1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Data Access Monitor
4 *
5 * Author: SeongJae Park <sj@kernel.org>
6 */
7
8 #define pr_fmt(fmt) "damon: " fmt
9
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/psi.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17
18 #define CREATE_TRACE_POINTS
19 #include <trace/events/damon.h>
20
21 #ifdef CONFIG_DAMON_KUNIT_TEST
22 #undef DAMON_MIN_REGION
23 #define DAMON_MIN_REGION 1
24 #endif
25
26 static DEFINE_MUTEX(damon_lock);
27 static int nr_running_ctxs;
28 static bool running_exclusive_ctxs;
29
30 static DEFINE_MUTEX(damon_ops_lock);
31 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
32
33 static struct kmem_cache *damon_region_cache __ro_after_init;
34
35 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
__damon_is_registered_ops(enum damon_ops_id id)36 static bool __damon_is_registered_ops(enum damon_ops_id id)
37 {
38 struct damon_operations empty_ops = {};
39
40 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
41 return false;
42 return true;
43 }
44
45 /**
46 * damon_is_registered_ops() - Check if a given damon_operations is registered.
47 * @id: Id of the damon_operations to check if registered.
48 *
49 * Return: true if the ops is set, false otherwise.
50 */
damon_is_registered_ops(enum damon_ops_id id)51 bool damon_is_registered_ops(enum damon_ops_id id)
52 {
53 bool registered;
54
55 if (id >= NR_DAMON_OPS)
56 return false;
57 mutex_lock(&damon_ops_lock);
58 registered = __damon_is_registered_ops(id);
59 mutex_unlock(&damon_ops_lock);
60 return registered;
61 }
62
63 /**
64 * damon_register_ops() - Register a monitoring operations set to DAMON.
65 * @ops: monitoring operations set to register.
66 *
67 * This function registers a monitoring operations set of valid &struct
68 * damon_operations->id so that others can find and use them later.
69 *
70 * Return: 0 on success, negative error code otherwise.
71 */
damon_register_ops(struct damon_operations * ops)72 int damon_register_ops(struct damon_operations *ops)
73 {
74 int err = 0;
75
76 if (ops->id >= NR_DAMON_OPS)
77 return -EINVAL;
78 mutex_lock(&damon_ops_lock);
79 /* Fail for already registered ops */
80 if (__damon_is_registered_ops(ops->id)) {
81 err = -EINVAL;
82 goto out;
83 }
84 damon_registered_ops[ops->id] = *ops;
85 out:
86 mutex_unlock(&damon_ops_lock);
87 return err;
88 }
89
90 /**
91 * damon_select_ops() - Select a monitoring operations to use with the context.
92 * @ctx: monitoring context to use the operations.
93 * @id: id of the registered monitoring operations to select.
94 *
95 * This function finds registered monitoring operations set of @id and make
96 * @ctx to use it.
97 *
98 * Return: 0 on success, negative error code otherwise.
99 */
damon_select_ops(struct damon_ctx * ctx,enum damon_ops_id id)100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
101 {
102 int err = 0;
103
104 if (id >= NR_DAMON_OPS)
105 return -EINVAL;
106
107 mutex_lock(&damon_ops_lock);
108 if (!__damon_is_registered_ops(id))
109 err = -EINVAL;
110 else
111 ctx->ops = damon_registered_ops[id];
112 mutex_unlock(&damon_ops_lock);
113 return err;
114 }
115
116 /*
117 * Construct a damon_region struct
118 *
119 * Returns the pointer to the new struct if success, or NULL otherwise
120 */
damon_new_region(unsigned long start,unsigned long end)121 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
122 {
123 struct damon_region *region;
124
125 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
126 if (!region)
127 return NULL;
128
129 region->ar.start = start;
130 region->ar.end = end;
131 region->nr_accesses = 0;
132 region->nr_accesses_bp = 0;
133 INIT_LIST_HEAD(®ion->list);
134
135 region->age = 0;
136 region->last_nr_accesses = 0;
137
138 return region;
139 }
140
damon_add_region(struct damon_region * r,struct damon_target * t)141 void damon_add_region(struct damon_region *r, struct damon_target *t)
142 {
143 list_add_tail(&r->list, &t->regions_list);
144 t->nr_regions++;
145 }
146
damon_del_region(struct damon_region * r,struct damon_target * t)147 static void damon_del_region(struct damon_region *r, struct damon_target *t)
148 {
149 list_del(&r->list);
150 t->nr_regions--;
151 }
152
damon_free_region(struct damon_region * r)153 static void damon_free_region(struct damon_region *r)
154 {
155 kmem_cache_free(damon_region_cache, r);
156 }
157
damon_destroy_region(struct damon_region * r,struct damon_target * t)158 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
159 {
160 damon_del_region(r, t);
161 damon_free_region(r);
162 }
163
164 /*
165 * Check whether a region is intersecting an address range
166 *
167 * Returns true if it is.
168 */
damon_intersect(struct damon_region * r,struct damon_addr_range * re)169 static bool damon_intersect(struct damon_region *r,
170 struct damon_addr_range *re)
171 {
172 return !(r->ar.end <= re->start || re->end <= r->ar.start);
173 }
174
175 /*
176 * Fill holes in regions with new regions.
177 */
damon_fill_regions_holes(struct damon_region * first,struct damon_region * last,struct damon_target * t)178 static int damon_fill_regions_holes(struct damon_region *first,
179 struct damon_region *last, struct damon_target *t)
180 {
181 struct damon_region *r = first;
182
183 damon_for_each_region_from(r, t) {
184 struct damon_region *next, *newr;
185
186 if (r == last)
187 break;
188 next = damon_next_region(r);
189 if (r->ar.end != next->ar.start) {
190 newr = damon_new_region(r->ar.end, next->ar.start);
191 if (!newr)
192 return -ENOMEM;
193 damon_insert_region(newr, r, next, t);
194 }
195 }
196 return 0;
197 }
198
199 /*
200 * damon_set_regions() - Set regions of a target for given address ranges.
201 * @t: the given target.
202 * @ranges: array of new monitoring target ranges.
203 * @nr_ranges: length of @ranges.
204 *
205 * This function adds new regions to, or modify existing regions of a
206 * monitoring target to fit in specific ranges.
207 *
208 * Return: 0 if success, or negative error code otherwise.
209 */
damon_set_regions(struct damon_target * t,struct damon_addr_range * ranges,unsigned int nr_ranges)210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
211 unsigned int nr_ranges)
212 {
213 struct damon_region *r, *next;
214 unsigned int i;
215 int err;
216
217 /* Remove regions which are not in the new ranges */
218 damon_for_each_region_safe(r, next, t) {
219 for (i = 0; i < nr_ranges; i++) {
220 if (damon_intersect(r, &ranges[i]))
221 break;
222 }
223 if (i == nr_ranges)
224 damon_destroy_region(r, t);
225 }
226
227 r = damon_first_region(t);
228 /* Add new regions or resize existing regions to fit in the ranges */
229 for (i = 0; i < nr_ranges; i++) {
230 struct damon_region *first = NULL, *last, *newr;
231 struct damon_addr_range *range;
232
233 range = &ranges[i];
234 /* Get the first/last regions intersecting with the range */
235 damon_for_each_region_from(r, t) {
236 if (damon_intersect(r, range)) {
237 if (!first)
238 first = r;
239 last = r;
240 }
241 if (r->ar.start >= range->end)
242 break;
243 }
244 if (!first) {
245 /* no region intersects with this range */
246 newr = damon_new_region(
247 ALIGN_DOWN(range->start,
248 DAMON_MIN_REGION),
249 ALIGN(range->end, DAMON_MIN_REGION));
250 if (!newr)
251 return -ENOMEM;
252 damon_insert_region(newr, damon_prev_region(r), r, t);
253 } else {
254 /* resize intersecting regions to fit in this range */
255 first->ar.start = ALIGN_DOWN(range->start,
256 DAMON_MIN_REGION);
257 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
258
259 /* fill possible holes in the range */
260 err = damon_fill_regions_holes(first, last, t);
261 if (err)
262 return err;
263 }
264 }
265 return 0;
266 }
267
damos_new_filter(enum damos_filter_type type,bool matching)268 struct damos_filter *damos_new_filter(enum damos_filter_type type,
269 bool matching)
270 {
271 struct damos_filter *filter;
272
273 filter = kmalloc(sizeof(*filter), GFP_KERNEL);
274 if (!filter)
275 return NULL;
276 filter->type = type;
277 filter->matching = matching;
278 INIT_LIST_HEAD(&filter->list);
279 return filter;
280 }
281
damos_add_filter(struct damos * s,struct damos_filter * f)282 void damos_add_filter(struct damos *s, struct damos_filter *f)
283 {
284 list_add_tail(&f->list, &s->filters);
285 }
286
damos_del_filter(struct damos_filter * f)287 static void damos_del_filter(struct damos_filter *f)
288 {
289 list_del(&f->list);
290 }
291
damos_free_filter(struct damos_filter * f)292 static void damos_free_filter(struct damos_filter *f)
293 {
294 kfree(f);
295 }
296
damos_destroy_filter(struct damos_filter * f)297 void damos_destroy_filter(struct damos_filter *f)
298 {
299 damos_del_filter(f);
300 damos_free_filter(f);
301 }
302
damos_new_quota_goal(enum damos_quota_goal_metric metric,unsigned long target_value)303 struct damos_quota_goal *damos_new_quota_goal(
304 enum damos_quota_goal_metric metric,
305 unsigned long target_value)
306 {
307 struct damos_quota_goal *goal;
308
309 goal = kmalloc(sizeof(*goal), GFP_KERNEL);
310 if (!goal)
311 return NULL;
312 goal->metric = metric;
313 goal->target_value = target_value;
314 INIT_LIST_HEAD(&goal->list);
315 return goal;
316 }
317
damos_add_quota_goal(struct damos_quota * q,struct damos_quota_goal * g)318 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
319 {
320 list_add_tail(&g->list, &q->goals);
321 }
322
damos_del_quota_goal(struct damos_quota_goal * g)323 static void damos_del_quota_goal(struct damos_quota_goal *g)
324 {
325 list_del(&g->list);
326 }
327
damos_free_quota_goal(struct damos_quota_goal * g)328 static void damos_free_quota_goal(struct damos_quota_goal *g)
329 {
330 kfree(g);
331 }
332
damos_destroy_quota_goal(struct damos_quota_goal * g)333 void damos_destroy_quota_goal(struct damos_quota_goal *g)
334 {
335 damos_del_quota_goal(g);
336 damos_free_quota_goal(g);
337 }
338
339 /* initialize fields of @quota that normally API users wouldn't set */
damos_quota_init(struct damos_quota * quota)340 static struct damos_quota *damos_quota_init(struct damos_quota *quota)
341 {
342 quota->esz = 0;
343 quota->total_charged_sz = 0;
344 quota->total_charged_ns = 0;
345 quota->charged_sz = 0;
346 quota->charged_from = 0;
347 quota->charge_target_from = NULL;
348 quota->charge_addr_from = 0;
349 quota->esz_bp = 0;
350 return quota;
351 }
352
damon_new_scheme(struct damos_access_pattern * pattern,enum damos_action action,unsigned long apply_interval_us,struct damos_quota * quota,struct damos_watermarks * wmarks,int target_nid)353 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
354 enum damos_action action,
355 unsigned long apply_interval_us,
356 struct damos_quota *quota,
357 struct damos_watermarks *wmarks,
358 int target_nid)
359 {
360 struct damos *scheme;
361
362 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
363 if (!scheme)
364 return NULL;
365 scheme->pattern = *pattern;
366 scheme->action = action;
367 scheme->apply_interval_us = apply_interval_us;
368 /*
369 * next_apply_sis will be set when kdamond starts. While kdamond is
370 * running, it will also updated when it is added to the DAMON context,
371 * or damon_attrs are updated.
372 */
373 scheme->next_apply_sis = 0;
374 INIT_LIST_HEAD(&scheme->filters);
375 scheme->stat = (struct damos_stat){};
376 INIT_LIST_HEAD(&scheme->list);
377
378 scheme->quota = *(damos_quota_init(quota));
379 /* quota.goals should be separately set by caller */
380 INIT_LIST_HEAD(&scheme->quota.goals);
381
382 scheme->wmarks = *wmarks;
383 scheme->wmarks.activated = true;
384
385 scheme->target_nid = target_nid;
386
387 return scheme;
388 }
389
damos_set_next_apply_sis(struct damos * s,struct damon_ctx * ctx)390 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
391 {
392 unsigned long sample_interval = ctx->attrs.sample_interval ?
393 ctx->attrs.sample_interval : 1;
394 unsigned long apply_interval = s->apply_interval_us ?
395 s->apply_interval_us : ctx->attrs.aggr_interval;
396
397 s->next_apply_sis = ctx->passed_sample_intervals +
398 apply_interval / sample_interval;
399 }
400
damon_add_scheme(struct damon_ctx * ctx,struct damos * s)401 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
402 {
403 list_add_tail(&s->list, &ctx->schemes);
404 damos_set_next_apply_sis(s, ctx);
405 }
406
damon_del_scheme(struct damos * s)407 static void damon_del_scheme(struct damos *s)
408 {
409 list_del(&s->list);
410 }
411
damon_free_scheme(struct damos * s)412 static void damon_free_scheme(struct damos *s)
413 {
414 kfree(s);
415 }
416
damon_destroy_scheme(struct damos * s)417 void damon_destroy_scheme(struct damos *s)
418 {
419 struct damos_quota_goal *g, *g_next;
420 struct damos_filter *f, *next;
421
422 damos_for_each_quota_goal_safe(g, g_next, &s->quota)
423 damos_destroy_quota_goal(g);
424
425 damos_for_each_filter_safe(f, next, s)
426 damos_destroy_filter(f);
427 damon_del_scheme(s);
428 damon_free_scheme(s);
429 }
430
431 /*
432 * Construct a damon_target struct
433 *
434 * Returns the pointer to the new struct if success, or NULL otherwise
435 */
damon_new_target(void)436 struct damon_target *damon_new_target(void)
437 {
438 struct damon_target *t;
439
440 t = kmalloc(sizeof(*t), GFP_KERNEL);
441 if (!t)
442 return NULL;
443
444 t->pid = NULL;
445 t->nr_regions = 0;
446 INIT_LIST_HEAD(&t->regions_list);
447 INIT_LIST_HEAD(&t->list);
448
449 return t;
450 }
451
damon_add_target(struct damon_ctx * ctx,struct damon_target * t)452 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
453 {
454 list_add_tail(&t->list, &ctx->adaptive_targets);
455 }
456
damon_targets_empty(struct damon_ctx * ctx)457 bool damon_targets_empty(struct damon_ctx *ctx)
458 {
459 return list_empty(&ctx->adaptive_targets);
460 }
461
damon_del_target(struct damon_target * t)462 static void damon_del_target(struct damon_target *t)
463 {
464 list_del(&t->list);
465 }
466
damon_free_target(struct damon_target * t)467 void damon_free_target(struct damon_target *t)
468 {
469 struct damon_region *r, *next;
470
471 damon_for_each_region_safe(r, next, t)
472 damon_free_region(r);
473 kfree(t);
474 }
475
damon_destroy_target(struct damon_target * t)476 void damon_destroy_target(struct damon_target *t)
477 {
478 damon_del_target(t);
479 damon_free_target(t);
480 }
481
damon_nr_regions(struct damon_target * t)482 unsigned int damon_nr_regions(struct damon_target *t)
483 {
484 return t->nr_regions;
485 }
486
damon_new_ctx(void)487 struct damon_ctx *damon_new_ctx(void)
488 {
489 struct damon_ctx *ctx;
490
491 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
492 if (!ctx)
493 return NULL;
494
495 init_completion(&ctx->kdamond_started);
496
497 ctx->attrs.sample_interval = 5 * 1000;
498 ctx->attrs.aggr_interval = 100 * 1000;
499 ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
500
501 ctx->passed_sample_intervals = 0;
502 /* These will be set from kdamond_init_intervals_sis() */
503 ctx->next_aggregation_sis = 0;
504 ctx->next_ops_update_sis = 0;
505
506 mutex_init(&ctx->kdamond_lock);
507
508 ctx->attrs.min_nr_regions = 10;
509 ctx->attrs.max_nr_regions = 1000;
510
511 INIT_LIST_HEAD(&ctx->adaptive_targets);
512 INIT_LIST_HEAD(&ctx->schemes);
513
514 return ctx;
515 }
516
damon_destroy_targets(struct damon_ctx * ctx)517 static void damon_destroy_targets(struct damon_ctx *ctx)
518 {
519 struct damon_target *t, *next_t;
520
521 if (ctx->ops.cleanup) {
522 ctx->ops.cleanup(ctx);
523 return;
524 }
525
526 damon_for_each_target_safe(t, next_t, ctx)
527 damon_destroy_target(t);
528 }
529
damon_destroy_ctx(struct damon_ctx * ctx)530 void damon_destroy_ctx(struct damon_ctx *ctx)
531 {
532 struct damos *s, *next_s;
533
534 damon_destroy_targets(ctx);
535
536 damon_for_each_scheme_safe(s, next_s, ctx)
537 damon_destroy_scheme(s);
538
539 kfree(ctx);
540 }
541
damon_age_for_new_attrs(unsigned int age,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)542 static unsigned int damon_age_for_new_attrs(unsigned int age,
543 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
544 {
545 return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
546 }
547
548 /* convert access ratio in bp (per 10,000) to nr_accesses */
damon_accesses_bp_to_nr_accesses(unsigned int accesses_bp,struct damon_attrs * attrs)549 static unsigned int damon_accesses_bp_to_nr_accesses(
550 unsigned int accesses_bp, struct damon_attrs *attrs)
551 {
552 return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
553 }
554
555 /*
556 * Convert nr_accesses to access ratio in bp (per 10,000).
557 *
558 * Callers should ensure attrs.aggr_interval is not zero, like
559 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would
560 * happen.
561 */
damon_nr_accesses_to_accesses_bp(unsigned int nr_accesses,struct damon_attrs * attrs)562 static unsigned int damon_nr_accesses_to_accesses_bp(
563 unsigned int nr_accesses, struct damon_attrs *attrs)
564 {
565 return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
566 }
567
damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)568 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
569 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
570 {
571 return damon_accesses_bp_to_nr_accesses(
572 damon_nr_accesses_to_accesses_bp(
573 nr_accesses, old_attrs),
574 new_attrs);
575 }
576
damon_update_monitoring_result(struct damon_region * r,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)577 static void damon_update_monitoring_result(struct damon_region *r,
578 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
579 {
580 r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
581 old_attrs, new_attrs);
582 r->nr_accesses_bp = r->nr_accesses * 10000;
583 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
584 }
585
586 /*
587 * region->nr_accesses is the number of sampling intervals in the last
588 * aggregation interval that access to the region has found, and region->age is
589 * the number of aggregation intervals that its access pattern has maintained.
590 * For the reason, the real meaning of the two fields depend on current
591 * sampling interval and aggregation interval. This function updates
592 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
593 */
damon_update_monitoring_results(struct damon_ctx * ctx,struct damon_attrs * new_attrs)594 static void damon_update_monitoring_results(struct damon_ctx *ctx,
595 struct damon_attrs *new_attrs)
596 {
597 struct damon_attrs *old_attrs = &ctx->attrs;
598 struct damon_target *t;
599 struct damon_region *r;
600
601 /* if any interval is zero, simply forgive conversion */
602 if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
603 !new_attrs->sample_interval ||
604 !new_attrs->aggr_interval)
605 return;
606
607 damon_for_each_target(t, ctx)
608 damon_for_each_region(r, t)
609 damon_update_monitoring_result(
610 r, old_attrs, new_attrs);
611 }
612
613 /**
614 * damon_set_attrs() - Set attributes for the monitoring.
615 * @ctx: monitoring context
616 * @attrs: monitoring attributes
617 *
618 * This function should be called while the kdamond is not running, or an
619 * access check results aggregation is not ongoing (e.g., from
620 * &struct damon_callback->after_aggregation or
621 * &struct damon_callback->after_wmarks_check callbacks).
622 *
623 * Every time interval is in micro-seconds.
624 *
625 * Return: 0 on success, negative error code otherwise.
626 */
damon_set_attrs(struct damon_ctx * ctx,struct damon_attrs * attrs)627 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
628 {
629 unsigned long sample_interval = attrs->sample_interval ?
630 attrs->sample_interval : 1;
631 struct damos *s;
632
633 if (attrs->min_nr_regions < 3)
634 return -EINVAL;
635 if (attrs->min_nr_regions > attrs->max_nr_regions)
636 return -EINVAL;
637 if (attrs->sample_interval > attrs->aggr_interval)
638 return -EINVAL;
639
640 ctx->next_aggregation_sis = ctx->passed_sample_intervals +
641 attrs->aggr_interval / sample_interval;
642 ctx->next_ops_update_sis = ctx->passed_sample_intervals +
643 attrs->ops_update_interval / sample_interval;
644
645 damon_update_monitoring_results(ctx, attrs);
646 ctx->attrs = *attrs;
647
648 damon_for_each_scheme(s, ctx)
649 damos_set_next_apply_sis(s, ctx);
650
651 return 0;
652 }
653
654 /**
655 * damon_set_schemes() - Set data access monitoring based operation schemes.
656 * @ctx: monitoring context
657 * @schemes: array of the schemes
658 * @nr_schemes: number of entries in @schemes
659 *
660 * This function should not be called while the kdamond of the context is
661 * running.
662 */
damon_set_schemes(struct damon_ctx * ctx,struct damos ** schemes,ssize_t nr_schemes)663 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
664 ssize_t nr_schemes)
665 {
666 struct damos *s, *next;
667 ssize_t i;
668
669 damon_for_each_scheme_safe(s, next, ctx)
670 damon_destroy_scheme(s);
671 for (i = 0; i < nr_schemes; i++)
672 damon_add_scheme(ctx, schemes[i]);
673 }
674
damos_nth_quota_goal(int n,struct damos_quota * q)675 static struct damos_quota_goal *damos_nth_quota_goal(
676 int n, struct damos_quota *q)
677 {
678 struct damos_quota_goal *goal;
679 int i = 0;
680
681 damos_for_each_quota_goal(goal, q) {
682 if (i++ == n)
683 return goal;
684 }
685 return NULL;
686 }
687
damos_commit_quota_goal(struct damos_quota_goal * dst,struct damos_quota_goal * src)688 static void damos_commit_quota_goal(
689 struct damos_quota_goal *dst, struct damos_quota_goal *src)
690 {
691 dst->metric = src->metric;
692 dst->target_value = src->target_value;
693 if (dst->metric == DAMOS_QUOTA_USER_INPUT)
694 dst->current_value = src->current_value;
695 /* keep last_psi_total as is, since it will be updated in next cycle */
696 }
697
698 /**
699 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota.
700 * @dst: The commit destination DAMOS quota.
701 * @src: The commit source DAMOS quota.
702 *
703 * Copies user-specified parameters for quota goals from @src to @dst. Users
704 * should use this function for quota goals-level parameters update of running
705 * DAMON contexts, instead of manual in-place updates.
706 *
707 * This function should be called from parameters-update safe context, like
708 * DAMON callbacks.
709 */
damos_commit_quota_goals(struct damos_quota * dst,struct damos_quota * src)710 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src)
711 {
712 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal;
713 int i = 0, j = 0;
714
715 damos_for_each_quota_goal_safe(dst_goal, next, dst) {
716 src_goal = damos_nth_quota_goal(i++, src);
717 if (src_goal)
718 damos_commit_quota_goal(dst_goal, src_goal);
719 else
720 damos_destroy_quota_goal(dst_goal);
721 }
722 damos_for_each_quota_goal_safe(src_goal, next, src) {
723 if (j++ < i)
724 continue;
725 new_goal = damos_new_quota_goal(
726 src_goal->metric, src_goal->target_value);
727 if (!new_goal)
728 return -ENOMEM;
729 damos_add_quota_goal(dst, new_goal);
730 }
731 return 0;
732 }
733
damos_commit_quota(struct damos_quota * dst,struct damos_quota * src)734 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src)
735 {
736 int err;
737
738 dst->reset_interval = src->reset_interval;
739 dst->ms = src->ms;
740 dst->sz = src->sz;
741 err = damos_commit_quota_goals(dst, src);
742 if (err)
743 return err;
744 dst->weight_sz = src->weight_sz;
745 dst->weight_nr_accesses = src->weight_nr_accesses;
746 dst->weight_age = src->weight_age;
747 return 0;
748 }
749
damos_nth_filter(int n,struct damos * s)750 static struct damos_filter *damos_nth_filter(int n, struct damos *s)
751 {
752 struct damos_filter *filter;
753 int i = 0;
754
755 damos_for_each_filter(filter, s) {
756 if (i++ == n)
757 return filter;
758 }
759 return NULL;
760 }
761
damos_commit_filter_arg(struct damos_filter * dst,struct damos_filter * src)762 static void damos_commit_filter_arg(
763 struct damos_filter *dst, struct damos_filter *src)
764 {
765 switch (dst->type) {
766 case DAMOS_FILTER_TYPE_MEMCG:
767 dst->memcg_id = src->memcg_id;
768 break;
769 case DAMOS_FILTER_TYPE_ADDR:
770 dst->addr_range = src->addr_range;
771 break;
772 case DAMOS_FILTER_TYPE_TARGET:
773 dst->target_idx = src->target_idx;
774 break;
775 default:
776 break;
777 }
778 }
779
damos_commit_filter(struct damos_filter * dst,struct damos_filter * src)780 static void damos_commit_filter(
781 struct damos_filter *dst, struct damos_filter *src)
782 {
783 dst->type = src->type;
784 dst->matching = src->matching;
785 damos_commit_filter_arg(dst, src);
786 }
787
damos_commit_filters(struct damos * dst,struct damos * src)788 static int damos_commit_filters(struct damos *dst, struct damos *src)
789 {
790 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
791 int i = 0, j = 0;
792
793 damos_for_each_filter_safe(dst_filter, next, dst) {
794 src_filter = damos_nth_filter(i++, src);
795 if (src_filter)
796 damos_commit_filter(dst_filter, src_filter);
797 else
798 damos_destroy_filter(dst_filter);
799 }
800
801 damos_for_each_filter_safe(src_filter, next, src) {
802 if (j++ < i)
803 continue;
804
805 new_filter = damos_new_filter(
806 src_filter->type, src_filter->matching);
807 if (!new_filter)
808 return -ENOMEM;
809 damos_commit_filter_arg(new_filter, src_filter);
810 damos_add_filter(dst, new_filter);
811 }
812 return 0;
813 }
814
damon_nth_scheme(int n,struct damon_ctx * ctx)815 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx)
816 {
817 struct damos *s;
818 int i = 0;
819
820 damon_for_each_scheme(s, ctx) {
821 if (i++ == n)
822 return s;
823 }
824 return NULL;
825 }
826
damos_commit(struct damos * dst,struct damos * src)827 static int damos_commit(struct damos *dst, struct damos *src)
828 {
829 int err;
830
831 dst->pattern = src->pattern;
832 dst->action = src->action;
833 dst->apply_interval_us = src->apply_interval_us;
834
835 err = damos_commit_quota(&dst->quota, &src->quota);
836 if (err)
837 return err;
838
839 dst->wmarks = src->wmarks;
840 dst->target_nid = src->target_nid;
841
842 err = damos_commit_filters(dst, src);
843 return err;
844 }
845
damon_commit_schemes(struct damon_ctx * dst,struct damon_ctx * src)846 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src)
847 {
848 struct damos *dst_scheme, *next, *src_scheme, *new_scheme;
849 int i = 0, j = 0, err;
850
851 damon_for_each_scheme_safe(dst_scheme, next, dst) {
852 src_scheme = damon_nth_scheme(i++, src);
853 if (src_scheme) {
854 err = damos_commit(dst_scheme, src_scheme);
855 if (err)
856 return err;
857 } else {
858 damon_destroy_scheme(dst_scheme);
859 }
860 }
861
862 damon_for_each_scheme_safe(src_scheme, next, src) {
863 if (j++ < i)
864 continue;
865 new_scheme = damon_new_scheme(&src_scheme->pattern,
866 src_scheme->action,
867 src_scheme->apply_interval_us,
868 &src_scheme->quota, &src_scheme->wmarks,
869 NUMA_NO_NODE);
870 if (!new_scheme)
871 return -ENOMEM;
872 err = damos_commit(new_scheme, src_scheme);
873 if (err) {
874 damon_destroy_scheme(new_scheme);
875 return err;
876 }
877 damon_add_scheme(dst, new_scheme);
878 }
879 return 0;
880 }
881
damon_nth_target(int n,struct damon_ctx * ctx)882 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx)
883 {
884 struct damon_target *t;
885 int i = 0;
886
887 damon_for_each_target(t, ctx) {
888 if (i++ == n)
889 return t;
890 }
891 return NULL;
892 }
893
894 /*
895 * The caller should ensure the regions of @src are
896 * 1. valid (end >= src) and
897 * 2. sorted by starting address.
898 *
899 * If @src has no region, @dst keeps current regions.
900 */
damon_commit_target_regions(struct damon_target * dst,struct damon_target * src)901 static int damon_commit_target_regions(
902 struct damon_target *dst, struct damon_target *src)
903 {
904 struct damon_region *src_region;
905 struct damon_addr_range *ranges;
906 int i = 0, err;
907
908 damon_for_each_region(src_region, src)
909 i++;
910 if (!i)
911 return 0;
912
913 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN);
914 if (!ranges)
915 return -ENOMEM;
916 i = 0;
917 damon_for_each_region(src_region, src)
918 ranges[i++] = src_region->ar;
919 err = damon_set_regions(dst, ranges, i);
920 kfree(ranges);
921 return err;
922 }
923
damon_commit_target(struct damon_target * dst,bool dst_has_pid,struct damon_target * src,bool src_has_pid)924 static int damon_commit_target(
925 struct damon_target *dst, bool dst_has_pid,
926 struct damon_target *src, bool src_has_pid)
927 {
928 int err;
929
930 err = damon_commit_target_regions(dst, src);
931 if (err)
932 return err;
933 if (dst_has_pid)
934 put_pid(dst->pid);
935 if (src_has_pid)
936 get_pid(src->pid);
937 dst->pid = src->pid;
938 return 0;
939 }
940
damon_commit_targets(struct damon_ctx * dst,struct damon_ctx * src)941 static int damon_commit_targets(
942 struct damon_ctx *dst, struct damon_ctx *src)
943 {
944 struct damon_target *dst_target, *next, *src_target, *new_target;
945 int i = 0, j = 0, err;
946
947 damon_for_each_target_safe(dst_target, next, dst) {
948 src_target = damon_nth_target(i++, src);
949 if (src_target) {
950 err = damon_commit_target(
951 dst_target, damon_target_has_pid(dst),
952 src_target, damon_target_has_pid(src));
953 if (err)
954 return err;
955 } else {
956 if (damon_target_has_pid(dst))
957 put_pid(dst_target->pid);
958 damon_destroy_target(dst_target);
959 }
960 }
961
962 damon_for_each_target_safe(src_target, next, src) {
963 if (j++ < i)
964 continue;
965 new_target = damon_new_target();
966 if (!new_target)
967 return -ENOMEM;
968 err = damon_commit_target(new_target, false,
969 src_target, damon_target_has_pid(src));
970 if (err) {
971 damon_destroy_target(new_target);
972 return err;
973 }
974 damon_add_target(dst, new_target);
975 }
976 return 0;
977 }
978
979 /**
980 * damon_commit_ctx() - Commit parameters of a DAMON context to another.
981 * @dst: The commit destination DAMON context.
982 * @src: The commit source DAMON context.
983 *
984 * This function copies user-specified parameters from @src to @dst and update
985 * the internal status and results accordingly. Users should use this function
986 * for context-level parameters update of running context, instead of manual
987 * in-place updates.
988 *
989 * This function should be called from parameters-update safe context, like
990 * DAMON callbacks.
991 */
damon_commit_ctx(struct damon_ctx * dst,struct damon_ctx * src)992 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src)
993 {
994 int err;
995
996 err = damon_commit_schemes(dst, src);
997 if (err)
998 return err;
999 err = damon_commit_targets(dst, src);
1000 if (err)
1001 return err;
1002 /*
1003 * schemes and targets should be updated first, since
1004 * 1. damon_set_attrs() updates monitoring results of targets and
1005 * next_apply_sis of schemes, and
1006 * 2. ops update should be done after pid handling is done (target
1007 * committing require putting pids).
1008 */
1009 err = damon_set_attrs(dst, &src->attrs);
1010 if (err)
1011 return err;
1012 dst->ops = src->ops;
1013
1014 return 0;
1015 }
1016
1017 /**
1018 * damon_nr_running_ctxs() - Return number of currently running contexts.
1019 */
damon_nr_running_ctxs(void)1020 int damon_nr_running_ctxs(void)
1021 {
1022 int nr_ctxs;
1023
1024 mutex_lock(&damon_lock);
1025 nr_ctxs = nr_running_ctxs;
1026 mutex_unlock(&damon_lock);
1027
1028 return nr_ctxs;
1029 }
1030
1031 /* Returns the size upper limit for each monitoring region */
damon_region_sz_limit(struct damon_ctx * ctx)1032 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
1033 {
1034 struct damon_target *t;
1035 struct damon_region *r;
1036 unsigned long sz = 0;
1037
1038 damon_for_each_target(t, ctx) {
1039 damon_for_each_region(r, t)
1040 sz += damon_sz_region(r);
1041 }
1042
1043 if (ctx->attrs.min_nr_regions)
1044 sz /= ctx->attrs.min_nr_regions;
1045 if (sz < DAMON_MIN_REGION)
1046 sz = DAMON_MIN_REGION;
1047
1048 return sz;
1049 }
1050
1051 static int kdamond_fn(void *data);
1052
1053 /*
1054 * __damon_start() - Starts monitoring with given context.
1055 * @ctx: monitoring context
1056 *
1057 * This function should be called while damon_lock is hold.
1058 *
1059 * Return: 0 on success, negative error code otherwise.
1060 */
__damon_start(struct damon_ctx * ctx)1061 static int __damon_start(struct damon_ctx *ctx)
1062 {
1063 int err = -EBUSY;
1064
1065 mutex_lock(&ctx->kdamond_lock);
1066 if (!ctx->kdamond) {
1067 err = 0;
1068 reinit_completion(&ctx->kdamond_started);
1069 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
1070 nr_running_ctxs);
1071 if (IS_ERR(ctx->kdamond)) {
1072 err = PTR_ERR(ctx->kdamond);
1073 ctx->kdamond = NULL;
1074 } else {
1075 wait_for_completion(&ctx->kdamond_started);
1076 }
1077 }
1078 mutex_unlock(&ctx->kdamond_lock);
1079
1080 return err;
1081 }
1082
1083 /**
1084 * damon_start() - Starts the monitorings for a given group of contexts.
1085 * @ctxs: an array of the pointers for contexts to start monitoring
1086 * @nr_ctxs: size of @ctxs
1087 * @exclusive: exclusiveness of this contexts group
1088 *
1089 * This function starts a group of monitoring threads for a group of monitoring
1090 * contexts. One thread per each context is created and run in parallel. The
1091 * caller should handle synchronization between the threads by itself. If
1092 * @exclusive is true and a group of threads that created by other
1093 * 'damon_start()' call is currently running, this function does nothing but
1094 * returns -EBUSY.
1095 *
1096 * Return: 0 on success, negative error code otherwise.
1097 */
damon_start(struct damon_ctx ** ctxs,int nr_ctxs,bool exclusive)1098 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
1099 {
1100 int i;
1101 int err = 0;
1102
1103 mutex_lock(&damon_lock);
1104 if ((exclusive && nr_running_ctxs) ||
1105 (!exclusive && running_exclusive_ctxs)) {
1106 mutex_unlock(&damon_lock);
1107 return -EBUSY;
1108 }
1109
1110 for (i = 0; i < nr_ctxs; i++) {
1111 err = __damon_start(ctxs[i]);
1112 if (err)
1113 break;
1114 nr_running_ctxs++;
1115 }
1116 if (exclusive && nr_running_ctxs)
1117 running_exclusive_ctxs = true;
1118 mutex_unlock(&damon_lock);
1119
1120 return err;
1121 }
1122
1123 /*
1124 * __damon_stop() - Stops monitoring of a given context.
1125 * @ctx: monitoring context
1126 *
1127 * Return: 0 on success, negative error code otherwise.
1128 */
__damon_stop(struct damon_ctx * ctx)1129 static int __damon_stop(struct damon_ctx *ctx)
1130 {
1131 struct task_struct *tsk;
1132
1133 mutex_lock(&ctx->kdamond_lock);
1134 tsk = ctx->kdamond;
1135 if (tsk) {
1136 get_task_struct(tsk);
1137 mutex_unlock(&ctx->kdamond_lock);
1138 kthread_stop_put(tsk);
1139 return 0;
1140 }
1141 mutex_unlock(&ctx->kdamond_lock);
1142
1143 return -EPERM;
1144 }
1145
1146 /**
1147 * damon_stop() - Stops the monitorings for a given group of contexts.
1148 * @ctxs: an array of the pointers for contexts to stop monitoring
1149 * @nr_ctxs: size of @ctxs
1150 *
1151 * Return: 0 on success, negative error code otherwise.
1152 */
damon_stop(struct damon_ctx ** ctxs,int nr_ctxs)1153 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
1154 {
1155 int i, err = 0;
1156
1157 for (i = 0; i < nr_ctxs; i++) {
1158 /* nr_running_ctxs is decremented in kdamond_fn */
1159 err = __damon_stop(ctxs[i]);
1160 if (err)
1161 break;
1162 }
1163 return err;
1164 }
1165
1166 /*
1167 * Reset the aggregated monitoring results ('nr_accesses' of each region).
1168 */
kdamond_reset_aggregated(struct damon_ctx * c)1169 static void kdamond_reset_aggregated(struct damon_ctx *c)
1170 {
1171 struct damon_target *t;
1172 unsigned int ti = 0; /* target's index */
1173
1174 damon_for_each_target(t, c) {
1175 struct damon_region *r;
1176
1177 damon_for_each_region(r, t) {
1178 trace_damon_aggregated(ti, r, damon_nr_regions(t));
1179 r->last_nr_accesses = r->nr_accesses;
1180 r->nr_accesses = 0;
1181 }
1182 ti++;
1183 }
1184 }
1185
1186 static void damon_split_region_at(struct damon_target *t,
1187 struct damon_region *r, unsigned long sz_r);
1188
__damos_valid_target(struct damon_region * r,struct damos * s)1189 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
1190 {
1191 unsigned long sz;
1192 unsigned int nr_accesses = r->nr_accesses_bp / 10000;
1193
1194 sz = damon_sz_region(r);
1195 return s->pattern.min_sz_region <= sz &&
1196 sz <= s->pattern.max_sz_region &&
1197 s->pattern.min_nr_accesses <= nr_accesses &&
1198 nr_accesses <= s->pattern.max_nr_accesses &&
1199 s->pattern.min_age_region <= r->age &&
1200 r->age <= s->pattern.max_age_region;
1201 }
1202
damos_valid_target(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1203 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
1204 struct damon_region *r, struct damos *s)
1205 {
1206 bool ret = __damos_valid_target(r, s);
1207
1208 if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
1209 return ret;
1210
1211 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
1212 }
1213
1214 /*
1215 * damos_skip_charged_region() - Check if the given region or starting part of
1216 * it is already charged for the DAMOS quota.
1217 * @t: The target of the region.
1218 * @rp: The pointer to the region.
1219 * @s: The scheme to be applied.
1220 *
1221 * If a quota of a scheme has exceeded in a quota charge window, the scheme's
1222 * action would applied to only a part of the target access pattern fulfilling
1223 * regions. To avoid applying the scheme action to only already applied
1224 * regions, DAMON skips applying the scheme action to the regions that charged
1225 * in the previous charge window.
1226 *
1227 * This function checks if a given region should be skipped or not for the
1228 * reason. If only the starting part of the region has previously charged,
1229 * this function splits the region into two so that the second one covers the
1230 * area that not charged in the previous charge widnow and saves the second
1231 * region in *rp and returns false, so that the caller can apply DAMON action
1232 * to the second one.
1233 *
1234 * Return: true if the region should be entirely skipped, false otherwise.
1235 */
damos_skip_charged_region(struct damon_target * t,struct damon_region ** rp,struct damos * s)1236 static bool damos_skip_charged_region(struct damon_target *t,
1237 struct damon_region **rp, struct damos *s)
1238 {
1239 struct damon_region *r = *rp;
1240 struct damos_quota *quota = &s->quota;
1241 unsigned long sz_to_skip;
1242
1243 /* Skip previously charged regions */
1244 if (quota->charge_target_from) {
1245 if (t != quota->charge_target_from)
1246 return true;
1247 if (r == damon_last_region(t)) {
1248 quota->charge_target_from = NULL;
1249 quota->charge_addr_from = 0;
1250 return true;
1251 }
1252 if (quota->charge_addr_from &&
1253 r->ar.end <= quota->charge_addr_from)
1254 return true;
1255
1256 if (quota->charge_addr_from && r->ar.start <
1257 quota->charge_addr_from) {
1258 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
1259 r->ar.start, DAMON_MIN_REGION);
1260 if (!sz_to_skip) {
1261 if (damon_sz_region(r) <= DAMON_MIN_REGION)
1262 return true;
1263 sz_to_skip = DAMON_MIN_REGION;
1264 }
1265 damon_split_region_at(t, r, sz_to_skip);
1266 r = damon_next_region(r);
1267 *rp = r;
1268 }
1269 quota->charge_target_from = NULL;
1270 quota->charge_addr_from = 0;
1271 }
1272 return false;
1273 }
1274
damos_update_stat(struct damos * s,unsigned long sz_tried,unsigned long sz_applied)1275 static void damos_update_stat(struct damos *s,
1276 unsigned long sz_tried, unsigned long sz_applied)
1277 {
1278 s->stat.nr_tried++;
1279 s->stat.sz_tried += sz_tried;
1280 if (sz_applied)
1281 s->stat.nr_applied++;
1282 s->stat.sz_applied += sz_applied;
1283 }
1284
__damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos_filter * filter)1285 static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1286 struct damon_region *r, struct damos_filter *filter)
1287 {
1288 bool matched = false;
1289 struct damon_target *ti;
1290 int target_idx = 0;
1291 unsigned long start, end;
1292
1293 switch (filter->type) {
1294 case DAMOS_FILTER_TYPE_TARGET:
1295 damon_for_each_target(ti, ctx) {
1296 if (ti == t)
1297 break;
1298 target_idx++;
1299 }
1300 matched = target_idx == filter->target_idx;
1301 break;
1302 case DAMOS_FILTER_TYPE_ADDR:
1303 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
1304 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
1305
1306 /* inside the range */
1307 if (start <= r->ar.start && r->ar.end <= end) {
1308 matched = true;
1309 break;
1310 }
1311 /* outside of the range */
1312 if (r->ar.end <= start || end <= r->ar.start) {
1313 matched = false;
1314 break;
1315 }
1316 /* start before the range and overlap */
1317 if (r->ar.start < start) {
1318 damon_split_region_at(t, r, start - r->ar.start);
1319 matched = false;
1320 break;
1321 }
1322 /* start inside the range */
1323 damon_split_region_at(t, r, end - r->ar.start);
1324 matched = true;
1325 break;
1326 default:
1327 return false;
1328 }
1329
1330 return matched == filter->matching;
1331 }
1332
damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s)1333 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1334 struct damon_region *r, struct damos *s)
1335 {
1336 struct damos_filter *filter;
1337
1338 damos_for_each_filter(filter, s) {
1339 if (__damos_filter_out(ctx, t, r, filter))
1340 return true;
1341 }
1342 return false;
1343 }
1344
damos_apply_scheme(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1345 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
1346 struct damon_region *r, struct damos *s)
1347 {
1348 struct damos_quota *quota = &s->quota;
1349 unsigned long sz = damon_sz_region(r);
1350 struct timespec64 begin, end;
1351 unsigned long sz_applied = 0;
1352 int err = 0;
1353 /*
1354 * We plan to support multiple context per kdamond, as DAMON sysfs
1355 * implies with 'nr_contexts' file. Nevertheless, only single context
1356 * per kdamond is supported for now. So, we can simply use '0' context
1357 * index here.
1358 */
1359 unsigned int cidx = 0;
1360 struct damos *siter; /* schemes iterator */
1361 unsigned int sidx = 0;
1362 struct damon_target *titer; /* targets iterator */
1363 unsigned int tidx = 0;
1364 bool do_trace = false;
1365
1366 /* get indices for trace_damos_before_apply() */
1367 if (trace_damos_before_apply_enabled()) {
1368 damon_for_each_scheme(siter, c) {
1369 if (siter == s)
1370 break;
1371 sidx++;
1372 }
1373 damon_for_each_target(titer, c) {
1374 if (titer == t)
1375 break;
1376 tidx++;
1377 }
1378 do_trace = true;
1379 }
1380
1381 if (c->ops.apply_scheme) {
1382 if (quota->esz && quota->charged_sz + sz > quota->esz) {
1383 sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
1384 DAMON_MIN_REGION);
1385 if (!sz)
1386 goto update_stat;
1387 damon_split_region_at(t, r, sz);
1388 }
1389 if (damos_filter_out(c, t, r, s))
1390 return;
1391 ktime_get_coarse_ts64(&begin);
1392 if (c->callback.before_damos_apply)
1393 err = c->callback.before_damos_apply(c, t, r, s);
1394 if (!err) {
1395 trace_damos_before_apply(cidx, sidx, tidx, r,
1396 damon_nr_regions(t), do_trace);
1397 sz_applied = c->ops.apply_scheme(c, t, r, s);
1398 }
1399 ktime_get_coarse_ts64(&end);
1400 quota->total_charged_ns += timespec64_to_ns(&end) -
1401 timespec64_to_ns(&begin);
1402 quota->charged_sz += sz;
1403 if (quota->esz && quota->charged_sz >= quota->esz) {
1404 quota->charge_target_from = t;
1405 quota->charge_addr_from = r->ar.end + 1;
1406 }
1407 }
1408 if (s->action != DAMOS_STAT)
1409 r->age = 0;
1410
1411 update_stat:
1412 damos_update_stat(s, sz, sz_applied);
1413 }
1414
damon_do_apply_schemes(struct damon_ctx * c,struct damon_target * t,struct damon_region * r)1415 static void damon_do_apply_schemes(struct damon_ctx *c,
1416 struct damon_target *t,
1417 struct damon_region *r)
1418 {
1419 struct damos *s;
1420
1421 damon_for_each_scheme(s, c) {
1422 struct damos_quota *quota = &s->quota;
1423
1424 if (c->passed_sample_intervals < s->next_apply_sis)
1425 continue;
1426
1427 if (!s->wmarks.activated)
1428 continue;
1429
1430 /* Check the quota */
1431 if (quota->esz && quota->charged_sz >= quota->esz)
1432 continue;
1433
1434 if (damos_skip_charged_region(t, &r, s))
1435 continue;
1436
1437 if (!damos_valid_target(c, t, r, s))
1438 continue;
1439
1440 damos_apply_scheme(c, t, r, s);
1441 }
1442 }
1443
1444 /*
1445 * damon_feed_loop_next_input() - get next input to achieve a target score.
1446 * @last_input The last input.
1447 * @score Current score that made with @last_input.
1448 *
1449 * Calculate next input to achieve the target score, based on the last input
1450 * and current score. Assuming the input and the score are positively
1451 * proportional, calculate how much compensation should be added to or
1452 * subtracted from the last input as a proportion of the last input. Avoid
1453 * next input always being zero by setting it non-zero always. In short form
1454 * (assuming support of float and signed calculations), the algorithm is as
1455 * below.
1456 *
1457 * next_input = max(last_input * ((goal - current) / goal + 1), 1)
1458 *
1459 * For simple implementation, we assume the target score is always 10,000. The
1460 * caller should adjust @score for this.
1461 *
1462 * Returns next input that assumed to achieve the target score.
1463 */
damon_feed_loop_next_input(unsigned long last_input,unsigned long score)1464 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1465 unsigned long score)
1466 {
1467 const unsigned long goal = 10000;
1468 /* Set minimum input as 10000 to avoid compensation be zero */
1469 const unsigned long min_input = 10000;
1470 unsigned long score_goal_diff, compensation;
1471 bool over_achieving = score > goal;
1472
1473 if (score == goal)
1474 return last_input;
1475 if (score >= goal * 2)
1476 return min_input;
1477
1478 if (over_achieving)
1479 score_goal_diff = score - goal;
1480 else
1481 score_goal_diff = goal - score;
1482
1483 if (last_input < ULONG_MAX / score_goal_diff)
1484 compensation = last_input * score_goal_diff / goal;
1485 else
1486 compensation = last_input / goal * score_goal_diff;
1487
1488 if (over_achieving)
1489 return max(last_input - compensation, min_input);
1490 if (last_input < ULONG_MAX - compensation)
1491 return last_input + compensation;
1492 return ULONG_MAX;
1493 }
1494
1495 #ifdef CONFIG_PSI
1496
damos_get_some_mem_psi_total(void)1497 static u64 damos_get_some_mem_psi_total(void)
1498 {
1499 if (static_branch_likely(&psi_disabled))
1500 return 0;
1501 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2],
1502 NSEC_PER_USEC);
1503 }
1504
1505 #else /* CONFIG_PSI */
1506
damos_get_some_mem_psi_total(void)1507 static inline u64 damos_get_some_mem_psi_total(void)
1508 {
1509 return 0;
1510 };
1511
1512 #endif /* CONFIG_PSI */
1513
damos_set_quota_goal_current_value(struct damos_quota_goal * goal)1514 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
1515 {
1516 u64 now_psi_total;
1517
1518 switch (goal->metric) {
1519 case DAMOS_QUOTA_USER_INPUT:
1520 /* User should already set goal->current_value */
1521 break;
1522 case DAMOS_QUOTA_SOME_MEM_PSI_US:
1523 now_psi_total = damos_get_some_mem_psi_total();
1524 goal->current_value = now_psi_total - goal->last_psi_total;
1525 goal->last_psi_total = now_psi_total;
1526 break;
1527 default:
1528 break;
1529 }
1530 }
1531
1532 /* Return the highest score since it makes schemes least aggressive */
damos_quota_score(struct damos_quota * quota)1533 static unsigned long damos_quota_score(struct damos_quota *quota)
1534 {
1535 struct damos_quota_goal *goal;
1536 unsigned long highest_score = 0;
1537
1538 damos_for_each_quota_goal(goal, quota) {
1539 damos_set_quota_goal_current_value(goal);
1540 highest_score = max(highest_score,
1541 goal->current_value * 10000 /
1542 goal->target_value);
1543 }
1544
1545 return highest_score;
1546 }
1547
1548 /*
1549 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
1550 */
damos_set_effective_quota(struct damos_quota * quota)1551 static void damos_set_effective_quota(struct damos_quota *quota)
1552 {
1553 unsigned long throughput;
1554 unsigned long esz;
1555
1556 if (!quota->ms && list_empty("a->goals)) {
1557 quota->esz = quota->sz;
1558 return;
1559 }
1560
1561 if (!list_empty("a->goals)) {
1562 unsigned long score = damos_quota_score(quota);
1563
1564 quota->esz_bp = damon_feed_loop_next_input(
1565 max(quota->esz_bp, 10000UL),
1566 score);
1567 esz = quota->esz_bp / 10000;
1568 }
1569
1570 if (quota->ms) {
1571 if (quota->total_charged_ns)
1572 throughput = quota->total_charged_sz * 1000000 /
1573 quota->total_charged_ns;
1574 else
1575 throughput = PAGE_SIZE * 1024;
1576 if (!list_empty("a->goals))
1577 esz = min(throughput * quota->ms, esz);
1578 else
1579 esz = throughput * quota->ms;
1580 }
1581
1582 if (quota->sz && quota->sz < esz)
1583 esz = quota->sz;
1584
1585 quota->esz = esz;
1586 }
1587
damos_adjust_quota(struct damon_ctx * c,struct damos * s)1588 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1589 {
1590 struct damos_quota *quota = &s->quota;
1591 struct damon_target *t;
1592 struct damon_region *r;
1593 unsigned long cumulated_sz;
1594 unsigned int score, max_score = 0;
1595
1596 if (!quota->ms && !quota->sz && list_empty("a->goals))
1597 return;
1598
1599 /* First charge window */
1600 if (!quota->total_charged_sz && !quota->charged_from)
1601 quota->charged_from = jiffies;
1602
1603 /* New charge window starts */
1604 if (time_after_eq(jiffies, quota->charged_from +
1605 msecs_to_jiffies(quota->reset_interval))) {
1606 if (quota->esz && quota->charged_sz >= quota->esz)
1607 s->stat.qt_exceeds++;
1608 quota->total_charged_sz += quota->charged_sz;
1609 quota->charged_from = jiffies;
1610 quota->charged_sz = 0;
1611 damos_set_effective_quota(quota);
1612 }
1613
1614 if (!c->ops.get_scheme_score)
1615 return;
1616
1617 /* Fill up the score histogram */
1618 memset(c->regions_score_histogram, 0,
1619 sizeof(*c->regions_score_histogram) *
1620 (DAMOS_MAX_SCORE + 1));
1621 damon_for_each_target(t, c) {
1622 damon_for_each_region(r, t) {
1623 if (!__damos_valid_target(r, s))
1624 continue;
1625 score = c->ops.get_scheme_score(c, t, r, s);
1626 c->regions_score_histogram[score] +=
1627 damon_sz_region(r);
1628 if (score > max_score)
1629 max_score = score;
1630 }
1631 }
1632
1633 /* Set the min score limit */
1634 for (cumulated_sz = 0, score = max_score; ; score--) {
1635 cumulated_sz += c->regions_score_histogram[score];
1636 if (cumulated_sz >= quota->esz || !score)
1637 break;
1638 }
1639 quota->min_score = score;
1640 }
1641
kdamond_apply_schemes(struct damon_ctx * c)1642 static void kdamond_apply_schemes(struct damon_ctx *c)
1643 {
1644 struct damon_target *t;
1645 struct damon_region *r, *next_r;
1646 struct damos *s;
1647 unsigned long sample_interval = c->attrs.sample_interval ?
1648 c->attrs.sample_interval : 1;
1649 bool has_schemes_to_apply = false;
1650
1651 damon_for_each_scheme(s, c) {
1652 if (c->passed_sample_intervals < s->next_apply_sis)
1653 continue;
1654
1655 if (!s->wmarks.activated)
1656 continue;
1657
1658 has_schemes_to_apply = true;
1659
1660 damos_adjust_quota(c, s);
1661 }
1662
1663 if (!has_schemes_to_apply)
1664 return;
1665
1666 damon_for_each_target(t, c) {
1667 damon_for_each_region_safe(r, next_r, t)
1668 damon_do_apply_schemes(c, t, r);
1669 }
1670
1671 damon_for_each_scheme(s, c) {
1672 if (c->passed_sample_intervals < s->next_apply_sis)
1673 continue;
1674 s->next_apply_sis = c->passed_sample_intervals +
1675 (s->apply_interval_us ? s->apply_interval_us :
1676 c->attrs.aggr_interval) / sample_interval;
1677 }
1678 }
1679
1680 /*
1681 * Merge two adjacent regions into one region
1682 */
damon_merge_two_regions(struct damon_target * t,struct damon_region * l,struct damon_region * r)1683 static void damon_merge_two_regions(struct damon_target *t,
1684 struct damon_region *l, struct damon_region *r)
1685 {
1686 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1687
1688 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1689 (sz_l + sz_r);
1690 l->nr_accesses_bp = l->nr_accesses * 10000;
1691 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1692 l->ar.end = r->ar.end;
1693 damon_destroy_region(r, t);
1694 }
1695
1696 /*
1697 * Merge adjacent regions having similar access frequencies
1698 *
1699 * t target affected by this merge operation
1700 * thres '->nr_accesses' diff threshold for the merge
1701 * sz_limit size upper limit of each region
1702 */
damon_merge_regions_of(struct damon_target * t,unsigned int thres,unsigned long sz_limit)1703 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1704 unsigned long sz_limit)
1705 {
1706 struct damon_region *r, *prev = NULL, *next;
1707
1708 damon_for_each_region_safe(r, next, t) {
1709 if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1710 r->age = 0;
1711 else
1712 r->age++;
1713
1714 if (prev && prev->ar.end == r->ar.start &&
1715 abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1716 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1717 damon_merge_two_regions(t, prev, r);
1718 else
1719 prev = r;
1720 }
1721 }
1722
1723 /*
1724 * Merge adjacent regions having similar access frequencies
1725 *
1726 * threshold '->nr_accesses' diff threshold for the merge
1727 * sz_limit size upper limit of each region
1728 *
1729 * This function merges monitoring target regions which are adjacent and their
1730 * access frequencies are similar. This is for minimizing the monitoring
1731 * overhead under the dynamically changeable access pattern. If a merge was
1732 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1733 *
1734 * The total number of regions could be higher than the user-defined limit,
1735 * max_nr_regions for some cases. For example, the user can update
1736 * max_nr_regions to a number that lower than the current number of regions
1737 * while DAMON is running. For such a case, repeat merging until the limit is
1738 * met while increasing @threshold up to possible maximum level.
1739 */
kdamond_merge_regions(struct damon_ctx * c,unsigned int threshold,unsigned long sz_limit)1740 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1741 unsigned long sz_limit)
1742 {
1743 struct damon_target *t;
1744 unsigned int nr_regions;
1745 unsigned int max_thres;
1746
1747 max_thres = c->attrs.aggr_interval /
1748 (c->attrs.sample_interval ? c->attrs.sample_interval : 1);
1749 do {
1750 nr_regions = 0;
1751 damon_for_each_target(t, c) {
1752 damon_merge_regions_of(t, threshold, sz_limit);
1753 nr_regions += damon_nr_regions(t);
1754 }
1755 threshold = max(1, threshold * 2);
1756 } while (nr_regions > c->attrs.max_nr_regions &&
1757 threshold / 2 < max_thres);
1758 }
1759
1760 /*
1761 * Split a region in two
1762 *
1763 * r the region to be split
1764 * sz_r size of the first sub-region that will be made
1765 */
damon_split_region_at(struct damon_target * t,struct damon_region * r,unsigned long sz_r)1766 static void damon_split_region_at(struct damon_target *t,
1767 struct damon_region *r, unsigned long sz_r)
1768 {
1769 struct damon_region *new;
1770
1771 new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1772 if (!new)
1773 return;
1774
1775 r->ar.end = new->ar.start;
1776
1777 new->age = r->age;
1778 new->last_nr_accesses = r->last_nr_accesses;
1779 new->nr_accesses_bp = r->nr_accesses_bp;
1780 new->nr_accesses = r->nr_accesses;
1781
1782 damon_insert_region(new, r, damon_next_region(r), t);
1783 }
1784
1785 /* Split every region in the given target into 'nr_subs' regions */
damon_split_regions_of(struct damon_target * t,int nr_subs)1786 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1787 {
1788 struct damon_region *r, *next;
1789 unsigned long sz_region, sz_sub = 0;
1790 int i;
1791
1792 damon_for_each_region_safe(r, next, t) {
1793 sz_region = damon_sz_region(r);
1794
1795 for (i = 0; i < nr_subs - 1 &&
1796 sz_region > 2 * DAMON_MIN_REGION; i++) {
1797 /*
1798 * Randomly select size of left sub-region to be at
1799 * least 10 percent and at most 90% of original region
1800 */
1801 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1802 sz_region / 10, DAMON_MIN_REGION);
1803 /* Do not allow blank region */
1804 if (sz_sub == 0 || sz_sub >= sz_region)
1805 continue;
1806
1807 damon_split_region_at(t, r, sz_sub);
1808 sz_region = sz_sub;
1809 }
1810 }
1811 }
1812
1813 /*
1814 * Split every target region into randomly-sized small regions
1815 *
1816 * This function splits every target region into random-sized small regions if
1817 * current total number of the regions is equal or smaller than half of the
1818 * user-specified maximum number of regions. This is for maximizing the
1819 * monitoring accuracy under the dynamically changeable access patterns. If a
1820 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1821 * it.
1822 */
kdamond_split_regions(struct damon_ctx * ctx)1823 static void kdamond_split_regions(struct damon_ctx *ctx)
1824 {
1825 struct damon_target *t;
1826 unsigned int nr_regions = 0;
1827 static unsigned int last_nr_regions;
1828 int nr_subregions = 2;
1829
1830 damon_for_each_target(t, ctx)
1831 nr_regions += damon_nr_regions(t);
1832
1833 if (nr_regions > ctx->attrs.max_nr_regions / 2)
1834 return;
1835
1836 /* Maybe the middle of the region has different access frequency */
1837 if (last_nr_regions == nr_regions &&
1838 nr_regions < ctx->attrs.max_nr_regions / 3)
1839 nr_subregions = 3;
1840
1841 damon_for_each_target(t, ctx)
1842 damon_split_regions_of(t, nr_subregions);
1843
1844 last_nr_regions = nr_regions;
1845 }
1846
1847 /*
1848 * Check whether current monitoring should be stopped
1849 *
1850 * The monitoring is stopped when either the user requested to stop, or all
1851 * monitoring targets are invalid.
1852 *
1853 * Returns true if need to stop current monitoring.
1854 */
kdamond_need_stop(struct damon_ctx * ctx)1855 static bool kdamond_need_stop(struct damon_ctx *ctx)
1856 {
1857 struct damon_target *t;
1858
1859 if (kthread_should_stop())
1860 return true;
1861
1862 if (!ctx->ops.target_valid)
1863 return false;
1864
1865 damon_for_each_target(t, ctx) {
1866 if (ctx->ops.target_valid(t))
1867 return false;
1868 }
1869
1870 return true;
1871 }
1872
damos_get_wmark_metric_value(enum damos_wmark_metric metric,unsigned long * metric_value)1873 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric,
1874 unsigned long *metric_value)
1875 {
1876 switch (metric) {
1877 case DAMOS_WMARK_FREE_MEM_RATE:
1878 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 /
1879 totalram_pages();
1880 return 0;
1881 default:
1882 break;
1883 }
1884 return -EINVAL;
1885 }
1886
1887 /*
1888 * Returns zero if the scheme is active. Else, returns time to wait for next
1889 * watermark check in micro-seconds.
1890 */
damos_wmark_wait_us(struct damos * scheme)1891 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1892 {
1893 unsigned long metric;
1894
1895 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric))
1896 return 0;
1897
1898 /* higher than high watermark or lower than low watermark */
1899 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1900 if (scheme->wmarks.activated)
1901 pr_debug("deactivate a scheme (%d) for %s wmark\n",
1902 scheme->action,
1903 metric > scheme->wmarks.high ?
1904 "high" : "low");
1905 scheme->wmarks.activated = false;
1906 return scheme->wmarks.interval;
1907 }
1908
1909 /* inactive and higher than middle watermark */
1910 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1911 !scheme->wmarks.activated)
1912 return scheme->wmarks.interval;
1913
1914 if (!scheme->wmarks.activated)
1915 pr_debug("activate a scheme (%d)\n", scheme->action);
1916 scheme->wmarks.activated = true;
1917 return 0;
1918 }
1919
kdamond_usleep(unsigned long usecs)1920 static void kdamond_usleep(unsigned long usecs)
1921 {
1922 /* See Documentation/timers/timers-howto.rst for the thresholds */
1923 if (usecs > 20 * USEC_PER_MSEC)
1924 schedule_timeout_idle(usecs_to_jiffies(usecs));
1925 else
1926 usleep_idle_range(usecs, usecs + 1);
1927 }
1928
1929 /* Returns negative error code if it's not activated but should return */
kdamond_wait_activation(struct damon_ctx * ctx)1930 static int kdamond_wait_activation(struct damon_ctx *ctx)
1931 {
1932 struct damos *s;
1933 unsigned long wait_time;
1934 unsigned long min_wait_time = 0;
1935 bool init_wait_time = false;
1936
1937 while (!kdamond_need_stop(ctx)) {
1938 damon_for_each_scheme(s, ctx) {
1939 wait_time = damos_wmark_wait_us(s);
1940 if (!init_wait_time || wait_time < min_wait_time) {
1941 init_wait_time = true;
1942 min_wait_time = wait_time;
1943 }
1944 }
1945 if (!min_wait_time)
1946 return 0;
1947
1948 kdamond_usleep(min_wait_time);
1949
1950 if (ctx->callback.after_wmarks_check &&
1951 ctx->callback.after_wmarks_check(ctx))
1952 break;
1953 }
1954 return -EBUSY;
1955 }
1956
kdamond_init_intervals_sis(struct damon_ctx * ctx)1957 static void kdamond_init_intervals_sis(struct damon_ctx *ctx)
1958 {
1959 unsigned long sample_interval = ctx->attrs.sample_interval ?
1960 ctx->attrs.sample_interval : 1;
1961 unsigned long apply_interval;
1962 struct damos *scheme;
1963
1964 ctx->passed_sample_intervals = 0;
1965 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
1966 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
1967 sample_interval;
1968
1969 damon_for_each_scheme(scheme, ctx) {
1970 apply_interval = scheme->apply_interval_us ?
1971 scheme->apply_interval_us : ctx->attrs.aggr_interval;
1972 scheme->next_apply_sis = apply_interval / sample_interval;
1973 }
1974 }
1975
1976 /*
1977 * The monitoring daemon that runs as a kernel thread
1978 */
kdamond_fn(void * data)1979 static int kdamond_fn(void *data)
1980 {
1981 struct damon_ctx *ctx = data;
1982 struct damon_target *t;
1983 struct damon_region *r, *next;
1984 unsigned int max_nr_accesses = 0;
1985 unsigned long sz_limit = 0;
1986
1987 pr_debug("kdamond (%d) starts\n", current->pid);
1988
1989 complete(&ctx->kdamond_started);
1990 kdamond_init_intervals_sis(ctx);
1991
1992 if (ctx->ops.init)
1993 ctx->ops.init(ctx);
1994 if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1995 goto done;
1996 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1,
1997 sizeof(*ctx->regions_score_histogram), GFP_KERNEL);
1998 if (!ctx->regions_score_histogram)
1999 goto done;
2000
2001 sz_limit = damon_region_sz_limit(ctx);
2002
2003 while (!kdamond_need_stop(ctx)) {
2004 /*
2005 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
2006 * be changed from after_wmarks_check() or after_aggregation()
2007 * callbacks. Read the values here, and use those for this
2008 * iteration. That is, damon_set_attrs() updated new values
2009 * are respected from next iteration.
2010 */
2011 unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
2012 unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
2013 unsigned long sample_interval = ctx->attrs.sample_interval;
2014
2015 if (kdamond_wait_activation(ctx))
2016 break;
2017
2018 if (ctx->ops.prepare_access_checks)
2019 ctx->ops.prepare_access_checks(ctx);
2020 if (ctx->callback.after_sampling &&
2021 ctx->callback.after_sampling(ctx))
2022 break;
2023
2024 kdamond_usleep(sample_interval);
2025 ctx->passed_sample_intervals++;
2026
2027 if (ctx->ops.check_accesses)
2028 max_nr_accesses = ctx->ops.check_accesses(ctx);
2029
2030 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2031 kdamond_merge_regions(ctx,
2032 max_nr_accesses / 10,
2033 sz_limit);
2034 if (ctx->callback.after_aggregation &&
2035 ctx->callback.after_aggregation(ctx))
2036 break;
2037 }
2038
2039 /*
2040 * do kdamond_apply_schemes() after kdamond_merge_regions() if
2041 * possible, to reduce overhead
2042 */
2043 if (!list_empty(&ctx->schemes))
2044 kdamond_apply_schemes(ctx);
2045
2046 sample_interval = ctx->attrs.sample_interval ?
2047 ctx->attrs.sample_interval : 1;
2048 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2049 ctx->next_aggregation_sis = next_aggregation_sis +
2050 ctx->attrs.aggr_interval / sample_interval;
2051
2052 kdamond_reset_aggregated(ctx);
2053 kdamond_split_regions(ctx);
2054 if (ctx->ops.reset_aggregated)
2055 ctx->ops.reset_aggregated(ctx);
2056 }
2057
2058 if (ctx->passed_sample_intervals >= next_ops_update_sis) {
2059 ctx->next_ops_update_sis = next_ops_update_sis +
2060 ctx->attrs.ops_update_interval /
2061 sample_interval;
2062 if (ctx->ops.update)
2063 ctx->ops.update(ctx);
2064 sz_limit = damon_region_sz_limit(ctx);
2065 }
2066 }
2067 done:
2068 damon_for_each_target(t, ctx) {
2069 damon_for_each_region_safe(r, next, t)
2070 damon_destroy_region(r, t);
2071 }
2072
2073 if (ctx->callback.before_terminate)
2074 ctx->callback.before_terminate(ctx);
2075 if (ctx->ops.cleanup)
2076 ctx->ops.cleanup(ctx);
2077 kfree(ctx->regions_score_histogram);
2078
2079 pr_debug("kdamond (%d) finishes\n", current->pid);
2080 mutex_lock(&ctx->kdamond_lock);
2081 ctx->kdamond = NULL;
2082 mutex_unlock(&ctx->kdamond_lock);
2083
2084 mutex_lock(&damon_lock);
2085 nr_running_ctxs--;
2086 if (!nr_running_ctxs && running_exclusive_ctxs)
2087 running_exclusive_ctxs = false;
2088 mutex_unlock(&damon_lock);
2089
2090 return 0;
2091 }
2092
2093 /*
2094 * struct damon_system_ram_region - System RAM resource address region of
2095 * [@start, @end).
2096 * @start: Start address of the region (inclusive).
2097 * @end: End address of the region (exclusive).
2098 */
2099 struct damon_system_ram_region {
2100 unsigned long start;
2101 unsigned long end;
2102 };
2103
walk_system_ram(struct resource * res,void * arg)2104 static int walk_system_ram(struct resource *res, void *arg)
2105 {
2106 struct damon_system_ram_region *a = arg;
2107
2108 if (a->end - a->start < resource_size(res)) {
2109 a->start = res->start;
2110 a->end = res->end;
2111 }
2112 return 0;
2113 }
2114
2115 /*
2116 * Find biggest 'System RAM' resource and store its start and end address in
2117 * @start and @end, respectively. If no System RAM is found, returns false.
2118 */
damon_find_biggest_system_ram(unsigned long * start,unsigned long * end)2119 static bool damon_find_biggest_system_ram(unsigned long *start,
2120 unsigned long *end)
2121
2122 {
2123 struct damon_system_ram_region arg = {};
2124
2125 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
2126 if (arg.end <= arg.start)
2127 return false;
2128
2129 *start = arg.start;
2130 *end = arg.end;
2131 return true;
2132 }
2133
2134 /**
2135 * damon_set_region_biggest_system_ram_default() - Set the region of the given
2136 * monitoring target as requested, or biggest 'System RAM'.
2137 * @t: The monitoring target to set the region.
2138 * @start: The pointer to the start address of the region.
2139 * @end: The pointer to the end address of the region.
2140 *
2141 * This function sets the region of @t as requested by @start and @end. If the
2142 * values of @start and @end are zero, however, this function finds the biggest
2143 * 'System RAM' resource and sets the region to cover the resource. In the
2144 * latter case, this function saves the start and end addresses of the resource
2145 * in @start and @end, respectively.
2146 *
2147 * Return: 0 on success, negative error code otherwise.
2148 */
damon_set_region_biggest_system_ram_default(struct damon_target * t,unsigned long * start,unsigned long * end)2149 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
2150 unsigned long *start, unsigned long *end)
2151 {
2152 struct damon_addr_range addr_range;
2153
2154 if (*start > *end)
2155 return -EINVAL;
2156
2157 if (!*start && !*end &&
2158 !damon_find_biggest_system_ram(start, end))
2159 return -EINVAL;
2160
2161 addr_range.start = *start;
2162 addr_range.end = *end;
2163 return damon_set_regions(t, &addr_range, 1);
2164 }
2165
2166 /*
2167 * damon_moving_sum() - Calculate an inferred moving sum value.
2168 * @mvsum: Inferred sum of the last @len_window values.
2169 * @nomvsum: Non-moving sum of the last discrete @len_window window values.
2170 * @len_window: The number of last values to take care of.
2171 * @new_value: New value that will be added to the pseudo moving sum.
2172 *
2173 * Moving sum (moving average * window size) is good for handling noise, but
2174 * the cost of keeping past values can be high for arbitrary window size. This
2175 * function implements a lightweight pseudo moving sum function that doesn't
2176 * keep the past window values.
2177 *
2178 * It simply assumes there was no noise in the past, and get the no-noise
2179 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a
2180 * non-moving sum of the last window. For example, if @len_window is 10 and we
2181 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
2182 * values. Hence, this function simply drops @nomvsum / @len_window from
2183 * given @mvsum and add @new_value.
2184 *
2185 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
2186 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For
2187 * calculating next moving sum with a new value, we should drop 0 from 50 and
2188 * add the new value. However, this function assumes it got value 5 for each
2189 * of the last ten times. Based on the assumption, when the next value is
2190 * measured, it drops the assumed past value, 5 from the current sum, and add
2191 * the new value to get the updated pseduo-moving average.
2192 *
2193 * This means the value could have errors, but the errors will be disappeared
2194 * for every @len_window aligned calls. For example, if @len_window is 10, the
2195 * pseudo moving sum with 11th value to 19th value would have an error. But
2196 * the sum with 20th value will not have the error.
2197 *
2198 * Return: Pseudo-moving average after getting the @new_value.
2199 */
damon_moving_sum(unsigned int mvsum,unsigned int nomvsum,unsigned int len_window,unsigned int new_value)2200 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
2201 unsigned int len_window, unsigned int new_value)
2202 {
2203 return mvsum - nomvsum / len_window + new_value;
2204 }
2205
2206 /**
2207 * damon_update_region_access_rate() - Update the access rate of a region.
2208 * @r: The DAMON region to update for its access check result.
2209 * @accessed: Whether the region has accessed during last sampling interval.
2210 * @attrs: The damon_attrs of the DAMON context.
2211 *
2212 * Update the access rate of a region with the region's last sampling interval
2213 * access check result.
2214 *
2215 * Usually this will be called by &damon_operations->check_accesses callback.
2216 */
damon_update_region_access_rate(struct damon_region * r,bool accessed,struct damon_attrs * attrs)2217 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
2218 struct damon_attrs *attrs)
2219 {
2220 unsigned int len_window = 1;
2221
2222 /*
2223 * sample_interval can be zero, but cannot be larger than
2224 * aggr_interval, owing to validation of damon_set_attrs().
2225 */
2226 if (attrs->sample_interval)
2227 len_window = damon_max_nr_accesses(attrs);
2228 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
2229 r->last_nr_accesses * 10000, len_window,
2230 accessed ? 10000 : 0);
2231
2232 if (accessed)
2233 r->nr_accesses++;
2234 }
2235
damon_init(void)2236 static int __init damon_init(void)
2237 {
2238 damon_region_cache = KMEM_CACHE(damon_region, 0);
2239 if (unlikely(!damon_region_cache)) {
2240 pr_err("creating damon_region_cache fails\n");
2241 return -ENOMEM;
2242 }
2243
2244 return 0;
2245 }
2246
2247 subsys_initcall(damon_init);
2248
2249 #include "tests/core-kunit.h"
2250