1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Infrastructure for migratable timers
4 *
5 * Copyright(C) 2022 linutronix GmbH
6 */
7 #include <linux/cpuhotplug.h>
8 #include <linux/slab.h>
9 #include <linux/smp.h>
10 #include <linux/spinlock.h>
11 #include <linux/timerqueue.h>
12 #include <trace/events/ipi.h>
13
14 #include "timer_migration.h"
15 #include "tick-internal.h"
16
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/timer_migration.h>
19
20 /*
21 * The timer migration mechanism is built on a hierarchy of groups. The
22 * lowest level group contains CPUs, the next level groups of CPU groups
23 * and so forth. The CPU groups are kept per node so for the normal case
24 * lock contention won't happen across nodes. Depending on the number of
25 * CPUs per node even the next level might be kept as groups of CPU groups
26 * per node and only the levels above cross the node topology.
27 *
28 * Example topology for a two node system with 24 CPUs each.
29 *
30 * LVL 2 [GRP2:0]
31 * GRP1:0 = GRP1:M
32 *
33 * LVL 1 [GRP1:0] [GRP1:1]
34 * GRP0:0 - GRP0:2 GRP0:3 - GRP0:5
35 *
36 * LVL 0 [GRP0:0] [GRP0:1] [GRP0:2] [GRP0:3] [GRP0:4] [GRP0:5]
37 * CPUS 0-7 8-15 16-23 24-31 32-39 40-47
38 *
39 * The groups hold a timer queue of events sorted by expiry time. These
40 * queues are updated when CPUs go in idle. When they come out of idle
41 * ignore flag of events is set.
42 *
43 * Each group has a designated migrator CPU/group as long as a CPU/group is
44 * active in the group. This designated role is necessary to avoid that all
45 * active CPUs in a group try to migrate expired timers from other CPUs,
46 * which would result in massive lock bouncing.
47 *
48 * When a CPU is awake, it checks in it's own timer tick the group
49 * hierarchy up to the point where it is assigned the migrator role or if
50 * no CPU is active, it also checks the groups where no migrator is set
51 * (TMIGR_NONE).
52 *
53 * If it finds expired timers in one of the group queues it pulls them over
54 * from the idle CPU and runs the timer function. After that it updates the
55 * group and the parent groups if required.
56 *
57 * CPUs which go idle arm their CPU local timer hardware for the next local
58 * (pinned) timer event. If the next migratable timer expires after the
59 * next local timer or the CPU has no migratable timer pending then the
60 * CPU does not queue an event in the LVL0 group. If the next migratable
61 * timer expires before the next local timer then the CPU queues that timer
62 * in the LVL0 group. In both cases the CPU marks itself idle in the LVL0
63 * group.
64 *
65 * When CPU comes out of idle and when a group has at least a single active
66 * child, the ignore flag of the tmigr_event is set. This indicates, that
67 * the event is ignored even if it is still enqueued in the parent groups
68 * timer queue. It will be removed when touching the timer queue the next
69 * time. This spares locking in active path as the lock protects (after
70 * setup) only event information. For more information about locking,
71 * please read the section "Locking rules".
72 *
73 * If the CPU is the migrator of the group then it delegates that role to
74 * the next active CPU in the group or sets migrator to TMIGR_NONE when
75 * there is no active CPU in the group. This delegation needs to be
76 * propagated up the hierarchy so hand over from other leaves can happen at
77 * all hierarchy levels w/o doing a search.
78 *
79 * When the last CPU in the system goes idle, then it drops all migrator
80 * duties up to the top level of the hierarchy (LVL2 in the example). It
81 * then has to make sure, that it arms it's own local hardware timer for
82 * the earliest event in the system.
83 *
84 *
85 * Lifetime rules:
86 * ---------------
87 *
88 * The groups are built up at init time or when CPUs come online. They are
89 * not destroyed when a group becomes empty due to offlining. The group
90 * just won't participate in the hierarchy management anymore. Destroying
91 * groups would result in interesting race conditions which would just make
92 * the whole mechanism slow and complex.
93 *
94 *
95 * Locking rules:
96 * --------------
97 *
98 * For setting up new groups and handling events it's required to lock both
99 * child and parent group. The lock ordering is always bottom up. This also
100 * includes the per CPU locks in struct tmigr_cpu. For updating the migrator and
101 * active CPU/group information atomic_try_cmpxchg() is used instead and only
102 * the per CPU tmigr_cpu->lock is held.
103 *
104 * During the setup of groups tmigr_level_list is required. It is protected by
105 * @tmigr_mutex.
106 *
107 * When @timer_base->lock as well as tmigr related locks are required, the lock
108 * ordering is: first @timer_base->lock, afterwards tmigr related locks.
109 *
110 *
111 * Protection of the tmigr group state information:
112 * ------------------------------------------------
113 *
114 * The state information with the list of active children and migrator needs to
115 * be protected by a sequence counter. It prevents a race when updates in child
116 * groups are propagated in changed order. The state update is performed
117 * lockless and group wise. The following scenario describes what happens
118 * without updating the sequence counter:
119 *
120 * Therefore, let's take three groups and four CPUs (CPU2 and CPU3 as well
121 * as GRP0:1 will not change during the scenario):
122 *
123 * LVL 1 [GRP1:0]
124 * migrator = GRP0:1
125 * active = GRP0:0, GRP0:1
126 * / \
127 * LVL 0 [GRP0:0] [GRP0:1]
128 * migrator = CPU0 migrator = CPU2
129 * active = CPU0 active = CPU2
130 * / \ / \
131 * CPUs 0 1 2 3
132 * active idle active idle
133 *
134 *
135 * 1. CPU0 goes idle. As the update is performed group wise, in the first step
136 * only GRP0:0 is updated. The update of GRP1:0 is pending as CPU0 has to
137 * walk the hierarchy.
138 *
139 * LVL 1 [GRP1:0]
140 * migrator = GRP0:1
141 * active = GRP0:0, GRP0:1
142 * / \
143 * LVL 0 [GRP0:0] [GRP0:1]
144 * --> migrator = TMIGR_NONE migrator = CPU2
145 * --> active = active = CPU2
146 * / \ / \
147 * CPUs 0 1 2 3
148 * --> idle idle active idle
149 *
150 * 2. While CPU0 goes idle and continues to update the state, CPU1 comes out of
151 * idle. CPU1 updates GRP0:0. The update for GRP1:0 is pending as CPU1 also
152 * has to walk the hierarchy. Both CPUs (CPU0 and CPU1) now walk the
153 * hierarchy to perform the needed update from their point of view. The
154 * currently visible state looks the following:
155 *
156 * LVL 1 [GRP1:0]
157 * migrator = GRP0:1
158 * active = GRP0:0, GRP0:1
159 * / \
160 * LVL 0 [GRP0:0] [GRP0:1]
161 * --> migrator = CPU1 migrator = CPU2
162 * --> active = CPU1 active = CPU2
163 * / \ / \
164 * CPUs 0 1 2 3
165 * idle --> active active idle
166 *
167 * 3. Here is the race condition: CPU1 managed to propagate its changes (from
168 * step 2) through the hierarchy to GRP1:0 before CPU0 (step 1) did. The
169 * active members of GRP1:0 remain unchanged after the update since it is
170 * still valid from CPU1 current point of view:
171 *
172 * LVL 1 [GRP1:0]
173 * --> migrator = GRP0:1
174 * --> active = GRP0:0, GRP0:1
175 * / \
176 * LVL 0 [GRP0:0] [GRP0:1]
177 * migrator = CPU1 migrator = CPU2
178 * active = CPU1 active = CPU2
179 * / \ / \
180 * CPUs 0 1 2 3
181 * idle active active idle
182 *
183 * 4. Now CPU0 finally propagates its changes (from step 1) to GRP1:0.
184 *
185 * LVL 1 [GRP1:0]
186 * --> migrator = GRP0:1
187 * --> active = GRP0:1
188 * / \
189 * LVL 0 [GRP0:0] [GRP0:1]
190 * migrator = CPU1 migrator = CPU2
191 * active = CPU1 active = CPU2
192 * / \ / \
193 * CPUs 0 1 2 3
194 * idle active active idle
195 *
196 *
197 * The race of CPU0 vs. CPU1 led to an inconsistent state in GRP1:0. CPU1 is
198 * active and is correctly listed as active in GRP0:0. However GRP1:0 does not
199 * have GRP0:0 listed as active, which is wrong. The sequence counter has been
200 * added to avoid inconsistent states during updates. The state is updated
201 * atomically only if all members, including the sequence counter, match the
202 * expected value (compare-and-exchange).
203 *
204 * Looking back at the previous example with the addition of the sequence
205 * counter: The update as performed by CPU0 in step 4 will fail. CPU1 changed
206 * the sequence number during the update in step 3 so the expected old value (as
207 * seen by CPU0 before starting the walk) does not match.
208 *
209 * Prevent race between new event and last CPU going inactive
210 * ----------------------------------------------------------
211 *
212 * When the last CPU is going idle and there is a concurrent update of a new
213 * first global timer of an idle CPU, the group and child states have to be read
214 * while holding the lock in tmigr_update_events(). The following scenario shows
215 * what happens, when this is not done.
216 *
217 * 1. Only CPU2 is active:
218 *
219 * LVL 1 [GRP1:0]
220 * migrator = GRP0:1
221 * active = GRP0:1
222 * next_expiry = KTIME_MAX
223 * / \
224 * LVL 0 [GRP0:0] [GRP0:1]
225 * migrator = TMIGR_NONE migrator = CPU2
226 * active = active = CPU2
227 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX
228 * / \ / \
229 * CPUs 0 1 2 3
230 * idle idle active idle
231 *
232 * 2. Now CPU 2 goes idle (and has no global timer, that has to be handled) and
233 * propagates that to GRP0:1:
234 *
235 * LVL 1 [GRP1:0]
236 * migrator = GRP0:1
237 * active = GRP0:1
238 * next_expiry = KTIME_MAX
239 * / \
240 * LVL 0 [GRP0:0] [GRP0:1]
241 * migrator = TMIGR_NONE --> migrator = TMIGR_NONE
242 * active = --> active =
243 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX
244 * / \ / \
245 * CPUs 0 1 2 3
246 * idle idle --> idle idle
247 *
248 * 3. Now the idle state is propagated up to GRP1:0. As this is now the last
249 * child going idle in top level group, the expiry of the next group event
250 * has to be handed back to make sure no event is lost. As there is no event
251 * enqueued, KTIME_MAX is handed back to CPU2.
252 *
253 * LVL 1 [GRP1:0]
254 * --> migrator = TMIGR_NONE
255 * --> active =
256 * next_expiry = KTIME_MAX
257 * / \
258 * LVL 0 [GRP0:0] [GRP0:1]
259 * migrator = TMIGR_NONE migrator = TMIGR_NONE
260 * active = active =
261 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX
262 * / \ / \
263 * CPUs 0 1 2 3
264 * idle idle --> idle idle
265 *
266 * 4. CPU 0 has a new timer queued from idle and it expires at TIMER0. CPU0
267 * propagates that to GRP0:0:
268 *
269 * LVL 1 [GRP1:0]
270 * migrator = TMIGR_NONE
271 * active =
272 * next_expiry = KTIME_MAX
273 * / \
274 * LVL 0 [GRP0:0] [GRP0:1]
275 * migrator = TMIGR_NONE migrator = TMIGR_NONE
276 * active = active =
277 * --> next_expiry = TIMER0 next_expiry = KTIME_MAX
278 * / \ / \
279 * CPUs 0 1 2 3
280 * idle idle idle idle
281 *
282 * 5. GRP0:0 is not active, so the new timer has to be propagated to
283 * GRP1:0. Therefore the GRP1:0 state has to be read. When the stalled value
284 * (from step 2) is read, the timer is enqueued into GRP1:0, but nothing is
285 * handed back to CPU0, as it seems that there is still an active child in
286 * top level group.
287 *
288 * LVL 1 [GRP1:0]
289 * migrator = TMIGR_NONE
290 * active =
291 * --> next_expiry = TIMER0
292 * / \
293 * LVL 0 [GRP0:0] [GRP0:1]
294 * migrator = TMIGR_NONE migrator = TMIGR_NONE
295 * active = active =
296 * next_expiry = TIMER0 next_expiry = KTIME_MAX
297 * / \ / \
298 * CPUs 0 1 2 3
299 * idle idle idle idle
300 *
301 * This is prevented by reading the state when holding the lock (when a new
302 * timer has to be propagated from idle path)::
303 *
304 * CPU2 (tmigr_inactive_up()) CPU0 (tmigr_new_timer_up())
305 * -------------------------- ---------------------------
306 * // step 3:
307 * cmpxchg(&GRP1:0->state);
308 * tmigr_update_events() {
309 * spin_lock(&GRP1:0->lock);
310 * // ... update events ...
311 * // hand back first expiry when GRP1:0 is idle
312 * spin_unlock(&GRP1:0->lock);
313 * // ^^^ release state modification
314 * }
315 * tmigr_update_events() {
316 * spin_lock(&GRP1:0->lock)
317 * // ^^^ acquire state modification
318 * group_state = atomic_read(&GRP1:0->state)
319 * // .... update events ...
320 * // hand back first expiry when GRP1:0 is idle
321 * spin_unlock(&GRP1:0->lock) <3>
322 * // ^^^ makes state visible for other
323 * // callers of tmigr_new_timer_up()
324 * }
325 *
326 * When CPU0 grabs the lock directly after cmpxchg, the first timer is reported
327 * back to CPU0 and also later on to CPU2. So no timer is missed. A concurrent
328 * update of the group state from active path is no problem, as the upcoming CPU
329 * will take care of the group events.
330 *
331 * Required event and timerqueue update after a remote expiry:
332 * -----------------------------------------------------------
333 *
334 * After expiring timers of a remote CPU, a walk through the hierarchy and
335 * update of events and timerqueues is required. It is obviously needed if there
336 * is a 'new' global timer but also if there is no new global timer but the
337 * remote CPU is still idle.
338 *
339 * 1. CPU0 and CPU1 are idle and have both a global timer expiring at the same
340 * time. So both have an event enqueued in the timerqueue of GRP0:0. CPU3 is
341 * also idle and has no global timer pending. CPU2 is the only active CPU and
342 * thus also the migrator:
343 *
344 * LVL 1 [GRP1:0]
345 * migrator = GRP0:1
346 * active = GRP0:1
347 * --> timerqueue = evt-GRP0:0
348 * / \
349 * LVL 0 [GRP0:0] [GRP0:1]
350 * migrator = TMIGR_NONE migrator = CPU2
351 * active = active = CPU2
352 * groupevt.ignore = false groupevt.ignore = true
353 * groupevt.cpu = CPU0 groupevt.cpu =
354 * timerqueue = evt-CPU0, timerqueue =
355 * evt-CPU1
356 * / \ / \
357 * CPUs 0 1 2 3
358 * idle idle active idle
359 *
360 * 2. CPU2 starts to expire remote timers. It starts with LVL0 group
361 * GRP0:1. There is no event queued in the timerqueue, so CPU2 continues with
362 * the parent of GRP0:1: GRP1:0. In GRP1:0 it dequeues the first event. It
363 * looks at tmigr_event::cpu struct member and expires the pending timer(s)
364 * of CPU0.
365 *
366 * LVL 1 [GRP1:0]
367 * migrator = GRP0:1
368 * active = GRP0:1
369 * --> timerqueue =
370 * / \
371 * LVL 0 [GRP0:0] [GRP0:1]
372 * migrator = TMIGR_NONE migrator = CPU2
373 * active = active = CPU2
374 * groupevt.ignore = false groupevt.ignore = true
375 * --> groupevt.cpu = CPU0 groupevt.cpu =
376 * timerqueue = evt-CPU0, timerqueue =
377 * evt-CPU1
378 * / \ / \
379 * CPUs 0 1 2 3
380 * idle idle active idle
381 *
382 * 3. Some work has to be done after expiring the timers of CPU0. If we stop
383 * here, then CPU1's pending global timer(s) will not expire in time and the
384 * timerqueue of GRP0:0 has still an event for CPU0 enqueued which has just
385 * been processed. So it is required to walk the hierarchy from CPU0's point
386 * of view and update it accordingly. CPU0's event will be removed from the
387 * timerqueue because it has no pending timer. If CPU0 would have a timer
388 * pending then it has to expire after CPU1's first timer because all timers
389 * from this period were just expired. Either way CPU1's event will be first
390 * in GRP0:0's timerqueue and therefore set in the CPU field of the group
391 * event which is then enqueued in GRP1:0's timerqueue as GRP0:0 is still not
392 * active:
393 *
394 * LVL 1 [GRP1:0]
395 * migrator = GRP0:1
396 * active = GRP0:1
397 * --> timerqueue = evt-GRP0:0
398 * / \
399 * LVL 0 [GRP0:0] [GRP0:1]
400 * migrator = TMIGR_NONE migrator = CPU2
401 * active = active = CPU2
402 * groupevt.ignore = false groupevt.ignore = true
403 * --> groupevt.cpu = CPU1 groupevt.cpu =
404 * --> timerqueue = evt-CPU1 timerqueue =
405 * / \ / \
406 * CPUs 0 1 2 3
407 * idle idle active idle
408 *
409 * Now CPU2 (migrator) will continue step 2 at GRP1:0 and will expire the
410 * timer(s) of CPU1.
411 *
412 * The hierarchy walk in step 3 can be skipped if the migrator notices that a
413 * CPU of GRP0:0 is active again. The CPU will mark GRP0:0 active and take care
414 * of the group as migrator and any needed updates within the hierarchy.
415 */
416
417 static DEFINE_MUTEX(tmigr_mutex);
418 static struct list_head *tmigr_level_list __read_mostly;
419
420 static unsigned int tmigr_hierarchy_levels __read_mostly;
421 static unsigned int tmigr_crossnode_level __read_mostly;
422
423 static DEFINE_PER_CPU(struct tmigr_cpu, tmigr_cpu);
424
425 #define TMIGR_NONE 0xFF
426 #define BIT_CNT 8
427
tmigr_is_not_available(struct tmigr_cpu * tmc)428 static inline bool tmigr_is_not_available(struct tmigr_cpu *tmc)
429 {
430 return !(tmc->tmgroup && tmc->online);
431 }
432
433 /*
434 * Returns true, when @childmask corresponds to the group migrator or when the
435 * group is not active - so no migrator is set.
436 */
tmigr_check_migrator(struct tmigr_group * group,u8 childmask)437 static bool tmigr_check_migrator(struct tmigr_group *group, u8 childmask)
438 {
439 union tmigr_state s;
440
441 s.state = atomic_read(&group->migr_state);
442
443 if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE))
444 return true;
445
446 return false;
447 }
448
tmigr_check_migrator_and_lonely(struct tmigr_group * group,u8 childmask)449 static bool tmigr_check_migrator_and_lonely(struct tmigr_group *group, u8 childmask)
450 {
451 bool lonely, migrator = false;
452 unsigned long active;
453 union tmigr_state s;
454
455 s.state = atomic_read(&group->migr_state);
456
457 if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE))
458 migrator = true;
459
460 active = s.active;
461 lonely = bitmap_weight(&active, BIT_CNT) <= 1;
462
463 return (migrator && lonely);
464 }
465
tmigr_check_lonely(struct tmigr_group * group)466 static bool tmigr_check_lonely(struct tmigr_group *group)
467 {
468 unsigned long active;
469 union tmigr_state s;
470
471 s.state = atomic_read(&group->migr_state);
472
473 active = s.active;
474
475 return bitmap_weight(&active, BIT_CNT) <= 1;
476 }
477
478 /**
479 * struct tmigr_walk - data required for walking the hierarchy
480 * @nextexp: Next CPU event expiry information which is handed into
481 * the timer migration code by the timer code
482 * (get_next_timer_interrupt())
483 * @firstexp: Contains the first event expiry information when
484 * hierarchy is completely idle. When CPU itself was the
485 * last going idle, information makes sure, that CPU will
486 * be back in time. When using this value in the remote
487 * expiry case, firstexp is stored in the per CPU tmigr_cpu
488 * struct of CPU which expires remote timers. It is updated
489 * in top level group only. Be aware, there could occur a
490 * new top level of the hierarchy between the 'top level
491 * call' in tmigr_update_events() and the check for the
492 * parent group in walk_groups(). Then @firstexp might
493 * contain a value != KTIME_MAX even if it was not the
494 * final top level. This is not a problem, as the worst
495 * outcome is a CPU which might wake up a little early.
496 * @evt: Pointer to tmigr_event which needs to be queued (of idle
497 * child group)
498 * @childmask: groupmask of child group
499 * @remote: Is set, when the new timer path is executed in
500 * tmigr_handle_remote_cpu()
501 * @basej: timer base in jiffies
502 * @now: timer base monotonic
503 * @check: is set if there is the need to handle remote timers;
504 * required in tmigr_requires_handle_remote() only
505 * @tmc_active: this flag indicates, whether the CPU which triggers
506 * the hierarchy walk is !idle in the timer migration
507 * hierarchy. When the CPU is idle and the whole hierarchy is
508 * idle, only the first event of the top level has to be
509 * considered.
510 */
511 struct tmigr_walk {
512 u64 nextexp;
513 u64 firstexp;
514 struct tmigr_event *evt;
515 u8 childmask;
516 bool remote;
517 unsigned long basej;
518 u64 now;
519 bool check;
520 bool tmc_active;
521 };
522
523 typedef bool (*up_f)(struct tmigr_group *, struct tmigr_group *, struct tmigr_walk *);
524
__walk_groups(up_f up,struct tmigr_walk * data,struct tmigr_cpu * tmc)525 static void __walk_groups(up_f up, struct tmigr_walk *data,
526 struct tmigr_cpu *tmc)
527 {
528 struct tmigr_group *child = NULL, *group = tmc->tmgroup;
529
530 do {
531 WARN_ON_ONCE(group->level >= tmigr_hierarchy_levels);
532
533 if (up(group, child, data))
534 break;
535
536 child = group;
537 /*
538 * Pairs with the store release on group connection
539 * to make sure group initialization is visible.
540 */
541 group = READ_ONCE(group->parent);
542 data->childmask = child->groupmask;
543 WARN_ON_ONCE(!data->childmask);
544 } while (group);
545 }
546
walk_groups(up_f up,struct tmigr_walk * data,struct tmigr_cpu * tmc)547 static void walk_groups(up_f up, struct tmigr_walk *data, struct tmigr_cpu *tmc)
548 {
549 lockdep_assert_held(&tmc->lock);
550
551 __walk_groups(up, data, tmc);
552 }
553
554 /*
555 * Returns the next event of the timerqueue @group->events
556 *
557 * Removes timers with ignore flag and update next_expiry of the group. Values
558 * of the group event are updated in tmigr_update_events() only.
559 */
tmigr_next_groupevt(struct tmigr_group * group)560 static struct tmigr_event *tmigr_next_groupevt(struct tmigr_group *group)
561 {
562 struct timerqueue_node *node = NULL;
563 struct tmigr_event *evt = NULL;
564
565 lockdep_assert_held(&group->lock);
566
567 WRITE_ONCE(group->next_expiry, KTIME_MAX);
568
569 while ((node = timerqueue_getnext(&group->events))) {
570 evt = container_of(node, struct tmigr_event, nextevt);
571
572 if (!evt->ignore) {
573 WRITE_ONCE(group->next_expiry, evt->nextevt.expires);
574 return evt;
575 }
576
577 /*
578 * Remove next timers with ignore flag, because the group lock
579 * is held anyway
580 */
581 if (!timerqueue_del(&group->events, node))
582 break;
583 }
584
585 return NULL;
586 }
587
588 /*
589 * Return the next event (with the expiry equal or before @now)
590 *
591 * Event, which is returned, is also removed from the queue.
592 */
tmigr_next_expired_groupevt(struct tmigr_group * group,u64 now)593 static struct tmigr_event *tmigr_next_expired_groupevt(struct tmigr_group *group,
594 u64 now)
595 {
596 struct tmigr_event *evt = tmigr_next_groupevt(group);
597
598 if (!evt || now < evt->nextevt.expires)
599 return NULL;
600
601 /*
602 * The event is ready to expire. Remove it and update next group event.
603 */
604 timerqueue_del(&group->events, &evt->nextevt);
605 tmigr_next_groupevt(group);
606
607 return evt;
608 }
609
tmigr_next_groupevt_expires(struct tmigr_group * group)610 static u64 tmigr_next_groupevt_expires(struct tmigr_group *group)
611 {
612 struct tmigr_event *evt;
613
614 evt = tmigr_next_groupevt(group);
615
616 if (!evt)
617 return KTIME_MAX;
618 else
619 return evt->nextevt.expires;
620 }
621
tmigr_active_up(struct tmigr_group * group,struct tmigr_group * child,struct tmigr_walk * data)622 static bool tmigr_active_up(struct tmigr_group *group,
623 struct tmigr_group *child,
624 struct tmigr_walk *data)
625 {
626 union tmigr_state curstate, newstate;
627 bool walk_done;
628 u8 childmask;
629
630 childmask = data->childmask;
631 /*
632 * No memory barrier is required here in contrast to
633 * tmigr_inactive_up(), as the group state change does not depend on the
634 * child state.
635 */
636 curstate.state = atomic_read(&group->migr_state);
637
638 do {
639 newstate = curstate;
640 walk_done = true;
641
642 if (newstate.migrator == TMIGR_NONE) {
643 newstate.migrator = childmask;
644
645 /* Changes need to be propagated */
646 walk_done = false;
647 }
648
649 newstate.active |= childmask;
650 newstate.seq++;
651
652 } while (!atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state));
653
654 trace_tmigr_group_set_cpu_active(group, newstate, childmask);
655
656 /*
657 * The group is active (again). The group event might be still queued
658 * into the parent group's timerqueue but can now be handled by the
659 * migrator of this group. Therefore the ignore flag for the group event
660 * is updated to reflect this.
661 *
662 * The update of the ignore flag in the active path is done lockless. In
663 * worst case the migrator of the parent group observes the change too
664 * late and expires remotely all events belonging to this group. The
665 * lock is held while updating the ignore flag in idle path. So this
666 * state change will not be lost.
667 */
668 group->groupevt.ignore = true;
669
670 return walk_done;
671 }
672
__tmigr_cpu_activate(struct tmigr_cpu * tmc)673 static void __tmigr_cpu_activate(struct tmigr_cpu *tmc)
674 {
675 struct tmigr_walk data;
676
677 data.childmask = tmc->groupmask;
678
679 trace_tmigr_cpu_active(tmc);
680
681 tmc->cpuevt.ignore = true;
682 WRITE_ONCE(tmc->wakeup, KTIME_MAX);
683
684 walk_groups(&tmigr_active_up, &data, tmc);
685 }
686
687 /**
688 * tmigr_cpu_activate() - set this CPU active in timer migration hierarchy
689 *
690 * Call site timer_clear_idle() is called with interrupts disabled.
691 */
tmigr_cpu_activate(void)692 void tmigr_cpu_activate(void)
693 {
694 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
695
696 if (tmigr_is_not_available(tmc))
697 return;
698
699 if (WARN_ON_ONCE(!tmc->idle))
700 return;
701
702 raw_spin_lock(&tmc->lock);
703 tmc->idle = false;
704 __tmigr_cpu_activate(tmc);
705 raw_spin_unlock(&tmc->lock);
706 }
707
708 /*
709 * Returns true, if there is nothing to be propagated to the next level
710 *
711 * @data->firstexp is set to expiry of first gobal event of the (top level of
712 * the) hierarchy, but only when hierarchy is completely idle.
713 *
714 * The child and group states need to be read under the lock, to prevent a race
715 * against a concurrent tmigr_inactive_up() run when the last CPU goes idle. See
716 * also section "Prevent race between new event and last CPU going inactive" in
717 * the documentation at the top.
718 *
719 * This is the only place where the group event expiry value is set.
720 */
721 static
tmigr_update_events(struct tmigr_group * group,struct tmigr_group * child,struct tmigr_walk * data)722 bool tmigr_update_events(struct tmigr_group *group, struct tmigr_group *child,
723 struct tmigr_walk *data)
724 {
725 struct tmigr_event *evt, *first_childevt;
726 union tmigr_state childstate, groupstate;
727 bool remote = data->remote;
728 bool walk_done = false;
729 u64 nextexp;
730
731 if (child) {
732 raw_spin_lock(&child->lock);
733 raw_spin_lock_nested(&group->lock, SINGLE_DEPTH_NESTING);
734
735 childstate.state = atomic_read(&child->migr_state);
736 groupstate.state = atomic_read(&group->migr_state);
737
738 if (childstate.active) {
739 walk_done = true;
740 goto unlock;
741 }
742
743 first_childevt = tmigr_next_groupevt(child);
744 nextexp = child->next_expiry;
745 evt = &child->groupevt;
746
747 evt->ignore = (nextexp == KTIME_MAX) ? true : false;
748 } else {
749 nextexp = data->nextexp;
750
751 first_childevt = evt = data->evt;
752
753 /*
754 * Walking the hierarchy is required in any case when a
755 * remote expiry was done before. This ensures to not lose
756 * already queued events in non active groups (see section
757 * "Required event and timerqueue update after a remote
758 * expiry" in the documentation at the top).
759 *
760 * The two call sites which are executed without a remote expiry
761 * before, are not prevented from propagating changes through
762 * the hierarchy by the return:
763 * - When entering this path by tmigr_new_timer(), @evt->ignore
764 * is never set.
765 * - tmigr_inactive_up() takes care of the propagation by
766 * itself and ignores the return value. But an immediate
767 * return is possible if there is a parent, sparing group
768 * locking at this level, because the upper walking call to
769 * the parent will take care about removing this event from
770 * within the group and update next_expiry accordingly.
771 *
772 * However if there is no parent, ie: the hierarchy has only a
773 * single level so @group is the top level group, make sure the
774 * first event information of the group is updated properly and
775 * also handled properly, so skip this fast return path.
776 */
777 if (evt->ignore && !remote && group->parent)
778 return true;
779
780 raw_spin_lock(&group->lock);
781
782 childstate.state = 0;
783 groupstate.state = atomic_read(&group->migr_state);
784 }
785
786 /*
787 * If the child event is already queued in the group, remove it from the
788 * queue when the expiry time changed only or when it could be ignored.
789 */
790 if (timerqueue_node_queued(&evt->nextevt)) {
791 if ((evt->nextevt.expires == nextexp) && !evt->ignore) {
792 /* Make sure not to miss a new CPU event with the same expiry */
793 evt->cpu = first_childevt->cpu;
794 goto check_toplvl;
795 }
796
797 if (!timerqueue_del(&group->events, &evt->nextevt))
798 WRITE_ONCE(group->next_expiry, KTIME_MAX);
799 }
800
801 if (evt->ignore) {
802 /*
803 * When the next child event could be ignored (nextexp is
804 * KTIME_MAX) and there was no remote timer handling before or
805 * the group is already active, there is no need to walk the
806 * hierarchy even if there is a parent group.
807 *
808 * The other way round: even if the event could be ignored, but
809 * if a remote timer handling was executed before and the group
810 * is not active, walking the hierarchy is required to not miss
811 * an enqueued timer in the non active group. The enqueued timer
812 * of the group needs to be propagated to a higher level to
813 * ensure it is handled.
814 */
815 if (!remote || groupstate.active)
816 walk_done = true;
817 } else {
818 evt->nextevt.expires = nextexp;
819 evt->cpu = first_childevt->cpu;
820
821 if (timerqueue_add(&group->events, &evt->nextevt))
822 WRITE_ONCE(group->next_expiry, nextexp);
823 }
824
825 check_toplvl:
826 if (!group->parent && (groupstate.migrator == TMIGR_NONE)) {
827 walk_done = true;
828
829 /*
830 * Nothing to do when update was done during remote timer
831 * handling. First timer in top level group which needs to be
832 * handled when top level group is not active, is calculated
833 * directly in tmigr_handle_remote_up().
834 */
835 if (remote)
836 goto unlock;
837
838 /*
839 * The top level group is idle and it has to be ensured the
840 * global timers are handled in time. (This could be optimized
841 * by keeping track of the last global scheduled event and only
842 * arming it on the CPU if the new event is earlier. Not sure if
843 * its worth the complexity.)
844 */
845 data->firstexp = tmigr_next_groupevt_expires(group);
846 }
847
848 trace_tmigr_update_events(child, group, childstate, groupstate,
849 nextexp);
850
851 unlock:
852 raw_spin_unlock(&group->lock);
853
854 if (child)
855 raw_spin_unlock(&child->lock);
856
857 return walk_done;
858 }
859
tmigr_new_timer_up(struct tmigr_group * group,struct tmigr_group * child,struct tmigr_walk * data)860 static bool tmigr_new_timer_up(struct tmigr_group *group,
861 struct tmigr_group *child,
862 struct tmigr_walk *data)
863 {
864 return tmigr_update_events(group, child, data);
865 }
866
867 /*
868 * Returns the expiry of the next timer that needs to be handled. KTIME_MAX is
869 * returned, if an active CPU will handle all the timer migration hierarchy
870 * timers.
871 */
tmigr_new_timer(struct tmigr_cpu * tmc,u64 nextexp)872 static u64 tmigr_new_timer(struct tmigr_cpu *tmc, u64 nextexp)
873 {
874 struct tmigr_walk data = { .nextexp = nextexp,
875 .firstexp = KTIME_MAX,
876 .evt = &tmc->cpuevt };
877
878 lockdep_assert_held(&tmc->lock);
879
880 if (tmc->remote)
881 return KTIME_MAX;
882
883 trace_tmigr_cpu_new_timer(tmc);
884
885 tmc->cpuevt.ignore = false;
886 data.remote = false;
887
888 walk_groups(&tmigr_new_timer_up, &data, tmc);
889
890 /* If there is a new first global event, make sure it is handled */
891 return data.firstexp;
892 }
893
tmigr_handle_remote_cpu(unsigned int cpu,u64 now,unsigned long jif)894 static void tmigr_handle_remote_cpu(unsigned int cpu, u64 now,
895 unsigned long jif)
896 {
897 struct timer_events tevt;
898 struct tmigr_walk data;
899 struct tmigr_cpu *tmc;
900
901 tmc = per_cpu_ptr(&tmigr_cpu, cpu);
902
903 raw_spin_lock_irq(&tmc->lock);
904
905 /*
906 * If the remote CPU is offline then the timers have been migrated to
907 * another CPU.
908 *
909 * If tmigr_cpu::remote is set, at the moment another CPU already
910 * expires the timers of the remote CPU.
911 *
912 * If tmigr_event::ignore is set, then the CPU returns from idle and
913 * takes care of its timers.
914 *
915 * If the next event expires in the future, then the event has been
916 * updated and there are no timers to expire right now. The CPU which
917 * updated the event takes care when hierarchy is completely
918 * idle. Otherwise the migrator does it as the event is enqueued.
919 */
920 if (!tmc->online || tmc->remote || tmc->cpuevt.ignore ||
921 now < tmc->cpuevt.nextevt.expires) {
922 raw_spin_unlock_irq(&tmc->lock);
923 return;
924 }
925
926 trace_tmigr_handle_remote_cpu(tmc);
927
928 tmc->remote = true;
929 WRITE_ONCE(tmc->wakeup, KTIME_MAX);
930
931 /* Drop the lock to allow the remote CPU to exit idle */
932 raw_spin_unlock_irq(&tmc->lock);
933
934 if (cpu != smp_processor_id())
935 timer_expire_remote(cpu);
936
937 /*
938 * Lock ordering needs to be preserved - timer_base locks before tmigr
939 * related locks (see section "Locking rules" in the documentation at
940 * the top). During fetching the next timer interrupt, also tmc->lock
941 * needs to be held. Otherwise there is a possible race window against
942 * the CPU itself when it comes out of idle, updates the first timer in
943 * the hierarchy and goes back to idle.
944 *
945 * timer base locks are dropped as fast as possible: After checking
946 * whether the remote CPU went offline in the meantime and after
947 * fetching the next remote timer interrupt. Dropping the locks as fast
948 * as possible keeps the locking region small and prevents holding
949 * several (unnecessary) locks during walking the hierarchy for updating
950 * the timerqueue and group events.
951 */
952 local_irq_disable();
953 timer_lock_remote_bases(cpu);
954 raw_spin_lock(&tmc->lock);
955
956 /*
957 * When the CPU went offline in the meantime, no hierarchy walk has to
958 * be done for updating the queued events, because the walk was
959 * already done during marking the CPU offline in the hierarchy.
960 *
961 * When the CPU is no longer idle, the CPU takes care of the timers and
962 * also of the timers in the hierarchy.
963 *
964 * (See also section "Required event and timerqueue update after a
965 * remote expiry" in the documentation at the top)
966 */
967 if (!tmc->online || !tmc->idle) {
968 timer_unlock_remote_bases(cpu);
969 goto unlock;
970 }
971
972 /* next event of CPU */
973 fetch_next_timer_interrupt_remote(jif, now, &tevt, cpu);
974 timer_unlock_remote_bases(cpu);
975
976 data.nextexp = tevt.global;
977 data.firstexp = KTIME_MAX;
978 data.evt = &tmc->cpuevt;
979 data.remote = true;
980
981 /*
982 * The update is done even when there is no 'new' global timer pending
983 * on the remote CPU (see section "Required event and timerqueue update
984 * after a remote expiry" in the documentation at the top)
985 */
986 walk_groups(&tmigr_new_timer_up, &data, tmc);
987
988 unlock:
989 tmc->remote = false;
990 raw_spin_unlock_irq(&tmc->lock);
991 }
992
tmigr_handle_remote_up(struct tmigr_group * group,struct tmigr_group * child,struct tmigr_walk * data)993 static bool tmigr_handle_remote_up(struct tmigr_group *group,
994 struct tmigr_group *child,
995 struct tmigr_walk *data)
996 {
997 struct tmigr_event *evt;
998 unsigned long jif;
999 u8 childmask;
1000 u64 now;
1001
1002 jif = data->basej;
1003 now = data->now;
1004
1005 childmask = data->childmask;
1006
1007 trace_tmigr_handle_remote(group);
1008 again:
1009 /*
1010 * Handle the group only if @childmask is the migrator or if the
1011 * group has no migrator. Otherwise the group is active and is
1012 * handled by its own migrator.
1013 */
1014 if (!tmigr_check_migrator(group, childmask))
1015 return true;
1016
1017 raw_spin_lock_irq(&group->lock);
1018
1019 evt = tmigr_next_expired_groupevt(group, now);
1020
1021 if (evt) {
1022 unsigned int remote_cpu = evt->cpu;
1023
1024 raw_spin_unlock_irq(&group->lock);
1025
1026 tmigr_handle_remote_cpu(remote_cpu, now, jif);
1027
1028 /* check if there is another event, that needs to be handled */
1029 goto again;
1030 }
1031
1032 /*
1033 * Keep track of the expiry of the first event that needs to be handled
1034 * (group->next_expiry was updated by tmigr_next_expired_groupevt(),
1035 * next was set by tmigr_handle_remote_cpu()).
1036 */
1037 data->firstexp = group->next_expiry;
1038
1039 raw_spin_unlock_irq(&group->lock);
1040
1041 return false;
1042 }
1043
1044 /**
1045 * tmigr_handle_remote() - Handle global timers of remote idle CPUs
1046 *
1047 * Called from the timer soft interrupt with interrupts enabled.
1048 */
tmigr_handle_remote(void)1049 void tmigr_handle_remote(void)
1050 {
1051 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1052 struct tmigr_walk data;
1053
1054 if (tmigr_is_not_available(tmc))
1055 return;
1056
1057 data.childmask = tmc->groupmask;
1058 data.firstexp = KTIME_MAX;
1059
1060 /*
1061 * NOTE: This is a doubled check because the migrator test will be done
1062 * in tmigr_handle_remote_up() anyway. Keep this check to speed up the
1063 * return when nothing has to be done.
1064 */
1065 if (!tmigr_check_migrator(tmc->tmgroup, tmc->groupmask)) {
1066 /*
1067 * If this CPU was an idle migrator, make sure to clear its wakeup
1068 * value so it won't chase timers that have already expired elsewhere.
1069 * This avoids endless requeue from tmigr_new_timer().
1070 */
1071 if (READ_ONCE(tmc->wakeup) == KTIME_MAX)
1072 return;
1073 }
1074
1075 data.now = get_jiffies_update(&data.basej);
1076
1077 /*
1078 * Update @tmc->wakeup only at the end and do not reset @tmc->wakeup to
1079 * KTIME_MAX. Even if tmc->lock is not held during the whole remote
1080 * handling, tmc->wakeup is fine to be stale as it is called in
1081 * interrupt context and tick_nohz_next_event() is executed in interrupt
1082 * exit path only after processing the last pending interrupt.
1083 */
1084
1085 __walk_groups(&tmigr_handle_remote_up, &data, tmc);
1086
1087 raw_spin_lock_irq(&tmc->lock);
1088 WRITE_ONCE(tmc->wakeup, data.firstexp);
1089 raw_spin_unlock_irq(&tmc->lock);
1090 }
1091
tmigr_requires_handle_remote_up(struct tmigr_group * group,struct tmigr_group * child,struct tmigr_walk * data)1092 static bool tmigr_requires_handle_remote_up(struct tmigr_group *group,
1093 struct tmigr_group *child,
1094 struct tmigr_walk *data)
1095 {
1096 u8 childmask;
1097
1098 childmask = data->childmask;
1099
1100 /*
1101 * Handle the group only if the child is the migrator or if the group
1102 * has no migrator. Otherwise the group is active and is handled by its
1103 * own migrator.
1104 */
1105 if (!tmigr_check_migrator(group, childmask))
1106 return true;
1107
1108 /*
1109 * When there is a parent group and the CPU which triggered the
1110 * hierarchy walk is not active, proceed the walk to reach the top level
1111 * group before reading the next_expiry value.
1112 */
1113 if (group->parent && !data->tmc_active)
1114 return false;
1115
1116 /*
1117 * The lock is required on 32bit architectures to read the variable
1118 * consistently with a concurrent writer. On 64bit the lock is not
1119 * required because the read operation is not split and so it is always
1120 * consistent.
1121 */
1122 if (IS_ENABLED(CONFIG_64BIT)) {
1123 data->firstexp = READ_ONCE(group->next_expiry);
1124 if (data->now >= data->firstexp) {
1125 data->check = true;
1126 return true;
1127 }
1128 } else {
1129 raw_spin_lock(&group->lock);
1130 data->firstexp = group->next_expiry;
1131 if (data->now >= group->next_expiry) {
1132 data->check = true;
1133 raw_spin_unlock(&group->lock);
1134 return true;
1135 }
1136 raw_spin_unlock(&group->lock);
1137 }
1138
1139 return false;
1140 }
1141
1142 /**
1143 * tmigr_requires_handle_remote() - Check the need of remote timer handling
1144 *
1145 * Must be called with interrupts disabled.
1146 */
tmigr_requires_handle_remote(void)1147 bool tmigr_requires_handle_remote(void)
1148 {
1149 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1150 struct tmigr_walk data;
1151 unsigned long jif;
1152 bool ret = false;
1153
1154 if (tmigr_is_not_available(tmc))
1155 return ret;
1156
1157 data.now = get_jiffies_update(&jif);
1158 data.childmask = tmc->groupmask;
1159 data.firstexp = KTIME_MAX;
1160 data.tmc_active = !tmc->idle;
1161 data.check = false;
1162
1163 /*
1164 * If the CPU is active, walk the hierarchy to check whether a remote
1165 * expiry is required.
1166 *
1167 * Check is done lockless as interrupts are disabled and @tmc->idle is
1168 * set only by the local CPU.
1169 */
1170 if (!tmc->idle) {
1171 __walk_groups(&tmigr_requires_handle_remote_up, &data, tmc);
1172
1173 return data.check;
1174 }
1175
1176 /*
1177 * When the CPU is idle, compare @tmc->wakeup with @data.now. The lock
1178 * is required on 32bit architectures to read the variable consistently
1179 * with a concurrent writer. On 64bit the lock is not required because
1180 * the read operation is not split and so it is always consistent.
1181 */
1182 if (IS_ENABLED(CONFIG_64BIT)) {
1183 if (data.now >= READ_ONCE(tmc->wakeup))
1184 return true;
1185 } else {
1186 raw_spin_lock(&tmc->lock);
1187 if (data.now >= tmc->wakeup)
1188 ret = true;
1189 raw_spin_unlock(&tmc->lock);
1190 }
1191
1192 return ret;
1193 }
1194
1195 /**
1196 * tmigr_cpu_new_timer() - enqueue next global timer into hierarchy (idle tmc)
1197 * @nextexp: Next expiry of global timer (or KTIME_MAX if not)
1198 *
1199 * The CPU is already deactivated in the timer migration
1200 * hierarchy. tick_nohz_get_sleep_length() calls tick_nohz_next_event()
1201 * and thereby the timer idle path is executed once more. @tmc->wakeup
1202 * holds the first timer, when the timer migration hierarchy is
1203 * completely idle.
1204 *
1205 * Returns the first timer that needs to be handled by this CPU or KTIME_MAX if
1206 * nothing needs to be done.
1207 */
tmigr_cpu_new_timer(u64 nextexp)1208 u64 tmigr_cpu_new_timer(u64 nextexp)
1209 {
1210 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1211 u64 ret;
1212
1213 if (tmigr_is_not_available(tmc))
1214 return nextexp;
1215
1216 raw_spin_lock(&tmc->lock);
1217
1218 ret = READ_ONCE(tmc->wakeup);
1219 if (nextexp != KTIME_MAX) {
1220 if (nextexp != tmc->cpuevt.nextevt.expires ||
1221 tmc->cpuevt.ignore) {
1222 ret = tmigr_new_timer(tmc, nextexp);
1223 /*
1224 * Make sure the reevaluation of timers in idle path
1225 * will not miss an event.
1226 */
1227 WRITE_ONCE(tmc->wakeup, ret);
1228 }
1229 }
1230 trace_tmigr_cpu_new_timer_idle(tmc, nextexp);
1231 raw_spin_unlock(&tmc->lock);
1232 return ret;
1233 }
1234
tmigr_inactive_up(struct tmigr_group * group,struct tmigr_group * child,struct tmigr_walk * data)1235 static bool tmigr_inactive_up(struct tmigr_group *group,
1236 struct tmigr_group *child,
1237 struct tmigr_walk *data)
1238 {
1239 union tmigr_state curstate, newstate, childstate;
1240 bool walk_done;
1241 u8 childmask;
1242
1243 childmask = data->childmask;
1244 childstate.state = 0;
1245
1246 /*
1247 * The memory barrier is paired with the cmpxchg() in tmigr_active_up()
1248 * to make sure the updates of child and group states are ordered. The
1249 * ordering is mandatory, as the group state change depends on the child
1250 * state.
1251 */
1252 curstate.state = atomic_read_acquire(&group->migr_state);
1253
1254 for (;;) {
1255 if (child)
1256 childstate.state = atomic_read(&child->migr_state);
1257
1258 newstate = curstate;
1259 walk_done = true;
1260
1261 /* Reset active bit when the child is no longer active */
1262 if (!childstate.active)
1263 newstate.active &= ~childmask;
1264
1265 if (newstate.migrator == childmask) {
1266 /*
1267 * Find a new migrator for the group, because the child
1268 * group is idle!
1269 */
1270 if (!childstate.active) {
1271 unsigned long new_migr_bit, active = newstate.active;
1272
1273 new_migr_bit = find_first_bit(&active, BIT_CNT);
1274
1275 if (new_migr_bit != BIT_CNT) {
1276 newstate.migrator = BIT(new_migr_bit);
1277 } else {
1278 newstate.migrator = TMIGR_NONE;
1279
1280 /* Changes need to be propagated */
1281 walk_done = false;
1282 }
1283 }
1284 }
1285
1286 newstate.seq++;
1287
1288 WARN_ON_ONCE((newstate.migrator != TMIGR_NONE) && !(newstate.active));
1289
1290 if (atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state)) {
1291 trace_tmigr_group_set_cpu_inactive(group, newstate, childmask);
1292 break;
1293 }
1294
1295 /*
1296 * The memory barrier is paired with the cmpxchg() in
1297 * tmigr_active_up() to make sure the updates of child and group
1298 * states are ordered. It is required only when the above
1299 * try_cmpxchg() fails.
1300 */
1301 smp_mb__after_atomic();
1302 }
1303
1304 data->remote = false;
1305
1306 /* Event Handling */
1307 tmigr_update_events(group, child, data);
1308
1309 return walk_done;
1310 }
1311
__tmigr_cpu_deactivate(struct tmigr_cpu * tmc,u64 nextexp)1312 static u64 __tmigr_cpu_deactivate(struct tmigr_cpu *tmc, u64 nextexp)
1313 {
1314 struct tmigr_walk data = { .nextexp = nextexp,
1315 .firstexp = KTIME_MAX,
1316 .evt = &tmc->cpuevt,
1317 .childmask = tmc->groupmask };
1318
1319 /*
1320 * If nextexp is KTIME_MAX, the CPU event will be ignored because the
1321 * local timer expires before the global timer, no global timer is set
1322 * or CPU goes offline.
1323 */
1324 if (nextexp != KTIME_MAX)
1325 tmc->cpuevt.ignore = false;
1326
1327 walk_groups(&tmigr_inactive_up, &data, tmc);
1328 return data.firstexp;
1329 }
1330
1331 /**
1332 * tmigr_cpu_deactivate() - Put current CPU into inactive state
1333 * @nextexp: The next global timer expiry of the current CPU
1334 *
1335 * Must be called with interrupts disabled.
1336 *
1337 * Return: the next event expiry of the current CPU or the next event expiry
1338 * from the hierarchy if this CPU is the top level migrator or the hierarchy is
1339 * completely idle.
1340 */
tmigr_cpu_deactivate(u64 nextexp)1341 u64 tmigr_cpu_deactivate(u64 nextexp)
1342 {
1343 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1344 u64 ret;
1345
1346 if (tmigr_is_not_available(tmc))
1347 return nextexp;
1348
1349 raw_spin_lock(&tmc->lock);
1350
1351 ret = __tmigr_cpu_deactivate(tmc, nextexp);
1352
1353 tmc->idle = true;
1354
1355 /*
1356 * Make sure the reevaluation of timers in idle path will not miss an
1357 * event.
1358 */
1359 WRITE_ONCE(tmc->wakeup, ret);
1360
1361 trace_tmigr_cpu_idle(tmc, nextexp);
1362 raw_spin_unlock(&tmc->lock);
1363 return ret;
1364 }
1365
1366 /**
1367 * tmigr_quick_check() - Quick forecast of next tmigr event when CPU wants to
1368 * go idle
1369 * @nextevt: The next global timer expiry of the current CPU
1370 *
1371 * Return:
1372 * * KTIME_MAX - when it is probable that nothing has to be done (not
1373 * the only one in the level 0 group; and if it is the
1374 * only one in level 0 group, but there are more than a
1375 * single group active on the way to top level)
1376 * * nextevt - when CPU is offline and has to handle timer on its own
1377 * or when on the way to top in every group only a single
1378 * child is active but @nextevt is before the lowest
1379 * next_expiry encountered while walking up to top level.
1380 * * next_expiry - value of lowest expiry encountered while walking groups
1381 * if only a single child is active on each and @nextevt
1382 * is after this lowest expiry.
1383 */
tmigr_quick_check(u64 nextevt)1384 u64 tmigr_quick_check(u64 nextevt)
1385 {
1386 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1387 struct tmigr_group *group = tmc->tmgroup;
1388
1389 if (tmigr_is_not_available(tmc))
1390 return nextevt;
1391
1392 if (WARN_ON_ONCE(tmc->idle))
1393 return nextevt;
1394
1395 if (!tmigr_check_migrator_and_lonely(tmc->tmgroup, tmc->groupmask))
1396 return KTIME_MAX;
1397
1398 do {
1399 if (!tmigr_check_lonely(group)) {
1400 return KTIME_MAX;
1401 } else {
1402 /*
1403 * Since current CPU is active, events may not be sorted
1404 * from bottom to the top because the CPU's event is ignored
1405 * up to the top and its sibling's events not propagated upwards.
1406 * Thus keep track of the lowest observed expiry.
1407 */
1408 nextevt = min_t(u64, nextevt, READ_ONCE(group->next_expiry));
1409 if (!group->parent)
1410 return nextevt;
1411 }
1412 group = group->parent;
1413 } while (group);
1414
1415 return KTIME_MAX;
1416 }
1417
1418 /*
1419 * tmigr_trigger_active() - trigger a CPU to become active again
1420 *
1421 * This function is executed on a CPU which is part of cpu_online_mask, when the
1422 * last active CPU in the hierarchy is offlining. With this, it is ensured that
1423 * the other CPU is active and takes over the migrator duty.
1424 */
tmigr_trigger_active(void * unused)1425 static long tmigr_trigger_active(void *unused)
1426 {
1427 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1428
1429 WARN_ON_ONCE(!tmc->online || tmc->idle);
1430
1431 return 0;
1432 }
1433
tmigr_cpu_offline(unsigned int cpu)1434 static int tmigr_cpu_offline(unsigned int cpu)
1435 {
1436 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1437 int migrator;
1438 u64 firstexp;
1439
1440 raw_spin_lock_irq(&tmc->lock);
1441 tmc->online = false;
1442 WRITE_ONCE(tmc->wakeup, KTIME_MAX);
1443
1444 /*
1445 * CPU has to handle the local events on his own, when on the way to
1446 * offline; Therefore nextevt value is set to KTIME_MAX
1447 */
1448 firstexp = __tmigr_cpu_deactivate(tmc, KTIME_MAX);
1449 trace_tmigr_cpu_offline(tmc);
1450 raw_spin_unlock_irq(&tmc->lock);
1451
1452 if (firstexp != KTIME_MAX) {
1453 migrator = cpumask_any_but(cpu_online_mask, cpu);
1454 work_on_cpu(migrator, tmigr_trigger_active, NULL);
1455 }
1456
1457 return 0;
1458 }
1459
tmigr_cpu_online(unsigned int cpu)1460 static int tmigr_cpu_online(unsigned int cpu)
1461 {
1462 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1463
1464 /* Check whether CPU data was successfully initialized */
1465 if (WARN_ON_ONCE(!tmc->tmgroup))
1466 return -EINVAL;
1467
1468 raw_spin_lock_irq(&tmc->lock);
1469 trace_tmigr_cpu_online(tmc);
1470 tmc->idle = timer_base_is_idle();
1471 if (!tmc->idle)
1472 __tmigr_cpu_activate(tmc);
1473 tmc->online = true;
1474 raw_spin_unlock_irq(&tmc->lock);
1475 return 0;
1476 }
1477
tmigr_init_group(struct tmigr_group * group,unsigned int lvl,int node)1478 static void tmigr_init_group(struct tmigr_group *group, unsigned int lvl,
1479 int node)
1480 {
1481 union tmigr_state s;
1482
1483 raw_spin_lock_init(&group->lock);
1484
1485 group->level = lvl;
1486 group->numa_node = lvl < tmigr_crossnode_level ? node : NUMA_NO_NODE;
1487
1488 group->num_children = 0;
1489
1490 s.migrator = TMIGR_NONE;
1491 s.active = 0;
1492 s.seq = 0;
1493 atomic_set(&group->migr_state, s.state);
1494
1495 /*
1496 * If this is a new top-level, prepare its groupmask in advance.
1497 * This avoids accidents where yet another new top-level is
1498 * created in the future and made visible before the current groupmask.
1499 */
1500 if (list_empty(&tmigr_level_list[lvl])) {
1501 group->groupmask = BIT(0);
1502 /*
1503 * The previous top level has prepared its groupmask already,
1504 * simply account it as the first child.
1505 */
1506 if (lvl > 0)
1507 group->num_children = 1;
1508 }
1509
1510 timerqueue_init_head(&group->events);
1511 timerqueue_init(&group->groupevt.nextevt);
1512 group->groupevt.nextevt.expires = KTIME_MAX;
1513 WRITE_ONCE(group->next_expiry, KTIME_MAX);
1514 group->groupevt.ignore = true;
1515 }
1516
tmigr_get_group(unsigned int cpu,int node,unsigned int lvl)1517 static struct tmigr_group *tmigr_get_group(unsigned int cpu, int node,
1518 unsigned int lvl)
1519 {
1520 struct tmigr_group *tmp, *group = NULL;
1521
1522 lockdep_assert_held(&tmigr_mutex);
1523
1524 /* Try to attach to an existing group first */
1525 list_for_each_entry(tmp, &tmigr_level_list[lvl], list) {
1526 /*
1527 * If @lvl is below the cross NUMA node level, check whether
1528 * this group belongs to the same NUMA node.
1529 */
1530 if (lvl < tmigr_crossnode_level && tmp->numa_node != node)
1531 continue;
1532
1533 /* Capacity left? */
1534 if (tmp->num_children >= TMIGR_CHILDREN_PER_GROUP)
1535 continue;
1536
1537 /*
1538 * TODO: A possible further improvement: Make sure that all CPU
1539 * siblings end up in the same group of the lowest level of the
1540 * hierarchy. Rely on the topology sibling mask would be a
1541 * reasonable solution.
1542 */
1543
1544 group = tmp;
1545 break;
1546 }
1547
1548 if (group)
1549 return group;
1550
1551 /* Allocate and set up a new group */
1552 group = kzalloc_node(sizeof(*group), GFP_KERNEL, node);
1553 if (!group)
1554 return ERR_PTR(-ENOMEM);
1555
1556 tmigr_init_group(group, lvl, node);
1557
1558 /* Setup successful. Add it to the hierarchy */
1559 list_add(&group->list, &tmigr_level_list[lvl]);
1560 trace_tmigr_group_set(group);
1561 return group;
1562 }
1563
tmigr_connect_child_parent(struct tmigr_group * child,struct tmigr_group * parent,bool activate)1564 static void tmigr_connect_child_parent(struct tmigr_group *child,
1565 struct tmigr_group *parent,
1566 bool activate)
1567 {
1568 struct tmigr_walk data;
1569
1570 raw_spin_lock_irq(&child->lock);
1571 raw_spin_lock_nested(&parent->lock, SINGLE_DEPTH_NESTING);
1572
1573 if (activate) {
1574 /*
1575 * @child is the old top and @parent the new one. In this
1576 * case groupmask is pre-initialized and @child already
1577 * accounted, along with its new sibling corresponding to the
1578 * CPU going up.
1579 */
1580 WARN_ON_ONCE(child->groupmask != BIT(0) || parent->num_children != 2);
1581 } else {
1582 /* Adding @child for the CPU going up to @parent. */
1583 child->groupmask = BIT(parent->num_children++);
1584 }
1585
1586 /*
1587 * Make sure parent initialization is visible before publishing it to a
1588 * racing CPU entering/exiting idle. This RELEASE barrier enforces an
1589 * address dependency that pairs with the READ_ONCE() in __walk_groups().
1590 */
1591 smp_store_release(&child->parent, parent);
1592
1593 raw_spin_unlock(&parent->lock);
1594 raw_spin_unlock_irq(&child->lock);
1595
1596 trace_tmigr_connect_child_parent(child);
1597
1598 if (!activate)
1599 return;
1600
1601 /*
1602 * To prevent inconsistent states, active children need to be active in
1603 * the new parent as well. Inactive children are already marked inactive
1604 * in the parent group:
1605 *
1606 * * When new groups were created by tmigr_setup_groups() starting from
1607 * the lowest level (and not higher then one level below the current
1608 * top level), then they are not active. They will be set active when
1609 * the new online CPU comes active.
1610 *
1611 * * But if a new group above the current top level is required, it is
1612 * mandatory to propagate the active state of the already existing
1613 * child to the new parent. So tmigr_connect_child_parent() is
1614 * executed with the formerly top level group (child) and the newly
1615 * created group (parent).
1616 *
1617 * * It is ensured that the child is active, as this setup path is
1618 * executed in hotplug prepare callback. This is exectued by an
1619 * already connected and !idle CPU. Even if all other CPUs go idle,
1620 * the CPU executing the setup will be responsible up to current top
1621 * level group. And the next time it goes inactive, it will release
1622 * the new childmask and parent to subsequent walkers through this
1623 * @child. Therefore propagate active state unconditionally.
1624 */
1625 data.childmask = child->groupmask;
1626
1627 /*
1628 * There is only one new level per time (which is protected by
1629 * tmigr_mutex). When connecting the child and the parent and set the
1630 * child active when the parent is inactive, the parent needs to be the
1631 * uppermost level. Otherwise there went something wrong!
1632 */
1633 WARN_ON(!tmigr_active_up(parent, child, &data) && parent->parent);
1634 }
1635
tmigr_setup_groups(unsigned int cpu,unsigned int node)1636 static int tmigr_setup_groups(unsigned int cpu, unsigned int node)
1637 {
1638 struct tmigr_group *group, *child, **stack;
1639 int top = 0, err = 0, i = 0;
1640 struct list_head *lvllist;
1641
1642 stack = kcalloc(tmigr_hierarchy_levels, sizeof(*stack), GFP_KERNEL);
1643 if (!stack)
1644 return -ENOMEM;
1645
1646 do {
1647 group = tmigr_get_group(cpu, node, i);
1648 if (IS_ERR(group)) {
1649 err = PTR_ERR(group);
1650 break;
1651 }
1652
1653 top = i;
1654 stack[i++] = group;
1655
1656 /*
1657 * When booting only less CPUs of a system than CPUs are
1658 * available, not all calculated hierarchy levels are required.
1659 *
1660 * The loop is aborted as soon as the highest level, which might
1661 * be different from tmigr_hierarchy_levels, contains only a
1662 * single group.
1663 */
1664 if (group->parent || i == tmigr_hierarchy_levels ||
1665 (list_empty(&tmigr_level_list[i]) &&
1666 list_is_singular(&tmigr_level_list[i - 1])))
1667 break;
1668
1669 } while (i < tmigr_hierarchy_levels);
1670
1671 /* Assert single root */
1672 WARN_ON_ONCE(!err && !group->parent && !list_is_singular(&tmigr_level_list[top]));
1673
1674 while (i > 0) {
1675 group = stack[--i];
1676
1677 if (err < 0) {
1678 list_del(&group->list);
1679 kfree(group);
1680 continue;
1681 }
1682
1683 WARN_ON_ONCE(i != group->level);
1684
1685 /*
1686 * Update tmc -> group / child -> group connection
1687 */
1688 if (i == 0) {
1689 struct tmigr_cpu *tmc = per_cpu_ptr(&tmigr_cpu, cpu);
1690
1691 raw_spin_lock_irq(&group->lock);
1692
1693 tmc->tmgroup = group;
1694 tmc->groupmask = BIT(group->num_children++);
1695
1696 raw_spin_unlock_irq(&group->lock);
1697
1698 trace_tmigr_connect_cpu_parent(tmc);
1699
1700 /* There are no children that need to be connected */
1701 continue;
1702 } else {
1703 child = stack[i - 1];
1704 /* Will be activated at online time */
1705 tmigr_connect_child_parent(child, group, false);
1706 }
1707
1708 /* check if uppermost level was newly created */
1709 if (top != i)
1710 continue;
1711
1712 WARN_ON_ONCE(top == 0);
1713
1714 lvllist = &tmigr_level_list[top];
1715
1716 /*
1717 * Newly created root level should have accounted the upcoming
1718 * CPU's child group and pre-accounted the old root.
1719 */
1720 if (group->num_children == 2 && list_is_singular(lvllist)) {
1721 /*
1722 * The target CPU must never do the prepare work, except
1723 * on early boot when the boot CPU is the target. Otherwise
1724 * it may spuriously activate the old top level group inside
1725 * the new one (nevertheless whether old top level group is
1726 * active or not) and/or release an uninitialized childmask.
1727 */
1728 WARN_ON_ONCE(cpu == raw_smp_processor_id());
1729
1730 lvllist = &tmigr_level_list[top - 1];
1731 list_for_each_entry(child, lvllist, list) {
1732 if (child->parent)
1733 continue;
1734
1735 tmigr_connect_child_parent(child, group, true);
1736 }
1737 }
1738 }
1739
1740 kfree(stack);
1741
1742 return err;
1743 }
1744
tmigr_add_cpu(unsigned int cpu)1745 static int tmigr_add_cpu(unsigned int cpu)
1746 {
1747 int node = cpu_to_node(cpu);
1748 int ret;
1749
1750 mutex_lock(&tmigr_mutex);
1751 ret = tmigr_setup_groups(cpu, node);
1752 mutex_unlock(&tmigr_mutex);
1753
1754 return ret;
1755 }
1756
tmigr_cpu_prepare(unsigned int cpu)1757 static int tmigr_cpu_prepare(unsigned int cpu)
1758 {
1759 struct tmigr_cpu *tmc = per_cpu_ptr(&tmigr_cpu, cpu);
1760 int ret = 0;
1761
1762 /* Not first online attempt? */
1763 if (tmc->tmgroup)
1764 return ret;
1765
1766 raw_spin_lock_init(&tmc->lock);
1767 timerqueue_init(&tmc->cpuevt.nextevt);
1768 tmc->cpuevt.nextevt.expires = KTIME_MAX;
1769 tmc->cpuevt.ignore = true;
1770 tmc->cpuevt.cpu = cpu;
1771 tmc->remote = false;
1772 WRITE_ONCE(tmc->wakeup, KTIME_MAX);
1773
1774 ret = tmigr_add_cpu(cpu);
1775 if (ret < 0)
1776 return ret;
1777
1778 if (tmc->groupmask == 0)
1779 return -EINVAL;
1780
1781 return ret;
1782 }
1783
tmigr_init(void)1784 static int __init tmigr_init(void)
1785 {
1786 unsigned int cpulvl, nodelvl, cpus_per_node, i;
1787 unsigned int nnodes = num_possible_nodes();
1788 unsigned int ncpus = num_possible_cpus();
1789 int ret = -ENOMEM;
1790
1791 BUILD_BUG_ON_NOT_POWER_OF_2(TMIGR_CHILDREN_PER_GROUP);
1792
1793 /* Nothing to do if running on UP */
1794 if (ncpus == 1)
1795 return 0;
1796
1797 /*
1798 * Calculate the required hierarchy levels. Unfortunately there is no
1799 * reliable information available, unless all possible CPUs have been
1800 * brought up and all NUMA nodes are populated.
1801 *
1802 * Estimate the number of levels with the number of possible nodes and
1803 * the number of possible CPUs. Assume CPUs are spread evenly across
1804 * nodes. We cannot rely on cpumask_of_node() because it only works for
1805 * online CPUs.
1806 */
1807 cpus_per_node = DIV_ROUND_UP(ncpus, nnodes);
1808
1809 /* Calc the hierarchy levels required to hold the CPUs of a node */
1810 cpulvl = DIV_ROUND_UP(order_base_2(cpus_per_node),
1811 ilog2(TMIGR_CHILDREN_PER_GROUP));
1812
1813 /* Calculate the extra levels to connect all nodes */
1814 nodelvl = DIV_ROUND_UP(order_base_2(nnodes),
1815 ilog2(TMIGR_CHILDREN_PER_GROUP));
1816
1817 tmigr_hierarchy_levels = cpulvl + nodelvl;
1818
1819 /*
1820 * If a NUMA node spawns more than one CPU level group then the next
1821 * level(s) of the hierarchy contains groups which handle all CPU groups
1822 * of the same NUMA node. The level above goes across NUMA nodes. Store
1823 * this information for the setup code to decide in which level node
1824 * matching is no longer required.
1825 */
1826 tmigr_crossnode_level = cpulvl;
1827
1828 tmigr_level_list = kcalloc(tmigr_hierarchy_levels, sizeof(struct list_head), GFP_KERNEL);
1829 if (!tmigr_level_list)
1830 goto err;
1831
1832 for (i = 0; i < tmigr_hierarchy_levels; i++)
1833 INIT_LIST_HEAD(&tmigr_level_list[i]);
1834
1835 pr_info("Timer migration: %d hierarchy levels; %d children per group;"
1836 " %d crossnode level\n",
1837 tmigr_hierarchy_levels, TMIGR_CHILDREN_PER_GROUP,
1838 tmigr_crossnode_level);
1839
1840 ret = cpuhp_setup_state(CPUHP_TMIGR_PREPARE, "tmigr:prepare",
1841 tmigr_cpu_prepare, NULL);
1842 if (ret)
1843 goto err;
1844
1845 ret = cpuhp_setup_state(CPUHP_AP_TMIGR_ONLINE, "tmigr:online",
1846 tmigr_cpu_online, tmigr_cpu_offline);
1847 if (ret)
1848 goto err;
1849
1850 return 0;
1851
1852 err:
1853 pr_err("Timer migration setup failed\n");
1854 return ret;
1855 }
1856 early_initcall(tmigr_init);
1857