1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Data Access Monitor
4  *
5  * Author: SeongJae Park <sj@kernel.org>
6  */
7 
8 #define pr_fmt(fmt) "damon: " fmt
9 
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/psi.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 
18 #define CREATE_TRACE_POINTS
19 #include <trace/events/damon.h>
20 
21 #ifdef CONFIG_DAMON_KUNIT_TEST
22 #undef DAMON_MIN_REGION
23 #define DAMON_MIN_REGION 1
24 #endif
25 
26 static DEFINE_MUTEX(damon_lock);
27 static int nr_running_ctxs;
28 static bool running_exclusive_ctxs;
29 
30 static DEFINE_MUTEX(damon_ops_lock);
31 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
32 
33 static struct kmem_cache *damon_region_cache __ro_after_init;
34 
35 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
__damon_is_registered_ops(enum damon_ops_id id)36 static bool __damon_is_registered_ops(enum damon_ops_id id)
37 {
38 	struct damon_operations empty_ops = {};
39 
40 	if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
41 		return false;
42 	return true;
43 }
44 
45 /**
46  * damon_is_registered_ops() - Check if a given damon_operations is registered.
47  * @id:	Id of the damon_operations to check if registered.
48  *
49  * Return: true if the ops is set, false otherwise.
50  */
damon_is_registered_ops(enum damon_ops_id id)51 bool damon_is_registered_ops(enum damon_ops_id id)
52 {
53 	bool registered;
54 
55 	if (id >= NR_DAMON_OPS)
56 		return false;
57 	mutex_lock(&damon_ops_lock);
58 	registered = __damon_is_registered_ops(id);
59 	mutex_unlock(&damon_ops_lock);
60 	return registered;
61 }
62 
63 /**
64  * damon_register_ops() - Register a monitoring operations set to DAMON.
65  * @ops:	monitoring operations set to register.
66  *
67  * This function registers a monitoring operations set of valid &struct
68  * damon_operations->id so that others can find and use them later.
69  *
70  * Return: 0 on success, negative error code otherwise.
71  */
damon_register_ops(struct damon_operations * ops)72 int damon_register_ops(struct damon_operations *ops)
73 {
74 	int err = 0;
75 
76 	if (ops->id >= NR_DAMON_OPS)
77 		return -EINVAL;
78 	mutex_lock(&damon_ops_lock);
79 	/* Fail for already registered ops */
80 	if (__damon_is_registered_ops(ops->id)) {
81 		err = -EINVAL;
82 		goto out;
83 	}
84 	damon_registered_ops[ops->id] = *ops;
85 out:
86 	mutex_unlock(&damon_ops_lock);
87 	return err;
88 }
89 
90 /**
91  * damon_select_ops() - Select a monitoring operations to use with the context.
92  * @ctx:	monitoring context to use the operations.
93  * @id:		id of the registered monitoring operations to select.
94  *
95  * This function finds registered monitoring operations set of @id and make
96  * @ctx to use it.
97  *
98  * Return: 0 on success, negative error code otherwise.
99  */
damon_select_ops(struct damon_ctx * ctx,enum damon_ops_id id)100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
101 {
102 	int err = 0;
103 
104 	if (id >= NR_DAMON_OPS)
105 		return -EINVAL;
106 
107 	mutex_lock(&damon_ops_lock);
108 	if (!__damon_is_registered_ops(id))
109 		err = -EINVAL;
110 	else
111 		ctx->ops = damon_registered_ops[id];
112 	mutex_unlock(&damon_ops_lock);
113 	return err;
114 }
115 
116 /*
117  * Construct a damon_region struct
118  *
119  * Returns the pointer to the new struct if success, or NULL otherwise
120  */
damon_new_region(unsigned long start,unsigned long end)121 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
122 {
123 	struct damon_region *region;
124 
125 	region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
126 	if (!region)
127 		return NULL;
128 
129 	region->ar.start = start;
130 	region->ar.end = end;
131 	region->nr_accesses = 0;
132 	region->nr_accesses_bp = 0;
133 	INIT_LIST_HEAD(®ion->list);
134 
135 	region->age = 0;
136 	region->last_nr_accesses = 0;
137 
138 	return region;
139 }
140 
damon_add_region(struct damon_region * r,struct damon_target * t)141 void damon_add_region(struct damon_region *r, struct damon_target *t)
142 {
143 	list_add_tail(&r->list, &t->regions_list);
144 	t->nr_regions++;
145 }
146 
damon_del_region(struct damon_region * r,struct damon_target * t)147 static void damon_del_region(struct damon_region *r, struct damon_target *t)
148 {
149 	list_del(&r->list);
150 	t->nr_regions--;
151 }
152 
damon_free_region(struct damon_region * r)153 static void damon_free_region(struct damon_region *r)
154 {
155 	kmem_cache_free(damon_region_cache, r);
156 }
157 
damon_destroy_region(struct damon_region * r,struct damon_target * t)158 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
159 {
160 	damon_del_region(r, t);
161 	damon_free_region(r);
162 }
163 
164 /*
165  * Check whether a region is intersecting an address range
166  *
167  * Returns true if it is.
168  */
damon_intersect(struct damon_region * r,struct damon_addr_range * re)169 static bool damon_intersect(struct damon_region *r,
170 		struct damon_addr_range *re)
171 {
172 	return !(r->ar.end <= re->start || re->end <= r->ar.start);
173 }
174 
175 /*
176  * Fill holes in regions with new regions.
177  */
damon_fill_regions_holes(struct damon_region * first,struct damon_region * last,struct damon_target * t)178 static int damon_fill_regions_holes(struct damon_region *first,
179 		struct damon_region *last, struct damon_target *t)
180 {
181 	struct damon_region *r = first;
182 
183 	damon_for_each_region_from(r, t) {
184 		struct damon_region *next, *newr;
185 
186 		if (r == last)
187 			break;
188 		next = damon_next_region(r);
189 		if (r->ar.end != next->ar.start) {
190 			newr = damon_new_region(r->ar.end, next->ar.start);
191 			if (!newr)
192 				return -ENOMEM;
193 			damon_insert_region(newr, r, next, t);
194 		}
195 	}
196 	return 0;
197 }
198 
199 /*
200  * damon_set_regions() - Set regions of a target for given address ranges.
201  * @t:		the given target.
202  * @ranges:	array of new monitoring target ranges.
203  * @nr_ranges:	length of @ranges.
204  *
205  * This function adds new regions to, or modify existing regions of a
206  * monitoring target to fit in specific ranges.
207  *
208  * Return: 0 if success, or negative error code otherwise.
209  */
damon_set_regions(struct damon_target * t,struct damon_addr_range * ranges,unsigned int nr_ranges)210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
211 		unsigned int nr_ranges)
212 {
213 	struct damon_region *r, *next;
214 	unsigned int i;
215 	int err;
216 
217 	/* Remove regions which are not in the new ranges */
218 	damon_for_each_region_safe(r, next, t) {
219 		for (i = 0; i < nr_ranges; i++) {
220 			if (damon_intersect(r, &ranges[i]))
221 				break;
222 		}
223 		if (i == nr_ranges)
224 			damon_destroy_region(r, t);
225 	}
226 
227 	r = damon_first_region(t);
228 	/* Add new regions or resize existing regions to fit in the ranges */
229 	for (i = 0; i < nr_ranges; i++) {
230 		struct damon_region *first = NULL, *last, *newr;
231 		struct damon_addr_range *range;
232 
233 		range = &ranges[i];
234 		/* Get the first/last regions intersecting with the range */
235 		damon_for_each_region_from(r, t) {
236 			if (damon_intersect(r, range)) {
237 				if (!first)
238 					first = r;
239 				last = r;
240 			}
241 			if (r->ar.start >= range->end)
242 				break;
243 		}
244 		if (!first) {
245 			/* no region intersects with this range */
246 			newr = damon_new_region(
247 					ALIGN_DOWN(range->start,
248 						DAMON_MIN_REGION),
249 					ALIGN(range->end, DAMON_MIN_REGION));
250 			if (!newr)
251 				return -ENOMEM;
252 			damon_insert_region(newr, damon_prev_region(r), r, t);
253 		} else {
254 			/* resize intersecting regions to fit in this range */
255 			first->ar.start = ALIGN_DOWN(range->start,
256 					DAMON_MIN_REGION);
257 			last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
258 
259 			/* fill possible holes in the range */
260 			err = damon_fill_regions_holes(first, last, t);
261 			if (err)
262 				return err;
263 		}
264 	}
265 	return 0;
266 }
267 
damos_new_filter(enum damos_filter_type type,bool matching)268 struct damos_filter *damos_new_filter(enum damos_filter_type type,
269 		bool matching)
270 {
271 	struct damos_filter *filter;
272 
273 	filter = kmalloc(sizeof(*filter), GFP_KERNEL);
274 	if (!filter)
275 		return NULL;
276 	filter->type = type;
277 	filter->matching = matching;
278 	INIT_LIST_HEAD(&filter->list);
279 	return filter;
280 }
281 
damos_add_filter(struct damos * s,struct damos_filter * f)282 void damos_add_filter(struct damos *s, struct damos_filter *f)
283 {
284 	list_add_tail(&f->list, &s->filters);
285 }
286 
damos_del_filter(struct damos_filter * f)287 static void damos_del_filter(struct damos_filter *f)
288 {
289 	list_del(&f->list);
290 }
291 
damos_free_filter(struct damos_filter * f)292 static void damos_free_filter(struct damos_filter *f)
293 {
294 	kfree(f);
295 }
296 
damos_destroy_filter(struct damos_filter * f)297 void damos_destroy_filter(struct damos_filter *f)
298 {
299 	damos_del_filter(f);
300 	damos_free_filter(f);
301 }
302 
damos_new_quota_goal(enum damos_quota_goal_metric metric,unsigned long target_value)303 struct damos_quota_goal *damos_new_quota_goal(
304 		enum damos_quota_goal_metric metric,
305 		unsigned long target_value)
306 {
307 	struct damos_quota_goal *goal;
308 
309 	goal = kmalloc(sizeof(*goal), GFP_KERNEL);
310 	if (!goal)
311 		return NULL;
312 	goal->metric = metric;
313 	goal->target_value = target_value;
314 	INIT_LIST_HEAD(&goal->list);
315 	return goal;
316 }
317 
damos_add_quota_goal(struct damos_quota * q,struct damos_quota_goal * g)318 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
319 {
320 	list_add_tail(&g->list, &q->goals);
321 }
322 
damos_del_quota_goal(struct damos_quota_goal * g)323 static void damos_del_quota_goal(struct damos_quota_goal *g)
324 {
325 	list_del(&g->list);
326 }
327 
damos_free_quota_goal(struct damos_quota_goal * g)328 static void damos_free_quota_goal(struct damos_quota_goal *g)
329 {
330 	kfree(g);
331 }
332 
damos_destroy_quota_goal(struct damos_quota_goal * g)333 void damos_destroy_quota_goal(struct damos_quota_goal *g)
334 {
335 	damos_del_quota_goal(g);
336 	damos_free_quota_goal(g);
337 }
338 
339 /* initialize fields of @quota that normally API users wouldn't set */
damos_quota_init(struct damos_quota * quota)340 static struct damos_quota *damos_quota_init(struct damos_quota *quota)
341 {
342 	quota->esz = 0;
343 	quota->total_charged_sz = 0;
344 	quota->total_charged_ns = 0;
345 	quota->charged_sz = 0;
346 	quota->charged_from = 0;
347 	quota->charge_target_from = NULL;
348 	quota->charge_addr_from = 0;
349 	quota->esz_bp = 0;
350 	return quota;
351 }
352 
damon_new_scheme(struct damos_access_pattern * pattern,enum damos_action action,unsigned long apply_interval_us,struct damos_quota * quota,struct damos_watermarks * wmarks,int target_nid)353 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
354 			enum damos_action action,
355 			unsigned long apply_interval_us,
356 			struct damos_quota *quota,
357 			struct damos_watermarks *wmarks,
358 			int target_nid)
359 {
360 	struct damos *scheme;
361 
362 	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
363 	if (!scheme)
364 		return NULL;
365 	scheme->pattern = *pattern;
366 	scheme->action = action;
367 	scheme->apply_interval_us = apply_interval_us;
368 	/*
369 	 * next_apply_sis will be set when kdamond starts.  While kdamond is
370 	 * running, it will also updated when it is added to the DAMON context,
371 	 * or damon_attrs are updated.
372 	 */
373 	scheme->next_apply_sis = 0;
374 	INIT_LIST_HEAD(&scheme->filters);
375 	scheme->stat = (struct damos_stat){};
376 	INIT_LIST_HEAD(&scheme->list);
377 
378 	scheme->quota = *(damos_quota_init(quota));
379 	/* quota.goals should be separately set by caller */
380 	INIT_LIST_HEAD(&scheme->quota.goals);
381 
382 	scheme->wmarks = *wmarks;
383 	scheme->wmarks.activated = true;
384 
385 	scheme->target_nid = target_nid;
386 
387 	return scheme;
388 }
389 
damos_set_next_apply_sis(struct damos * s,struct damon_ctx * ctx)390 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
391 {
392 	unsigned long sample_interval = ctx->attrs.sample_interval ?
393 		ctx->attrs.sample_interval : 1;
394 	unsigned long apply_interval = s->apply_interval_us ?
395 		s->apply_interval_us : ctx->attrs.aggr_interval;
396 
397 	s->next_apply_sis = ctx->passed_sample_intervals +
398 		apply_interval / sample_interval;
399 }
400 
damon_add_scheme(struct damon_ctx * ctx,struct damos * s)401 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
402 {
403 	list_add_tail(&s->list, &ctx->schemes);
404 	damos_set_next_apply_sis(s, ctx);
405 }
406 
damon_del_scheme(struct damos * s)407 static void damon_del_scheme(struct damos *s)
408 {
409 	list_del(&s->list);
410 }
411 
damon_free_scheme(struct damos * s)412 static void damon_free_scheme(struct damos *s)
413 {
414 	kfree(s);
415 }
416 
damon_destroy_scheme(struct damos * s)417 void damon_destroy_scheme(struct damos *s)
418 {
419 	struct damos_quota_goal *g, *g_next;
420 	struct damos_filter *f, *next;
421 
422 	damos_for_each_quota_goal_safe(g, g_next, &s->quota)
423 		damos_destroy_quota_goal(g);
424 
425 	damos_for_each_filter_safe(f, next, s)
426 		damos_destroy_filter(f);
427 	damon_del_scheme(s);
428 	damon_free_scheme(s);
429 }
430 
431 /*
432  * Construct a damon_target struct
433  *
434  * Returns the pointer to the new struct if success, or NULL otherwise
435  */
damon_new_target(void)436 struct damon_target *damon_new_target(void)
437 {
438 	struct damon_target *t;
439 
440 	t = kmalloc(sizeof(*t), GFP_KERNEL);
441 	if (!t)
442 		return NULL;
443 
444 	t->pid = NULL;
445 	t->nr_regions = 0;
446 	INIT_LIST_HEAD(&t->regions_list);
447 	INIT_LIST_HEAD(&t->list);
448 
449 	return t;
450 }
451 
damon_add_target(struct damon_ctx * ctx,struct damon_target * t)452 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
453 {
454 	list_add_tail(&t->list, &ctx->adaptive_targets);
455 }
456 
damon_targets_empty(struct damon_ctx * ctx)457 bool damon_targets_empty(struct damon_ctx *ctx)
458 {
459 	return list_empty(&ctx->adaptive_targets);
460 }
461 
damon_del_target(struct damon_target * t)462 static void damon_del_target(struct damon_target *t)
463 {
464 	list_del(&t->list);
465 }
466 
damon_free_target(struct damon_target * t)467 void damon_free_target(struct damon_target *t)
468 {
469 	struct damon_region *r, *next;
470 
471 	damon_for_each_region_safe(r, next, t)
472 		damon_free_region(r);
473 	kfree(t);
474 }
475 
damon_destroy_target(struct damon_target * t)476 void damon_destroy_target(struct damon_target *t)
477 {
478 	damon_del_target(t);
479 	damon_free_target(t);
480 }
481 
damon_nr_regions(struct damon_target * t)482 unsigned int damon_nr_regions(struct damon_target *t)
483 {
484 	return t->nr_regions;
485 }
486 
damon_new_ctx(void)487 struct damon_ctx *damon_new_ctx(void)
488 {
489 	struct damon_ctx *ctx;
490 
491 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
492 	if (!ctx)
493 		return NULL;
494 
495 	init_completion(&ctx->kdamond_started);
496 
497 	ctx->attrs.sample_interval = 5 * 1000;
498 	ctx->attrs.aggr_interval = 100 * 1000;
499 	ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
500 
501 	ctx->passed_sample_intervals = 0;
502 	/* These will be set from kdamond_init_intervals_sis() */
503 	ctx->next_aggregation_sis = 0;
504 	ctx->next_ops_update_sis = 0;
505 
506 	mutex_init(&ctx->kdamond_lock);
507 
508 	ctx->attrs.min_nr_regions = 10;
509 	ctx->attrs.max_nr_regions = 1000;
510 
511 	INIT_LIST_HEAD(&ctx->adaptive_targets);
512 	INIT_LIST_HEAD(&ctx->schemes);
513 
514 	return ctx;
515 }
516 
damon_destroy_targets(struct damon_ctx * ctx)517 static void damon_destroy_targets(struct damon_ctx *ctx)
518 {
519 	struct damon_target *t, *next_t;
520 
521 	if (ctx->ops.cleanup) {
522 		ctx->ops.cleanup(ctx);
523 		return;
524 	}
525 
526 	damon_for_each_target_safe(t, next_t, ctx)
527 		damon_destroy_target(t);
528 }
529 
damon_destroy_ctx(struct damon_ctx * ctx)530 void damon_destroy_ctx(struct damon_ctx *ctx)
531 {
532 	struct damos *s, *next_s;
533 
534 	damon_destroy_targets(ctx);
535 
536 	damon_for_each_scheme_safe(s, next_s, ctx)
537 		damon_destroy_scheme(s);
538 
539 	kfree(ctx);
540 }
541 
damon_age_for_new_attrs(unsigned int age,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)542 static unsigned int damon_age_for_new_attrs(unsigned int age,
543 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
544 {
545 	return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
546 }
547 
548 /* convert access ratio in bp (per 10,000) to nr_accesses */
damon_accesses_bp_to_nr_accesses(unsigned int accesses_bp,struct damon_attrs * attrs)549 static unsigned int damon_accesses_bp_to_nr_accesses(
550 		unsigned int accesses_bp, struct damon_attrs *attrs)
551 {
552 	return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
553 }
554 
555 /*
556  * Convert nr_accesses to access ratio in bp (per 10,000).
557  *
558  * Callers should ensure attrs.aggr_interval is not zero, like
559  * damon_update_monitoring_results() does .  Otherwise, divide-by-zero would
560  * happen.
561  */
damon_nr_accesses_to_accesses_bp(unsigned int nr_accesses,struct damon_attrs * attrs)562 static unsigned int damon_nr_accesses_to_accesses_bp(
563 		unsigned int nr_accesses, struct damon_attrs *attrs)
564 {
565 	return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
566 }
567 
damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)568 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
569 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
570 {
571 	return damon_accesses_bp_to_nr_accesses(
572 			damon_nr_accesses_to_accesses_bp(
573 				nr_accesses, old_attrs),
574 			new_attrs);
575 }
576 
damon_update_monitoring_result(struct damon_region * r,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)577 static void damon_update_monitoring_result(struct damon_region *r,
578 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
579 {
580 	r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
581 			old_attrs, new_attrs);
582 	r->nr_accesses_bp = r->nr_accesses * 10000;
583 	r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
584 }
585 
586 /*
587  * region->nr_accesses is the number of sampling intervals in the last
588  * aggregation interval that access to the region has found, and region->age is
589  * the number of aggregation intervals that its access pattern has maintained.
590  * For the reason, the real meaning of the two fields depend on current
591  * sampling interval and aggregation interval.  This function updates
592  * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
593  */
damon_update_monitoring_results(struct damon_ctx * ctx,struct damon_attrs * new_attrs)594 static void damon_update_monitoring_results(struct damon_ctx *ctx,
595 		struct damon_attrs *new_attrs)
596 {
597 	struct damon_attrs *old_attrs = &ctx->attrs;
598 	struct damon_target *t;
599 	struct damon_region *r;
600 
601 	/* if any interval is zero, simply forgive conversion */
602 	if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
603 			!new_attrs->sample_interval ||
604 			!new_attrs->aggr_interval)
605 		return;
606 
607 	damon_for_each_target(t, ctx)
608 		damon_for_each_region(r, t)
609 			damon_update_monitoring_result(
610 					r, old_attrs, new_attrs);
611 }
612 
613 /**
614  * damon_set_attrs() - Set attributes for the monitoring.
615  * @ctx:		monitoring context
616  * @attrs:		monitoring attributes
617  *
618  * This function should be called while the kdamond is not running, or an
619  * access check results aggregation is not ongoing (e.g., from
620  * &struct damon_callback->after_aggregation or
621  * &struct damon_callback->after_wmarks_check callbacks).
622  *
623  * Every time interval is in micro-seconds.
624  *
625  * Return: 0 on success, negative error code otherwise.
626  */
damon_set_attrs(struct damon_ctx * ctx,struct damon_attrs * attrs)627 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
628 {
629 	unsigned long sample_interval = attrs->sample_interval ?
630 		attrs->sample_interval : 1;
631 	struct damos *s;
632 
633 	if (attrs->min_nr_regions < 3)
634 		return -EINVAL;
635 	if (attrs->min_nr_regions > attrs->max_nr_regions)
636 		return -EINVAL;
637 	if (attrs->sample_interval > attrs->aggr_interval)
638 		return -EINVAL;
639 
640 	ctx->next_aggregation_sis = ctx->passed_sample_intervals +
641 		attrs->aggr_interval / sample_interval;
642 	ctx->next_ops_update_sis = ctx->passed_sample_intervals +
643 		attrs->ops_update_interval / sample_interval;
644 
645 	damon_update_monitoring_results(ctx, attrs);
646 	ctx->attrs = *attrs;
647 
648 	damon_for_each_scheme(s, ctx)
649 		damos_set_next_apply_sis(s, ctx);
650 
651 	return 0;
652 }
653 
654 /**
655  * damon_set_schemes() - Set data access monitoring based operation schemes.
656  * @ctx:	monitoring context
657  * @schemes:	array of the schemes
658  * @nr_schemes:	number of entries in @schemes
659  *
660  * This function should not be called while the kdamond of the context is
661  * running.
662  */
damon_set_schemes(struct damon_ctx * ctx,struct damos ** schemes,ssize_t nr_schemes)663 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
664 			ssize_t nr_schemes)
665 {
666 	struct damos *s, *next;
667 	ssize_t i;
668 
669 	damon_for_each_scheme_safe(s, next, ctx)
670 		damon_destroy_scheme(s);
671 	for (i = 0; i < nr_schemes; i++)
672 		damon_add_scheme(ctx, schemes[i]);
673 }
674 
damos_nth_quota_goal(int n,struct damos_quota * q)675 static struct damos_quota_goal *damos_nth_quota_goal(
676 		int n, struct damos_quota *q)
677 {
678 	struct damos_quota_goal *goal;
679 	int i = 0;
680 
681 	damos_for_each_quota_goal(goal, q) {
682 		if (i++ == n)
683 			return goal;
684 	}
685 	return NULL;
686 }
687 
damos_commit_quota_goal(struct damos_quota_goal * dst,struct damos_quota_goal * src)688 static void damos_commit_quota_goal(
689 		struct damos_quota_goal *dst, struct damos_quota_goal *src)
690 {
691 	dst->metric = src->metric;
692 	dst->target_value = src->target_value;
693 	if (dst->metric == DAMOS_QUOTA_USER_INPUT)
694 		dst->current_value = src->current_value;
695 	/* keep last_psi_total as is, since it will be updated in next cycle */
696 }
697 
698 /**
699  * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota.
700  * @dst:	The commit destination DAMOS quota.
701  * @src:	The commit source DAMOS quota.
702  *
703  * Copies user-specified parameters for quota goals from @src to @dst.  Users
704  * should use this function for quota goals-level parameters update of running
705  * DAMON contexts, instead of manual in-place updates.
706  *
707  * This function should be called from parameters-update safe context, like
708  * DAMON callbacks.
709  */
damos_commit_quota_goals(struct damos_quota * dst,struct damos_quota * src)710 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src)
711 {
712 	struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal;
713 	int i = 0, j = 0;
714 
715 	damos_for_each_quota_goal_safe(dst_goal, next, dst) {
716 		src_goal = damos_nth_quota_goal(i++, src);
717 		if (src_goal)
718 			damos_commit_quota_goal(dst_goal, src_goal);
719 		else
720 			damos_destroy_quota_goal(dst_goal);
721 	}
722 	damos_for_each_quota_goal_safe(src_goal, next, src) {
723 		if (j++ < i)
724 			continue;
725 		new_goal = damos_new_quota_goal(
726 				src_goal->metric, src_goal->target_value);
727 		if (!new_goal)
728 			return -ENOMEM;
729 		damos_add_quota_goal(dst, new_goal);
730 	}
731 	return 0;
732 }
733 
damos_commit_quota(struct damos_quota * dst,struct damos_quota * src)734 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src)
735 {
736 	int err;
737 
738 	dst->reset_interval = src->reset_interval;
739 	dst->ms = src->ms;
740 	dst->sz = src->sz;
741 	err = damos_commit_quota_goals(dst, src);
742 	if (err)
743 		return err;
744 	dst->weight_sz = src->weight_sz;
745 	dst->weight_nr_accesses = src->weight_nr_accesses;
746 	dst->weight_age = src->weight_age;
747 	return 0;
748 }
749 
damos_nth_filter(int n,struct damos * s)750 static struct damos_filter *damos_nth_filter(int n, struct damos *s)
751 {
752 	struct damos_filter *filter;
753 	int i = 0;
754 
755 	damos_for_each_filter(filter, s) {
756 		if (i++ == n)
757 			return filter;
758 	}
759 	return NULL;
760 }
761 
damos_commit_filter_arg(struct damos_filter * dst,struct damos_filter * src)762 static void damos_commit_filter_arg(
763 		struct damos_filter *dst, struct damos_filter *src)
764 {
765 	switch (dst->type) {
766 	case DAMOS_FILTER_TYPE_MEMCG:
767 		dst->memcg_id = src->memcg_id;
768 		break;
769 	case DAMOS_FILTER_TYPE_ADDR:
770 		dst->addr_range = src->addr_range;
771 		break;
772 	case DAMOS_FILTER_TYPE_TARGET:
773 		dst->target_idx = src->target_idx;
774 		break;
775 	default:
776 		break;
777 	}
778 }
779 
damos_commit_filter(struct damos_filter * dst,struct damos_filter * src)780 static void damos_commit_filter(
781 		struct damos_filter *dst, struct damos_filter *src)
782 {
783 	dst->type = src->type;
784 	dst->matching = src->matching;
785 	damos_commit_filter_arg(dst, src);
786 }
787 
damos_commit_filters(struct damos * dst,struct damos * src)788 static int damos_commit_filters(struct damos *dst, struct damos *src)
789 {
790 	struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
791 	int i = 0, j = 0;
792 
793 	damos_for_each_filter_safe(dst_filter, next, dst) {
794 		src_filter = damos_nth_filter(i++, src);
795 		if (src_filter)
796 			damos_commit_filter(dst_filter, src_filter);
797 		else
798 			damos_destroy_filter(dst_filter);
799 	}
800 
801 	damos_for_each_filter_safe(src_filter, next, src) {
802 		if (j++ < i)
803 			continue;
804 
805 		new_filter = damos_new_filter(
806 				src_filter->type, src_filter->matching);
807 		if (!new_filter)
808 			return -ENOMEM;
809 		damos_commit_filter_arg(new_filter, src_filter);
810 		damos_add_filter(dst, new_filter);
811 	}
812 	return 0;
813 }
814 
damon_nth_scheme(int n,struct damon_ctx * ctx)815 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx)
816 {
817 	struct damos *s;
818 	int i = 0;
819 
820 	damon_for_each_scheme(s, ctx) {
821 		if (i++ == n)
822 			return s;
823 	}
824 	return NULL;
825 }
826 
damos_commit(struct damos * dst,struct damos * src)827 static int damos_commit(struct damos *dst, struct damos *src)
828 {
829 	int err;
830 
831 	dst->pattern = src->pattern;
832 	dst->action = src->action;
833 	dst->apply_interval_us = src->apply_interval_us;
834 
835 	err = damos_commit_quota(&dst->quota, &src->quota);
836 	if (err)
837 		return err;
838 
839 	dst->wmarks = src->wmarks;
840 	dst->target_nid = src->target_nid;
841 
842 	err = damos_commit_filters(dst, src);
843 	return err;
844 }
845 
damon_commit_schemes(struct damon_ctx * dst,struct damon_ctx * src)846 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src)
847 {
848 	struct damos *dst_scheme, *next, *src_scheme, *new_scheme;
849 	int i = 0, j = 0, err;
850 
851 	damon_for_each_scheme_safe(dst_scheme, next, dst) {
852 		src_scheme = damon_nth_scheme(i++, src);
853 		if (src_scheme) {
854 			err = damos_commit(dst_scheme, src_scheme);
855 			if (err)
856 				return err;
857 		} else {
858 			damon_destroy_scheme(dst_scheme);
859 		}
860 	}
861 
862 	damon_for_each_scheme_safe(src_scheme, next, src) {
863 		if (j++ < i)
864 			continue;
865 		new_scheme = damon_new_scheme(&src_scheme->pattern,
866 				src_scheme->action,
867 				src_scheme->apply_interval_us,
868 				&src_scheme->quota, &src_scheme->wmarks,
869 				NUMA_NO_NODE);
870 		if (!new_scheme)
871 			return -ENOMEM;
872 		err = damos_commit(new_scheme, src_scheme);
873 		if (err) {
874 			damon_destroy_scheme(new_scheme);
875 			return err;
876 		}
877 		damon_add_scheme(dst, new_scheme);
878 	}
879 	return 0;
880 }
881 
damon_nth_target(int n,struct damon_ctx * ctx)882 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx)
883 {
884 	struct damon_target *t;
885 	int i = 0;
886 
887 	damon_for_each_target(t, ctx) {
888 		if (i++ == n)
889 			return t;
890 	}
891 	return NULL;
892 }
893 
894 /*
895  * The caller should ensure the regions of @src are
896  * 1. valid (end >= src) and
897  * 2. sorted by starting address.
898  *
899  * If @src has no region, @dst keeps current regions.
900  */
damon_commit_target_regions(struct damon_target * dst,struct damon_target * src)901 static int damon_commit_target_regions(
902 		struct damon_target *dst, struct damon_target *src)
903 {
904 	struct damon_region *src_region;
905 	struct damon_addr_range *ranges;
906 	int i = 0, err;
907 
908 	damon_for_each_region(src_region, src)
909 		i++;
910 	if (!i)
911 		return 0;
912 
913 	ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN);
914 	if (!ranges)
915 		return -ENOMEM;
916 	i = 0;
917 	damon_for_each_region(src_region, src)
918 		ranges[i++] = src_region->ar;
919 	err = damon_set_regions(dst, ranges, i);
920 	kfree(ranges);
921 	return err;
922 }
923 
damon_commit_target(struct damon_target * dst,bool dst_has_pid,struct damon_target * src,bool src_has_pid)924 static int damon_commit_target(
925 		struct damon_target *dst, bool dst_has_pid,
926 		struct damon_target *src, bool src_has_pid)
927 {
928 	int err;
929 
930 	err = damon_commit_target_regions(dst, src);
931 	if (err)
932 		return err;
933 	if (dst_has_pid)
934 		put_pid(dst->pid);
935 	if (src_has_pid)
936 		get_pid(src->pid);
937 	dst->pid = src->pid;
938 	return 0;
939 }
940 
damon_commit_targets(struct damon_ctx * dst,struct damon_ctx * src)941 static int damon_commit_targets(
942 		struct damon_ctx *dst, struct damon_ctx *src)
943 {
944 	struct damon_target *dst_target, *next, *src_target, *new_target;
945 	int i = 0, j = 0, err;
946 
947 	damon_for_each_target_safe(dst_target, next, dst) {
948 		src_target = damon_nth_target(i++, src);
949 		if (src_target) {
950 			err = damon_commit_target(
951 					dst_target, damon_target_has_pid(dst),
952 					src_target, damon_target_has_pid(src));
953 			if (err)
954 				return err;
955 		} else {
956 			if (damon_target_has_pid(dst))
957 				put_pid(dst_target->pid);
958 			damon_destroy_target(dst_target);
959 		}
960 	}
961 
962 	damon_for_each_target_safe(src_target, next, src) {
963 		if (j++ < i)
964 			continue;
965 		new_target = damon_new_target();
966 		if (!new_target)
967 			return -ENOMEM;
968 		err = damon_commit_target(new_target, false,
969 				src_target, damon_target_has_pid(src));
970 		if (err) {
971 			damon_destroy_target(new_target);
972 			return err;
973 		}
974 		damon_add_target(dst, new_target);
975 	}
976 	return 0;
977 }
978 
979 /**
980  * damon_commit_ctx() - Commit parameters of a DAMON context to another.
981  * @dst:	The commit destination DAMON context.
982  * @src:	The commit source DAMON context.
983  *
984  * This function copies user-specified parameters from @src to @dst and update
985  * the internal status and results accordingly.  Users should use this function
986  * for context-level parameters update of running context, instead of manual
987  * in-place updates.
988  *
989  * This function should be called from parameters-update safe context, like
990  * DAMON callbacks.
991  */
damon_commit_ctx(struct damon_ctx * dst,struct damon_ctx * src)992 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src)
993 {
994 	int err;
995 
996 	err = damon_commit_schemes(dst, src);
997 	if (err)
998 		return err;
999 	err = damon_commit_targets(dst, src);
1000 	if (err)
1001 		return err;
1002 	/*
1003 	 * schemes and targets should be updated first, since
1004 	 * 1. damon_set_attrs() updates monitoring results of targets and
1005 	 * next_apply_sis of schemes, and
1006 	 * 2. ops update should be done after pid handling is done (target
1007 	 *    committing require putting pids).
1008 	 */
1009 	err = damon_set_attrs(dst, &src->attrs);
1010 	if (err)
1011 		return err;
1012 	dst->ops = src->ops;
1013 
1014 	return 0;
1015 }
1016 
1017 /**
1018  * damon_nr_running_ctxs() - Return number of currently running contexts.
1019  */
damon_nr_running_ctxs(void)1020 int damon_nr_running_ctxs(void)
1021 {
1022 	int nr_ctxs;
1023 
1024 	mutex_lock(&damon_lock);
1025 	nr_ctxs = nr_running_ctxs;
1026 	mutex_unlock(&damon_lock);
1027 
1028 	return nr_ctxs;
1029 }
1030 
1031 /* Returns the size upper limit for each monitoring region */
damon_region_sz_limit(struct damon_ctx * ctx)1032 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
1033 {
1034 	struct damon_target *t;
1035 	struct damon_region *r;
1036 	unsigned long sz = 0;
1037 
1038 	damon_for_each_target(t, ctx) {
1039 		damon_for_each_region(r, t)
1040 			sz += damon_sz_region(r);
1041 	}
1042 
1043 	if (ctx->attrs.min_nr_regions)
1044 		sz /= ctx->attrs.min_nr_regions;
1045 	if (sz < DAMON_MIN_REGION)
1046 		sz = DAMON_MIN_REGION;
1047 
1048 	return sz;
1049 }
1050 
1051 static int kdamond_fn(void *data);
1052 
1053 /*
1054  * __damon_start() - Starts monitoring with given context.
1055  * @ctx:	monitoring context
1056  *
1057  * This function should be called while damon_lock is hold.
1058  *
1059  * Return: 0 on success, negative error code otherwise.
1060  */
__damon_start(struct damon_ctx * ctx)1061 static int __damon_start(struct damon_ctx *ctx)
1062 {
1063 	int err = -EBUSY;
1064 
1065 	mutex_lock(&ctx->kdamond_lock);
1066 	if (!ctx->kdamond) {
1067 		err = 0;
1068 		reinit_completion(&ctx->kdamond_started);
1069 		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
1070 				nr_running_ctxs);
1071 		if (IS_ERR(ctx->kdamond)) {
1072 			err = PTR_ERR(ctx->kdamond);
1073 			ctx->kdamond = NULL;
1074 		} else {
1075 			wait_for_completion(&ctx->kdamond_started);
1076 		}
1077 	}
1078 	mutex_unlock(&ctx->kdamond_lock);
1079 
1080 	return err;
1081 }
1082 
1083 /**
1084  * damon_start() - Starts the monitorings for a given group of contexts.
1085  * @ctxs:	an array of the pointers for contexts to start monitoring
1086  * @nr_ctxs:	size of @ctxs
1087  * @exclusive:	exclusiveness of this contexts group
1088  *
1089  * This function starts a group of monitoring threads for a group of monitoring
1090  * contexts.  One thread per each context is created and run in parallel.  The
1091  * caller should handle synchronization between the threads by itself.  If
1092  * @exclusive is true and a group of threads that created by other
1093  * 'damon_start()' call is currently running, this function does nothing but
1094  * returns -EBUSY.
1095  *
1096  * Return: 0 on success, negative error code otherwise.
1097  */
damon_start(struct damon_ctx ** ctxs,int nr_ctxs,bool exclusive)1098 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
1099 {
1100 	int i;
1101 	int err = 0;
1102 
1103 	mutex_lock(&damon_lock);
1104 	if ((exclusive && nr_running_ctxs) ||
1105 			(!exclusive && running_exclusive_ctxs)) {
1106 		mutex_unlock(&damon_lock);
1107 		return -EBUSY;
1108 	}
1109 
1110 	for (i = 0; i < nr_ctxs; i++) {
1111 		err = __damon_start(ctxs[i]);
1112 		if (err)
1113 			break;
1114 		nr_running_ctxs++;
1115 	}
1116 	if (exclusive && nr_running_ctxs)
1117 		running_exclusive_ctxs = true;
1118 	mutex_unlock(&damon_lock);
1119 
1120 	return err;
1121 }
1122 
1123 /*
1124  * __damon_stop() - Stops monitoring of a given context.
1125  * @ctx:	monitoring context
1126  *
1127  * Return: 0 on success, negative error code otherwise.
1128  */
__damon_stop(struct damon_ctx * ctx)1129 static int __damon_stop(struct damon_ctx *ctx)
1130 {
1131 	struct task_struct *tsk;
1132 
1133 	mutex_lock(&ctx->kdamond_lock);
1134 	tsk = ctx->kdamond;
1135 	if (tsk) {
1136 		get_task_struct(tsk);
1137 		mutex_unlock(&ctx->kdamond_lock);
1138 		kthread_stop_put(tsk);
1139 		return 0;
1140 	}
1141 	mutex_unlock(&ctx->kdamond_lock);
1142 
1143 	return -EPERM;
1144 }
1145 
1146 /**
1147  * damon_stop() - Stops the monitorings for a given group of contexts.
1148  * @ctxs:	an array of the pointers for contexts to stop monitoring
1149  * @nr_ctxs:	size of @ctxs
1150  *
1151  * Return: 0 on success, negative error code otherwise.
1152  */
damon_stop(struct damon_ctx ** ctxs,int nr_ctxs)1153 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
1154 {
1155 	int i, err = 0;
1156 
1157 	for (i = 0; i < nr_ctxs; i++) {
1158 		/* nr_running_ctxs is decremented in kdamond_fn */
1159 		err = __damon_stop(ctxs[i]);
1160 		if (err)
1161 			break;
1162 	}
1163 	return err;
1164 }
1165 
1166 /*
1167  * Reset the aggregated monitoring results ('nr_accesses' of each region).
1168  */
kdamond_reset_aggregated(struct damon_ctx * c)1169 static void kdamond_reset_aggregated(struct damon_ctx *c)
1170 {
1171 	struct damon_target *t;
1172 	unsigned int ti = 0;	/* target's index */
1173 
1174 	damon_for_each_target(t, c) {
1175 		struct damon_region *r;
1176 
1177 		damon_for_each_region(r, t) {
1178 			trace_damon_aggregated(ti, r, damon_nr_regions(t));
1179 			r->last_nr_accesses = r->nr_accesses;
1180 			r->nr_accesses = 0;
1181 		}
1182 		ti++;
1183 	}
1184 }
1185 
1186 static void damon_split_region_at(struct damon_target *t,
1187 				  struct damon_region *r, unsigned long sz_r);
1188 
__damos_valid_target(struct damon_region * r,struct damos * s)1189 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
1190 {
1191 	unsigned long sz;
1192 	unsigned int nr_accesses = r->nr_accesses_bp / 10000;
1193 
1194 	sz = damon_sz_region(r);
1195 	return s->pattern.min_sz_region <= sz &&
1196 		sz <= s->pattern.max_sz_region &&
1197 		s->pattern.min_nr_accesses <= nr_accesses &&
1198 		nr_accesses <= s->pattern.max_nr_accesses &&
1199 		s->pattern.min_age_region <= r->age &&
1200 		r->age <= s->pattern.max_age_region;
1201 }
1202 
damos_valid_target(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1203 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
1204 		struct damon_region *r, struct damos *s)
1205 {
1206 	bool ret = __damos_valid_target(r, s);
1207 
1208 	if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
1209 		return ret;
1210 
1211 	return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
1212 }
1213 
1214 /*
1215  * damos_skip_charged_region() - Check if the given region or starting part of
1216  * it is already charged for the DAMOS quota.
1217  * @t:	The target of the region.
1218  * @rp:	The pointer to the region.
1219  * @s:	The scheme to be applied.
1220  *
1221  * If a quota of a scheme has exceeded in a quota charge window, the scheme's
1222  * action would applied to only a part of the target access pattern fulfilling
1223  * regions.  To avoid applying the scheme action to only already applied
1224  * regions, DAMON skips applying the scheme action to the regions that charged
1225  * in the previous charge window.
1226  *
1227  * This function checks if a given region should be skipped or not for the
1228  * reason.  If only the starting part of the region has previously charged,
1229  * this function splits the region into two so that the second one covers the
1230  * area that not charged in the previous charge widnow and saves the second
1231  * region in *rp and returns false, so that the caller can apply DAMON action
1232  * to the second one.
1233  *
1234  * Return: true if the region should be entirely skipped, false otherwise.
1235  */
damos_skip_charged_region(struct damon_target * t,struct damon_region ** rp,struct damos * s)1236 static bool damos_skip_charged_region(struct damon_target *t,
1237 		struct damon_region **rp, struct damos *s)
1238 {
1239 	struct damon_region *r = *rp;
1240 	struct damos_quota *quota = &s->quota;
1241 	unsigned long sz_to_skip;
1242 
1243 	/* Skip previously charged regions */
1244 	if (quota->charge_target_from) {
1245 		if (t != quota->charge_target_from)
1246 			return true;
1247 		if (r == damon_last_region(t)) {
1248 			quota->charge_target_from = NULL;
1249 			quota->charge_addr_from = 0;
1250 			return true;
1251 		}
1252 		if (quota->charge_addr_from &&
1253 				r->ar.end <= quota->charge_addr_from)
1254 			return true;
1255 
1256 		if (quota->charge_addr_from && r->ar.start <
1257 				quota->charge_addr_from) {
1258 			sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
1259 					r->ar.start, DAMON_MIN_REGION);
1260 			if (!sz_to_skip) {
1261 				if (damon_sz_region(r) <= DAMON_MIN_REGION)
1262 					return true;
1263 				sz_to_skip = DAMON_MIN_REGION;
1264 			}
1265 			damon_split_region_at(t, r, sz_to_skip);
1266 			r = damon_next_region(r);
1267 			*rp = r;
1268 		}
1269 		quota->charge_target_from = NULL;
1270 		quota->charge_addr_from = 0;
1271 	}
1272 	return false;
1273 }
1274 
damos_update_stat(struct damos * s,unsigned long sz_tried,unsigned long sz_applied)1275 static void damos_update_stat(struct damos *s,
1276 		unsigned long sz_tried, unsigned long sz_applied)
1277 {
1278 	s->stat.nr_tried++;
1279 	s->stat.sz_tried += sz_tried;
1280 	if (sz_applied)
1281 		s->stat.nr_applied++;
1282 	s->stat.sz_applied += sz_applied;
1283 }
1284 
__damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos_filter * filter)1285 static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1286 		struct damon_region *r, struct damos_filter *filter)
1287 {
1288 	bool matched = false;
1289 	struct damon_target *ti;
1290 	int target_idx = 0;
1291 	unsigned long start, end;
1292 
1293 	switch (filter->type) {
1294 	case DAMOS_FILTER_TYPE_TARGET:
1295 		damon_for_each_target(ti, ctx) {
1296 			if (ti == t)
1297 				break;
1298 			target_idx++;
1299 		}
1300 		matched = target_idx == filter->target_idx;
1301 		break;
1302 	case DAMOS_FILTER_TYPE_ADDR:
1303 		start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
1304 		end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
1305 
1306 		/* inside the range */
1307 		if (start <= r->ar.start && r->ar.end <= end) {
1308 			matched = true;
1309 			break;
1310 		}
1311 		/* outside of the range */
1312 		if (r->ar.end <= start || end <= r->ar.start) {
1313 			matched = false;
1314 			break;
1315 		}
1316 		/* start before the range and overlap */
1317 		if (r->ar.start < start) {
1318 			damon_split_region_at(t, r, start - r->ar.start);
1319 			matched = false;
1320 			break;
1321 		}
1322 		/* start inside the range */
1323 		damon_split_region_at(t, r, end - r->ar.start);
1324 		matched = true;
1325 		break;
1326 	default:
1327 		return false;
1328 	}
1329 
1330 	return matched == filter->matching;
1331 }
1332 
damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s)1333 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1334 		struct damon_region *r, struct damos *s)
1335 {
1336 	struct damos_filter *filter;
1337 
1338 	damos_for_each_filter(filter, s) {
1339 		if (__damos_filter_out(ctx, t, r, filter))
1340 			return true;
1341 	}
1342 	return false;
1343 }
1344 
damos_apply_scheme(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1345 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
1346 		struct damon_region *r, struct damos *s)
1347 {
1348 	struct damos_quota *quota = &s->quota;
1349 	unsigned long sz = damon_sz_region(r);
1350 	struct timespec64 begin, end;
1351 	unsigned long sz_applied = 0;
1352 	int err = 0;
1353 	/*
1354 	 * We plan to support multiple context per kdamond, as DAMON sysfs
1355 	 * implies with 'nr_contexts' file.  Nevertheless, only single context
1356 	 * per kdamond is supported for now.  So, we can simply use '0' context
1357 	 * index here.
1358 	 */
1359 	unsigned int cidx = 0;
1360 	struct damos *siter;		/* schemes iterator */
1361 	unsigned int sidx = 0;
1362 	struct damon_target *titer;	/* targets iterator */
1363 	unsigned int tidx = 0;
1364 	bool do_trace = false;
1365 
1366 	/* get indices for trace_damos_before_apply() */
1367 	if (trace_damos_before_apply_enabled()) {
1368 		damon_for_each_scheme(siter, c) {
1369 			if (siter == s)
1370 				break;
1371 			sidx++;
1372 		}
1373 		damon_for_each_target(titer, c) {
1374 			if (titer == t)
1375 				break;
1376 			tidx++;
1377 		}
1378 		do_trace = true;
1379 	}
1380 
1381 	if (c->ops.apply_scheme) {
1382 		if (quota->esz && quota->charged_sz + sz > quota->esz) {
1383 			sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
1384 					DAMON_MIN_REGION);
1385 			if (!sz)
1386 				goto update_stat;
1387 			damon_split_region_at(t, r, sz);
1388 		}
1389 		if (damos_filter_out(c, t, r, s))
1390 			return;
1391 		ktime_get_coarse_ts64(&begin);
1392 		if (c->callback.before_damos_apply)
1393 			err = c->callback.before_damos_apply(c, t, r, s);
1394 		if (!err) {
1395 			trace_damos_before_apply(cidx, sidx, tidx, r,
1396 					damon_nr_regions(t), do_trace);
1397 			sz_applied = c->ops.apply_scheme(c, t, r, s);
1398 		}
1399 		ktime_get_coarse_ts64(&end);
1400 		quota->total_charged_ns += timespec64_to_ns(&end) -
1401 			timespec64_to_ns(&begin);
1402 		quota->charged_sz += sz;
1403 		if (quota->esz && quota->charged_sz >= quota->esz) {
1404 			quota->charge_target_from = t;
1405 			quota->charge_addr_from = r->ar.end + 1;
1406 		}
1407 	}
1408 	if (s->action != DAMOS_STAT)
1409 		r->age = 0;
1410 
1411 update_stat:
1412 	damos_update_stat(s, sz, sz_applied);
1413 }
1414 
damon_do_apply_schemes(struct damon_ctx * c,struct damon_target * t,struct damon_region * r)1415 static void damon_do_apply_schemes(struct damon_ctx *c,
1416 				   struct damon_target *t,
1417 				   struct damon_region *r)
1418 {
1419 	struct damos *s;
1420 
1421 	damon_for_each_scheme(s, c) {
1422 		struct damos_quota *quota = &s->quota;
1423 
1424 		if (c->passed_sample_intervals < s->next_apply_sis)
1425 			continue;
1426 
1427 		if (!s->wmarks.activated)
1428 			continue;
1429 
1430 		/* Check the quota */
1431 		if (quota->esz && quota->charged_sz >= quota->esz)
1432 			continue;
1433 
1434 		if (damos_skip_charged_region(t, &r, s))
1435 			continue;
1436 
1437 		if (!damos_valid_target(c, t, r, s))
1438 			continue;
1439 
1440 		damos_apply_scheme(c, t, r, s);
1441 	}
1442 }
1443 
1444 /*
1445  * damon_feed_loop_next_input() - get next input to achieve a target score.
1446  * @last_input	The last input.
1447  * @score	Current score that made with @last_input.
1448  *
1449  * Calculate next input to achieve the target score, based on the last input
1450  * and current score.  Assuming the input and the score are positively
1451  * proportional, calculate how much compensation should be added to or
1452  * subtracted from the last input as a proportion of the last input.  Avoid
1453  * next input always being zero by setting it non-zero always.  In short form
1454  * (assuming support of float and signed calculations), the algorithm is as
1455  * below.
1456  *
1457  * next_input = max(last_input * ((goal - current) / goal + 1), 1)
1458  *
1459  * For simple implementation, we assume the target score is always 10,000.  The
1460  * caller should adjust @score for this.
1461  *
1462  * Returns next input that assumed to achieve the target score.
1463  */
damon_feed_loop_next_input(unsigned long last_input,unsigned long score)1464 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1465 		unsigned long score)
1466 {
1467 	const unsigned long goal = 10000;
1468 	/* Set minimum input as 10000 to avoid compensation be zero */
1469 	const unsigned long min_input = 10000;
1470 	unsigned long score_goal_diff, compensation;
1471 	bool over_achieving = score > goal;
1472 
1473 	if (score == goal)
1474 		return last_input;
1475 	if (score >= goal * 2)
1476 		return min_input;
1477 
1478 	if (over_achieving)
1479 		score_goal_diff = score - goal;
1480 	else
1481 		score_goal_diff = goal - score;
1482 
1483 	if (last_input < ULONG_MAX / score_goal_diff)
1484 		compensation = last_input * score_goal_diff / goal;
1485 	else
1486 		compensation = last_input / goal * score_goal_diff;
1487 
1488 	if (over_achieving)
1489 		return max(last_input - compensation, min_input);
1490 	if (last_input < ULONG_MAX - compensation)
1491 		return last_input + compensation;
1492 	return ULONG_MAX;
1493 }
1494 
1495 #ifdef CONFIG_PSI
1496 
damos_get_some_mem_psi_total(void)1497 static u64 damos_get_some_mem_psi_total(void)
1498 {
1499 	if (static_branch_likely(&psi_disabled))
1500 		return 0;
1501 	return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2],
1502 			NSEC_PER_USEC);
1503 }
1504 
1505 #else	/* CONFIG_PSI */
1506 
damos_get_some_mem_psi_total(void)1507 static inline u64 damos_get_some_mem_psi_total(void)
1508 {
1509 	return 0;
1510 };
1511 
1512 #endif	/* CONFIG_PSI */
1513 
damos_set_quota_goal_current_value(struct damos_quota_goal * goal)1514 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
1515 {
1516 	u64 now_psi_total;
1517 
1518 	switch (goal->metric) {
1519 	case DAMOS_QUOTA_USER_INPUT:
1520 		/* User should already set goal->current_value */
1521 		break;
1522 	case DAMOS_QUOTA_SOME_MEM_PSI_US:
1523 		now_psi_total = damos_get_some_mem_psi_total();
1524 		goal->current_value = now_psi_total - goal->last_psi_total;
1525 		goal->last_psi_total = now_psi_total;
1526 		break;
1527 	default:
1528 		break;
1529 	}
1530 }
1531 
1532 /* Return the highest score since it makes schemes least aggressive */
damos_quota_score(struct damos_quota * quota)1533 static unsigned long damos_quota_score(struct damos_quota *quota)
1534 {
1535 	struct damos_quota_goal *goal;
1536 	unsigned long highest_score = 0;
1537 
1538 	damos_for_each_quota_goal(goal, quota) {
1539 		damos_set_quota_goal_current_value(goal);
1540 		highest_score = max(highest_score,
1541 				goal->current_value * 10000 /
1542 				goal->target_value);
1543 	}
1544 
1545 	return highest_score;
1546 }
1547 
1548 /*
1549  * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
1550  */
damos_set_effective_quota(struct damos_quota * quota)1551 static void damos_set_effective_quota(struct damos_quota *quota)
1552 {
1553 	unsigned long throughput;
1554 	unsigned long esz;
1555 
1556 	if (!quota->ms && list_empty("a->goals)) {
1557 		quota->esz = quota->sz;
1558 		return;
1559 	}
1560 
1561 	if (!list_empty("a->goals)) {
1562 		unsigned long score = damos_quota_score(quota);
1563 
1564 		quota->esz_bp = damon_feed_loop_next_input(
1565 				max(quota->esz_bp, 10000UL),
1566 				score);
1567 		esz = quota->esz_bp / 10000;
1568 	}
1569 
1570 	if (quota->ms) {
1571 		if (quota->total_charged_ns)
1572 			throughput = quota->total_charged_sz * 1000000 /
1573 				quota->total_charged_ns;
1574 		else
1575 			throughput = PAGE_SIZE * 1024;
1576 		if (!list_empty("a->goals))
1577 			esz = min(throughput * quota->ms, esz);
1578 		else
1579 			esz = throughput * quota->ms;
1580 	}
1581 
1582 	if (quota->sz && quota->sz < esz)
1583 		esz = quota->sz;
1584 
1585 	quota->esz = esz;
1586 }
1587 
damos_adjust_quota(struct damon_ctx * c,struct damos * s)1588 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1589 {
1590 	struct damos_quota *quota = &s->quota;
1591 	struct damon_target *t;
1592 	struct damon_region *r;
1593 	unsigned long cumulated_sz;
1594 	unsigned int score, max_score = 0;
1595 
1596 	if (!quota->ms && !quota->sz && list_empty("a->goals))
1597 		return;
1598 
1599 	/* First charge window */
1600 	if (!quota->total_charged_sz && !quota->charged_from)
1601 		quota->charged_from = jiffies;
1602 
1603 	/* New charge window starts */
1604 	if (time_after_eq(jiffies, quota->charged_from +
1605 				msecs_to_jiffies(quota->reset_interval))) {
1606 		if (quota->esz && quota->charged_sz >= quota->esz)
1607 			s->stat.qt_exceeds++;
1608 		quota->total_charged_sz += quota->charged_sz;
1609 		quota->charged_from = jiffies;
1610 		quota->charged_sz = 0;
1611 		damos_set_effective_quota(quota);
1612 	}
1613 
1614 	if (!c->ops.get_scheme_score)
1615 		return;
1616 
1617 	/* Fill up the score histogram */
1618 	memset(c->regions_score_histogram, 0,
1619 			sizeof(*c->regions_score_histogram) *
1620 			(DAMOS_MAX_SCORE + 1));
1621 	damon_for_each_target(t, c) {
1622 		damon_for_each_region(r, t) {
1623 			if (!__damos_valid_target(r, s))
1624 				continue;
1625 			score = c->ops.get_scheme_score(c, t, r, s);
1626 			c->regions_score_histogram[score] +=
1627 				damon_sz_region(r);
1628 			if (score > max_score)
1629 				max_score = score;
1630 		}
1631 	}
1632 
1633 	/* Set the min score limit */
1634 	for (cumulated_sz = 0, score = max_score; ; score--) {
1635 		cumulated_sz += c->regions_score_histogram[score];
1636 		if (cumulated_sz >= quota->esz || !score)
1637 			break;
1638 	}
1639 	quota->min_score = score;
1640 }
1641 
kdamond_apply_schemes(struct damon_ctx * c)1642 static void kdamond_apply_schemes(struct damon_ctx *c)
1643 {
1644 	struct damon_target *t;
1645 	struct damon_region *r, *next_r;
1646 	struct damos *s;
1647 	unsigned long sample_interval = c->attrs.sample_interval ?
1648 		c->attrs.sample_interval : 1;
1649 	bool has_schemes_to_apply = false;
1650 
1651 	damon_for_each_scheme(s, c) {
1652 		if (c->passed_sample_intervals < s->next_apply_sis)
1653 			continue;
1654 
1655 		if (!s->wmarks.activated)
1656 			continue;
1657 
1658 		has_schemes_to_apply = true;
1659 
1660 		damos_adjust_quota(c, s);
1661 	}
1662 
1663 	if (!has_schemes_to_apply)
1664 		return;
1665 
1666 	damon_for_each_target(t, c) {
1667 		damon_for_each_region_safe(r, next_r, t)
1668 			damon_do_apply_schemes(c, t, r);
1669 	}
1670 
1671 	damon_for_each_scheme(s, c) {
1672 		if (c->passed_sample_intervals < s->next_apply_sis)
1673 			continue;
1674 		s->next_apply_sis = c->passed_sample_intervals +
1675 			(s->apply_interval_us ? s->apply_interval_us :
1676 			 c->attrs.aggr_interval) / sample_interval;
1677 	}
1678 }
1679 
1680 /*
1681  * Merge two adjacent regions into one region
1682  */
damon_merge_two_regions(struct damon_target * t,struct damon_region * l,struct damon_region * r)1683 static void damon_merge_two_regions(struct damon_target *t,
1684 		struct damon_region *l, struct damon_region *r)
1685 {
1686 	unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1687 
1688 	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1689 			(sz_l + sz_r);
1690 	l->nr_accesses_bp = l->nr_accesses * 10000;
1691 	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1692 	l->ar.end = r->ar.end;
1693 	damon_destroy_region(r, t);
1694 }
1695 
1696 /*
1697  * Merge adjacent regions having similar access frequencies
1698  *
1699  * t		target affected by this merge operation
1700  * thres	'->nr_accesses' diff threshold for the merge
1701  * sz_limit	size upper limit of each region
1702  */
damon_merge_regions_of(struct damon_target * t,unsigned int thres,unsigned long sz_limit)1703 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1704 				   unsigned long sz_limit)
1705 {
1706 	struct damon_region *r, *prev = NULL, *next;
1707 
1708 	damon_for_each_region_safe(r, next, t) {
1709 		if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1710 			r->age = 0;
1711 		else
1712 			r->age++;
1713 
1714 		if (prev && prev->ar.end == r->ar.start &&
1715 		    abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1716 		    damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1717 			damon_merge_two_regions(t, prev, r);
1718 		else
1719 			prev = r;
1720 	}
1721 }
1722 
1723 /*
1724  * Merge adjacent regions having similar access frequencies
1725  *
1726  * threshold	'->nr_accesses' diff threshold for the merge
1727  * sz_limit	size upper limit of each region
1728  *
1729  * This function merges monitoring target regions which are adjacent and their
1730  * access frequencies are similar.  This is for minimizing the monitoring
1731  * overhead under the dynamically changeable access pattern.  If a merge was
1732  * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1733  *
1734  * The total number of regions could be higher than the user-defined limit,
1735  * max_nr_regions for some cases.  For example, the user can update
1736  * max_nr_regions to a number that lower than the current number of regions
1737  * while DAMON is running.  For such a case, repeat merging until the limit is
1738  * met while increasing @threshold up to possible maximum level.
1739  */
kdamond_merge_regions(struct damon_ctx * c,unsigned int threshold,unsigned long sz_limit)1740 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1741 				  unsigned long sz_limit)
1742 {
1743 	struct damon_target *t;
1744 	unsigned int nr_regions;
1745 	unsigned int max_thres;
1746 
1747 	max_thres = c->attrs.aggr_interval /
1748 		(c->attrs.sample_interval ?  c->attrs.sample_interval : 1);
1749 	do {
1750 		nr_regions = 0;
1751 		damon_for_each_target(t, c) {
1752 			damon_merge_regions_of(t, threshold, sz_limit);
1753 			nr_regions += damon_nr_regions(t);
1754 		}
1755 		threshold = max(1, threshold * 2);
1756 	} while (nr_regions > c->attrs.max_nr_regions &&
1757 			threshold / 2 < max_thres);
1758 }
1759 
1760 /*
1761  * Split a region in two
1762  *
1763  * r		the region to be split
1764  * sz_r		size of the first sub-region that will be made
1765  */
damon_split_region_at(struct damon_target * t,struct damon_region * r,unsigned long sz_r)1766 static void damon_split_region_at(struct damon_target *t,
1767 				  struct damon_region *r, unsigned long sz_r)
1768 {
1769 	struct damon_region *new;
1770 
1771 	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1772 	if (!new)
1773 		return;
1774 
1775 	r->ar.end = new->ar.start;
1776 
1777 	new->age = r->age;
1778 	new->last_nr_accesses = r->last_nr_accesses;
1779 	new->nr_accesses_bp = r->nr_accesses_bp;
1780 	new->nr_accesses = r->nr_accesses;
1781 
1782 	damon_insert_region(new, r, damon_next_region(r), t);
1783 }
1784 
1785 /* Split every region in the given target into 'nr_subs' regions */
damon_split_regions_of(struct damon_target * t,int nr_subs)1786 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1787 {
1788 	struct damon_region *r, *next;
1789 	unsigned long sz_region, sz_sub = 0;
1790 	int i;
1791 
1792 	damon_for_each_region_safe(r, next, t) {
1793 		sz_region = damon_sz_region(r);
1794 
1795 		for (i = 0; i < nr_subs - 1 &&
1796 				sz_region > 2 * DAMON_MIN_REGION; i++) {
1797 			/*
1798 			 * Randomly select size of left sub-region to be at
1799 			 * least 10 percent and at most 90% of original region
1800 			 */
1801 			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1802 					sz_region / 10, DAMON_MIN_REGION);
1803 			/* Do not allow blank region */
1804 			if (sz_sub == 0 || sz_sub >= sz_region)
1805 				continue;
1806 
1807 			damon_split_region_at(t, r, sz_sub);
1808 			sz_region = sz_sub;
1809 		}
1810 	}
1811 }
1812 
1813 /*
1814  * Split every target region into randomly-sized small regions
1815  *
1816  * This function splits every target region into random-sized small regions if
1817  * current total number of the regions is equal or smaller than half of the
1818  * user-specified maximum number of regions.  This is for maximizing the
1819  * monitoring accuracy under the dynamically changeable access patterns.  If a
1820  * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1821  * it.
1822  */
kdamond_split_regions(struct damon_ctx * ctx)1823 static void kdamond_split_regions(struct damon_ctx *ctx)
1824 {
1825 	struct damon_target *t;
1826 	unsigned int nr_regions = 0;
1827 	static unsigned int last_nr_regions;
1828 	int nr_subregions = 2;
1829 
1830 	damon_for_each_target(t, ctx)
1831 		nr_regions += damon_nr_regions(t);
1832 
1833 	if (nr_regions > ctx->attrs.max_nr_regions / 2)
1834 		return;
1835 
1836 	/* Maybe the middle of the region has different access frequency */
1837 	if (last_nr_regions == nr_regions &&
1838 			nr_regions < ctx->attrs.max_nr_regions / 3)
1839 		nr_subregions = 3;
1840 
1841 	damon_for_each_target(t, ctx)
1842 		damon_split_regions_of(t, nr_subregions);
1843 
1844 	last_nr_regions = nr_regions;
1845 }
1846 
1847 /*
1848  * Check whether current monitoring should be stopped
1849  *
1850  * The monitoring is stopped when either the user requested to stop, or all
1851  * monitoring targets are invalid.
1852  *
1853  * Returns true if need to stop current monitoring.
1854  */
kdamond_need_stop(struct damon_ctx * ctx)1855 static bool kdamond_need_stop(struct damon_ctx *ctx)
1856 {
1857 	struct damon_target *t;
1858 
1859 	if (kthread_should_stop())
1860 		return true;
1861 
1862 	if (!ctx->ops.target_valid)
1863 		return false;
1864 
1865 	damon_for_each_target(t, ctx) {
1866 		if (ctx->ops.target_valid(t))
1867 			return false;
1868 	}
1869 
1870 	return true;
1871 }
1872 
damos_get_wmark_metric_value(enum damos_wmark_metric metric,unsigned long * metric_value)1873 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric,
1874 					unsigned long *metric_value)
1875 {
1876 	switch (metric) {
1877 	case DAMOS_WMARK_FREE_MEM_RATE:
1878 		*metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 /
1879 		       totalram_pages();
1880 		return 0;
1881 	default:
1882 		break;
1883 	}
1884 	return -EINVAL;
1885 }
1886 
1887 /*
1888  * Returns zero if the scheme is active.  Else, returns time to wait for next
1889  * watermark check in micro-seconds.
1890  */
damos_wmark_wait_us(struct damos * scheme)1891 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1892 {
1893 	unsigned long metric;
1894 
1895 	if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric))
1896 		return 0;
1897 
1898 	/* higher than high watermark or lower than low watermark */
1899 	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1900 		if (scheme->wmarks.activated)
1901 			pr_debug("deactivate a scheme (%d) for %s wmark\n",
1902 					scheme->action,
1903 					metric > scheme->wmarks.high ?
1904 					"high" : "low");
1905 		scheme->wmarks.activated = false;
1906 		return scheme->wmarks.interval;
1907 	}
1908 
1909 	/* inactive and higher than middle watermark */
1910 	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1911 			!scheme->wmarks.activated)
1912 		return scheme->wmarks.interval;
1913 
1914 	if (!scheme->wmarks.activated)
1915 		pr_debug("activate a scheme (%d)\n", scheme->action);
1916 	scheme->wmarks.activated = true;
1917 	return 0;
1918 }
1919 
kdamond_usleep(unsigned long usecs)1920 static void kdamond_usleep(unsigned long usecs)
1921 {
1922 	/* See Documentation/timers/timers-howto.rst for the thresholds */
1923 	if (usecs > 20 * USEC_PER_MSEC)
1924 		schedule_timeout_idle(usecs_to_jiffies(usecs));
1925 	else
1926 		usleep_idle_range(usecs, usecs + 1);
1927 }
1928 
1929 /* Returns negative error code if it's not activated but should return */
kdamond_wait_activation(struct damon_ctx * ctx)1930 static int kdamond_wait_activation(struct damon_ctx *ctx)
1931 {
1932 	struct damos *s;
1933 	unsigned long wait_time;
1934 	unsigned long min_wait_time = 0;
1935 	bool init_wait_time = false;
1936 
1937 	while (!kdamond_need_stop(ctx)) {
1938 		damon_for_each_scheme(s, ctx) {
1939 			wait_time = damos_wmark_wait_us(s);
1940 			if (!init_wait_time || wait_time < min_wait_time) {
1941 				init_wait_time = true;
1942 				min_wait_time = wait_time;
1943 			}
1944 		}
1945 		if (!min_wait_time)
1946 			return 0;
1947 
1948 		kdamond_usleep(min_wait_time);
1949 
1950 		if (ctx->callback.after_wmarks_check &&
1951 				ctx->callback.after_wmarks_check(ctx))
1952 			break;
1953 	}
1954 	return -EBUSY;
1955 }
1956 
kdamond_init_intervals_sis(struct damon_ctx * ctx)1957 static void kdamond_init_intervals_sis(struct damon_ctx *ctx)
1958 {
1959 	unsigned long sample_interval = ctx->attrs.sample_interval ?
1960 		ctx->attrs.sample_interval : 1;
1961 	unsigned long apply_interval;
1962 	struct damos *scheme;
1963 
1964 	ctx->passed_sample_intervals = 0;
1965 	ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
1966 	ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
1967 		sample_interval;
1968 
1969 	damon_for_each_scheme(scheme, ctx) {
1970 		apply_interval = scheme->apply_interval_us ?
1971 			scheme->apply_interval_us : ctx->attrs.aggr_interval;
1972 		scheme->next_apply_sis = apply_interval / sample_interval;
1973 	}
1974 }
1975 
1976 /*
1977  * The monitoring daemon that runs as a kernel thread
1978  */
kdamond_fn(void * data)1979 static int kdamond_fn(void *data)
1980 {
1981 	struct damon_ctx *ctx = data;
1982 	struct damon_target *t;
1983 	struct damon_region *r, *next;
1984 	unsigned int max_nr_accesses = 0;
1985 	unsigned long sz_limit = 0;
1986 
1987 	pr_debug("kdamond (%d) starts\n", current->pid);
1988 
1989 	complete(&ctx->kdamond_started);
1990 	kdamond_init_intervals_sis(ctx);
1991 
1992 	if (ctx->ops.init)
1993 		ctx->ops.init(ctx);
1994 	if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1995 		goto done;
1996 	ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1,
1997 			sizeof(*ctx->regions_score_histogram), GFP_KERNEL);
1998 	if (!ctx->regions_score_histogram)
1999 		goto done;
2000 
2001 	sz_limit = damon_region_sz_limit(ctx);
2002 
2003 	while (!kdamond_need_stop(ctx)) {
2004 		/*
2005 		 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
2006 		 * be changed from after_wmarks_check() or after_aggregation()
2007 		 * callbacks.  Read the values here, and use those for this
2008 		 * iteration.  That is, damon_set_attrs() updated new values
2009 		 * are respected from next iteration.
2010 		 */
2011 		unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
2012 		unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
2013 		unsigned long sample_interval = ctx->attrs.sample_interval;
2014 
2015 		if (kdamond_wait_activation(ctx))
2016 			break;
2017 
2018 		if (ctx->ops.prepare_access_checks)
2019 			ctx->ops.prepare_access_checks(ctx);
2020 		if (ctx->callback.after_sampling &&
2021 				ctx->callback.after_sampling(ctx))
2022 			break;
2023 
2024 		kdamond_usleep(sample_interval);
2025 		ctx->passed_sample_intervals++;
2026 
2027 		if (ctx->ops.check_accesses)
2028 			max_nr_accesses = ctx->ops.check_accesses(ctx);
2029 
2030 		if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2031 			kdamond_merge_regions(ctx,
2032 					max_nr_accesses / 10,
2033 					sz_limit);
2034 			if (ctx->callback.after_aggregation &&
2035 					ctx->callback.after_aggregation(ctx))
2036 				break;
2037 		}
2038 
2039 		/*
2040 		 * do kdamond_apply_schemes() after kdamond_merge_regions() if
2041 		 * possible, to reduce overhead
2042 		 */
2043 		if (!list_empty(&ctx->schemes))
2044 			kdamond_apply_schemes(ctx);
2045 
2046 		sample_interval = ctx->attrs.sample_interval ?
2047 			ctx->attrs.sample_interval : 1;
2048 		if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2049 			ctx->next_aggregation_sis = next_aggregation_sis +
2050 				ctx->attrs.aggr_interval / sample_interval;
2051 
2052 			kdamond_reset_aggregated(ctx);
2053 			kdamond_split_regions(ctx);
2054 			if (ctx->ops.reset_aggregated)
2055 				ctx->ops.reset_aggregated(ctx);
2056 		}
2057 
2058 		if (ctx->passed_sample_intervals >= next_ops_update_sis) {
2059 			ctx->next_ops_update_sis = next_ops_update_sis +
2060 				ctx->attrs.ops_update_interval /
2061 				sample_interval;
2062 			if (ctx->ops.update)
2063 				ctx->ops.update(ctx);
2064 			sz_limit = damon_region_sz_limit(ctx);
2065 		}
2066 	}
2067 done:
2068 	damon_for_each_target(t, ctx) {
2069 		damon_for_each_region_safe(r, next, t)
2070 			damon_destroy_region(r, t);
2071 	}
2072 
2073 	if (ctx->callback.before_terminate)
2074 		ctx->callback.before_terminate(ctx);
2075 	if (ctx->ops.cleanup)
2076 		ctx->ops.cleanup(ctx);
2077 	kfree(ctx->regions_score_histogram);
2078 
2079 	pr_debug("kdamond (%d) finishes\n", current->pid);
2080 	mutex_lock(&ctx->kdamond_lock);
2081 	ctx->kdamond = NULL;
2082 	mutex_unlock(&ctx->kdamond_lock);
2083 
2084 	mutex_lock(&damon_lock);
2085 	nr_running_ctxs--;
2086 	if (!nr_running_ctxs && running_exclusive_ctxs)
2087 		running_exclusive_ctxs = false;
2088 	mutex_unlock(&damon_lock);
2089 
2090 	return 0;
2091 }
2092 
2093 /*
2094  * struct damon_system_ram_region - System RAM resource address region of
2095  *				    [@start, @end).
2096  * @start:	Start address of the region (inclusive).
2097  * @end:	End address of the region (exclusive).
2098  */
2099 struct damon_system_ram_region {
2100 	unsigned long start;
2101 	unsigned long end;
2102 };
2103 
walk_system_ram(struct resource * res,void * arg)2104 static int walk_system_ram(struct resource *res, void *arg)
2105 {
2106 	struct damon_system_ram_region *a = arg;
2107 
2108 	if (a->end - a->start < resource_size(res)) {
2109 		a->start = res->start;
2110 		a->end = res->end;
2111 	}
2112 	return 0;
2113 }
2114 
2115 /*
2116  * Find biggest 'System RAM' resource and store its start and end address in
2117  * @start and @end, respectively.  If no System RAM is found, returns false.
2118  */
damon_find_biggest_system_ram(unsigned long * start,unsigned long * end)2119 static bool damon_find_biggest_system_ram(unsigned long *start,
2120 						unsigned long *end)
2121 
2122 {
2123 	struct damon_system_ram_region arg = {};
2124 
2125 	walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
2126 	if (arg.end <= arg.start)
2127 		return false;
2128 
2129 	*start = arg.start;
2130 	*end = arg.end;
2131 	return true;
2132 }
2133 
2134 /**
2135  * damon_set_region_biggest_system_ram_default() - Set the region of the given
2136  * monitoring target as requested, or biggest 'System RAM'.
2137  * @t:		The monitoring target to set the region.
2138  * @start:	The pointer to the start address of the region.
2139  * @end:	The pointer to the end address of the region.
2140  *
2141  * This function sets the region of @t as requested by @start and @end.  If the
2142  * values of @start and @end are zero, however, this function finds the biggest
2143  * 'System RAM' resource and sets the region to cover the resource.  In the
2144  * latter case, this function saves the start and end addresses of the resource
2145  * in @start and @end, respectively.
2146  *
2147  * Return: 0 on success, negative error code otherwise.
2148  */
damon_set_region_biggest_system_ram_default(struct damon_target * t,unsigned long * start,unsigned long * end)2149 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
2150 			unsigned long *start, unsigned long *end)
2151 {
2152 	struct damon_addr_range addr_range;
2153 
2154 	if (*start > *end)
2155 		return -EINVAL;
2156 
2157 	if (!*start && !*end &&
2158 		!damon_find_biggest_system_ram(start, end))
2159 		return -EINVAL;
2160 
2161 	addr_range.start = *start;
2162 	addr_range.end = *end;
2163 	return damon_set_regions(t, &addr_range, 1);
2164 }
2165 
2166 /*
2167  * damon_moving_sum() - Calculate an inferred moving sum value.
2168  * @mvsum:	Inferred sum of the last @len_window values.
2169  * @nomvsum:	Non-moving sum of the last discrete @len_window window values.
2170  * @len_window:	The number of last values to take care of.
2171  * @new_value:	New value that will be added to the pseudo moving sum.
2172  *
2173  * Moving sum (moving average * window size) is good for handling noise, but
2174  * the cost of keeping past values can be high for arbitrary window size.  This
2175  * function implements a lightweight pseudo moving sum function that doesn't
2176  * keep the past window values.
2177  *
2178  * It simply assumes there was no noise in the past, and get the no-noise
2179  * assumed past value to drop from @nomvsum and @len_window.  @nomvsum is a
2180  * non-moving sum of the last window.  For example, if @len_window is 10 and we
2181  * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
2182  * values.  Hence, this function simply drops @nomvsum / @len_window from
2183  * given @mvsum and add @new_value.
2184  *
2185  * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
2186  * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20.  For
2187  * calculating next moving sum with a new value, we should drop 0 from 50 and
2188  * add the new value.  However, this function assumes it got value 5 for each
2189  * of the last ten times.  Based on the assumption, when the next value is
2190  * measured, it drops the assumed past value, 5 from the current sum, and add
2191  * the new value to get the updated pseduo-moving average.
2192  *
2193  * This means the value could have errors, but the errors will be disappeared
2194  * for every @len_window aligned calls.  For example, if @len_window is 10, the
2195  * pseudo moving sum with 11th value to 19th value would have an error.  But
2196  * the sum with 20th value will not have the error.
2197  *
2198  * Return: Pseudo-moving average after getting the @new_value.
2199  */
damon_moving_sum(unsigned int mvsum,unsigned int nomvsum,unsigned int len_window,unsigned int new_value)2200 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
2201 		unsigned int len_window, unsigned int new_value)
2202 {
2203 	return mvsum - nomvsum / len_window + new_value;
2204 }
2205 
2206 /**
2207  * damon_update_region_access_rate() - Update the access rate of a region.
2208  * @r:		The DAMON region to update for its access check result.
2209  * @accessed:	Whether the region has accessed during last sampling interval.
2210  * @attrs:	The damon_attrs of the DAMON context.
2211  *
2212  * Update the access rate of a region with the region's last sampling interval
2213  * access check result.
2214  *
2215  * Usually this will be called by &damon_operations->check_accesses callback.
2216  */
damon_update_region_access_rate(struct damon_region * r,bool accessed,struct damon_attrs * attrs)2217 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
2218 		struct damon_attrs *attrs)
2219 {
2220 	unsigned int len_window = 1;
2221 
2222 	/*
2223 	 * sample_interval can be zero, but cannot be larger than
2224 	 * aggr_interval, owing to validation of damon_set_attrs().
2225 	 */
2226 	if (attrs->sample_interval)
2227 		len_window = damon_max_nr_accesses(attrs);
2228 	r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
2229 			r->last_nr_accesses * 10000, len_window,
2230 			accessed ? 10000 : 0);
2231 
2232 	if (accessed)
2233 		r->nr_accesses++;
2234 }
2235 
damon_init(void)2236 static int __init damon_init(void)
2237 {
2238 	damon_region_cache = KMEM_CACHE(damon_region, 0);
2239 	if (unlikely(!damon_region_cache)) {
2240 		pr_err("creating damon_region_cache fails\n");
2241 		return -ENOMEM;
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 subsys_initcall(damon_init);
2248 
2249 #include "tests/core-kunit.h"
2250