_next_period variable up to date */
122 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
123
124 if (IS_ENABLED(CONFIG_64BIT)) {
125 /*
126 * Pairs with smp_load_acquire() in the lockless quick
127 * check above, and ensures that the update to 'jiffies_64' is
128 * not reordered vs. the store to 'tick_next_period', neither
129 * by the compiler nor by the CPU.
130 */
131 smp_store_release(&tick_next_period, nextp);
132 } else {
133 /*
134 * A plain store is good enough on 32-bit, as the quick check
135 * above is protected by the sequence count.
136 */
137 tick_next_period = nextp;
138 }
139
140 /*
141 * Release the sequence count. calc_global_load() below is not
142 * protected by it, but 'jiffies_lock' needs to be held to prevent
143 * concurrent invocations.
144 */
145 write_seqcount_end(&jiffies_seq);
146
147 calc_global_load();
148
149 raw_spin_unlock(&jiffies_lock);
150 update_wall_time();
151 }
152
153 /*
154 * Initialize and return retrieve the jiffies update.
155 */
tick_init_jiffy_update(void)156 static ktime_t tick_init_jiffy_update(void)
157 {
158 ktime_t period;
159
160 raw_spin_lock(&jiffies_lock);
161 write_seqcount_begin(&jiffies_seq);
162
163 /* Have we started the jiffies update yet ? */
164 if (last_jiffies_update == 0) {
165 u32 rem;
166
167 /*
168 * Ensure that the tick is aligned to a multiple of
169 * TICK_NSEC.
170 */
171 div_u64_rem(tick_next_period, TICK_NSEC, &rem);
172 if (rem)
173 tick_next_period += TICK_NSEC - rem;
174
175 last_jiffies_update = tick_next_period;
176 }
177 period = last_jiffies_update;
178
179 write_seqcount_end(&jiffies_seq);
180 raw_spin_unlock(&jiffies_lock);
181
182 return period;
183 }
184
tick_sched_flag_test(struct tick_sched * ts,unsigned long flag)185 static inline int tick_sched_flag_test(struct tick_sched *ts,
186 unsigned long flag)
187 {
188 return !!(ts->flags & flag);
189 }
190
tick_sched_flag_set(struct tick_sched * ts,unsigned long flag)191 static inline void tick_sched_flag_set(struct tick_sched *ts,
192 unsigned long flag)
193 {
194 lockdep_assert_irqs_disabled();
195 ts->flags |= flag;
196 }
197
tick_sched_flag_clear(struct tick_sched * ts,unsigned long flag)198 static inline void tick_sched_flag_clear(struct tick_sched *ts,
199 unsigned long flag)
200 {
201 lockdep_assert_irqs_disabled();
202 ts->flags &= ~flag;
203 }
204
205 #define MAX_STALLED_JIFFIES 5
206
tick_sched_do_timer(struct tick_sched * ts,ktime_t now)207 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
208 {
209 int tick_cpu, cpu = smp_processor_id();
210
211 /*
212 * Check if the do_timer duty was dropped. We don't care about
213 * concurrency: This happens only when the CPU in charge went
214 * into a long sleep. If two CPUs happen to assign themselves to
215 * this duty, then the jiffies update is still serialized by
216 * 'jiffies_lock'.
217 *
218 * If nohz_full is enabled, this should not happen because the
219 * 'tick_do_timer_cpu' CPU never relinquishes.
220 */
221 tick_cpu = READ_ONCE(tick_do_timer_cpu);
222
223 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) {
224 #ifdef CONFIG_NO_HZ_FULL
225 WARN_ON_ONCE(tick_nohz_full_running);
226 #endif
227 WRITE_ONCE(tick_do_timer_cpu, cpu);
228 tick_cpu = cpu;
229 }
230
231 /* Check if jiffies need an update */
232 if (tick_cpu == cpu) {
233 tick_do_update_jiffies64(now);
234 trace_android_vh_jiffies_update(NULL);
235 }
236
237 /*
238 * If the jiffies update stalled for too long (timekeeper in stop_machine()
239 * or VMEXIT'ed for several msecs), force an update.
240 */
241 if (ts->last_tick_jiffies != jiffies) {
242 ts->stalled_jiffies = 0;
243 ts->last_tick_jiffies = READ_ONCE(jiffies);
244 } else {
245 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
246 tick_do_update_jiffies64(now);
247 ts->stalled_jiffies = 0;
248 ts->last_tick_jiffies = READ_ONCE(jiffies);
249 }
250 }
251
252 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
253 ts->got_idle_tick = 1;
254 }
255
tick_sched_handle(struct tick_sched * ts,struct pt_regs * regs)256 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
257 {
258 /*
259 * When we are idle and the tick is stopped, we have to touch
260 * the watchdog as we might not schedule for a really long
261 * time. This happens on completely idle SMP systems while
262 * waiting on the login prompt. We also increment the "start of
263 * idle" jiffy stamp so the idle accounting adjustment we do
264 * when we go busy again does not account too many ticks.
265 */
266 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
267 tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
268 touch_softlockup_watchdog_sched();
269 if (is_idle_task(current))
270 ts->idle_jiffies++;
271 /*
272 * In case the current tick fired too early past its expected
273 * expiration, make sure we don't bypass the next clock reprogramming
274 * to the same deadline.
275 */
276 ts->next_tick = 0;
277 }
278
279 update_process_times(user_mode(regs));
280 profile_tick(CPU_PROFILING);
281 }
282
283 /*
284 * We rearm the timer until we get disabled by the idle code.
285 * Called with interrupts disabled.
286 */
tick_nohz_handler(struct hrtimer * timer)287 static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
288 {
289 struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer);
290 struct pt_regs *regs = get_irq_regs();
291 ktime_t now = ktime_get();
292
293 tick_sched_do_timer(ts, now);
294
295 /*
296 * Do not call when we are not in IRQ context and have
297 * no valid 'regs' pointer
298 */
299 if (regs)
300 tick_sched_handle(ts, regs);
301 else
302 ts->next_tick = 0;
303
304 /*
305 * In dynticks mode, tick reprogram is deferred:
306 * - to the idle task if in dynticks-idle
307 * - to IRQ exit if in full-dynticks.
308 */
309 if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
310 return HRTIMER_NORESTART;
311
312 hrtimer_forward(timer, now, TICK_NSEC);
313
314 return HRTIMER_RESTART;
315 }
316
tick_sched_timer_cancel(struct tick_sched * ts)317 static void tick_sched_timer_cancel(struct tick_sched *ts)
318 {
319 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
320 hrtimer_cancel(&ts->sched_timer);
321 else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
322 tick_program_event(KTIME_MAX, 1);
323 }
324
325 #ifdef CONFIG_NO_HZ_FULL
326 cpumask_var_t tick_nohz_full_mask;
327 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
328 bool tick_nohz_full_running;
329 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
330 static atomic_t tick_dep_mask;
331
check_tick_dependency(atomic_t * dep)332 static bool check_tick_dependency(atomic_t *dep)
333 {
334 int val = atomic_read(dep);
335
336 if (val & TICK_DEP_MASK_POSIX_TIMER) {
337 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
338 return true;
339 }
340
341 if (val & TICK_DEP_MASK_PERF_EVENTS) {
342 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
343 return true;
344 }
345
346 if (val & TICK_DEP_MASK_SCHED) {
347 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
348 return true;
349 }
350
351 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
352 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
353 return true;
354 }
355
356 if (val & TICK_DEP_MASK_RCU) {
357 trace_tick_stop(0, TICK_DEP_MASK_RCU);
358 return true;
359 }
360
361 if (val & TICK_DEP_MASK_RCU_EXP) {
362 trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
363 return true;
364 }
365
366 return false;
367 }
368
can_stop_full_tick(int cpu,struct tick_sched * ts)369 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
370 {
371 lockdep_assert_irqs_disabled();
372
373 if (unlikely(!cpu_online(cpu)))
374 return false;
375
376 if (check_tick_dependency(&tick_dep_mask))
377 return false;
378
379 if (check_tick_dependency(&ts->tick_dep_mask))
380 return false;
381
382 if (check_tick_dependency(¤t->tick_dep_mask))
383 return false;
384
385 if (check_tick_dependency(¤t->signal->tick_dep_mask))
386 return false;
387
388 return true;
389 }
390
nohz_full_kick_func(struct irq_work * work)391 static void nohz_full_kick_func(struct irq_work *work)
392 {
393 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
394 }
395
396 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
397 IRQ_WORK_INIT_HARD(nohz_full_kick_func);
398
399 /*
400 * Kick this CPU if it's full dynticks in order to force it to
401 * re-evaluate its dependency on the tick and restart it if necessary.
402 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
403 * is NMI safe.
404 */
tick_nohz_full_kick(void)405 static void tick_nohz_full_kick(void)
406 {
407 if (!tick_nohz_full_cpu(smp_processor_id()))
408 return;
409
410 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
411 }
412
413 /*
414 * Kick the CPU if it's full dynticks in order to force it to
415 * re-evaluate its dependency on the tick and restart it if necessary.
416 */
tick_nohz_full_kick_cpu(int cpu)417 void tick_nohz_full_kick_cpu(int cpu)
418 {
419 if (!tick_nohz_full_cpu(cpu))
420 return;
421
422 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
423 }
424
tick_nohz_kick_task(struct task_struct * tsk)425 static void tick_nohz_kick_task(struct task_struct *tsk)
426 {
427 int cpu;
428
429 /*
430 * If the task is not running, run_posix_cpu_timers()
431 * has nothing to elapse, and an IPI can then be optimized out.
432 *
433 * activate_task() STORE p->tick_dep_mask
434 * STORE p->on_rq
435 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or())
436 * LOCK rq->lock LOAD p->on_rq
437 * smp_mb__after_spin_lock()
438 * tick_nohz_task_switch()
439 * LOAD p->tick_dep_mask
440 *
441 * XXX given a task picks up the dependency on schedule(), should we
442 * only care about tasks that are currently on the CPU instead of all
443 * that are on the runqueue?
444 *
445 * That is, does this want to be: task_on_cpu() / task_curr()?
446 */
447 if (!sched_task_on_rq(tsk))
448 return;
449
450 /*
451 * If the task concurrently migrates to another CPU,
452 * we guarantee it sees the new tick dependency upon
453 * schedule.
454 *
455 * set_task_cpu(p, cpu);
456 * STORE p->cpu = @cpu
457 * __schedule() (switch to task 'p')
458 * LOCK rq->lock
459 * smp_mb__after_spin_lock() STORE p->tick_dep_mask
460 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or())
461 * LOAD p->tick_dep_mask LOAD p->cpu
462 */
463 cpu = task_cpu(tsk);
464
465 preempt_disable();
466 if (cpu_online(cpu))
467 tick_nohz_full_kick_cpu(cpu);
468 preempt_enable();
469 }
470
471 /*
472 * Kick all full dynticks CPUs in order to force these to re-evaluate
473 * their dependency on the tick and restart it if necessary.
474 */
tick_nohz_full_kick_all(void)475 static void tick_nohz_full_kick_all(void)
476 {
477 int cpu;
478
479 if (!tick_nohz_full_running)
480 return;
481
482 preempt_disable();
483 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
484 tick_nohz_full_kick_cpu(cpu);
485 preempt_enable();
486 }
487
tick_nohz_dep_set_all(atomic_t * dep,enum tick_dep_bits bit)488 static void tick_nohz_dep_set_all(atomic_t *dep,
489 enum tick_dep_bits bit)
490 {
491 int prev;
492
493 prev = atomic_fetch_or(BIT(bit), dep);
494 if (!prev)
495 tick_nohz_full_kick_all();
496 }
497
498 /*
499 * Set a global tick dependency. Used by perf events that rely on freq and
500 * unstable clocks.
501 */
tick_nohz_dep_set(enum tick_dep_bits bit)502 void tick_nohz_dep_set(enum tick_dep_bits bit)
503 {
504 tick_nohz_dep_set_all(&tick_dep_mask, bit);
505 }
506
tick_nohz_dep_clear(enum tick_dep_bits bit)507 void tick_nohz_dep_clear(enum tick_dep_bits bit)
508 {
509 atomic_andnot(BIT(bit), &tick_dep_mask);
510 }
511
512 /*
513 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
514 * manage event-throttling.
515 */
tick_nohz_dep_set_cpu(int cpu,enum tick_dep_bits bit)516 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
517 {
518 int prev;
519 struct tick_sched *ts;
520
521 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
522
523 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
524 if (!prev) {
525 preempt_disable();
526 /* Perf needs local kick that is NMI safe */
527 if (cpu == smp_processor_id()) {
528 tick_nohz_full_kick();
529 } else {
530 /* Remote IRQ work not NMI-safe */
531 if (!WARN_ON_ONCE(in_nmi()))
532 tick_nohz_full_kick_cpu(cpu);
533 }
534 preempt_enable();
535 }
536 }
537 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
538
tick_nohz_dep_clear_cpu(int cpu,enum tick_dep_bits bit)539 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
540 {
541 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
542
543 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
544 }
545 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
546
547 /*
548 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
549 * in order to elapse per task timers.
550 */
tick_nohz_dep_set_task(struct task_struct * tsk,enum tick_dep_bits bit)551 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
552 {
553 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
554 tick_nohz_kick_task(tsk);
555 }
556 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
557
tick_nohz_dep_clear_task(struct task_struct * tsk,enum tick_dep_bits bit)558 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
559 {
560 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
561 }
562 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
563
564 /*
565 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
566 * per process timers.
567 */
tick_nohz_dep_set_signal(struct task_struct * tsk,enum tick_dep_bits bit)568 void tick_nohz_dep_set_signal(struct task_struct *tsk,
569 enum tick_dep_bits bit)
570 {
571 int prev;
572 struct signal_struct *sig = tsk->signal;
573
574 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
575 if (!prev) {
576 struct task_struct *t;
577
578 lockdep_assert_held(&tsk->sighand->siglock);
579 __for_each_thread(sig, t)
580 tick_nohz_kick_task(t);
581 }
582 }
583
tick_nohz_dep_clear_signal(struct signal_struct * sig,enum tick_dep_bits bit)584 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
585 {
586 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
587 }
588
589 /*
590 * Re-evaluate the need for the tick as we switch the current task.
591 * It might need the tick due to per task/process properties:
592 * perf events, posix CPU timers, ...
593 */
__tick_nohz_task_switch(void)594 void __tick_nohz_task_switch(void)
595 {
596 struct tick_sched *ts;
597
598 if (!tick_nohz_full_cpu(smp_processor_id()))
599 return;
600
601 ts = this_cpu_ptr(&tick_cpu_sched);
602
603 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
604 if (atomic_read(¤t->tick_dep_mask) ||
605 atomic_read(¤t->signal->tick_dep_mask))
606 tick_nohz_full_kick();
607 }
608 }
609
610 /* Get the boot-time nohz CPU list from the kernel parameters. */
tick_nohz_full_setup(cpumask_var_t cpumask)611 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
612 {
613 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
614 cpumask_copy(tick_nohz_full_mask, cpumask);
615 tick_nohz_full_running = true;
616 }
617
tick_nohz_cpu_hotpluggable(unsigned int cpu)618 bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
619 {
620 /*
621 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
622 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
623 * CPUs. It must remain online when nohz full is enabled.
624 */
625 if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
626 return false;
627 return true;
628 }
629
tick_nohz_cpu_down(unsigned int cpu)630 static int tick_nohz_cpu_down(unsigned int cpu)
631 {
632 return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
633 }
634
tick_nohz_init(void)635 void __init tick_nohz_init(void)
636 {
637 int cpu, ret;
638
639 if (!tick_nohz_full_running)
640 return;
641
642 /*
643 * Full dynticks uses IRQ work to drive the tick rescheduling on safe
644 * locking contexts. But then we need IRQ work to raise its own
645 * interrupts to avoid circular dependency on the tick.
646 */
647 if (!arch_irq_work_has_interrupt()) {
648 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
649 cpumask_clear(tick_nohz_full_mask);
650 tick_nohz_full_running = false;
651 return;
652 }
653
654 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
655 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
656 cpu = smp_processor_id();
657
658 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
659 pr_warn("NO_HZ: Clearing %d from nohz_full range "
660 "for timekeeping\n", cpu);
661 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
662 }
663 }
664
665 for_each_cpu(cpu, tick_nohz_full_mask)
666 ct_cpu_track_user(cpu);
667
668 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
669 "kernel/nohz:predown", NULL,
670 tick_nohz_cpu_down);
671 WARN_ON(ret < 0);
672 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
673 cpumask_pr_args(tick_nohz_full_mask));
674 }
675 #endif /* #ifdef CONFIG_NO_HZ_FULL */
676
677 /*
678 * NOHZ - aka dynamic tick functionality
679 */
680 #ifdef CONFIG_NO_HZ_COMMON
681 /*
682 * NO HZ enabled ?
683 */
684 bool tick_nohz_enabled __read_mostly = true;
685 unsigned long tick_nohz_active __read_mostly;
686 /*
687 * Enable / Disable tickless mode
688 */
setup_tick_nohz(char * str)689 static int __init setup_tick_nohz(char *str)
690 {
691 return (kstrtobool(str, &tick_nohz_enabled) == 0);
692 }
693
694 __setup("nohz=", setup_tick_nohz);
695
tick_nohz_tick_stopped(void)696 bool tick_nohz_tick_stopped(void)
697 {
698 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
699
700 return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
701 }
702
tick_nohz_tick_stopped_cpu(int cpu)703 bool tick_nohz_tick_stopped_cpu(int cpu)
704 {
705 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
706
707 return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
708 }
709
710 /**
711 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
712 * @now: current ktime_t
713 *
714 * Called from interrupt entry when the CPU was idle
715 *
716 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
717 * must be updated. Otherwise an interrupt handler could use a stale jiffy
718 * value. We do this unconditionally on any CPU, as we don't know whether the
719 * CPU, which has the update task assigned, is in a long sleep.
720 */
tick_nohz_update_jiffies(ktime_t now)721 static void tick_nohz_update_jiffies(ktime_t now)
722 {
723 unsigned long flags;
724
725 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
726
727 local_irq_save(flags);
728 tick_do_update_jiffies64(now);
729 local_irq_restore(flags);
730
731 touch_softlockup_watchdog_sched();
732 }
733
tick_nohz_stop_idle(struct tick_sched * ts,ktime_t now)734 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
735 {
736 ktime_t delta;
737
738 if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
739 return;
740
741 delta = ktime_sub(now, ts->idle_entrytime);
742
743 write_seqcount_begin(&ts->idle_sleeptime_seq);
744 if (nr_iowait_cpu(smp_processor_id()) > 0)
745 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
746 else
747 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
748
749 ts->idle_entrytime = now;
750 tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
751 write_seqcount_end(&ts->idle_sleeptime_seq);
752
753 sched_clock_idle_wakeup_event();
754 }
755
tick_nohz_start_idle(struct tick_sched * ts)756 static void tick_nohz_start_idle(struct tick_sched *ts)
757 {
758 write_seqcount_begin(&ts->idle_sleeptime_seq);
759 ts->idle_entrytime = ktime_get();
760 tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
761 write_seqcount_end(&ts->idle_sleeptime_seq);
762
763 sched_clock_idle_sleep_event();
764 }
765
get_cpu_sleep_time_us(struct tick_sched * ts,ktime_t * sleeptime,bool compute_delta,u64 * last_update_time)766 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
767 bool compute_delta, u64 *last_update_time)
768 {
769 ktime_t now, idle;
770 unsigned int seq;
771
772 if (!tick_nohz_active)
773 return -1;
774
775 now = ktime_get();
776 if (last_update_time)
777 *last_update_time = ktime_to_us(now);
778
779 do {
780 seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
781
782 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
783 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
784
785 idle = ktime_add(*sleeptime, delta);
786 } else {
787 idle = *sleeptime;
788 }
789 } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
790
791 return ktime_to_us(idle);
792
793 }
794
795 /**
796 * get_cpu_idle_time_us - get the total idle time of a CPU
797 * @cpu: CPU number to query
798 * @last_update_time: variable to store update time in. Do not update
799 * counters if NULL.
800 *
801 * Return the cumulative idle time (since boot) for a given
802 * CPU, in microseconds. Note that this is partially broken due to
803 * the counter of iowait tasks that can be remotely updated without
804 * any synchronization. Therefore it is possible to observe backward
805 * values within two consecutive reads.
806 *
807 * This time is measured via accounting rather than sampling,
808 * and is as accurate as ktime_get() is.
809 *
810 * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
811 */
get_cpu_idle_time_us(int cpu,u64 * last_update_time)812 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
813 {
814 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
815
816 return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
817 !nr_iowait_cpu(cpu), last_update_time);
818 }
819 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
820
821 /**
822 * get_cpu_iowait_time_us - get the total iowait time of a CPU
823 * @cpu: CPU number to query
824 * @last_update_time: variable to store update time in. Do not update
825 * counters if NULL.
826 *
827 * Return the cumulative iowait time (since boot) for a given
828 * CPU, in microseconds. Note this is partially broken due to
829 * the counter of iowait tasks that can be remotely updated without
830 * any synchronization. Therefore it is possible to observe backward
831 * values within two consecutive reads.
832 *
833 * This time is measured via accounting rather than sampling,
834 * and is as accurate as ktime_get() is.
835 *
836 * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
837 */
get_cpu_iowait_time_us(int cpu,u64 * last_update_time)838 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
839 {
840 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
841
842 return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
843 nr_iowait_cpu(cpu), last_update_time);
844 }
845 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
846
tick_nohz_restart(struct tick_sched * ts,ktime_t now)847 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
848 {
849 hrtimer_cancel(&ts->sched_timer);
850 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
851
852 /* Forward the time to expire in the future */
853 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
854
855 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
856 hrtimer_start_expires(&ts->sched_timer,
857 HRTIMER_MODE_ABS_PINNED_HARD);
858 } else {
859 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
860 }
861
862 /*
863 * Reset to make sure the next tick stop doesn't get fooled by past
864 * cached clock deadline.
865 */
866 ts->next_tick = 0;
867 }
868
local_timer_softirq_pending(void)869 static inline bool local_timer_softirq_pending(void)
870 {
871 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
872 }
873
874 /*
875 * Read jiffies and the time when jiffies were updated last
876 */
get_jiffies_update(unsigned long * basej)877 u64 get_jiffies_update(unsigned long *basej)
878 {
879 unsigned long basejiff;
880 unsigned int seq;
881 u64 basemono;
882
883 do {
884 seq = read_seqcount_begin(&jiffies_seq);
885 basemono = last_jiffies_update;
886 basejiff = jiffies;
887 } while (read_seqcount_retry(&jiffies_seq, seq));
888 *basej = basejiff;
889 return basemono;
890 }
891
892 /**
893 * tick_nohz_next_event() - return the clock monotonic based next event
894 * @ts: pointer to tick_sched struct
895 * @cpu: CPU number
896 *
897 * Return:
898 * *%0 - When the next event is a maximum of TICK_NSEC in the future
899 * and the tick is not stopped yet
900 * *%next_event - Next event based on clock monotonic
901 */
tick_nohz_next_event(struct tick_sched * ts,int cpu)902 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
903 {
904 u64 basemono, next_tick, delta, expires;
905 unsigned long basejiff;
906 int tick_cpu;
907
908 basemono = get_jiffies_update(&basejiff);
909 ts->last_jiffies = basejiff;
910 ts->timer_expires_base = basemono;
911
912 /*
913 * Keep the periodic tick, when RCU, architecture or irq_work
914 * requests it.
915 * Aside of that, check whether the local timer softirq is
916 * pending. If so, its a bad idea to call get_next_timer_interrupt(),
917 * because there is an already expired timer, so it will request
918 * immediate expiry, which rearms the hardware timer with a
919 * minimal delta, which brings us back to this place
920 * immediately. Lather, rinse and repeat...
921 */
922 if (rcu_needs_cpu() || arch_needs_cpu() ||
923 irq_work_needs_cpu() || local_timer_softirq_pending()) {
924 next_tick = basemono + TICK_NSEC;
925 } else {
926 /*
927 * Get the next pending timer. If high resolution
928 * timers are enabled this only takes the timer wheel
929 * timers into account. If high resolution timers are
930 * disabled this also looks at the next expiring
931 * hrtimer.
932 */
933 next_tick = get_next_timer_interrupt(basejiff, basemono);
934 ts->next_timer = next_tick;
935 }
936
937 /* Make sure next_tick is never before basemono! */
938 if (WARN_ON_ONCE(basemono > next_tick))
939 next_tick = basemono;
940
941 /*
942 * If the tick is due in the next period, keep it ticking or
943 * force prod the timer.
944 */
945 delta = next_tick - basemono;
946 if (delta <= (u64)TICK_NSEC) {
947 /*
948 * We've not stopped the tick yet, and there's a timer in the
949 * next period, so no point in stopping it either, bail.
950 */
951 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
952 ts->timer_expires = 0;
953 goto out;
954 }
955 }
956
957 /*
958 * If this CPU is the one which had the do_timer() duty last, we limit
959 * the sleep time to the timekeeping 'max_deferment' value.
960 * Otherwise we can sleep as long as we want.
961 */
962 delta = timekeeping_max_deferment();
963 tick_cpu = READ_ONCE(tick_do_timer_cpu);
964 if (tick_cpu != cpu &&
965 (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
966 delta = KTIME_MAX;
967
968 /* Calculate the next expiry time */
969 if (delta < (KTIME_MAX - basemono))
970 expires = basemono + delta;
971 else
972 expires = KTIME_MAX;
973
974 ts->timer_expires = min_t(u64, expires, next_tick);
975
976 out:
977 return ts->timer_expires;
978 }
979
tick_nohz_stop_tick(struct tick_sched * ts,int cpu)980 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
981 {
982 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
983 unsigned long basejiff = ts->last_jiffies;
984 u64 basemono = ts->timer_expires_base;
985 bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
986 int tick_cpu;
987 u64 expires;
988
989 /* Make sure we won't be trying to stop it twice in a row. */
990 ts->timer_expires_base = 0;
991
992 /*
993 * Now the tick should be stopped definitely - so the timer base needs
994 * to be marked idle as well to not miss a newly queued timer.
995 */
996 expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
997 if (expires > ts->timer_expires) {
998 /*
999 * This path could only happen when the first timer was removed
1000 * between calculating the possible sleep length and now (when
1001 * high resolution mode is not active, timer could also be a
1002 * hrtimer).
1003 *
1004 * We have to stick to the original calculated expiry value to
1005 * not stop the tick for too long with a shallow C-state (which
1006 * was programmed by cpuidle because of an early next expiration
1007 * value).
1008 */
1009 expires = ts->timer_expires;
1010 }
1011
1012 /* If the timer base is not idle, retain the not yet stopped tick. */
1013 if (!timer_idle)
1014 return;
1015
1016 /*
1017 * If this CPU is the one which updates jiffies, then give up
1018 * the assignment and let it be taken by the CPU which runs
1019 * the tick timer next, which might be this CPU as well. If we
1020 * don't drop this here, the jiffies might be stale and
1021 * do_timer() never gets invoked. Keep track of the fact that it
1022 * was the one which had the do_timer() duty last.
1023 */
1024 tick_cpu = READ_ONCE(tick_do_timer_cpu);
1025 if (tick_cpu == cpu) {
1026 WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
1027 tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
1028 } else if (tick_cpu != TICK_DO_TIMER_NONE) {
1029 tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
1030 }
1031
1032 /* Skip reprogram of event if it's not changed */
1033 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
1034 /* Sanity check: make sure clockevent is actually programmed */
1035 if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
1036 return;
1037
1038 WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu "
1039 "timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick,
1040 dev->next_event, hrtimer_active(&ts->sched_timer),
1041 hrtimer_get_expires(&ts->sched_timer));
1042 }
1043
1044 /*
1045 * tick_nohz_stop_tick() can be called several times before
1046 * tick_nohz_restart_sched_tick() is called. This happens when
1047 * interrupts arrive which do not cause a reschedule. In the first
1048 * call we save the current tick time, so we can restart the
1049 * scheduler tick in tick_nohz_restart_sched_tick().
1050 */
1051 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1052 calc_load_nohz_start();
1053 quiet_vmstat();
1054
1055 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
1056 tick_sched_flag_set(ts, TS_FLAG_STOPPED);
1057 trace_tick_stop(1, TICK_DEP_MASK_NONE);
1058 }
1059
1060 ts->next_tick = expires;
1061
1062 /*
1063 * If the expiration time == KTIME_MAX, then we simply stop
1064 * the tick timer.
1065 */
1066 if (unlikely(expires == KTIME_MAX)) {
1067 tick_sched_timer_cancel(ts);
1068 return;
1069 }
1070
1071 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
1072 hrtimer_start(&ts->sched_timer, expires,
1073 HRTIMER_MODE_ABS_PINNED_HARD);
1074 } else {
1075 hrtimer_set_expires(&ts->sched_timer, expires);
1076 tick_program_event(expires, 1);
1077 }
1078 }
1079
tick_nohz_retain_tick(struct tick_sched * ts)1080 static void tick_nohz_retain_tick(struct tick_sched *ts)
1081 {
1082 ts->timer_expires_base = 0;
1083 }
1084
1085 #ifdef CONFIG_NO_HZ_FULL
tick_nohz_full_stop_tick(struct tick_sched * ts,int cpu)1086 static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
1087 {
1088 if (tick_nohz_next_event(ts, cpu))
1089 tick_nohz_stop_tick(ts, cpu);
1090 else
1091 tick_nohz_retain_tick(ts);
1092 }
1093 #endif /* CONFIG_NO_HZ_FULL */
1094
tick_nohz_restart_sched_tick(struct tick_sched * ts,ktime_t now)1095 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
1096 {
1097 /* Update jiffies first */
1098 tick_do_update_jiffies64(now);
1099
1100 /*
1101 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
1102 * the clock forward checks in the enqueue path:
1103 */
1104 timer_clear_idle();
1105
1106 calc_load_nohz_stop();
1107 touch_softlockup_watchdog_sched();
1108
1109 /* Cancel the scheduled timer and restore the tick: */
1110 tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
1111 tick_nohz_restart(ts, now);
1112 }
1113
__tick_nohz_full_update_tick(struct tick_sched * ts,ktime_t now)1114 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
1115 ktime_t now)
1116 {
1117 #ifdef CONFIG_NO_HZ_FULL
1118 int cpu = smp_processor_id();
1119
1120 if (can_stop_full_tick(cpu, ts))
1121 tick_nohz_full_stop_tick(ts, cpu);
1122 else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1123 tick_nohz_restart_sched_tick(ts, now);
1124 #endif
1125 }
1126
tick_nohz_full_update_tick(struct tick_sched * ts)1127 static void tick_nohz_full_update_tick(struct tick_sched *ts)
1128 {
1129 if (!tick_nohz_full_cpu(smp_processor_id()))
1130 return;
1131
1132 if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1133 return;
1134
1135 __tick_nohz_full_update_tick(ts, ktime_get());
1136 }
1137
1138 /*
1139 * A pending softirq outside an IRQ (or softirq disabled section) context
1140 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1141 * reach this code due to the need_resched() early check in can_stop_idle_tick().
1142 *
1143 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1144 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1145 * triggering the code below, since wakep_softirqd() is ignored.
1146 *
1147 */
report_idle_softirq(void)1148 static bool report_idle_softirq(void)
1149 {
1150 static int ratelimit;
1151 unsigned int pending = local_softirq_pending();
1152
1153 if (likely(!pending))
1154 return false;
1155
1156 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1157 if (!cpu_active(smp_processor_id())) {
1158 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1159 if (!pending)
1160 return false;
1161 }
1162
1163 if (ratelimit >= 10)
1164 return false;
1165
1166 /* On RT, softirq handling may be waiting on some lock */
1167 if (local_bh_blocked())
1168 return false;
1169
1170 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1171 pending);
1172 ratelimit++;
1173
1174 return true;
1175 }
1176
can_stop_idle_tick(int cpu,struct tick_sched * ts)1177 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1178 {
1179 WARN_ON_ONCE(cpu_is_offline(cpu));
1180
1181 if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
1182 return false;
1183
1184 if (need_resched())
1185 return false;
1186
1187 if (unlikely(report_idle_softirq()))
1188 return false;
1189
1190 if (tick_nohz_full_enabled()) {
1191 int tick_cpu = READ_ONCE(tick_do_timer_cpu);
1192
1193 /*
1194 * Keep the tick alive to guarantee timekeeping progression
1195 * if there are full dynticks CPUs around
1196 */
1197 if (tick_cpu == cpu)
1198 return false;
1199
1200 /* Should not happen for nohz-full */
1201 if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE))
1202 return false;
1203 }
1204
1205 return true;
1206 }
1207
1208 /**
1209 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1210 *
1211 * When the next event is more than a tick into the future, stop the idle tick
1212 */
tick_nohz_idle_stop_tick(void)1213 void tick_nohz_idle_stop_tick(void)
1214 {
1215 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1216 int cpu = smp_processor_id();
1217 ktime_t expires;
1218
1219 trace_android_vh_tick_nohz_idle_stop_tick(NULL);
1220
1221 /*
1222 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1223 * tick timer expiration time is known already.
1224 */
1225 if (ts->timer_expires_base)
1226 expires = ts->timer_expires;
1227 else if (can_stop_idle_tick(cpu, ts))
1228 expires = tick_nohz_next_event(ts, cpu);
1229 else
1230 return;
1231
1232 ts->idle_calls++;
1233
1234 if (expires > 0LL) {
1235 int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1236
1237 tick_nohz_stop_tick(ts, cpu);
1238
1239 ts->idle_sleeps++;
1240 ts->idle_expires = expires;
1241
1242 if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1243 ts->idle_jiffies = ts->last_jiffies;
1244 nohz_balance_enter_idle(cpu);
1245 }
1246 } else {
1247 tick_nohz_retain_tick(ts);
1248 }
1249 }
1250
tick_nohz_idle_retain_tick(void)1251 void tick_nohz_idle_retain_tick(void)
1252 {
1253 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1254 }
1255
1256 /**
1257 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1258 *
1259 * Called when we start the idle loop.
1260 */
tick_nohz_idle_enter(void)1261 void tick_nohz_idle_enter(void)
1262 {
1263 struct tick_sched *ts;
1264
1265 lockdep_assert_irqs_enabled();
1266
1267 local_irq_disable();
1268
1269 ts = this_cpu_ptr(&tick_cpu_sched);
1270
1271 WARN_ON_ONCE(ts->timer_expires_base);
1272
1273 tick_sched_flag_set(ts, TS_FLAG_INIDLE);
1274 tick_nohz_start_idle(ts);
1275
1276 local_irq_enable();
1277 }
1278
1279 /**
1280 * tick_nohz_irq_exit - Notify the tick about IRQ exit
1281 *
1282 * A timer may have been added/modified/deleted either by the current IRQ,
1283 * or by another place using this IRQ as a notification. This IRQ may have
1284 * also updated the RCU callback list. These events may require a
1285 * re-evaluation of the next tick. Depending on the context:
1286 *
1287 * 1) If the CPU is idle and no resched is pending, just proceed with idle
1288 * time accounting. The next tick will be re-evaluated on the next idle
1289 * loop iteration.
1290 *
1291 * 2) If the CPU is nohz_full:
1292 *
1293 * 2.1) If there is any tick dependency, restart the tick if stopped.
1294 *
1295 * 2.2) If there is no tick dependency, (re-)evaluate the next tick and
1296 * stop/update it accordingly.
1297 */
tick_nohz_irq_exit(void)1298 void tick_nohz_irq_exit(void)
1299 {
1300 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1301
1302 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
1303 tick_nohz_start_idle(ts);
1304 else
1305 tick_nohz_full_update_tick(ts);
1306 }
1307
1308 /**
1309 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1310 *
1311 * Return: %true if the tick handler has run, otherwise %false
1312 */
tick_nohz_idle_got_tick(void)1313 bool tick_nohz_idle_got_tick(void)
1314 {
1315 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1316
1317 if (ts->got_idle_tick) {
1318 ts->got_idle_tick = 0;
1319 return true;
1320 }
1321 return false;
1322 }
1323
1324 /**
1325 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1326 * or the tick, whichever expires first. Note that, if the tick has been
1327 * stopped, it returns the next hrtimer.
1328 *
1329 * Called from power state control code with interrupts disabled
1330 *
1331 * Return: the next expiration time
1332 */
tick_nohz_get_next_hrtimer(void)1333 ktime_t tick_nohz_get_next_hrtimer(void)
1334 {
1335 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1336 }
1337
1338 /**
1339 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1340 * @delta_next: duration until the next event if the tick cannot be stopped
1341 *
1342 * Called from power state control code with interrupts disabled.
1343 *
1344 * The return value of this function and/or the value returned by it through the
1345 * @delta_next pointer can be negative which must be taken into account by its
1346 * callers.
1347 *
1348 * Return: the expected length of the current sleep
1349 */
tick_nohz_get_sleep_length(ktime_t * delta_next)1350 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1351 {
1352 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1353 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1354 int cpu = smp_processor_id();
1355 /*
1356 * The idle entry time is expected to be a sufficient approximation of
1357 * the current time at this point.
1358 */
1359 ktime_t now = ts->idle_entrytime;
1360 ktime_t next_event;
1361
1362 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1363
1364 *delta_next = ktime_sub(dev->next_event, now);
1365
1366 if (!can_stop_idle_tick(cpu, ts))
1367 return *delta_next;
1368
1369 next_event = tick_nohz_next_event(ts, cpu);
1370 if (!next_event)
1371 return *delta_next;
1372
1373 /*
1374 * If the next highres timer to expire is earlier than 'next_event', the
1375 * idle governor needs to know that.
1376 */
1377 next_event = min_t(u64, next_event,
1378 hrtimer_next_event_without(&ts->sched_timer));
1379
1380 return ktime_sub(next_event, now);
1381 }
1382 EXPORT_SYMBOL_GPL(tick_nohz_get_sleep_length);
1383
1384 /**
1385 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1386 * for a particular CPU.
1387 * @cpu: target CPU number
1388 *
1389 * Called from the schedutil frequency scaling governor in scheduler context.
1390 *
1391 * Return: the current idle calls counter value for @cpu
1392 */
tick_nohz_get_idle_calls_cpu(int cpu)1393 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1394 {
1395 struct tick_sched *ts = tick_get_tick_sched(cpu);
1396
1397 return ts->idle_calls;
1398 }
1399 EXPORT_SYMBOL_GPL(tick_nohz_get_idle_calls_cpu);
1400
tick_nohz_account_idle_time(struct tick_sched * ts,ktime_t now)1401 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1402 ktime_t now)
1403 {
1404 unsigned long ticks;
1405
1406 ts->idle_exittime = now;
1407
1408 if (vtime_accounting_enabled_this_cpu())
1409 return;
1410 /*
1411 * We stopped the tick in idle. update_process_times() would miss the
1412 * time we slept, as it does only a 1 tick accounting.
1413 * Enforce that this is accounted to idle !
1414 */
1415 ticks = jiffies - ts->idle_jiffies;
1416 /*
1417 * We might be one off. Do not randomly account a huge number of ticks!
1418 */
1419 if (ticks && ticks < LONG_MAX)
1420 account_idle_ticks(ticks);
1421 }
1422
tick_nohz_idle_restart_tick(void)1423 void tick_nohz_idle_restart_tick(void)
1424 {
1425 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1426
1427 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1428 ktime_t now = ktime_get();
1429 tick_nohz_restart_sched_tick(ts, now);
1430 tick_nohz_account_idle_time(ts, now);
1431 }
1432 }
1433
tick_nohz_idle_update_tick(struct tick_sched * ts,ktime_t now)1434 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1435 {
1436 if (tick_nohz_full_cpu(smp_processor_id()))
1437 __tick_nohz_full_update_tick(ts, now);
1438 else
1439 tick_nohz_restart_sched_tick(ts, now);
1440
1441 tick_nohz_account_idle_time(ts, now);
1442 }
1443
1444 /**
1445 * tick_nohz_idle_exit - Update the tick upon idle task exit
1446 *
1447 * When the idle task exits, update the tick depending on the
1448 * following situations:
1449 *
1450 * 1) If the CPU is not in nohz_full mode (most cases), then
1451 * restart the tick.
1452 *
1453 * 2) If the CPU is in nohz_full mode (corner case):
1454 * 2.1) If the tick can be kept stopped (no tick dependencies)
1455 * then re-evaluate the next tick and try to keep it stopped
1456 * as long as possible.
1457 * 2.2) If the tick has dependencies, restart the tick.
1458 *
1459 */
tick_nohz_idle_exit(void)1460 void tick_nohz_idle_exit(void)
1461 {
1462 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1463 bool idle_active, tick_stopped;
1464 ktime_t now;
1465
1466 local_irq_disable();
1467
1468 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1469 WARN_ON_ONCE(ts->timer_expires_base);
1470
1471 tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
1472 idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
1473 tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1474
1475 if (idle_active || tick_stopped)
1476 now = ktime_get();
1477
1478 if (idle_active)
1479 tick_nohz_stop_idle(ts, now);
1480
1481 if (tick_stopped)
1482 tick_nohz_idle_update_tick(ts, now);
1483
1484 local_irq_enable();
1485 }
1486
1487 /*
1488 * In low-resolution mode, the tick handler must be implemented directly
1489 * at the clockevent level. hrtimer can't be used instead, because its
1490 * infrastructure actually relies on the tick itself as a backend in
1491 * low-resolution mode (see hrtimer_run_queues()).
1492 */
tick_nohz_lowres_handler(struct clock_event_device * dev)1493 static void tick_nohz_lowres_handler(struct clock_event_device *dev)
1494 {
1495 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1496
1497 dev->next_event = KTIME_MAX;
1498
1499 if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
1500 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1501 }
1502
tick_nohz_activate(struct tick_sched * ts)1503 static inline void tick_nohz_activate(struct tick_sched *ts)
1504 {
1505 if (!tick_nohz_enabled)
1506 return;
1507 tick_sched_flag_set(ts, TS_FLAG_NOHZ);
1508 /* One update is enough */
1509 if (!test_and_set_bit(0, &tick_nohz_active))
1510 timers_update_nohz();
1511 }
1512
1513 /**
1514 * tick_nohz_switch_to_nohz - switch to NOHZ mode
1515 */
tick_nohz_switch_to_nohz(void)1516 static void tick_nohz_switch_to_nohz(void)
1517 {
1518 if (!tick_nohz_enabled)
1519 return;
1520
1521 if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
1522 return;
1523
1524 /*
1525 * Recycle the hrtimer in 'ts', so we can share the
1526 * highres code.
1527 */
1528 tick_setup_sched_timer(false);
1529 }
1530
tick_nohz_irq_enter(void)1531 static inline void tick_nohz_irq_enter(void)
1532 {
1533 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1534 ktime_t now;
1535
1536 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
1537 return;
1538 now = ktime_get();
1539 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
1540 tick_nohz_stop_idle(ts, now);
1541 /*
1542 * If all CPUs are idle we may need to update a stale jiffies value.
1543 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1544 * alive but it might be busy looping with interrupts disabled in some
1545 * rare case (typically stop machine). So we must make sure we have a
1546 * last resort.
1547 */
1548 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1549 tick_nohz_update_jiffies(now);
1550 }
1551
1552 #else
1553
tick_nohz_switch_to_nohz(void)1554 static inline void tick_nohz_switch_to_nohz(void) { }
tick_nohz_irq_enter(void)1555 static inline void tick_nohz_irq_enter(void) { }
tick_nohz_activate(struct tick_sched * ts)1556 static inline void tick_nohz_activate(struct tick_sched *ts) { }
1557
1558 #endif /* CONFIG_NO_HZ_COMMON */
1559
1560 /*
1561 * Called from irq_enter() to notify about the possible interruption of idle()
1562 */
tick_irq_enter(void)1563 void tick_irq_enter(void)
1564 {
1565 tick_check_oneshot_broadcast_this_cpu();
1566 tick_nohz_irq_enter();
1567 }
1568
1569 static int sched_skew_tick;
1570
skew_tick(char * str)1571 static int __init skew_tick(char *str)
1572 {
1573 get_option(&str, &sched_skew_tick);
1574
1575 return 0;
1576 }
1577 early_param("skew_tick", skew_tick);
1578
1579 /**
1580 * tick_setup_sched_timer - setup the tick emulation timer
1581 * @hrtimer: whether to use the hrtimer or not
1582 */
tick_setup_sched_timer(bool hrtimer)1583 void tick_setup_sched_timer(bool hrtimer)
1584 {
1585 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1586
1587 /* Emulate tick processing via per-CPU hrtimers: */
1588 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1589
1590 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) {
1591 tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
1592 ts->sched_timer.function = tick_nohz_handler;
1593 }
1594
1595 /* Get the next period (per-CPU) */
1596 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1597
1598 /* Offset the tick to avert 'jiffies_lock' contention. */
1599 if (sched_skew_tick) {
1600 u64 offset = TICK_NSEC >> 1;
1601 do_div(offset, num_possible_cpus());
1602 offset *= smp_processor_id();
1603 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1604 }
1605
1606 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1607 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
1608 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1609 else
1610 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1611 tick_nohz_activate(ts);
1612 }
1613
1614 /*
1615 * Shut down the tick and make sure the CPU won't try to retake the timekeeping
1616 * duty before disabling IRQs in idle for the last time.
1617 */
tick_sched_timer_dying(int cpu)1618 void tick_sched_timer_dying(int cpu)
1619 {
1620 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
1621 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1622 struct clock_event_device *dev = td->evtdev;
1623 ktime_t idle_sleeptime, iowait_sleeptime;
1624 unsigned long idle_calls, idle_sleeps;
1625
1626 /* This must happen before hrtimers are migrated! */
1627 tick_sched_timer_cancel(ts);
1628
1629 /*
1630 * If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED,
1631 * make sure not to call low-res tick handler.
1632 */
1633 if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1634 dev->event_handler = clockevents_handle_noop;
1635
1636 idle_sleeptime = ts->idle_sleeptime;
1637 iowait_sleeptime = ts->iowait_sleeptime;
1638 idle_calls = ts->idle_calls;
1639 idle_sleeps = ts->idle_sleeps;
1640 memset(ts, 0, sizeof(*ts));
1641 ts->idle_sleeptime = idle_sleeptime;
1642 ts->iowait_sleeptime = iowait_sleeptime;
1643 ts->idle_calls = idle_calls;
1644 ts->idle_sleeps = idle_sleeps;
1645 }
1646
1647 /*
1648 * Async notification about clocksource changes
1649 */
tick_clock_notify(void)1650 void tick_clock_notify(void)
1651 {
1652 int cpu;
1653
1654 for_each_possible_cpu(cpu)
1655 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1656 }
1657
1658 /*
1659 * Async notification about clock event changes
1660 */
tick_oneshot_notify(void)1661 void tick_oneshot_notify(void)
1662 {
1663 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1664
1665 set_bit(0, &ts->check_clocks);
1666 }
1667
1668 /*
1669 * Check if a change happened, which makes oneshot possible.
1670 *
1671 * Called cyclically from the hrtimer softirq (driven by the timer
1672 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
1673 * mode, because high resolution timers are disabled (either compile
1674 * or runtime). Called with interrupts disabled.
1675 */
tick_check_oneshot_change(int allow_nohz)1676 int tick_check_oneshot_change(int allow_nohz)
1677 {
1678 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1679
1680 if (!test_and_clear_bit(0, &ts->check_clocks))
1681 return 0;
1682
1683 if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1684 return 0;
1685
1686 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1687 return 0;
1688
1689 if (!allow_nohz)
1690 return 1;
1691
1692 tick_nohz_switch_to_nohz();
1693 return 0;
1694 }
1695