• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/alloc_tag.h>
3 #include <linux/execmem.h>
4 #include <linux/fs.h>
5 #include <linux/gfp.h>
6 #include <linux/kallsyms.h>
7 #include <linux/module.h>
8 #include <linux/page_ext.h>
9 #include <linux/proc_fs.h>
10 #include <linux/seq_buf.h>
11 #include <linux/seq_file.h>
12 #include <linux/vmalloc.h>
13 
14 #define ALLOCINFO_FILE_NAME		"allocinfo"
15 #define MODULE_ALLOC_TAG_VMAP_SIZE	(100000UL * sizeof(struct alloc_tag))
16 #define SECTION_START(NAME)		(CODETAG_SECTION_START_PREFIX NAME)
17 #define SECTION_STOP(NAME)		(CODETAG_SECTION_STOP_PREFIX NAME)
18 
19 #ifdef CONFIG_MEM_ALLOC_PROFILING_ENABLED_BY_DEFAULT
20 static bool mem_profiling_support = true;
21 #else
22 static bool mem_profiling_support;
23 #endif
24 
25 static struct codetag_type *alloc_tag_cttype;
26 
27 DEFINE_PER_CPU(struct alloc_tag_counters, _shared_alloc_tag);
28 EXPORT_SYMBOL(_shared_alloc_tag);
29 
30 DEFINE_STATIC_KEY_MAYBE(CONFIG_MEM_ALLOC_PROFILING_ENABLED_BY_DEFAULT,
31 			mem_alloc_profiling_key);
32 EXPORT_SYMBOL(mem_alloc_profiling_key);
33 
34 DEFINE_STATIC_KEY_FALSE(mem_profiling_compressed);
35 
36 struct alloc_tag_kernel_section kernel_tags = { NULL, 0 };
37 unsigned long alloc_tag_ref_mask;
38 int alloc_tag_ref_offs;
39 
40 struct allocinfo_private {
41 	struct codetag_iterator iter;
42 	bool print_header;
43 };
44 
allocinfo_start(struct seq_file * m,loff_t * pos)45 static void *allocinfo_start(struct seq_file *m, loff_t *pos)
46 {
47 	struct allocinfo_private *priv;
48 	struct codetag *ct;
49 	loff_t node = *pos;
50 
51 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
52 	m->private = priv;
53 	if (!priv)
54 		return NULL;
55 
56 	priv->print_header = (node == 0);
57 	codetag_lock_module_list(alloc_tag_cttype, true);
58 	priv->iter = codetag_get_ct_iter(alloc_tag_cttype);
59 	while ((ct = codetag_next_ct(&priv->iter)) != NULL && node)
60 		node--;
61 
62 	return ct ? priv : NULL;
63 }
64 
allocinfo_next(struct seq_file * m,void * arg,loff_t * pos)65 static void *allocinfo_next(struct seq_file *m, void *arg, loff_t *pos)
66 {
67 	struct allocinfo_private *priv = (struct allocinfo_private *)arg;
68 	struct codetag *ct = codetag_next_ct(&priv->iter);
69 
70 	(*pos)++;
71 	if (!ct)
72 		return NULL;
73 
74 	return priv;
75 }
76 
allocinfo_stop(struct seq_file * m,void * arg)77 static void allocinfo_stop(struct seq_file *m, void *arg)
78 {
79 	struct allocinfo_private *priv = (struct allocinfo_private *)m->private;
80 
81 	if (priv) {
82 		codetag_lock_module_list(alloc_tag_cttype, false);
83 		kfree(priv);
84 	}
85 }
86 
print_allocinfo_header(struct seq_buf * buf)87 static void print_allocinfo_header(struct seq_buf *buf)
88 {
89 	/* Output format version, so we can change it. */
90 	seq_buf_printf(buf, "allocinfo - version: 1.0\n");
91 	seq_buf_printf(buf, "#     <size>  <calls> <tag info>\n");
92 }
93 
alloc_tag_to_text(struct seq_buf * out,struct codetag * ct)94 static void alloc_tag_to_text(struct seq_buf *out, struct codetag *ct)
95 {
96 	struct alloc_tag *tag = ct_to_alloc_tag(ct);
97 	struct alloc_tag_counters counter = alloc_tag_read(tag);
98 	s64 bytes = counter.bytes;
99 
100 	seq_buf_printf(out, "%12lli %8llu ", bytes, counter.calls);
101 	codetag_to_text(out, ct);
102 	seq_buf_putc(out, ' ');
103 	seq_buf_putc(out, '\n');
104 }
105 
allocinfo_show(struct seq_file * m,void * arg)106 static int allocinfo_show(struct seq_file *m, void *arg)
107 {
108 	struct allocinfo_private *priv = (struct allocinfo_private *)arg;
109 	char *bufp;
110 	size_t n = seq_get_buf(m, &bufp);
111 	struct seq_buf buf;
112 
113 	seq_buf_init(&buf, bufp, n);
114 	if (priv->print_header) {
115 		print_allocinfo_header(&buf);
116 		priv->print_header = false;
117 	}
118 	alloc_tag_to_text(&buf, priv->iter.ct);
119 	seq_commit(m, seq_buf_used(&buf));
120 	return 0;
121 }
122 
123 static const struct seq_operations allocinfo_seq_op = {
124 	.start	= allocinfo_start,
125 	.next	= allocinfo_next,
126 	.stop	= allocinfo_stop,
127 	.show	= allocinfo_show,
128 };
129 
alloc_tag_top_users(struct codetag_bytes * tags,size_t count,bool can_sleep)130 size_t alloc_tag_top_users(struct codetag_bytes *tags, size_t count, bool can_sleep)
131 {
132 	struct codetag_iterator iter;
133 	struct codetag *ct;
134 	struct codetag_bytes n;
135 	unsigned int i, nr = 0;
136 
137 	if (IS_ERR_OR_NULL(alloc_tag_cttype))
138 		return 0;
139 
140 	if (can_sleep)
141 		codetag_lock_module_list(alloc_tag_cttype, true);
142 	else if (!codetag_trylock_module_list(alloc_tag_cttype))
143 		return 0;
144 
145 	iter = codetag_get_ct_iter(alloc_tag_cttype);
146 	while ((ct = codetag_next_ct(&iter))) {
147 		struct alloc_tag_counters counter = alloc_tag_read(ct_to_alloc_tag(ct));
148 
149 		n.ct	= ct;
150 		n.bytes = counter.bytes;
151 
152 		for (i = 0; i < nr; i++)
153 			if (n.bytes > tags[i].bytes)
154 				break;
155 
156 		if (i < count) {
157 			nr -= nr == count;
158 			memmove(&tags[i + 1],
159 				&tags[i],
160 				sizeof(tags[0]) * (nr - i));
161 			nr++;
162 			tags[i] = n;
163 		}
164 	}
165 
166 	codetag_lock_module_list(alloc_tag_cttype, false);
167 
168 	return nr;
169 }
170 
pgalloc_tag_split(struct folio * folio,int old_order,int new_order)171 void pgalloc_tag_split(struct folio *folio, int old_order, int new_order)
172 {
173 	int i;
174 	struct alloc_tag *tag;
175 	unsigned int nr_pages = 1 << new_order;
176 
177 	if (!mem_alloc_profiling_enabled())
178 		return;
179 
180 	tag = __pgalloc_tag_get(&folio->page);
181 	if (!tag)
182 		return;
183 
184 	for (i = nr_pages; i < (1 << old_order); i += nr_pages) {
185 		union pgtag_ref_handle handle;
186 		union codetag_ref ref;
187 
188 		if (get_page_tag_ref(folio_page(folio, i), &ref, &handle)) {
189 			/* Set new reference to point to the original tag */
190 			alloc_tag_ref_set(&ref, tag);
191 			update_page_tag_ref(handle, &ref);
192 			put_page_tag_ref(handle);
193 		}
194 	}
195 }
196 
pgalloc_tag_swap(struct folio * new,struct folio * old)197 void pgalloc_tag_swap(struct folio *new, struct folio *old)
198 {
199 	union pgtag_ref_handle handle_old, handle_new;
200 	union codetag_ref ref_old, ref_new;
201 	struct alloc_tag *tag_old, *tag_new;
202 
203 	if (!mem_alloc_profiling_enabled())
204 		return;
205 
206 	tag_old = __pgalloc_tag_get(&old->page);
207 	if (!tag_old)
208 		return;
209 	tag_new = __pgalloc_tag_get(&new->page);
210 	if (!tag_new)
211 		return;
212 
213 	if (!get_page_tag_ref(&old->page, &ref_old, &handle_old))
214 		return;
215 	if (!get_page_tag_ref(&new->page, &ref_new, &handle_new)) {
216 		put_page_tag_ref(handle_old);
217 		return;
218 	}
219 
220 	/*
221 	 * Clear tag references to avoid debug warning when using
222 	 * __alloc_tag_ref_set() with non-empty reference.
223 	 */
224 	set_codetag_empty(&ref_old);
225 	set_codetag_empty(&ref_new);
226 
227 	/* swap tags */
228 	__alloc_tag_ref_set(&ref_old, tag_new);
229 	update_page_tag_ref(handle_old, &ref_old);
230 	__alloc_tag_ref_set(&ref_new, tag_old);
231 	update_page_tag_ref(handle_new, &ref_new);
232 
233 	put_page_tag_ref(handle_old);
234 	put_page_tag_ref(handle_new);
235 }
236 
shutdown_mem_profiling(bool remove_file)237 static void shutdown_mem_profiling(bool remove_file)
238 {
239 	if (mem_alloc_profiling_enabled())
240 		static_branch_disable(&mem_alloc_profiling_key);
241 
242 	if (!mem_profiling_support)
243 		return;
244 
245 	if (remove_file)
246 		remove_proc_entry(ALLOCINFO_FILE_NAME, NULL);
247 	mem_profiling_support = false;
248 }
249 
procfs_init(void)250 static void __init procfs_init(void)
251 {
252 	if (!mem_profiling_support)
253 		return;
254 
255 	if (!proc_create_seq(ALLOCINFO_FILE_NAME, 0400, NULL, &allocinfo_seq_op)) {
256 		pr_err("Failed to create %s file\n", ALLOCINFO_FILE_NAME);
257 		shutdown_mem_profiling(false);
258 	}
259 }
260 
alloc_tag_sec_init(void)261 void __init alloc_tag_sec_init(void)
262 {
263 	struct alloc_tag *last_codetag;
264 
265 	if (!mem_profiling_support)
266 		return;
267 
268 	if (!static_key_enabled(&mem_profiling_compressed))
269 		return;
270 
271 	kernel_tags.first_tag = (struct alloc_tag *)kallsyms_lookup_name(
272 					SECTION_START(ALLOC_TAG_SECTION_NAME));
273 	last_codetag = (struct alloc_tag *)kallsyms_lookup_name(
274 					SECTION_STOP(ALLOC_TAG_SECTION_NAME));
275 	kernel_tags.count = last_codetag - kernel_tags.first_tag;
276 
277 	/* Check if kernel tags fit into page flags */
278 	if (kernel_tags.count > (1UL << NR_UNUSED_PAGEFLAG_BITS)) {
279 		shutdown_mem_profiling(false); /* allocinfo file does not exist yet */
280 		pr_err("%lu allocation tags cannot be references using %d available page flag bits. Memory allocation profiling is disabled!\n",
281 			kernel_tags.count, NR_UNUSED_PAGEFLAG_BITS);
282 		return;
283 	}
284 
285 	alloc_tag_ref_offs = (LRU_REFS_PGOFF - NR_UNUSED_PAGEFLAG_BITS);
286 	alloc_tag_ref_mask = ((1UL << NR_UNUSED_PAGEFLAG_BITS) - 1);
287 	pr_debug("Memory allocation profiling compression is using %d page flag bits!\n",
288 		 NR_UNUSED_PAGEFLAG_BITS);
289 }
290 
291 #ifdef CONFIG_MODULES
292 
293 static struct maple_tree mod_area_mt = MTREE_INIT(mod_area_mt, MT_FLAGS_ALLOC_RANGE);
294 static struct vm_struct *vm_module_tags;
295 /* A dummy object used to indicate an unloaded module */
296 static struct module unloaded_mod;
297 /* A dummy object used to indicate a module prepended area */
298 static struct module prepend_mod;
299 
300 struct alloc_tag_module_section module_tags;
301 
alloc_tag_align(unsigned long val)302 static inline unsigned long alloc_tag_align(unsigned long val)
303 {
304 	if (!static_key_enabled(&mem_profiling_compressed)) {
305 		/* No alignment requirements when we are not indexing the tags */
306 		return val;
307 	}
308 
309 	if (val % sizeof(struct alloc_tag) == 0)
310 		return val;
311 	return ((val / sizeof(struct alloc_tag)) + 1) * sizeof(struct alloc_tag);
312 }
313 
ensure_alignment(unsigned long align,unsigned int * prepend)314 static bool ensure_alignment(unsigned long align, unsigned int *prepend)
315 {
316 	if (!static_key_enabled(&mem_profiling_compressed)) {
317 		/* No alignment requirements when we are not indexing the tags */
318 		return true;
319 	}
320 
321 	/*
322 	 * If alloc_tag size is not a multiple of required alignment, tag
323 	 * indexing does not work.
324 	 */
325 	if (!IS_ALIGNED(sizeof(struct alloc_tag), align))
326 		return false;
327 
328 	/* Ensure prepend consumes multiple of alloc_tag-sized blocks */
329 	if (*prepend)
330 		*prepend = alloc_tag_align(*prepend);
331 
332 	return true;
333 }
334 
tags_addressable(void)335 static inline bool tags_addressable(void)
336 {
337 	unsigned long tag_idx_count;
338 
339 	if (!static_key_enabled(&mem_profiling_compressed))
340 		return true; /* with page_ext tags are always addressable */
341 
342 	tag_idx_count = CODETAG_ID_FIRST + kernel_tags.count +
343 			module_tags.size / sizeof(struct alloc_tag);
344 
345 	return tag_idx_count < (1UL << NR_UNUSED_PAGEFLAG_BITS);
346 }
347 
needs_section_mem(struct module * mod,unsigned long size)348 static bool needs_section_mem(struct module *mod, unsigned long size)
349 {
350 	if (!mem_profiling_support)
351 		return false;
352 
353 	return size >= sizeof(struct alloc_tag);
354 }
355 
find_used_tag(struct alloc_tag * from,struct alloc_tag * to)356 static struct alloc_tag *find_used_tag(struct alloc_tag *from, struct alloc_tag *to)
357 {
358 	while (from <= to) {
359 		struct alloc_tag_counters counter;
360 
361 		counter = alloc_tag_read(from);
362 		if (counter.bytes)
363 			return from;
364 		from++;
365 	}
366 
367 	return NULL;
368 }
369 
370 /* Called with mod_area_mt locked */
clean_unused_module_areas_locked(void)371 static void clean_unused_module_areas_locked(void)
372 {
373 	MA_STATE(mas, &mod_area_mt, 0, module_tags.size);
374 	struct module *val;
375 
376 	mas_for_each(&mas, val, module_tags.size) {
377 		if (val != &unloaded_mod)
378 			continue;
379 
380 		/* Release area if all tags are unused */
381 		if (!find_used_tag((struct alloc_tag *)(module_tags.start_addr + mas.index),
382 				   (struct alloc_tag *)(module_tags.start_addr + mas.last)))
383 			mas_erase(&mas);
384 	}
385 }
386 
387 /* Called with mod_area_mt locked */
find_aligned_area(struct ma_state * mas,unsigned long section_size,unsigned long size,unsigned int prepend,unsigned long align)388 static bool find_aligned_area(struct ma_state *mas, unsigned long section_size,
389 			      unsigned long size, unsigned int prepend, unsigned long align)
390 {
391 	bool cleanup_done = false;
392 
393 repeat:
394 	/* Try finding exact size and hope the start is aligned */
395 	if (!mas_empty_area(mas, 0, section_size - 1, prepend + size)) {
396 		if (IS_ALIGNED(mas->index + prepend, align))
397 			return true;
398 
399 		/* Try finding larger area to align later */
400 		mas_reset(mas);
401 		if (!mas_empty_area(mas, 0, section_size - 1,
402 				    size + prepend + align - 1))
403 			return true;
404 	}
405 
406 	/* No free area, try cleanup stale data and repeat the search once */
407 	if (!cleanup_done) {
408 		clean_unused_module_areas_locked();
409 		cleanup_done = true;
410 		mas_reset(mas);
411 		goto repeat;
412 	}
413 
414 	return false;
415 }
416 
vm_module_tags_populate(void)417 static int vm_module_tags_populate(void)
418 {
419 	unsigned long phys_end = ALIGN_DOWN(module_tags.start_addr, PAGE_SIZE) +
420 				 (vm_module_tags->nr_pages << PAGE_SHIFT);
421 	unsigned long new_end = module_tags.start_addr + module_tags.size;
422 
423 	if (phys_end < new_end) {
424 		struct page **next_page = vm_module_tags->pages + vm_module_tags->nr_pages;
425 		unsigned long old_shadow_end = ALIGN(phys_end, MODULE_ALIGN);
426 		unsigned long new_shadow_end = ALIGN(new_end, MODULE_ALIGN);
427 		unsigned long more_pages;
428 		unsigned long nr = 0;
429 
430 		more_pages = ALIGN(new_end - phys_end, PAGE_SIZE) >> PAGE_SHIFT;
431 		while (nr < more_pages) {
432 			unsigned long allocated;
433 
434 			allocated = alloc_pages_bulk_array_node(GFP_KERNEL | __GFP_NOWARN,
435 				NUMA_NO_NODE, more_pages - nr, next_page + nr);
436 
437 			if (!allocated)
438 				break;
439 			nr += allocated;
440 		}
441 
442 		if (nr < more_pages ||
443 		    vmap_pages_range(phys_end, phys_end + (nr << PAGE_SHIFT), PAGE_KERNEL,
444 				     next_page, PAGE_SHIFT) < 0) {
445 			/* Clean up and error out */
446 			for (int i = 0; i < nr; i++)
447 				__free_page(next_page[i]);
448 			return -ENOMEM;
449 		}
450 
451 		vm_module_tags->nr_pages += nr;
452 
453 		/*
454 		 * Kasan allocates 1 byte of shadow for every 8 bytes of data.
455 		 * When kasan_alloc_module_shadow allocates shadow memory,
456 		 * its unit of allocation is a page.
457 		 * Therefore, here we need to align to MODULE_ALIGN.
458 		 */
459 		if (old_shadow_end < new_shadow_end)
460 			kasan_alloc_module_shadow((void *)old_shadow_end,
461 						  new_shadow_end - old_shadow_end,
462 						  GFP_KERNEL);
463 	}
464 
465 	/*
466 	 * Mark the pages as accessible, now that they are mapped.
467 	 * With hardware tag-based KASAN, marking is skipped for
468 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
469 	 */
470 	kasan_unpoison_vmalloc((void *)module_tags.start_addr,
471 				new_end - module_tags.start_addr,
472 				KASAN_VMALLOC_PROT_NORMAL);
473 
474 	return 0;
475 }
476 
reserve_module_tags(struct module * mod,unsigned long size,unsigned int prepend,unsigned long align)477 static void *reserve_module_tags(struct module *mod, unsigned long size,
478 				 unsigned int prepend, unsigned long align)
479 {
480 	unsigned long section_size = module_tags.end_addr - module_tags.start_addr;
481 	MA_STATE(mas, &mod_area_mt, 0, section_size - 1);
482 	unsigned long offset;
483 	void *ret = NULL;
484 
485 	/* If no tags return error */
486 	if (size < sizeof(struct alloc_tag))
487 		return ERR_PTR(-EINVAL);
488 
489 	/*
490 	 * align is always power of 2, so we can use IS_ALIGNED and ALIGN.
491 	 * align 0 or 1 means no alignment, to simplify set to 1.
492 	 */
493 	if (!align)
494 		align = 1;
495 
496 	if (!ensure_alignment(align, &prepend)) {
497 		shutdown_mem_profiling(true);
498 		pr_err("%s: alignment %lu is incompatible with allocation tag indexing. Memory allocation profiling is disabled!\n",
499 			mod->name, align);
500 		return ERR_PTR(-EINVAL);
501 	}
502 
503 	mas_lock(&mas);
504 	if (!find_aligned_area(&mas, section_size, size, prepend, align)) {
505 		ret = ERR_PTR(-ENOMEM);
506 		goto unlock;
507 	}
508 
509 	/* Mark found area as reserved */
510 	offset = mas.index;
511 	offset += prepend;
512 	offset = ALIGN(offset, align);
513 	if (offset != mas.index) {
514 		unsigned long pad_start = mas.index;
515 
516 		mas.last = offset - 1;
517 		mas_store(&mas, &prepend_mod);
518 		if (mas_is_err(&mas)) {
519 			ret = ERR_PTR(xa_err(mas.node));
520 			goto unlock;
521 		}
522 		mas.index = offset;
523 		mas.last = offset + size - 1;
524 		mas_store(&mas, mod);
525 		if (mas_is_err(&mas)) {
526 			mas.index = pad_start;
527 			mas_erase(&mas);
528 			ret = ERR_PTR(xa_err(mas.node));
529 		}
530 	} else {
531 		mas.last = offset + size - 1;
532 		mas_store(&mas, mod);
533 		if (mas_is_err(&mas))
534 			ret = ERR_PTR(xa_err(mas.node));
535 	}
536 unlock:
537 	mas_unlock(&mas);
538 
539 	if (IS_ERR(ret))
540 		return ret;
541 
542 	if (module_tags.size < offset + size) {
543 		int grow_res;
544 
545 		module_tags.size = offset + size;
546 		if (mem_alloc_profiling_enabled() && !tags_addressable()) {
547 			shutdown_mem_profiling(true);
548 			pr_warn("With module %s there are too many tags to fit in %d page flag bits. Memory allocation profiling is disabled!\n",
549 				mod->name, NR_UNUSED_PAGEFLAG_BITS);
550 		}
551 
552 		grow_res = vm_module_tags_populate();
553 		if (grow_res) {
554 			shutdown_mem_profiling(true);
555 			pr_err("Failed to allocate memory for allocation tags in the module %s. Memory allocation profiling is disabled!\n",
556 			       mod->name);
557 			return ERR_PTR(grow_res);
558 		}
559 	}
560 
561 	return (struct alloc_tag *)(module_tags.start_addr + offset);
562 }
563 
release_module_tags(struct module * mod,bool used)564 static void release_module_tags(struct module *mod, bool used)
565 {
566 	MA_STATE(mas, &mod_area_mt, module_tags.size, module_tags.size);
567 	struct alloc_tag *tag;
568 	struct module *val;
569 
570 	mas_lock(&mas);
571 	mas_for_each_rev(&mas, val, 0)
572 		if (val == mod)
573 			break;
574 
575 	if (!val) /* module not found */
576 		goto out;
577 
578 	if (!used)
579 		goto release_area;
580 
581 	/* Find out if the area is used */
582 	tag = find_used_tag((struct alloc_tag *)(module_tags.start_addr + mas.index),
583 			    (struct alloc_tag *)(module_tags.start_addr + mas.last));
584 	if (tag) {
585 		struct alloc_tag_counters counter = alloc_tag_read(tag);
586 
587 		pr_info("%s:%u module %s func:%s has %llu allocated at module unload\n",
588 			tag->ct.filename, tag->ct.lineno, tag->ct.modname,
589 			tag->ct.function, counter.bytes);
590 	} else {
591 		used = false;
592 	}
593 release_area:
594 	mas_store(&mas, used ? &unloaded_mod : NULL);
595 	val = mas_prev_range(&mas, 0);
596 	if (val == &prepend_mod)
597 		mas_store(&mas, NULL);
598 out:
599 	mas_unlock(&mas);
600 }
601 
replace_module(struct module * mod,struct module * new_mod)602 static void replace_module(struct module *mod, struct module *new_mod)
603 {
604 	MA_STATE(mas, &mod_area_mt, 0, module_tags.size);
605 	struct module *val;
606 
607 	mas_lock(&mas);
608 	mas_for_each(&mas, val, module_tags.size) {
609 		if (val != mod)
610 			continue;
611 
612 		mas_store_gfp(&mas, new_mod, GFP_KERNEL);
613 		break;
614 	}
615 	mas_unlock(&mas);
616 }
617 
alloc_mod_tags_mem(void)618 static int __init alloc_mod_tags_mem(void)
619 {
620 	/* Map space to copy allocation tags */
621 	vm_module_tags = execmem_vmap(MODULE_ALLOC_TAG_VMAP_SIZE);
622 	if (!vm_module_tags) {
623 		pr_err("Failed to map %lu bytes for module allocation tags\n",
624 			MODULE_ALLOC_TAG_VMAP_SIZE);
625 		module_tags.start_addr = 0;
626 		return -ENOMEM;
627 	}
628 
629 	vm_module_tags->pages = kmalloc_array(get_vm_area_size(vm_module_tags) >> PAGE_SHIFT,
630 					sizeof(struct page *), GFP_KERNEL | __GFP_ZERO);
631 	if (!vm_module_tags->pages) {
632 		free_vm_area(vm_module_tags);
633 		return -ENOMEM;
634 	}
635 
636 	module_tags.start_addr = (unsigned long)vm_module_tags->addr;
637 	module_tags.end_addr = module_tags.start_addr + MODULE_ALLOC_TAG_VMAP_SIZE;
638 	/* Ensure the base is alloc_tag aligned when required for indexing */
639 	module_tags.start_addr = alloc_tag_align(module_tags.start_addr);
640 
641 	return 0;
642 }
643 
free_mod_tags_mem(void)644 static void __init free_mod_tags_mem(void)
645 {
646 	int i;
647 
648 	module_tags.start_addr = 0;
649 	for (i = 0; i < vm_module_tags->nr_pages; i++)
650 		__free_page(vm_module_tags->pages[i]);
651 	kfree(vm_module_tags->pages);
652 	free_vm_area(vm_module_tags);
653 }
654 
655 #else /* CONFIG_MODULES */
656 
alloc_mod_tags_mem(void)657 static inline int alloc_mod_tags_mem(void) { return 0; }
free_mod_tags_mem(void)658 static inline void free_mod_tags_mem(void) {}
659 
660 #endif /* CONFIG_MODULES */
661 
662 /* See: Documentation/mm/allocation-profiling.rst */
setup_early_mem_profiling(char * str)663 static int __init setup_early_mem_profiling(char *str)
664 {
665 	bool compressed = false;
666 	bool enable;
667 
668 	if (!str || !str[0])
669 		return -EINVAL;
670 
671 	if (!strncmp(str, "never", 5)) {
672 		enable = false;
673 		mem_profiling_support = false;
674 		pr_info("Memory allocation profiling is disabled!\n");
675 	} else {
676 		char *token = strsep(&str, ",");
677 
678 		if (kstrtobool(token, &enable))
679 			return -EINVAL;
680 
681 		if (str) {
682 
683 			if (strcmp(str, "compressed"))
684 				return -EINVAL;
685 
686 			compressed = true;
687 		}
688 		mem_profiling_support = true;
689 		pr_info("Memory allocation profiling is enabled %s compression and is turned %s!\n",
690 			compressed ? "with" : "without", enable ? "on" : "off");
691 	}
692 
693 	if (enable != mem_alloc_profiling_enabled()) {
694 		if (enable)
695 			static_branch_enable(&mem_alloc_profiling_key);
696 		else
697 			static_branch_disable(&mem_alloc_profiling_key);
698 	}
699 	if (compressed != static_key_enabled(&mem_profiling_compressed)) {
700 		if (compressed)
701 			static_branch_enable(&mem_profiling_compressed);
702 		else
703 			static_branch_disable(&mem_profiling_compressed);
704 	}
705 
706 	return 0;
707 }
708 early_param("sysctl.vm.mem_profiling", setup_early_mem_profiling);
709 
need_page_alloc_tagging(void)710 static __init bool need_page_alloc_tagging(void)
711 {
712 	if (static_key_enabled(&mem_profiling_compressed))
713 		return false;
714 
715 	return mem_profiling_support;
716 }
717 
init_page_alloc_tagging(void)718 static __init void init_page_alloc_tagging(void)
719 {
720 }
721 
722 struct page_ext_operations page_alloc_tagging_ops = {
723 	.size = sizeof(union codetag_ref),
724 	.need = need_page_alloc_tagging,
725 	.init = init_page_alloc_tagging,
726 };
727 EXPORT_SYMBOL(page_alloc_tagging_ops);
728 
729 #ifdef CONFIG_SYSCTL
730 static struct ctl_table memory_allocation_profiling_sysctls[] = {
731 	{
732 		.procname	= "mem_profiling",
733 		.data		= &mem_alloc_profiling_key,
734 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
735 		.mode		= 0444,
736 #else
737 		.mode		= 0644,
738 #endif
739 		.proc_handler	= proc_do_static_key,
740 	},
741 };
742 
sysctl_init(void)743 static void __init sysctl_init(void)
744 {
745 	if (!mem_profiling_support)
746 		memory_allocation_profiling_sysctls[0].mode = 0444;
747 
748 	register_sysctl_init("vm", memory_allocation_profiling_sysctls);
749 }
750 #else /* CONFIG_SYSCTL */
sysctl_init(void)751 static inline void sysctl_init(void) {}
752 #endif /* CONFIG_SYSCTL */
753 
alloc_tag_init(void)754 static int __init alloc_tag_init(void)
755 {
756 	const struct codetag_type_desc desc = {
757 		.section		= ALLOC_TAG_SECTION_NAME,
758 		.tag_size		= sizeof(struct alloc_tag),
759 #ifdef CONFIG_MODULES
760 		.needs_section_mem	= needs_section_mem,
761 		.alloc_section_mem	= reserve_module_tags,
762 		.free_section_mem	= release_module_tags,
763 		.module_replaced	= replace_module,
764 #endif
765 	};
766 	int res;
767 
768 	res = alloc_mod_tags_mem();
769 	if (res)
770 		return res;
771 
772 	alloc_tag_cttype = codetag_register_type(&desc);
773 	if (IS_ERR(alloc_tag_cttype)) {
774 		free_mod_tags_mem();
775 		return PTR_ERR(alloc_tag_cttype);
776 	}
777 
778 	sysctl_init();
779 	procfs_init();
780 
781 	return 0;
782 }
783 module_init(alloc_tag_init);
784