• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  * Copyright (c) 2023 ByteDance
8  * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9  */
10 
11 /*
12  * DOC: Interesting implementation details of the Maple Tree
13  *
14  * Each node type has a number of slots for entries and a number of slots for
15  * pivots.  In the case of dense nodes, the pivots are implied by the position
16  * and are simply the slot index + the minimum of the node.
17  *
18  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
19  * indicate that the tree is specifying ranges.  Pivots may appear in the
20  * subtree with an entry attached to the value whereas keys are unique to a
21  * specific position of a B-tree.  Pivot values are inclusive of the slot with
22  * the same index.
23  *
24  *
25  * The following illustrates the layout of a range64 nodes slots and pivots.
26  *
27  *
28  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
30  *           │   │   │   │     │    │    │    │    └─ Implied maximum
31  *           │   │   │   │     │    │    │    └─ Pivot 14
32  *           │   │   │   │     │    │    └─ Pivot 13
33  *           │   │   │   │     │    └─ Pivot 12
34  *           │   │   │   │     └─ Pivot 11
35  *           │   │   │   └─ Pivot 2
36  *           │   │   └─ Pivot 1
37  *           │   └─ Pivot 0
38  *           └─  Implied minimum
39  *
40  * Slot contents:
41  *  Internal (non-leaf) nodes contain pointers to other nodes.
42  *  Leaf nodes contain entries.
43  *
44  * The location of interest is often referred to as an offset.  All offsets have
45  * a slot, but the last offset has an implied pivot from the node above (or
46  * UINT_MAX for the root node.
47  *
48  * Ranges complicate certain write activities.  When modifying any of
49  * the B-tree variants, it is known that one entry will either be added or
50  * deleted.  When modifying the Maple Tree, one store operation may overwrite
51  * the entire data set, or one half of the tree, or the middle half of the tree.
52  *
53  */
54 
55 
56 #include <linux/maple_tree.h>
57 #include <linux/xarray.h>
58 #include <linux/types.h>
59 #include <linux/export.h>
60 #include <linux/slab.h>
61 #include <linux/limits.h>
62 #include <asm/barrier.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/maple_tree.h>
66 
67 #define MA_ROOT_PARENT 1
68 
69 /*
70  * Maple state flags
71  * * MA_STATE_BULK		- Bulk insert mode
72  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
73  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
74  */
75 #define MA_STATE_BULK		1
76 #define MA_STATE_REBALANCE	2
77 #define MA_STATE_PREALLOC	4
78 
79 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
80 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
81 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
82 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
83 static struct kmem_cache *maple_node_cache;
84 
85 #ifdef CONFIG_DEBUG_MAPLE_TREE
86 static const unsigned long mt_max[] = {
87 	[maple_dense]		= MAPLE_NODE_SLOTS,
88 	[maple_leaf_64]		= ULONG_MAX,
89 	[maple_range_64]	= ULONG_MAX,
90 	[maple_arange_64]	= ULONG_MAX,
91 };
92 #define mt_node_max(x) mt_max[mte_node_type(x)]
93 #endif
94 
95 static const unsigned char mt_slots[] = {
96 	[maple_dense]		= MAPLE_NODE_SLOTS,
97 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
98 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
99 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
100 };
101 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
102 
103 static const unsigned char mt_pivots[] = {
104 	[maple_dense]		= 0,
105 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
106 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
107 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
108 };
109 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
110 
111 static const unsigned char mt_min_slots[] = {
112 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
113 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
114 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
115 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
116 };
117 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
118 
119 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
120 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
121 
122 struct maple_big_node {
123 	struct maple_pnode *parent;
124 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
125 	union {
126 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
127 		struct {
128 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
129 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
130 		};
131 	};
132 	unsigned char b_end;
133 	enum maple_type type;
134 };
135 
136 /*
137  * The maple_subtree_state is used to build a tree to replace a segment of an
138  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
139  * dead node and restart on updates.
140  */
141 struct maple_subtree_state {
142 	struct ma_state *orig_l;	/* Original left side of subtree */
143 	struct ma_state *orig_r;	/* Original right side of subtree */
144 	struct ma_state *l;		/* New left side of subtree */
145 	struct ma_state *m;		/* New middle of subtree (rare) */
146 	struct ma_state *r;		/* New right side of subtree */
147 	struct ma_topiary *free;	/* nodes to be freed */
148 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
149 	struct maple_big_node *bn;
150 };
151 
152 #ifdef CONFIG_KASAN_STACK
153 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
154 #define noinline_for_kasan noinline_for_stack
155 #else
156 #define noinline_for_kasan inline
157 #endif
158 
159 /* Functions */
mt_alloc_one(gfp_t gfp)160 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
161 {
162 	return kmem_cache_alloc(maple_node_cache, gfp);
163 }
164 
mt_alloc_bulk(gfp_t gfp,size_t size,void ** nodes)165 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
166 {
167 	return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
168 }
169 
mt_free_one(struct maple_node * node)170 static inline void mt_free_one(struct maple_node *node)
171 {
172 	kmem_cache_free(maple_node_cache, node);
173 }
174 
mt_free_bulk(size_t size,void __rcu ** nodes)175 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
176 {
177 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
178 }
179 
mt_free_rcu(struct rcu_head * head)180 static void mt_free_rcu(struct rcu_head *head)
181 {
182 	struct maple_node *node = container_of(head, struct maple_node, rcu);
183 
184 	kmem_cache_free(maple_node_cache, node);
185 }
186 
187 /*
188  * ma_free_rcu() - Use rcu callback to free a maple node
189  * @node: The node to free
190  *
191  * The maple tree uses the parent pointer to indicate this node is no longer in
192  * use and will be freed.
193  */
ma_free_rcu(struct maple_node * node)194 static void ma_free_rcu(struct maple_node *node)
195 {
196 	WARN_ON(node->parent != ma_parent_ptr(node));
197 	call_rcu(&node->rcu, mt_free_rcu);
198 }
199 
mas_set_height(struct ma_state * mas)200 static void mas_set_height(struct ma_state *mas)
201 {
202 	unsigned int new_flags = mas->tree->ma_flags;
203 
204 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
205 	MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
206 	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
207 	mas->tree->ma_flags = new_flags;
208 }
209 
mas_mt_height(struct ma_state * mas)210 static unsigned int mas_mt_height(struct ma_state *mas)
211 {
212 	return mt_height(mas->tree);
213 }
214 
mt_attr(struct maple_tree * mt)215 static inline unsigned int mt_attr(struct maple_tree *mt)
216 {
217 	return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
218 }
219 
mte_node_type(const struct maple_enode * entry)220 static __always_inline enum maple_type mte_node_type(
221 		const struct maple_enode *entry)
222 {
223 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
224 		MAPLE_NODE_TYPE_MASK;
225 }
226 
ma_is_dense(const enum maple_type type)227 static __always_inline bool ma_is_dense(const enum maple_type type)
228 {
229 	return type < maple_leaf_64;
230 }
231 
ma_is_leaf(const enum maple_type type)232 static __always_inline bool ma_is_leaf(const enum maple_type type)
233 {
234 	return type < maple_range_64;
235 }
236 
mte_is_leaf(const struct maple_enode * entry)237 static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
238 {
239 	return ma_is_leaf(mte_node_type(entry));
240 }
241 
242 /*
243  * We also reserve values with the bottom two bits set to '10' which are
244  * below 4096
245  */
mt_is_reserved(const void * entry)246 static __always_inline bool mt_is_reserved(const void *entry)
247 {
248 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
249 		xa_is_internal(entry);
250 }
251 
mas_set_err(struct ma_state * mas,long err)252 static __always_inline void mas_set_err(struct ma_state *mas, long err)
253 {
254 	mas->node = MA_ERROR(err);
255 	mas->status = ma_error;
256 }
257 
mas_is_ptr(const struct ma_state * mas)258 static __always_inline bool mas_is_ptr(const struct ma_state *mas)
259 {
260 	return mas->status == ma_root;
261 }
262 
mas_is_start(const struct ma_state * mas)263 static __always_inline bool mas_is_start(const struct ma_state *mas)
264 {
265 	return mas->status == ma_start;
266 }
267 
mas_is_none(const struct ma_state * mas)268 static __always_inline bool mas_is_none(const struct ma_state *mas)
269 {
270 	return mas->status == ma_none;
271 }
272 
mas_is_paused(const struct ma_state * mas)273 static __always_inline bool mas_is_paused(const struct ma_state *mas)
274 {
275 	return mas->status == ma_pause;
276 }
277 
mas_is_overflow(struct ma_state * mas)278 static __always_inline bool mas_is_overflow(struct ma_state *mas)
279 {
280 	return mas->status == ma_overflow;
281 }
282 
mas_is_underflow(struct ma_state * mas)283 static inline bool mas_is_underflow(struct ma_state *mas)
284 {
285 	return mas->status == ma_underflow;
286 }
287 
mte_to_node(const struct maple_enode * entry)288 static __always_inline struct maple_node *mte_to_node(
289 		const struct maple_enode *entry)
290 {
291 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
292 }
293 
294 /*
295  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
296  * @entry: The maple encoded node
297  *
298  * Return: a maple topiary pointer
299  */
mte_to_mat(const struct maple_enode * entry)300 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
301 {
302 	return (struct maple_topiary *)
303 		((unsigned long)entry & ~MAPLE_NODE_MASK);
304 }
305 
306 /*
307  * mas_mn() - Get the maple state node.
308  * @mas: The maple state
309  *
310  * Return: the maple node (not encoded - bare pointer).
311  */
mas_mn(const struct ma_state * mas)312 static inline struct maple_node *mas_mn(const struct ma_state *mas)
313 {
314 	return mte_to_node(mas->node);
315 }
316 
317 /*
318  * mte_set_node_dead() - Set a maple encoded node as dead.
319  * @mn: The maple encoded node.
320  */
mte_set_node_dead(struct maple_enode * mn)321 static inline void mte_set_node_dead(struct maple_enode *mn)
322 {
323 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
324 	smp_wmb(); /* Needed for RCU */
325 }
326 
327 /* Bit 1 indicates the root is a node */
328 #define MAPLE_ROOT_NODE			0x02
329 /* maple_type stored bit 3-6 */
330 #define MAPLE_ENODE_TYPE_SHIFT		0x03
331 /* Bit 2 means a NULL somewhere below */
332 #define MAPLE_ENODE_NULL		0x04
333 
mt_mk_node(const struct maple_node * node,enum maple_type type)334 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
335 					     enum maple_type type)
336 {
337 	return (void *)((unsigned long)node |
338 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
339 }
340 
mte_mk_root(const struct maple_enode * node)341 static inline void *mte_mk_root(const struct maple_enode *node)
342 {
343 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
344 }
345 
mte_safe_root(const struct maple_enode * node)346 static inline void *mte_safe_root(const struct maple_enode *node)
347 {
348 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
349 }
350 
mte_set_full(const struct maple_enode * node)351 static inline void __maybe_unused *mte_set_full(const struct maple_enode *node)
352 {
353 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
354 }
355 
mte_clear_full(const struct maple_enode * node)356 static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node)
357 {
358 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
359 }
360 
mte_has_null(const struct maple_enode * node)361 static inline bool __maybe_unused mte_has_null(const struct maple_enode *node)
362 {
363 	return (unsigned long)node & MAPLE_ENODE_NULL;
364 }
365 
ma_is_root(struct maple_node * node)366 static __always_inline bool ma_is_root(struct maple_node *node)
367 {
368 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
369 }
370 
mte_is_root(const struct maple_enode * node)371 static __always_inline bool mte_is_root(const struct maple_enode *node)
372 {
373 	return ma_is_root(mte_to_node(node));
374 }
375 
mas_is_root_limits(const struct ma_state * mas)376 static inline bool mas_is_root_limits(const struct ma_state *mas)
377 {
378 	return !mas->min && mas->max == ULONG_MAX;
379 }
380 
mt_is_alloc(struct maple_tree * mt)381 static __always_inline bool mt_is_alloc(struct maple_tree *mt)
382 {
383 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
384 }
385 
386 /*
387  * The Parent Pointer
388  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
389  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
390  * bit values need an extra bit to store the offset.  This extra bit comes from
391  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
392  * indicate if bit 2 is part of the type or the slot.
393  *
394  * Note types:
395  *  0x??1 = Root
396  *  0x?00 = 16 bit nodes
397  *  0x010 = 32 bit nodes
398  *  0x110 = 64 bit nodes
399  *
400  * Slot size and alignment
401  *  0b??1 : Root
402  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
403  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
404  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
405  */
406 
407 #define MAPLE_PARENT_ROOT		0x01
408 
409 #define MAPLE_PARENT_SLOT_SHIFT		0x03
410 #define MAPLE_PARENT_SLOT_MASK		0xF8
411 
412 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
413 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
414 
415 #define MAPLE_PARENT_RANGE64		0x06
416 #define MAPLE_PARENT_RANGE32		0x04
417 #define MAPLE_PARENT_NOT_RANGE16	0x02
418 
419 /*
420  * mte_parent_shift() - Get the parent shift for the slot storage.
421  * @parent: The parent pointer cast as an unsigned long
422  * Return: The shift into that pointer to the star to of the slot
423  */
mte_parent_shift(unsigned long parent)424 static inline unsigned long mte_parent_shift(unsigned long parent)
425 {
426 	/* Note bit 1 == 0 means 16B */
427 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
428 		return MAPLE_PARENT_SLOT_SHIFT;
429 
430 	return MAPLE_PARENT_16B_SLOT_SHIFT;
431 }
432 
433 /*
434  * mte_parent_slot_mask() - Get the slot mask for the parent.
435  * @parent: The parent pointer cast as an unsigned long.
436  * Return: The slot mask for that parent.
437  */
mte_parent_slot_mask(unsigned long parent)438 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
439 {
440 	/* Note bit 1 == 0 means 16B */
441 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442 		return MAPLE_PARENT_SLOT_MASK;
443 
444 	return MAPLE_PARENT_16B_SLOT_MASK;
445 }
446 
447 /*
448  * mas_parent_type() - Return the maple_type of the parent from the stored
449  * parent type.
450  * @mas: The maple state
451  * @enode: The maple_enode to extract the parent's enum
452  * Return: The node->parent maple_type
453  */
454 static inline
mas_parent_type(struct ma_state * mas,struct maple_enode * enode)455 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
456 {
457 	unsigned long p_type;
458 
459 	p_type = (unsigned long)mte_to_node(enode)->parent;
460 	if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
461 		return 0;
462 
463 	p_type &= MAPLE_NODE_MASK;
464 	p_type &= ~mte_parent_slot_mask(p_type);
465 	switch (p_type) {
466 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
467 		if (mt_is_alloc(mas->tree))
468 			return maple_arange_64;
469 		return maple_range_64;
470 	}
471 
472 	return 0;
473 }
474 
475 /*
476  * mas_set_parent() - Set the parent node and encode the slot
477  * @mas: The maple state
478  * @enode: The encoded maple node.
479  * @parent: The encoded maple node that is the parent of @enode.
480  * @slot: The slot that @enode resides in @parent.
481  *
482  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
483  * parent type.
484  */
485 static inline
mas_set_parent(struct ma_state * mas,struct maple_enode * enode,const struct maple_enode * parent,unsigned char slot)486 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
487 		    const struct maple_enode *parent, unsigned char slot)
488 {
489 	unsigned long val = (unsigned long)parent;
490 	unsigned long shift;
491 	unsigned long type;
492 	enum maple_type p_type = mte_node_type(parent);
493 
494 	MAS_BUG_ON(mas, p_type == maple_dense);
495 	MAS_BUG_ON(mas, p_type == maple_leaf_64);
496 
497 	switch (p_type) {
498 	case maple_range_64:
499 	case maple_arange_64:
500 		shift = MAPLE_PARENT_SLOT_SHIFT;
501 		type = MAPLE_PARENT_RANGE64;
502 		break;
503 	default:
504 	case maple_dense:
505 	case maple_leaf_64:
506 		shift = type = 0;
507 		break;
508 	}
509 
510 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
511 	val |= (slot << shift) | type;
512 	mte_to_node(enode)->parent = ma_parent_ptr(val);
513 }
514 
515 /*
516  * mte_parent_slot() - get the parent slot of @enode.
517  * @enode: The encoded maple node.
518  *
519  * Return: The slot in the parent node where @enode resides.
520  */
521 static __always_inline
mte_parent_slot(const struct maple_enode * enode)522 unsigned int mte_parent_slot(const struct maple_enode *enode)
523 {
524 	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
525 
526 	if (unlikely(val & MA_ROOT_PARENT))
527 		return 0;
528 
529 	/*
530 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
531 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
532 	 */
533 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
534 }
535 
536 /*
537  * mte_parent() - Get the parent of @node.
538  * @enode: The encoded maple node.
539  *
540  * Return: The parent maple node.
541  */
542 static __always_inline
mte_parent(const struct maple_enode * enode)543 struct maple_node *mte_parent(const struct maple_enode *enode)
544 {
545 	return (void *)((unsigned long)
546 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
547 }
548 
549 /*
550  * ma_dead_node() - check if the @enode is dead.
551  * @enode: The encoded maple node
552  *
553  * Return: true if dead, false otherwise.
554  */
ma_dead_node(const struct maple_node * node)555 static __always_inline bool ma_dead_node(const struct maple_node *node)
556 {
557 	struct maple_node *parent;
558 
559 	/* Do not reorder reads from the node prior to the parent check */
560 	smp_rmb();
561 	parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
562 	return (parent == node);
563 }
564 
565 /*
566  * mte_dead_node() - check if the @enode is dead.
567  * @enode: The encoded maple node
568  *
569  * Return: true if dead, false otherwise.
570  */
mte_dead_node(const struct maple_enode * enode)571 static __always_inline bool mte_dead_node(const struct maple_enode *enode)
572 {
573 	struct maple_node *parent, *node;
574 
575 	node = mte_to_node(enode);
576 	/* Do not reorder reads from the node prior to the parent check */
577 	smp_rmb();
578 	parent = mte_parent(enode);
579 	return (parent == node);
580 }
581 
582 /*
583  * mas_allocated() - Get the number of nodes allocated in a maple state.
584  * @mas: The maple state
585  *
586  * The ma_state alloc member is overloaded to hold a pointer to the first
587  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
588  * set, then the alloc contains the number of requested nodes.  If there is an
589  * allocated node, then the total allocated nodes is in that node.
590  *
591  * Return: The total number of nodes allocated
592  */
mas_allocated(const struct ma_state * mas)593 static inline unsigned long mas_allocated(const struct ma_state *mas)
594 {
595 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
596 		return 0;
597 
598 	return mas->alloc->total;
599 }
600 
601 /*
602  * mas_set_alloc_req() - Set the requested number of allocations.
603  * @mas: the maple state
604  * @count: the number of allocations.
605  *
606  * The requested number of allocations is either in the first allocated node,
607  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
608  * no allocated node.  Set the request either in the node or do the necessary
609  * encoding to store in @mas->alloc directly.
610  */
mas_set_alloc_req(struct ma_state * mas,unsigned long count)611 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
612 {
613 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
614 		if (!count)
615 			mas->alloc = NULL;
616 		else
617 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
618 		return;
619 	}
620 
621 	mas->alloc->request_count = count;
622 }
623 
624 /*
625  * mas_alloc_req() - get the requested number of allocations.
626  * @mas: The maple state
627  *
628  * The alloc count is either stored directly in @mas, or in
629  * @mas->alloc->request_count if there is at least one node allocated.  Decode
630  * the request count if it's stored directly in @mas->alloc.
631  *
632  * Return: The allocation request count.
633  */
mas_alloc_req(const struct ma_state * mas)634 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
635 {
636 	if ((unsigned long)mas->alloc & 0x1)
637 		return (unsigned long)(mas->alloc) >> 1;
638 	else if (mas->alloc)
639 		return mas->alloc->request_count;
640 	return 0;
641 }
642 
643 /*
644  * ma_pivots() - Get a pointer to the maple node pivots.
645  * @node: the maple node
646  * @type: the node type
647  *
648  * In the event of a dead node, this array may be %NULL
649  *
650  * Return: A pointer to the maple node pivots
651  */
ma_pivots(struct maple_node * node,enum maple_type type)652 static inline unsigned long *ma_pivots(struct maple_node *node,
653 					   enum maple_type type)
654 {
655 	switch (type) {
656 	case maple_arange_64:
657 		return node->ma64.pivot;
658 	case maple_range_64:
659 	case maple_leaf_64:
660 		return node->mr64.pivot;
661 	case maple_dense:
662 		return NULL;
663 	}
664 	return NULL;
665 }
666 
667 /*
668  * ma_gaps() - Get a pointer to the maple node gaps.
669  * @node: the maple node
670  * @type: the node type
671  *
672  * Return: A pointer to the maple node gaps
673  */
ma_gaps(struct maple_node * node,enum maple_type type)674 static inline unsigned long *ma_gaps(struct maple_node *node,
675 				     enum maple_type type)
676 {
677 	switch (type) {
678 	case maple_arange_64:
679 		return node->ma64.gap;
680 	case maple_range_64:
681 	case maple_leaf_64:
682 	case maple_dense:
683 		return NULL;
684 	}
685 	return NULL;
686 }
687 
688 /*
689  * mas_safe_pivot() - get the pivot at @piv or mas->max.
690  * @mas: The maple state
691  * @pivots: The pointer to the maple node pivots
692  * @piv: The pivot to fetch
693  * @type: The maple node type
694  *
695  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
696  * otherwise.
697  */
698 static __always_inline unsigned long
mas_safe_pivot(const struct ma_state * mas,unsigned long * pivots,unsigned char piv,enum maple_type type)699 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
700 	       unsigned char piv, enum maple_type type)
701 {
702 	if (piv >= mt_pivots[type])
703 		return mas->max;
704 
705 	return pivots[piv];
706 }
707 
708 /*
709  * mas_safe_min() - Return the minimum for a given offset.
710  * @mas: The maple state
711  * @pivots: The pointer to the maple node pivots
712  * @offset: The offset into the pivot array
713  *
714  * Return: The minimum range value that is contained in @offset.
715  */
716 static inline unsigned long
mas_safe_min(struct ma_state * mas,unsigned long * pivots,unsigned char offset)717 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
718 {
719 	if (likely(offset))
720 		return pivots[offset - 1] + 1;
721 
722 	return mas->min;
723 }
724 
725 /*
726  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
727  * @mn: The encoded maple node
728  * @piv: The pivot offset
729  * @val: The value of the pivot
730  */
mte_set_pivot(struct maple_enode * mn,unsigned char piv,unsigned long val)731 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
732 				unsigned long val)
733 {
734 	struct maple_node *node = mte_to_node(mn);
735 	enum maple_type type = mte_node_type(mn);
736 
737 	BUG_ON(piv >= mt_pivots[type]);
738 	switch (type) {
739 	case maple_range_64:
740 	case maple_leaf_64:
741 		node->mr64.pivot[piv] = val;
742 		break;
743 	case maple_arange_64:
744 		node->ma64.pivot[piv] = val;
745 		break;
746 	case maple_dense:
747 		break;
748 	}
749 
750 }
751 
752 /*
753  * ma_slots() - Get a pointer to the maple node slots.
754  * @mn: The maple node
755  * @mt: The maple node type
756  *
757  * Return: A pointer to the maple node slots
758  */
ma_slots(struct maple_node * mn,enum maple_type mt)759 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
760 {
761 	switch (mt) {
762 	case maple_arange_64:
763 		return mn->ma64.slot;
764 	case maple_range_64:
765 	case maple_leaf_64:
766 		return mn->mr64.slot;
767 	case maple_dense:
768 		return mn->slot;
769 	}
770 
771 	return NULL;
772 }
773 
mt_write_locked(const struct maple_tree * mt)774 static inline bool mt_write_locked(const struct maple_tree *mt)
775 {
776 	return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
777 		lockdep_is_held(&mt->ma_lock);
778 }
779 
mt_locked(const struct maple_tree * mt)780 static __always_inline bool mt_locked(const struct maple_tree *mt)
781 {
782 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
783 		lockdep_is_held(&mt->ma_lock);
784 }
785 
mt_slot(const struct maple_tree * mt,void __rcu ** slots,unsigned char offset)786 static __always_inline void *mt_slot(const struct maple_tree *mt,
787 		void __rcu **slots, unsigned char offset)
788 {
789 	return rcu_dereference_check(slots[offset], mt_locked(mt));
790 }
791 
mt_slot_locked(struct maple_tree * mt,void __rcu ** slots,unsigned char offset)792 static __always_inline void *mt_slot_locked(struct maple_tree *mt,
793 		void __rcu **slots, unsigned char offset)
794 {
795 	return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
796 }
797 /*
798  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
799  * @mas: The maple state
800  * @slots: The pointer to the slots
801  * @offset: The offset into the slots array to fetch
802  *
803  * Return: The entry stored in @slots at the @offset.
804  */
mas_slot_locked(struct ma_state * mas,void __rcu ** slots,unsigned char offset)805 static __always_inline void *mas_slot_locked(struct ma_state *mas,
806 		void __rcu **slots, unsigned char offset)
807 {
808 	return mt_slot_locked(mas->tree, slots, offset);
809 }
810 
811 /*
812  * mas_slot() - Get the slot value when not holding the maple tree lock.
813  * @mas: The maple state
814  * @slots: The pointer to the slots
815  * @offset: The offset into the slots array to fetch
816  *
817  * Return: The entry stored in @slots at the @offset
818  */
mas_slot(struct ma_state * mas,void __rcu ** slots,unsigned char offset)819 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
820 		unsigned char offset)
821 {
822 	return mt_slot(mas->tree, slots, offset);
823 }
824 
825 /*
826  * mas_root() - Get the maple tree root.
827  * @mas: The maple state.
828  *
829  * Return: The pointer to the root of the tree
830  */
mas_root(struct ma_state * mas)831 static __always_inline void *mas_root(struct ma_state *mas)
832 {
833 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
834 }
835 
mt_root_locked(struct maple_tree * mt)836 static inline void *mt_root_locked(struct maple_tree *mt)
837 {
838 	return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
839 }
840 
841 /*
842  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
843  * @mas: The maple state.
844  *
845  * Return: The pointer to the root of the tree
846  */
mas_root_locked(struct ma_state * mas)847 static inline void *mas_root_locked(struct ma_state *mas)
848 {
849 	return mt_root_locked(mas->tree);
850 }
851 
ma_meta(struct maple_node * mn,enum maple_type mt)852 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
853 					     enum maple_type mt)
854 {
855 	switch (mt) {
856 	case maple_arange_64:
857 		return &mn->ma64.meta;
858 	default:
859 		return &mn->mr64.meta;
860 	}
861 }
862 
863 /*
864  * ma_set_meta() - Set the metadata information of a node.
865  * @mn: The maple node
866  * @mt: The maple node type
867  * @offset: The offset of the highest sub-gap in this node.
868  * @end: The end of the data in this node.
869  */
ma_set_meta(struct maple_node * mn,enum maple_type mt,unsigned char offset,unsigned char end)870 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
871 			       unsigned char offset, unsigned char end)
872 {
873 	struct maple_metadata *meta = ma_meta(mn, mt);
874 
875 	meta->gap = offset;
876 	meta->end = end;
877 }
878 
879 /*
880  * mt_clear_meta() - clear the metadata information of a node, if it exists
881  * @mt: The maple tree
882  * @mn: The maple node
883  * @type: The maple node type
884  */
mt_clear_meta(struct maple_tree * mt,struct maple_node * mn,enum maple_type type)885 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
886 				  enum maple_type type)
887 {
888 	struct maple_metadata *meta;
889 	unsigned long *pivots;
890 	void __rcu **slots;
891 	void *next;
892 
893 	switch (type) {
894 	case maple_range_64:
895 		pivots = mn->mr64.pivot;
896 		if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
897 			slots = mn->mr64.slot;
898 			next = mt_slot_locked(mt, slots,
899 					      MAPLE_RANGE64_SLOTS - 1);
900 			if (unlikely((mte_to_node(next) &&
901 				      mte_node_type(next))))
902 				return; /* no metadata, could be node */
903 		}
904 		fallthrough;
905 	case maple_arange_64:
906 		meta = ma_meta(mn, type);
907 		break;
908 	default:
909 		return;
910 	}
911 
912 	meta->gap = 0;
913 	meta->end = 0;
914 }
915 
916 /*
917  * ma_meta_end() - Get the data end of a node from the metadata
918  * @mn: The maple node
919  * @mt: The maple node type
920  */
ma_meta_end(struct maple_node * mn,enum maple_type mt)921 static inline unsigned char ma_meta_end(struct maple_node *mn,
922 					enum maple_type mt)
923 {
924 	struct maple_metadata *meta = ma_meta(mn, mt);
925 
926 	return meta->end;
927 }
928 
929 /*
930  * ma_meta_gap() - Get the largest gap location of a node from the metadata
931  * @mn: The maple node
932  */
ma_meta_gap(struct maple_node * mn)933 static inline unsigned char ma_meta_gap(struct maple_node *mn)
934 {
935 	return mn->ma64.meta.gap;
936 }
937 
938 /*
939  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
940  * @mn: The maple node
941  * @mt: The maple node type
942  * @offset: The location of the largest gap.
943  */
ma_set_meta_gap(struct maple_node * mn,enum maple_type mt,unsigned char offset)944 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
945 				   unsigned char offset)
946 {
947 
948 	struct maple_metadata *meta = ma_meta(mn, mt);
949 
950 	meta->gap = offset;
951 }
952 
953 /*
954  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
955  * @mat: the ma_topiary, a linked list of dead nodes.
956  * @dead_enode: the node to be marked as dead and added to the tail of the list
957  *
958  * Add the @dead_enode to the linked list in @mat.
959  */
mat_add(struct ma_topiary * mat,struct maple_enode * dead_enode)960 static inline void mat_add(struct ma_topiary *mat,
961 			   struct maple_enode *dead_enode)
962 {
963 	mte_set_node_dead(dead_enode);
964 	mte_to_mat(dead_enode)->next = NULL;
965 	if (!mat->tail) {
966 		mat->tail = mat->head = dead_enode;
967 		return;
968 	}
969 
970 	mte_to_mat(mat->tail)->next = dead_enode;
971 	mat->tail = dead_enode;
972 }
973 
974 static void mt_free_walk(struct rcu_head *head);
975 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
976 			    bool free);
977 /*
978  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
979  * @mas: the maple state
980  * @mat: the ma_topiary linked list of dead nodes to free.
981  *
982  * Destroy walk a dead list.
983  */
mas_mat_destroy(struct ma_state * mas,struct ma_topiary * mat)984 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
985 {
986 	struct maple_enode *next;
987 	struct maple_node *node;
988 	bool in_rcu = mt_in_rcu(mas->tree);
989 
990 	while (mat->head) {
991 		next = mte_to_mat(mat->head)->next;
992 		node = mte_to_node(mat->head);
993 		mt_destroy_walk(mat->head, mas->tree, !in_rcu);
994 		if (in_rcu)
995 			call_rcu(&node->rcu, mt_free_walk);
996 		mat->head = next;
997 	}
998 }
999 /*
1000  * mas_descend() - Descend into the slot stored in the ma_state.
1001  * @mas: the maple state.
1002  *
1003  * Note: Not RCU safe, only use in write side or debug code.
1004  */
mas_descend(struct ma_state * mas)1005 static inline void mas_descend(struct ma_state *mas)
1006 {
1007 	enum maple_type type;
1008 	unsigned long *pivots;
1009 	struct maple_node *node;
1010 	void __rcu **slots;
1011 
1012 	node = mas_mn(mas);
1013 	type = mte_node_type(mas->node);
1014 	pivots = ma_pivots(node, type);
1015 	slots = ma_slots(node, type);
1016 
1017 	if (mas->offset)
1018 		mas->min = pivots[mas->offset - 1] + 1;
1019 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1020 	mas->node = mas_slot(mas, slots, mas->offset);
1021 }
1022 
1023 /*
1024  * mte_set_gap() - Set a maple node gap.
1025  * @mn: The encoded maple node
1026  * @gap: The offset of the gap to set
1027  * @val: The gap value
1028  */
mte_set_gap(const struct maple_enode * mn,unsigned char gap,unsigned long val)1029 static inline void mte_set_gap(const struct maple_enode *mn,
1030 				 unsigned char gap, unsigned long val)
1031 {
1032 	switch (mte_node_type(mn)) {
1033 	default:
1034 		break;
1035 	case maple_arange_64:
1036 		mte_to_node(mn)->ma64.gap[gap] = val;
1037 		break;
1038 	}
1039 }
1040 
1041 /*
1042  * mas_ascend() - Walk up a level of the tree.
1043  * @mas: The maple state
1044  *
1045  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1046  * may cause several levels of walking up to find the correct min and max.
1047  * May find a dead node which will cause a premature return.
1048  * Return: 1 on dead node, 0 otherwise
1049  */
mas_ascend(struct ma_state * mas)1050 static int mas_ascend(struct ma_state *mas)
1051 {
1052 	struct maple_enode *p_enode; /* parent enode. */
1053 	struct maple_enode *a_enode; /* ancestor enode. */
1054 	struct maple_node *a_node; /* ancestor node. */
1055 	struct maple_node *p_node; /* parent node. */
1056 	unsigned char a_slot;
1057 	enum maple_type a_type;
1058 	unsigned long min, max;
1059 	unsigned long *pivots;
1060 	bool set_max = false, set_min = false;
1061 
1062 	a_node = mas_mn(mas);
1063 	if (ma_is_root(a_node)) {
1064 		mas->offset = 0;
1065 		return 0;
1066 	}
1067 
1068 	p_node = mte_parent(mas->node);
1069 	if (unlikely(a_node == p_node))
1070 		return 1;
1071 
1072 	a_type = mas_parent_type(mas, mas->node);
1073 	mas->offset = mte_parent_slot(mas->node);
1074 	a_enode = mt_mk_node(p_node, a_type);
1075 
1076 	/* Check to make sure all parent information is still accurate */
1077 	if (p_node != mte_parent(mas->node))
1078 		return 1;
1079 
1080 	mas->node = a_enode;
1081 
1082 	if (mte_is_root(a_enode)) {
1083 		mas->max = ULONG_MAX;
1084 		mas->min = 0;
1085 		return 0;
1086 	}
1087 
1088 	min = 0;
1089 	max = ULONG_MAX;
1090 	if (!mas->offset) {
1091 		min = mas->min;
1092 		set_min = true;
1093 	}
1094 
1095 	if (mas->max == ULONG_MAX)
1096 		set_max = true;
1097 
1098 	do {
1099 		p_enode = a_enode;
1100 		a_type = mas_parent_type(mas, p_enode);
1101 		a_node = mte_parent(p_enode);
1102 		a_slot = mte_parent_slot(p_enode);
1103 		a_enode = mt_mk_node(a_node, a_type);
1104 		pivots = ma_pivots(a_node, a_type);
1105 
1106 		if (unlikely(ma_dead_node(a_node)))
1107 			return 1;
1108 
1109 		if (!set_min && a_slot) {
1110 			set_min = true;
1111 			min = pivots[a_slot - 1] + 1;
1112 		}
1113 
1114 		if (!set_max && a_slot < mt_pivots[a_type]) {
1115 			set_max = true;
1116 			max = pivots[a_slot];
1117 		}
1118 
1119 		if (unlikely(ma_dead_node(a_node)))
1120 			return 1;
1121 
1122 		if (unlikely(ma_is_root(a_node)))
1123 			break;
1124 
1125 	} while (!set_min || !set_max);
1126 
1127 	mas->max = max;
1128 	mas->min = min;
1129 	return 0;
1130 }
1131 
1132 /*
1133  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1134  * @mas: The maple state
1135  *
1136  * Return: A pointer to a maple node.
1137  */
mas_pop_node(struct ma_state * mas)1138 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1139 {
1140 	struct maple_alloc *ret, *node = mas->alloc;
1141 	unsigned long total = mas_allocated(mas);
1142 	unsigned int req = mas_alloc_req(mas);
1143 
1144 	/* nothing or a request pending. */
1145 	if (WARN_ON(!total))
1146 		return NULL;
1147 
1148 	if (total == 1) {
1149 		/* single allocation in this ma_state */
1150 		mas->alloc = NULL;
1151 		ret = node;
1152 		goto single_node;
1153 	}
1154 
1155 	if (node->node_count == 1) {
1156 		/* Single allocation in this node. */
1157 		mas->alloc = node->slot[0];
1158 		mas->alloc->total = node->total - 1;
1159 		ret = node;
1160 		goto new_head;
1161 	}
1162 	node->total--;
1163 	ret = node->slot[--node->node_count];
1164 	node->slot[node->node_count] = NULL;
1165 
1166 single_node:
1167 new_head:
1168 	if (req) {
1169 		req++;
1170 		mas_set_alloc_req(mas, req);
1171 	}
1172 
1173 	memset(ret, 0, sizeof(*ret));
1174 	return (struct maple_node *)ret;
1175 }
1176 
1177 /*
1178  * mas_push_node() - Push a node back on the maple state allocation.
1179  * @mas: The maple state
1180  * @used: The used maple node
1181  *
1182  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1183  * requested node count as necessary.
1184  */
mas_push_node(struct ma_state * mas,struct maple_node * used)1185 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1186 {
1187 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1188 	struct maple_alloc *head = mas->alloc;
1189 	unsigned long count;
1190 	unsigned int requested = mas_alloc_req(mas);
1191 
1192 	count = mas_allocated(mas);
1193 
1194 	reuse->request_count = 0;
1195 	reuse->node_count = 0;
1196 	if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1197 		head->slot[head->node_count++] = reuse;
1198 		head->total++;
1199 		goto done;
1200 	}
1201 
1202 	reuse->total = 1;
1203 	if ((head) && !((unsigned long)head & 0x1)) {
1204 		reuse->slot[0] = head;
1205 		reuse->node_count = 1;
1206 		reuse->total += head->total;
1207 	}
1208 
1209 	mas->alloc = reuse;
1210 done:
1211 	if (requested > 1)
1212 		mas_set_alloc_req(mas, requested - 1);
1213 }
1214 
1215 /*
1216  * mas_alloc_nodes() - Allocate nodes into a maple state
1217  * @mas: The maple state
1218  * @gfp: The GFP Flags
1219  */
mas_alloc_nodes(struct ma_state * mas,gfp_t gfp)1220 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1221 {
1222 	struct maple_alloc *node;
1223 	unsigned long allocated = mas_allocated(mas);
1224 	unsigned int requested = mas_alloc_req(mas);
1225 	unsigned int count;
1226 	void **slots = NULL;
1227 	unsigned int max_req = 0;
1228 
1229 	if (!requested)
1230 		return;
1231 
1232 	mas_set_alloc_req(mas, 0);
1233 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1234 		if (allocated)
1235 			return;
1236 		BUG_ON(!allocated);
1237 		WARN_ON(!allocated);
1238 	}
1239 
1240 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1241 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1242 		if (!node)
1243 			goto nomem_one;
1244 
1245 		if (allocated) {
1246 			node->slot[0] = mas->alloc;
1247 			node->node_count = 1;
1248 		} else {
1249 			node->node_count = 0;
1250 		}
1251 
1252 		mas->alloc = node;
1253 		node->total = ++allocated;
1254 		requested--;
1255 	}
1256 
1257 	node = mas->alloc;
1258 	node->request_count = 0;
1259 	while (requested) {
1260 		max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1261 		slots = (void **)&node->slot[node->node_count];
1262 		max_req = min(requested, max_req);
1263 		count = mt_alloc_bulk(gfp, max_req, slots);
1264 		if (!count)
1265 			goto nomem_bulk;
1266 
1267 		if (node->node_count == 0) {
1268 			node->slot[0]->node_count = 0;
1269 			node->slot[0]->request_count = 0;
1270 		}
1271 
1272 		node->node_count += count;
1273 		allocated += count;
1274 		node = node->slot[0];
1275 		requested -= count;
1276 	}
1277 	mas->alloc->total = allocated;
1278 	return;
1279 
1280 nomem_bulk:
1281 	/* Clean up potential freed allocations on bulk failure */
1282 	memset(slots, 0, max_req * sizeof(unsigned long));
1283 nomem_one:
1284 	mas_set_alloc_req(mas, requested);
1285 	if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1286 		mas->alloc->total = allocated;
1287 	mas_set_err(mas, -ENOMEM);
1288 }
1289 
1290 /*
1291  * mas_free() - Free an encoded maple node
1292  * @mas: The maple state
1293  * @used: The encoded maple node to free.
1294  *
1295  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1296  * otherwise.
1297  */
mas_free(struct ma_state * mas,struct maple_enode * used)1298 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1299 {
1300 	struct maple_node *tmp = mte_to_node(used);
1301 
1302 	if (mt_in_rcu(mas->tree))
1303 		ma_free_rcu(tmp);
1304 	else
1305 		mas_push_node(mas, tmp);
1306 }
1307 
1308 /*
1309  * mas_node_count_gfp() - Check if enough nodes are allocated and request more
1310  * if there is not enough nodes.
1311  * @mas: The maple state
1312  * @count: The number of nodes needed
1313  * @gfp: the gfp flags
1314  */
mas_node_count_gfp(struct ma_state * mas,int count,gfp_t gfp)1315 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1316 {
1317 	unsigned long allocated = mas_allocated(mas);
1318 
1319 	if (allocated < count) {
1320 		mas_set_alloc_req(mas, count - allocated);
1321 		mas_alloc_nodes(mas, gfp);
1322 	}
1323 }
1324 
1325 /*
1326  * mas_node_count() - Check if enough nodes are allocated and request more if
1327  * there is not enough nodes.
1328  * @mas: The maple state
1329  * @count: The number of nodes needed
1330  *
1331  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1332  */
mas_node_count(struct ma_state * mas,int count)1333 static void mas_node_count(struct ma_state *mas, int count)
1334 {
1335 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1336 }
1337 
1338 /*
1339  * mas_start() - Sets up maple state for operations.
1340  * @mas: The maple state.
1341  *
1342  * If mas->status == mas_start, then set the min, max and depth to
1343  * defaults.
1344  *
1345  * Return:
1346  * - If mas->node is an error or not mas_start, return NULL.
1347  * - If it's an empty tree:     NULL & mas->status == ma_none
1348  * - If it's a single entry:    The entry & mas->status == ma_root
1349  * - If it's a tree:            NULL & mas->status == ma_active
1350  */
mas_start(struct ma_state * mas)1351 static inline struct maple_enode *mas_start(struct ma_state *mas)
1352 {
1353 	if (likely(mas_is_start(mas))) {
1354 		struct maple_enode *root;
1355 
1356 		mas->min = 0;
1357 		mas->max = ULONG_MAX;
1358 
1359 retry:
1360 		mas->depth = 0;
1361 		root = mas_root(mas);
1362 		/* Tree with nodes */
1363 		if (likely(xa_is_node(root))) {
1364 			mas->depth = 1;
1365 			mas->status = ma_active;
1366 			mas->node = mte_safe_root(root);
1367 			mas->offset = 0;
1368 			if (mte_dead_node(mas->node))
1369 				goto retry;
1370 
1371 			return NULL;
1372 		}
1373 
1374 		mas->node = NULL;
1375 		/* empty tree */
1376 		if (unlikely(!root)) {
1377 			mas->status = ma_none;
1378 			mas->offset = MAPLE_NODE_SLOTS;
1379 			return NULL;
1380 		}
1381 
1382 		/* Single entry tree */
1383 		mas->status = ma_root;
1384 		mas->offset = MAPLE_NODE_SLOTS;
1385 
1386 		/* Single entry tree. */
1387 		if (mas->index > 0)
1388 			return NULL;
1389 
1390 		return root;
1391 	}
1392 
1393 	return NULL;
1394 }
1395 
1396 /*
1397  * ma_data_end() - Find the end of the data in a node.
1398  * @node: The maple node
1399  * @type: The maple node type
1400  * @pivots: The array of pivots in the node
1401  * @max: The maximum value in the node
1402  *
1403  * Uses metadata to find the end of the data when possible.
1404  * Return: The zero indexed last slot with data (may be null).
1405  */
ma_data_end(struct maple_node * node,enum maple_type type,unsigned long * pivots,unsigned long max)1406 static __always_inline unsigned char ma_data_end(struct maple_node *node,
1407 		enum maple_type type, unsigned long *pivots, unsigned long max)
1408 {
1409 	unsigned char offset;
1410 
1411 	if (!pivots)
1412 		return 0;
1413 
1414 	if (type == maple_arange_64)
1415 		return ma_meta_end(node, type);
1416 
1417 	offset = mt_pivots[type] - 1;
1418 	if (likely(!pivots[offset]))
1419 		return ma_meta_end(node, type);
1420 
1421 	if (likely(pivots[offset] == max))
1422 		return offset;
1423 
1424 	return mt_pivots[type];
1425 }
1426 
1427 /*
1428  * mas_data_end() - Find the end of the data (slot).
1429  * @mas: the maple state
1430  *
1431  * This method is optimized to check the metadata of a node if the node type
1432  * supports data end metadata.
1433  *
1434  * Return: The zero indexed last slot with data (may be null).
1435  */
mas_data_end(struct ma_state * mas)1436 static inline unsigned char mas_data_end(struct ma_state *mas)
1437 {
1438 	enum maple_type type;
1439 	struct maple_node *node;
1440 	unsigned char offset;
1441 	unsigned long *pivots;
1442 
1443 	type = mte_node_type(mas->node);
1444 	node = mas_mn(mas);
1445 	if (type == maple_arange_64)
1446 		return ma_meta_end(node, type);
1447 
1448 	pivots = ma_pivots(node, type);
1449 	if (unlikely(ma_dead_node(node)))
1450 		return 0;
1451 
1452 	offset = mt_pivots[type] - 1;
1453 	if (likely(!pivots[offset]))
1454 		return ma_meta_end(node, type);
1455 
1456 	if (likely(pivots[offset] == mas->max))
1457 		return offset;
1458 
1459 	return mt_pivots[type];
1460 }
1461 
1462 /*
1463  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1464  * @mas: the maple state
1465  *
1466  * Return: The maximum gap in the leaf.
1467  */
mas_leaf_max_gap(struct ma_state * mas)1468 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1469 {
1470 	enum maple_type mt;
1471 	unsigned long pstart, gap, max_gap;
1472 	struct maple_node *mn;
1473 	unsigned long *pivots;
1474 	void __rcu **slots;
1475 	unsigned char i;
1476 	unsigned char max_piv;
1477 
1478 	mt = mte_node_type(mas->node);
1479 	mn = mas_mn(mas);
1480 	slots = ma_slots(mn, mt);
1481 	max_gap = 0;
1482 	if (unlikely(ma_is_dense(mt))) {
1483 		gap = 0;
1484 		for (i = 0; i < mt_slots[mt]; i++) {
1485 			if (slots[i]) {
1486 				if (gap > max_gap)
1487 					max_gap = gap;
1488 				gap = 0;
1489 			} else {
1490 				gap++;
1491 			}
1492 		}
1493 		if (gap > max_gap)
1494 			max_gap = gap;
1495 		return max_gap;
1496 	}
1497 
1498 	/*
1499 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1500 	 * be skipped if there is a gap in slot 0.
1501 	 */
1502 	pivots = ma_pivots(mn, mt);
1503 	if (likely(!slots[0])) {
1504 		max_gap = pivots[0] - mas->min + 1;
1505 		i = 2;
1506 	} else {
1507 		i = 1;
1508 	}
1509 
1510 	/* reduce max_piv as the special case is checked before the loop */
1511 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1512 	/*
1513 	 * Check end implied pivot which can only be a gap on the right most
1514 	 * node.
1515 	 */
1516 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1517 		gap = ULONG_MAX - pivots[max_piv];
1518 		if (gap > max_gap)
1519 			max_gap = gap;
1520 
1521 		if (max_gap > pivots[max_piv] - mas->min)
1522 			return max_gap;
1523 	}
1524 
1525 	for (; i <= max_piv; i++) {
1526 		/* data == no gap. */
1527 		if (likely(slots[i]))
1528 			continue;
1529 
1530 		pstart = pivots[i - 1];
1531 		gap = pivots[i] - pstart;
1532 		if (gap > max_gap)
1533 			max_gap = gap;
1534 
1535 		/* There cannot be two gaps in a row. */
1536 		i++;
1537 	}
1538 	return max_gap;
1539 }
1540 
1541 /*
1542  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1543  * @node: The maple node
1544  * @gaps: The pointer to the gaps
1545  * @mt: The maple node type
1546  * @off: Pointer to store the offset location of the gap.
1547  *
1548  * Uses the metadata data end to scan backwards across set gaps.
1549  *
1550  * Return: The maximum gap value
1551  */
1552 static inline unsigned long
ma_max_gap(struct maple_node * node,unsigned long * gaps,enum maple_type mt,unsigned char * off)1553 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1554 	    unsigned char *off)
1555 {
1556 	unsigned char offset, i;
1557 	unsigned long max_gap = 0;
1558 
1559 	i = offset = ma_meta_end(node, mt);
1560 	do {
1561 		if (gaps[i] > max_gap) {
1562 			max_gap = gaps[i];
1563 			offset = i;
1564 		}
1565 	} while (i--);
1566 
1567 	*off = offset;
1568 	return max_gap;
1569 }
1570 
1571 /*
1572  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1573  * @mas: The maple state.
1574  *
1575  * Return: The gap value.
1576  */
mas_max_gap(struct ma_state * mas)1577 static inline unsigned long mas_max_gap(struct ma_state *mas)
1578 {
1579 	unsigned long *gaps;
1580 	unsigned char offset;
1581 	enum maple_type mt;
1582 	struct maple_node *node;
1583 
1584 	mt = mte_node_type(mas->node);
1585 	if (ma_is_leaf(mt))
1586 		return mas_leaf_max_gap(mas);
1587 
1588 	node = mas_mn(mas);
1589 	MAS_BUG_ON(mas, mt != maple_arange_64);
1590 	offset = ma_meta_gap(node);
1591 	gaps = ma_gaps(node, mt);
1592 	return gaps[offset];
1593 }
1594 
1595 /*
1596  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1597  * @mas: The maple state
1598  * @offset: The gap offset in the parent to set
1599  * @new: The new gap value.
1600  *
1601  * Set the parent gap then continue to set the gap upwards, using the metadata
1602  * of the parent to see if it is necessary to check the node above.
1603  */
mas_parent_gap(struct ma_state * mas,unsigned char offset,unsigned long new)1604 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1605 		unsigned long new)
1606 {
1607 	unsigned long meta_gap = 0;
1608 	struct maple_node *pnode;
1609 	struct maple_enode *penode;
1610 	unsigned long *pgaps;
1611 	unsigned char meta_offset;
1612 	enum maple_type pmt;
1613 
1614 	pnode = mte_parent(mas->node);
1615 	pmt = mas_parent_type(mas, mas->node);
1616 	penode = mt_mk_node(pnode, pmt);
1617 	pgaps = ma_gaps(pnode, pmt);
1618 
1619 ascend:
1620 	MAS_BUG_ON(mas, pmt != maple_arange_64);
1621 	meta_offset = ma_meta_gap(pnode);
1622 	meta_gap = pgaps[meta_offset];
1623 
1624 	pgaps[offset] = new;
1625 
1626 	if (meta_gap == new)
1627 		return;
1628 
1629 	if (offset != meta_offset) {
1630 		if (meta_gap > new)
1631 			return;
1632 
1633 		ma_set_meta_gap(pnode, pmt, offset);
1634 	} else if (new < meta_gap) {
1635 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1636 		ma_set_meta_gap(pnode, pmt, meta_offset);
1637 	}
1638 
1639 	if (ma_is_root(pnode))
1640 		return;
1641 
1642 	/* Go to the parent node. */
1643 	pnode = mte_parent(penode);
1644 	pmt = mas_parent_type(mas, penode);
1645 	pgaps = ma_gaps(pnode, pmt);
1646 	offset = mte_parent_slot(penode);
1647 	penode = mt_mk_node(pnode, pmt);
1648 	goto ascend;
1649 }
1650 
1651 /*
1652  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1653  * @mas: the maple state.
1654  */
mas_update_gap(struct ma_state * mas)1655 static inline void mas_update_gap(struct ma_state *mas)
1656 {
1657 	unsigned char pslot;
1658 	unsigned long p_gap;
1659 	unsigned long max_gap;
1660 
1661 	if (!mt_is_alloc(mas->tree))
1662 		return;
1663 
1664 	if (mte_is_root(mas->node))
1665 		return;
1666 
1667 	max_gap = mas_max_gap(mas);
1668 
1669 	pslot = mte_parent_slot(mas->node);
1670 	p_gap = ma_gaps(mte_parent(mas->node),
1671 			mas_parent_type(mas, mas->node))[pslot];
1672 
1673 	if (p_gap != max_gap)
1674 		mas_parent_gap(mas, pslot, max_gap);
1675 }
1676 
1677 /*
1678  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1679  * @parent with the slot encoded.
1680  * @mas: the maple state (for the tree)
1681  * @parent: the maple encoded node containing the children.
1682  */
mas_adopt_children(struct ma_state * mas,struct maple_enode * parent)1683 static inline void mas_adopt_children(struct ma_state *mas,
1684 		struct maple_enode *parent)
1685 {
1686 	enum maple_type type = mte_node_type(parent);
1687 	struct maple_node *node = mte_to_node(parent);
1688 	void __rcu **slots = ma_slots(node, type);
1689 	unsigned long *pivots = ma_pivots(node, type);
1690 	struct maple_enode *child;
1691 	unsigned char offset;
1692 
1693 	offset = ma_data_end(node, type, pivots, mas->max);
1694 	do {
1695 		child = mas_slot_locked(mas, slots, offset);
1696 		mas_set_parent(mas, child, parent, offset);
1697 	} while (offset--);
1698 }
1699 
1700 /*
1701  * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1702  * node as dead.
1703  * @mas: the maple state with the new node
1704  * @old_enode: The old maple encoded node to replace.
1705  */
mas_put_in_tree(struct ma_state * mas,struct maple_enode * old_enode)1706 static inline void mas_put_in_tree(struct ma_state *mas,
1707 		struct maple_enode *old_enode)
1708 	__must_hold(mas->tree->ma_lock)
1709 {
1710 	unsigned char offset;
1711 	void __rcu **slots;
1712 
1713 	if (mte_is_root(mas->node)) {
1714 		mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1715 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1716 		mas_set_height(mas);
1717 	} else {
1718 
1719 		offset = mte_parent_slot(mas->node);
1720 		slots = ma_slots(mte_parent(mas->node),
1721 				 mas_parent_type(mas, mas->node));
1722 		rcu_assign_pointer(slots[offset], mas->node);
1723 	}
1724 
1725 	mte_set_node_dead(old_enode);
1726 }
1727 
1728 /*
1729  * mas_replace_node() - Replace a node by putting it in the tree, marking it
1730  * dead, and freeing it.
1731  * the parent encoding to locate the maple node in the tree.
1732  * @mas: the ma_state with @mas->node pointing to the new node.
1733  * @old_enode: The old maple encoded node.
1734  */
mas_replace_node(struct ma_state * mas,struct maple_enode * old_enode)1735 static inline void mas_replace_node(struct ma_state *mas,
1736 		struct maple_enode *old_enode)
1737 	__must_hold(mas->tree->ma_lock)
1738 {
1739 	mas_put_in_tree(mas, old_enode);
1740 	mas_free(mas, old_enode);
1741 }
1742 
1743 /*
1744  * mas_find_child() - Find a child who has the parent @mas->node.
1745  * @mas: the maple state with the parent.
1746  * @child: the maple state to store the child.
1747  */
mas_find_child(struct ma_state * mas,struct ma_state * child)1748 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1749 	__must_hold(mas->tree->ma_lock)
1750 {
1751 	enum maple_type mt;
1752 	unsigned char offset;
1753 	unsigned char end;
1754 	unsigned long *pivots;
1755 	struct maple_enode *entry;
1756 	struct maple_node *node;
1757 	void __rcu **slots;
1758 
1759 	mt = mte_node_type(mas->node);
1760 	node = mas_mn(mas);
1761 	slots = ma_slots(node, mt);
1762 	pivots = ma_pivots(node, mt);
1763 	end = ma_data_end(node, mt, pivots, mas->max);
1764 	for (offset = mas->offset; offset <= end; offset++) {
1765 		entry = mas_slot_locked(mas, slots, offset);
1766 		if (mte_parent(entry) == node) {
1767 			*child = *mas;
1768 			mas->offset = offset + 1;
1769 			child->offset = offset;
1770 			mas_descend(child);
1771 			child->offset = 0;
1772 			return true;
1773 		}
1774 	}
1775 	return false;
1776 }
1777 
1778 /*
1779  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1780  * old data or set b_node->b_end.
1781  * @b_node: the maple_big_node
1782  * @shift: the shift count
1783  */
mab_shift_right(struct maple_big_node * b_node,unsigned char shift)1784 static inline void mab_shift_right(struct maple_big_node *b_node,
1785 				 unsigned char shift)
1786 {
1787 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1788 
1789 	memmove(b_node->pivot + shift, b_node->pivot, size);
1790 	memmove(b_node->slot + shift, b_node->slot, size);
1791 	if (b_node->type == maple_arange_64)
1792 		memmove(b_node->gap + shift, b_node->gap, size);
1793 }
1794 
1795 /*
1796  * mab_middle_node() - Check if a middle node is needed (unlikely)
1797  * @b_node: the maple_big_node that contains the data.
1798  * @split: the potential split location
1799  * @slot_count: the size that can be stored in a single node being considered.
1800  *
1801  * Return: true if a middle node is required.
1802  */
mab_middle_node(struct maple_big_node * b_node,int split,unsigned char slot_count)1803 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1804 				   unsigned char slot_count)
1805 {
1806 	unsigned char size = b_node->b_end;
1807 
1808 	if (size >= 2 * slot_count)
1809 		return true;
1810 
1811 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1812 		return true;
1813 
1814 	return false;
1815 }
1816 
1817 /*
1818  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1819  * @b_node: the maple_big_node with the data
1820  * @split: the suggested split location
1821  * @slot_count: the number of slots in the node being considered.
1822  *
1823  * Return: the split location.
1824  */
mab_no_null_split(struct maple_big_node * b_node,unsigned char split,unsigned char slot_count)1825 static inline int mab_no_null_split(struct maple_big_node *b_node,
1826 				    unsigned char split, unsigned char slot_count)
1827 {
1828 	if (!b_node->slot[split]) {
1829 		/*
1830 		 * If the split is less than the max slot && the right side will
1831 		 * still be sufficient, then increment the split on NULL.
1832 		 */
1833 		if ((split < slot_count - 1) &&
1834 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1835 			split++;
1836 		else
1837 			split--;
1838 	}
1839 	return split;
1840 }
1841 
1842 /*
1843  * mab_calc_split() - Calculate the split location and if there needs to be two
1844  * splits.
1845  * @mas: The maple state
1846  * @bn: The maple_big_node with the data
1847  * @mid_split: The second split, if required.  0 otherwise.
1848  *
1849  * Return: The first split location.  The middle split is set in @mid_split.
1850  */
mab_calc_split(struct ma_state * mas,struct maple_big_node * bn,unsigned char * mid_split)1851 static inline int mab_calc_split(struct ma_state *mas,
1852 	 struct maple_big_node *bn, unsigned char *mid_split)
1853 {
1854 	unsigned char b_end = bn->b_end;
1855 	int split = b_end / 2; /* Assume equal split. */
1856 	unsigned char slot_count = mt_slots[bn->type];
1857 
1858 	/*
1859 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1860 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1861 	 * limitation means that the split of a node must be checked for this condition
1862 	 * and be able to put more data in one direction or the other.
1863 	 */
1864 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1865 		*mid_split = 0;
1866 		split = b_end - mt_min_slots[bn->type];
1867 
1868 		if (!ma_is_leaf(bn->type))
1869 			return split;
1870 
1871 		mas->mas_flags |= MA_STATE_REBALANCE;
1872 		if (!bn->slot[split])
1873 			split--;
1874 		return split;
1875 	}
1876 
1877 	/*
1878 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1879 	 * split scenario.  The 3-way split comes about by means of a store of a range
1880 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1881 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1882 	 * also be located in different parent nodes which are also full.  This can
1883 	 * carry upwards all the way to the root in the worst case.
1884 	 */
1885 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1886 		split = b_end / 3;
1887 		*mid_split = split * 2;
1888 	} else {
1889 		*mid_split = 0;
1890 	}
1891 
1892 	/* Avoid ending a node on a NULL entry */
1893 	split = mab_no_null_split(bn, split, slot_count);
1894 
1895 	if (unlikely(*mid_split))
1896 		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1897 
1898 	return split;
1899 }
1900 
1901 /*
1902  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1903  * and set @b_node->b_end to the next free slot.
1904  * @mas: The maple state
1905  * @mas_start: The starting slot to copy
1906  * @mas_end: The end slot to copy (inclusively)
1907  * @b_node: The maple_big_node to place the data
1908  * @mab_start: The starting location in maple_big_node to store the data.
1909  */
mas_mab_cp(struct ma_state * mas,unsigned char mas_start,unsigned char mas_end,struct maple_big_node * b_node,unsigned char mab_start)1910 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1911 			unsigned char mas_end, struct maple_big_node *b_node,
1912 			unsigned char mab_start)
1913 {
1914 	enum maple_type mt;
1915 	struct maple_node *node;
1916 	void __rcu **slots;
1917 	unsigned long *pivots, *gaps;
1918 	int i = mas_start, j = mab_start;
1919 	unsigned char piv_end;
1920 
1921 	node = mas_mn(mas);
1922 	mt = mte_node_type(mas->node);
1923 	pivots = ma_pivots(node, mt);
1924 	if (!i) {
1925 		b_node->pivot[j] = pivots[i++];
1926 		if (unlikely(i > mas_end))
1927 			goto complete;
1928 		j++;
1929 	}
1930 
1931 	piv_end = min(mas_end, mt_pivots[mt]);
1932 	for (; i < piv_end; i++, j++) {
1933 		b_node->pivot[j] = pivots[i];
1934 		if (unlikely(!b_node->pivot[j]))
1935 			break;
1936 
1937 		if (unlikely(mas->max == b_node->pivot[j]))
1938 			goto complete;
1939 	}
1940 
1941 	if (likely(i <= mas_end))
1942 		b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1943 
1944 complete:
1945 	b_node->b_end = ++j;
1946 	j -= mab_start;
1947 	slots = ma_slots(node, mt);
1948 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1949 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1950 		gaps = ma_gaps(node, mt);
1951 		memcpy(b_node->gap + mab_start, gaps + mas_start,
1952 		       sizeof(unsigned long) * j);
1953 	}
1954 }
1955 
1956 /*
1957  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1958  * @node: The maple node
1959  * @mt: The maple type
1960  * @end: The node end
1961  */
mas_leaf_set_meta(struct maple_node * node,enum maple_type mt,unsigned char end)1962 static inline void mas_leaf_set_meta(struct maple_node *node,
1963 		enum maple_type mt, unsigned char end)
1964 {
1965 	if (end < mt_slots[mt] - 1)
1966 		ma_set_meta(node, mt, 0, end);
1967 }
1968 
1969 /*
1970  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1971  * @b_node: the maple_big_node that has the data
1972  * @mab_start: the start location in @b_node.
1973  * @mab_end: The end location in @b_node (inclusively)
1974  * @mas: The maple state with the maple encoded node.
1975  */
mab_mas_cp(struct maple_big_node * b_node,unsigned char mab_start,unsigned char mab_end,struct ma_state * mas,bool new_max)1976 static inline void mab_mas_cp(struct maple_big_node *b_node,
1977 			      unsigned char mab_start, unsigned char mab_end,
1978 			      struct ma_state *mas, bool new_max)
1979 {
1980 	int i, j = 0;
1981 	enum maple_type mt = mte_node_type(mas->node);
1982 	struct maple_node *node = mte_to_node(mas->node);
1983 	void __rcu **slots = ma_slots(node, mt);
1984 	unsigned long *pivots = ma_pivots(node, mt);
1985 	unsigned long *gaps = NULL;
1986 	unsigned char end;
1987 
1988 	if (mab_end - mab_start > mt_pivots[mt])
1989 		mab_end--;
1990 
1991 	if (!pivots[mt_pivots[mt] - 1])
1992 		slots[mt_pivots[mt]] = NULL;
1993 
1994 	i = mab_start;
1995 	do {
1996 		pivots[j++] = b_node->pivot[i++];
1997 	} while (i <= mab_end && likely(b_node->pivot[i]));
1998 
1999 	memcpy(slots, b_node->slot + mab_start,
2000 	       sizeof(void *) * (i - mab_start));
2001 
2002 	if (new_max)
2003 		mas->max = b_node->pivot[i - 1];
2004 
2005 	end = j - 1;
2006 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2007 		unsigned long max_gap = 0;
2008 		unsigned char offset = 0;
2009 
2010 		gaps = ma_gaps(node, mt);
2011 		do {
2012 			gaps[--j] = b_node->gap[--i];
2013 			if (gaps[j] > max_gap) {
2014 				offset = j;
2015 				max_gap = gaps[j];
2016 			}
2017 		} while (j);
2018 
2019 		ma_set_meta(node, mt, offset, end);
2020 	} else {
2021 		mas_leaf_set_meta(node, mt, end);
2022 	}
2023 }
2024 
2025 /*
2026  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2027  * @mas: The maple state
2028  * @end: The maple node end
2029  * @mt: The maple node type
2030  */
mas_bulk_rebalance(struct ma_state * mas,unsigned char end,enum maple_type mt)2031 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2032 				      enum maple_type mt)
2033 {
2034 	if (!(mas->mas_flags & MA_STATE_BULK))
2035 		return;
2036 
2037 	if (mte_is_root(mas->node))
2038 		return;
2039 
2040 	if (end > mt_min_slots[mt]) {
2041 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2042 		return;
2043 	}
2044 }
2045 
2046 /*
2047  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2048  * data from a maple encoded node.
2049  * @wr_mas: the maple write state
2050  * @b_node: the maple_big_node to fill with data
2051  * @offset_end: the offset to end copying
2052  *
2053  * Return: The actual end of the data stored in @b_node
2054  */
mas_store_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node,unsigned char offset_end)2055 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2056 		struct maple_big_node *b_node, unsigned char offset_end)
2057 {
2058 	unsigned char slot;
2059 	unsigned char b_end;
2060 	/* Possible underflow of piv will wrap back to 0 before use. */
2061 	unsigned long piv;
2062 	struct ma_state *mas = wr_mas->mas;
2063 
2064 	b_node->type = wr_mas->type;
2065 	b_end = 0;
2066 	slot = mas->offset;
2067 	if (slot) {
2068 		/* Copy start data up to insert. */
2069 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2070 		b_end = b_node->b_end;
2071 		piv = b_node->pivot[b_end - 1];
2072 	} else
2073 		piv = mas->min - 1;
2074 
2075 	if (piv + 1 < mas->index) {
2076 		/* Handle range starting after old range */
2077 		b_node->slot[b_end] = wr_mas->content;
2078 		if (!wr_mas->content)
2079 			b_node->gap[b_end] = mas->index - 1 - piv;
2080 		b_node->pivot[b_end++] = mas->index - 1;
2081 	}
2082 
2083 	/* Store the new entry. */
2084 	mas->offset = b_end;
2085 	b_node->slot[b_end] = wr_mas->entry;
2086 	b_node->pivot[b_end] = mas->last;
2087 
2088 	/* Appended. */
2089 	if (mas->last >= mas->max)
2090 		goto b_end;
2091 
2092 	/* Handle new range ending before old range ends */
2093 	piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2094 	if (piv > mas->last) {
2095 		if (piv == ULONG_MAX)
2096 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2097 
2098 		if (offset_end != slot)
2099 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2100 							  offset_end);
2101 
2102 		b_node->slot[++b_end] = wr_mas->content;
2103 		if (!wr_mas->content)
2104 			b_node->gap[b_end] = piv - mas->last + 1;
2105 		b_node->pivot[b_end] = piv;
2106 	}
2107 
2108 	slot = offset_end + 1;
2109 	if (slot > mas->end)
2110 		goto b_end;
2111 
2112 	/* Copy end data to the end of the node. */
2113 	mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
2114 	b_node->b_end--;
2115 	return;
2116 
2117 b_end:
2118 	b_node->b_end = b_end;
2119 }
2120 
2121 /*
2122  * mas_prev_sibling() - Find the previous node with the same parent.
2123  * @mas: the maple state
2124  *
2125  * Return: True if there is a previous sibling, false otherwise.
2126  */
mas_prev_sibling(struct ma_state * mas)2127 static inline bool mas_prev_sibling(struct ma_state *mas)
2128 {
2129 	unsigned int p_slot = mte_parent_slot(mas->node);
2130 
2131 	if (mte_is_root(mas->node))
2132 		return false;
2133 
2134 	if (!p_slot)
2135 		return false;
2136 
2137 	mas_ascend(mas);
2138 	mas->offset = p_slot - 1;
2139 	mas_descend(mas);
2140 	return true;
2141 }
2142 
2143 /*
2144  * mas_next_sibling() - Find the next node with the same parent.
2145  * @mas: the maple state
2146  *
2147  * Return: true if there is a next sibling, false otherwise.
2148  */
mas_next_sibling(struct ma_state * mas)2149 static inline bool mas_next_sibling(struct ma_state *mas)
2150 {
2151 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2152 
2153 	if (mte_is_root(mas->node))
2154 		return false;
2155 
2156 	parent = *mas;
2157 	mas_ascend(&parent);
2158 	parent.offset = mte_parent_slot(mas->node) + 1;
2159 	if (parent.offset > mas_data_end(&parent))
2160 		return false;
2161 
2162 	*mas = parent;
2163 	mas_descend(mas);
2164 	return true;
2165 }
2166 
2167 /*
2168  * mas_node_or_none() - Set the enode and state.
2169  * @mas: the maple state
2170  * @enode: The encoded maple node.
2171  *
2172  * Set the node to the enode and the status.
2173  */
mas_node_or_none(struct ma_state * mas,struct maple_enode * enode)2174 static inline void mas_node_or_none(struct ma_state *mas,
2175 		struct maple_enode *enode)
2176 {
2177 	if (enode) {
2178 		mas->node = enode;
2179 		mas->status = ma_active;
2180 	} else {
2181 		mas->node = NULL;
2182 		mas->status = ma_none;
2183 	}
2184 }
2185 
2186 /*
2187  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2188  *                      If @mas->index cannot be found within the containing
2189  *                      node, we traverse to the last entry in the node.
2190  * @wr_mas: The maple write state
2191  *
2192  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2193  */
mas_wr_node_walk(struct ma_wr_state * wr_mas)2194 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2195 {
2196 	struct ma_state *mas = wr_mas->mas;
2197 	unsigned char count, offset;
2198 
2199 	if (unlikely(ma_is_dense(wr_mas->type))) {
2200 		wr_mas->r_max = wr_mas->r_min = mas->index;
2201 		mas->offset = mas->index = mas->min;
2202 		return;
2203 	}
2204 
2205 	wr_mas->node = mas_mn(wr_mas->mas);
2206 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2207 	count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2208 				       wr_mas->pivots, mas->max);
2209 	offset = mas->offset;
2210 
2211 	while (offset < count && mas->index > wr_mas->pivots[offset])
2212 		offset++;
2213 
2214 	wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2215 	wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2216 	wr_mas->offset_end = mas->offset = offset;
2217 }
2218 
2219 /*
2220  * mast_rebalance_next() - Rebalance against the next node
2221  * @mast: The maple subtree state
2222  */
mast_rebalance_next(struct maple_subtree_state * mast)2223 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2224 {
2225 	unsigned char b_end = mast->bn->b_end;
2226 
2227 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2228 		   mast->bn, b_end);
2229 	mast->orig_r->last = mast->orig_r->max;
2230 }
2231 
2232 /*
2233  * mast_rebalance_prev() - Rebalance against the previous node
2234  * @mast: The maple subtree state
2235  */
mast_rebalance_prev(struct maple_subtree_state * mast)2236 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2237 {
2238 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2239 	unsigned char b_end = mast->bn->b_end;
2240 
2241 	mab_shift_right(mast->bn, end);
2242 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2243 	mast->l->min = mast->orig_l->min;
2244 	mast->orig_l->index = mast->orig_l->min;
2245 	mast->bn->b_end = end + b_end;
2246 	mast->l->offset += end;
2247 }
2248 
2249 /*
2250  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2251  * the node to the right.  Checking the nodes to the right then the left at each
2252  * level upwards until root is reached.
2253  * Data is copied into the @mast->bn.
2254  * @mast: The maple_subtree_state.
2255  */
2256 static inline
mast_spanning_rebalance(struct maple_subtree_state * mast)2257 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2258 {
2259 	struct ma_state r_tmp = *mast->orig_r;
2260 	struct ma_state l_tmp = *mast->orig_l;
2261 	unsigned char depth = 0;
2262 
2263 	do {
2264 		mas_ascend(mast->orig_r);
2265 		mas_ascend(mast->orig_l);
2266 		depth++;
2267 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2268 			mast->orig_r->offset++;
2269 			do {
2270 				mas_descend(mast->orig_r);
2271 				mast->orig_r->offset = 0;
2272 			} while (--depth);
2273 
2274 			mast_rebalance_next(mast);
2275 			*mast->orig_l = l_tmp;
2276 			return true;
2277 		} else if (mast->orig_l->offset != 0) {
2278 			mast->orig_l->offset--;
2279 			do {
2280 				mas_descend(mast->orig_l);
2281 				mast->orig_l->offset =
2282 					mas_data_end(mast->orig_l);
2283 			} while (--depth);
2284 
2285 			mast_rebalance_prev(mast);
2286 			*mast->orig_r = r_tmp;
2287 			return true;
2288 		}
2289 	} while (!mte_is_root(mast->orig_r->node));
2290 
2291 	*mast->orig_r = r_tmp;
2292 	*mast->orig_l = l_tmp;
2293 	return false;
2294 }
2295 
2296 /*
2297  * mast_ascend() - Ascend the original left and right maple states.
2298  * @mast: the maple subtree state.
2299  *
2300  * Ascend the original left and right sides.  Set the offsets to point to the
2301  * data already in the new tree (@mast->l and @mast->r).
2302  */
mast_ascend(struct maple_subtree_state * mast)2303 static inline void mast_ascend(struct maple_subtree_state *mast)
2304 {
2305 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2306 	mas_ascend(mast->orig_l);
2307 	mas_ascend(mast->orig_r);
2308 
2309 	mast->orig_r->offset = 0;
2310 	mast->orig_r->index = mast->r->max;
2311 	/* last should be larger than or equal to index */
2312 	if (mast->orig_r->last < mast->orig_r->index)
2313 		mast->orig_r->last = mast->orig_r->index;
2314 
2315 	wr_mas.type = mte_node_type(mast->orig_r->node);
2316 	mas_wr_node_walk(&wr_mas);
2317 	/* Set up the left side of things */
2318 	mast->orig_l->offset = 0;
2319 	mast->orig_l->index = mast->l->min;
2320 	wr_mas.mas = mast->orig_l;
2321 	wr_mas.type = mte_node_type(mast->orig_l->node);
2322 	mas_wr_node_walk(&wr_mas);
2323 
2324 	mast->bn->type = wr_mas.type;
2325 }
2326 
2327 /*
2328  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2329  * @mas: the maple state with the allocations.
2330  * @b_node: the maple_big_node with the type encoding.
2331  *
2332  * Use the node type from the maple_big_node to allocate a new node from the
2333  * ma_state.  This function exists mainly for code readability.
2334  *
2335  * Return: A new maple encoded node
2336  */
2337 static inline struct maple_enode
mas_new_ma_node(struct ma_state * mas,struct maple_big_node * b_node)2338 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2339 {
2340 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2341 }
2342 
2343 /*
2344  * mas_mab_to_node() - Set up right and middle nodes
2345  *
2346  * @mas: the maple state that contains the allocations.
2347  * @b_node: the node which contains the data.
2348  * @left: The pointer which will have the left node
2349  * @right: The pointer which may have the right node
2350  * @middle: the pointer which may have the middle node (rare)
2351  * @mid_split: the split location for the middle node
2352  *
2353  * Return: the split of left.
2354  */
mas_mab_to_node(struct ma_state * mas,struct maple_big_node * b_node,struct maple_enode ** left,struct maple_enode ** right,struct maple_enode ** middle,unsigned char * mid_split)2355 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2356 	struct maple_big_node *b_node, struct maple_enode **left,
2357 	struct maple_enode **right, struct maple_enode **middle,
2358 	unsigned char *mid_split)
2359 {
2360 	unsigned char split = 0;
2361 	unsigned char slot_count = mt_slots[b_node->type];
2362 
2363 	*left = mas_new_ma_node(mas, b_node);
2364 	*right = NULL;
2365 	*middle = NULL;
2366 	*mid_split = 0;
2367 
2368 	if (b_node->b_end < slot_count) {
2369 		split = b_node->b_end;
2370 	} else {
2371 		split = mab_calc_split(mas, b_node, mid_split);
2372 		*right = mas_new_ma_node(mas, b_node);
2373 	}
2374 
2375 	if (*mid_split)
2376 		*middle = mas_new_ma_node(mas, b_node);
2377 
2378 	return split;
2379 
2380 }
2381 
2382 /*
2383  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2384  * pointer.
2385  * @b_node: the big node to add the entry
2386  * @mas: the maple state to get the pivot (mas->max)
2387  * @entry: the entry to add, if NULL nothing happens.
2388  */
mab_set_b_end(struct maple_big_node * b_node,struct ma_state * mas,void * entry)2389 static inline void mab_set_b_end(struct maple_big_node *b_node,
2390 				 struct ma_state *mas,
2391 				 void *entry)
2392 {
2393 	if (!entry)
2394 		return;
2395 
2396 	b_node->slot[b_node->b_end] = entry;
2397 	if (mt_is_alloc(mas->tree))
2398 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2399 	b_node->pivot[b_node->b_end++] = mas->max;
2400 }
2401 
2402 /*
2403  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2404  * of @mas->node to either @left or @right, depending on @slot and @split
2405  *
2406  * @mas: the maple state with the node that needs a parent
2407  * @left: possible parent 1
2408  * @right: possible parent 2
2409  * @slot: the slot the mas->node was placed
2410  * @split: the split location between @left and @right
2411  */
mas_set_split_parent(struct ma_state * mas,struct maple_enode * left,struct maple_enode * right,unsigned char * slot,unsigned char split)2412 static inline void mas_set_split_parent(struct ma_state *mas,
2413 					struct maple_enode *left,
2414 					struct maple_enode *right,
2415 					unsigned char *slot, unsigned char split)
2416 {
2417 	if (mas_is_none(mas))
2418 		return;
2419 
2420 	if ((*slot) <= split)
2421 		mas_set_parent(mas, mas->node, left, *slot);
2422 	else if (right)
2423 		mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2424 
2425 	(*slot)++;
2426 }
2427 
2428 /*
2429  * mte_mid_split_check() - Check if the next node passes the mid-split
2430  * @l: Pointer to left encoded maple node.
2431  * @m: Pointer to middle encoded maple node.
2432  * @r: Pointer to right encoded maple node.
2433  * @slot: The offset
2434  * @split: The split location.
2435  * @mid_split: The middle split.
2436  */
mte_mid_split_check(struct maple_enode ** l,struct maple_enode ** r,struct maple_enode * right,unsigned char slot,unsigned char * split,unsigned char mid_split)2437 static inline void mte_mid_split_check(struct maple_enode **l,
2438 				       struct maple_enode **r,
2439 				       struct maple_enode *right,
2440 				       unsigned char slot,
2441 				       unsigned char *split,
2442 				       unsigned char mid_split)
2443 {
2444 	if (*r == right)
2445 		return;
2446 
2447 	if (slot < mid_split)
2448 		return;
2449 
2450 	*l = *r;
2451 	*r = right;
2452 	*split = mid_split;
2453 }
2454 
2455 /*
2456  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2457  * is taken from @mast->l.
2458  * @mast: the maple subtree state
2459  * @left: the left node
2460  * @right: the right node
2461  * @split: the split location.
2462  */
mast_set_split_parents(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2463 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2464 					  struct maple_enode *left,
2465 					  struct maple_enode *middle,
2466 					  struct maple_enode *right,
2467 					  unsigned char split,
2468 					  unsigned char mid_split)
2469 {
2470 	unsigned char slot;
2471 	struct maple_enode *l = left;
2472 	struct maple_enode *r = right;
2473 
2474 	if (mas_is_none(mast->l))
2475 		return;
2476 
2477 	if (middle)
2478 		r = middle;
2479 
2480 	slot = mast->l->offset;
2481 
2482 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2483 	mas_set_split_parent(mast->l, l, r, &slot, split);
2484 
2485 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2486 	mas_set_split_parent(mast->m, l, r, &slot, split);
2487 
2488 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2489 	mas_set_split_parent(mast->r, l, r, &slot, split);
2490 }
2491 
2492 /*
2493  * mas_topiary_node() - Dispose of a single node
2494  * @mas: The maple state for pushing nodes
2495  * @in_rcu: If the tree is in rcu mode
2496  *
2497  * The node will either be RCU freed or pushed back on the maple state.
2498  */
mas_topiary_node(struct ma_state * mas,struct ma_state * tmp_mas,bool in_rcu)2499 static inline void mas_topiary_node(struct ma_state *mas,
2500 		struct ma_state *tmp_mas, bool in_rcu)
2501 {
2502 	struct maple_node *tmp;
2503 	struct maple_enode *enode;
2504 
2505 	if (mas_is_none(tmp_mas))
2506 		return;
2507 
2508 	enode = tmp_mas->node;
2509 	tmp = mte_to_node(enode);
2510 	mte_set_node_dead(enode);
2511 	if (in_rcu)
2512 		ma_free_rcu(tmp);
2513 	else
2514 		mas_push_node(mas, tmp);
2515 }
2516 
2517 /*
2518  * mas_topiary_replace() - Replace the data with new data, then repair the
2519  * parent links within the new tree.  Iterate over the dead sub-tree and collect
2520  * the dead subtrees and topiary the nodes that are no longer of use.
2521  *
2522  * The new tree will have up to three children with the correct parent.  Keep
2523  * track of the new entries as they need to be followed to find the next level
2524  * of new entries.
2525  *
2526  * The old tree will have up to three children with the old parent.  Keep track
2527  * of the old entries as they may have more nodes below replaced.  Nodes within
2528  * [index, last] are dead subtrees, others need to be freed and followed.
2529  *
2530  * @mas: The maple state pointing at the new data
2531  * @old_enode: The maple encoded node being replaced
2532  *
2533  */
mas_topiary_replace(struct ma_state * mas,struct maple_enode * old_enode)2534 static inline void mas_topiary_replace(struct ma_state *mas,
2535 		struct maple_enode *old_enode)
2536 {
2537 	struct ma_state tmp[3], tmp_next[3];
2538 	MA_TOPIARY(subtrees, mas->tree);
2539 	bool in_rcu;
2540 	int i, n;
2541 
2542 	/* Place data in tree & then mark node as old */
2543 	mas_put_in_tree(mas, old_enode);
2544 
2545 	/* Update the parent pointers in the tree */
2546 	tmp[0] = *mas;
2547 	tmp[0].offset = 0;
2548 	tmp[1].status = ma_none;
2549 	tmp[2].status = ma_none;
2550 	while (!mte_is_leaf(tmp[0].node)) {
2551 		n = 0;
2552 		for (i = 0; i < 3; i++) {
2553 			if (mas_is_none(&tmp[i]))
2554 				continue;
2555 
2556 			while (n < 3) {
2557 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2558 					break;
2559 				n++;
2560 			}
2561 
2562 			mas_adopt_children(&tmp[i], tmp[i].node);
2563 		}
2564 
2565 		if (MAS_WARN_ON(mas, n == 0))
2566 			break;
2567 
2568 		while (n < 3)
2569 			tmp_next[n++].status = ma_none;
2570 
2571 		for (i = 0; i < 3; i++)
2572 			tmp[i] = tmp_next[i];
2573 	}
2574 
2575 	/* Collect the old nodes that need to be discarded */
2576 	if (mte_is_leaf(old_enode))
2577 		return mas_free(mas, old_enode);
2578 
2579 	tmp[0] = *mas;
2580 	tmp[0].offset = 0;
2581 	tmp[0].node = old_enode;
2582 	tmp[1].status = ma_none;
2583 	tmp[2].status = ma_none;
2584 	in_rcu = mt_in_rcu(mas->tree);
2585 	do {
2586 		n = 0;
2587 		for (i = 0; i < 3; i++) {
2588 			if (mas_is_none(&tmp[i]))
2589 				continue;
2590 
2591 			while (n < 3) {
2592 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2593 					break;
2594 
2595 				if ((tmp_next[n].min >= tmp_next->index) &&
2596 				    (tmp_next[n].max <= tmp_next->last)) {
2597 					mat_add(&subtrees, tmp_next[n].node);
2598 					tmp_next[n].status = ma_none;
2599 				} else {
2600 					n++;
2601 				}
2602 			}
2603 		}
2604 
2605 		if (MAS_WARN_ON(mas, n == 0))
2606 			break;
2607 
2608 		while (n < 3)
2609 			tmp_next[n++].status = ma_none;
2610 
2611 		for (i = 0; i < 3; i++) {
2612 			mas_topiary_node(mas, &tmp[i], in_rcu);
2613 			tmp[i] = tmp_next[i];
2614 		}
2615 	} while (!mte_is_leaf(tmp[0].node));
2616 
2617 	for (i = 0; i < 3; i++)
2618 		mas_topiary_node(mas, &tmp[i], in_rcu);
2619 
2620 	mas_mat_destroy(mas, &subtrees);
2621 }
2622 
2623 /*
2624  * mas_wmb_replace() - Write memory barrier and replace
2625  * @mas: The maple state
2626  * @old_enode: The old maple encoded node that is being replaced.
2627  *
2628  * Updates gap as necessary.
2629  */
mas_wmb_replace(struct ma_state * mas,struct maple_enode * old_enode)2630 static inline void mas_wmb_replace(struct ma_state *mas,
2631 		struct maple_enode *old_enode)
2632 {
2633 	/* Insert the new data in the tree */
2634 	mas_topiary_replace(mas, old_enode);
2635 
2636 	if (mte_is_leaf(mas->node))
2637 		return;
2638 
2639 	mas_update_gap(mas);
2640 }
2641 
2642 /*
2643  * mast_cp_to_nodes() - Copy data out to nodes.
2644  * @mast: The maple subtree state
2645  * @left: The left encoded maple node
2646  * @middle: The middle encoded maple node
2647  * @right: The right encoded maple node
2648  * @split: The location to split between left and (middle ? middle : right)
2649  * @mid_split: The location to split between middle and right.
2650  */
mast_cp_to_nodes(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2651 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2652 	struct maple_enode *left, struct maple_enode *middle,
2653 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2654 {
2655 	bool new_lmax = true;
2656 
2657 	mas_node_or_none(mast->l, left);
2658 	mas_node_or_none(mast->m, middle);
2659 	mas_node_or_none(mast->r, right);
2660 
2661 	mast->l->min = mast->orig_l->min;
2662 	if (split == mast->bn->b_end) {
2663 		mast->l->max = mast->orig_r->max;
2664 		new_lmax = false;
2665 	}
2666 
2667 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2668 
2669 	if (middle) {
2670 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2671 		mast->m->min = mast->bn->pivot[split] + 1;
2672 		split = mid_split;
2673 	}
2674 
2675 	mast->r->max = mast->orig_r->max;
2676 	if (right) {
2677 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2678 		mast->r->min = mast->bn->pivot[split] + 1;
2679 	}
2680 }
2681 
2682 /*
2683  * mast_combine_cp_left - Copy in the original left side of the tree into the
2684  * combined data set in the maple subtree state big node.
2685  * @mast: The maple subtree state
2686  */
mast_combine_cp_left(struct maple_subtree_state * mast)2687 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2688 {
2689 	unsigned char l_slot = mast->orig_l->offset;
2690 
2691 	if (!l_slot)
2692 		return;
2693 
2694 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2695 }
2696 
2697 /*
2698  * mast_combine_cp_right: Copy in the original right side of the tree into the
2699  * combined data set in the maple subtree state big node.
2700  * @mast: The maple subtree state
2701  */
mast_combine_cp_right(struct maple_subtree_state * mast)2702 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2703 {
2704 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2705 		return;
2706 
2707 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2708 		   mt_slot_count(mast->orig_r->node), mast->bn,
2709 		   mast->bn->b_end);
2710 	mast->orig_r->last = mast->orig_r->max;
2711 }
2712 
2713 /*
2714  * mast_sufficient: Check if the maple subtree state has enough data in the big
2715  * node to create at least one sufficient node
2716  * @mast: the maple subtree state
2717  */
mast_sufficient(struct maple_subtree_state * mast)2718 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2719 {
2720 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2721 		return true;
2722 
2723 	return false;
2724 }
2725 
2726 /*
2727  * mast_overflow: Check if there is too much data in the subtree state for a
2728  * single node.
2729  * @mast: The maple subtree state
2730  */
mast_overflow(struct maple_subtree_state * mast)2731 static inline bool mast_overflow(struct maple_subtree_state *mast)
2732 {
2733 	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2734 		return true;
2735 
2736 	return false;
2737 }
2738 
mtree_range_walk(struct ma_state * mas)2739 static inline void *mtree_range_walk(struct ma_state *mas)
2740 {
2741 	unsigned long *pivots;
2742 	unsigned char offset;
2743 	struct maple_node *node;
2744 	struct maple_enode *next, *last;
2745 	enum maple_type type;
2746 	void __rcu **slots;
2747 	unsigned char end;
2748 	unsigned long max, min;
2749 	unsigned long prev_max, prev_min;
2750 
2751 	next = mas->node;
2752 	min = mas->min;
2753 	max = mas->max;
2754 	do {
2755 		last = next;
2756 		node = mte_to_node(next);
2757 		type = mte_node_type(next);
2758 		pivots = ma_pivots(node, type);
2759 		end = ma_data_end(node, type, pivots, max);
2760 		prev_min = min;
2761 		prev_max = max;
2762 		if (pivots[0] >= mas->index) {
2763 			offset = 0;
2764 			max = pivots[0];
2765 			goto next;
2766 		}
2767 
2768 		offset = 1;
2769 		while (offset < end) {
2770 			if (pivots[offset] >= mas->index) {
2771 				max = pivots[offset];
2772 				break;
2773 			}
2774 			offset++;
2775 		}
2776 
2777 		min = pivots[offset - 1] + 1;
2778 next:
2779 		slots = ma_slots(node, type);
2780 		next = mt_slot(mas->tree, slots, offset);
2781 		if (unlikely(ma_dead_node(node)))
2782 			goto dead_node;
2783 	} while (!ma_is_leaf(type));
2784 
2785 	mas->end = end;
2786 	mas->offset = offset;
2787 	mas->index = min;
2788 	mas->last = max;
2789 	mas->min = prev_min;
2790 	mas->max = prev_max;
2791 	mas->node = last;
2792 	return (void *)next;
2793 
2794 dead_node:
2795 	mas_reset(mas);
2796 	return NULL;
2797 }
2798 
2799 /*
2800  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2801  * @mas: The starting maple state
2802  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2803  * @count: The estimated count of iterations needed.
2804  *
2805  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2806  * is hit.  First @b_node is split into two entries which are inserted into the
2807  * next iteration of the loop.  @b_node is returned populated with the final
2808  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
2809  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2810  * to account of what has been copied into the new sub-tree.  The update of
2811  * orig_l_mas->last is used in mas_consume to find the slots that will need to
2812  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
2813  * the new sub-tree in case the sub-tree becomes the full tree.
2814  */
mas_spanning_rebalance(struct ma_state * mas,struct maple_subtree_state * mast,unsigned char count)2815 static void mas_spanning_rebalance(struct ma_state *mas,
2816 		struct maple_subtree_state *mast, unsigned char count)
2817 {
2818 	unsigned char split, mid_split;
2819 	unsigned char slot = 0;
2820 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2821 	struct maple_enode *old_enode;
2822 
2823 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2824 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2825 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2826 
2827 	/*
2828 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2829 	 * Rebalancing is done by use of the ``struct maple_topiary``.
2830 	 */
2831 	mast->l = &l_mas;
2832 	mast->m = &m_mas;
2833 	mast->r = &r_mas;
2834 	l_mas.status = r_mas.status = m_mas.status = ma_none;
2835 
2836 	/* Check if this is not root and has sufficient data.  */
2837 	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2838 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2839 		mast_spanning_rebalance(mast);
2840 
2841 	l_mas.depth = 0;
2842 
2843 	/*
2844 	 * Each level of the tree is examined and balanced, pushing data to the left or
2845 	 * right, or rebalancing against left or right nodes is employed to avoid
2846 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
2847 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
2848 	 * will have the incorrect parent pointers and currently be in two trees: the
2849 	 * original tree and the partially new tree.  To remedy the parent pointers in
2850 	 * the old tree, the new data is swapped into the active tree and a walk down
2851 	 * the tree is performed and the parent pointers are updated.
2852 	 * See mas_topiary_replace() for more information.
2853 	 */
2854 	while (count--) {
2855 		mast->bn->b_end--;
2856 		mast->bn->type = mte_node_type(mast->orig_l->node);
2857 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2858 					&mid_split);
2859 		mast_set_split_parents(mast, left, middle, right, split,
2860 				       mid_split);
2861 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2862 
2863 		/*
2864 		 * Copy data from next level in the tree to mast->bn from next
2865 		 * iteration
2866 		 */
2867 		memset(mast->bn, 0, sizeof(struct maple_big_node));
2868 		mast->bn->type = mte_node_type(left);
2869 		l_mas.depth++;
2870 
2871 		/* Root already stored in l->node. */
2872 		if (mas_is_root_limits(mast->l))
2873 			goto new_root;
2874 
2875 		mast_ascend(mast);
2876 		mast_combine_cp_left(mast);
2877 		l_mas.offset = mast->bn->b_end;
2878 		mab_set_b_end(mast->bn, &l_mas, left);
2879 		mab_set_b_end(mast->bn, &m_mas, middle);
2880 		mab_set_b_end(mast->bn, &r_mas, right);
2881 
2882 		/* Copy anything necessary out of the right node. */
2883 		mast_combine_cp_right(mast);
2884 		mast->orig_l->last = mast->orig_l->max;
2885 
2886 		if (mast_sufficient(mast))
2887 			continue;
2888 
2889 		if (mast_overflow(mast))
2890 			continue;
2891 
2892 		/* May be a new root stored in mast->bn */
2893 		if (mas_is_root_limits(mast->orig_l))
2894 			break;
2895 
2896 		mast_spanning_rebalance(mast);
2897 
2898 		/* rebalancing from other nodes may require another loop. */
2899 		if (!count)
2900 			count++;
2901 	}
2902 
2903 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2904 				mte_node_type(mast->orig_l->node));
2905 	l_mas.depth++;
2906 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2907 	mas_set_parent(mas, left, l_mas.node, slot);
2908 	if (middle)
2909 		mas_set_parent(mas, middle, l_mas.node, ++slot);
2910 
2911 	if (right)
2912 		mas_set_parent(mas, right, l_mas.node, ++slot);
2913 
2914 	if (mas_is_root_limits(mast->l)) {
2915 new_root:
2916 		mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2917 		while (!mte_is_root(mast->orig_l->node))
2918 			mast_ascend(mast);
2919 	} else {
2920 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2921 	}
2922 
2923 	old_enode = mast->orig_l->node;
2924 	mas->depth = l_mas.depth;
2925 	mas->node = l_mas.node;
2926 	mas->min = l_mas.min;
2927 	mas->max = l_mas.max;
2928 	mas->offset = l_mas.offset;
2929 	mas_wmb_replace(mas, old_enode);
2930 	mtree_range_walk(mas);
2931 	return;
2932 }
2933 
2934 /*
2935  * mas_rebalance() - Rebalance a given node.
2936  * @mas: The maple state
2937  * @b_node: The big maple node.
2938  *
2939  * Rebalance two nodes into a single node or two new nodes that are sufficient.
2940  * Continue upwards until tree is sufficient.
2941  */
mas_rebalance(struct ma_state * mas,struct maple_big_node * b_node)2942 static inline void mas_rebalance(struct ma_state *mas,
2943 				struct maple_big_node *b_node)
2944 {
2945 	char empty_count = mas_mt_height(mas);
2946 	struct maple_subtree_state mast;
2947 	unsigned char shift, b_end = ++b_node->b_end;
2948 
2949 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2950 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2951 
2952 	trace_ma_op(__func__, mas);
2953 
2954 	/*
2955 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
2956 	 * against the node to the right if it exists, otherwise the node to the
2957 	 * left of this node is rebalanced against this node.  If rebalancing
2958 	 * causes just one node to be produced instead of two, then the parent
2959 	 * is also examined and rebalanced if it is insufficient.  Every level
2960 	 * tries to combine the data in the same way.  If one node contains the
2961 	 * entire range of the tree, then that node is used as a new root node.
2962 	 */
2963 
2964 	mast.orig_l = &l_mas;
2965 	mast.orig_r = &r_mas;
2966 	mast.bn = b_node;
2967 	mast.bn->type = mte_node_type(mas->node);
2968 
2969 	l_mas = r_mas = *mas;
2970 
2971 	if (mas_next_sibling(&r_mas)) {
2972 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2973 		r_mas.last = r_mas.index = r_mas.max;
2974 	} else {
2975 		mas_prev_sibling(&l_mas);
2976 		shift = mas_data_end(&l_mas) + 1;
2977 		mab_shift_right(b_node, shift);
2978 		mas->offset += shift;
2979 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
2980 		b_node->b_end = shift + b_end;
2981 		l_mas.index = l_mas.last = l_mas.min;
2982 	}
2983 
2984 	return mas_spanning_rebalance(mas, &mast, empty_count);
2985 }
2986 
2987 /*
2988  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
2989  * state.
2990  * @mas: The maple state
2991  * @end: The end of the left-most node.
2992  *
2993  * During a mass-insert event (such as forking), it may be necessary to
2994  * rebalance the left-most node when it is not sufficient.
2995  */
mas_destroy_rebalance(struct ma_state * mas,unsigned char end)2996 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
2997 {
2998 	enum maple_type mt = mte_node_type(mas->node);
2999 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3000 	struct maple_enode *eparent, *old_eparent;
3001 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3002 	void __rcu **l_slots, **slots;
3003 	unsigned long *l_pivs, *pivs, gap;
3004 	bool in_rcu = mt_in_rcu(mas->tree);
3005 
3006 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3007 
3008 	l_mas = *mas;
3009 	mas_prev_sibling(&l_mas);
3010 
3011 	/* set up node. */
3012 	if (in_rcu) {
3013 		newnode = mas_pop_node(mas);
3014 	} else {
3015 		newnode = &reuse;
3016 	}
3017 
3018 	node = mas_mn(mas);
3019 	newnode->parent = node->parent;
3020 	slots = ma_slots(newnode, mt);
3021 	pivs = ma_pivots(newnode, mt);
3022 	left = mas_mn(&l_mas);
3023 	l_slots = ma_slots(left, mt);
3024 	l_pivs = ma_pivots(left, mt);
3025 	if (!l_slots[split])
3026 		split++;
3027 	tmp = mas_data_end(&l_mas) - split;
3028 
3029 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3030 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3031 	pivs[tmp] = l_mas.max;
3032 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3033 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3034 
3035 	l_mas.max = l_pivs[split];
3036 	mas->min = l_mas.max + 1;
3037 	old_eparent = mt_mk_node(mte_parent(l_mas.node),
3038 			     mas_parent_type(&l_mas, l_mas.node));
3039 	tmp += end;
3040 	if (!in_rcu) {
3041 		unsigned char max_p = mt_pivots[mt];
3042 		unsigned char max_s = mt_slots[mt];
3043 
3044 		if (tmp < max_p)
3045 			memset(pivs + tmp, 0,
3046 			       sizeof(unsigned long) * (max_p - tmp));
3047 
3048 		if (tmp < mt_slots[mt])
3049 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3050 
3051 		memcpy(node, newnode, sizeof(struct maple_node));
3052 		ma_set_meta(node, mt, 0, tmp - 1);
3053 		mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3054 			      l_pivs[split]);
3055 
3056 		/* Remove data from l_pivs. */
3057 		tmp = split + 1;
3058 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3059 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3060 		ma_set_meta(left, mt, 0, split);
3061 		eparent = old_eparent;
3062 
3063 		goto done;
3064 	}
3065 
3066 	/* RCU requires replacing both l_mas, mas, and parent. */
3067 	mas->node = mt_mk_node(newnode, mt);
3068 	ma_set_meta(newnode, mt, 0, tmp);
3069 
3070 	new_left = mas_pop_node(mas);
3071 	new_left->parent = left->parent;
3072 	mt = mte_node_type(l_mas.node);
3073 	slots = ma_slots(new_left, mt);
3074 	pivs = ma_pivots(new_left, mt);
3075 	memcpy(slots, l_slots, sizeof(void *) * split);
3076 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3077 	ma_set_meta(new_left, mt, 0, split);
3078 	l_mas.node = mt_mk_node(new_left, mt);
3079 
3080 	/* replace parent. */
3081 	offset = mte_parent_slot(mas->node);
3082 	mt = mas_parent_type(&l_mas, l_mas.node);
3083 	parent = mas_pop_node(mas);
3084 	slots = ma_slots(parent, mt);
3085 	pivs = ma_pivots(parent, mt);
3086 	memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3087 	rcu_assign_pointer(slots[offset], mas->node);
3088 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3089 	pivs[offset - 1] = l_mas.max;
3090 	eparent = mt_mk_node(parent, mt);
3091 done:
3092 	gap = mas_leaf_max_gap(mas);
3093 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3094 	gap = mas_leaf_max_gap(&l_mas);
3095 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3096 	mas_ascend(mas);
3097 
3098 	if (in_rcu) {
3099 		mas_replace_node(mas, old_eparent);
3100 		mas_adopt_children(mas, mas->node);
3101 	}
3102 
3103 	mas_update_gap(mas);
3104 }
3105 
3106 /*
3107  * mas_split_final_node() - Split the final node in a subtree operation.
3108  * @mast: the maple subtree state
3109  * @mas: The maple state
3110  * @height: The height of the tree in case it's a new root.
3111  */
mas_split_final_node(struct maple_subtree_state * mast,struct ma_state * mas,int height)3112 static inline void mas_split_final_node(struct maple_subtree_state *mast,
3113 					struct ma_state *mas, int height)
3114 {
3115 	struct maple_enode *ancestor;
3116 
3117 	if (mte_is_root(mas->node)) {
3118 		if (mt_is_alloc(mas->tree))
3119 			mast->bn->type = maple_arange_64;
3120 		else
3121 			mast->bn->type = maple_range_64;
3122 		mas->depth = height;
3123 	}
3124 	/*
3125 	 * Only a single node is used here, could be root.
3126 	 * The Big_node data should just fit in a single node.
3127 	 */
3128 	ancestor = mas_new_ma_node(mas, mast->bn);
3129 	mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3130 	mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3131 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3132 
3133 	mast->l->node = ancestor;
3134 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3135 	mas->offset = mast->bn->b_end - 1;
3136 }
3137 
3138 /*
3139  * mast_fill_bnode() - Copy data into the big node in the subtree state
3140  * @mast: The maple subtree state
3141  * @mas: the maple state
3142  * @skip: The number of entries to skip for new nodes insertion.
3143  */
mast_fill_bnode(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char skip)3144 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3145 					 struct ma_state *mas,
3146 					 unsigned char skip)
3147 {
3148 	bool cp = true;
3149 	unsigned char split;
3150 
3151 	memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3152 	memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3153 	memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3154 	mast->bn->b_end = 0;
3155 
3156 	if (mte_is_root(mas->node)) {
3157 		cp = false;
3158 	} else {
3159 		mas_ascend(mas);
3160 		mas->offset = mte_parent_slot(mas->node);
3161 	}
3162 
3163 	if (cp && mast->l->offset)
3164 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3165 
3166 	split = mast->bn->b_end;
3167 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3168 	mast->r->offset = mast->bn->b_end;
3169 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3170 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3171 		cp = false;
3172 
3173 	if (cp)
3174 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3175 			   mast->bn, mast->bn->b_end);
3176 
3177 	mast->bn->b_end--;
3178 	mast->bn->type = mte_node_type(mas->node);
3179 }
3180 
3181 /*
3182  * mast_split_data() - Split the data in the subtree state big node into regular
3183  * nodes.
3184  * @mast: The maple subtree state
3185  * @mas: The maple state
3186  * @split: The location to split the big node
3187  */
mast_split_data(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char split)3188 static inline void mast_split_data(struct maple_subtree_state *mast,
3189 	   struct ma_state *mas, unsigned char split)
3190 {
3191 	unsigned char p_slot;
3192 
3193 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3194 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3195 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3196 	mast->l->offset = mte_parent_slot(mas->node);
3197 	mast->l->max = mast->bn->pivot[split];
3198 	mast->r->min = mast->l->max + 1;
3199 	if (mte_is_leaf(mas->node))
3200 		return;
3201 
3202 	p_slot = mast->orig_l->offset;
3203 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3204 			     &p_slot, split);
3205 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3206 			     &p_slot, split);
3207 }
3208 
3209 /*
3210  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3211  * data to the right or left node if there is room.
3212  * @mas: The maple state
3213  * @height: The current height of the maple state
3214  * @mast: The maple subtree state
3215  * @left: Push left or not.
3216  *
3217  * Keeping the height of the tree low means faster lookups.
3218  *
3219  * Return: True if pushed, false otherwise.
3220  */
mas_push_data(struct ma_state * mas,int height,struct maple_subtree_state * mast,bool left)3221 static inline bool mas_push_data(struct ma_state *mas, int height,
3222 				 struct maple_subtree_state *mast, bool left)
3223 {
3224 	unsigned char slot_total = mast->bn->b_end;
3225 	unsigned char end, space, split;
3226 
3227 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3228 	tmp_mas = *mas;
3229 	tmp_mas.depth = mast->l->depth;
3230 
3231 	if (left && !mas_prev_sibling(&tmp_mas))
3232 		return false;
3233 	else if (!left && !mas_next_sibling(&tmp_mas))
3234 		return false;
3235 
3236 	end = mas_data_end(&tmp_mas);
3237 	slot_total += end;
3238 	space = 2 * mt_slot_count(mas->node) - 2;
3239 	/* -2 instead of -1 to ensure there isn't a triple split */
3240 	if (ma_is_leaf(mast->bn->type))
3241 		space--;
3242 
3243 	if (mas->max == ULONG_MAX)
3244 		space--;
3245 
3246 	if (slot_total >= space)
3247 		return false;
3248 
3249 	/* Get the data; Fill mast->bn */
3250 	mast->bn->b_end++;
3251 	if (left) {
3252 		mab_shift_right(mast->bn, end + 1);
3253 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3254 		mast->bn->b_end = slot_total + 1;
3255 	} else {
3256 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3257 	}
3258 
3259 	/* Configure mast for splitting of mast->bn */
3260 	split = mt_slots[mast->bn->type] - 2;
3261 	if (left) {
3262 		/*  Switch mas to prev node  */
3263 		*mas = tmp_mas;
3264 		/* Start using mast->l for the left side. */
3265 		tmp_mas.node = mast->l->node;
3266 		*mast->l = tmp_mas;
3267 	} else {
3268 		tmp_mas.node = mast->r->node;
3269 		*mast->r = tmp_mas;
3270 		split = slot_total - split;
3271 	}
3272 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3273 	/* Update parent slot for split calculation. */
3274 	if (left)
3275 		mast->orig_l->offset += end + 1;
3276 
3277 	mast_split_data(mast, mas, split);
3278 	mast_fill_bnode(mast, mas, 2);
3279 	mas_split_final_node(mast, mas, height + 1);
3280 	return true;
3281 }
3282 
3283 /*
3284  * mas_split() - Split data that is too big for one node into two.
3285  * @mas: The maple state
3286  * @b_node: The maple big node
3287  */
mas_split(struct ma_state * mas,struct maple_big_node * b_node)3288 static void mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3289 {
3290 	struct maple_subtree_state mast;
3291 	int height = 0;
3292 	unsigned char mid_split, split = 0;
3293 	struct maple_enode *old;
3294 
3295 	/*
3296 	 * Splitting is handled differently from any other B-tree; the Maple
3297 	 * Tree splits upwards.  Splitting up means that the split operation
3298 	 * occurs when the walk of the tree hits the leaves and not on the way
3299 	 * down.  The reason for splitting up is that it is impossible to know
3300 	 * how much space will be needed until the leaf is (or leaves are)
3301 	 * reached.  Since overwriting data is allowed and a range could
3302 	 * overwrite more than one range or result in changing one entry into 3
3303 	 * entries, it is impossible to know if a split is required until the
3304 	 * data is examined.
3305 	 *
3306 	 * Splitting is a balancing act between keeping allocations to a minimum
3307 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3308 	 * for an entry followed by a contraction when the entry is removed.  To
3309 	 * accomplish the balance, there are empty slots remaining in both left
3310 	 * and right nodes after a split.
3311 	 */
3312 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3313 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3314 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3315 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3316 
3317 	trace_ma_op(__func__, mas);
3318 	mas->depth = mas_mt_height(mas);
3319 
3320 	mast.l = &l_mas;
3321 	mast.r = &r_mas;
3322 	mast.orig_l = &prev_l_mas;
3323 	mast.orig_r = &prev_r_mas;
3324 	mast.bn = b_node;
3325 
3326 	while (height++ <= mas->depth) {
3327 		if (mt_slots[b_node->type] > b_node->b_end) {
3328 			mas_split_final_node(&mast, mas, height);
3329 			break;
3330 		}
3331 
3332 		l_mas = r_mas = *mas;
3333 		l_mas.node = mas_new_ma_node(mas, b_node);
3334 		r_mas.node = mas_new_ma_node(mas, b_node);
3335 		/*
3336 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3337 		 * left or right node has space to spare.  This is referred to as "pushing left"
3338 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3339 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3340 		 * is a significant savings.
3341 		 */
3342 		/* Try to push left. */
3343 		if (mas_push_data(mas, height, &mast, true))
3344 			break;
3345 		/* Try to push right. */
3346 		if (mas_push_data(mas, height, &mast, false))
3347 			break;
3348 
3349 		split = mab_calc_split(mas, b_node, &mid_split);
3350 		mast_split_data(&mast, mas, split);
3351 		/*
3352 		 * Usually correct, mab_mas_cp in the above call overwrites
3353 		 * r->max.
3354 		 */
3355 		mast.r->max = mas->max;
3356 		mast_fill_bnode(&mast, mas, 1);
3357 		prev_l_mas = *mast.l;
3358 		prev_r_mas = *mast.r;
3359 	}
3360 
3361 	/* Set the original node as dead */
3362 	old = mas->node;
3363 	mas->node = l_mas.node;
3364 	mas_wmb_replace(mas, old);
3365 	mtree_range_walk(mas);
3366 	return;
3367 }
3368 
3369 /*
3370  * mas_commit_b_node() - Commit the big node into the tree.
3371  * @wr_mas: The maple write state
3372  * @b_node: The maple big node
3373  */
mas_commit_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node)3374 static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas,
3375 			    struct maple_big_node *b_node)
3376 {
3377 	enum store_type type = wr_mas->mas->store_type;
3378 
3379 	WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store);
3380 
3381 	if (type == wr_rebalance)
3382 		return mas_rebalance(wr_mas->mas, b_node);
3383 
3384 	return mas_split(wr_mas->mas, b_node);
3385 }
3386 
3387 /*
3388  * mas_root_expand() - Expand a root to a node
3389  * @mas: The maple state
3390  * @entry: The entry to store into the tree
3391  */
mas_root_expand(struct ma_state * mas,void * entry)3392 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3393 {
3394 	void *contents = mas_root_locked(mas);
3395 	enum maple_type type = maple_leaf_64;
3396 	struct maple_node *node;
3397 	void __rcu **slots;
3398 	unsigned long *pivots;
3399 	int slot = 0;
3400 
3401 	node = mas_pop_node(mas);
3402 	pivots = ma_pivots(node, type);
3403 	slots = ma_slots(node, type);
3404 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3405 	mas->node = mt_mk_node(node, type);
3406 	mas->status = ma_active;
3407 
3408 	if (mas->index) {
3409 		if (contents) {
3410 			rcu_assign_pointer(slots[slot], contents);
3411 			if (likely(mas->index > 1))
3412 				slot++;
3413 		}
3414 		pivots[slot++] = mas->index - 1;
3415 	}
3416 
3417 	rcu_assign_pointer(slots[slot], entry);
3418 	mas->offset = slot;
3419 	pivots[slot] = mas->last;
3420 	if (mas->last != ULONG_MAX)
3421 		pivots[++slot] = ULONG_MAX;
3422 
3423 	mas->depth = 1;
3424 	mas_set_height(mas);
3425 	ma_set_meta(node, maple_leaf_64, 0, slot);
3426 	/* swap the new root into the tree */
3427 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3428 	return slot;
3429 }
3430 
3431 /*
3432  * mas_store_root() - Storing value into root.
3433  * @mas: The maple state
3434  * @entry: The entry to store.
3435  *
3436  * There is no root node now and we are storing a value into the root - this
3437  * function either assigns the pointer or expands into a node.
3438  */
mas_store_root(struct ma_state * mas,void * entry)3439 static inline void mas_store_root(struct ma_state *mas, void *entry)
3440 {
3441 	if (!entry) {
3442 		if (!mas->index)
3443 			rcu_assign_pointer(mas->tree->ma_root, NULL);
3444 	} else if (likely((mas->last != 0) || (mas->index != 0)))
3445 		mas_root_expand(mas, entry);
3446 	else if (((unsigned long) (entry) & 3) == 2)
3447 		mas_root_expand(mas, entry);
3448 	else {
3449 		rcu_assign_pointer(mas->tree->ma_root, entry);
3450 		mas->status = ma_start;
3451 	}
3452 }
3453 
3454 /*
3455  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3456  * spans the node.
3457  * @wr_mas: The maple write state
3458  *
3459  * Spanning writes are writes that start in one node and end in another OR if
3460  * the write of a %NULL will cause the node to end with a %NULL.
3461  *
3462  * Return: True if this is a spanning write, false otherwise.
3463  */
mas_is_span_wr(struct ma_wr_state * wr_mas)3464 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3465 {
3466 	unsigned long max = wr_mas->r_max;
3467 	unsigned long last = wr_mas->mas->last;
3468 	enum maple_type type = wr_mas->type;
3469 	void *entry = wr_mas->entry;
3470 
3471 	/* Contained in this pivot, fast path */
3472 	if (last < max)
3473 		return false;
3474 
3475 	if (ma_is_leaf(type)) {
3476 		max = wr_mas->mas->max;
3477 		if (last < max)
3478 			return false;
3479 	}
3480 
3481 	if (last == max) {
3482 		/*
3483 		 * The last entry of leaf node cannot be NULL unless it is the
3484 		 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3485 		 */
3486 		if (entry || last == ULONG_MAX)
3487 			return false;
3488 	}
3489 
3490 	trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3491 	return true;
3492 }
3493 
mas_wr_walk_descend(struct ma_wr_state * wr_mas)3494 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3495 {
3496 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3497 	mas_wr_node_walk(wr_mas);
3498 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3499 }
3500 
mas_wr_walk_traverse(struct ma_wr_state * wr_mas)3501 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3502 {
3503 	wr_mas->mas->max = wr_mas->r_max;
3504 	wr_mas->mas->min = wr_mas->r_min;
3505 	wr_mas->mas->node = wr_mas->content;
3506 	wr_mas->mas->offset = 0;
3507 	wr_mas->mas->depth++;
3508 }
3509 /*
3510  * mas_wr_walk() - Walk the tree for a write.
3511  * @wr_mas: The maple write state
3512  *
3513  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3514  *
3515  * Return: True if it's contained in a node, false on spanning write.
3516  */
mas_wr_walk(struct ma_wr_state * wr_mas)3517 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3518 {
3519 	struct ma_state *mas = wr_mas->mas;
3520 
3521 	while (true) {
3522 		mas_wr_walk_descend(wr_mas);
3523 		if (unlikely(mas_is_span_wr(wr_mas)))
3524 			return false;
3525 
3526 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3527 						  mas->offset);
3528 		if (ma_is_leaf(wr_mas->type))
3529 			return true;
3530 
3531 		mas_wr_walk_traverse(wr_mas);
3532 	}
3533 
3534 	return true;
3535 }
3536 
mas_wr_walk_index(struct ma_wr_state * wr_mas)3537 static void mas_wr_walk_index(struct ma_wr_state *wr_mas)
3538 {
3539 	struct ma_state *mas = wr_mas->mas;
3540 
3541 	while (true) {
3542 		mas_wr_walk_descend(wr_mas);
3543 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3544 						  mas->offset);
3545 		if (ma_is_leaf(wr_mas->type))
3546 			return;
3547 		mas_wr_walk_traverse(wr_mas);
3548 	}
3549 }
3550 /*
3551  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3552  * @l_wr_mas: The left maple write state
3553  * @r_wr_mas: The right maple write state
3554  */
mas_extend_spanning_null(struct ma_wr_state * l_wr_mas,struct ma_wr_state * r_wr_mas)3555 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3556 					    struct ma_wr_state *r_wr_mas)
3557 {
3558 	struct ma_state *r_mas = r_wr_mas->mas;
3559 	struct ma_state *l_mas = l_wr_mas->mas;
3560 	unsigned char l_slot;
3561 
3562 	l_slot = l_mas->offset;
3563 	if (!l_wr_mas->content)
3564 		l_mas->index = l_wr_mas->r_min;
3565 
3566 	if ((l_mas->index == l_wr_mas->r_min) &&
3567 		 (l_slot &&
3568 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3569 		if (l_slot > 1)
3570 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3571 		else
3572 			l_mas->index = l_mas->min;
3573 
3574 		l_mas->offset = l_slot - 1;
3575 	}
3576 
3577 	if (!r_wr_mas->content) {
3578 		if (r_mas->last < r_wr_mas->r_max)
3579 			r_mas->last = r_wr_mas->r_max;
3580 		r_mas->offset++;
3581 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3582 	    (r_mas->last < r_mas->max) &&
3583 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3584 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3585 					     r_wr_mas->type, r_mas->offset + 1);
3586 		r_mas->offset++;
3587 	}
3588 }
3589 
mas_state_walk(struct ma_state * mas)3590 static inline void *mas_state_walk(struct ma_state *mas)
3591 {
3592 	void *entry;
3593 
3594 	entry = mas_start(mas);
3595 	if (mas_is_none(mas))
3596 		return NULL;
3597 
3598 	if (mas_is_ptr(mas))
3599 		return entry;
3600 
3601 	return mtree_range_walk(mas);
3602 }
3603 
3604 /*
3605  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3606  * to date.
3607  *
3608  * @mas: The maple state.
3609  *
3610  * Note: Leaves mas in undesirable state.
3611  * Return: The entry for @mas->index or %NULL on dead node.
3612  */
mtree_lookup_walk(struct ma_state * mas)3613 static inline void *mtree_lookup_walk(struct ma_state *mas)
3614 {
3615 	unsigned long *pivots;
3616 	unsigned char offset;
3617 	struct maple_node *node;
3618 	struct maple_enode *next;
3619 	enum maple_type type;
3620 	void __rcu **slots;
3621 	unsigned char end;
3622 
3623 	next = mas->node;
3624 	do {
3625 		node = mte_to_node(next);
3626 		type = mte_node_type(next);
3627 		pivots = ma_pivots(node, type);
3628 		end = mt_pivots[type];
3629 		offset = 0;
3630 		do {
3631 			if (pivots[offset] >= mas->index)
3632 				break;
3633 		} while (++offset < end);
3634 
3635 		slots = ma_slots(node, type);
3636 		next = mt_slot(mas->tree, slots, offset);
3637 		if (unlikely(ma_dead_node(node)))
3638 			goto dead_node;
3639 	} while (!ma_is_leaf(type));
3640 
3641 	return (void *)next;
3642 
3643 dead_node:
3644 	mas_reset(mas);
3645 	return NULL;
3646 }
3647 
3648 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3649 /*
3650  * mas_new_root() - Create a new root node that only contains the entry passed
3651  * in.
3652  * @mas: The maple state
3653  * @entry: The entry to store.
3654  *
3655  * Only valid when the index == 0 and the last == ULONG_MAX
3656  */
mas_new_root(struct ma_state * mas,void * entry)3657 static inline void mas_new_root(struct ma_state *mas, void *entry)
3658 {
3659 	struct maple_enode *root = mas_root_locked(mas);
3660 	enum maple_type type = maple_leaf_64;
3661 	struct maple_node *node;
3662 	void __rcu **slots;
3663 	unsigned long *pivots;
3664 
3665 	if (!entry && !mas->index && mas->last == ULONG_MAX) {
3666 		mas->depth = 0;
3667 		mas_set_height(mas);
3668 		rcu_assign_pointer(mas->tree->ma_root, entry);
3669 		mas->status = ma_start;
3670 		goto done;
3671 	}
3672 
3673 	node = mas_pop_node(mas);
3674 	pivots = ma_pivots(node, type);
3675 	slots = ma_slots(node, type);
3676 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3677 	mas->node = mt_mk_node(node, type);
3678 	mas->status = ma_active;
3679 	rcu_assign_pointer(slots[0], entry);
3680 	pivots[0] = mas->last;
3681 	mas->depth = 1;
3682 	mas_set_height(mas);
3683 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3684 
3685 done:
3686 	if (xa_is_node(root))
3687 		mte_destroy_walk(root, mas->tree);
3688 
3689 	return;
3690 }
3691 /*
3692  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3693  * and new nodes where necessary, then place the sub-tree in the actual tree.
3694  * Note that mas is expected to point to the node which caused the store to
3695  * span.
3696  * @wr_mas: The maple write state
3697  */
mas_wr_spanning_store(struct ma_wr_state * wr_mas)3698 static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3699 {
3700 	struct maple_subtree_state mast;
3701 	struct maple_big_node b_node;
3702 	struct ma_state *mas;
3703 	unsigned char height;
3704 
3705 	/* Left and Right side of spanning store */
3706 	MA_STATE(l_mas, NULL, 0, 0);
3707 	MA_STATE(r_mas, NULL, 0, 0);
3708 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3709 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3710 
3711 	/*
3712 	 * A store operation that spans multiple nodes is called a spanning
3713 	 * store and is handled early in the store call stack by the function
3714 	 * mas_is_span_wr().  When a spanning store is identified, the maple
3715 	 * state is duplicated.  The first maple state walks the left tree path
3716 	 * to ``index``, the duplicate walks the right tree path to ``last``.
3717 	 * The data in the two nodes are combined into a single node, two nodes,
3718 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
3719 	 * written to the last entry of a node is considered a spanning store as
3720 	 * a rebalance is required for the operation to complete and an overflow
3721 	 * of data may happen.
3722 	 */
3723 	mas = wr_mas->mas;
3724 	trace_ma_op(__func__, mas);
3725 
3726 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3727 		return mas_new_root(mas, wr_mas->entry);
3728 	/*
3729 	 * Node rebalancing may occur due to this store, so there may be three new
3730 	 * entries per level plus a new root.
3731 	 */
3732 	height = mas_mt_height(mas);
3733 
3734 	/*
3735 	 * Set up right side.  Need to get to the next offset after the spanning
3736 	 * store to ensure it's not NULL and to combine both the next node and
3737 	 * the node with the start together.
3738 	 */
3739 	r_mas = *mas;
3740 	/* Avoid overflow, walk to next slot in the tree. */
3741 	if (r_mas.last + 1)
3742 		r_mas.last++;
3743 
3744 	r_mas.index = r_mas.last;
3745 	mas_wr_walk_index(&r_wr_mas);
3746 	r_mas.last = r_mas.index = mas->last;
3747 
3748 	/* Set up left side. */
3749 	l_mas = *mas;
3750 	mas_wr_walk_index(&l_wr_mas);
3751 
3752 	if (!wr_mas->entry) {
3753 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3754 		mas->offset = l_mas.offset;
3755 		mas->index = l_mas.index;
3756 		mas->last = l_mas.last = r_mas.last;
3757 	}
3758 
3759 	/* expanding NULLs may make this cover the entire range */
3760 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
3761 		mas_set_range(mas, 0, ULONG_MAX);
3762 		return mas_new_root(mas, wr_mas->entry);
3763 	}
3764 
3765 	memset(&b_node, 0, sizeof(struct maple_big_node));
3766 	/* Copy l_mas and store the value in b_node. */
3767 	mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
3768 	/* Copy r_mas into b_node if there is anything to copy. */
3769 	if (r_mas.max > r_mas.last)
3770 		mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
3771 			   &b_node, b_node.b_end + 1);
3772 	else
3773 		b_node.b_end++;
3774 
3775 	/* Stop spanning searches by searching for just index. */
3776 	l_mas.index = l_mas.last = mas->index;
3777 
3778 	mast.bn = &b_node;
3779 	mast.orig_l = &l_mas;
3780 	mast.orig_r = &r_mas;
3781 	/* Combine l_mas and r_mas and split them up evenly again. */
3782 	return mas_spanning_rebalance(mas, &mast, height + 1);
3783 }
3784 
3785 /*
3786  * mas_wr_node_store() - Attempt to store the value in a node
3787  * @wr_mas: The maple write state
3788  *
3789  * Attempts to reuse the node, but may allocate.
3790  */
mas_wr_node_store(struct ma_wr_state * wr_mas,unsigned char new_end)3791 static inline void mas_wr_node_store(struct ma_wr_state *wr_mas,
3792 				     unsigned char new_end)
3793 {
3794 	struct ma_state *mas = wr_mas->mas;
3795 	void __rcu **dst_slots;
3796 	unsigned long *dst_pivots;
3797 	unsigned char dst_offset, offset_end = wr_mas->offset_end;
3798 	struct maple_node reuse, *newnode;
3799 	unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3800 	bool in_rcu = mt_in_rcu(mas->tree);
3801 
3802 	if (mas->last == wr_mas->end_piv)
3803 		offset_end++; /* don't copy this offset */
3804 	else if (unlikely(wr_mas->r_max == ULONG_MAX))
3805 		mas_bulk_rebalance(mas, mas->end, wr_mas->type);
3806 
3807 	/* set up node. */
3808 	if (in_rcu) {
3809 		newnode = mas_pop_node(mas);
3810 	} else {
3811 		memset(&reuse, 0, sizeof(struct maple_node));
3812 		newnode = &reuse;
3813 	}
3814 
3815 	newnode->parent = mas_mn(mas)->parent;
3816 	dst_pivots = ma_pivots(newnode, wr_mas->type);
3817 	dst_slots = ma_slots(newnode, wr_mas->type);
3818 	/* Copy from start to insert point */
3819 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3820 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3821 
3822 	/* Handle insert of new range starting after old range */
3823 	if (wr_mas->r_min < mas->index) {
3824 		rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3825 		dst_pivots[mas->offset++] = mas->index - 1;
3826 	}
3827 
3828 	/* Store the new entry and range end. */
3829 	if (mas->offset < node_pivots)
3830 		dst_pivots[mas->offset] = mas->last;
3831 	rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3832 
3833 	/*
3834 	 * this range wrote to the end of the node or it overwrote the rest of
3835 	 * the data
3836 	 */
3837 	if (offset_end > mas->end)
3838 		goto done;
3839 
3840 	dst_offset = mas->offset + 1;
3841 	/* Copy to the end of node if necessary. */
3842 	copy_size = mas->end - offset_end + 1;
3843 	memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3844 	       sizeof(void *) * copy_size);
3845 	memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3846 	       sizeof(unsigned long) * (copy_size - 1));
3847 
3848 	if (new_end < node_pivots)
3849 		dst_pivots[new_end] = mas->max;
3850 
3851 done:
3852 	mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
3853 	if (in_rcu) {
3854 		struct maple_enode *old_enode = mas->node;
3855 
3856 		mas->node = mt_mk_node(newnode, wr_mas->type);
3857 		mas_replace_node(mas, old_enode);
3858 	} else {
3859 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3860 	}
3861 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
3862 	mas_update_gap(mas);
3863 	mas->end = new_end;
3864 	return;
3865 }
3866 
3867 /*
3868  * mas_wr_slot_store: Attempt to store a value in a slot.
3869  * @wr_mas: the maple write state
3870  */
mas_wr_slot_store(struct ma_wr_state * wr_mas)3871 static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas)
3872 {
3873 	struct ma_state *mas = wr_mas->mas;
3874 	unsigned char offset = mas->offset;
3875 	void __rcu **slots = wr_mas->slots;
3876 	bool gap = false;
3877 
3878 	gap |= !mt_slot_locked(mas->tree, slots, offset);
3879 	gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
3880 
3881 	if (wr_mas->offset_end - offset == 1) {
3882 		if (mas->index == wr_mas->r_min) {
3883 			/* Overwriting the range and a part of the next one */
3884 			rcu_assign_pointer(slots[offset], wr_mas->entry);
3885 			wr_mas->pivots[offset] = mas->last;
3886 		} else {
3887 			/* Overwriting a part of the range and the next one */
3888 			rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3889 			wr_mas->pivots[offset] = mas->index - 1;
3890 			mas->offset++; /* Keep mas accurate. */
3891 		}
3892 	} else if (!mt_in_rcu(mas->tree)) {
3893 		/*
3894 		 * Expand the range, only partially overwriting the previous and
3895 		 * next ranges
3896 		 */
3897 		gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3898 		rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3899 		wr_mas->pivots[offset] = mas->index - 1;
3900 		wr_mas->pivots[offset + 1] = mas->last;
3901 		mas->offset++; /* Keep mas accurate. */
3902 	} else {
3903 		return;
3904 	}
3905 
3906 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
3907 	/*
3908 	 * Only update gap when the new entry is empty or there is an empty
3909 	 * entry in the original two ranges.
3910 	 */
3911 	if (!wr_mas->entry || gap)
3912 		mas_update_gap(mas);
3913 
3914 	return;
3915 }
3916 
mas_wr_extend_null(struct ma_wr_state * wr_mas)3917 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
3918 {
3919 	struct ma_state *mas = wr_mas->mas;
3920 
3921 	if (!wr_mas->slots[wr_mas->offset_end]) {
3922 		/* If this one is null, the next and prev are not */
3923 		mas->last = wr_mas->end_piv;
3924 	} else {
3925 		/* Check next slot(s) if we are overwriting the end */
3926 		if ((mas->last == wr_mas->end_piv) &&
3927 		    (mas->end != wr_mas->offset_end) &&
3928 		    !wr_mas->slots[wr_mas->offset_end + 1]) {
3929 			wr_mas->offset_end++;
3930 			if (wr_mas->offset_end == mas->end)
3931 				mas->last = mas->max;
3932 			else
3933 				mas->last = wr_mas->pivots[wr_mas->offset_end];
3934 			wr_mas->end_piv = mas->last;
3935 		}
3936 	}
3937 
3938 	if (!wr_mas->content) {
3939 		/* If this one is null, the next and prev are not */
3940 		mas->index = wr_mas->r_min;
3941 	} else {
3942 		/* Check prev slot if we are overwriting the start */
3943 		if (mas->index == wr_mas->r_min && mas->offset &&
3944 		    !wr_mas->slots[mas->offset - 1]) {
3945 			mas->offset--;
3946 			wr_mas->r_min = mas->index =
3947 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
3948 			wr_mas->r_max = wr_mas->pivots[mas->offset];
3949 		}
3950 	}
3951 }
3952 
mas_wr_end_piv(struct ma_wr_state * wr_mas)3953 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
3954 {
3955 	while ((wr_mas->offset_end < wr_mas->mas->end) &&
3956 	       (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
3957 		wr_mas->offset_end++;
3958 
3959 	if (wr_mas->offset_end < wr_mas->mas->end)
3960 		wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
3961 	else
3962 		wr_mas->end_piv = wr_mas->mas->max;
3963 }
3964 
mas_wr_new_end(struct ma_wr_state * wr_mas)3965 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
3966 {
3967 	struct ma_state *mas = wr_mas->mas;
3968 	unsigned char new_end = mas->end + 2;
3969 
3970 	new_end -= wr_mas->offset_end - mas->offset;
3971 	if (wr_mas->r_min == mas->index)
3972 		new_end--;
3973 
3974 	if (wr_mas->end_piv == mas->last)
3975 		new_end--;
3976 
3977 	return new_end;
3978 }
3979 
3980 /*
3981  * mas_wr_append: Attempt to append
3982  * @wr_mas: the maple write state
3983  * @new_end: The end of the node after the modification
3984  *
3985  * This is currently unsafe in rcu mode since the end of the node may be cached
3986  * by readers while the node contents may be updated which could result in
3987  * inaccurate information.
3988  */
mas_wr_append(struct ma_wr_state * wr_mas,unsigned char new_end)3989 static inline void mas_wr_append(struct ma_wr_state *wr_mas,
3990 		unsigned char new_end)
3991 {
3992 	struct ma_state *mas = wr_mas->mas;
3993 	void __rcu **slots;
3994 	unsigned char end = mas->end;
3995 
3996 	if (new_end < mt_pivots[wr_mas->type]) {
3997 		wr_mas->pivots[new_end] = wr_mas->pivots[end];
3998 		ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
3999 	}
4000 
4001 	slots = wr_mas->slots;
4002 	if (new_end == end + 1) {
4003 		if (mas->last == wr_mas->r_max) {
4004 			/* Append to end of range */
4005 			rcu_assign_pointer(slots[new_end], wr_mas->entry);
4006 			wr_mas->pivots[end] = mas->index - 1;
4007 			mas->offset = new_end;
4008 		} else {
4009 			/* Append to start of range */
4010 			rcu_assign_pointer(slots[new_end], wr_mas->content);
4011 			wr_mas->pivots[end] = mas->last;
4012 			rcu_assign_pointer(slots[end], wr_mas->entry);
4013 		}
4014 	} else {
4015 		/* Append to the range without touching any boundaries. */
4016 		rcu_assign_pointer(slots[new_end], wr_mas->content);
4017 		wr_mas->pivots[end + 1] = mas->last;
4018 		rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4019 		wr_mas->pivots[end] = mas->index - 1;
4020 		mas->offset = end + 1;
4021 	}
4022 
4023 	if (!wr_mas->content || !wr_mas->entry)
4024 		mas_update_gap(mas);
4025 
4026 	mas->end = new_end;
4027 	trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4028 	return;
4029 }
4030 
4031 /*
4032  * mas_wr_bnode() - Slow path for a modification.
4033  * @wr_mas: The write maple state
4034  *
4035  * This is where split, rebalance end up.
4036  */
mas_wr_bnode(struct ma_wr_state * wr_mas)4037 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4038 {
4039 	struct maple_big_node b_node;
4040 
4041 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4042 	memset(&b_node, 0, sizeof(struct maple_big_node));
4043 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4044 	mas_commit_b_node(wr_mas, &b_node);
4045 }
4046 
4047 /*
4048  * mas_wr_store_entry() - Internal call to store a value
4049  * @wr_mas: The maple write state
4050  */
mas_wr_store_entry(struct ma_wr_state * wr_mas)4051 static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas)
4052 {
4053 	struct ma_state *mas = wr_mas->mas;
4054 	unsigned char new_end = mas_wr_new_end(wr_mas);
4055 
4056 	switch (mas->store_type) {
4057 	case wr_invalid:
4058 		MT_BUG_ON(mas->tree, 1);
4059 		return;
4060 	case wr_new_root:
4061 		mas_new_root(mas, wr_mas->entry);
4062 		break;
4063 	case wr_store_root:
4064 		mas_store_root(mas, wr_mas->entry);
4065 		break;
4066 	case wr_exact_fit:
4067 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4068 		if (!!wr_mas->entry ^ !!wr_mas->content)
4069 			mas_update_gap(mas);
4070 		break;
4071 	case wr_append:
4072 		mas_wr_append(wr_mas, new_end);
4073 		break;
4074 	case wr_slot_store:
4075 		mas_wr_slot_store(wr_mas);
4076 		break;
4077 	case wr_node_store:
4078 		mas_wr_node_store(wr_mas, new_end);
4079 		break;
4080 	case wr_spanning_store:
4081 		mas_wr_spanning_store(wr_mas);
4082 		break;
4083 	case wr_split_store:
4084 	case wr_rebalance:
4085 		mas_wr_bnode(wr_mas);
4086 		break;
4087 	}
4088 
4089 	return;
4090 }
4091 
mas_wr_prealloc_setup(struct ma_wr_state * wr_mas)4092 static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas)
4093 {
4094 	struct ma_state *mas = wr_mas->mas;
4095 
4096 	if (!mas_is_active(mas)) {
4097 		if (mas_is_start(mas))
4098 			goto set_content;
4099 
4100 		if (unlikely(mas_is_paused(mas)))
4101 			goto reset;
4102 
4103 		if (unlikely(mas_is_none(mas)))
4104 			goto reset;
4105 
4106 		if (unlikely(mas_is_overflow(mas)))
4107 			goto reset;
4108 
4109 		if (unlikely(mas_is_underflow(mas)))
4110 			goto reset;
4111 	}
4112 
4113 	/*
4114 	 * A less strict version of mas_is_span_wr() where we allow spanning
4115 	 * writes within this node.  This is to stop partial walks in
4116 	 * mas_prealloc() from being reset.
4117 	 */
4118 	if (mas->last > mas->max)
4119 		goto reset;
4120 
4121 	if (wr_mas->entry)
4122 		goto set_content;
4123 
4124 	if (mte_is_leaf(mas->node) && mas->last == mas->max)
4125 		goto reset;
4126 
4127 	goto set_content;
4128 
4129 reset:
4130 	mas_reset(mas);
4131 set_content:
4132 	wr_mas->content = mas_start(mas);
4133 }
4134 
4135 /**
4136  * mas_prealloc_calc() - Calculate number of nodes needed for a
4137  * given store oepration
4138  * @mas: The maple state
4139  * @entry: The entry to store into the tree
4140  *
4141  * Return: Number of nodes required for preallocation.
4142  */
mas_prealloc_calc(struct ma_state * mas,void * entry)4143 static inline int mas_prealloc_calc(struct ma_state *mas, void *entry)
4144 {
4145 	int ret = mas_mt_height(mas) * 3 + 1;
4146 
4147 	switch (mas->store_type) {
4148 	case wr_invalid:
4149 		WARN_ON_ONCE(1);
4150 		break;
4151 	case wr_new_root:
4152 		ret = 1;
4153 		break;
4154 	case wr_store_root:
4155 		if (likely((mas->last != 0) || (mas->index != 0)))
4156 			ret = 1;
4157 		else if (((unsigned long) (entry) & 3) == 2)
4158 			ret = 1;
4159 		else
4160 			ret = 0;
4161 		break;
4162 	case wr_spanning_store:
4163 		ret =  mas_mt_height(mas) * 3 + 1;
4164 		break;
4165 	case wr_split_store:
4166 		ret =  mas_mt_height(mas) * 2 + 1;
4167 		break;
4168 	case wr_rebalance:
4169 		ret =  mas_mt_height(mas) * 2 - 1;
4170 		break;
4171 	case wr_node_store:
4172 		ret = mt_in_rcu(mas->tree) ? 1 : 0;
4173 		break;
4174 	case wr_append:
4175 	case wr_exact_fit:
4176 	case wr_slot_store:
4177 		ret = 0;
4178 	}
4179 
4180 	return ret;
4181 }
4182 
4183 /*
4184  * mas_wr_store_type() - Set the store type for a given
4185  * store operation.
4186  * @wr_mas: The maple write state
4187  */
mas_wr_store_type(struct ma_wr_state * wr_mas)4188 static inline void mas_wr_store_type(struct ma_wr_state *wr_mas)
4189 {
4190 	struct ma_state *mas = wr_mas->mas;
4191 	unsigned char new_end;
4192 
4193 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) {
4194 		mas->store_type = wr_store_root;
4195 		return;
4196 	}
4197 
4198 	if (unlikely(!mas_wr_walk(wr_mas))) {
4199 		mas->store_type = wr_spanning_store;
4200 		return;
4201 	}
4202 
4203 	/* At this point, we are at the leaf node that needs to be altered. */
4204 	mas_wr_end_piv(wr_mas);
4205 	if (!wr_mas->entry)
4206 		mas_wr_extend_null(wr_mas);
4207 
4208 	new_end = mas_wr_new_end(wr_mas);
4209 	if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last)) {
4210 		mas->store_type = wr_exact_fit;
4211 		return;
4212 	}
4213 
4214 	if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4215 		mas->store_type = wr_new_root;
4216 		return;
4217 	}
4218 
4219 	/* Potential spanning rebalance collapsing a node */
4220 	if (new_end < mt_min_slots[wr_mas->type]) {
4221 		if (!mte_is_root(mas->node) && !(mas->mas_flags & MA_STATE_BULK)) {
4222 			mas->store_type = wr_rebalance;
4223 			return;
4224 		}
4225 		mas->store_type = wr_node_store;
4226 		return;
4227 	}
4228 
4229 	if (new_end >= mt_slots[wr_mas->type]) {
4230 		mas->store_type = wr_split_store;
4231 		return;
4232 	}
4233 
4234 	if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end)) {
4235 		mas->store_type = wr_append;
4236 		return;
4237 	}
4238 
4239 	if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) ||
4240 		(wr_mas->offset_end - mas->offset == 1))) {
4241 		mas->store_type = wr_slot_store;
4242 		return;
4243 	}
4244 
4245 	if (mte_is_root(mas->node) || (new_end >= mt_min_slots[wr_mas->type]) ||
4246 		(mas->mas_flags & MA_STATE_BULK)) {
4247 		mas->store_type = wr_node_store;
4248 		return;
4249 	}
4250 
4251 	mas->store_type = wr_invalid;
4252 	MAS_WARN_ON(mas, 1);
4253 }
4254 
4255 /**
4256  * mas_wr_preallocate() - Preallocate enough nodes for a store operation
4257  * @wr_mas: The maple write state
4258  * @entry: The entry that will be stored
4259  *
4260  */
mas_wr_preallocate(struct ma_wr_state * wr_mas,void * entry)4261 static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry)
4262 {
4263 	struct ma_state *mas = wr_mas->mas;
4264 	int request;
4265 
4266 	mas_wr_prealloc_setup(wr_mas);
4267 	mas_wr_store_type(wr_mas);
4268 	request = mas_prealloc_calc(mas, entry);
4269 	if (!request)
4270 		return;
4271 
4272 	mas_node_count(mas, request);
4273 }
4274 
4275 /**
4276  * mas_insert() - Internal call to insert a value
4277  * @mas: The maple state
4278  * @entry: The entry to store
4279  *
4280  * Return: %NULL or the contents that already exists at the requested index
4281  * otherwise.  The maple state needs to be checked for error conditions.
4282  */
mas_insert(struct ma_state * mas,void * entry)4283 static inline void *mas_insert(struct ma_state *mas, void *entry)
4284 {
4285 	MA_WR_STATE(wr_mas, mas, entry);
4286 
4287 	/*
4288 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4289 	 * tree.  If the insert fits exactly into an existing gap with a value
4290 	 * of NULL, then the slot only needs to be written with the new value.
4291 	 * If the range being inserted is adjacent to another range, then only a
4292 	 * single pivot needs to be inserted (as well as writing the entry).  If
4293 	 * the new range is within a gap but does not touch any other ranges,
4294 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4295 	 * usual, the entry must be written.  Most operations require a new node
4296 	 * to be allocated and replace an existing node to ensure RCU safety,
4297 	 * when in RCU mode.  The exception to requiring a newly allocated node
4298 	 * is when inserting at the end of a node (appending).  When done
4299 	 * carefully, appending can reuse the node in place.
4300 	 */
4301 	wr_mas.content = mas_start(mas);
4302 	if (wr_mas.content)
4303 		goto exists;
4304 
4305 	mas_wr_preallocate(&wr_mas, entry);
4306 	if (mas_is_err(mas))
4307 		return NULL;
4308 
4309 	/* spanning writes always overwrite something */
4310 	if (mas->store_type == wr_spanning_store)
4311 		goto exists;
4312 
4313 	/* At this point, we are at the leaf node that needs to be altered. */
4314 	if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) {
4315 		wr_mas.offset_end = mas->offset;
4316 		wr_mas.end_piv = wr_mas.r_max;
4317 
4318 		if (wr_mas.content || (mas->last > wr_mas.r_max))
4319 			goto exists;
4320 	}
4321 
4322 	mas_wr_store_entry(&wr_mas);
4323 	return wr_mas.content;
4324 
4325 exists:
4326 	mas_set_err(mas, -EEXIST);
4327 	return wr_mas.content;
4328 
4329 }
4330 
4331 /**
4332  * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4333  * @mas: The maple state.
4334  * @startp: Pointer to ID.
4335  * @range_lo: Lower bound of range to search.
4336  * @range_hi: Upper bound of range to search.
4337  * @entry: The entry to store.
4338  * @next: Pointer to next ID to allocate.
4339  * @gfp: The GFP_FLAGS to use for allocations.
4340  *
4341  * Return: 0 if the allocation succeeded without wrapping, 1 if the
4342  * allocation succeeded after wrapping, or -EBUSY if there are no
4343  * free entries.
4344  */
mas_alloc_cyclic(struct ma_state * mas,unsigned long * startp,void * entry,unsigned long range_lo,unsigned long range_hi,unsigned long * next,gfp_t gfp)4345 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4346 		void *entry, unsigned long range_lo, unsigned long range_hi,
4347 		unsigned long *next, gfp_t gfp)
4348 {
4349 	unsigned long min = range_lo;
4350 	int ret = 0;
4351 
4352 	range_lo = max(min, *next);
4353 	ret = mas_empty_area(mas, range_lo, range_hi, 1);
4354 	if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4355 		mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4356 		ret = 1;
4357 	}
4358 	if (ret < 0 && range_lo > min) {
4359 		mas_reset(mas);
4360 		ret = mas_empty_area(mas, min, range_hi, 1);
4361 		if (ret == 0)
4362 			ret = 1;
4363 	}
4364 	if (ret < 0)
4365 		return ret;
4366 
4367 	do {
4368 		mas_insert(mas, entry);
4369 	} while (mas_nomem(mas, gfp));
4370 	if (mas_is_err(mas))
4371 		return xa_err(mas->node);
4372 
4373 	*startp = mas->index;
4374 	*next = *startp + 1;
4375 	if (*next == 0)
4376 		mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4377 
4378 	mas_destroy(mas);
4379 	return ret;
4380 }
4381 EXPORT_SYMBOL(mas_alloc_cyclic);
4382 
mas_rewalk(struct ma_state * mas,unsigned long index)4383 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4384 {
4385 retry:
4386 	mas_set(mas, index);
4387 	mas_state_walk(mas);
4388 	if (mas_is_start(mas))
4389 		goto retry;
4390 }
4391 
mas_rewalk_if_dead(struct ma_state * mas,struct maple_node * node,const unsigned long index)4392 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4393 		struct maple_node *node, const unsigned long index)
4394 {
4395 	if (unlikely(ma_dead_node(node))) {
4396 		mas_rewalk(mas, index);
4397 		return true;
4398 	}
4399 	return false;
4400 }
4401 
4402 /*
4403  * mas_prev_node() - Find the prev non-null entry at the same level in the
4404  * tree.  The prev value will be mas->node[mas->offset] or the status will be
4405  * ma_none.
4406  * @mas: The maple state
4407  * @min: The lower limit to search
4408  *
4409  * The prev node value will be mas->node[mas->offset] or the status will be
4410  * ma_none.
4411  * Return: 1 if the node is dead, 0 otherwise.
4412  */
mas_prev_node(struct ma_state * mas,unsigned long min)4413 static int mas_prev_node(struct ma_state *mas, unsigned long min)
4414 {
4415 	enum maple_type mt;
4416 	int offset, level;
4417 	void __rcu **slots;
4418 	struct maple_node *node;
4419 	unsigned long *pivots;
4420 	unsigned long max;
4421 
4422 	node = mas_mn(mas);
4423 	if (!mas->min)
4424 		goto no_entry;
4425 
4426 	max = mas->min - 1;
4427 	if (max < min)
4428 		goto no_entry;
4429 
4430 	level = 0;
4431 	do {
4432 		if (ma_is_root(node))
4433 			goto no_entry;
4434 
4435 		/* Walk up. */
4436 		if (unlikely(mas_ascend(mas)))
4437 			return 1;
4438 		offset = mas->offset;
4439 		level++;
4440 		node = mas_mn(mas);
4441 	} while (!offset);
4442 
4443 	offset--;
4444 	mt = mte_node_type(mas->node);
4445 	while (level > 1) {
4446 		level--;
4447 		slots = ma_slots(node, mt);
4448 		mas->node = mas_slot(mas, slots, offset);
4449 		if (unlikely(ma_dead_node(node)))
4450 			return 1;
4451 
4452 		mt = mte_node_type(mas->node);
4453 		node = mas_mn(mas);
4454 		pivots = ma_pivots(node, mt);
4455 		offset = ma_data_end(node, mt, pivots, max);
4456 		if (unlikely(ma_dead_node(node)))
4457 			return 1;
4458 	}
4459 
4460 	slots = ma_slots(node, mt);
4461 	mas->node = mas_slot(mas, slots, offset);
4462 	pivots = ma_pivots(node, mt);
4463 	if (unlikely(ma_dead_node(node)))
4464 		return 1;
4465 
4466 	if (likely(offset))
4467 		mas->min = pivots[offset - 1] + 1;
4468 	mas->max = max;
4469 	mas->offset = mas_data_end(mas);
4470 	if (unlikely(mte_dead_node(mas->node)))
4471 		return 1;
4472 
4473 	mas->end = mas->offset;
4474 	return 0;
4475 
4476 no_entry:
4477 	if (unlikely(ma_dead_node(node)))
4478 		return 1;
4479 
4480 	mas->status = ma_underflow;
4481 	return 0;
4482 }
4483 
4484 /*
4485  * mas_prev_slot() - Get the entry in the previous slot
4486  *
4487  * @mas: The maple state
4488  * @min: The minimum starting range
4489  * @empty: Can be empty
4490  *
4491  * Return: The entry in the previous slot which is possibly NULL
4492  */
mas_prev_slot(struct ma_state * mas,unsigned long min,bool empty)4493 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4494 {
4495 	void *entry;
4496 	void __rcu **slots;
4497 	unsigned long pivot;
4498 	enum maple_type type;
4499 	unsigned long *pivots;
4500 	struct maple_node *node;
4501 	unsigned long save_point = mas->index;
4502 
4503 retry:
4504 	node = mas_mn(mas);
4505 	type = mte_node_type(mas->node);
4506 	pivots = ma_pivots(node, type);
4507 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4508 		goto retry;
4509 
4510 	if (mas->min <= min) {
4511 		pivot = mas_safe_min(mas, pivots, mas->offset);
4512 
4513 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4514 			goto retry;
4515 
4516 		if (pivot <= min)
4517 			goto underflow;
4518 	}
4519 
4520 again:
4521 	if (likely(mas->offset)) {
4522 		mas->offset--;
4523 		mas->last = mas->index - 1;
4524 		mas->index = mas_safe_min(mas, pivots, mas->offset);
4525 	} else  {
4526 		if (mas->index <= min)
4527 			goto underflow;
4528 
4529 		if (mas_prev_node(mas, min)) {
4530 			mas_rewalk(mas, save_point);
4531 			goto retry;
4532 		}
4533 
4534 		if (WARN_ON_ONCE(mas_is_underflow(mas)))
4535 			return NULL;
4536 
4537 		mas->last = mas->max;
4538 		node = mas_mn(mas);
4539 		type = mte_node_type(mas->node);
4540 		pivots = ma_pivots(node, type);
4541 		mas->index = pivots[mas->offset - 1] + 1;
4542 	}
4543 
4544 	slots = ma_slots(node, type);
4545 	entry = mas_slot(mas, slots, mas->offset);
4546 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4547 		goto retry;
4548 
4549 
4550 	if (likely(entry))
4551 		return entry;
4552 
4553 	if (!empty) {
4554 		if (mas->index <= min) {
4555 			mas->status = ma_underflow;
4556 			return NULL;
4557 		}
4558 
4559 		goto again;
4560 	}
4561 
4562 	return entry;
4563 
4564 underflow:
4565 	mas->status = ma_underflow;
4566 	return NULL;
4567 }
4568 
4569 /*
4570  * mas_next_node() - Get the next node at the same level in the tree.
4571  * @mas: The maple state
4572  * @node: The maple node
4573  * @max: The maximum pivot value to check.
4574  *
4575  * The next value will be mas->node[mas->offset] or the status will have
4576  * overflowed.
4577  * Return: 1 on dead node, 0 otherwise.
4578  */
mas_next_node(struct ma_state * mas,struct maple_node * node,unsigned long max)4579 static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4580 		unsigned long max)
4581 {
4582 	unsigned long min;
4583 	unsigned long *pivots;
4584 	struct maple_enode *enode;
4585 	struct maple_node *tmp;
4586 	int level = 0;
4587 	unsigned char node_end;
4588 	enum maple_type mt;
4589 	void __rcu **slots;
4590 
4591 	if (mas->max >= max)
4592 		goto overflow;
4593 
4594 	min = mas->max + 1;
4595 	level = 0;
4596 	do {
4597 		if (ma_is_root(node))
4598 			goto overflow;
4599 
4600 		/* Walk up. */
4601 		if (unlikely(mas_ascend(mas)))
4602 			return 1;
4603 
4604 		level++;
4605 		node = mas_mn(mas);
4606 		mt = mte_node_type(mas->node);
4607 		pivots = ma_pivots(node, mt);
4608 		node_end = ma_data_end(node, mt, pivots, mas->max);
4609 		if (unlikely(ma_dead_node(node)))
4610 			return 1;
4611 
4612 	} while (unlikely(mas->offset == node_end));
4613 
4614 	slots = ma_slots(node, mt);
4615 	mas->offset++;
4616 	enode = mas_slot(mas, slots, mas->offset);
4617 	if (unlikely(ma_dead_node(node)))
4618 		return 1;
4619 
4620 	if (level > 1)
4621 		mas->offset = 0;
4622 
4623 	while (unlikely(level > 1)) {
4624 		level--;
4625 		mas->node = enode;
4626 		node = mas_mn(mas);
4627 		mt = mte_node_type(mas->node);
4628 		slots = ma_slots(node, mt);
4629 		enode = mas_slot(mas, slots, 0);
4630 		if (unlikely(ma_dead_node(node)))
4631 			return 1;
4632 	}
4633 
4634 	if (!mas->offset)
4635 		pivots = ma_pivots(node, mt);
4636 
4637 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4638 	tmp = mte_to_node(enode);
4639 	mt = mte_node_type(enode);
4640 	pivots = ma_pivots(tmp, mt);
4641 	mas->end = ma_data_end(tmp, mt, pivots, mas->max);
4642 	if (unlikely(ma_dead_node(node)))
4643 		return 1;
4644 
4645 	mas->node = enode;
4646 	mas->min = min;
4647 	return 0;
4648 
4649 overflow:
4650 	if (unlikely(ma_dead_node(node)))
4651 		return 1;
4652 
4653 	mas->status = ma_overflow;
4654 	return 0;
4655 }
4656 
4657 /*
4658  * mas_next_slot() - Get the entry in the next slot
4659  *
4660  * @mas: The maple state
4661  * @max: The maximum starting range
4662  * @empty: Can be empty
4663  *
4664  * Return: The entry in the next slot which is possibly NULL
4665  */
mas_next_slot(struct ma_state * mas,unsigned long max,bool empty)4666 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4667 {
4668 	void __rcu **slots;
4669 	unsigned long *pivots;
4670 	unsigned long pivot;
4671 	enum maple_type type;
4672 	struct maple_node *node;
4673 	unsigned long save_point = mas->last;
4674 	void *entry;
4675 
4676 retry:
4677 	node = mas_mn(mas);
4678 	type = mte_node_type(mas->node);
4679 	pivots = ma_pivots(node, type);
4680 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4681 		goto retry;
4682 
4683 	if (mas->max >= max) {
4684 		if (likely(mas->offset < mas->end))
4685 			pivot = pivots[mas->offset];
4686 		else
4687 			pivot = mas->max;
4688 
4689 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4690 			goto retry;
4691 
4692 		if (pivot >= max) { /* Was at the limit, next will extend beyond */
4693 			mas->status = ma_overflow;
4694 			return NULL;
4695 		}
4696 	}
4697 
4698 	if (likely(mas->offset < mas->end)) {
4699 		mas->index = pivots[mas->offset] + 1;
4700 again:
4701 		mas->offset++;
4702 		if (likely(mas->offset < mas->end))
4703 			mas->last = pivots[mas->offset];
4704 		else
4705 			mas->last = mas->max;
4706 	} else  {
4707 		if (mas->last >= max) {
4708 			mas->status = ma_overflow;
4709 			return NULL;
4710 		}
4711 
4712 		if (mas_next_node(mas, node, max)) {
4713 			mas_rewalk(mas, save_point);
4714 			goto retry;
4715 		}
4716 
4717 		if (WARN_ON_ONCE(mas_is_overflow(mas)))
4718 			return NULL;
4719 
4720 		mas->offset = 0;
4721 		mas->index = mas->min;
4722 		node = mas_mn(mas);
4723 		type = mte_node_type(mas->node);
4724 		pivots = ma_pivots(node, type);
4725 		mas->last = pivots[0];
4726 	}
4727 
4728 	slots = ma_slots(node, type);
4729 	entry = mt_slot(mas->tree, slots, mas->offset);
4730 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4731 		goto retry;
4732 
4733 	if (entry)
4734 		return entry;
4735 
4736 
4737 	if (!empty) {
4738 		if (mas->last >= max) {
4739 			mas->status = ma_overflow;
4740 			return NULL;
4741 		}
4742 
4743 		mas->index = mas->last + 1;
4744 		goto again;
4745 	}
4746 
4747 	return entry;
4748 }
4749 
4750 /*
4751  * mas_next_entry() - Internal function to get the next entry.
4752  * @mas: The maple state
4753  * @limit: The maximum range start.
4754  *
4755  * Set the @mas->node to the next entry and the range_start to
4756  * the beginning value for the entry.  Does not check beyond @limit.
4757  * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4758  * @mas->last on overflow.
4759  * Restarts on dead nodes.
4760  *
4761  * Return: the next entry or %NULL.
4762  */
mas_next_entry(struct ma_state * mas,unsigned long limit)4763 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4764 {
4765 	if (mas->last >= limit) {
4766 		mas->status = ma_overflow;
4767 		return NULL;
4768 	}
4769 
4770 	return mas_next_slot(mas, limit, false);
4771 }
4772 
4773 /*
4774  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4775  * highest gap address of a given size in a given node and descend.
4776  * @mas: The maple state
4777  * @size: The needed size.
4778  *
4779  * Return: True if found in a leaf, false otherwise.
4780  *
4781  */
mas_rev_awalk(struct ma_state * mas,unsigned long size,unsigned long * gap_min,unsigned long * gap_max)4782 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4783 		unsigned long *gap_min, unsigned long *gap_max)
4784 {
4785 	enum maple_type type = mte_node_type(mas->node);
4786 	struct maple_node *node = mas_mn(mas);
4787 	unsigned long *pivots, *gaps;
4788 	void __rcu **slots;
4789 	unsigned long gap = 0;
4790 	unsigned long max, min;
4791 	unsigned char offset;
4792 
4793 	if (unlikely(mas_is_err(mas)))
4794 		return true;
4795 
4796 	if (ma_is_dense(type)) {
4797 		/* dense nodes. */
4798 		mas->offset = (unsigned char)(mas->index - mas->min);
4799 		return true;
4800 	}
4801 
4802 	pivots = ma_pivots(node, type);
4803 	slots = ma_slots(node, type);
4804 	gaps = ma_gaps(node, type);
4805 	offset = mas->offset;
4806 	min = mas_safe_min(mas, pivots, offset);
4807 	/* Skip out of bounds. */
4808 	while (mas->last < min)
4809 		min = mas_safe_min(mas, pivots, --offset);
4810 
4811 	max = mas_safe_pivot(mas, pivots, offset, type);
4812 	while (mas->index <= max) {
4813 		gap = 0;
4814 		if (gaps)
4815 			gap = gaps[offset];
4816 		else if (!mas_slot(mas, slots, offset))
4817 			gap = max - min + 1;
4818 
4819 		if (gap) {
4820 			if ((size <= gap) && (size <= mas->last - min + 1))
4821 				break;
4822 
4823 			if (!gaps) {
4824 				/* Skip the next slot, it cannot be a gap. */
4825 				if (offset < 2)
4826 					goto ascend;
4827 
4828 				offset -= 2;
4829 				max = pivots[offset];
4830 				min = mas_safe_min(mas, pivots, offset);
4831 				continue;
4832 			}
4833 		}
4834 
4835 		if (!offset)
4836 			goto ascend;
4837 
4838 		offset--;
4839 		max = min - 1;
4840 		min = mas_safe_min(mas, pivots, offset);
4841 	}
4842 
4843 	if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4844 		goto no_space;
4845 
4846 	if (unlikely(ma_is_leaf(type))) {
4847 		mas->offset = offset;
4848 		*gap_min = min;
4849 		*gap_max = min + gap - 1;
4850 		return true;
4851 	}
4852 
4853 	/* descend, only happens under lock. */
4854 	mas->node = mas_slot(mas, slots, offset);
4855 	mas->min = min;
4856 	mas->max = max;
4857 	mas->offset = mas_data_end(mas);
4858 	return false;
4859 
4860 ascend:
4861 	if (!mte_is_root(mas->node))
4862 		return false;
4863 
4864 no_space:
4865 	mas_set_err(mas, -EBUSY);
4866 	return false;
4867 }
4868 
mas_anode_descend(struct ma_state * mas,unsigned long size)4869 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4870 {
4871 	enum maple_type type = mte_node_type(mas->node);
4872 	unsigned long pivot, min, gap = 0;
4873 	unsigned char offset, data_end;
4874 	unsigned long *gaps, *pivots;
4875 	void __rcu **slots;
4876 	struct maple_node *node;
4877 	bool found = false;
4878 
4879 	if (ma_is_dense(type)) {
4880 		mas->offset = (unsigned char)(mas->index - mas->min);
4881 		return true;
4882 	}
4883 
4884 	node = mas_mn(mas);
4885 	pivots = ma_pivots(node, type);
4886 	slots = ma_slots(node, type);
4887 	gaps = ma_gaps(node, type);
4888 	offset = mas->offset;
4889 	min = mas_safe_min(mas, pivots, offset);
4890 	data_end = ma_data_end(node, type, pivots, mas->max);
4891 	for (; offset <= data_end; offset++) {
4892 		pivot = mas_safe_pivot(mas, pivots, offset, type);
4893 
4894 		/* Not within lower bounds */
4895 		if (mas->index > pivot)
4896 			goto next_slot;
4897 
4898 		if (gaps)
4899 			gap = gaps[offset];
4900 		else if (!mas_slot(mas, slots, offset))
4901 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4902 		else
4903 			goto next_slot;
4904 
4905 		if (gap >= size) {
4906 			if (ma_is_leaf(type)) {
4907 				found = true;
4908 				goto done;
4909 			}
4910 			if (mas->index <= pivot) {
4911 				mas->node = mas_slot(mas, slots, offset);
4912 				mas->min = min;
4913 				mas->max = pivot;
4914 				offset = 0;
4915 				break;
4916 			}
4917 		}
4918 next_slot:
4919 		min = pivot + 1;
4920 		if (mas->last <= pivot) {
4921 			mas_set_err(mas, -EBUSY);
4922 			return true;
4923 		}
4924 	}
4925 
4926 	if (mte_is_root(mas->node))
4927 		found = true;
4928 done:
4929 	mas->offset = offset;
4930 	return found;
4931 }
4932 
4933 /**
4934  * mas_walk() - Search for @mas->index in the tree.
4935  * @mas: The maple state.
4936  *
4937  * mas->index and mas->last will be set to the range if there is a value.  If
4938  * mas->status is ma_none, reset to ma_start
4939  *
4940  * Return: the entry at the location or %NULL.
4941  */
mas_walk(struct ma_state * mas)4942 void *mas_walk(struct ma_state *mas)
4943 {
4944 	void *entry;
4945 
4946 	if (!mas_is_active(mas) || !mas_is_start(mas))
4947 		mas->status = ma_start;
4948 retry:
4949 	entry = mas_state_walk(mas);
4950 	if (mas_is_start(mas)) {
4951 		goto retry;
4952 	} else if (mas_is_none(mas)) {
4953 		mas->index = 0;
4954 		mas->last = ULONG_MAX;
4955 	} else if (mas_is_ptr(mas)) {
4956 		if (!mas->index) {
4957 			mas->last = 0;
4958 			return entry;
4959 		}
4960 
4961 		mas->index = 1;
4962 		mas->last = ULONG_MAX;
4963 		mas->status = ma_none;
4964 		return NULL;
4965 	}
4966 
4967 	return entry;
4968 }
4969 EXPORT_SYMBOL_GPL(mas_walk);
4970 
mas_rewind_node(struct ma_state * mas)4971 static inline bool mas_rewind_node(struct ma_state *mas)
4972 {
4973 	unsigned char slot;
4974 
4975 	do {
4976 		if (mte_is_root(mas->node)) {
4977 			slot = mas->offset;
4978 			if (!slot)
4979 				return false;
4980 		} else {
4981 			mas_ascend(mas);
4982 			slot = mas->offset;
4983 		}
4984 	} while (!slot);
4985 
4986 	mas->offset = --slot;
4987 	return true;
4988 }
4989 
4990 /*
4991  * mas_skip_node() - Internal function.  Skip over a node.
4992  * @mas: The maple state.
4993  *
4994  * Return: true if there is another node, false otherwise.
4995  */
mas_skip_node(struct ma_state * mas)4996 static inline bool mas_skip_node(struct ma_state *mas)
4997 {
4998 	if (mas_is_err(mas))
4999 		return false;
5000 
5001 	do {
5002 		if (mte_is_root(mas->node)) {
5003 			if (mas->offset >= mas_data_end(mas)) {
5004 				mas_set_err(mas, -EBUSY);
5005 				return false;
5006 			}
5007 		} else {
5008 			mas_ascend(mas);
5009 		}
5010 	} while (mas->offset >= mas_data_end(mas));
5011 
5012 	mas->offset++;
5013 	return true;
5014 }
5015 
5016 /*
5017  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
5018  * @size
5019  * @mas: The maple state
5020  * @size: The size of the gap required
5021  *
5022  * Search between @mas->index and @mas->last for a gap of @size.
5023  */
mas_awalk(struct ma_state * mas,unsigned long size)5024 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5025 {
5026 	struct maple_enode *last = NULL;
5027 
5028 	/*
5029 	 * There are 4 options:
5030 	 * go to child (descend)
5031 	 * go back to parent (ascend)
5032 	 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5033 	 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5034 	 */
5035 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5036 		if (last == mas->node)
5037 			mas_skip_node(mas);
5038 		else
5039 			last = mas->node;
5040 	}
5041 }
5042 
5043 /*
5044  * mas_sparse_area() - Internal function.  Return upper or lower limit when
5045  * searching for a gap in an empty tree.
5046  * @mas: The maple state
5047  * @min: the minimum range
5048  * @max: The maximum range
5049  * @size: The size of the gap
5050  * @fwd: Searching forward or back
5051  */
mas_sparse_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size,bool fwd)5052 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5053 				unsigned long max, unsigned long size, bool fwd)
5054 {
5055 	if (!unlikely(mas_is_none(mas)) && min == 0) {
5056 		min++;
5057 		/*
5058 		 * At this time, min is increased, we need to recheck whether
5059 		 * the size is satisfied.
5060 		 */
5061 		if (min > max || max - min + 1 < size)
5062 			return -EBUSY;
5063 	}
5064 	/* mas_is_ptr */
5065 
5066 	if (fwd) {
5067 		mas->index = min;
5068 		mas->last = min + size - 1;
5069 	} else {
5070 		mas->last = max;
5071 		mas->index = max - size + 1;
5072 	}
5073 	return 0;
5074 }
5075 
5076 /*
5077  * mas_empty_area() - Get the lowest address within the range that is
5078  * sufficient for the size requested.
5079  * @mas: The maple state
5080  * @min: The lowest value of the range
5081  * @max: The highest value of the range
5082  * @size: The size needed
5083  */
mas_empty_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)5084 int mas_empty_area(struct ma_state *mas, unsigned long min,
5085 		unsigned long max, unsigned long size)
5086 {
5087 	unsigned char offset;
5088 	unsigned long *pivots;
5089 	enum maple_type mt;
5090 	struct maple_node *node;
5091 
5092 	if (min > max)
5093 		return -EINVAL;
5094 
5095 	if (size == 0 || max - min < size - 1)
5096 		return -EINVAL;
5097 
5098 	if (mas_is_start(mas))
5099 		mas_start(mas);
5100 	else if (mas->offset >= 2)
5101 		mas->offset -= 2;
5102 	else if (!mas_skip_node(mas))
5103 		return -EBUSY;
5104 
5105 	/* Empty set */
5106 	if (mas_is_none(mas) || mas_is_ptr(mas))
5107 		return mas_sparse_area(mas, min, max, size, true);
5108 
5109 	/* The start of the window can only be within these values */
5110 	mas->index = min;
5111 	mas->last = max;
5112 	mas_awalk(mas, size);
5113 
5114 	if (unlikely(mas_is_err(mas)))
5115 		return xa_err(mas->node);
5116 
5117 	offset = mas->offset;
5118 	if (unlikely(offset == MAPLE_NODE_SLOTS))
5119 		return -EBUSY;
5120 
5121 	node = mas_mn(mas);
5122 	mt = mte_node_type(mas->node);
5123 	pivots = ma_pivots(node, mt);
5124 	min = mas_safe_min(mas, pivots, offset);
5125 	if (mas->index < min)
5126 		mas->index = min;
5127 	mas->last = mas->index + size - 1;
5128 	mas->end = ma_data_end(node, mt, pivots, mas->max);
5129 	return 0;
5130 }
5131 EXPORT_SYMBOL_GPL(mas_empty_area);
5132 
5133 /*
5134  * mas_empty_area_rev() - Get the highest address within the range that is
5135  * sufficient for the size requested.
5136  * @mas: The maple state
5137  * @min: The lowest value of the range
5138  * @max: The highest value of the range
5139  * @size: The size needed
5140  */
mas_empty_area_rev(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)5141 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5142 		unsigned long max, unsigned long size)
5143 {
5144 	struct maple_enode *last = mas->node;
5145 
5146 	if (min > max)
5147 		return -EINVAL;
5148 
5149 	if (size == 0 || max - min < size - 1)
5150 		return -EINVAL;
5151 
5152 	if (mas_is_start(mas))
5153 		mas_start(mas);
5154 	else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
5155 		return -EBUSY;
5156 
5157 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5158 		return mas_sparse_area(mas, min, max, size, false);
5159 	else if (mas->offset >= 2)
5160 		mas->offset -= 2;
5161 	else
5162 		mas->offset = mas_data_end(mas);
5163 
5164 
5165 	/* The start of the window can only be within these values. */
5166 	mas->index = min;
5167 	mas->last = max;
5168 
5169 	while (!mas_rev_awalk(mas, size, &min, &max)) {
5170 		if (last == mas->node) {
5171 			if (!mas_rewind_node(mas))
5172 				return -EBUSY;
5173 		} else {
5174 			last = mas->node;
5175 		}
5176 	}
5177 
5178 	if (mas_is_err(mas))
5179 		return xa_err(mas->node);
5180 
5181 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5182 		return -EBUSY;
5183 
5184 	/* Trim the upper limit to the max. */
5185 	if (max < mas->last)
5186 		mas->last = max;
5187 
5188 	mas->index = mas->last - size + 1;
5189 	mas->end = mas_data_end(mas);
5190 	return 0;
5191 }
5192 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5193 
5194 /*
5195  * mte_dead_leaves() - Mark all leaves of a node as dead.
5196  * @enode: the encoded node
5197  * @mt: the maple tree
5198  * @slots: Pointer to the slot array
5199  *
5200  * Must hold the write lock.
5201  *
5202  * Return: The number of leaves marked as dead.
5203  */
5204 static inline
mte_dead_leaves(struct maple_enode * enode,struct maple_tree * mt,void __rcu ** slots)5205 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5206 			      void __rcu **slots)
5207 {
5208 	struct maple_node *node;
5209 	enum maple_type type;
5210 	void *entry;
5211 	int offset;
5212 
5213 	for (offset = 0; offset < mt_slot_count(enode); offset++) {
5214 		entry = mt_slot(mt, slots, offset);
5215 		type = mte_node_type(entry);
5216 		node = mte_to_node(entry);
5217 		/* Use both node and type to catch LE & BE metadata */
5218 		if (!node || !type)
5219 			break;
5220 
5221 		mte_set_node_dead(entry);
5222 		node->type = type;
5223 		rcu_assign_pointer(slots[offset], node);
5224 	}
5225 
5226 	return offset;
5227 }
5228 
5229 /**
5230  * mte_dead_walk() - Walk down a dead tree to just before the leaves
5231  * @enode: The maple encoded node
5232  * @offset: The starting offset
5233  *
5234  * Note: This can only be used from the RCU callback context.
5235  */
mte_dead_walk(struct maple_enode ** enode,unsigned char offset)5236 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5237 {
5238 	struct maple_node *node, *next;
5239 	void __rcu **slots = NULL;
5240 
5241 	next = mte_to_node(*enode);
5242 	do {
5243 		*enode = ma_enode_ptr(next);
5244 		node = mte_to_node(*enode);
5245 		slots = ma_slots(node, node->type);
5246 		next = rcu_dereference_protected(slots[offset],
5247 					lock_is_held(&rcu_callback_map));
5248 		offset = 0;
5249 	} while (!ma_is_leaf(next->type));
5250 
5251 	return slots;
5252 }
5253 
5254 /**
5255  * mt_free_walk() - Walk & free a tree in the RCU callback context
5256  * @head: The RCU head that's within the node.
5257  *
5258  * Note: This can only be used from the RCU callback context.
5259  */
mt_free_walk(struct rcu_head * head)5260 static void mt_free_walk(struct rcu_head *head)
5261 {
5262 	void __rcu **slots;
5263 	struct maple_node *node, *start;
5264 	struct maple_enode *enode;
5265 	unsigned char offset;
5266 	enum maple_type type;
5267 
5268 	node = container_of(head, struct maple_node, rcu);
5269 
5270 	if (ma_is_leaf(node->type))
5271 		goto free_leaf;
5272 
5273 	start = node;
5274 	enode = mt_mk_node(node, node->type);
5275 	slots = mte_dead_walk(&enode, 0);
5276 	node = mte_to_node(enode);
5277 	do {
5278 		mt_free_bulk(node->slot_len, slots);
5279 		offset = node->parent_slot + 1;
5280 		enode = node->piv_parent;
5281 		if (mte_to_node(enode) == node)
5282 			goto free_leaf;
5283 
5284 		type = mte_node_type(enode);
5285 		slots = ma_slots(mte_to_node(enode), type);
5286 		if ((offset < mt_slots[type]) &&
5287 		    rcu_dereference_protected(slots[offset],
5288 					      lock_is_held(&rcu_callback_map)))
5289 			slots = mte_dead_walk(&enode, offset);
5290 		node = mte_to_node(enode);
5291 	} while ((node != start) || (node->slot_len < offset));
5292 
5293 	slots = ma_slots(node, node->type);
5294 	mt_free_bulk(node->slot_len, slots);
5295 
5296 free_leaf:
5297 	mt_free_rcu(&node->rcu);
5298 }
5299 
mte_destroy_descend(struct maple_enode ** enode,struct maple_tree * mt,struct maple_enode * prev,unsigned char offset)5300 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5301 	struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5302 {
5303 	struct maple_node *node;
5304 	struct maple_enode *next = *enode;
5305 	void __rcu **slots = NULL;
5306 	enum maple_type type;
5307 	unsigned char next_offset = 0;
5308 
5309 	do {
5310 		*enode = next;
5311 		node = mte_to_node(*enode);
5312 		type = mte_node_type(*enode);
5313 		slots = ma_slots(node, type);
5314 		next = mt_slot_locked(mt, slots, next_offset);
5315 		if ((mte_dead_node(next)))
5316 			next = mt_slot_locked(mt, slots, ++next_offset);
5317 
5318 		mte_set_node_dead(*enode);
5319 		node->type = type;
5320 		node->piv_parent = prev;
5321 		node->parent_slot = offset;
5322 		offset = next_offset;
5323 		next_offset = 0;
5324 		prev = *enode;
5325 	} while (!mte_is_leaf(next));
5326 
5327 	return slots;
5328 }
5329 
mt_destroy_walk(struct maple_enode * enode,struct maple_tree * mt,bool free)5330 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5331 			    bool free)
5332 {
5333 	void __rcu **slots;
5334 	struct maple_node *node = mte_to_node(enode);
5335 	struct maple_enode *start;
5336 
5337 	if (mte_is_leaf(enode)) {
5338 		mte_set_node_dead(enode);
5339 		node->type = mte_node_type(enode);
5340 		goto free_leaf;
5341 	}
5342 
5343 	start = enode;
5344 	slots = mte_destroy_descend(&enode, mt, start, 0);
5345 	node = mte_to_node(enode); // Updated in the above call.
5346 	do {
5347 		enum maple_type type;
5348 		unsigned char offset;
5349 		struct maple_enode *parent, *tmp;
5350 
5351 		node->slot_len = mte_dead_leaves(enode, mt, slots);
5352 		if (free)
5353 			mt_free_bulk(node->slot_len, slots);
5354 		offset = node->parent_slot + 1;
5355 		enode = node->piv_parent;
5356 		if (mte_to_node(enode) == node)
5357 			goto free_leaf;
5358 
5359 		type = mte_node_type(enode);
5360 		slots = ma_slots(mte_to_node(enode), type);
5361 		if (offset >= mt_slots[type])
5362 			goto next;
5363 
5364 		tmp = mt_slot_locked(mt, slots, offset);
5365 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5366 			parent = enode;
5367 			enode = tmp;
5368 			slots = mte_destroy_descend(&enode, mt, parent, offset);
5369 		}
5370 next:
5371 		node = mte_to_node(enode);
5372 	} while (start != enode);
5373 
5374 	node = mte_to_node(enode);
5375 	node->slot_len = mte_dead_leaves(enode, mt, slots);
5376 	if (free)
5377 		mt_free_bulk(node->slot_len, slots);
5378 
5379 free_leaf:
5380 	if (free)
5381 		mt_free_rcu(&node->rcu);
5382 	else
5383 		mt_clear_meta(mt, node, node->type);
5384 }
5385 
5386 /*
5387  * mte_destroy_walk() - Free a tree or sub-tree.
5388  * @enode: the encoded maple node (maple_enode) to start
5389  * @mt: the tree to free - needed for node types.
5390  *
5391  * Must hold the write lock.
5392  */
mte_destroy_walk(struct maple_enode * enode,struct maple_tree * mt)5393 static inline void mte_destroy_walk(struct maple_enode *enode,
5394 				    struct maple_tree *mt)
5395 {
5396 	struct maple_node *node = mte_to_node(enode);
5397 
5398 	if (mt_in_rcu(mt)) {
5399 		mt_destroy_walk(enode, mt, false);
5400 		call_rcu(&node->rcu, mt_free_walk);
5401 	} else {
5402 		mt_destroy_walk(enode, mt, true);
5403 	}
5404 }
5405 /* Interface */
5406 
5407 /**
5408  * mas_store() - Store an @entry.
5409  * @mas: The maple state.
5410  * @entry: The entry to store.
5411  *
5412  * The @mas->index and @mas->last is used to set the range for the @entry.
5413  *
5414  * Return: the first entry between mas->index and mas->last or %NULL.
5415  */
mas_store(struct ma_state * mas,void * entry)5416 void *mas_store(struct ma_state *mas, void *entry)
5417 {
5418 	int request;
5419 	MA_WR_STATE(wr_mas, mas, entry);
5420 
5421 	trace_ma_write(__func__, mas, 0, entry);
5422 #ifdef CONFIG_DEBUG_MAPLE_TREE
5423 	if (MAS_WARN_ON(mas, mas->index > mas->last))
5424 		pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
5425 
5426 	if (mas->index > mas->last) {
5427 		mas_set_err(mas, -EINVAL);
5428 		return NULL;
5429 	}
5430 
5431 #endif
5432 
5433 	/*
5434 	 * Storing is the same operation as insert with the added caveat that it
5435 	 * can overwrite entries.  Although this seems simple enough, one may
5436 	 * want to examine what happens if a single store operation was to
5437 	 * overwrite multiple entries within a self-balancing B-Tree.
5438 	 */
5439 	mas_wr_prealloc_setup(&wr_mas);
5440 	mas_wr_store_type(&wr_mas);
5441 	if (mas->mas_flags & MA_STATE_PREALLOC) {
5442 		mas_wr_store_entry(&wr_mas);
5443 		MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5444 		return wr_mas.content;
5445 	}
5446 
5447 	request = mas_prealloc_calc(mas, entry);
5448 	if (!request)
5449 		goto store;
5450 
5451 	mas_node_count(mas, request);
5452 	if (mas_is_err(mas))
5453 		return NULL;
5454 
5455 store:
5456 	mas_wr_store_entry(&wr_mas);
5457 	mas_destroy(mas);
5458 	return wr_mas.content;
5459 }
5460 EXPORT_SYMBOL_GPL(mas_store);
5461 
5462 /**
5463  * mas_store_gfp() - Store a value into the tree.
5464  * @mas: The maple state
5465  * @entry: The entry to store
5466  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5467  *
5468  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5469  * be allocated.
5470  */
mas_store_gfp(struct ma_state * mas,void * entry,gfp_t gfp)5471 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5472 {
5473 	unsigned long index = mas->index;
5474 	unsigned long last = mas->last;
5475 	MA_WR_STATE(wr_mas, mas, entry);
5476 	int ret = 0;
5477 
5478 retry:
5479 	mas_wr_preallocate(&wr_mas, entry);
5480 	if (unlikely(mas_nomem(mas, gfp))) {
5481 		if (!entry)
5482 			__mas_set_range(mas, index, last);
5483 		goto retry;
5484 	}
5485 
5486 	if (mas_is_err(mas)) {
5487 		ret = xa_err(mas->node);
5488 		goto out;
5489 	}
5490 
5491 	mas_wr_store_entry(&wr_mas);
5492 out:
5493 	mas_destroy(mas);
5494 	return ret;
5495 }
5496 EXPORT_SYMBOL_GPL(mas_store_gfp);
5497 
5498 /**
5499  * mas_store_prealloc() - Store a value into the tree using memory
5500  * preallocated in the maple state.
5501  * @mas: The maple state
5502  * @entry: The entry to store.
5503  */
mas_store_prealloc(struct ma_state * mas,void * entry)5504 void mas_store_prealloc(struct ma_state *mas, void *entry)
5505 {
5506 	MA_WR_STATE(wr_mas, mas, entry);
5507 
5508 	if (mas->store_type == wr_store_root) {
5509 		mas_wr_prealloc_setup(&wr_mas);
5510 		goto store;
5511 	}
5512 
5513 	mas_wr_walk_descend(&wr_mas);
5514 	if (mas->store_type != wr_spanning_store) {
5515 		/* set wr_mas->content to current slot */
5516 		wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset);
5517 		mas_wr_end_piv(&wr_mas);
5518 	}
5519 
5520 store:
5521 	trace_ma_write(__func__, mas, 0, entry);
5522 	mas_wr_store_entry(&wr_mas);
5523 	MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5524 	mas_destroy(mas);
5525 }
5526 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5527 
5528 /**
5529  * mas_preallocate() - Preallocate enough nodes for a store operation
5530  * @mas: The maple state
5531  * @entry: The entry that will be stored
5532  * @gfp: The GFP_FLAGS to use for allocations.
5533  *
5534  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5535  */
mas_preallocate(struct ma_state * mas,void * entry,gfp_t gfp)5536 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5537 {
5538 	MA_WR_STATE(wr_mas, mas, entry);
5539 	int ret = 0;
5540 	int request;
5541 
5542 	mas_wr_prealloc_setup(&wr_mas);
5543 	mas_wr_store_type(&wr_mas);
5544 	request = mas_prealloc_calc(mas, entry);
5545 	if (!request)
5546 		goto set_flag;
5547 
5548 	mas->mas_flags &= ~MA_STATE_PREALLOC;
5549 	mas_node_count_gfp(mas, request, gfp);
5550 	if (mas_is_err(mas)) {
5551 		mas_set_alloc_req(mas, 0);
5552 		ret = xa_err(mas->node);
5553 		mas_destroy(mas);
5554 		mas_reset(mas);
5555 		return ret;
5556 	}
5557 
5558 set_flag:
5559 	mas->mas_flags |= MA_STATE_PREALLOC;
5560 	return ret;
5561 }
5562 EXPORT_SYMBOL_GPL(mas_preallocate);
5563 
5564 /*
5565  * mas_destroy() - destroy a maple state.
5566  * @mas: The maple state
5567  *
5568  * Upon completion, check the left-most node and rebalance against the node to
5569  * the right if necessary.  Frees any allocated nodes associated with this maple
5570  * state.
5571  */
mas_destroy(struct ma_state * mas)5572 void mas_destroy(struct ma_state *mas)
5573 {
5574 	struct maple_alloc *node;
5575 	unsigned long total;
5576 
5577 	/*
5578 	 * When using mas_for_each() to insert an expected number of elements,
5579 	 * it is possible that the number inserted is less than the expected
5580 	 * number.  To fix an invalid final node, a check is performed here to
5581 	 * rebalance the previous node with the final node.
5582 	 */
5583 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5584 		unsigned char end;
5585 		if (mas_is_err(mas))
5586 			mas_reset(mas);
5587 		mas_start(mas);
5588 		mtree_range_walk(mas);
5589 		end = mas->end + 1;
5590 		if (end < mt_min_slot_count(mas->node) - 1)
5591 			mas_destroy_rebalance(mas, end);
5592 
5593 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5594 	}
5595 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5596 
5597 	total = mas_allocated(mas);
5598 	while (total) {
5599 		node = mas->alloc;
5600 		mas->alloc = node->slot[0];
5601 		if (node->node_count > 1) {
5602 			size_t count = node->node_count - 1;
5603 
5604 			mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5605 			total -= count;
5606 		}
5607 		mt_free_one(ma_mnode_ptr(node));
5608 		total--;
5609 	}
5610 
5611 	mas->alloc = NULL;
5612 }
5613 EXPORT_SYMBOL_GPL(mas_destroy);
5614 
5615 /*
5616  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5617  * @mas: The maple state
5618  * @nr_entries: The number of expected entries.
5619  *
5620  * This will attempt to pre-allocate enough nodes to store the expected number
5621  * of entries.  The allocations will occur using the bulk allocator interface
5622  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5623  * to ensure any unused nodes are freed.
5624  *
5625  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5626  */
mas_expected_entries(struct ma_state * mas,unsigned long nr_entries)5627 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5628 {
5629 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5630 	struct maple_enode *enode = mas->node;
5631 	int nr_nodes;
5632 	int ret;
5633 
5634 	/*
5635 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5636 	 * forking a process and duplicating the VMAs from one tree to a new
5637 	 * tree.  When such a situation arises, it is known that the new tree is
5638 	 * not going to be used until the entire tree is populated.  For
5639 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5640 	 * This allows for optimistic splitting that favours the left and reuse
5641 	 * of nodes during the operation.
5642 	 */
5643 
5644 	/* Optimize splitting for bulk insert in-order */
5645 	mas->mas_flags |= MA_STATE_BULK;
5646 
5647 	/*
5648 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5649 	 * If this is wrong, it just means allocation can happen during
5650 	 * insertion of entries.
5651 	 */
5652 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5653 	if (!mt_is_alloc(mas->tree))
5654 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5655 
5656 	/* Leaves; reduce slots to keep space for expansion */
5657 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5658 	/* Internal nodes */
5659 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5660 	/* Add working room for split (2 nodes) + new parents */
5661 	mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5662 
5663 	/* Detect if allocations run out */
5664 	mas->mas_flags |= MA_STATE_PREALLOC;
5665 
5666 	if (!mas_is_err(mas))
5667 		return 0;
5668 
5669 	ret = xa_err(mas->node);
5670 	mas->node = enode;
5671 	mas_destroy(mas);
5672 	return ret;
5673 
5674 }
5675 EXPORT_SYMBOL_GPL(mas_expected_entries);
5676 
mas_next_setup(struct ma_state * mas,unsigned long max,void ** entry)5677 static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5678 		void **entry)
5679 {
5680 	bool was_none = mas_is_none(mas);
5681 
5682 	if (unlikely(mas->last >= max)) {
5683 		mas->status = ma_overflow;
5684 		return true;
5685 	}
5686 
5687 	switch (mas->status) {
5688 	case ma_active:
5689 		return false;
5690 	case ma_none:
5691 		fallthrough;
5692 	case ma_pause:
5693 		mas->status = ma_start;
5694 		fallthrough;
5695 	case ma_start:
5696 		mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5697 		break;
5698 	case ma_overflow:
5699 		/* Overflowed before, but the max changed */
5700 		mas->status = ma_active;
5701 		break;
5702 	case ma_underflow:
5703 		/* The user expects the mas to be one before where it is */
5704 		mas->status = ma_active;
5705 		*entry = mas_walk(mas);
5706 		if (*entry)
5707 			return true;
5708 		break;
5709 	case ma_root:
5710 		break;
5711 	case ma_error:
5712 		return true;
5713 	}
5714 
5715 	if (likely(mas_is_active(mas))) /* Fast path */
5716 		return false;
5717 
5718 	if (mas_is_ptr(mas)) {
5719 		*entry = NULL;
5720 		if (was_none && mas->index == 0) {
5721 			mas->index = mas->last = 0;
5722 			return true;
5723 		}
5724 		mas->index = 1;
5725 		mas->last = ULONG_MAX;
5726 		mas->status = ma_none;
5727 		return true;
5728 	}
5729 
5730 	if (mas_is_none(mas))
5731 		return true;
5732 
5733 	return false;
5734 }
5735 
5736 /**
5737  * mas_next() - Get the next entry.
5738  * @mas: The maple state
5739  * @max: The maximum index to check.
5740  *
5741  * Returns the next entry after @mas->index.
5742  * Must hold rcu_read_lock or the write lock.
5743  * Can return the zero entry.
5744  *
5745  * Return: The next entry or %NULL
5746  */
mas_next(struct ma_state * mas,unsigned long max)5747 void *mas_next(struct ma_state *mas, unsigned long max)
5748 {
5749 	void *entry = NULL;
5750 
5751 	if (mas_next_setup(mas, max, &entry))
5752 		return entry;
5753 
5754 	/* Retries on dead nodes handled by mas_next_slot */
5755 	return mas_next_slot(mas, max, false);
5756 }
5757 EXPORT_SYMBOL_GPL(mas_next);
5758 
5759 /**
5760  * mas_next_range() - Advance the maple state to the next range
5761  * @mas: The maple state
5762  * @max: The maximum index to check.
5763  *
5764  * Sets @mas->index and @mas->last to the range.
5765  * Must hold rcu_read_lock or the write lock.
5766  * Can return the zero entry.
5767  *
5768  * Return: The next entry or %NULL
5769  */
mas_next_range(struct ma_state * mas,unsigned long max)5770 void *mas_next_range(struct ma_state *mas, unsigned long max)
5771 {
5772 	void *entry = NULL;
5773 
5774 	if (mas_next_setup(mas, max, &entry))
5775 		return entry;
5776 
5777 	/* Retries on dead nodes handled by mas_next_slot */
5778 	return mas_next_slot(mas, max, true);
5779 }
5780 EXPORT_SYMBOL_GPL(mas_next_range);
5781 
5782 /**
5783  * mt_next() - get the next value in the maple tree
5784  * @mt: The maple tree
5785  * @index: The start index
5786  * @max: The maximum index to check
5787  *
5788  * Takes RCU read lock internally to protect the search, which does not
5789  * protect the returned pointer after dropping RCU read lock.
5790  * See also: Documentation/core-api/maple_tree.rst
5791  *
5792  * Return: The entry higher than @index or %NULL if nothing is found.
5793  */
mt_next(struct maple_tree * mt,unsigned long index,unsigned long max)5794 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5795 {
5796 	void *entry = NULL;
5797 	MA_STATE(mas, mt, index, index);
5798 
5799 	rcu_read_lock();
5800 	entry = mas_next(&mas, max);
5801 	rcu_read_unlock();
5802 	return entry;
5803 }
5804 EXPORT_SYMBOL_GPL(mt_next);
5805 
mas_prev_setup(struct ma_state * mas,unsigned long min,void ** entry)5806 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5807 {
5808 	if (unlikely(mas->index <= min)) {
5809 		mas->status = ma_underflow;
5810 		return true;
5811 	}
5812 
5813 	switch (mas->status) {
5814 	case ma_active:
5815 		return false;
5816 	case ma_start:
5817 		break;
5818 	case ma_none:
5819 		fallthrough;
5820 	case ma_pause:
5821 		mas->status = ma_start;
5822 		break;
5823 	case ma_underflow:
5824 		/* underflowed before but the min changed */
5825 		mas->status = ma_active;
5826 		break;
5827 	case ma_overflow:
5828 		/* User expects mas to be one after where it is */
5829 		mas->status = ma_active;
5830 		*entry = mas_walk(mas);
5831 		if (*entry)
5832 			return true;
5833 		break;
5834 	case ma_root:
5835 		break;
5836 	case ma_error:
5837 		return true;
5838 	}
5839 
5840 	if (mas_is_start(mas))
5841 		mas_walk(mas);
5842 
5843 	if (unlikely(mas_is_ptr(mas))) {
5844 		if (!mas->index) {
5845 			mas->status = ma_none;
5846 			return true;
5847 		}
5848 		mas->index = mas->last = 0;
5849 		*entry = mas_root(mas);
5850 		return true;
5851 	}
5852 
5853 	if (mas_is_none(mas)) {
5854 		if (mas->index) {
5855 			/* Walked to out-of-range pointer? */
5856 			mas->index = mas->last = 0;
5857 			mas->status = ma_root;
5858 			*entry = mas_root(mas);
5859 			return true;
5860 		}
5861 		return true;
5862 	}
5863 
5864 	return false;
5865 }
5866 
5867 /**
5868  * mas_prev() - Get the previous entry
5869  * @mas: The maple state
5870  * @min: The minimum value to check.
5871  *
5872  * Must hold rcu_read_lock or the write lock.
5873  * Will reset mas to ma_start if the status is ma_none.  Will stop on not
5874  * searchable nodes.
5875  *
5876  * Return: the previous value or %NULL.
5877  */
mas_prev(struct ma_state * mas,unsigned long min)5878 void *mas_prev(struct ma_state *mas, unsigned long min)
5879 {
5880 	void *entry = NULL;
5881 
5882 	if (mas_prev_setup(mas, min, &entry))
5883 		return entry;
5884 
5885 	return mas_prev_slot(mas, min, false);
5886 }
5887 EXPORT_SYMBOL_GPL(mas_prev);
5888 
5889 /**
5890  * mas_prev_range() - Advance to the previous range
5891  * @mas: The maple state
5892  * @min: The minimum value to check.
5893  *
5894  * Sets @mas->index and @mas->last to the range.
5895  * Must hold rcu_read_lock or the write lock.
5896  * Will reset mas to ma_start if the node is ma_none.  Will stop on not
5897  * searchable nodes.
5898  *
5899  * Return: the previous value or %NULL.
5900  */
mas_prev_range(struct ma_state * mas,unsigned long min)5901 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5902 {
5903 	void *entry = NULL;
5904 
5905 	if (mas_prev_setup(mas, min, &entry))
5906 		return entry;
5907 
5908 	return mas_prev_slot(mas, min, true);
5909 }
5910 EXPORT_SYMBOL_GPL(mas_prev_range);
5911 
5912 /**
5913  * mt_prev() - get the previous value in the maple tree
5914  * @mt: The maple tree
5915  * @index: The start index
5916  * @min: The minimum index to check
5917  *
5918  * Takes RCU read lock internally to protect the search, which does not
5919  * protect the returned pointer after dropping RCU read lock.
5920  * See also: Documentation/core-api/maple_tree.rst
5921  *
5922  * Return: The entry before @index or %NULL if nothing is found.
5923  */
mt_prev(struct maple_tree * mt,unsigned long index,unsigned long min)5924 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5925 {
5926 	void *entry = NULL;
5927 	MA_STATE(mas, mt, index, index);
5928 
5929 	rcu_read_lock();
5930 	entry = mas_prev(&mas, min);
5931 	rcu_read_unlock();
5932 	return entry;
5933 }
5934 EXPORT_SYMBOL_GPL(mt_prev);
5935 
5936 /**
5937  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5938  * @mas: The maple state to pause
5939  *
5940  * Some users need to pause a walk and drop the lock they're holding in
5941  * order to yield to a higher priority thread or carry out an operation
5942  * on an entry.  Those users should call this function before they drop
5943  * the lock.  It resets the @mas to be suitable for the next iteration
5944  * of the loop after the user has reacquired the lock.  If most entries
5945  * found during a walk require you to call mas_pause(), the mt_for_each()
5946  * iterator may be more appropriate.
5947  *
5948  */
mas_pause(struct ma_state * mas)5949 void mas_pause(struct ma_state *mas)
5950 {
5951 	mas->status = ma_pause;
5952 	mas->node = NULL;
5953 }
5954 EXPORT_SYMBOL_GPL(mas_pause);
5955 
5956 /**
5957  * mas_find_setup() - Internal function to set up mas_find*().
5958  * @mas: The maple state
5959  * @max: The maximum index
5960  * @entry: Pointer to the entry
5961  *
5962  * Returns: True if entry is the answer, false otherwise.
5963  */
mas_find_setup(struct ma_state * mas,unsigned long max,void ** entry)5964 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5965 {
5966 	switch (mas->status) {
5967 	case ma_active:
5968 		if (mas->last < max)
5969 			return false;
5970 		return true;
5971 	case ma_start:
5972 		break;
5973 	case ma_pause:
5974 		if (unlikely(mas->last >= max))
5975 			return true;
5976 
5977 		mas->index = ++mas->last;
5978 		mas->status = ma_start;
5979 		break;
5980 	case ma_none:
5981 		if (unlikely(mas->last >= max))
5982 			return true;
5983 
5984 		mas->index = mas->last;
5985 		mas->status = ma_start;
5986 		break;
5987 	case ma_underflow:
5988 		/* mas is pointing at entry before unable to go lower */
5989 		if (unlikely(mas->index >= max)) {
5990 			mas->status = ma_overflow;
5991 			return true;
5992 		}
5993 
5994 		mas->status = ma_active;
5995 		*entry = mas_walk(mas);
5996 		if (*entry)
5997 			return true;
5998 		break;
5999 	case ma_overflow:
6000 		if (unlikely(mas->last >= max))
6001 			return true;
6002 
6003 		mas->status = ma_active;
6004 		*entry = mas_walk(mas);
6005 		if (*entry)
6006 			return true;
6007 		break;
6008 	case ma_root:
6009 		break;
6010 	case ma_error:
6011 		return true;
6012 	}
6013 
6014 	if (mas_is_start(mas)) {
6015 		/* First run or continue */
6016 		if (mas->index > max)
6017 			return true;
6018 
6019 		*entry = mas_walk(mas);
6020 		if (*entry)
6021 			return true;
6022 
6023 	}
6024 
6025 	if (unlikely(mas_is_ptr(mas)))
6026 		goto ptr_out_of_range;
6027 
6028 	if (unlikely(mas_is_none(mas)))
6029 		return true;
6030 
6031 	if (mas->index == max)
6032 		return true;
6033 
6034 	return false;
6035 
6036 ptr_out_of_range:
6037 	mas->status = ma_none;
6038 	mas->index = 1;
6039 	mas->last = ULONG_MAX;
6040 	return true;
6041 }
6042 
6043 /**
6044  * mas_find() - On the first call, find the entry at or after mas->index up to
6045  * %max.  Otherwise, find the entry after mas->index.
6046  * @mas: The maple state
6047  * @max: The maximum value to check.
6048  *
6049  * Must hold rcu_read_lock or the write lock.
6050  * If an entry exists, last and index are updated accordingly.
6051  * May set @mas->status to ma_overflow.
6052  *
6053  * Return: The entry or %NULL.
6054  */
mas_find(struct ma_state * mas,unsigned long max)6055 void *mas_find(struct ma_state *mas, unsigned long max)
6056 {
6057 	void *entry = NULL;
6058 
6059 	if (mas_find_setup(mas, max, &entry))
6060 		return entry;
6061 
6062 	/* Retries on dead nodes handled by mas_next_slot */
6063 	entry = mas_next_slot(mas, max, false);
6064 	/* Ignore overflow */
6065 	mas->status = ma_active;
6066 	return entry;
6067 }
6068 EXPORT_SYMBOL_GPL(mas_find);
6069 
6070 /**
6071  * mas_find_range() - On the first call, find the entry at or after
6072  * mas->index up to %max.  Otherwise, advance to the next slot mas->index.
6073  * @mas: The maple state
6074  * @max: The maximum value to check.
6075  *
6076  * Must hold rcu_read_lock or the write lock.
6077  * If an entry exists, last and index are updated accordingly.
6078  * May set @mas->status to ma_overflow.
6079  *
6080  * Return: The entry or %NULL.
6081  */
mas_find_range(struct ma_state * mas,unsigned long max)6082 void *mas_find_range(struct ma_state *mas, unsigned long max)
6083 {
6084 	void *entry = NULL;
6085 
6086 	if (mas_find_setup(mas, max, &entry))
6087 		return entry;
6088 
6089 	/* Retries on dead nodes handled by mas_next_slot */
6090 	return mas_next_slot(mas, max, true);
6091 }
6092 EXPORT_SYMBOL_GPL(mas_find_range);
6093 
6094 /**
6095  * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6096  * @mas: The maple state
6097  * @min: The minimum index
6098  * @entry: Pointer to the entry
6099  *
6100  * Returns: True if entry is the answer, false otherwise.
6101  */
mas_find_rev_setup(struct ma_state * mas,unsigned long min,void ** entry)6102 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6103 		void **entry)
6104 {
6105 
6106 	switch (mas->status) {
6107 	case ma_active:
6108 		goto active;
6109 	case ma_start:
6110 		break;
6111 	case ma_pause:
6112 		if (unlikely(mas->index <= min)) {
6113 			mas->status = ma_underflow;
6114 			return true;
6115 		}
6116 		mas->last = --mas->index;
6117 		mas->status = ma_start;
6118 		break;
6119 	case ma_none:
6120 		if (mas->index <= min)
6121 			goto none;
6122 
6123 		mas->last = mas->index;
6124 		mas->status = ma_start;
6125 		break;
6126 	case ma_overflow: /* user expects the mas to be one after where it is */
6127 		if (unlikely(mas->index <= min)) {
6128 			mas->status = ma_underflow;
6129 			return true;
6130 		}
6131 
6132 		mas->status = ma_active;
6133 		break;
6134 	case ma_underflow: /* user expects the mas to be one before where it is */
6135 		if (unlikely(mas->index <= min))
6136 			return true;
6137 
6138 		mas->status = ma_active;
6139 		break;
6140 	case ma_root:
6141 		break;
6142 	case ma_error:
6143 		return true;
6144 	}
6145 
6146 	if (mas_is_start(mas)) {
6147 		/* First run or continue */
6148 		if (mas->index < min)
6149 			return true;
6150 
6151 		*entry = mas_walk(mas);
6152 		if (*entry)
6153 			return true;
6154 	}
6155 
6156 	if (unlikely(mas_is_ptr(mas)))
6157 		goto none;
6158 
6159 	if (unlikely(mas_is_none(mas))) {
6160 		/*
6161 		 * Walked to the location, and there was nothing so the previous
6162 		 * location is 0.
6163 		 */
6164 		mas->last = mas->index = 0;
6165 		mas->status = ma_root;
6166 		*entry = mas_root(mas);
6167 		return true;
6168 	}
6169 
6170 active:
6171 	if (mas->index < min)
6172 		return true;
6173 
6174 	return false;
6175 
6176 none:
6177 	mas->status = ma_none;
6178 	return true;
6179 }
6180 
6181 /**
6182  * mas_find_rev: On the first call, find the first non-null entry at or below
6183  * mas->index down to %min.  Otherwise find the first non-null entry below
6184  * mas->index down to %min.
6185  * @mas: The maple state
6186  * @min: The minimum value to check.
6187  *
6188  * Must hold rcu_read_lock or the write lock.
6189  * If an entry exists, last and index are updated accordingly.
6190  * May set @mas->status to ma_underflow.
6191  *
6192  * Return: The entry or %NULL.
6193  */
mas_find_rev(struct ma_state * mas,unsigned long min)6194 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6195 {
6196 	void *entry = NULL;
6197 
6198 	if (mas_find_rev_setup(mas, min, &entry))
6199 		return entry;
6200 
6201 	/* Retries on dead nodes handled by mas_prev_slot */
6202 	return mas_prev_slot(mas, min, false);
6203 
6204 }
6205 EXPORT_SYMBOL_GPL(mas_find_rev);
6206 
6207 /**
6208  * mas_find_range_rev: On the first call, find the first non-null entry at or
6209  * below mas->index down to %min.  Otherwise advance to the previous slot after
6210  * mas->index down to %min.
6211  * @mas: The maple state
6212  * @min: The minimum value to check.
6213  *
6214  * Must hold rcu_read_lock or the write lock.
6215  * If an entry exists, last and index are updated accordingly.
6216  * May set @mas->status to ma_underflow.
6217  *
6218  * Return: The entry or %NULL.
6219  */
mas_find_range_rev(struct ma_state * mas,unsigned long min)6220 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6221 {
6222 	void *entry = NULL;
6223 
6224 	if (mas_find_rev_setup(mas, min, &entry))
6225 		return entry;
6226 
6227 	/* Retries on dead nodes handled by mas_prev_slot */
6228 	return mas_prev_slot(mas, min, true);
6229 }
6230 EXPORT_SYMBOL_GPL(mas_find_range_rev);
6231 
6232 /**
6233  * mas_erase() - Find the range in which index resides and erase the entire
6234  * range.
6235  * @mas: The maple state
6236  *
6237  * Must hold the write lock.
6238  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6239  * erases that range.
6240  *
6241  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6242  */
mas_erase(struct ma_state * mas)6243 void *mas_erase(struct ma_state *mas)
6244 {
6245 	void *entry;
6246 	unsigned long index = mas->index;
6247 	MA_WR_STATE(wr_mas, mas, NULL);
6248 
6249 	if (!mas_is_active(mas) || !mas_is_start(mas))
6250 		mas->status = ma_start;
6251 
6252 write_retry:
6253 	entry = mas_state_walk(mas);
6254 	if (!entry)
6255 		return NULL;
6256 
6257 	/* Must reset to ensure spanning writes of last slot are detected */
6258 	mas_reset(mas);
6259 	mas_wr_preallocate(&wr_mas, NULL);
6260 	if (mas_nomem(mas, GFP_KERNEL)) {
6261 		/* in case the range of entry changed when unlocked */
6262 		mas->index = mas->last = index;
6263 		goto write_retry;
6264 	}
6265 
6266 	if (mas_is_err(mas))
6267 		goto out;
6268 
6269 	mas_wr_store_entry(&wr_mas);
6270 out:
6271 	mas_destroy(mas);
6272 	return entry;
6273 }
6274 EXPORT_SYMBOL_GPL(mas_erase);
6275 
6276 /**
6277  * mas_nomem() - Check if there was an error allocating and do the allocation
6278  * if necessary If there are allocations, then free them.
6279  * @mas: The maple state
6280  * @gfp: The GFP_FLAGS to use for allocations
6281  * Return: true on allocation, false otherwise.
6282  */
mas_nomem(struct ma_state * mas,gfp_t gfp)6283 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6284 	__must_hold(mas->tree->ma_lock)
6285 {
6286 	if (likely(mas->node != MA_ERROR(-ENOMEM)))
6287 		return false;
6288 
6289 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6290 		mtree_unlock(mas->tree);
6291 		mas_alloc_nodes(mas, gfp);
6292 		mtree_lock(mas->tree);
6293 	} else {
6294 		mas_alloc_nodes(mas, gfp);
6295 	}
6296 
6297 	if (!mas_allocated(mas))
6298 		return false;
6299 
6300 	mas->status = ma_start;
6301 	return true;
6302 }
6303 
maple_tree_init(void)6304 void __init maple_tree_init(void)
6305 {
6306 	maple_node_cache = kmem_cache_create("maple_node",
6307 			sizeof(struct maple_node), sizeof(struct maple_node),
6308 			SLAB_PANIC, NULL);
6309 }
6310 
6311 /**
6312  * mtree_load() - Load a value stored in a maple tree
6313  * @mt: The maple tree
6314  * @index: The index to load
6315  *
6316  * Return: the entry or %NULL
6317  */
mtree_load(struct maple_tree * mt,unsigned long index)6318 void *mtree_load(struct maple_tree *mt, unsigned long index)
6319 {
6320 	MA_STATE(mas, mt, index, index);
6321 	void *entry;
6322 
6323 	trace_ma_read(__func__, &mas);
6324 	rcu_read_lock();
6325 retry:
6326 	entry = mas_start(&mas);
6327 	if (unlikely(mas_is_none(&mas)))
6328 		goto unlock;
6329 
6330 	if (unlikely(mas_is_ptr(&mas))) {
6331 		if (index)
6332 			entry = NULL;
6333 
6334 		goto unlock;
6335 	}
6336 
6337 	entry = mtree_lookup_walk(&mas);
6338 	if (!entry && unlikely(mas_is_start(&mas)))
6339 		goto retry;
6340 unlock:
6341 	rcu_read_unlock();
6342 	if (xa_is_zero(entry))
6343 		return NULL;
6344 
6345 	return entry;
6346 }
6347 EXPORT_SYMBOL(mtree_load);
6348 
6349 /**
6350  * mtree_store_range() - Store an entry at a given range.
6351  * @mt: The maple tree
6352  * @index: The start of the range
6353  * @last: The end of the range
6354  * @entry: The entry to store
6355  * @gfp: The GFP_FLAGS to use for allocations
6356  *
6357  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6358  * be allocated.
6359  */
mtree_store_range(struct maple_tree * mt,unsigned long index,unsigned long last,void * entry,gfp_t gfp)6360 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6361 		unsigned long last, void *entry, gfp_t gfp)
6362 {
6363 	MA_STATE(mas, mt, index, last);
6364 	int ret = 0;
6365 
6366 	trace_ma_write(__func__, &mas, 0, entry);
6367 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6368 		return -EINVAL;
6369 
6370 	if (index > last)
6371 		return -EINVAL;
6372 
6373 	mtree_lock(mt);
6374 	ret = mas_store_gfp(&mas, entry, gfp);
6375 	mtree_unlock(mt);
6376 
6377 	return ret;
6378 }
6379 EXPORT_SYMBOL(mtree_store_range);
6380 
6381 /**
6382  * mtree_store() - Store an entry at a given index.
6383  * @mt: The maple tree
6384  * @index: The index to store the value
6385  * @entry: The entry to store
6386  * @gfp: The GFP_FLAGS to use for allocations
6387  *
6388  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6389  * be allocated.
6390  */
mtree_store(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6391 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6392 		 gfp_t gfp)
6393 {
6394 	return mtree_store_range(mt, index, index, entry, gfp);
6395 }
6396 EXPORT_SYMBOL(mtree_store);
6397 
6398 /**
6399  * mtree_insert_range() - Insert an entry at a given range if there is no value.
6400  * @mt: The maple tree
6401  * @first: The start of the range
6402  * @last: The end of the range
6403  * @entry: The entry to store
6404  * @gfp: The GFP_FLAGS to use for allocations.
6405  *
6406  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6407  * request, -ENOMEM if memory could not be allocated.
6408  */
mtree_insert_range(struct maple_tree * mt,unsigned long first,unsigned long last,void * entry,gfp_t gfp)6409 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6410 		unsigned long last, void *entry, gfp_t gfp)
6411 {
6412 	MA_STATE(ms, mt, first, last);
6413 	int ret = 0;
6414 
6415 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6416 		return -EINVAL;
6417 
6418 	if (first > last)
6419 		return -EINVAL;
6420 
6421 	mtree_lock(mt);
6422 retry:
6423 	mas_insert(&ms, entry);
6424 	if (mas_nomem(&ms, gfp))
6425 		goto retry;
6426 
6427 	mtree_unlock(mt);
6428 	if (mas_is_err(&ms))
6429 		ret = xa_err(ms.node);
6430 
6431 	mas_destroy(&ms);
6432 	return ret;
6433 }
6434 EXPORT_SYMBOL(mtree_insert_range);
6435 
6436 /**
6437  * mtree_insert() - Insert an entry at a given index if there is no value.
6438  * @mt: The maple tree
6439  * @index : The index to store the value
6440  * @entry: The entry to store
6441  * @gfp: The GFP_FLAGS to use for allocations.
6442  *
6443  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6444  * request, -ENOMEM if memory could not be allocated.
6445  */
mtree_insert(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6446 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6447 		 gfp_t gfp)
6448 {
6449 	return mtree_insert_range(mt, index, index, entry, gfp);
6450 }
6451 EXPORT_SYMBOL(mtree_insert);
6452 
mtree_alloc_range(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6453 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6454 		void *entry, unsigned long size, unsigned long min,
6455 		unsigned long max, gfp_t gfp)
6456 {
6457 	int ret = 0;
6458 
6459 	MA_STATE(mas, mt, 0, 0);
6460 	if (!mt_is_alloc(mt))
6461 		return -EINVAL;
6462 
6463 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6464 		return -EINVAL;
6465 
6466 	mtree_lock(mt);
6467 retry:
6468 	ret = mas_empty_area(&mas, min, max, size);
6469 	if (ret)
6470 		goto unlock;
6471 
6472 	mas_insert(&mas, entry);
6473 	/*
6474 	 * mas_nomem() may release the lock, causing the allocated area
6475 	 * to be unavailable, so try to allocate a free area again.
6476 	 */
6477 	if (mas_nomem(&mas, gfp))
6478 		goto retry;
6479 
6480 	if (mas_is_err(&mas))
6481 		ret = xa_err(mas.node);
6482 	else
6483 		*startp = mas.index;
6484 
6485 unlock:
6486 	mtree_unlock(mt);
6487 	mas_destroy(&mas);
6488 	return ret;
6489 }
6490 EXPORT_SYMBOL(mtree_alloc_range);
6491 
6492 /**
6493  * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6494  * @mt: The maple tree.
6495  * @startp: Pointer to ID.
6496  * @range_lo: Lower bound of range to search.
6497  * @range_hi: Upper bound of range to search.
6498  * @entry: The entry to store.
6499  * @next: Pointer to next ID to allocate.
6500  * @gfp: The GFP_FLAGS to use for allocations.
6501  *
6502  * Finds an empty entry in @mt after @next, stores the new index into
6503  * the @id pointer, stores the entry at that index, then updates @next.
6504  *
6505  * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6506  *
6507  * Context: Any context.  Takes and releases the mt.lock.  May sleep if
6508  * the @gfp flags permit.
6509  *
6510  * Return: 0 if the allocation succeeded without wrapping, 1 if the
6511  * allocation succeeded after wrapping, -ENOMEM if memory could not be
6512  * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6513  * free entries.
6514  */
mtree_alloc_cyclic(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long range_lo,unsigned long range_hi,unsigned long * next,gfp_t gfp)6515 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6516 		void *entry, unsigned long range_lo, unsigned long range_hi,
6517 		unsigned long *next, gfp_t gfp)
6518 {
6519 	int ret;
6520 
6521 	MA_STATE(mas, mt, 0, 0);
6522 
6523 	if (!mt_is_alloc(mt))
6524 		return -EINVAL;
6525 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6526 		return -EINVAL;
6527 	mtree_lock(mt);
6528 	ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6529 			       next, gfp);
6530 	mtree_unlock(mt);
6531 	return ret;
6532 }
6533 EXPORT_SYMBOL(mtree_alloc_cyclic);
6534 
mtree_alloc_rrange(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6535 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6536 		void *entry, unsigned long size, unsigned long min,
6537 		unsigned long max, gfp_t gfp)
6538 {
6539 	int ret = 0;
6540 
6541 	MA_STATE(mas, mt, 0, 0);
6542 	if (!mt_is_alloc(mt))
6543 		return -EINVAL;
6544 
6545 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6546 		return -EINVAL;
6547 
6548 	mtree_lock(mt);
6549 retry:
6550 	ret = mas_empty_area_rev(&mas, min, max, size);
6551 	if (ret)
6552 		goto unlock;
6553 
6554 	mas_insert(&mas, entry);
6555 	/*
6556 	 * mas_nomem() may release the lock, causing the allocated area
6557 	 * to be unavailable, so try to allocate a free area again.
6558 	 */
6559 	if (mas_nomem(&mas, gfp))
6560 		goto retry;
6561 
6562 	if (mas_is_err(&mas))
6563 		ret = xa_err(mas.node);
6564 	else
6565 		*startp = mas.index;
6566 
6567 unlock:
6568 	mtree_unlock(mt);
6569 	mas_destroy(&mas);
6570 	return ret;
6571 }
6572 EXPORT_SYMBOL(mtree_alloc_rrange);
6573 
6574 /**
6575  * mtree_erase() - Find an index and erase the entire range.
6576  * @mt: The maple tree
6577  * @index: The index to erase
6578  *
6579  * Erasing is the same as a walk to an entry then a store of a NULL to that
6580  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6581  *
6582  * Return: The entry stored at the @index or %NULL
6583  */
mtree_erase(struct maple_tree * mt,unsigned long index)6584 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6585 {
6586 	void *entry = NULL;
6587 
6588 	MA_STATE(mas, mt, index, index);
6589 	trace_ma_op(__func__, &mas);
6590 
6591 	mtree_lock(mt);
6592 	entry = mas_erase(&mas);
6593 	mtree_unlock(mt);
6594 
6595 	return entry;
6596 }
6597 EXPORT_SYMBOL(mtree_erase);
6598 
6599 /*
6600  * mas_dup_free() - Free an incomplete duplication of a tree.
6601  * @mas: The maple state of a incomplete tree.
6602  *
6603  * The parameter @mas->node passed in indicates that the allocation failed on
6604  * this node. This function frees all nodes starting from @mas->node in the
6605  * reverse order of mas_dup_build(). There is no need to hold the source tree
6606  * lock at this time.
6607  */
mas_dup_free(struct ma_state * mas)6608 static void mas_dup_free(struct ma_state *mas)
6609 {
6610 	struct maple_node *node;
6611 	enum maple_type type;
6612 	void __rcu **slots;
6613 	unsigned char count, i;
6614 
6615 	/* Maybe the first node allocation failed. */
6616 	if (mas_is_none(mas))
6617 		return;
6618 
6619 	while (!mte_is_root(mas->node)) {
6620 		mas_ascend(mas);
6621 		if (mas->offset) {
6622 			mas->offset--;
6623 			do {
6624 				mas_descend(mas);
6625 				mas->offset = mas_data_end(mas);
6626 			} while (!mte_is_leaf(mas->node));
6627 
6628 			mas_ascend(mas);
6629 		}
6630 
6631 		node = mte_to_node(mas->node);
6632 		type = mte_node_type(mas->node);
6633 		slots = ma_slots(node, type);
6634 		count = mas_data_end(mas) + 1;
6635 		for (i = 0; i < count; i++)
6636 			((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6637 		mt_free_bulk(count, slots);
6638 	}
6639 
6640 	node = mte_to_node(mas->node);
6641 	mt_free_one(node);
6642 }
6643 
6644 /*
6645  * mas_copy_node() - Copy a maple node and replace the parent.
6646  * @mas: The maple state of source tree.
6647  * @new_mas: The maple state of new tree.
6648  * @parent: The parent of the new node.
6649  *
6650  * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6651  * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6652  */
mas_copy_node(struct ma_state * mas,struct ma_state * new_mas,struct maple_pnode * parent)6653 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6654 		struct maple_pnode *parent)
6655 {
6656 	struct maple_node *node = mte_to_node(mas->node);
6657 	struct maple_node *new_node = mte_to_node(new_mas->node);
6658 	unsigned long val;
6659 
6660 	/* Copy the node completely. */
6661 	memcpy(new_node, node, sizeof(struct maple_node));
6662 	/* Update the parent node pointer. */
6663 	val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6664 	new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6665 }
6666 
6667 /*
6668  * mas_dup_alloc() - Allocate child nodes for a maple node.
6669  * @mas: The maple state of source tree.
6670  * @new_mas: The maple state of new tree.
6671  * @gfp: The GFP_FLAGS to use for allocations.
6672  *
6673  * This function allocates child nodes for @new_mas->node during the duplication
6674  * process. If memory allocation fails, @mas is set to -ENOMEM.
6675  */
mas_dup_alloc(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6676 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6677 		gfp_t gfp)
6678 {
6679 	struct maple_node *node = mte_to_node(mas->node);
6680 	struct maple_node *new_node = mte_to_node(new_mas->node);
6681 	enum maple_type type;
6682 	unsigned char request, count, i;
6683 	void __rcu **slots;
6684 	void __rcu **new_slots;
6685 	unsigned long val;
6686 
6687 	/* Allocate memory for child nodes. */
6688 	type = mte_node_type(mas->node);
6689 	new_slots = ma_slots(new_node, type);
6690 	request = mas_data_end(mas) + 1;
6691 	count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6692 	if (unlikely(count < request)) {
6693 		memset(new_slots, 0, request * sizeof(void *));
6694 		mas_set_err(mas, -ENOMEM);
6695 		return;
6696 	}
6697 
6698 	/* Restore node type information in slots. */
6699 	slots = ma_slots(node, type);
6700 	for (i = 0; i < count; i++) {
6701 		val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6702 		val &= MAPLE_NODE_MASK;
6703 		((unsigned long *)new_slots)[i] |= val;
6704 	}
6705 }
6706 
6707 /*
6708  * mas_dup_build() - Build a new maple tree from a source tree
6709  * @mas: The maple state of source tree, need to be in MAS_START state.
6710  * @new_mas: The maple state of new tree, need to be in MAS_START state.
6711  * @gfp: The GFP_FLAGS to use for allocations.
6712  *
6713  * This function builds a new tree in DFS preorder. If the memory allocation
6714  * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6715  * last node. mas_dup_free() will free the incomplete duplication of a tree.
6716  *
6717  * Note that the attributes of the two trees need to be exactly the same, and the
6718  * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6719  */
mas_dup_build(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6720 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6721 		gfp_t gfp)
6722 {
6723 	struct maple_node *node;
6724 	struct maple_pnode *parent = NULL;
6725 	struct maple_enode *root;
6726 	enum maple_type type;
6727 
6728 	if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6729 	    unlikely(!mtree_empty(new_mas->tree))) {
6730 		mas_set_err(mas, -EINVAL);
6731 		return;
6732 	}
6733 
6734 	root = mas_start(mas);
6735 	if (mas_is_ptr(mas) || mas_is_none(mas))
6736 		goto set_new_tree;
6737 
6738 	node = mt_alloc_one(gfp);
6739 	if (!node) {
6740 		new_mas->status = ma_none;
6741 		mas_set_err(mas, -ENOMEM);
6742 		return;
6743 	}
6744 
6745 	type = mte_node_type(mas->node);
6746 	root = mt_mk_node(node, type);
6747 	new_mas->node = root;
6748 	new_mas->min = 0;
6749 	new_mas->max = ULONG_MAX;
6750 	root = mte_mk_root(root);
6751 	while (1) {
6752 		mas_copy_node(mas, new_mas, parent);
6753 		if (!mte_is_leaf(mas->node)) {
6754 			/* Only allocate child nodes for non-leaf nodes. */
6755 			mas_dup_alloc(mas, new_mas, gfp);
6756 			if (unlikely(mas_is_err(mas)))
6757 				return;
6758 		} else {
6759 			/*
6760 			 * This is the last leaf node and duplication is
6761 			 * completed.
6762 			 */
6763 			if (mas->max == ULONG_MAX)
6764 				goto done;
6765 
6766 			/* This is not the last leaf node and needs to go up. */
6767 			do {
6768 				mas_ascend(mas);
6769 				mas_ascend(new_mas);
6770 			} while (mas->offset == mas_data_end(mas));
6771 
6772 			/* Move to the next subtree. */
6773 			mas->offset++;
6774 			new_mas->offset++;
6775 		}
6776 
6777 		mas_descend(mas);
6778 		parent = ma_parent_ptr(mte_to_node(new_mas->node));
6779 		mas_descend(new_mas);
6780 		mas->offset = 0;
6781 		new_mas->offset = 0;
6782 	}
6783 done:
6784 	/* Specially handle the parent of the root node. */
6785 	mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6786 set_new_tree:
6787 	/* Make them the same height */
6788 	new_mas->tree->ma_flags = mas->tree->ma_flags;
6789 	rcu_assign_pointer(new_mas->tree->ma_root, root);
6790 }
6791 
6792 /**
6793  * __mt_dup(): Duplicate an entire maple tree
6794  * @mt: The source maple tree
6795  * @new: The new maple tree
6796  * @gfp: The GFP_FLAGS to use for allocations
6797  *
6798  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6799  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6800  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6801  * source node except for all the addresses stored in it. It will be faster than
6802  * traversing all elements in the source tree and inserting them one by one into
6803  * the new tree.
6804  * The user needs to ensure that the attributes of the source tree and the new
6805  * tree are the same, and the new tree needs to be an empty tree, otherwise
6806  * -EINVAL will be returned.
6807  * Note that the user needs to manually lock the source tree and the new tree.
6808  *
6809  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6810  * the attributes of the two trees are different or the new tree is not an empty
6811  * tree.
6812  */
__mt_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6813 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6814 {
6815 	int ret = 0;
6816 	MA_STATE(mas, mt, 0, 0);
6817 	MA_STATE(new_mas, new, 0, 0);
6818 
6819 	mas_dup_build(&mas, &new_mas, gfp);
6820 	if (unlikely(mas_is_err(&mas))) {
6821 		ret = xa_err(mas.node);
6822 		if (ret == -ENOMEM)
6823 			mas_dup_free(&new_mas);
6824 	}
6825 
6826 	return ret;
6827 }
6828 EXPORT_SYMBOL(__mt_dup);
6829 
6830 /**
6831  * mtree_dup(): Duplicate an entire maple tree
6832  * @mt: The source maple tree
6833  * @new: The new maple tree
6834  * @gfp: The GFP_FLAGS to use for allocations
6835  *
6836  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6837  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6838  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6839  * source node except for all the addresses stored in it. It will be faster than
6840  * traversing all elements in the source tree and inserting them one by one into
6841  * the new tree.
6842  * The user needs to ensure that the attributes of the source tree and the new
6843  * tree are the same, and the new tree needs to be an empty tree, otherwise
6844  * -EINVAL will be returned.
6845  *
6846  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6847  * the attributes of the two trees are different or the new tree is not an empty
6848  * tree.
6849  */
mtree_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6850 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6851 {
6852 	int ret = 0;
6853 	MA_STATE(mas, mt, 0, 0);
6854 	MA_STATE(new_mas, new, 0, 0);
6855 
6856 	mas_lock(&new_mas);
6857 	mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6858 	mas_dup_build(&mas, &new_mas, gfp);
6859 	mas_unlock(&mas);
6860 	if (unlikely(mas_is_err(&mas))) {
6861 		ret = xa_err(mas.node);
6862 		if (ret == -ENOMEM)
6863 			mas_dup_free(&new_mas);
6864 	}
6865 
6866 	mas_unlock(&new_mas);
6867 	return ret;
6868 }
6869 EXPORT_SYMBOL(mtree_dup);
6870 
6871 /**
6872  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6873  * @mt: The maple tree
6874  *
6875  * Note: Does not handle locking.
6876  */
__mt_destroy(struct maple_tree * mt)6877 void __mt_destroy(struct maple_tree *mt)
6878 {
6879 	void *root = mt_root_locked(mt);
6880 
6881 	rcu_assign_pointer(mt->ma_root, NULL);
6882 	if (xa_is_node(root))
6883 		mte_destroy_walk(root, mt);
6884 
6885 	mt->ma_flags = mt_attr(mt);
6886 }
6887 EXPORT_SYMBOL_GPL(__mt_destroy);
6888 
6889 /**
6890  * mtree_destroy() - Destroy a maple tree
6891  * @mt: The maple tree
6892  *
6893  * Frees all resources used by the tree.  Handles locking.
6894  */
mtree_destroy(struct maple_tree * mt)6895 void mtree_destroy(struct maple_tree *mt)
6896 {
6897 	mtree_lock(mt);
6898 	__mt_destroy(mt);
6899 	mtree_unlock(mt);
6900 }
6901 EXPORT_SYMBOL(mtree_destroy);
6902 
6903 /**
6904  * mt_find() - Search from the start up until an entry is found.
6905  * @mt: The maple tree
6906  * @index: Pointer which contains the start location of the search
6907  * @max: The maximum value of the search range
6908  *
6909  * Takes RCU read lock internally to protect the search, which does not
6910  * protect the returned pointer after dropping RCU read lock.
6911  * See also: Documentation/core-api/maple_tree.rst
6912  *
6913  * In case that an entry is found @index is updated to point to the next
6914  * possible entry independent whether the found entry is occupying a
6915  * single index or a range if indices.
6916  *
6917  * Return: The entry at or after the @index or %NULL
6918  */
mt_find(struct maple_tree * mt,unsigned long * index,unsigned long max)6919 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6920 {
6921 	MA_STATE(mas, mt, *index, *index);
6922 	void *entry;
6923 #ifdef CONFIG_DEBUG_MAPLE_TREE
6924 	unsigned long copy = *index;
6925 #endif
6926 
6927 	trace_ma_read(__func__, &mas);
6928 
6929 	if ((*index) > max)
6930 		return NULL;
6931 
6932 	rcu_read_lock();
6933 retry:
6934 	entry = mas_state_walk(&mas);
6935 	if (mas_is_start(&mas))
6936 		goto retry;
6937 
6938 	if (unlikely(xa_is_zero(entry)))
6939 		entry = NULL;
6940 
6941 	if (entry)
6942 		goto unlock;
6943 
6944 	while (mas_is_active(&mas) && (mas.last < max)) {
6945 		entry = mas_next_entry(&mas, max);
6946 		if (likely(entry && !xa_is_zero(entry)))
6947 			break;
6948 	}
6949 
6950 	if (unlikely(xa_is_zero(entry)))
6951 		entry = NULL;
6952 unlock:
6953 	rcu_read_unlock();
6954 	if (likely(entry)) {
6955 		*index = mas.last + 1;
6956 #ifdef CONFIG_DEBUG_MAPLE_TREE
6957 		if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6958 			pr_err("index not increased! %lx <= %lx\n",
6959 			       *index, copy);
6960 #endif
6961 	}
6962 
6963 	return entry;
6964 }
6965 EXPORT_SYMBOL(mt_find);
6966 
6967 /**
6968  * mt_find_after() - Search from the start up until an entry is found.
6969  * @mt: The maple tree
6970  * @index: Pointer which contains the start location of the search
6971  * @max: The maximum value to check
6972  *
6973  * Same as mt_find() except that it checks @index for 0 before
6974  * searching. If @index == 0, the search is aborted. This covers a wrap
6975  * around of @index to 0 in an iterator loop.
6976  *
6977  * Return: The entry at or after the @index or %NULL
6978  */
mt_find_after(struct maple_tree * mt,unsigned long * index,unsigned long max)6979 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6980 		    unsigned long max)
6981 {
6982 	if (!(*index))
6983 		return NULL;
6984 
6985 	return mt_find(mt, index, max);
6986 }
6987 EXPORT_SYMBOL(mt_find_after);
6988 
6989 #ifdef CONFIG_DEBUG_MAPLE_TREE
6990 atomic_t maple_tree_tests_run;
6991 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6992 atomic_t maple_tree_tests_passed;
6993 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6994 
6995 #ifndef __KERNEL__
6996 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
mt_set_non_kernel(unsigned int val)6997 void mt_set_non_kernel(unsigned int val)
6998 {
6999 	kmem_cache_set_non_kernel(maple_node_cache, val);
7000 }
7001 
7002 extern void kmem_cache_set_callback(struct kmem_cache *cachep,
7003 		void (*callback)(void *));
mt_set_callback(void (* callback)(void *))7004 void mt_set_callback(void (*callback)(void *))
7005 {
7006 	kmem_cache_set_callback(maple_node_cache, callback);
7007 }
7008 
7009 extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private);
mt_set_private(void * private)7010 void mt_set_private(void *private)
7011 {
7012 	kmem_cache_set_private(maple_node_cache, private);
7013 }
7014 
7015 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
mt_get_alloc_size(void)7016 unsigned long mt_get_alloc_size(void)
7017 {
7018 	return kmem_cache_get_alloc(maple_node_cache);
7019 }
7020 
7021 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
mt_zero_nr_tallocated(void)7022 void mt_zero_nr_tallocated(void)
7023 {
7024 	kmem_cache_zero_nr_tallocated(maple_node_cache);
7025 }
7026 
7027 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
mt_nr_tallocated(void)7028 unsigned int mt_nr_tallocated(void)
7029 {
7030 	return kmem_cache_nr_tallocated(maple_node_cache);
7031 }
7032 
7033 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
mt_nr_allocated(void)7034 unsigned int mt_nr_allocated(void)
7035 {
7036 	return kmem_cache_nr_allocated(maple_node_cache);
7037 }
7038 
mt_cache_shrink(void)7039 void mt_cache_shrink(void)
7040 {
7041 }
7042 #else
7043 /*
7044  * mt_cache_shrink() - For testing, don't use this.
7045  *
7046  * Certain testcases can trigger an OOM when combined with other memory
7047  * debugging configuration options.  This function is used to reduce the
7048  * possibility of an out of memory even due to kmem_cache objects remaining
7049  * around for longer than usual.
7050  */
mt_cache_shrink(void)7051 void mt_cache_shrink(void)
7052 {
7053 	kmem_cache_shrink(maple_node_cache);
7054 
7055 }
7056 EXPORT_SYMBOL_GPL(mt_cache_shrink);
7057 
7058 #endif /* not defined __KERNEL__ */
7059 /*
7060  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
7061  * @mas: The maple state
7062  * @offset: The offset into the slot array to fetch.
7063  *
7064  * Return: The entry stored at @offset.
7065  */
mas_get_slot(struct ma_state * mas,unsigned char offset)7066 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
7067 		unsigned char offset)
7068 {
7069 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
7070 			offset);
7071 }
7072 
7073 /* Depth first search, post-order */
mas_dfs_postorder(struct ma_state * mas,unsigned long max)7074 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
7075 {
7076 
7077 	struct maple_enode *p, *mn = mas->node;
7078 	unsigned long p_min, p_max;
7079 
7080 	mas_next_node(mas, mas_mn(mas), max);
7081 	if (!mas_is_overflow(mas))
7082 		return;
7083 
7084 	if (mte_is_root(mn))
7085 		return;
7086 
7087 	mas->node = mn;
7088 	mas_ascend(mas);
7089 	do {
7090 		p = mas->node;
7091 		p_min = mas->min;
7092 		p_max = mas->max;
7093 		mas_prev_node(mas, 0);
7094 	} while (!mas_is_underflow(mas));
7095 
7096 	mas->node = p;
7097 	mas->max = p_max;
7098 	mas->min = p_min;
7099 }
7100 
7101 /* Tree validations */
7102 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7103 		unsigned long min, unsigned long max, unsigned int depth,
7104 		enum mt_dump_format format);
mt_dump_range(unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7105 static void mt_dump_range(unsigned long min, unsigned long max,
7106 			  unsigned int depth, enum mt_dump_format format)
7107 {
7108 	static const char spaces[] = "                                ";
7109 
7110 	switch(format) {
7111 	case mt_dump_hex:
7112 		if (min == max)
7113 			pr_info("%.*s%lx: ", depth * 2, spaces, min);
7114 		else
7115 			pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7116 		break;
7117 	case mt_dump_dec:
7118 		if (min == max)
7119 			pr_info("%.*s%lu: ", depth * 2, spaces, min);
7120 		else
7121 			pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7122 	}
7123 }
7124 
mt_dump_entry(void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7125 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
7126 			  unsigned int depth, enum mt_dump_format format)
7127 {
7128 	mt_dump_range(min, max, depth, format);
7129 
7130 	if (xa_is_value(entry))
7131 		pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
7132 				xa_to_value(entry), entry);
7133 	else if (xa_is_zero(entry))
7134 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
7135 	else if (mt_is_reserved(entry))
7136 		pr_cont("UNKNOWN ENTRY (%p)\n", entry);
7137 	else
7138 		pr_cont("%p\n", entry);
7139 }
7140 
mt_dump_range64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7141 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
7142 		unsigned long min, unsigned long max, unsigned int depth,
7143 		enum mt_dump_format format)
7144 {
7145 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7146 	bool leaf = mte_is_leaf(entry);
7147 	unsigned long first = min;
7148 	int i;
7149 
7150 	pr_cont(" contents: ");
7151 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7152 		switch(format) {
7153 		case mt_dump_hex:
7154 			pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7155 			break;
7156 		case mt_dump_dec:
7157 			pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7158 		}
7159 	}
7160 	pr_cont("%p\n", node->slot[i]);
7161 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7162 		unsigned long last = max;
7163 
7164 		if (i < (MAPLE_RANGE64_SLOTS - 1))
7165 			last = node->pivot[i];
7166 		else if (!node->slot[i] && max != mt_node_max(entry))
7167 			break;
7168 		if (last == 0 && i > 0)
7169 			break;
7170 		if (leaf)
7171 			mt_dump_entry(mt_slot(mt, node->slot, i),
7172 					first, last, depth + 1, format);
7173 		else if (node->slot[i])
7174 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7175 					first, last, depth + 1, format);
7176 
7177 		if (last == max)
7178 			break;
7179 		if (last > max) {
7180 			switch(format) {
7181 			case mt_dump_hex:
7182 				pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
7183 					node, last, max, i);
7184 				break;
7185 			case mt_dump_dec:
7186 				pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7187 					node, last, max, i);
7188 			}
7189 		}
7190 		first = last + 1;
7191 	}
7192 }
7193 
mt_dump_arange64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7194 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
7195 	unsigned long min, unsigned long max, unsigned int depth,
7196 	enum mt_dump_format format)
7197 {
7198 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7199 	unsigned long first = min;
7200 	int i;
7201 
7202 	pr_cont(" contents: ");
7203 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7204 		switch (format) {
7205 		case mt_dump_hex:
7206 			pr_cont("%lx ", node->gap[i]);
7207 			break;
7208 		case mt_dump_dec:
7209 			pr_cont("%lu ", node->gap[i]);
7210 		}
7211 	}
7212 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
7213 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7214 		switch (format) {
7215 		case mt_dump_hex:
7216 			pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7217 			break;
7218 		case mt_dump_dec:
7219 			pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7220 		}
7221 	}
7222 	pr_cont("%p\n", node->slot[i]);
7223 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7224 		unsigned long last = max;
7225 
7226 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
7227 			last = node->pivot[i];
7228 		else if (!node->slot[i])
7229 			break;
7230 		if (last == 0 && i > 0)
7231 			break;
7232 		if (node->slot[i])
7233 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7234 					first, last, depth + 1, format);
7235 
7236 		if (last == max)
7237 			break;
7238 		if (last > max) {
7239 			switch(format) {
7240 			case mt_dump_hex:
7241 				pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
7242 					node, last, max, i);
7243 				break;
7244 			case mt_dump_dec:
7245 				pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7246 					node, last, max, i);
7247 			}
7248 		}
7249 		first = last + 1;
7250 	}
7251 }
7252 
mt_dump_node(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7253 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7254 		unsigned long min, unsigned long max, unsigned int depth,
7255 		enum mt_dump_format format)
7256 {
7257 	struct maple_node *node = mte_to_node(entry);
7258 	unsigned int type = mte_node_type(entry);
7259 	unsigned int i;
7260 
7261 	mt_dump_range(min, max, depth, format);
7262 
7263 	pr_cont("node %p depth %d type %d parent %p", node, depth, type,
7264 			node ? node->parent : NULL);
7265 	switch (type) {
7266 	case maple_dense:
7267 		pr_cont("\n");
7268 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7269 			if (min + i > max)
7270 				pr_cont("OUT OF RANGE: ");
7271 			mt_dump_entry(mt_slot(mt, node->slot, i),
7272 					min + i, min + i, depth, format);
7273 		}
7274 		break;
7275 	case maple_leaf_64:
7276 	case maple_range_64:
7277 		mt_dump_range64(mt, entry, min, max, depth, format);
7278 		break;
7279 	case maple_arange_64:
7280 		mt_dump_arange64(mt, entry, min, max, depth, format);
7281 		break;
7282 
7283 	default:
7284 		pr_cont(" UNKNOWN TYPE\n");
7285 	}
7286 }
7287 
mt_dump(const struct maple_tree * mt,enum mt_dump_format format)7288 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
7289 {
7290 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7291 
7292 	pr_info("maple_tree(%p) flags %X, height %u root %p\n",
7293 		 mt, mt->ma_flags, mt_height(mt), entry);
7294 	if (!xa_is_node(entry))
7295 		mt_dump_entry(entry, 0, 0, 0, format);
7296 	else if (entry)
7297 		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
7298 }
7299 EXPORT_SYMBOL_GPL(mt_dump);
7300 
7301 /*
7302  * Calculate the maximum gap in a node and check if that's what is reported in
7303  * the parent (unless root).
7304  */
mas_validate_gaps(struct ma_state * mas)7305 static void mas_validate_gaps(struct ma_state *mas)
7306 {
7307 	struct maple_enode *mte = mas->node;
7308 	struct maple_node *p_mn, *node = mte_to_node(mte);
7309 	enum maple_type mt = mte_node_type(mas->node);
7310 	unsigned long gap = 0, max_gap = 0;
7311 	unsigned long p_end, p_start = mas->min;
7312 	unsigned char p_slot, offset;
7313 	unsigned long *gaps = NULL;
7314 	unsigned long *pivots = ma_pivots(node, mt);
7315 	unsigned int i;
7316 
7317 	if (ma_is_dense(mt)) {
7318 		for (i = 0; i < mt_slot_count(mte); i++) {
7319 			if (mas_get_slot(mas, i)) {
7320 				if (gap > max_gap)
7321 					max_gap = gap;
7322 				gap = 0;
7323 				continue;
7324 			}
7325 			gap++;
7326 		}
7327 		goto counted;
7328 	}
7329 
7330 	gaps = ma_gaps(node, mt);
7331 	for (i = 0; i < mt_slot_count(mte); i++) {
7332 		p_end = mas_safe_pivot(mas, pivots, i, mt);
7333 
7334 		if (!gaps) {
7335 			if (!mas_get_slot(mas, i))
7336 				gap = p_end - p_start + 1;
7337 		} else {
7338 			void *entry = mas_get_slot(mas, i);
7339 
7340 			gap = gaps[i];
7341 			MT_BUG_ON(mas->tree, !entry);
7342 
7343 			if (gap > p_end - p_start + 1) {
7344 				pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7345 				       mas_mn(mas), i, gap, p_end, p_start,
7346 				       p_end - p_start + 1);
7347 				MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
7348 			}
7349 		}
7350 
7351 		if (gap > max_gap)
7352 			max_gap = gap;
7353 
7354 		p_start = p_end + 1;
7355 		if (p_end >= mas->max)
7356 			break;
7357 	}
7358 
7359 counted:
7360 	if (mt == maple_arange_64) {
7361 		MT_BUG_ON(mas->tree, !gaps);
7362 		offset = ma_meta_gap(node);
7363 		if (offset > i) {
7364 			pr_err("gap offset %p[%u] is invalid\n", node, offset);
7365 			MT_BUG_ON(mas->tree, 1);
7366 		}
7367 
7368 		if (gaps[offset] != max_gap) {
7369 			pr_err("gap %p[%u] is not the largest gap %lu\n",
7370 			       node, offset, max_gap);
7371 			MT_BUG_ON(mas->tree, 1);
7372 		}
7373 
7374 		for (i++ ; i < mt_slot_count(mte); i++) {
7375 			if (gaps[i] != 0) {
7376 				pr_err("gap %p[%u] beyond node limit != 0\n",
7377 				       node, i);
7378 				MT_BUG_ON(mas->tree, 1);
7379 			}
7380 		}
7381 	}
7382 
7383 	if (mte_is_root(mte))
7384 		return;
7385 
7386 	p_slot = mte_parent_slot(mas->node);
7387 	p_mn = mte_parent(mte);
7388 	MT_BUG_ON(mas->tree, max_gap > mas->max);
7389 	if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7390 		pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
7391 		mt_dump(mas->tree, mt_dump_hex);
7392 		MT_BUG_ON(mas->tree, 1);
7393 	}
7394 }
7395 
mas_validate_parent_slot(struct ma_state * mas)7396 static void mas_validate_parent_slot(struct ma_state *mas)
7397 {
7398 	struct maple_node *parent;
7399 	struct maple_enode *node;
7400 	enum maple_type p_type;
7401 	unsigned char p_slot;
7402 	void __rcu **slots;
7403 	int i;
7404 
7405 	if (mte_is_root(mas->node))
7406 		return;
7407 
7408 	p_slot = mte_parent_slot(mas->node);
7409 	p_type = mas_parent_type(mas, mas->node);
7410 	parent = mte_parent(mas->node);
7411 	slots = ma_slots(parent, p_type);
7412 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7413 
7414 	/* Check prev/next parent slot for duplicate node entry */
7415 
7416 	for (i = 0; i < mt_slots[p_type]; i++) {
7417 		node = mas_slot(mas, slots, i);
7418 		if (i == p_slot) {
7419 			if (node != mas->node)
7420 				pr_err("parent %p[%u] does not have %p\n",
7421 					parent, i, mas_mn(mas));
7422 			MT_BUG_ON(mas->tree, node != mas->node);
7423 		} else if (node == mas->node) {
7424 			pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7425 			       mas_mn(mas), parent, i, p_slot);
7426 			MT_BUG_ON(mas->tree, node == mas->node);
7427 		}
7428 	}
7429 }
7430 
mas_validate_child_slot(struct ma_state * mas)7431 static void mas_validate_child_slot(struct ma_state *mas)
7432 {
7433 	enum maple_type type = mte_node_type(mas->node);
7434 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7435 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7436 	struct maple_enode *child;
7437 	unsigned char i;
7438 
7439 	if (mte_is_leaf(mas->node))
7440 		return;
7441 
7442 	for (i = 0; i < mt_slots[type]; i++) {
7443 		child = mas_slot(mas, slots, i);
7444 
7445 		if (!child) {
7446 			pr_err("Non-leaf node lacks child at %p[%u]\n",
7447 			       mas_mn(mas), i);
7448 			MT_BUG_ON(mas->tree, 1);
7449 		}
7450 
7451 		if (mte_parent_slot(child) != i) {
7452 			pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7453 			       mas_mn(mas), i, mte_to_node(child),
7454 			       mte_parent_slot(child));
7455 			MT_BUG_ON(mas->tree, 1);
7456 		}
7457 
7458 		if (mte_parent(child) != mte_to_node(mas->node)) {
7459 			pr_err("child %p has parent %p not %p\n",
7460 			       mte_to_node(child), mte_parent(child),
7461 			       mte_to_node(mas->node));
7462 			MT_BUG_ON(mas->tree, 1);
7463 		}
7464 
7465 		if (i < mt_pivots[type] && pivots[i] == mas->max)
7466 			break;
7467 	}
7468 }
7469 
7470 /*
7471  * Validate all pivots are within mas->min and mas->max, check metadata ends
7472  * where the maximum ends and ensure there is no slots or pivots set outside of
7473  * the end of the data.
7474  */
mas_validate_limits(struct ma_state * mas)7475 static void mas_validate_limits(struct ma_state *mas)
7476 {
7477 	int i;
7478 	unsigned long prev_piv = 0;
7479 	enum maple_type type = mte_node_type(mas->node);
7480 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7481 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7482 
7483 	for (i = 0; i < mt_slots[type]; i++) {
7484 		unsigned long piv;
7485 
7486 		piv = mas_safe_pivot(mas, pivots, i, type);
7487 
7488 		if (!piv && (i != 0)) {
7489 			pr_err("Missing node limit pivot at %p[%u]",
7490 			       mas_mn(mas), i);
7491 			MAS_WARN_ON(mas, 1);
7492 		}
7493 
7494 		if (prev_piv > piv) {
7495 			pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7496 				mas_mn(mas), i, piv, prev_piv);
7497 			MAS_WARN_ON(mas, piv < prev_piv);
7498 		}
7499 
7500 		if (piv < mas->min) {
7501 			pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7502 				piv, mas->min);
7503 			MAS_WARN_ON(mas, piv < mas->min);
7504 		}
7505 		if (piv > mas->max) {
7506 			pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7507 				piv, mas->max);
7508 			MAS_WARN_ON(mas, piv > mas->max);
7509 		}
7510 		prev_piv = piv;
7511 		if (piv == mas->max)
7512 			break;
7513 	}
7514 
7515 	if (mas_data_end(mas) != i) {
7516 		pr_err("node%p: data_end %u != the last slot offset %u\n",
7517 		       mas_mn(mas), mas_data_end(mas), i);
7518 		MT_BUG_ON(mas->tree, 1);
7519 	}
7520 
7521 	for (i += 1; i < mt_slots[type]; i++) {
7522 		void *entry = mas_slot(mas, slots, i);
7523 
7524 		if (entry && (i != mt_slots[type] - 1)) {
7525 			pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7526 			       i, entry);
7527 			MT_BUG_ON(mas->tree, entry != NULL);
7528 		}
7529 
7530 		if (i < mt_pivots[type]) {
7531 			unsigned long piv = pivots[i];
7532 
7533 			if (!piv)
7534 				continue;
7535 
7536 			pr_err("%p[%u] should not have piv %lu\n",
7537 			       mas_mn(mas), i, piv);
7538 			MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7539 		}
7540 	}
7541 }
7542 
mt_validate_nulls(struct maple_tree * mt)7543 static void mt_validate_nulls(struct maple_tree *mt)
7544 {
7545 	void *entry, *last = (void *)1;
7546 	unsigned char offset = 0;
7547 	void __rcu **slots;
7548 	MA_STATE(mas, mt, 0, 0);
7549 
7550 	mas_start(&mas);
7551 	if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
7552 		return;
7553 
7554 	while (!mte_is_leaf(mas.node))
7555 		mas_descend(&mas);
7556 
7557 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7558 	do {
7559 		entry = mas_slot(&mas, slots, offset);
7560 		if (!last && !entry) {
7561 			pr_err("Sequential nulls end at %p[%u]\n",
7562 				mas_mn(&mas), offset);
7563 		}
7564 		MT_BUG_ON(mt, !last && !entry);
7565 		last = entry;
7566 		if (offset == mas_data_end(&mas)) {
7567 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7568 			if (mas_is_overflow(&mas))
7569 				return;
7570 			offset = 0;
7571 			slots = ma_slots(mte_to_node(mas.node),
7572 					 mte_node_type(mas.node));
7573 		} else {
7574 			offset++;
7575 		}
7576 
7577 	} while (!mas_is_overflow(&mas));
7578 }
7579 
7580 /*
7581  * validate a maple tree by checking:
7582  * 1. The limits (pivots are within mas->min to mas->max)
7583  * 2. The gap is correctly set in the parents
7584  */
mt_validate(struct maple_tree * mt)7585 void mt_validate(struct maple_tree *mt)
7586 	__must_hold(mas->tree->ma_lock)
7587 {
7588 	unsigned char end;
7589 
7590 	MA_STATE(mas, mt, 0, 0);
7591 	mas_start(&mas);
7592 	if (!mas_is_active(&mas))
7593 		return;
7594 
7595 	while (!mte_is_leaf(mas.node))
7596 		mas_descend(&mas);
7597 
7598 	while (!mas_is_overflow(&mas)) {
7599 		MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7600 		end = mas_data_end(&mas);
7601 		if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7602 				(mas.max != ULONG_MAX))) {
7603 			pr_err("Invalid size %u of %p\n", end, mas_mn(&mas));
7604 		}
7605 
7606 		mas_validate_parent_slot(&mas);
7607 		mas_validate_limits(&mas);
7608 		mas_validate_child_slot(&mas);
7609 		if (mt_is_alloc(mt))
7610 			mas_validate_gaps(&mas);
7611 		mas_dfs_postorder(&mas, ULONG_MAX);
7612 	}
7613 	mt_validate_nulls(mt);
7614 }
7615 EXPORT_SYMBOL_GPL(mt_validate);
7616 
mas_dump(const struct ma_state * mas)7617 void mas_dump(const struct ma_state *mas)
7618 {
7619 	pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7620 	switch (mas->status) {
7621 	case ma_active:
7622 		pr_err("(ma_active)");
7623 		break;
7624 	case ma_none:
7625 		pr_err("(ma_none)");
7626 		break;
7627 	case ma_root:
7628 		pr_err("(ma_root)");
7629 		break;
7630 	case ma_start:
7631 		pr_err("(ma_start) ");
7632 		break;
7633 	case ma_pause:
7634 		pr_err("(ma_pause) ");
7635 		break;
7636 	case ma_overflow:
7637 		pr_err("(ma_overflow) ");
7638 		break;
7639 	case ma_underflow:
7640 		pr_err("(ma_underflow) ");
7641 		break;
7642 	case ma_error:
7643 		pr_err("(ma_error) ");
7644 		break;
7645 	}
7646 
7647 	pr_err("Store Type: ");
7648 	switch (mas->store_type) {
7649 	case wr_invalid:
7650 		pr_err("invalid store type\n");
7651 		break;
7652 	case wr_new_root:
7653 		pr_err("new_root\n");
7654 		break;
7655 	case wr_store_root:
7656 		pr_err("store_root\n");
7657 		break;
7658 	case wr_exact_fit:
7659 		pr_err("exact_fit\n");
7660 		break;
7661 	case wr_split_store:
7662 		pr_err("split_store\n");
7663 		break;
7664 	case wr_slot_store:
7665 		pr_err("slot_store\n");
7666 		break;
7667 	case wr_append:
7668 		pr_err("append\n");
7669 		break;
7670 	case wr_node_store:
7671 		pr_err("node_store\n");
7672 		break;
7673 	case wr_spanning_store:
7674 		pr_err("spanning_store\n");
7675 		break;
7676 	case wr_rebalance:
7677 		pr_err("rebalance\n");
7678 		break;
7679 	}
7680 
7681 	pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7682 	       mas->index, mas->last);
7683 	pr_err("     min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7684 	       mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7685 	if (mas->index > mas->last)
7686 		pr_err("Check index & last\n");
7687 }
7688 EXPORT_SYMBOL_GPL(mas_dump);
7689 
mas_wr_dump(const struct ma_wr_state * wr_mas)7690 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7691 {
7692 	pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7693 	       wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7694 	pr_err("        type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7695 	       wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7696 	       wr_mas->end_piv);
7697 }
7698 EXPORT_SYMBOL_GPL(mas_wr_dump);
7699 
7700 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7701