1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  */
11 
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/linkage.h>
17 #include <linux/memblock.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/printk.h>
22 #include <linux/sched.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/slab.h>
26 #include <linux/stackdepot.h>
27 #include <linux/stacktrace.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/bug.h>
31 #include <trace/hooks/kasan.h>
32 
33 #include "kasan.h"
34 #include "../slab.h"
35 
kasan_addr_to_slab(const void * addr)36 struct slab *kasan_addr_to_slab(const void *addr)
37 {
38 	if (virt_addr_valid(addr))
39 		return virt_to_slab(addr);
40 	return NULL;
41 }
42 
kasan_save_stack(gfp_t flags,depot_flags_t depot_flags)43 depot_stack_handle_t kasan_save_stack(gfp_t flags, depot_flags_t depot_flags)
44 {
45 	unsigned long entries[KASAN_STACK_DEPTH];
46 	unsigned int nr_entries;
47 
48 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
49 	return stack_depot_save_flags(entries, nr_entries, flags, depot_flags);
50 }
51 
kasan_set_track(struct kasan_track * track,depot_stack_handle_t stack)52 void kasan_set_track(struct kasan_track *track, depot_stack_handle_t stack)
53 {
54 #ifdef CONFIG_KASAN_EXTRA_INFO
55 	u32 cpu = raw_smp_processor_id();
56 	u64 ts_nsec = local_clock();
57 
58 	track->cpu = cpu;
59 	track->timestamp = ts_nsec >> 9;
60 #endif /* CONFIG_KASAN_EXTRA_INFO */
61 	track->pid = current->pid;
62 	track->stack = stack;
63 }
64 
kasan_save_track(struct kasan_track * track,gfp_t flags)65 void kasan_save_track(struct kasan_track *track, gfp_t flags)
66 {
67 	depot_stack_handle_t stack;
68 
69 	stack = kasan_save_stack(flags, STACK_DEPOT_FLAG_CAN_ALLOC);
70 	kasan_set_track(track, stack);
71 }
72 
73 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
kasan_enable_current(void)74 void kasan_enable_current(void)
75 {
76 	current->kasan_depth++;
77 }
78 EXPORT_SYMBOL(kasan_enable_current);
79 
kasan_disable_current(void)80 void kasan_disable_current(void)
81 {
82 	current->kasan_depth--;
83 }
84 EXPORT_SYMBOL(kasan_disable_current);
85 
86 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
87 
__kasan_unpoison_range(const void * address,size_t size)88 void __kasan_unpoison_range(const void *address, size_t size)
89 {
90 	if (is_kfence_address(address))
91 		return;
92 
93 	kasan_unpoison(address, size, false);
94 }
95 
96 #ifdef CONFIG_KASAN_STACK
97 /* Unpoison the entire stack for a task. */
kasan_unpoison_task_stack(struct task_struct * task)98 void kasan_unpoison_task_stack(struct task_struct *task)
99 {
100 	void *base = task_stack_page(task);
101 
102 	kasan_unpoison(base, THREAD_SIZE, false);
103 }
104 
105 /* Unpoison the stack for the current task beyond a watermark sp value. */
kasan_unpoison_task_stack_below(const void * watermark)106 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
107 {
108 	/*
109 	 * Calculate the task stack base address.  Avoid using 'current'
110 	 * because this function is called by early resume code which hasn't
111 	 * yet set up the percpu register (%gs).
112 	 */
113 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
114 
115 	kasan_unpoison(base, watermark - base, false);
116 }
117 #endif /* CONFIG_KASAN_STACK */
118 
__kasan_unpoison_pages(struct page * page,unsigned int order,bool init)119 bool __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
120 {
121 	u8 tag;
122 	unsigned long i;
123 
124 	if (unlikely(PageHighMem(page)))
125 		return false;
126 
127 	if (!kasan_sample_page_alloc(order))
128 		return false;
129 
130 	tag = kasan_random_tag();
131 	kasan_unpoison(set_tag(page_address(page), tag),
132 		       PAGE_SIZE << order, init);
133 	for (i = 0; i < (1 << order); i++)
134 		page_kasan_tag_set(page + i, tag);
135 
136 	return true;
137 }
138 
__kasan_poison_pages(struct page * page,unsigned int order,bool init)139 void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
140 {
141 	if (likely(!PageHighMem(page)))
142 		kasan_poison(page_address(page), PAGE_SIZE << order,
143 			     KASAN_PAGE_FREE, init);
144 }
145 
__kasan_poison_slab(struct slab * slab)146 void __kasan_poison_slab(struct slab *slab)
147 {
148 	struct page *page = slab_page(slab);
149 	unsigned long i;
150 
151 	for (i = 0; i < compound_nr(page); i++)
152 		page_kasan_tag_reset(page + i);
153 	kasan_poison(page_address(page), page_size(page),
154 		     KASAN_SLAB_REDZONE, false);
155 }
156 
__kasan_unpoison_new_object(struct kmem_cache * cache,void * object)157 void __kasan_unpoison_new_object(struct kmem_cache *cache, void *object)
158 {
159 	kasan_unpoison(object, cache->object_size, false);
160 }
161 
__kasan_poison_new_object(struct kmem_cache * cache,void * object)162 void __kasan_poison_new_object(struct kmem_cache *cache, void *object)
163 {
164 	kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
165 			KASAN_SLAB_REDZONE, false);
166 }
167 
168 /*
169  * This function assigns a tag to an object considering the following:
170  * 1. A cache might have a constructor, which might save a pointer to a slab
171  *    object somewhere (e.g. in the object itself). We preassign a tag for
172  *    each object in caches with constructors during slab creation and reuse
173  *    the same tag each time a particular object is allocated.
174  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
175  *    accessed after being freed. We preassign tags for objects in these
176  *    caches as well.
177  */
assign_tag(struct kmem_cache * cache,const void * object,bool init)178 static inline u8 assign_tag(struct kmem_cache *cache,
179 					const void *object, bool init)
180 {
181 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
182 		return 0xff;
183 
184 	/*
185 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
186 	 * set, assign a tag when the object is being allocated (init == false).
187 	 */
188 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
189 		return init ? KASAN_TAG_KERNEL : kasan_random_tag();
190 
191 	/*
192 	 * For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU,
193 	 * assign a random tag during slab creation, otherwise reuse
194 	 * the already assigned tag.
195 	 */
196 	return init ? kasan_random_tag() : get_tag(object);
197 }
198 
__kasan_init_slab_obj(struct kmem_cache * cache,const void * object)199 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
200 						const void *object)
201 {
202 	/* Initialize per-object metadata if it is present. */
203 	if (kasan_requires_meta())
204 		kasan_init_object_meta(cache, object);
205 
206 	/* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
207 	object = set_tag(object, assign_tag(cache, object, true));
208 
209 	return (void *)object;
210 }
211 
212 /* Returns true when freeing the object is not safe. */
check_slab_allocation(struct kmem_cache * cache,void * object,unsigned long ip)213 static bool check_slab_allocation(struct kmem_cache *cache, void *object,
214 				  unsigned long ip)
215 {
216 	void *tagged_object = object;
217 
218 	object = kasan_reset_tag(object);
219 
220 	if (unlikely(nearest_obj(cache, virt_to_slab(object), object) != object)) {
221 		kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE);
222 		return true;
223 	}
224 
225 	if (!kasan_byte_accessible(tagged_object)) {
226 		kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE);
227 		return true;
228 	}
229 
230 	return false;
231 }
232 
poison_slab_object(struct kmem_cache * cache,void * object,bool init,bool still_accessible)233 static inline void poison_slab_object(struct kmem_cache *cache, void *object,
234 				      bool init, bool still_accessible)
235 {
236 	void *tagged_object = object;
237 
238 	object = kasan_reset_tag(object);
239 
240 	/* RCU slabs could be legally used after free within the RCU period. */
241 	if (unlikely(still_accessible))
242 		return;
243 
244 	kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
245 			KASAN_SLAB_FREE, init);
246 
247 	if (kasan_stack_collection_enabled())
248 		kasan_save_free_info(cache, tagged_object);
249 }
250 
__kasan_slab_pre_free(struct kmem_cache * cache,void * object,unsigned long ip)251 bool __kasan_slab_pre_free(struct kmem_cache *cache, void *object,
252 				unsigned long ip)
253 {
254 	if (!kasan_arch_is_ready() || is_kfence_address(object))
255 		return false;
256 	return check_slab_allocation(cache, object, ip);
257 }
258 
__kasan_slab_free(struct kmem_cache * cache,void * object,bool init,bool still_accessible)259 bool __kasan_slab_free(struct kmem_cache *cache, void *object, bool init,
260 		       bool still_accessible)
261 {
262 	if (!kasan_arch_is_ready() || is_kfence_address(object))
263 		return false;
264 
265 	poison_slab_object(cache, object, init, still_accessible);
266 
267 	/*
268 	 * If the object is put into quarantine, do not let slab put the object
269 	 * onto the freelist for now. The object's metadata is kept until the
270 	 * object gets evicted from quarantine.
271 	 */
272 	if (kasan_quarantine_put(cache, object))
273 		return true;
274 
275 	/*
276 	 * Note: Keep per-object metadata to allow KASAN print stack traces for
277 	 * use-after-free-before-realloc bugs.
278 	 */
279 
280 	/* Let slab put the object onto the freelist. */
281 	return false;
282 }
283 
check_page_allocation(void * ptr,unsigned long ip)284 static inline bool check_page_allocation(void *ptr, unsigned long ip)
285 {
286 	if (!kasan_arch_is_ready())
287 		return false;
288 
289 	if (ptr != page_address(virt_to_head_page(ptr))) {
290 		kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE);
291 		return true;
292 	}
293 
294 	if (!kasan_byte_accessible(ptr)) {
295 		kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE);
296 		return true;
297 	}
298 
299 	return false;
300 }
301 
__kasan_kfree_large(void * ptr,unsigned long ip)302 void __kasan_kfree_large(void *ptr, unsigned long ip)
303 {
304 	check_page_allocation(ptr, ip);
305 
306 	/* The object will be poisoned by kasan_poison_pages(). */
307 }
308 
unpoison_slab_object(struct kmem_cache * cache,void * object,gfp_t flags,bool init)309 static inline void unpoison_slab_object(struct kmem_cache *cache, void *object,
310 					gfp_t flags, bool init)
311 {
312 	/*
313 	 * Unpoison the whole object. For kmalloc() allocations,
314 	 * poison_kmalloc_redzone() will do precise poisoning.
315 	 */
316 	kasan_unpoison(object, cache->object_size, init);
317 
318 	/* Save alloc info (if possible) for non-kmalloc() allocations. */
319 	if (kasan_stack_collection_enabled() && !is_kmalloc_cache(cache))
320 		kasan_save_alloc_info(cache, object, flags);
321 }
322 
__kasan_slab_alloc(struct kmem_cache * cache,void * object,gfp_t flags,bool init)323 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
324 					void *object, gfp_t flags, bool init)
325 {
326 	u8 tag;
327 	void *tagged_object;
328 
329 	if (gfpflags_allow_blocking(flags))
330 		kasan_quarantine_reduce();
331 
332 	if (unlikely(object == NULL))
333 		return NULL;
334 
335 	if (is_kfence_address(object))
336 		return (void *)object;
337 
338 	/*
339 	 * Generate and assign random tag for tag-based modes.
340 	 * Tag is ignored in set_tag() for the generic mode.
341 	 */
342 	tag = assign_tag(cache, object, false);
343 	tagged_object = set_tag(object, tag);
344 
345 	/* Unpoison the object and save alloc info for non-kmalloc() allocations. */
346 	unpoison_slab_object(cache, tagged_object, flags, init);
347 
348 	return tagged_object;
349 }
350 
poison_kmalloc_redzone(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)351 static inline void poison_kmalloc_redzone(struct kmem_cache *cache,
352 				const void *object, size_t size, gfp_t flags)
353 {
354 	unsigned long redzone_start;
355 	unsigned long redzone_end;
356 
357 	/*
358 	 * The redzone has byte-level precision for the generic mode.
359 	 * Partially poison the last object granule to cover the unaligned
360 	 * part of the redzone.
361 	 */
362 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
363 		kasan_poison_last_granule((void *)object, size);
364 
365 	/* Poison the aligned part of the redzone. */
366 	redzone_start = round_up((unsigned long)(object + size),
367 				KASAN_GRANULE_SIZE);
368 	redzone_end = round_up((unsigned long)(object + cache->object_size),
369 				KASAN_GRANULE_SIZE);
370 	kasan_poison((void *)redzone_start, redzone_end - redzone_start,
371 			   KASAN_SLAB_REDZONE, false);
372 
373 	/*
374 	 * Save alloc info (if possible) for kmalloc() allocations.
375 	 * This also rewrites the alloc info when called from kasan_krealloc().
376 	 */
377 	if (kasan_stack_collection_enabled() && is_kmalloc_cache(cache))
378 		kasan_save_alloc_info(cache, (void *)object, flags);
379 
380 }
381 
__kasan_kmalloc(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)382 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
383 					size_t size, gfp_t flags)
384 {
385 	if (gfpflags_allow_blocking(flags))
386 		kasan_quarantine_reduce();
387 
388 	if (unlikely(object == NULL))
389 		return NULL;
390 
391 	if (is_kfence_address(object))
392 		return (void *)object;
393 
394 	/* The object has already been unpoisoned by kasan_slab_alloc(). */
395 	poison_kmalloc_redzone(cache, object, size, flags);
396 
397 	/* Keep the tag that was set by kasan_slab_alloc(). */
398 	return (void *)object;
399 }
400 EXPORT_SYMBOL(__kasan_kmalloc);
401 
poison_kmalloc_large_redzone(const void * ptr,size_t size,gfp_t flags)402 static inline void poison_kmalloc_large_redzone(const void *ptr, size_t size,
403 						gfp_t flags)
404 {
405 	unsigned long redzone_start;
406 	unsigned long redzone_end;
407 
408 	/*
409 	 * The redzone has byte-level precision for the generic mode.
410 	 * Partially poison the last object granule to cover the unaligned
411 	 * part of the redzone.
412 	 */
413 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
414 		kasan_poison_last_granule(ptr, size);
415 
416 	/* Poison the aligned part of the redzone. */
417 	redzone_start = round_up((unsigned long)(ptr + size), KASAN_GRANULE_SIZE);
418 	redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
419 
420 	trace_android_vh_poison_kmalloc_large_redzone(ptr, size, &redzone_end);
421 
422 	kasan_poison((void *)redzone_start, redzone_end - redzone_start,
423 		     KASAN_PAGE_REDZONE, false);
424 }
425 
__kasan_kmalloc_large(const void * ptr,size_t size,gfp_t flags)426 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
427 						gfp_t flags)
428 {
429 	if (gfpflags_allow_blocking(flags))
430 		kasan_quarantine_reduce();
431 
432 	if (unlikely(ptr == NULL))
433 		return NULL;
434 
435 	/* The object has already been unpoisoned by kasan_unpoison_pages(). */
436 	poison_kmalloc_large_redzone(ptr, size, flags);
437 
438 	/* Keep the tag that was set by alloc_pages(). */
439 	return (void *)ptr;
440 }
441 
__kasan_krealloc(const void * object,size_t size,gfp_t flags)442 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
443 {
444 	struct slab *slab;
445 
446 	if (gfpflags_allow_blocking(flags))
447 		kasan_quarantine_reduce();
448 
449 	if (unlikely(object == ZERO_SIZE_PTR))
450 		return (void *)object;
451 
452 	if (is_kfence_address(object))
453 		return (void *)object;
454 
455 	/*
456 	 * Unpoison the object's data.
457 	 * Part of it might already have been unpoisoned, but it's unknown
458 	 * how big that part is.
459 	 */
460 	kasan_unpoison(object, size, false);
461 
462 	slab = virt_to_slab(object);
463 
464 	/* Piggy-back on kmalloc() instrumentation to poison the redzone. */
465 	if (unlikely(!slab))
466 		poison_kmalloc_large_redzone(object, size, flags);
467 	else
468 		poison_kmalloc_redzone(slab->slab_cache, object, size, flags);
469 
470 	return (void *)object;
471 }
472 
__kasan_mempool_poison_pages(struct page * page,unsigned int order,unsigned long ip)473 bool __kasan_mempool_poison_pages(struct page *page, unsigned int order,
474 				  unsigned long ip)
475 {
476 	unsigned long *ptr;
477 
478 	if (unlikely(PageHighMem(page)))
479 		return true;
480 
481 	/* Bail out if allocation was excluded due to sampling. */
482 	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
483 	    page_kasan_tag(page) == KASAN_TAG_KERNEL)
484 		return true;
485 
486 	ptr = page_address(page);
487 
488 	if (check_page_allocation(ptr, ip))
489 		return false;
490 
491 	kasan_poison(ptr, PAGE_SIZE << order, KASAN_PAGE_FREE, false);
492 
493 	return true;
494 }
495 
__kasan_mempool_unpoison_pages(struct page * page,unsigned int order,unsigned long ip)496 void __kasan_mempool_unpoison_pages(struct page *page, unsigned int order,
497 				    unsigned long ip)
498 {
499 	__kasan_unpoison_pages(page, order, false);
500 }
501 
__kasan_mempool_poison_object(void * ptr,unsigned long ip)502 bool __kasan_mempool_poison_object(void *ptr, unsigned long ip)
503 {
504 	struct folio *folio = virt_to_folio(ptr);
505 	struct slab *slab;
506 
507 	/*
508 	 * This function can be called for large kmalloc allocation that get
509 	 * their memory from page_alloc. Thus, the folio might not be a slab.
510 	 */
511 	if (unlikely(!folio_test_slab(folio))) {
512 		if (check_page_allocation(ptr, ip))
513 			return false;
514 		kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false);
515 		return true;
516 	}
517 
518 	if (is_kfence_address(ptr) || !kasan_arch_is_ready())
519 		return true;
520 
521 	slab = folio_slab(folio);
522 
523 	if (check_slab_allocation(slab->slab_cache, ptr, ip))
524 		return false;
525 
526 	poison_slab_object(slab->slab_cache, ptr, false, false);
527 	return true;
528 }
529 
__kasan_mempool_unpoison_object(void * ptr,size_t size,unsigned long ip)530 void __kasan_mempool_unpoison_object(void *ptr, size_t size, unsigned long ip)
531 {
532 	struct slab *slab;
533 	gfp_t flags = 0; /* Might be executing under a lock. */
534 
535 	slab = virt_to_slab(ptr);
536 
537 	/*
538 	 * This function can be called for large kmalloc allocation that get
539 	 * their memory from page_alloc.
540 	 */
541 	if (unlikely(!slab)) {
542 		kasan_unpoison(ptr, size, false);
543 		poison_kmalloc_large_redzone(ptr, size, flags);
544 		return;
545 	}
546 
547 	if (is_kfence_address(ptr))
548 		return;
549 
550 	/* Unpoison the object and save alloc info for non-kmalloc() allocations. */
551 	unpoison_slab_object(slab->slab_cache, ptr, flags, false);
552 
553 	/* Poison the redzone and save alloc info for kmalloc() allocations. */
554 	if (is_kmalloc_cache(slab->slab_cache))
555 		poison_kmalloc_redzone(slab->slab_cache, ptr, size, flags);
556 }
557 
__kasan_check_byte(const void * address,unsigned long ip)558 bool __kasan_check_byte(const void *address, unsigned long ip)
559 {
560 	if (!kasan_byte_accessible(address)) {
561 		kasan_report(address, 1, false, ip);
562 		return false;
563 	}
564 	return true;
565 }
566